BMI, Gestational Weight Gain and Angiogenic Biomarker Profiles for Preeclampsia Risk

Tiffany A. Moore Simas
University of Massachusetts Medical School

Sharon E. Maynard
George Washington University

Xun Liao
University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Clinical Epidemiology Commons, and the Obstetrics and Gynecology Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.
Background

- In May 2009, after considering short and long-term maternal/child outcomes, the Institute of Medicine (IOM) revised recommendations for gestational weight gain (GWG); however, preeclampsia was dismissed due to insufficient evidence.

- Since change in recommendations, epidemiologic studies have published that support an association between GWG adherence and hypertensive disease of pregnancy.

- Numerous studies have revealed adipose tissue’s ability to stimulate angiogenesis.

Objective

To evaluate preeclampsia risk by angiogenic-biomarker profile by both BMI and GWG-adherence.

Hypothesis

We hypothesized that overweight/obese (OW-OB) women and over-gainers (OG) would have altered angiogenic profiles as compared to underweight-normal (U-N) women and under-/appropriate-gainers (U-AG), respectively.

Materials & Methods

- Pregnant subjects <24 weeks gestation enrolled from outpatient prenatal clinics at UMass Memorial Health Care between May 2004 and January 2006.

- Each subject had ≥1 of the following risk factors for preeclampsia:

 Inclusion Criteria
 - Chronic HTN
 - Renal Disease/CKD
 - Pregestational DM
 - History of Preeclampsia
 - Teen Pregnancy
 - Multiple gestations
 - Preeclampsia diagnosis

- Subjects recruited: 127

- Exclusions: missing outcomes, gestational HTN, multiple gestations, preeclampsia diagnosis

- Subjects included in analyses: 82 (342 samples)

- BMI & GWG adherence categories by 1990 IOM recommendations

- Pre-pregnancy BMI* Total GWG at 40 weeks

 Pre-pregnancy BMI | **Total GWG at 40 weeks** |
 - | **(kg/m²)** | **(lb)** |
 Underweight (U) | <19.8 | 28-40 lbs |
 Normal weight (N) | 19.8-26.0 | 25-35 lbs |
 Overweight (OW) | 26.1-29.0 | 25-35 lbs |
 Obese (OB) | >29.0 | At least 15 lbs |

- Adherence defined by GWG and GA @ last prenatal visit subtracted from pre-pregnancy weight; thus preterm and term deliveries included

- Statistical Analysis

 - Demographic comparisons utilized Fisher exact test for categorical variables and Wilcoxon rank sum test for continuous variables (see Table 1).

 - Within-women correlation and right-skewness handled by estimating linear mixed models for ln-transformed biomarkers and then exponentiating on ln scale (i.e., geometric means).

 - Geometric mean and 95% confidence intervals displayed for sFlt1, PlGF and (sFlt1+sEng)/PlGF in each of 3 gestational-age windows for UW-N vs. OW-OB BMI and Under/Appropriate vs. Over-gainers (see figures 1-6).

 - T-test compared means in 3 windows.

- Analytic sample included 82 subjects (342 specimens). See Table 1 for Demographic Comparisons.

- **BMI Comparisons** [see Figures 1-3]

 - Mean sFlt1 lower in all windows in OW-OB compared to U-N (Figure 1)

 - Mean PlGF lower in all windows in OW-OB compared to U-N (Figure 2)

 - Mean ratio ([sFlt1+sEng]/PlGF) trended higher in OW-OB compared to U-N women at 27-30 and 31-36wks (Figure 3)

- **GWG Adherence Comparisons** [see Figures 4-6]

 - Mean sFlt1 lower in all windows in OG compared to U-AG (Figure 4)

 - Mean PlGF lower in all windows in OG compared to U-AG (Figure 5)

 - Mean ratio ([sFlt1+sEng]/PlGF) trended higher in OG compared to U-AG at 31-36wks (Figure 6)

Results

- Analytic sample included 82 subjects (342 specimens). See Table 1 for Demographic Comparisons.

- **BMI Comparisons** [see Figures 1-3]

 - Mean sFlt1 lower in all windows in OW-OB compared to U-N (Figure 1)

 - Mean PlGF lower in all windows in OW-OB compared to U-N (Figure 2)

 - Mean ratio ([sFlt1+sEng]/PlGF) trended higher in OW-OB compared to U-N women at 27-30 and 31-36wks (Figure 3)

- **GWG Adherence Comparisons** [see Figures 4-6]

 - Mean sFlt1 lower in all windows in OG compared to U-AG (Figure 4)

 - Mean PlGF lower in all windows in OG compared to U-AG (Figure 5)

 - Mean ratio ([sFlt1+sEng]/PlGF) trended higher in OG compared to U-AG at 31-36wks (Figure 6)

Limitations

- Small sample size required collapsing of BMI and GWG-adherence categories; thus unable to look at adherence within each BMI category

- Secondary analysis not powered for this exploratory analysis

- Only had total GWG at end of pregnancy