Machine perfusion of the liver: Putting the puzzle pieces together

Yuri L. Boteon

Albert Einstein Israelite Hospital

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Gastroenterology Commons, Hepatology Commons, Surgery Commons, and the Surgical Procedures, Operative Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access Publications by UMass Chan Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
EDITORIAL

5625 Serrated lesions: A challenging enemy
 Trovato A, Turshudzhyan A, Tadros M

REVIEW

5630 Liver disorders in COVID-19, nutritional approaches and the use of phytochemicals

5666 Recent advances in blood-based and artificial intelligence-enhanced approaches for gastrointestinal cancer diagnosis
 Li LS, Guo XY, Sun K

5682 Liver disease and COVID-19: The link with oxidative stress, antioxidants and nutrition
 Ristic-Medic D, Petrovic S, Arsic A, Vacic V

MINIREVIEWS

5700 Updates in diagnosis and management of pancreatic cysts
 Lee LS

5715 Artificial intelligence for hepatitis evaluation

5727 Machine perfusion of the liver: Putting the puzzle pieces together
 Boteon YL, Martins PN, Muiesan P, Schlegel A

ORIGINAL ARTICLE

Retrospective Cohort Study

5737 MTNR1B polymorphisms with CDKN2A and MGMT methylation status are associated with poor prognosis of colorectal cancer in Taiwan
 Lee CC, Kuo YC, Hu JM, Chang PK, Sun CA, Yang T, Li CW, Chen CY, Lin FH, Hsu CH, Chou YC

Retrospective Study

5753 Validation of conventional non-invasive fibrosis scoring systems in patients with metabolic associated fatty liver disease
 Wu YL, Kumar R, Wang MF, Singh M, Huang JF, Zhu YY, Lin S

Observational Study

5764 Secular decreasing trends in gastric cancer incidence in Taiwan: A population-based cancer registry study
 Lin YT, Chiang CJ, Yang YW, Huang SP, You SL
META-ANALYSIS

5775 Dietary intake in patients with chronic pancreatitis: A systematic review and meta-analysis

LETTER TO THE EDITOR

5793 Relationship between nonalcoholic fatty liver disease and chronic kidney disease could start in childhood

ABOUT COVER
Editorial Board Member of World Journal of Gastroenterology, Konstantinos Triantafyllou, MD, PhD, FEBGH, Professor, Hepatogastroenterology Unit, 2nd Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, 1, Rimini Street, Athens 12462, Greece. ktriant@med.uoa.gr

AIMS AND SCOPE
The primary aim of World Journal of Gastroenterology (WJG, World J Gastroenterol) is to provide scholars and readers from various fields of gastroenterology and hepatology with a platform to publish high-quality basic and clinical research articles and communicate their research findings online. WJG mainly publishes articles reporting research results and findings obtained in the field of gastroenterology and hepatology and covering a wide range of topics including gastroenterology, hepatology, gastrointestinal endoscopy, gastrointestinal surgery, gastrointestinal oncology, and pediatric gastroenterology.

INDEXING/ABSTRACTING
The WJG is now indexed in Current Contents®/Clinical Medicine, Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports®, Index Medicus, MEDLINE, PubMed, PubMed Central, and Scopus. The 2021 edition of Journal Citation Report® cites the 2020 impact factor (IF) for WJG as 5.742; Journal Citation Indicator: 0.79; IF without journal self cites: 5.590; 5-year IF: 5.044; Ranking: 28 among 92 journals in gastroenterology and hepatology; and Quartile category: Q2. The WJG’s CiteScore for 2020 is 6.9 and Scopus CiteScore rank 2020: Gastroenterology is 19/136.

RESPONSIBLE EDITORS FOR THIS ISSUE
Production Editor: Ji-Hong Liu; Production Department Director: Yu-Jie Ma; Editorial Office Director: Ze-Mao Gong.

NAME OF JOURNAL
World Journal of Gastroenterology

ISSN
ISSN 1007-9327 (print) ISSN 2219-2840 (online)

LAUNCH DATE
October 1, 1995

FREQUENCY
Weekly

EDITORS-IN-CHIEF
Andrzej S Tarnawski, Subrata Ghosh

EDITORIAL BOARD MEMBERS
http://www.wjgnet.com/1007-9327/editorialboard.htm

PUBLICATION DATE
September 14, 2021

COPYRIGHT
© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/gerinfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS
https://www.wjgnet.com/bpg/gerinfo/288

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/gerinfo/239

ONLINE SUBMISSION
https://www.f6publishing.com
Machine perfusion of the liver: Putting the puzzle pieces together

Yuri L Boteon, Paulo N Martins, Paolo Muiesan, Andrea Schlegel

ORCID number: Yuri L Boteon 0000-0002-1709-9284; Paulo N Martins 0000-0001-9333-0233; Paolo Muiesan 0000-0002-7389-6691; Andrea Schlegel 0000-0002-9385-9847.

Author contributions: Boteon YL designed this study; Boteon YL, Martins PN, Muiesan P and Schlegel A performed the literature review and analysis; Boteon YL drafted the manuscript; Boteon YL, Martins PN, Muiesan P, and Schlegel A reviewed the manuscript critically; All authors contributed to editing and approved the final manuscript version.

Conflict-of-interest statement: The authors have no conflicts of interest to disclose.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/

Manuscript source: Invited

Abstract

The realm of extended criteria liver transplantation created the 'adjacent possible' for dynamic organ preservation. Machine perfusion of the liver greatly expanded donor organ preservation possibilities, reaching before unattainable goals, including the mitigation of ischemia-reperfusion injury, viability assessment, and organ reconditioning prior to transplantation. However, current scientific evidence lacks uniformity between studies, perfusion protocols, and acceptance criteria. Construction of collaborative research networks for sharing knowledge should, therefore, enable the development of high-level evidence and guidelines for machine perfusion utilization, including donor acceptance criteria. Finally, this approach shall guarantee conditions for further progress to occur.

Key Words: Machine perfusion of the liver; Liver transplantation; Organ donation; Extended criteria donors; Liver preservation; Clinical trials

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The frequent use of extended criteria donor organs unveiled the limits of static cold storage and created the conditions for the renewed interest in dynamic organ preservation. Indeed, several studies have suggested the superiority of this method over
INTRODUCTION

Previously disregarded and surpassed by the simplicity of static cold storage (SCS), dynamic organ preservation found the 'adjacent possible' in the realm of extended criteria donors (ECD) liver transplantation. Over the last few years, the liver transplantation community has experienced a surge in studies investigating the safety and efficacy of dynamic preservation [1-5]. This event is mainly a consequence of the increased use of ECD organs in order to attend to the growing demand for donor livers. The use of these high-risk organs exposed the limitations of SCS and posed a threat to recipients due to the risk of early allograft dysfunction and even primary non-function; thus, they are often discarded [6,7]. Therefore, at present, ECD liver transplantation has given the possibility to revisit and develop further machine perfusion techniques, previously hindered by the lack of appropriate conditions (e.g., complexity, specific perfusates, and devices, costs). Figure 1 illustrates the evolution of conditions favouring the renewed interest in machine perfusion of the liver (MPL).

DYNAMIC ORGAN PRESERVATION AND ISCHAEMIA-REPERFUSION INJURY MITIGATION

The keystone of dynamic organ preservation is the mitigation of ischemia-reperfusion injury (IRI). IRI is responsible for the inflammatory-mediated tissue injury involved in transplantation and is ultimately associated with adverse results, such as early allograft dysfunction and primary non-function [8]. Dynamic preservation is characterized by a continuous flow of an oxygenated solution, preventing ischemic damage to the cells. In addition, the continuous flow of the perfusate provides nutrients and removes toxic metabolic waste products [7].

Diverse techniques of MPL are currently under research, while a few are currently clinically implemented. These include the ex-situ (normothermic, hypothermic, subnormothermic, controlled oxygenated rewarming), the in-situ modalities (normothermic regional perfusion, NRP), and the ischemia-free organ transplantation [2-4,6,9-12]. Furthermore, combinations of techniques have more recently gained the attention of the transplant community (e.g., cold-to-warm, hypothermic plus normothermic, NRP plus hypothermic or normothermic ex-situ perfusion) [13-18]. Also, ex-situ normothermic machine perfusion (NMP) can be performed in a preservation approach during organ transportation or in an end-ischemic method, whereby the organ will be perfused after arrival at the transplant centre [7]. Hypothermic machine perfusion (HMP) can be done using an oxygen pre-charged perfusate or an actively oxygenated perfusate — with perfusion via portal vein exclusively (hypothermic oxygenated perfusion, HOPE) or in association with the hepatic artery (dual HOPE, D-HOPE) [5,3]. Although HMP is currently used in an end-ischemic approach, a device for hypothermic perfusion during organ transportation is under clinical investigation in the United States (clinical trials.gov, NCT number 03484455).

Albeit all these techniques hold the potential to benefit ECD livers, clearly controversy exists about the best strategy. Currently, the two most studied modalities are NMP and HMP. Both can be performed ex-situ in an end-ischemic approach for organs from donors after brain death (DBD) and donors after circulatory death (DCD). Furthermore, due to the need to increase DCD organ utilization avoiding its associated
At the start of transplantation, the utilization of good quality donor organs and the low price and simplicity of static cold storage (SCS) favoured its general use. However, the rise in demand for liver transplantation and the donor organ demographic change imposed a frequent utilization of extended criteria donor (ECD) organs. ECD liver transplantation presented inferior results, exposing the limitations of SCS. This scenario, allied to the technological development, created a favourable environment and renewed interest in dynamic organ preservation.

Despite consistently attending the primary aim to mitigate IRI, questions are still emerging about the mechanistic pathways involved in this process within each method. In fact, benefits vary slightly between techniques mainly as a consequence of the physical properties employed by the methods and the moment of application. Table 1 describes the potential advantages of different MPL techniques in clinical studies. Notably, only three of the mentioned studies were randomized and the study of Ghinolfi et al[21] included only 10 patients[2,21,22].

ORGAN VIABILITY ASSESSMENT IN LIVER TRANSPLANTATION: CONTINUOUS FLOW FOR REAL-TIME ANALYSIS

Once inducing reperfusion, whilst NMP abbreviates the cold ischemia time, it results in full activation of the aerobic mitochondrial respiration with reactive oxygen species production and release. Further downstream processes are triggered with subsequent oxidative tissue damage and initiation of the inflammatory cascade. The fully physiologically active organ allows real-time assessment of its metabolic functioning, which is currently mostly based on lactate clearance and bile production. However, definitive viability criteria are not yet characterized and validated.

We are currently transitioning from a combination of hepatocyte function-based criteria to a more comprehensive assessment that incorporates cholangiocyte function. The Birmingham group developed pioneer clinical viability criteria, which included: Lactate clearance, evidence of bile production, perfusate pH stability, hepatic artery flow and portal vein flow, and homogeneous graft perfusion with soft consistency of parenchyma. Later, Watson et al[24] advocated using changes in lactate, in glucose...
<table>
<thead>
<tr>
<th>Safety and feasibility</th>
<th>Prevention of early allograft dysfunction</th>
<th>Prevention of biliary complications</th>
<th>Prolonged preservation time</th>
<th>Viability assessment</th>
<th>Therapeutic interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnormothermic machine perfusion</td>
<td>No data available yet</td>
</tr>
<tr>
<td>Controlled oxygenated rewarming</td>
<td>Yes[9,47]</td>
<td>Yes[9,47]</td>
<td>No data available yet</td>
<td>No data available yet</td>
<td>No data available yet</td>
</tr>
<tr>
<td>Combined modalities (HMP + NMP)</td>
<td>Yes[14,15]</td>
<td>No data available yet</td>
<td>No data available yet</td>
<td>Yes[39]</td>
<td>Yes[14,15]</td>
</tr>
<tr>
<td>Ischaemia-free liver transplantation1</td>
<td>Yes[12,48]</td>
<td>Yes[48,49]</td>
<td>No data available yet</td>
<td>No data available yet</td>
<td>No data available yet</td>
</tr>
</tbody>
</table>

1Only suitable for donors after circulatory death.
2Only pre-clinical studies available so far.

and transaminases, and the ability to maintain a stable perfusate pH without bicarbonate supplementation to consider an organ viable. Most recently, the Groningen group highlighted the importance of bile composition analysis during viability assessment (biliary bicarbonate, pH, glucose, lactate dehydrogenase); and their viability criteria already included bile flow and its properties on the analysis[26]. Another study, evaluating discarded donor livers, demonstrated a low hepatocellular injury during NMP; with, however, an elevated bile duct injury on histology[27]. Notably, the impact of MPL on the peribiliary glands and peribiliary vascular plexus, rather than solely bile duct injury, deserves attention. This is because if damage to the bile duct cannot be avoided, establishing a healthy environment to the peribiliary glands contributes to the regenerative capacity of this structure, possibly preventing the development of nonanastomotic strictures[28-30]. The relevance of biliary biomarkers to assess cholangiocyte function and bile duct viability is currently a research topic in liver transplantation[31].

The importance of biliary analysis was indirectly reinforced by another study investigating discarded donor livers, the VIITAL (Viability testing and transplantation of marginal livers) trial[6]. Despite excellent synthetic function with isolated bile flow assessment, a significant proportion of organs developed biliary complications, even requiring retransplantation[6]. In accordance, recently, Eshmuninov et al[32] questioned the value of bile formation as a marker of a deteriorating liver function. These findings were paralleled by previous studies, concluding that continuous bile production alone appears not sufficient enough to evaluate liver viability during ex situ machine perfusion[27]. In this study, porcine and human livers were perfused for up to 1 wk and the authors demonstrated good bile production once appropriate drug-induced stimuli were offered[27]. Finally, they suggest the response to vasoconstrictors and hormones as viability markers for liver function. Interestingly, part of the viable livers included in the study from Eshmuninov et al[27,33] was initially declined for transplantation based on elevated flavin mononucleotide (FMN) levels during HOPE[34].

Conversely, HMP — usually performed at temperatures between 4 °C and 12 °C — keeps the organ at a low metabolic rate, making the assessment of most of its function more challenging. Despite that, actively oxygenated HMP techniques act seemingly on the mitochondria, restoring the electron transport chain and enhancing the mitochondrial oxidative phosphorylation and adenosine triphosphate production[8,23]. Despite the different metabolic status during HMP, more than 2000 molecules can be quantified from perfusates[34]. Recent viability assessment during HOPE focused on mitochondria function and injury. Muller et al[34] identified the first biomarker of organ viability during HMP, the FMN. FMN is a molecule in mitochondria complex I, which is released during organ reperfusion concomitantly and from the same pocket.
as reactive oxygen species.[35,36] The number of released FMN molecules was also assessed during different perfusion modalities and authors found a higher FMN release during normothermic liver perfusion.[36]. Therefore, ultimately, it reflects the severity of IRI, the mitochondrial injury and dysfunction.[36]. The authors from Zurich found a strong correlation between perfusate FMN levels’ — fluorometric readings after 30 min of HMP — and post-transplant outcome parameters (hospital stay, cumulative complications, and 90-d graft loss).[34]. Importantly, based on the autofluorescence properties, FMN can be measured in real-time using a spectrometer.[34]. This mitochondrial parameter was further validated during NRP and NMP in kidneys and livers. Data presented by Wang et al.[36] supported the entire concept of mitochondrial injury quantification through FMN release and concluded that this marker appears useful during various preservation approaches.

Table 2 summarizes parameters tested in clinical studies to assess the viability of donor organs during MPL prior to transplantation. Importantly, current studies included different parameters within their viability criteria. In addition, even when the same parameters were investigated, thresholds and the time points analysed varied.

A WAY BEYOND PRESERVATION: ORGAN RECONDITIONING

Moving organ preservation forward, MPL extrapolates the simple concept of mitigation of donor organ damage before transplantation; in the interim, the dynamic preservation aims to improve the quality of the donated organs or, in other words, recondition them. This step further is fundamental to increase ECD organ utilization once they were exposed to more severe damage and carry a high risk to receptors if SCS is applied.

Non-randomized single-centre clinical studies have confirmed the ability of HMP to enhance the results of ECD liver transplantation.[3,10,37]. Dutkowski et al.[37] suggested that high-risk DCD organs — associated with most severe IRI, poor clinical outcomes, and a high rate of post-operative complications — submitted to the HOPE technique for 1-2 h prior to transplantation have similar outcomes to standard DBD organs, including the length of hospital stay and biliary complications. Later, the same group compared HOPE-treated DCD livers to a matched cohort of DCD organs without further intervention. The perfused livers presented lower post-transplant alanine aminotransferase levels, decreased biliary complication rate, and increased 1-year graft survival.[3]. More recently, Schlegel et al.[38] reported a 5-year graft survival of 94% for transplanted HOPE-treated DCD livers against 78% for untreated DCD organs. Similar benefits were also found in D-HOPE studies led by the Groningen group.[30]. van Rijn et al.[22] recently published a randomized clinical trial on HMP with 160 patients transplanted with DCD organs. The study reached its primary endpoint, D-HOPE-perfused DCD livers had a lower incidence of symptomatic non-anastomotic biliary stricture (6%) compared to 18% in the control group (P = 0.03). This study also demonstrated that D-HOPE reduced the occurrence of early allograft dysfunction post-transplantation.[22].

Importantly, evolving evidence supports the safety of performing D-HOPE for up to 24 h, which may improve transplant logistics.[39]. A recent study suggested that HOPE plays a protective role in preventing hepatocellular carcinoma recurrence after liver transplantation, which is possible due to protection from IRI, downstream inflammation, and subsequent pro-tumour-recurrence environment.[40,41].

A large multicentre trial recently evidenced preservation NMP was able to reduce in 50% the hepatocellular enzyme releases post-operatively, increasing organ utilization rate and preservation time.[2]. Nevertheless, NMP did not reduce biliary complications rate post-transplant and, also, did not impact on graft or patient survival.[2]. Similar results were found in another study wherein end-ischemic NMP was used.[42]. The Birmingham group applied NMP to discarded donor livers, 71% of the perfused organs were transplanted. Although this study reported 100% 90-d patient and graft survival, perfusion did not prevent non-anastomotic biliary stricture (incidence of 18%), and four recipients required retransplantation within 542 d.[6]. Albeit the near-physiological conditions of donor organs during NMP favours the assessment of their metabolic functions, the ability of NMP per se to recondition ECD organs is still controversial. Whether a severely damaged organ would recover after activation of the damaging IRI machinery during NMP without any further intervention is not clear. Seemingly, additional support must be required.[8,13,43,44].

The uncertainty about NMP reconditioning properties is counterbalanced by evident advantages. The organ’s full metabolism facilitates its viability assessment,
Table 2 Parameters employed in clinical studies to assess the viability of donor organs before transplantation

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Method</th>
<th>Per fusate parameters</th>
<th>Bile parameters</th>
<th>Per fusion parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watson et al [11]</td>
<td>NRP</td>
<td>Within 2 h of NRP: Alanine transaminase up to 500 IU/L, providing no continued rise between the first and second hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muller et al [34]</td>
<td>HMP</td>
<td>At least 1 h of HMP: Threshold at 10 000 A.U. (100 ng FMN/mL perfusate) to refuse livers regardless of the use of a DCD or DBD liver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watson et al [32]</td>
<td>NMP</td>
<td>No timepoint defined: Changes in lactate, glucose, and transaminase concentrations and the ability of the liver to maintain perfusate pH without supplemental bicarbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matton et al [26]</td>
<td>NMP</td>
<td></td>
<td>Within 2.5 h of NMP: Bicarbonate concentration > 18 mmol/L, pH > 7.46, glucose concentration < 16 mmol/L, bile/perfusate glucose concentration ratio < 0.67, and LDH concentration < 3699 U/L</td>
<td></td>
</tr>
<tr>
<td>de Vries et al [14]</td>
<td>NMP</td>
<td>Within 150 min of NMP: Lactate concentration within “normal” values (0.5-1.7 mmol/L); pH within normal values (7.35-7.45), without continuing sodium bicarbonate supplementation</td>
<td>Within 150 min of NMP: Cumulative bile production of ≥ 10 mL and ≥ 4 mL in the preceding hour. pH > 7.45</td>
<td></td>
</tr>
<tr>
<td>Mattlin et al [6]</td>
<td>NMP</td>
<td>Within 4 h of NMP: Lactate ≤ 2.5 mmol/L, and two or more parameters: pH ≥ 7.30; Evidence of glucose metabolism</td>
<td>Within 4 h of NMP: Evidence of bile production</td>
<td>Within 4 h of NMP: HA flow ≥ 150 mL/min and PV flow ≥ 500 mL/min; homogeneous perfusion of the parenchyma</td>
</tr>
<tr>
<td>Cardini et al [50]</td>
<td>NMP</td>
<td>Within 2 h of NMP: Rapid decrease and maintenance of lactate to physiological levels, maintenance of physiological pH values without sodium bicarbonate supplementation, and glucose consumption. Remarkably high transaminases and LDH levels and a severe rise of these parameters are deemed warning signals</td>
<td>Within 2 h of NMP: Bile production and bile pH are indicators for bile duct viability and function</td>
<td></td>
</tr>
<tr>
<td>Reiling et al [34]</td>
<td>NMP</td>
<td>Within 2 h of NMP: Lactate clearance to < 2 mmol/L. Within 4 h of NMP: Evidence of glucose metabolism. Maintenance of physiological pH without continuing administration of sodium bicarbonate</td>
<td>Within 4 h of NMP: Bile production (no lower limit)</td>
<td>Within 4 h of NMP: Stable hepatic arterial and portal venous flows. Homogeneous graft perfusion with soft consistency of parenchyma</td>
</tr>
</tbody>
</table>

DCD: Donation after circulatory death; DBD: Donation after brain death; HA: Hepatic artery; HMP: Hypothermic machine perfusion; LDH: Lactate dehydrogenase; NMP: Normothermic machine perfusion; NRP: Normothermic regional perfusion; PV: Portal vein.

increases the surgeon’s confidence, and allows safe prolonged organ preservation[2,6]. This ambiguity opened up an opportunity for further additions to the technique, for example, combinations of perfusion modalities and pharmacological interventions[15, 43]. Combinations of perfusion modalities may merge both techniques’ benefits; experimental and clinical studies have already suggested the possibility to enhance the reconditioning of the most severely damaged organs with the realization of HMP before NMP[13-15,17]. Similarly, pharmacological interventions may mitigate IRI and improve donor organ metabolic recovery, which has been suggested in pre-clinical studies investigating discarded steatotic donor livers[43]. For a comprehensive review on pharmacological agents used in MPL, please refer to Resch et al[45].

FINAL CONSIDERATIONS

Although several studies currently have demonstrated the benefits of dynamic organ preservation, limitations of this evidence exist. This is because significant variability of technicalities occurs even between studies employing the same method. For example, for NMP, parameters such as the rewarming period, arterial and portal vein perfusion pressure, and perfusate constitution vary between studies. Similarly, studies diverge on the perfusion duration, either replacing SCS during organ transportation or performed as an end-ischemic approach at the recipient transplant centre. For HMP, similar challenges also occur. So far, most studies focused on organs with a short period of cold ischemia time and, also, the level of perfusate oxygenation differs
between them. Adopting standardized protocols might enable the construction of large perfusion databases, which may unveil further advantages of MPL.

In addition, the foundation of large networks to develop studies collaboratively must benefit even further the era of machine perfusion in liver transplantation. The development of large collaborative perfusion groups working collectively may allow reliable comparison between perfusion modalities and, even, identify which technology is most beneficial to each specific organ.

CONCLUSION

Over the last few years, machine perfusion in liver transplantation gathered momentum, though it seems the construction of definitive evidence is still needed. This is mainly because of current disjointed individual efforts with non-standardization of methods and publication of single-centre non-randomized small studies. Dynamic organ preservation must thrive on collaborative networks wherein collective outcomes must consolidate its actual benefits (viability assessment, prolonged organ preservation, and organ reconditioning) and create the conditions for further progress to occur. Pharmacological ex-situ treatments and investigation of the impact of this technology on specific donor organs are some possibilities within reach, lying in the realm of the possible.

ACKNOWLEDGEMENTS

This paper presents independent research supported by the Brazilian Ministry of Health via the Support Program for Organizational Development of the SUS (PROADI-SUS) at the Hospital Israelita Albert Einstein. The views expressed are those of the author(s) and not necessarily those of the Ministry of Health, the PROADI-SUS, or the Hospital Israelita Albert Einstein. We are extremely grateful to the staff from the Hospital Israelita Albert Einstein and Hospital Municipal Vila Santa Catarina, whose continued support provides resources and intellectual input that is shaping the thoughts and future strategies for the continuing development of our research.

REFERENCES

8. Gilbo N, Catalano G, Salizzoni M, Romagnoli R. Liver graft preconditioning, preservation and

Ceresa CDL, Nasralla D, Watson CJE, Butler AJ, Coussios CC, Crick K, Hudson L, Imber C, Jassim W, Knight SR, Mengental H, Ploege RJ, Pollok JM, Quaglia A, Shapiro AMJ, Weissenbacher A, Friend PJ. Transient Cold Storage Prior to Normothermic Liver Perfusion May Facilitate Adoption of

