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the University of Arizona (91) for clinical brain imaging 
with improved resolution and sensitivity. The system 
is being constructed at the University of Arizona. The 
preliminary prototype design for the system consisted of 
three closely packed rings of 0.95 mm thick hexagonal 
NaI(Tl) detectors (Figure 23). Specifications such as 
pinhole aperture size and number of pinholes open can be 
adjusted based on individual patients and applications (92). 
They evaluated the axial and angular sampling sufficiency 
of the proposed system with analytical simulations and 
reconstructions, using an XCAT digital brain phantom and 
a modified Defrise multi-disk phantom with a maximum 
radius of 9.2 cm and a disk pitch of 0.8 cm (93). Simulations 
were performed with the base configuration of a single-
central pinhole per detector, and the usage of temporal 
shuttering to close that aperture and open two other 
apertures on either side of the central pinhole in the axial 
direction. Angular sampling of the base configuration 
was enhanced by adding the temporal shuttering of two 
additional apertures per detector positioned laterally to 
either side of the central aperture. The normalized mean 
square error (NMSE) was calculated for the reconstructed 

images versus the original source distribution. The 
reconstructed images showed that increased axial sampling 
by combined reconstruction of acquisitions from solely 

Figure 21 The compression process and scanner geometry for MBT. (A) Transparent plates compress the breast and a VOI is selected 
using optical cameras. (B) After the scan volume selection, the collimator plates and gamma detectors move into scanning position (arrows). 
(C) Collimator and gamma detector in scanning position, with insert showing collimator details. (D) Perpendicular cross-section through 
collimator-detector set-up showing the pinhole geometry. Dashed lines indicate the pinhole axes, which converge on a line 40 mm from 
the collimator. Arrows indicate the rotation of the whole scanner (including detectors, collimators and actuators) to enable acquisitions of 
different views [courtesy of van Roosmalen et al. (11)].
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Figure 22 The 45 detector modules are arranged in 3 rows in the 
proposed dynamic MPH cardiac SPECT design [courtesy of Uzun 
Ozsahin et al. (87)].
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the base apertures and then solely the two axially spaced 
apertures for Defrise phantom resulted in an increase in 
the number of disks resolved from 6 to 13 (all). Similarly, 
the reconstructed images showed that increasing angular 
sampling for the brain phantom resulted in reduced NMSE 
and better visualization of brain structures.

Triple-head SPECT

Ogawa et al. (94) developed a stationary triple-head MPH 
SPECT system for dynamic brain and cardiac studies. 
Different numbers of collimators and acquisition geometry 
were evaluated to find the best design. MPH collimators are 
tilted to cover the FOV. They evaluated 3 to 12 knife-edge 
pinholes for each camera with no multiplexing (Figure 24). 
Each camera has an active area of 400 mm × 200 mm. The 
distance from the detector surface to the CFOV is 30 cm 
and 27 cm for brain and cardiac imaging, respectively. The 
pinhole diameter was defined as 3 mm, with a collimator 
plate thickness of 10 mm. Point source, brain and cardiac 
phantoms were simulated and images were reconstructed 
with OS-EM algorithm. CT was used for attenuation 
correction. They found that at least five pinholes are 
required to adequately reconstruct the point sources, and 
FWHMs of the MPH collimators are smaller than that of 
the parallel-hole collimator, i.e., ~9–11 mm (depending 
on the number of the pinholes) versus 12 mm. The SNR 
(defined by mean/standard deviation) of MPH collimators 
was found to be much worse compared to that of the 
parallel-hole collimator, i.e., 10 versus 60. For the brain 
phantom, the image quality improves as the number of the 
pinholes increases and at least eight pinholes are required 
to generate images without significant artifacts. They also 
showed that increasing the number of pinholes results 
in a decreased mean squared error (MSE) between the 
original phantom and reconstructed image. If the number 

Figure 23 The preliminary prototype design of AdaptiSPECT-C 
together with a cropped XCAT phantom positioned inside. This 
design consists of three hexagonal detector rings: caudal ring with 
9 detectors, middle ring with 9 detectors, and quasi-vertex ring 
with 5 detectors. Shown are the 2 cm thick aperture plate with 
a single aperture per detector and the 23 hexagonal detectors 
(courtesy of Dr. Kesava S. Kalluri).
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Figure 24 Five pinholes are located on a pinhole plate for the triple-head SPECT system. The thickness of the pinhole plate is 1 cm and each 
pinhole has a knife edge at the half depth of the pinhole plate. The axis of each pinhole has a different angle [courtesy of Ogawa et al. (94)].
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of pinholes is eight or higher, the MSE reaches a plateau 
with a value similar to that of the parallel-hole collimator. 
Myocardial phantom simulation results showed that with 
more than eight pinholes for each detector, one can obtain 
similar image quality to that of the parallel hole collimator.

Hemi-ellipsoid SPECT

Bhusal et al. (95) investigated a novel cardiac SPECT 
system consisting of 21 pinhole collimators, each coupled 
to a hemi-ellipsoid detector. They performed GATE 
simulations with various phantoms to evaluate the system 
performance. Left ventricle counts were used to evaluate 
the system sensitivity and then compared to a state-of-
the-art scanner (89). The system employs ellipsoidal CsI 
scintillation crystals with 6 mm thickness, 80 mm diameter 
and 120 mm height (Figure 25). The detector configuration 
is based on the original design proposed by Dey (96) and 
further improved by Kalluri et al. (97). Spatial resolution 
was found to be 4.5 mm and the sensitivity was 3.4 times 
higher (0.289%) than that of D-SPECT. They also showed 
that the increased sensitivity can be used for an ultra-low 
dose (111 MBq) acquisition with 5.4 min scan time and the 
results are comparable to those of the full dose (925 MBq) 
acquisition with 2 min scan time of D-SPECT. 

MPH SPECT/MRI

Even though SPECT/CT hybrid systems have been 
available for nearly two decades, the combination of 
a SPECT system with MRI is still in progress due 
to technical challenges including the need for MRI-
compat ib le  component s  o f  SPECT and  dr iv ing 
applications. The first step to develop a clinical SPECT/
MRI system is similar to what has been done for PET/
MRI, where a PET insert was designed to be utilized 
with an existing MRI system. Accomplishing this for 
SPECT/MRI is still being researched for clinical brain 
imaging (98-100). Conventional photomultiplier tubes 
(PMTs) should be replaced with SiPMs when designing a 
SPECT/MRI system, not only due to the fact that PMTs 
are affected by the strong magnetic field of MRI, but also 
due to the space constraints of the MRI bore, especially 
when considering the collimators for SPECT. Busca  
et al. (99) designed a clinical MPH SPECT/MRI system 
to image the whole brain (Figure 26). The proposed design 
consists of two detector rings with 35 cm in diameter 
and is inserted into a 3T MRI system with 59 cm bore 
size. The system resolution was set to 8–10 mm, which is 
similar to that of a brain SPECT scanner and the number 
of detectors was arranged to maximize the sensitivity 
(0.018–0.032%) (98). According to the simulation results, 

Figure 25 GATE simulation setup using (A) ellipsoid detector and (B) flat detector, with point-sources located at 150 mm from the pinhole 
aperture [courtesy of Bhusal et al. (95)].
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the diameter of FOV was determined as 18–20 cm while 
the number of detector modules was 27–30. 

Summary of discussed system characteristics

A summary of the characteristics for the different clinical 
MPH SPECT systems mentioned is listed in Table 1. Note 
that for G-SPECT, FASTSPECT and many other MPH 
SPECT systems, fast SPECT (sub-second) acquisitions are 
inherently feasible. 

Conclusions

Cardiovascular disease is the greatest cause of mortality 
and morbidity in the world and SPECT is one of the 

Figure 26 Proposed design of the integrated SPECT/MRI 
instrument (courtesy of Busca et al. (100)].

Table 1 Summary of the clinical MPH SPECT systems

System name
Resolution 

(mm)/imaging 
distance (mm)

Reported 
Sensitivity 

Calculated 
sensitivity (%)

FOV (in diameter, 
mm)

VOI Isotope Ref.

7-pinhole Anger camera 10/127 750 cps/MBq 0.075 127 Heart 201Tl (33,76)

FASTSPECT 4.8/100 973.0 cps/MBq 0.097 200×200×100 
ellipsoid

Brain 99mTc (77,78)

MPH MPI SPECT 13/100 5×106 (a.u.) (10-fold 
higher than LEGP)

0.119 N/A Heart 201Tl (64)

Discovery NM 530c 6.1/100 640 cps/MBq 0.064 ellipsoid with 
dimensions ~190

Heart 99mTc, 
201Tl, 123I

(4,79)

Multi-lofthole brain SPECT 6.3/145 155 cps/MBq 0.016 220 (124 mm 
long cylinder

Brain 99mTc (81)

20-pinhole SPECT 20.6/193 0.160% 0.160 210 Brain & heart 123I, 99mTc (3,5)

DaTscan SPECT 4.7/140 87 cps/MBq 0.009 280 Brain 123I (7)

G-SPECT-I (brain/pediatric 
collimator)*

UHR: 2.5; HR: 
3.5

415 cps/MBq & 
896 cps/MBq

0.042 & 0.090 398 & 859 Brain & 
pediatric

9mTc (81,82)

9-pinhole brain SPECT 12.0 & 8.0/167 0.037% & 0.014% 0.037 & 0.014 200 Brain 9mTc (10)

Multi-pinhole cardiac 
SPECT (12-pinhole & 
14-pinhole)

10.0/186 & 
8.2/220

0.035% & 0.017% 0.035 & 0.017 160 & 200 Heart 9mTc (8,9)

Small organ MPH SPECT 6.8–7.6 N/A N/A 90 Small 
organs

123I (84)

Robotic MPH SPECT 7 mm lesions 
resolved

N/A N/A 83 Small 
organs

9mTc (85)

MBT 3.5 0.082–0.370% 0.082–0.370% 27 Breast 9mTc (11,86)

DC-SPECT 10 0.081% 0.081 180 Heart 9mTc (87)

AdaptiSPECT-C N/A N/A N/A 210 Brain N/A (91)

Triple-head SPECT 9–11 N/A N/A N/A Brain and 
heart

9mTc (94)

Hemi-ellipsoid SPECT 4.4/150 0.289% 0.289 200 Heart 9mTc (95)

MPH SPECT/MRI 8–10 0.018–0.032% 0.018–0.032 180–200 Brain 9mTc, 123I, 
177Lu

(98,99)

*, body collimator is under characterization.

MRI SPECT
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most established imaging methods to assess myocardial 
perfusion. MPH cardiac SPECT significantly reduces the 
acquisition time, thus increasing the patient throughput 
and improving the patient comfort compared to the use 
of a conventional parallel hole collimator. This increasing 
demand has led to the development of several dedicated 
commercial MPH SPECT scanners for cardiac applications 
that are currently on the market, with various research 
prototypes developed or being investigated. On the other 
hand, along with the existing cerebral blood flow tracers, 
new brain SPECT tracers for Alzheimer’s and Parkinson’s 
diseases are either already available as in the case of I-123  
labeled DaTscan (101), or are on the horizon, such as Tau 
imaging (102). To facilitate early diagnosis for potential 
treatment, the development of high-resolution brain 
SPECT is in demand. Thus, clinical MPH SPECT systems 
are currently being developed for brain and cardiac imaging 
for the most part, which target relatively small or medium 
sized VOIs that are suitable for pinhole imaging. The 
potential of MPH SPECT imaging for other applications, 
e.g., breast, thyroid and pediatric applications is being 
explored. The use of MPH collimators plays a significant 
role in improving current SPECT performance, and 
will remain a subject of interest for researchers as well 
as commercially with regard to the development of new 
SPECT systems in the future.
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