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Genetic analysis of amyotrophic lateral sclerosis 
identifies contributing pathways and cell types
Sara Saez-Atienzar1*†, Sara Bandres-Ciga2,3†, Rebekah G. Langston4, Jonggeol J. Kim2,  
Shing Wan Choi5, Regina H. Reynolds6,7,8, the International ALS Genomics Consortium,  
ITALSGEN, Yevgeniya Abramzon1,9, Ramita Dewan1, Sarah Ahmed10,  
John E. Landers11, Ruth Chia1, Mina Ryten7,8, Mark R. Cookson4, Michael A. Nalls2,12, 
Adriano Chiò13,14†, Bryan J. Traynor1,15†

Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do 
not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involv-
ing 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types 
involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that 
resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal trans-
duction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic 
interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Men-
delian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, 
PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic 
etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types.

INTRODUCTION
Amyotrophic lateral sclerosis [ALS; OMIM (Online Mendelian In-
heritance in Man) #105400] is a fatal neurological disease characterized 
by progressive paralysis that leads to death from respiratory failure 
typically within 3 to 5 years of symptom onset. Approximately 6000 
Americans and 11,000 Europeans die of the condition annually, and 
the number of ALS cases will increase markedly over the next two 
decades, mostly due to aging of the global population (1).

Identifying the genes underlying ALS has provided critical in-
sights into the cellular mechanisms leading to neurodegeneration, 
such as protein homeostasis, cytoskeleton alterations, and RNA 
metabolism (2). Additional efforts based on reductionist and high- 
throughput cell biology experiments have implicated other pathways, 
such as endoplasmic reticulum (ER) stress (3), nucleocytoplasmic 
transport (4), and autophagy defects (5). Despite these successes, 

our knowledge of the biological processes involved in ALS is in-
complete, especially for the sporadic form of the disease.

To address this gap in our knowledge, we systematically applied 
polygenic risk score analysis to a genomic dataset involving 78,500 
individuals to distinguish the cellular processes driving ALS. In 
essence, our polygenic risk score strategy determines whether a par-
ticular pathway participates in the pathogenesis of ALS by compil-
ing the effect of multiple genetic variants across all of the genes 
involved in that pathway. This approach relies solely on genetic in-
formation derived from a large cohort and tests all known pathways 
in a data-driven manner. Hence, it provides prima facie evidence of 
the cellular pathways responsible for the disease. Knowledge of the 
cell types involved in a disease process is an essential step to under-
standing a disorder. Recognizing this, we extended our computa-
tional approach to identify the specific cell types that are involved in 
ALS. To ensure accessibility, we created an online resource so that 
the research community can explore the contribution of the various 
pathways and cell types to ALS risk (https://lng-nia.shinyapps.io/
ALS-Pathways/).

RESULTS
Pathway analysis used a three-stage study design
Overall, we evaluated the involvement of 7296 pathways in the 
pathogenesis of ALS using a polygenic risk score approach (see 
Fig. 1A for the workflow of our analysis). To ensure the accuracy of 
our results, we divided the available ALS genomic data into three 
sections. The first of these independent datasets (hereafter known 
as the reference dataset) was a published genome-wide association 
study (GWAS) involving 12,577 ALS cases and 23,475 controls (6). 
We used the summary statistics from this reference dataset to define 
the weights of the risk allele so that greater importance was given to 
alleles with higher risk estimates.

These risk allele weights were then applied to our second dataset 
(also known as the training dataset) to generate a polygenic risk 
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score estimate for each biological pathway. These training data con-
sisted of individual-level genotype and phenotype data from 5605 
ALS cases and 24,110 control subjects that were genotyped in our 
laboratory (7). We investigated the pathways defined by the Molec-
ular Signatures Database, a compilation of annotated gene sets de-
signed for gene set enrichment and pathway analysis. We focused 
our efforts on three collections within the Molecular Signatures Da-
tabase that have been previously validated (8, 9). These were the 
hallmark gene sets (containing 50 pathways), the curated gene sets 
(1329 pathways), and the gene ontology gene sets (5917 pathways).

To ensure our results’ accuracy and control for type I error, we 
attempted replication of our findings in an independent cohort. For 
this, we used our third independent dataset (also known as the rep-
lication dataset) consisting of individual-level genotype and pheno-
type data from 2411 ALS cases and 10,322 controls that were also 
genotyped in our laboratory (7). The pathways that achieved signif-
icance in the training dataset [defined as a false discovery rate 
(FDR)–corrected P value of <0.05] were selected for replication. 
Then, we report the pathways that achieved significance in the rep-
lication dataset (defined as a raw P value of <0.05). While the repli-
cation cohort was required to ensure the accuracy of our results and 
to avoid overfitting, it was limited in size, raising concerns of reject-
ing true associations. For this reason, we reported the pathways that 

achieved significance in the replication dataset using a raw P value 
of <0.05 as the threshold for significance. The FDR-corrected P values 
are also shown in Table 1.

We applied a similar polygenic risk score approach to determine 
which cell types are associated with the ALS disease process (Fig. 1B). 
In essence, a cell type associated with a disease will display a pattern 
whereby more of the polygenic risk score variance is attributable to 
genes specifically expressed in that cell type. We applied a linear 
model to detect this pattern in our ALS data, using a P value of less 
than 0.05 as the significance threshold. This strategy has become a 
standard approach for this type of analysis (10).

Biological pathways driving the risk of ALS
We calculated the contribution to ALS risk of 7296 gene sets and 
pathways listed in the Molecular Signature Database (fig. S1). This 
genome-wide analysis identified 13 biological processes, 12 cellular 
component pathways, and 2 molecular function pathways with a 
significant risk associated with ALS in the training data (table S1). 
We independently confirmed a significant association with ALS risk 
in 13 of these pathways in our replication cohort. These path-
ways included (i) seven biological processes, namely, neuron 
projection morphogenesis, neuron development, cell morpho-
genesis involved in differentiation, cell part morphogenesis, cellular 

Fig. 1. Workflow followed in this study. Polygenic risk score analysis was used to identify (A) biological pathways and (B) cell types contributing to the risk of develop-
ing ALS. The human frontal cortex single-nucleus dataset was obtained from the North American Brain Expression Consortium (NABEC). The human FTC and hippocam-
pus DroNc-seq was obtained from Habib et al. (19). The human Motor Cortex sNUC-seq dataset was obtained from the Allen Cell Types database (20). FTC, prefrontal 
cortex; M1, primary motor cortex.
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component morphogenesis, cell development, and cell projection 
organization (Fig. 2A and Table 1); (ii) four cellular components, 
namely, autophagosome, cytoskeleton, nuclear outer membrane ER 
membrane network, and cell projection (Fig. 2B and Table 1); and 
(iii) two molecular function terms, namely, ribonucleotide binding 
and protein N-terminus binding (Fig. 2C and Table 1).

Pathways central to ALS risk
There is significant functional overlap among the 13 pathways that 
we identified as significantly associated with ALS risk. We sought to 
more broadly summarize the significant pathways by removing re-
dundant terms. To do this, we computed semantic similarity that is 
a measure of the relatedness between gene ontology terms based on 
curated literature. We used the REVIGO algorithm to obtain cluster 
representatives (11). Overall, our results resolved into three central 
pathways as being involved in the pathogenesis of ALS, namely, neu-
ron projection morphogenesis, membrane trafficking, and signal 
transduction mediated by ribonucleotides (Fig. 2, D to F, and fig. S2).

Pathway analysis among patients carrying the pathogenic 
C9orf72 repeat expansion
We found that the C9orf72 gene was a member of 2 of our 13 signif-
icant pathways, namely, the autophagosome and cytoskeleton path-
ways. We explored whether C9orf72 was the main driver of these 
pathways. To do this, we calculated the polygenic risk score associ-
ated with these two pathways in C9orf72 expansion carriers com-
pared to healthy individuals, and non-C9orf72 carriers compared to 
healthy individuals. These cohorts consisted of 666 patients diag-
nosed with ALS who were C9orf72 expansion carriers, 7040 patients 
with ALS who were noncarriers, and 34,232 healthy individuals.

Our analysis revealed that the cytoskeleton pathway remained 
significantly associated with ALS risk in C9orf72 expansion carriers 
and noncarriers. This finding indicated that this critical biological 
process is broadly involved in ALS’s pathogenesis (Fig. 3B). In con-
trast, only C9orf72 expansion carriers showed significant risk in the 
autophagosome genes (Fig. 3A), indicating that the C9orf72 locus 
mostly drives this pathway’s involvement in the pathogenesis of 
ALS and points to an autophagy-related mechanism underlying 
C9orf72 pathology.

ALS polygenic risk is due to genes other than known risk loci
We also examined the contributions of the five genetic risk loci 
known to be associated with ALS. These loci were reported in the 
most recent ALS GWAS (7) and included TNIP1, C9orf72, KIF5A, 
TBK1, and UNC13A (7). Rare variants in other known ALS genes 
were not included in the polygenic risk score analysis, as there was 
no evidence of association within those loci in the GWAS. To do 
this, we added these five loci as covariates in the analysis of the rep-
lication cohort. Our data show that autophagosome and cell projec-
tion were no longer significant. However, the other 11 pathways 
were still associated, suggesting that there are risk variants contrib-
uting to the risk of ALS within these 11 pathways that remain to be 
discovered (table S2).

Mendelian randomization nominates genes relevant  
to ALS pathogenesis
Most variants associated with a complex trait overlap with expres-
sion quantitative trait loci (eQTL), suggesting their involvement in 
gene expression regulation (12). We applied two-sample Mendelian 
randomization within the 13 significant pathways (shown in Table 1) 

Table 1. Pathways that were significantly associated with ALS based on polygenic risk score analysis after replication. Beta estimates, standard errors, 
and P values are after Z transformation. SE, standard error; BP, biological process; CC, cellular component; MF, molecular function. 

Gene set Beta SE P FDR Category

Cell development 0.074 0.025 0.003 0.006 BP

Cell morphogenesis 
involved in 
differentiation

0.101 0.025 4.65 × 10−5 1.51 × 10−4 BP

Cell part morphogenesis 0.104 0.025 3.17 × 10−5 1.37 × 10−4 BP

Cell projection 
organization 0.072 0.025 0.004 0.007 BP

Cellular component 
morphogenesis 0.108 0.025 1.26 × 10−5 1.20 × 10−4 BP

Neuron development 0.099 0.025 6.2 × 10−5 1.61 × 10−4 BP

Neuron projection 
morphogenesis 0.107 0.025 1.85 × 10−5 1.20 × 10−4 BP

Cytoskeleton 0.06 0.025 0.015 0.097 CC

Nuclear outer membrane 
ER membrane 
network

0.06 0.025 0.016 0.097 CC

Autophagosome 0.052 0.025 0.035 0.139 CC

Cell projection 0.049 0.025 0.046 0.139 CC

Ribonucleotide binding 0.076 0.025 0.002 0.004 MF

Protein N-terminus 
binding 0.057 0.025 0.02 0.020 MF
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to integrate summary-level data from a large ALS GWAS (7) with data 
from cis-eQTLs obtained from previous studies in blood (13) and 
brain (14–17). This approach identifies genes whose expression levels 
are associated with ALS because of a shared causal variant. We used 
multiple single-nucleotide polymorphisms (SNPs) belonging to the 
13 significant pathways as instruments, gene expression traits as ex-
posure, and the ALS phenotype as the outcome of interest (Fig. 4A). 
Our analyses identified six genes whose altered expression was sig-
nificantly associated with the risk of developing ALS. These were 
ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1 
within blood (table S3). In addition, SCFD1 was significantly associated 
with ALS in brain-derived tissue (Fig. 4B). Supporting the veracity of 
our findings, SCFD1 variants have been previously associated with 
ALS risk in a large population study (6), and ACSL5 has recently 
been identified as an ALS gene in a multiethnic meta-analysis (18).

Cell types involved in the pathogenesis of ALS
We leveraged our large GWAS dataset to determine which cell types 
participate in the pathological processes of ALS. To do this, we gen-

erated a single-nucleus RNA sequencing (sNuc-seq) dataset using 
the human frontal cortex collected from 16 healthy donors. Each 
cell was assigned to 1 of 34 specific cell types based on the clustering 
of the sNuc-seq data (Fig. 5, A and B). We then determined a decile 
rank of expression for the 34 cell types based on the specificity of 
expression. For instance, the TREM2 gene is highly expressed only 
in microglia. Thus, the specificity value of TREM2 in microglia is 
close to 1 (0.87), and it is assigned to the 10th decile for this cell 
type. In contrast, the POLR1C gene is expressed widely across tis-
sues. Consequently, it has a specificity value of 0.007, and it is as-
signed to the fourth decile of microglia and a similar low decile 
across other cell types.

The premise of this type of analysis is that, for a cell type associ-
ated with a disease, more of the variance explained by the polygenic 
risk score estimates will be attributable to the genes more highly ex-
pressed in that cell type. To test this hypothesis, we applied linear re-
gression models to detect a trend of increased variance with the top 
deciles, a pattern indicating that a particular cell type is involved in 
the pathogenesis of ALS (10). This approach identified two subtypes 

Fig. 2. Pathways associated with ALS based on polygenic risk score analysis. The Forest plots show polygenic risk score estimates in the replication cohort for the (A) bio-
logical processes, (B) cellular components, and (C) molecular function pathways that were significant in the training cohort. The blue squares represent the significant 
terms in both the training and replication datasets. The heatmaps depict semantic similarity calculated by GOSemSim among the significant (D) biological processes, 
(E) cellular components, and (F) molecular function. The REVIGO algorithm was used to obtain the cluster representatives. The Forest plot displays the distribution of beta 
estimates across pathways, with the horizontal lines corresponding to 95% confidence intervals. Beta estimates for the polygenic risk score are after Z transformation.
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of cortical GABAergic interneurons (PVALB- and TOX-expressing 
neurons, and ADARB2- and RELN-expressing neurons) and oligo-
dendrocytes (OPALIN-, FCHSD2-, and LAMA2-expressing oligo-
dendrocytes) as associated with ALS risk (Fig. 5C).

To confirm these findings, we used an independent dataset con-
sisting of droplet single-nucleus RNA-seq (DroNc-seq) from the 
human prefrontal cortex and hippocampus obtained from five 
healthy donors (19). Our modeling in this second human dataset 

Fig. 3. Exploring the role of the C9orf72 gene in ALS. The polygenic risk scores associated with (A) autophagosome and (B) cytoskeleton in ALS C9orf72 expansion 
carriers (n = 666) compared to healthy subjects (n = 34,232), and ALS noncarriers (n = 7040) compared to healthy subjects (n = 34,232) are shown in this figure. The upper 
panels depict the cumulative genetic risk score for each group. The lower panel shows the forest plots of the beta estimates with 95% confidence intervals. Beta estimates 
are based on the Z-score scale. Genetic risk score mean comparisons from the ALS-noncarriers group compared to the ALS-C9orf72 carriers via t test are summarized by 
asterisks, with * denoting a two-sided mean difference at P < 0.05.

Fig. 4. Genes within the significant pathways for which expression was associated with ALS risk based on two-sample Mendelian randomization. (A) Schematic 
representation of the parameters used for the analysis. (B) The Forest plot displays the beta estimates, with the 95% confidence intervals shown as horizontal error bars. 
The grid on the left indicates the pathway to which the gene belongs.
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confirmed our previous findings: PVALB-expressing GABAergic 
neurons and oligodendrocytes were significantly enriched in ALS 
risk (see fig. S3).

To explore whether our main cell type findings were reproducible 
across other brain areas vulnerable to ALS pathology, we used an 
independent dataset consisting of snRNA-seq data from the human 
primary motor cortex (20). Our analysis identified several subtypes of 
primary motor cortex cell types that were associated with ALS. These 
included nine subtypes of GABAergic interneurons [clusters InN.38 
(PVALB- and TOX-expressing neurons), InN.8, InN.14, InN.24, 
InN.32 (ADARB2- and RELN-expressing neurons), InN.4, InN.15, 
InN.20, and InN.21] and oligodendrocytes (cluster OCD.11, OPALIN- 

expressing oligodendrocytes). In addition, oligodendrocyte precur-
sor cells (cluster OPC.37) and glutamatergic neurons (cluster ExN.25) 
were implicated with ALS within this dataset (Fig. 6).

Last, we attempted to replicate our findings in a well-validated 
dataset based on single-cell RNA-seq data obtained from mouse 
brain regions (10). The advantage of this nonhuman dataset is that 
it is based on single-cell RNA-seq, a difficult technique to apply to 
human neurons, but which captures transcripts missed by sNuc-seq 
that may be important for neurological disease (10). Like the human 
data, cortical parvalbuminergic interneurons again showed enrichment 
in ALS risk using the mouse dataset (see fig. S4). Oligodendrocytes 
were not significantly associated with ALS in the mouse datasets. 

Fig. 5. The phenotypic variance explained by polygenic risk scores across the human frontal cortex cell types. (A) Unsupervised UMAP clustering identifies 34 cell 
types in the human cortex. (B) Heatmap representing the gene expression per cluster. (C) The y axis corresponds to the phenotypic variance explained by polygenic risk 
score (pseudo-R2), and the x axis depicts deciles 1 to 10. The color pictures show the significant cell types and the P values of the linear regression fit models. The gray 
pictures show the cell types that were not significantly associated with the disease. The regression line depicts the association between the variance explained by poly-
genic risk score (pseudo-R2, adjusted by prevalence) and the specificity decile in each cell type. The gray shading shows the 95% confidence interval of the regression 
model. AST, astrocyte; EC, endothelial cell; ExN, excitatory neuron; InN, inhibitory neuron; MGL, microglia; ODC, oligodendrocyte; OPC, oligodendrocyte precursor.
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One plausible explanation is that the genes specifically expressed in 
human oligodendrocytes overlap with the genes related to human 
neurological disease, but these genes are not enriched in the mouse 
oligodendrocytes (21).

As spinal cord degeneration is a hallmark of ALS, we attempted 
to replicate our findings in a mouse lumbar spinal cord single-nucleus 
dataset (22). This approach implicated three cell types in the patho-
genesis of ALS: GABAergic interneurons (InN.13), astrocytes, and 
dorsal root ganglion neurons (see fig. S5). Similar to before, GABAergic 
interneurons were enriched within the mouse spinal cord dataset.

DISCUSSION
A striking aspect of our analysis is that it identified a relatively small 
number of biological pathways as central to the pathogenesis of ALS. 

Considering the clinicopathological and genetic heterogeneity across 
ALS, the finding of such a small quantity of universal themes is un-
expected. Our results illustrate how multiple unrelated genetic causes 
can lead to a similar downstream outcome, namely, motor neuron 
degeneration. Unraveling how disruption of these three fundamental 
biological processes predisposes to ALS may yield therapeutic tar-
gets that are effective across all patients with ALS.

The importance of membrane trafficking in ALS has been widely 
reported (23). In contrast, although neuronal outgrowth has been ex-
plored in ALS (24), our identification of genetic risk underlying neu-
ronal morphogenesis was previously unknown. The combination of 
membrane trafficking and neuronal morphogenesis may be a driving 
force of the disease pathogenesis. The defining feature of motor neu-
rons is the length of their axons, projections that require specialized 
long-range transport and efficient cytoskeletal dynamics to maintain 

Fig. 6. The phenotypic variance explained by polygenic risk score across the human primary motor cortex cell types. (A) Unsupervised UMAP clustering identifies 
40 cell types in the human primary motor cortex. (B) The y axis corresponds to the phenotypic variance explained by the polygenic risk score (pseudo-R2), and the x axis 
depicts deciles 1 to 10. The color pictures show the significant cell types and the P values of the linear regression fit models. The gray pictures show the cell types that 
were not significantly associated with the disease. The regression line depicts the association between the variance explained by the polygenic risk score (pseudo-R2, 
adjusted by prevalence) and the specificity decile in each cell type. The gray shading shows the 95% confidence interval of the regression model.
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synaptic connections (25). Similarly, signal transduction mediated 
by ribonucleotides is a broad term encompassing ion channel trans-
port that regulates signal transmission at synapses. Disruption of this 
process leads to hyperexcitability, a phenomenon that has been ob-
served in patients with ALS (26). We speculate that broadly expressed 
genes lead to selective damage due to the high reliance of motor 
neurons on cellular transport, morphogenesis, and axonal ion 
channels compared to other cell types.

Our data did not detect biological pathways that have been pre-
viously implicated in the pathogenesis of familial ALS, such as nucleo-
cytoplasmic transport (27) and excitotoxicity (28). These cellular 
processes may only operate in specific genetic forms of ALS, such as 
C9orf72- or SOD1-related cases. A more likely explanation is that 
rare and low-frequency variants not captured by our methodology 
significantly contribute to those pathways. For this reason, we can-
not rule these biological processes out as relevant to the pathogene-
sis of ALS. Future analyses of more substantial datasets that include 
whole-genome sequencing data may implicate them.

One of our study’s strengths is that we could distinguish differ-
ential pathways operating in C9orf72 expansion carriers versus non-
carriers. The autophagosome pathway was only significant in the 
analysis of the C9orf72 expansion carriers. The C9orf72 protein is a 
known regulator of autophagy; hence, it is not unexpected that a 
higher burden of ALS genetic risk was found within autophagy genes 
in C9orf72 expansion carriers versus noncarriers. This is the first 
time that autophagy-related processes have been implicated in 
C9orf72 biology from a genetic perspective. The hexanucleotide re-
peat expansion is known to influence the C9orf72 gene expression, 
irrespective of reported biology involving dipeptide repeats and 
toxic RNA species arising directly from the repeat expansion (29), 
which reinforces the importance of our findings. The C9orf72 pro-
tein was also recently found to play a role in neuronal and dendritic 
morphogenesis in ALS by promoting autophagy (30).

Our rigorous approach using multiple human and mouse tran-
scriptomic data identified GABAergic interneurons and oligoden-
drocytes as the cell types central to ALS. These findings are consistent 
with published literature. For example, alteration in inhibitory 
signaling through GABAergic interneurons contributes to neural 
hyperexcitability, an early event in ALS pathogenesis (26). Oligo-
dendrocytes from sporadic and familial SOD1 ALS exert a harmful 
effect on motor neurons by secreting toxic factors (31). Although 
these cell types were previously linked with toxicity in ALS, our 
study indicates that oligodendrocytes incorporate a significant pro-
portion of ALS genetic risk. This initial finding supports the idea 
that these cells directly contribute to the disease pathogenesis rather 
than merely playing a secondary role in the disease progression.

Our results show the power of data-driven approaches to nominate 
aspects of the nervous system for additional scrutiny. Nevertheless, 
our study has limitations. Although we analyzed 78,500 individuals 
in the current study, our power to detect pathways remains limited. 
This lack of power primarily stems from the genetic architecture of 
ALS, which is known to conform to the rare disease–rare variant 
paradigm (32). By design, our pathway analysis focuses on common 
variants with a frequency greater than 1%, but we know that the 
contribution of common variants to ALS risk is modest (6). Fur-
thermore, our approach is based on intragenic variants, although 
intergenic mutations can affect gene expression. We have overcome 
this power limitation by performing multiple rounds of replication 
in both the pathway analysis and cell type analysis to ensure accura-

cy and validity. The detected pathways and cell types represent po-
tent aspects of the ALS disease process, but additional critical cellu-
lar mechanisms will undoubtedly be found using more extensive 
datasets. In addition, the datasets used in this study are from indi-
viduals of European ancestry, meaning that caution is required in 
generalizing to other populations.

Another limitation faced by the pathway analysis field, in general, 
is the lack of accurate and complete databases that genuinely cap-
ture the complexity of the neurobiology. We have used the Molecu-
lar Signatures Database to define the pathways in our analysis, 
although this collection is incomplete for neuronal and glial path-
ways. As our understanding evolves and more single-cell expression 
datasets become available, it may be worthwhile to reevaluate our 
GWAS data periodically. To facilitate this, we have made the pro-
gramming code needed to perform the analysis publicly available. 
We also created an interactive, online resource that enables the re-
search community to explore the contribution of pathways and cell 
types to ALS risk (https://lng-nia.shinyapps.io/ALS-Pathways/).

In conclusion, we demonstrate the utility of data-driven ap-
proaches to dissect the molecular basis of complex diseases such as 
ALS. Our stringent approach points to neuron projection morpho-
genesis, membrane trafficking, and signal transduction mediated by 
ribonucleotides as primary drivers of motor neuron degeneration 
in ALS. It also nominates cortical GABAergic interneurons and oli-
godendrocytes as central to the pathogenesis of this fatal neurolog-
ical disease.

MATERIALS AND METHODS
Experimental design
Study design
We used a three-stage study design to identify pathways relevant to 
ALS risk (see Fig. 1 for workflow). To ensure accuracy, we compiled 
the available ALS genomic data into three independent datasets for 
analyses. The reference dataset consisted of summary statistics from 
a previous published GWAS involving 12,577 cases and 23,475 con-
trols of European ancestry (publicly available from databrowser.
projectmine.com) (6). We used the summary statistics from this 
reference dataset to define risk allele weights for constructing poly-
genic risk scores within pathways defined by the Molecular Signa-
tures Database.

The remaining data consisted of individual-level genotype and 
phenotype data from 8016 ALS cases and 34,432 control subjects of 
European ancestry that we recently published (7). We randomly 
split these data in a 70%-to-30% ratio into a “training dataset” con-
taining 5605 cases and 24,110 control subjects and a “replication 
dataset” consisting of 2411 patients and 10,322 controls subjects. We 
used the regression model generated from the reference data to 
construct and test polygenic risk scores within the training data. 
The replication dataset was used to validate our training data find-
ings. There was no sample overlap between the reference, training, 
or replication datasets.
Human subjects
All patients included in our analysis had been diagnosed with ALS 
according to the El Escorial criteria by a neurologist specializing in 
ALS. The demographics of the cohorts are listed in table S4. Written 
consent was obtained from all individuals enrolled in this study, 
and the study was approved by the institutional review board of the 
National Institute on Aging (protocol number 03-AG-N329).
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The human samples for sNuc-seq consisted of frozen frontal 
cortex postmortem samples obtained from 16 neurologically healthy 
donors. The subjects were between 16 and 61 years of age (median 
age = 36, male:female ratio = 1:1). The samples were acquired from 
the University of Maryland Brain and Tissue Bank through the 
National Institutes of Health (NIH) NeuroBioBank.

Method details
Gene set selection and pathway analysis
The Molecular Signatures Database (MSigDB database v6.2, http://
software.broadinstitute.org/gsea/downloads_archive.jsp) is a com-
pilation of annotated gene sets designed for gene enrichment and 
pathway analysis. This database is divided into eight collections 
(33, 34), and we focused our efforts on three of these compilations 
that have been validated previously (8) (9): (i) hallmark gene sets 
representing well-defined biological processes (n = 50); (ii) curated 
gene sets representing pathways annotated by various sources such 
as online pathway databases, the biomedical literature, and manual 
curation by domain experts (n = 1329); and (iii) gene ontology gene 
sets consisting of pathways annotated with the same gene ontology 
term (n = 5917). The last collection is subdivided into biological 
processes, cellular components, and molecular functions (see fig. S1).
Quality control of reference and target datasets
The target dataset consisted of individual-level genotype and phe-
notype data in the PLINK binary file format. Only variants with an 
imputation quality (R2) greater than 0.8 were included in the analy-
sis. To ensure that the C9orf72 gene was correctly represented in the 
dataset, we removed 120 kb upstream and downstream of C9orf27, 
and we replaced rs3849943 (located outside C9orf72) with rs2453555 
(located within intron 3). After these filters, 5,421,177 variants re-
mained in the training dataset. From these, we selected 268,431 vari-
ants with an association P value in the reference dataset less than or 
equal to 0.05. Next, we applied the default clumping parameters 
outlined in the PRSice-2 software package (35) (version 2.1.1, 
R2 = 0.1, and a 250-kb window). This clumping process yielded 
27,176 variants that were then used for polygenic risk score analysis.
Polygenic risk score generation
Polygenic risk scores were calculated on the basis of the weighted 
allele dosages as implemented in PRSice-2 using the no-clump flag. 
A key advantage of this approach is that it allows variants below the 
typical GWAS significance threshold of 5.0 × 10−8 to be included in 
the analysis. For the training dataset, 1000 permutations were used 
to generate empirical P value estimates for each GWAS-derived 
P value. Each permutation test in the training dataset provided a 
Nagelkerke’s pseudo-R2 value after adjusting for an estimated ALS 
prevalence of 5 per 100,000 of the population (36). Sex, age at onset, 
and eigenvectors 1 to 20 were included as covariates in the model.

To test the contribution of known ALS GWAS genetic risk loci 
to our pathways, we included the following risk variants as co-
variates in the replication testing: rs10463311 (TNIP1), rs2453555 
(C9orf72), rs113247976 (KIF5A), rs74654358 (TBK1), and 
rs12973192 (UNC13A). The variant rs75087725 corresponding to 
the C21orf2 gene was not included as this variant has a low imputa-
tion quality score (R2 < 0.8). Also, although rs12973192 is the vari-
ant nominated as the UNC13A GWAS hit, it was replaced by the 
clumping algorithm in favor of rs7849703.

Polygenic risk scores were then tested in the replication phase 
using the --score command implemented in PLINK v1.9 (37). Poly-
genic risk scores were calculated, incorporating the risk variants 

from the pathways nominated in the discovery phase. Risk allele 
dosages were counted (giving a dose of two if homozygous for the 
risk allele, one if heterozygous, and zero if homozygous for the ref-
erence allele). All SNPs were weighted by the log odds ratios obtained 
from the reference dataset, with a greater weight given to alleles with 
higher risk estimates. Polygenic risk scores were converted to Z scores 
for easier interpretation. Logistic regressions were performed to 
evaluate the association between the pathway-specific polygenic risk 
score of interest with ALS as the outcome. Gene sets/pathways con-
taining less than 20 SNPs were discarded.

An example of the polygenic risk score procedure is as follows: 
The Molecular Signature Database lists 79 genes as part of the auto-
phagosome pathway. After applying our filtering methods, 50 variants 
were located within these genes that achieved a P value of less than 
0.05 in the reference GWAS. These 50 variants were used to calculate 
the polygenic risk score of the autophagosome pathway in the train-
ing dataset. We scaled the risk allele dosages of these variants using 
the beta estimates obtained from the reference dataset. Last, we eval-
uated these 50 variants in the independent replication dataset.
Semantic similarity analysis of gene ontology terms
The GoSemSim function from the GoSemSim R package (version 2.8.0) 
was used to calculate the semantic similarity between sets of gene 
ontology terms (38). This algorithm applies Wang’s method based 
on a graph-based strategy using the topology of the gene ontology 
graph structure. Hierarchical clustering based on similarity scores 
was performed to separate groups of gene ontology terms, and the 
groups were labeled using a representative term. To obtain the rep-
resentative term, we used the function tree map from REVIGO 
(http://revigo.irb.hr) (11). In addition, SNPs from the cellular com-
ponent significant set and the molecular function significant set 
were further subjected to enrichment analysis to dissect biological 
function. The function g:GOSt from g:ProfileR (39) (https://biit.cs.
ut.ee/gprofiler/gost) was used to detect the top three REACTOME- 
enriched pathways (fig. S2).
Mendelian randomization analysis
To identify genes within the 13 significant pathways that drive the 
risk of ALS, we exploited the known tendency of SNPs associated 
with disease also to be associated with gene eQTL (40). We applied 
summary data–based Mendelian randomization as implemented in 
the SMR software package (http://cnsgenomics.com/software/smr) 
(41) to the genes within the 13 significant pathways. This approach 
used estimates for cis-eQTLs obtained from a sizeable eQTL meta- 
analysis performed in blood (13) and brain (14). Brain expression 
datasets include estimates for cis-expression from the Genotype- 
Tissue Expression (GTEx) Consortium (v6; whole blood and 10 brain 
regions) (15), the Common Mind Consortium (dorsolateral pre-
frontal cortex) (16), and the Religious Orders Study and Memory 
and Aging Project (ROSMAP) (17). This methodology used summary- 
level data from GWAS and eQTL studies to test for pleiotropic as-
sociation. Wald ratios were generated for each instrumental variable 
SNP tagging a cis-eQTL (defined as probes within a gene that met 
an eQTL P value of at least 5 × 10−8 in the original study). Linkage 
pruning and clumping were carried out using default SMR proto-
cols. The P values per instrument substrate were adjusted by FDR. 
SNPs with a HEIDI (heterogeneity in dependent instruments) P value 
of less than 0.01 were excluded on the grounds of pleiotropy.
Nuclei isolation
Approximately 100 mg of tissue was homogenized in cold lysis buffer 
(Nuclei PURE Lysis Buffer/1 mM dithiothreitol/0.1% Triton X-100; 
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Sigma-Aldrich) in a Dounce homogenizer. The homogenate was 
transferred to a 50-ml conical tube, vortexed for 2 to 3 s, and incu-
bated for 10 min on ice in a total of 10-ml lysis buffer. Tissue lysate 
was resuspended with 18 ml of cold 1.8 M Sucrose Cushion Solu-
tion and layered slowly over 10 ml of cold 1.8 M Sucrose Cushion 
Solution (Sigma-Aldrich) in an ultracentrifuge tube (Beckman 
Coulter) on ice. Samples were centrifuged for 45 min at 30,000g at 
4°C. Pelleted nuclei were resuspended in 1-ml cold nuclei suspen-
sion buffer (NSB; 0.01% phosphate-buffered saline and 0.1% bovine 
serum albumin; New England BioLabs) and SUPERase-In RNase 
inhibitor (Thermo Fisher Scientific) (19). The nuclei suspension 
was mixed with an additional 4 ml of cold NSB and centrifuged for 
5 min at 500g at 4°C. After a second wash in 5-ml cold NSB, nuclei 
were resuspended in 100 to 200 l of cold NSB and counted on an 
automated cell counter (Bio-Rad). The concentration of the nuclei 
suspension was adjusted to ~1000 nuclei/l.
Single-nucleus RNA sequencing
The extracted nuclei were submitted to the Single Cell Analysis Fa-
cility (Center for Cancer Research, National Cancer Institute) for 
single-cell RNA sequencing. Sequencing libraries were constructed 
using the Chromium Single Cell Gene Expression Solution v3 (10× 
Genomics). The libraries were pooled and loaded at a concentration 
of 1.8 pM with 10% PhiX spike-in for sequencing on the Illumina 
NextSeq 550 System using Illumina NextSeq 150 Cycle Hi-Output 
v2.5 kits (Illumina) to achieve a targeted read depth of ~33,000 reads 
per nucleus. The resulting FASTQ files were aligned and counted 
using Cell Ranger software v3 (10× Genomics), generating feature- 
barcode matrices. One donor was sequenced in triplicate, and two 
donors were sequenced in duplicate to produce 21 single-cell RNA-
seq datasets.

These datasets were normalized using SCTransform v0.2.1 (42) and 
integrated by pair-wise comparison of anchor gene expression (43) 
within the Seurat package v3.1 (44) in R. Shared nearest neighbor–
based clustering was used to identify distinct cell clusters, which 
were then manually assigned cell type identities based on differen-
tial expression of known cell type marker genes (45, 46).
Cell type–specific risk
We used single-nuclei RNA-seq data obtained from the human 
frontal cortex of North American Brain Expression Consortium 
(NABEC) (47) (48) samples (dbGaP parent study accession: 
phs001300.v1.p1). These data were based on 161,225 nuclei tran-
scriptomes from 16 neurologically healthy donors. We calculated 
the specificity of expression for each gene within each cell type, fol-
lowing a previously published methodology (10). These values 
range from zero to one and represent the proportion of the total 
expression of a gene found in one cell type compared to all cell types. 
For example, if a gene has a score of one in a particular cell type, it 
means that it is only expressed in this cell type. If a gene has a score 
of zero in a given cell type, it is not expressed in that cell type (10).

Overall, we assessed the variance explained by the polygenic risk 
score (pseudo-R2) in 34 human brain cell types. We obtained the 
pseudo-R2 value using the merged training and replication datasets 
(8016 cases and 34,432 controls). Next, we applied a linear regres-
sion model to evaluate if more of the variance explained by polygenic 
risk score is attributable to the genes that were more specific to each 
cell type (P value of the hypothesis test in the model is <0.05).

For replication in cell types derived from the prefrontal cortex 
and hippocampus, we used publicly available DroNc-seq data con-
sisting of 19,550 nuclei obtained from four frozen, postmortem 

samples of human hippocampus and three samples from prefrontal 
cortex (19, 49). The specificity matrix for this dataset was obtained 
from https://github.com/RHReynolds/MarkerGenes/tree/master/
specificity_matrices.

For replication in the cell types derived from the human primary 
motor cortex, we obtained single-nuclei RNA-seq data from the 
Human M1 10× dataset from Allen Brain Map (http://portal.brain-
map.org/atlases-and-data/rnaseq/human-m1-10x) (20). This data-
set was normalized using SCTransform v0.2.1 (42). Shared nearest 
neighbor–based clustering was used to identify distinct cell clusters, 
which were manually assigned cell type identities based on the dif-
ferential expression of known cell type marker genes (45, 46).

Mouse lumbar spinal cord snRNA-seq data (22) were downloaded 
as raw data from accession number GSE103892. The dataset was nor-
malized and analyzed, as described in this manuscript. The mouse 
brain specificity matrix was obtained from the original paper (10).

Statistical analysis
All statistics were performed using R and Plink version 1.9. Poly-
genic risk scores were calculated using the PRSice-2 algorithm, and 
1000 permutations were used to generate empirical P value esti-
mates as described in Materials and Methods. A linear regression 
model was used in the cell type analysis to evaluate the variance ex-
plained by the polygenic risk score attributable to genes specific to each 
cell type. Significance thresholds were set at P < 0.05 (FDR-corrected 
per gene set collection in the training dataset and raw P value in the 
replication dataset). Power calculations were performed by estimating 
the variance in the training dataset using the estimatePolygenicModel 
function within the AVENGEME v1 package (https://github.com/
DudbridgeLab/avengeme/) (50) and then determining the power of 
the polygenic risk score to predict disease status in the replication 
dataset using the polygenescore function. The replication cohort’s 
power was estimated to be 98%. Data statistics are detailed in figure 
legends, and statistical values are listed in Results.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/3/eabd9036/DC1

View/request a protocol for this paper from Bio-protocol.
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