3-2011

BMI, Gestational Weight Gain and Angiogenic Biomarker Profiles for Preeclampsia Risk

Tiffany A. Moore Simas
University of Massachusetts Medical School

Sharon E. Maynard
George Washington University

Xun Liao
University of Massachusetts Medical School

Follow this and additional works at: https://escholarship.umassmed.edu/obgyn_pp

Part of the [Obstetrics and Gynecology Commons](https://escholarship.umassmed.edu/obgyn_pp)

Repository Citation

https://escholarship.umassmed.edu/obgyn_pp/1

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Obstetrics and Gynecology Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Abstract

In May 2009, after considering short- and long-term methodologic outcomes, the Institute of Medicine (IOM) revised recommendations for gestational weight gain (GWG) to a BMI-specific approach (1990 IOM recommendations). Within women categories and then exponentiating on ln scale (i.e., geometric means). T-test compared means in 3 windows.

Results

- Mean ratio [(sFlt1+sEng):PlGF] trended higher in OW-OB compared to U-N
- Mean sFlt1 lower in all windows in OW-OB compared to U-N (Figure 1)
- Mean PlGF lower in all windows in OW-OB compared to U-N
- Mean PlGF lower in all windows in OW-OB compared to U-N (Figure 4–6)

Conclusion

- Small sample size required collapsing of BMI and GWG categories, thus unable to make any comparisons within each BMI category
- Secondary analysis not powered for this exploratory analysis
- Only had total GWG at end of pregnancy

Limitations

- Finding suggests trends that OW-OB BMI and excessive GWG associated with angiogenic biomarker profiles consistent with higher preeclampsia risk by end of gestation.
- BMI and GWG as potentially modifiable factors merit further investigation for preeclampsia risk attenuation.

Conclusion

- Small sample size required collapsing of BMI and GWG categories, thus unable to make any comparisons within each BMI category
- Secondary analysis not powered for this exploratory analysis
- Only had total GWG at end of pregnancy

Limitations

- Finding suggests trends that OW-OB BMI and excessive GWG associated with angiogenic biomarker profiles consistent with higher preeclampsia risk by end of gestation.
- BMI and GWG as potentially modifiable factors merit further investigation for preeclampsia risk attenuation.

Conclusion

- Small sample size required collapsing of BMI and GWG categories, thus unable to make any comparisons within each BMI category
- Secondary analysis not powered for this exploratory analysis
- Only had total GWG at end of pregnancy

Limitations

- Finding suggests trends that OW-OB BMI and excessive GWG associated with angiogenic biomarker profiles consistent with higher preeclampsia risk by end of gestation.
- BMI and GWG as potentially modifiable factors merit further investigation for preeclampsia risk attenuation.

Conclusion

- Small sample size required collapsing of BMI and GWG categories, thus unable to make any comparisons within each BMI category
- Secondary analysis not powered for this exploratory analysis
- Only had total GWG at end of pregnancy