
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Publications by UMMS Authors 

2021-01-15 

Genetic analysis of amyotrophic lateral sclerosis identifies Genetic analysis of amyotrophic lateral sclerosis identifies 

contributing pathways and cell types contributing pathways and cell types 

Sara Saez-Atienzar 
National Institutes of Health 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Genetics and Genomics Commons, Molecular and Cellular Neuroscience Commons, 

Nervous System Diseases Commons, and the Neurology Commons 

Repository Citation Repository Citation 
Saez-Atienzar S, Landers JE. (2021). Genetic analysis of amyotrophic lateral sclerosis identifies 
contributing pathways and cell types. Open Access Publications by UMMS Authors. https://doi.org/
10.1126/sciadv.abd9036. Retrieved from https://escholarship.umassmed.edu/oapubs/4570 

Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access 
Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, 
please contact Lisa.Palmer@umassmed.edu. 













Saez-Atienzar et al., Sci. Adv. 2021; 7 : eabd9036     15 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 13

confirmed our previous findings: PVALB-expressing GABAergic 
neurons and oligodendrocytes were significantly enriched in ALS 
risk (see fig. S3).

To explore whether our main cell type findings were reproducible 
across other brain areas vulnerable to ALS pathology, we used an 
independent dataset consisting of snRNA-seq data from the human 
primary motor cortex (20). Our analysis identified several subtypes of 
primary motor cortex cell types that were associated with ALS. These 
included nine subtypes of GABAergic interneurons [clusters InN.38 
(PVALB- and TOX-expressing neurons), InN.8, InN.14, InN.24, 
InN.32 (ADARB2- and RELN-expressing neurons), InN.4, InN.15, 
InN.20, and InN.21] and oligodendrocytes (cluster OCD.11, OPALIN-

expressing oligodendrocytes). In addition, oligodendrocyte precur-
sor cells (cluster OPC.37) and glutamatergic neurons (cluster ExN.25) 
were implicated with ALS within this dataset (Fig. 6).

Last, we attempted to replicate our findings in a well-validated 
dataset based on single-cell RNA-seq data obtained from mouse 
brain regions (10). The advantage of this nonhuman dataset is that 
it is based on single-cell RNA-seq, a difficult technique to apply to 
human neurons, but which captures transcripts missed by sNuc-seq 
that may be important for neurological disease (10). Like the human 
data, cortical parvalbuminergic interneurons again showed enrichment 
in ALS risk using the mouse dataset (see fig. S4). Oligodendrocytes 
were not significantly associated with ALS in the mouse datasets. 

Fig. 5. The phenotypic variance explained by polygenic risk scores across the human frontal cortex cell types. (A) Unsupervised UMAP clustering identifies 34 cell 
types in the human cortex. (B) Heatmap representing the gene expression per cluster. (C) The y axis corresponds to the phenotypic variance explained by polygenic risk 
score (pseudo-R2), and the x axis depicts deciles 1 to 10. The color pictures show the significant cell types and the P values of the linear regression fit models. The gray 
pictures show the cell types that were not significantly associated with the disease. The regression line depicts the association between the variance explained by poly-
genic risk score (pseudo-R2, adjusted by prevalence) and the specificity decile in each cell type. The gray shading shows the 95% confidence interval of the regression 
model. AST, astrocyte; EC, endothelial cell; ExN, excitatory neuron; InN, inhibitory neuron; MGL, microglia; ODC, oligodendrocyte; OPC, oligodendrocyte precursor.
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One plausible explanation is that the genes specifically expressed in 
human oligodendrocytes overlap with the genes related to human 
neurological disease, but these genes are not enriched in the mouse 
oligodendrocytes (21).

As spinal cord degeneration is a hallmark of ALS, we attempted 
to replicate our findings in a mouse lumbar spinal cord single-nucleus 
dataset (22). This approach implicated three cell types in the patho-
genesis of ALS: GABAergic interneurons (InN.13), astrocytes, and 
dorsal root ganglion neurons (see fig. S5). Similar to before, GABAergic 
interneurons were enriched within the mouse spinal cord dataset.

DISCUSSION
A striking aspect of our analysis is that it identified a relatively small 
number of biological pathways as central to the pathogenesis of ALS. 

Considering the clinicopathological and genetic heterogeneity across 
ALS, the finding of such a small quantity of universal themes is un-
expected. Our results illustrate how multiple unrelated genetic causes 
can lead to a similar downstream outcome, namely, motor neuron 
degeneration. Unraveling how disruption of these three fundamental 
biological processes predisposes to ALS may yield therapeutic tar-
gets that are effective across all patients with ALS.

The importance of membrane trafficking in ALS has been widely 
reported (23). In contrast, although neuronal outgrowth has been ex-
plored in ALS (24), our identification of genetic risk underlying neu-
ronal morphogenesis was previously unknown. The combination of 
membrane trafficking and neuronal morphogenesis may be a driving 
force of the disease pathogenesis. The defining feature of motor neu-
rons is the length of their axons, projections that require specialized 
long-range transport and efficient cytoskeletal dynamics to maintain 

Fig. 6. The phenotypic variance explained by polygenic risk score across the human primary motor cortex cell types. (A) Unsupervised UMAP clustering identifies 
40 cell types in the human primary motor cortex. (B) The y axis corresponds to the phenotypic variance explained by the polygenic risk score (pseudo-R2), and the x axis 
depicts deciles 1 to 10. The color pictures show the significant cell types and the P values of the linear regression fit models. The gray pictures show the cell types that 
were not significantly associated with the disease. The regression line depicts the association between the variance explained by the polygenic risk score (pseudo-R2, 
adjusted by prevalence) and the specificity decile in each cell type. The gray shading shows the 95% confidence interval of the regression model.
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synaptic connections (25). Similarly, signal transduction mediated 
by ribonucleotides is a broad term encompassing ion channel trans-
port that regulates signal transmission at synapses. Disruption of this 
process leads to hyperexcitability, a phenomenon that has been ob-
served in patients with ALS (26). We speculate that broadly expressed 
genes lead to selective damage due to the high reliance of motor 
neurons on cellular transport, morphogenesis, and axonal ion 
channels compared to other cell types.

Our data did not detect biological pathways that have been pre-
viously implicated in the pathogenesis of familial ALS, such as nucleo-
cytoplasmic transport (27) and excitotoxicity (28). These cellular 
processes may only operate in specific genetic forms of ALS, such as 
C9orf72- or SOD1-related cases. A more likely explanation is that 
rare and low-frequency variants not captured by our methodology 
significantly contribute to those pathways. For this reason, we can-
not rule these biological processes out as relevant to the pathogene-
sis of ALS. Future analyses of more substantial datasets that include 
whole-genome sequencing data may implicate them.

One of our study’s strengths is that we could distinguish differ-
ential pathways operating in C9orf72 expansion carriers versus non-
carriers. The autophagosome pathway was only significant in the 
analysis of the C9orf72 expansion carriers. The C9orf72 protein is a 
known regulator of autophagy; hence, it is not unexpected that a 
higher burden of ALS genetic risk was found within autophagy genes 
in C9orf72 expansion carriers versus noncarriers. This is the first 
time that autophagy-related processes have been implicated in 
C9orf72 biology from a genetic perspective. The hexanucleotide re-
peat expansion is known to influence the C9orf72 gene expression, 
irrespective of reported biology involving dipeptide repeats and 
toxic RNA species arising directly from the repeat expansion (29), 
which reinforces the importance of our findings. The C9orf72 pro-
tein was also recently found to play a role in neuronal and dendritic 
morphogenesis in ALS by promoting autophagy (30).

Our rigorous approach using multiple human and mouse tran-
scriptomic data identified GABAergic interneurons and oligoden-
drocytes as the cell types central to ALS. These findings are consistent 
with published literature. For example, alteration in inhibitory 
signaling through GABAergic interneurons contributes to neural 
hyperexcitability, an early event in ALS pathogenesis (26). Oligo-
dendrocytes from sporadic and familial SOD1 ALS exert a harmful 
effect on motor neurons by secreting toxic factors (31). Although 
these cell types were previously linked with toxicity in ALS, our 
study indicates that oligodendrocytes incorporate a significant pro-
portion of ALS genetic risk. This initial finding supports the idea 
that these cells directly contribute to the disease pathogenesis rather 
than merely playing a secondary role in the disease progression.

Our results show the power of data-driven approaches to nominate 
aspects of the nervous system for additional scrutiny. Nevertheless, 
our study has limitations. Although we analyzed 78,500 individuals 
in the current study, our power to detect pathways remains limited. 
This lack of power primarily stems from the genetic architecture of 
ALS, which is known to conform to the rare disease–rare variant 
paradigm (32). By design, our pathway analysis focuses on common 
variants with a frequency greater than 1%, but we know that the 
contribution of common variants to ALS risk is modest (6). Fur-
thermore, our approach is based on intragenic variants, although 
intergenic mutations can affect gene expression. We have overcome 
this power limitation by performing multiple rounds of replication 
in both the pathway analysis and cell type analysis to ensure accura-

cy and validity. The detected pathways and cell types represent po-
tent aspects of the ALS disease process, but additional critical cellu-
lar mechanisms will undoubtedly be found using more extensive 
datasets. In addition, the datasets used in this study are from indi-
viduals of European ancestry, meaning that caution is required in 
generalizing to other populations.

Another limitation faced by the pathway analysis field, in general, 
is the lack of accurate and complete databases that genuinely cap-
ture the complexity of the neurobiology. We have used the Molecu-
lar Signatures Database to define the pathways in our analysis, 
although this collection is incomplete for neuronal and glial path-
ways. As our understanding evolves and more single-cell expression 
datasets become available, it may be worthwhile to reevaluate our 
GWAS data periodically. To facilitate this, we have made the pro-
gramming code needed to perform the analysis publicly available. 
We also created an interactive, online resource that enables the re-
search community to explore the contribution of pathways and cell 
types to ALS risk (https://lng-nia.shinyapps.io/ALS-Pathways/).

In conclusion, we demonstrate the utility of data-driven ap-
proaches to dissect the molecular basis of complex diseases such as 
ALS. Our stringent approach points to neuron projection morpho-
genesis, membrane trafficking, and signal transduction mediated by 
ribonucleotides as primary drivers of motor neuron degeneration 
in ALS. It also nominates cortical GABAergic interneurons and oli-
godendrocytes as central to the pathogenesis of this fatal neurolog-
ical disease.

MATERIALS AND METHODS
Experimental design
Study design
We used a three-stage study design to identify pathways relevant to 
ALS risk (see Fig. 1 for workflow). To ensure accuracy, we compiled 
the available ALS genomic data into three independent datasets for 
analyses. The reference dataset consisted of summary statistics from 
a previous published GWAS involving 12,577 cases and 23,475 con-
trols of European ancestry (publicly available from databrowser.
projectmine.com) (6). We used the summary statistics from this 
reference dataset to define risk allele weights for constructing poly-
genic risk scores within pathways defined by the Molecular Signa-
tures Database.

The remaining data consisted of individual-level genotype and 
phenotype data from 8016 ALS cases and 34,432 control subjects of 
European ancestry that we recently published (7). We randomly 
split these data in a 70%-to-30% ratio into a “training dataset” con-
taining 5605 cases and 24,110 control subjects and a “replication 
dataset” consisting of 2411 patients and 10,322 controls subjects. We 
used the regression model generated from the reference data to 
construct and test polygenic risk scores within the training data. 
The replication dataset was used to validate our training data find-
ings. There was no sample overlap between the reference, training, 
or replication datasets.
Human subjects
All patients included in our analysis had been diagnosed with ALS 
according to the El Escorial criteria by a neurologist specializing in 
ALS. The demographics of the cohorts are listed in table S4. Written 
consent was obtained from all individuals enrolled in this study, 
and the study was approved by the institutional review board of the 
National Institute on Aging (protocol number 03-AG-N329).
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The human samples for sNuc-seq consisted of frozen frontal 
cortex postmortem samples obtained from 16 neurologically healthy 
donors. The subjects were between 16 and 61 years of age (median 
age = 36, male:female ratio = 1:1). The samples were acquired from 
the University of Maryland Brain and Tissue Bank through the 
National Institutes of Health (NIH) NeuroBioBank.

Method details
Gene set selection and pathway analysis
The Molecular Signatures Database (MSigDB database v6.2, http://
software.broadinstitute.org/gsea/downloads_archive.jsp) is a com-
pilation of annotated gene sets designed for gene enrichment and 
pathway analysis. This database is divided into eight collections 
(33, 34), and we focused our efforts on three of these compilations 
that have been validated previously (8) (9): (i) hallmark gene sets 
representing well-defined biological processes (n = 50); (ii) curated 
gene sets representing pathways annotated by various sources such 
as online pathway databases, the biomedical literature, and manual 
curation by domain experts (n = 1329); and (iii) gene ontology gene 
sets consisting of pathways annotated with the same gene ontology 
term (n = 5917). The last collection is subdivided into biological 
processes, cellular components, and molecular functions (see fig. S1).
Quality control of reference and target datasets
The target dataset consisted of individual-level genotype and phe-
notype data in the PLINK binary file format. Only variants with an 
imputation quality (R2) greater than 0.8 were included in the analy-
sis. To ensure that the C9orf72 gene was correctly represented in the 
dataset, we removed 120 kb upstream and downstream of C9orf27, 
and we replaced rs3849943 (located outside C9orf72) with rs2453555 
(located within intron 3). After these filters, 5,421,177 variants re-
mained in the training dataset. From these, we selected 268,431 vari-
ants with an association P value in the reference dataset less than or 
equal to 0.05. Next, we applied the default clumping parameters 
outlined in the PRSice-2 software package (35) (version 2.1.1, 
R2 = 0.1, and a 250-kb window). This clumping process yielded 
27,176 variants that were then used for polygenic risk score analysis.
Polygenic risk score generation
Polygenic risk scores were calculated on the basis of the weighted 
allele dosages as implemented in PRSice-2 using the no-clump flag. 
A key advantage of this approach is that it allows variants below the 
typical GWAS significance threshold of 5.0 × 10−8 to be included in 
the analysis. For the training dataset, 1000 permutations were used 
to generate empirical P value estimates for each GWAS-derived 
P value. Each permutation test in the training dataset provided a 
Nagelkerke’s pseudo-R2 value after adjusting for an estimated ALS 
prevalence of 5 per 100,000 of the population (36). Sex, age at onset, 
and eigenvectors 1 to 20 were included as covariates in the model.

To test the contribution of known ALS GWAS genetic risk loci 
to our pathways, we included the following risk variants as co-
variates in the replication testing: rs10463311 (TNIP1), rs2453555 
(C9orf72), rs113247976 (KIF5A), rs74654358 (TBK1), and 
rs12973192 (UNC13A). The variant rs75087725 corresponding to 
the C21orf2 gene was not included as this variant has a low imputa-
tion quality score (R2 < 0.8). Also, although rs12973192 is the vari-
ant nominated as the UNC13A GWAS hit, it was replaced by the 
clumping algorithm in favor of rs7849703.

Polygenic risk scores were then tested in the replication phase 
using the --score command implemented in PLINK v1.9 (37). Poly-
genic risk scores were calculated, incorporating the risk variants 

from the pathways nominated in the discovery phase. Risk allele 
dosages were counted (giving a dose of two if homozygous for the 
risk allele, one if heterozygous, and zero if homozygous for the ref-
erence allele). All SNPs were weighted by the log odds ratios obtained 
from the reference dataset, with a greater weight given to alleles with 
higher risk estimates. Polygenic risk scores were converted to Z scores 
for easier interpretation. Logistic regressions were performed to 
evaluate the association between the pathway-specific polygenic risk 
score of interest with ALS as the outcome. Gene sets/pathways con-
taining less than 20 SNPs were discarded.

An example of the polygenic risk score procedure is as follows: 
The Molecular Signature Database lists 79 genes as part of the auto-
phagosome pathway. After applying our filtering methods, 50 variants 
were located within these genes that achieved a P value of less than 
0.05 in the reference GWAS. These 50 variants were used to calculate 
the polygenic risk score of the autophagosome pathway in the train-
ing dataset. We scaled the risk allele dosages of these variants using 
the beta estimates obtained from the reference dataset. Last, we eval-
uated these 50 variants in the independent replication dataset.
Semantic similarity analysis of gene ontology terms
The GoSemSim function from the GoSemSim R package (version 2.8.0) 
was used to calculate the semantic similarity between sets of gene 
ontology terms (38). This algorithm applies Wang’s method based 
on a graph-based strategy using the topology of the gene ontology 
graph structure. Hierarchical clustering based on similarity scores 
was performed to separate groups of gene ontology terms, and the 
groups were labeled using a representative term. To obtain the rep-
resentative term, we used the function tree map from REVIGO 
(http://revigo.irb.hr) (11). In addition, SNPs from the cellular com-
ponent significant set and the molecular function significant set 
were further subjected to enrichment analysis to dissect biological 
function. The function g:GOSt from g:ProfileR (39) (https://biit.cs.
ut.ee/gprofiler/gost) was used to detect the top three REACTOME-
enriched pathways (fig. S2).
Mendelian randomization analysis
To identify genes within the 13 significant pathways that drive the 
risk of ALS, we exploited the known tendency of SNPs associated 
with disease also to be associated with gene eQTL (40). We applied 
summary data–based Mendelian randomization as implemented in 
the SMR software package (http://cnsgenomics.com/software/smr) 
(41) to the genes within the 13 significant pathways. This approach 
used estimates for cis-eQTLs obtained from a sizeable eQTL meta-
analysis performed in blood (13) and brain (14). Brain expression 
datasets include estimates for cis-expression from the Genotype-
Tissue Expression (GTEx) Consortium (v6; whole blood and 10 brain 
regions) (15), the Common Mind Consortium (dorsolateral pre-
frontal cortex) (16), and the Religious Orders Study and Memory 
and Aging Project (ROSMAP) (17). This methodology used summary-
level data from GWAS and eQTL studies to test for pleiotropic as-
sociation. Wald ratios were generated for each instrumental variable 
SNP tagging a cis-eQTL (defined as probes within a gene that met 
an eQTL P value of at least 5 × 10−8 in the original study). Linkage 
pruning and clumping were carried out using default SMR proto-
cols. The P values per instrument substrate were adjusted by FDR. 
SNPs with a HEIDI (heterogeneity in dependent instruments) P value 
of less than 0.01 were excluded on the grounds of pleiotropy.
Nuclei isolation
Approximately 100 mg of tissue was homogenized in cold lysis buffer 
(Nuclei PURE Lysis Buffer/1 mM dithiothreitol/0.1% Triton X-100; 
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