May 20th, 1:15 PM - 2:45 PM

Mechanics of Living, Squishy Materials

Alan Crosby
University of Massachusetts - Amherst

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Molecular and Cellular Neuroscience Commons, Nervous System Diseases Commons, and the Neurology Commons

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarships@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Mechanics of Living, Squishy Materials

Al Crosby

Polymer Science & Engineering
University of Massachusetts
Amherst
DISCLOSURE

• I have no actual or potential conflict of interest in relation to this program or presentation.
BioInspired Materials Mechanics

BioInspired Adhesion and Friction Control

Snapping, Wrinkling, and Folding Polymers

Nanoparticle Stripes, Ribbons, and Ropes

Local Mechanics of Gels and Tissues
Tissue Mechanics

Challenge: Understand the development of mechanical properties in soft networks across multiple length scales.

Goal: Develop quantitative technique for synthetic and biological materials (in vitro and in vivo).

Objective: Make measurement at arbitrary locations and on biologically relevant length scales (10^{-7}-10^{-3} m)

Blood fluid	Brain	Muscle	Collagenous Bone
1 kPa | 10 kPa | 100 kPa

- Most knowledge from extracted tissue
- What can we learn from studying tissues in their native state?
Inflation

Neo-Hookean

\[P = 2G \left(\frac{t_0}{r_0} \right) \left(\lambda^{-1} - \lambda^{-7} \right) \]

Hookean

\[P = 12G \left(\frac{t_0}{r_0} \right) \left(\lambda^{-2} - \lambda^{-3} \right) \]

Cavitation in Bulk

\[P = \frac{2\gamma}{r_0} \left(\frac{1}{\lambda} \right) + 2 \int \frac{\sigma d\lambda}{\lambda(1 - \lambda^3)} \]

\[\frac{P}{G} = \frac{5}{2} - 2\left(\frac{1}{\lambda} \right) - \frac{1}{2} \left(\frac{1}{\lambda} \right)^4 + \frac{2\gamma}{Gr_0} \left(\frac{1}{\lambda} \right) \]

Syringe Induced Cavitation

\[P = P_s + P_E \]

\[P_s = \gamma \frac{dA}{dV} = \left(\frac{4\gamma}{r_s} \right) \frac{\left(\frac{\lambda^2 - 1}{\lambda^2} \right)^{1/2}}{\lambda^2} \]

\[P_E = E \left(\frac{5}{6} - \frac{2}{3\lambda} - \frac{1}{6\lambda^4} \right) \]
Inner radius = 51 μm

Kundu and Crosby *Soft Matter* 2009
Zimberlin and Crosby *J. of Poly. sci. part B* 2009
Zimberlin et al. *Soft Matter* 2010
Crosby and McManus *Physics Today* 2011
Cui, McManus, Crosby. *Soft Matter*, under review
Representative Data
Syringe Radius = 2.5 μm
Dependence on Syringe Radius

\[P_c \approx \frac{5}{6} E + \frac{2\gamma}{r_s} \]
Size Dependence

\[P_c = \frac{5}{6} E + \frac{2\gamma}{r_s} \]

- \(E_{\text{air}} = 2.4 \text{ kPa} \)
- \(\gamma_{\text{air/gel}} = 0.072 \text{ J/m}^2 \)
Cavitation with Water

- Graph showing pressure (P) over time (s) with data points for air and water.
- Images showing cavitation at times t_c and $t_c - 0.1$ s, with radii $r = 203 \mu m$ and $r = 2.5 \mu m$.
Surface Energy Effects

\[P_c = \frac{5}{6} E + \frac{2\gamma}{r_s} \]

\[E_{\text{air}} = 2.4 \text{ kPa} \]
\[E_{\text{water}} = 1.8 \text{ kPa} \]
\[\gamma_{\text{air/gel}} = 0.072 \text{ J/m}^2 \]
\[\gamma_{\text{water/gel}} = 0.0072 \text{ J/m}^2 \]

Zimberlin and Crosby, JPS: B, 2019, in press.
Polyacrylamide (PAAm); monomer amount varied to obtain gels with different polymer volume fraction (ϕ).

Reversibility

$\phi < 0.03$

$P_c \sim E + \frac{2\gamma}{r_s}$

$E_{\text{cavitation}}: 1400 \text{ Pa}$

$E_{\text{contact mech}}: 1500 \text{ Pa}$

$\phi > 0.03$

$P_c \neq E + \frac{2\gamma}{r_s}$

$2000 \mu m$

$3000 \mu m$
Size Dependence

Cavitation

\[P_c \sim \frac{5}{6} E + \frac{2\gamma}{r_s} \]

Fracture

\[P_c \propto \left(\frac{G_c E}{r_s} \right)^{1/2} \]
\[E \approx \left(\frac{3kT}{b^3 N} \right) \phi \]

\[N = f(\phi) \propto \phi^{-\frac{4}{3}} \]

\[E \propto \left(\frac{3kT}{b^3} \right) \phi^{2.3} \]

Kundu and Crosby, Soft Matter, 2009, 5, 3963-3968.
\[G_c \approx (NU) \left(\frac{\text{chains}}{\text{area}} \right) \]

\[
\frac{\text{chains}}{\text{area}} \propto \frac{\phi}{N^{1/2}b^2}
\]

\[
G_c \propto \frac{U}{b^2} \phi^{5/24}
\]

Cavitation to Fracture Transition

\[
\frac{P_c}{P_f} \propto 3 \left(\frac{kT}{U} \right)^{1/2} \left(\frac{r_s}{b} \right)^{1/2} \phi + 2 \left(\frac{\gamma b^2}{kT} \right) \left(\frac{kT}{U} \right)^{1/2} \left(\frac{b}{r_s} \right)^{1/2} \phi^{-1.3}
\]

The Vitreous Humor

- Weak gel that is 99.9% water and dissolved salts
- Held together by vitrosin fibers and hyaluronic acid
- Very fine network of fibrils D ~ 20-25 nm

M M Le Goff1 and P N Bishop, Eye (29 Feb 2008), doi: 10.1038/eye.2008.21, Review
Time Effect on *in vitro* Vitreous

- Modulus decrease with time of vitreous solution
- Attributed to hyaluronan loss in the exuded aqueous
Vitreous Cavitation

• Performed cavitation rheology on bovine eyes

• Two conditions:
 – Vitreous in eye
 – Vitreous removed

• Demonstrates ability to perform in vivo mechanical characterization

• Provides insight design of biological networks

Sample

<table>
<thead>
<tr>
<th>Sample</th>
<th>E (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR in Eye</td>
<td>600</td>
</tr>
<tr>
<td>CR extracted</td>
<td>99</td>
</tr>
<tr>
<td>Kornfield**</td>
<td>60</td>
</tr>
</tbody>
</table>

Consistent with predictions that internal network tension contributes to stiffness

The Lens

- **Chemical composition**
 - 35w% protein
 - 90w% are water-soluble proteins (crystallins), including α, β_h, β_l, γ.

Fig. 3. Crystallin distribution in the bovine lens from centre (LHS) to outside. Single foetal (open symbols) and adult (solid symbols) lenses were divided into concentric layers by controlled dissolution and the α-, β- and γ-crystallin content in each layer was determined using HPLC–GPC. The location of the layer in the lens was determined from its protein content, the total protein in the lens and the refractive index gradient.13
Critical Pressure

Mapping Brain Tissue in vivo

In collaboration with Profs. Jennifer McManus and Sean Commins at NUI Maynooth, Ireland
Summary

- Biological systems provide many lessons, key points can be hidden
- Elastic instabilities offer advantages for material characterization
- Cavitation provides unique exploration of length scale and deformation properties of 3-D networks
Funding:
NSF DMR
ARO
DARPA - Draper Labs
NSF MRSEC at UMass
NSF NSEC at UMass
DOE EFRC at UMass
NSF PIRE program
NSF IGERT on Nanotechnology

Graduate Students
Derek Breid
Chelsea Davis
Hyun Suk Kim
Yuri Ebata
Jun Cui
Sam Pendergraph
Michael Bartlett
Yujie Liu
Marcos Reyes-Martinez
Dan King
Yu-Cheng Chen
Jon Pham

Postdoctoral Researchers
Dinesh Chandra
Dong Yun Lee
Aline Delbos

Undergraduate Researchers
Prateek Katti
Jacob Labelle
Beth Paret
Rola Hassoun
Matt Leonard

Collaborator:

Jennifer McMannus
(NUI Maynooth, Ireland)
The Group