Mechanics of Living, Squishy Materials

Alan Crosby
University of Massachusetts - Amherst

May 20th, 1:15 PM - 2:45 PM

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Molecular and Cellular Neuroscience Commons, Nervous System Diseases Commons, and the Neurology Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Mechanics of Living, Squishy Materials

Al Crosby
Polymer Science & Engineering
University of Massachusetts Amherst
DISCLOSURE

• I have no actual or potential conflict of interest in relation to this program or presentation.
BioInspired Materials Mechanics

BioInspired Adhesion and Friction Control

Snapping, Wrinkling, and Folding Polymers

Nanoparticle Stripes, Ribbons, and Ropes

Local Mechanics of Gels and Tissues
Challenge: Understand the development of mechanical properties in soft networks across multiple length scales.

Goal: Develop quantitative technique for synthetic and biological materials (*in vitro* and *in vivo*).

Objective: Make measurement at arbitrary locations and on biologically relevant length scales (10^{-7}-10^{-3} m)

- **Blood fluid**
 - 1 kPa
- **Brain**
 - 1 kPa
- **Muscle**
 - 10 kPa
- **Collagenous Bone**
 - 100 kPa

- Most knowledge from extracted tissue
- What can we learn from studying tissues in their native state?
Inflation

NeoHookean

\[P = 2G \left(\frac{t_o}{r_o} \right) \left(\lambda^{-1} - \lambda^{-7} \right) \]

Hookean

\[P = 12G \left(\frac{t_o}{r_o} \right) \left(\lambda^{-2} - \lambda^{-3} \right) \]

Cavitation in Bulk

\[P = \frac{2\gamma}{r_o} \left(\frac{1}{\lambda} \right) + 2 \int \frac{\sigma d\lambda}{1 - \lambda^3} \]

\[\frac{P}{G} = \frac{5}{2} - 2 \left(\frac{1}{\lambda} \right) - \frac{1}{2} \left(\frac{1}{\lambda} \right)^4 + \frac{2\gamma}{Gr_o} \left(\frac{1}{\lambda} \right) \]

Syringe Induced Cavitation

\[P = P_s + P_E \]

\[P_s = \gamma \frac{dA}{dV} = \left(\frac{4\gamma}{r_s} \right) \left(\frac{\lambda^2 - 1}{\lambda^2} \right)^{\frac{1}{2}} \]

\[P_E = E \left(\frac{5}{6} - \frac{2}{3\lambda} - \frac{1}{6\lambda^4} \right) \]

\[\frac{P_c}{E} \approx \frac{5}{6} + \frac{2\gamma}{Er_s} \]
Cavitation Rheology

Inner radius = 51 \mu m

Kundu and Crosby *Soft Matter* 2009
Zimberlin and Crosby *J. of Poly. sci. part B* 2009
Zimberlin et al. *Soft Matter* 2010
Crosby and McManus *Physics Today* 2011
Cui, McManus, Crosby. *Soft Matter*, under review
Representative Data
Syringe Radius $= 2.5 \, \mu m$
Dependence on Syringe Radius

\[P_c \approx \frac{5}{6} E + \frac{2\gamma}{r_s} \]
Size Dependence

\[P_c = \frac{5}{6} E + \frac{2 \gamma}{r_s} \]

- \(E_{\text{air}} = 2.4 \text{ kPa} \)
- \(\gamma_{\text{air/gel}} = 0.072 \text{ J/m}^2 \)
Water Cavitation

Inner radius = 127 μm
Cavitation with Water

![Graph showing pressure (P) vs. time (s) for air and water with images of cavitation](image)

- Pressure in kPa:
 - Air
 - Water
- Time in seconds:
 - $t_c = 0.1\, s$
 - t_c
- Radii:
 - $r = 203\, \mu m$
 - $r = 2.5\, \mu m$
Surface Energy Effects

\[P_c = \frac{5}{6} E + \frac{2\gamma}{r_s} \]

\(E_{\text{air}} = 2.4 \text{ kPa} \)
\(E_{\text{water}} = 1.8 \text{ kPa} \)
\(\gamma_{\text{air/gel}} = 0.072 \text{ J/m}^2 \)
\(\gamma_{\text{water/gel}} = 0.0072 \text{ J/m}^2 \)

Zimberlin and Crosby, JPS: B, 2019, in press.
• Polyacrylamide (PAAm); monomer amount varied to obtain gels with different polymer volume fraction (ϕ).

Deformation Transition

Kundu and Crosby, Soft Matter, 2009, 5, 3963-3968.
Reversibility

\[\phi < 0.03 \]

\[P_c \approx E + \frac{2\gamma}{r_s} \]

Ecavitation: 1400 Pa

Econtact mech: 1500 Pa

\[\phi > 0.03 \]

\[P_c \neq E + \frac{2\gamma}{r_s} \]
Size Dependence

Cavitation

\[P_c \sim \frac{5}{6} E + \frac{2\gamma}{r_s} \]

Fracture

\[P_c \propto \left(\frac{G_c E}{r_s} \right)^{1/2} \]
E: Volume Fraction Scaling

\[E \approx \left(\frac{3kT}{b^3 N} \right) \phi \]

\[N = f(\phi) \propto \phi^{-4/3} \]

\[E \propto \left(\frac{3kT}{b^3} \right) \phi^{2.3} \]

Kundu and Crosby, Soft Matter, 2009, 5, 3963-3968.
$G_c \approx (NU) \left(\frac{\text{chains}}{\text{area}} \right)$

\[
\frac{\text{chains}}{\text{area}} \propto \frac{\phi}{N^{1/2}b^2}
\]

\[
G_c \propto \frac{U}{b^2} \phi^{5/24}
\]

Cavitation to Fracture Transition

\[
\frac{P_c}{P_f} \propto 3 \left(\frac{kT}{U} \right)^{1/2} \left(\frac{r_s}{b} \right)^{1/2} \phi + 2 \left(\frac{\gamma b^2}{kT \phi} \right) \left(\frac{kT}{U} \right)^{1/2} \left(\frac{b}{r_s} \right)^{1/2} \phi^{-1.3}
\]

Kundu and Crosby, Soft Matter, 2009, 5, 3963-3968.
The Vitreous Humor

- Weak gel that is 99.9% water and dissolved salts
- Held together by vitrosin fibers and hyaluronic acid
- Very fine network of fibrils $D \sim 20-25$ nm
Time Effect on \textit{in vitro} Vitreous

- Modulus decrease with time of vitreous solution
- Attributed to hyaluronan loss in the exuded aqueous
Vitreous Cavitation

- Performed cavitation rheology on bovine eyes
- Two conditions:
 - Vitreous in eye
 - Vitreous removed
- Demonstrates ability to perform *in vivo* mechanical characterization
- Provides insight design of biological networks

Sample

<table>
<thead>
<tr>
<th></th>
<th>E (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR in Eye</td>
<td>600</td>
</tr>
<tr>
<td>CR extracted</td>
<td>99</td>
</tr>
<tr>
<td>Kornfield**</td>
<td>60</td>
</tr>
</tbody>
</table>

Consistent with predictions that internal network tension contributes to stiffness

The Lens

- Chemical composition
 - 35w% protein
 - 90w% are water-soluble proteins (crystallins), including α, β_h, β_l, γ.

Fig. 3. Crystallin distribution in the bovine lens from centre (LHS) to outside. Single foetal (open symbols) and adult (solid symbols) lenses were divided into concentric layers by controlled dissolution and the α, β- and γ-crystallin content in each layer was determined using HPLC–GPC. The location of the layer in the lens was determined from its protein content, the total protein in the lens and the refractive index gradient.15
Critical Pressure

Mapping Brain Tissue in vivo

In collaboration with Profs. Jennifer McManus and Sean Commins at NUI Maynooth, Ireland
Summary

- Biological systems provide many lessons, key points can be hidden

- Elastic instabilities offer advantages for material characterization

- Cavitation provides unique exploration of length scale and deformation properties of 3-D networks
Funding:
- NSF DMR
- ARO
- DARPA - Draper Labs
- NSF MRSEC at UMass
- NSF NSEC at UMass
- DOE EFRC at UMass
- NSF PIRE program
- NSF IGERT on Nanotechnology

Graduate Students
- Derek Breid
- Chelsea Davis
- Hyun Suk Kim
- Yuri Ebata
- Jun Cui
- Sam Pendergraph
- Michael Bartlett
- Yujie Liu
- Marcos Reyes-Martinez
- Dan King
- Yu-Cheng Chen
- Jon Pham

Postdoctoral Researchers
- Dinesh Chandra
- Dong Yun Lee
- Aline Delbos

Undergraduate Researchers
- Prateek Katti
- Jacob Labelle
- Beth Paret
- Rola Hassoun
- Matt Leonard

Collaborator:

Jennifer McMannus
(NUI Maynooth, Ireland)