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Abstract

Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised

questions about the extent of mumps circulation and the relationship between these

and prior outbreaks. We paired epidemiological data from public health investigations

with analysis of mumps virus whole genome sequences from 201 infected individuals,

focusing on Massachusetts university communities. Our analysis suggests continuous,

undetected circulation of mumps locally and nationally, including multiple independent

introductions into Massachusetts and into individual communities. Despite the presence

of these multiple mumps virus lineages, the genomic data show that one lineage has

dominated in the US since at least 2006. Widespread transmission was surprising given

high vaccination rates, but we found no genetic evidence that variants arising during this

outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct

mumps transmission links not evident from epidemiological data or standard single-gene
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surveillance efforts and also revealed connections between apparently unrelated mumps

outbreaks.

Introduction

An unusually large number of mumps cases were reported in the United States in 2016 and

2017, despite high rates of vaccination [1,2]. In the prevaccination era, mumps was a routine

childhood disease, with over 150,000 cases reported in the US annually [1]. After the mumps

vaccine was introduced in 1967, mumps incidence declined by more than 99% [1]. Case counts

rose again briefly in the mid-1980s and then continued to decrease after a national outbreak

of measles prompted the recommendation of 2 Measles-Mumps-Rubella (MMR) vaccine

doses in 1989 [3]. In the early 2000s, only a few hundred cases of mumps were reported annu-

ally in the US [1], attesting to the success of vaccination, possibly combined with decreasing

clinical suspicion. This apparently low nationwide incidence was interrupted by an outbreak

of>5,000 cases in the Midwestern US in 2006 [4], followed by a period of low incidence with

minor outbreaks until 2016. This recent resurgence in mumps is partially explained by waning

vaccine-induced immunity [5], but the extent to which genetic changes in circulating viruses

have contributed is not yet clear.

In Massachusetts, over 250 cases were reported in 2016 and over 170 in 2017, far exceeding

the usual state incidence of<10 cases per year [6]. As seen in other recent outbreaks, most

cases were associated with academic institutions [4] and other close-contact settings, including

prisons [7] and tightly-knit ethnic and religious communities [8,9]. Mumps was reported to

the Massachusetts Department of Public Health (MDPH) by 18 colleges and universities in the

state, including Harvard University (Harvard), University of Massachusetts Amherst (UMass),

and Boston University (BU)—the 3 institutions with the largest numbers of reported cases. Of

the individuals infected, 65% had the recommended 2 doses of the MMR vaccine (S1 Table).

We used whole genome sequencing, phylogenetic analysis, and transmission reconstruction

to investigate the spread of mumps at multiple geographic scales, including within a college

campus, more widely in Massachusetts, and across the US. Pathogen sequence data have bec-

ome an important tool for understanding the spread of infectious diseases in near real time,

allowing researchers to pinpoint outbreak origins [10,11], resolve transmission patterns [12],

and detect changes throughout the genome that could affect disease severity or the effective-

ness of vaccines and diagnostics [13–16]. Such data have been shown to be most useful when

analyzed alongside epidemiological data [12,17,18], although the field is still exploring in detail

how genomics can contribute to understanding and controlling outbreaks [19]. Mumps out-

breaks in 2016 and 2017 in the US, particularly those in universities, provided an opportunity

to apply these ideas to the mumps virus and to further this exploration in the context of a

closely monitored, largely self-contained campus setting.

Results and discussion

We generated 203 whole mumps virus genomes from buccal swabs from patients who tested

positive by polymerase chain reaction (PCR) for mumps virus (Fig 1A), of which 158 were

from Massachusetts during the 2016 and 2017 outbreak (Fig 1B), with 92 from Harvard, BU,

or UMass in particular. The remaining 43 genomes were from 15 other states, collected

between 2014 and 2017 (Table 1). These 203 genomes come from 259 PCR-positive samples,

56 of which were excluded because they did not produce data that met our definition of a
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Fig 1. Massachusetts mumps outbreak overview. (A) Maximum clade credibility tree of 225 mumps virus genotype

G whole genome sequences, including 200 generated in this study. Labels on internal nodes indicate posterior support.

Clades I and II contain 91% of the samples from the 2016 and 2017 Massachusetts (MA) outbreak; I-outbreak and II-

outbreak are the largest clades within them that contain only samples from the outbreak. Clade 0-UM contains

samples associated with UMass other than those in Clades I and II; the same is true for 0-BU (BU) and 0-HU

(Harvard). II-community contains primarily samples associated with a local Massachusetts community. (B) Number of

reported mumps cases in 2016 by epidemiological week in Massachusetts (gray) and in this study (blue). (C)

Probability distributions for the date of the most recent common ancestor (computed from tMRCA) of selected clades

(see S2 Table for additional clades). Dotted line is the mean of each distribution. BU, Boston University; HU, Harvard

Univeristy; tMRCA, time to the most recent common ancestor; UM, University of Massachusetts Amherst; UMass,

University of Massachusetts Amherst.

https://doi.org/10.1371/journal.pbio.3000611.g001
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complete genome (see Materials and methods) because of low viral loads, often caused by col-

lecting the samples too late in the course of infection (S1A and S1B Fig). These 56 samples that

did not produce genomes were well distributed across the 2016 through 2017 study period and

showed no geographic clustering (Massachusetts versus elsewhere).

The median sequencing depth of the 203 successful genomes was 176x (first quintile: 42.4x;

fourth quintile: 651.8x; S1C Fig) and all were>82% complete (182 genomes were>99% com-

plete). These full genomes provide substantially more data than sequences of the small hydro-

phobic (SH) gene alone (accounting for<3% of the genome), which is conventionally used for

classifying mumps virus [20,21]. For the Massachusetts samples, epidemiological data (including

university affiliation and vaccination status) and contact tracing data collected by the MDPH

and local universities were also available (S1 Table; see S1 Data for full line list). We note that 2

of the individuals in the Massachusetts data set had paired samples from 2 timepoints; in both

cases, we excluded the genome from the later sample in subsequent analyses, leaving 201 gen-

omes from unique patients. Of these 201 individuals from Massachusetts, 72% had known vacci-

nation status, of whom 93% had 1 or more MMR doses. We also sequenced 29 PCR-negative

samples from suspected mumps cases; in only one was there limited evidence for mumps virus,

but we did identify 4 other viruses (one in each of 4 of these samples; S3 Table), 2 of which are

known to cause parotitis [22], a characteristic symptom of mumps [23].

The viral whole genome data led to 2 key findings about the origin and spread of the recent

outbreaks. First, our analysis revealed that the outbreaks—in Massachusetts and also more

broadly in the US—were largely the product of a single mumps lineage and that this lineage

was responsible for most if not all US mumps outbreaks since at least 2006. This lineage belo-

ngs to mumps virus genotype G [20,21] as do all but 1 of the 201 genomes from unique patie-

nts in our data set. Unless otherwise stated, all subsequent analyses refer only to these 200

genotype G genomes (Table 1).

Phylogenetic analysis of these 200 genomes, along with the other 25 publicly available geno-

type G genomes, shows that almost all (192 of the 200 samples in our data set; 211 of the 225

total) belong to a single lineage within genotype G, despite having been collected from all over

the country (Fig 1A; also supported by a principal component analysis; see S2 Fig). This lineage

descends from the US mumps outbreak in 2006. Single-gene data (see discussion of SH gene

below) show no evidence for extensive transmission of this lineage outside the US, suggesting

that most mumps cases in the US since 2006 are the result of ongoing transmission of a single

lineage within the United States; specifically, this connects previously unassociated cases (with

published genomes) between 2006 and 2016 [1,8,24]. This also suggests that unreported infec-

tions may be common and may be driving ongoing transmission [23,25].

Table 1. Summary of samples and genomes. Counts of samples sequenced and genomes generated by source (MDPH or CDC), date, and mumps virus PCR result. [G]

indicates genotype G genomes. Two genomes are from a second sample of a patient already included in the data set.

Source Dates PCR result Samples Genomes Genomes

(unique patients)

Genomes [G]

(unique patients)

CDC 2014–2015 + 26 18 18 18

CDC 2016–2017 + 33 25 25 25

MDPH 2014–2015 + 6 2 2 2

MDPH 2016–2017 + 194 158 156 155

MDPH 2016–2017 – 29 0 0 0

Total 288 203 201 200

Abbreviations: CDC, US Centers for Disease Control and Prevention; MDPH, Massachusetts Department of Public Health; PCR, polymerase chain reaction

https://doi.org/10.1371/journal.pbio.3000611.t001
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The distribution of cases within the phylogenetic tree further suggests geographic move-

ment of mumps virus on short time scales. For example, clade I (Fig 1A) contains virus

genomes collected in 2015 through 2017 from Massachusetts, from elsewhere in the Northeast,

from the South, and from the Midwest. The date of the most recent common ancestor of this

clade was most likely in 2013 or later (Fig 1C and S3 Table), which implies that the virus spread

to all of those regions in less than 5 years. Similarly, clade II contains genomes from all of

those regions as well as one from the western US, all collected during the same time period.

Clade II likely dates from no earlier than 2014, suggesting spread to these regions occurred

in an even shorter amount of time. Together, these observations provide strong evidence for

regional circulation in the Northeast, coupled with at least occasional movement to more

distant geographic regions. Further sampling of these other regions may reveal additional

long-distance dispersal events, which would indicate widespread geographic movement of

mumps. This would not be surprising if transmission frequently occurs through college stu-

dents, many of whom reside in close-contact settings and also travel long distances to return

home.

The second key finding about the recent spread of mumps virus relates to its origins in

Massachusetts. Although this 2006 lineage dominated the Massachusetts outbreak, the out-

break was not caused by a single introduction of mumps virus into the state but rather is com-

prised of at least 6 distinct viral clades (Fig 1A). Several of these were sublineages of the

dominant 2006 lineage, including the 2 largest, Clades I and II, which comprise more than

90% of samples from Massachusetts (13% and 77%, respectively). These 2 clades diverged

before the 2016 outbreak began (Fig 1C and S2 Table), indicating that they independently

contributed to it. The remaining 4 clades (0-UM, 0-HU, 0-BU, plus one genotype K genome)

likewise represent independent introductions, one of which (0-BU) also falls within the 2006

lineage. Such multiple introductions, indicating widespread transmission of mumps virus,

have been observed elsewhere in the US [25] and are also seen in this data set within individual

universities: samples from UMass span 2 clades (II and 0-UM), Harvard samples span 3 clades

(I, II, and 0-HU), and BU samples span 3 clades (I, II, 0-BU) (S3 Fig). This emerging pattern

of complexity, which has only become apparent with viral genomic data, provides a previously

inaccessible look into the degree to which mumps is moving within and between states and

communities in the US.

Epidemiological investigation showed that each of the 4 minor clades described above con-

tains at least one sample from a patient with foreign travel history during the incubation

period of the virus (12–25 days before symptom onset [26]; S1 Data). Together, the genomic

and epidemiological data suggest that most mumps virus cases in the US belong to the primary

2006 lineage but that small clusters of cases can be attributed to repeated importation of the

virus from outside the country. These imported cases do not appear to be important contribu-

tors to the overall burden of mumps in the US.

The finding that a single mumps lineage has been successful in a highly vaccinated popula-

tion [2], despite repeated introductions of other lineages, raised the possibility that mutations

within this lineage have contributed to its success, perhaps by enabling vaccine escape. Because

mutations contributing to the success of the entire lineage necessarily occurred early in the

evolution of that lineage, we note here the differences between fixed mutations in our data set

and the strain used in the mumps vaccine.

We found that there were numerous fixed differences between samples from the 2016 out-

break and the Jeryl Lynn vaccine strain in regions of immunological significance (S4A Fig and

S1 Text), consistent with a recent similar analysis [27]. In the hemagglutinin-neuraminidase

(HN) protein, the primary target of neutralizing antibodies [28], we observed 32 sites with

fixed amino acid substitutions between our sequences and the Jeryl Lynn strain. Thirty of

Genomic epidemiology of mumps transmission in the United States
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these sites were conserved between our sequences and a cell-passaged clinical strain that was

isolated from Iowa in 2006 (accession: JX287385), near the beginning of mumps resurgence in

the US. The Iowa 2006 strain was previously shown to be neutralized by sera from both vacci-

nated and naturally infected individuals, but to a lower degree than neutralization of the Jeryl

Lynn strain itself [29–31], raising the possibility that some of these mutations may confer

partly reduced neutralization susceptibility. In addition, we observed 2 positions at which our

sequences differed from both the Jeryl Lynn and the Iowa 2006 strains. At these 2 positions,

the variant observed in our sequences was also present in most other genotype G sequences

published to date, including in sequences from a recent study from the Netherlands [28]. Fur-

ther studies are warranted to test the neutralization susceptibility of strains containing these

variants, because the Iowa 2006 sequence may not be fully representative of most currently

circulating genotype G viruses.

We also looked for any evidence of ongoing adaptation to the vaccine during the outbreak.

We considered this as a possibility because the vaccine was introduced relatively recently in

the history of the mumps virus, recently enough that the virus could still be adapting to it.

Additionally, in the absence of widespread natural infection, vaccination now constitutes the

largest immunological selective force on mumps virus in the US. To investigate this, we paired

genomic data with vaccination records to look for any evidence of changes in the mumps virus

genome during the outbreak that led to antigenic variation from the Jeryl Lynn vaccine strain.

We first tested whether nucleotide substitutions in genomes from the Massachusetts out-

break clustered by time since vaccination, or whether vaccinated individuals clustered on cer-

tain branches of the phylogenetic tree; neither was the case (S4B and S4E Fig). Second, we

looked for signals of positive selection (using the dN/dS statistic) in the 225 genotype G

genomes in our data set; a signal here would suggest that nonsynonymous mutations in a

particular gene were being favored by ongoing selective pressure. We found no evidence for

selection in any gene or at any specific site (S4C and S4D Fig). Thus, we did not find direct

evidence of genetic variants arising within this outbreak that contributed to vaccine escape,

although we note that both tests have quite limited statistical power in this data set. This find-

ing is consistent with a recent study that proposed waning vaccine-induced immunity as a

driving factor in recent US mumps outbreaks [5]; this hypothesis is also supported by our own

data, in which we find that time since vaccination differs between Massachusetts individuals

testing positive and negative for mumps virus by PCR in 2016 through 2017, with longer times

since vaccination observed in mumps-positive patients (S5 Fig).

Understanding transmission routes can be crucial in guiding the public health response to

an outbreak—for example, whether efforts should be directed toward controlling mumps

spread within a university or preventing virus importation. In the Massachusetts mumps out-

break, detailed genomic data allowed us both to confirm connections suggested by public

health investigation and to identify new links between cases. The phylogeny described above

shows that mumps samples from different Massachusetts universities were genetically similar

and fell within the 2 primary clades (S3 Fig), consistent with the epidemiological interpretation

that these contemporaneous cases were part of 1 large mumps outbreak in 2016 through 2017.

It also showed an unexpected connection between mumps cases in a local, nonacademic com-

munity (Clade II-community) and those at Harvard: the II-community cases fall within the

predominantly Harvard Clade II, suggesting a spillover event from the university into the

wider community (Fig 2A). Cases in these 2 clades were classified as distinct outbreaks during

initial public health investigation based on epidemiological data [32], different demographic

makeup of the 2 populations (older adults with no obvious university connection versus

mostly college-aged students), and a 5-month gap between the last confirmed cases at

Harvard and the cases in the local community. However, the genomic data clearly suggests a

Genomic epidemiology of mumps transmission in the United States
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connection, supported by additional epidemiological investigation that identified 3 individuals

affiliated with both Harvard and the local community who could have acted as transmission

links.

Because of the large number of cases reported and sequenced and the contact tracing

information available, we were able to quantify mumps transmission dynamics within Har-

vard. We first used an epidemiological model (S6 Fig) [5] without genomic data to estimate

transmission within the university, but it did not permit us to distinguish between a single

mumps introduction followed by high transmission and multiple introductions followed by

low transmission (Fig 2B left). We then modified the model to incorporate the number of

viral lineages (Clades 0-HU, II-community, and 2 subclades within Clade II) observed within

Harvard. This markedly improved our ability to distinguish these scenarios, supporting an

estimate of 5 (95% CI: 4–18) distinct introductions to Harvard and an effective reproduction

number (RE) of 1.70 (95% CI: 1.50–1.91; Fig 2B right). An RE well above 1.0 means that the

outbreak could be self-sustaining, which highlights the importance of controlling on-campus

transmission during mumps outbreaks.

The high-resolution data from Harvard allowed us to estimate transmission links between

individual cases, which can aid in targeting containment efforts aimed at high-risk individuals

Fig 2. Epidemiological modeling and transmission reconstruction. (A) Zoom view of Clade II-community and its

ancestors (see Fig 1A). Arrows: individuals affiliated with both II-community and Harvard. (B) Number of

importations into Harvard calculated without (left) and with (right) viral genetic information as input. Each point

represents a sample from the posterior distribution of RE(t = 0) and the number of introductions, based on simulated

transmission dynamics. (C) Transmission reconstruction of individuals within Clade II-outbreak; samples are colored

by institution affiliation (light purple: other institution; n/a: no affiliation; question mark: unknown affiliation). Left:

reconstruction using epidemiological data only; all individuals in Clade II-outbreak with known epidemiological links

(red arrows) are shown. Right: reconstruction using mumps genomes and collection dates. Arrow shading indicates

probability of direct transmission between individuals (minimum probability shown: 0.3); cases with 1 or more

inferred links are shown and are colored by institution. Arrows outlined in red represent transmission events

identified by both genomic and epidemiological data. Faded nodes are those only connected by shared activity links

(i.e., no inferred or known direct transmission). BU, Boston University; Harvard, Harvard University; RE, effective

reproduction number; UMass, University of Massachusetts Amherst.

https://doi.org/10.1371/journal.pbio.3000611.g002
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or groups. For this purpose, we focused on Clade II-outbreak because it was largely contained

within a single institution (Harvard) and had dense sampling. When we attempted to link

individual mumps cases within this clade using contact tracing data alone, we could only infer

direct mumps transmissions (“contact links”) between 2 pairs of individuals (Fig 2C left). We

then used the genomic data to validate genetic distance as a proxy for epidemiological linkage

(S7A and S7B Fig) and, based on these results, used genomic data and sampling dates to recon-

struct possible mumps transmissions. The reconstruction (Fig 2C right, see also S7C Fig),

which estimates and assigns a probability to direct transmission links, supports 1 of the 2 pairs

of direct mumps transmissions as well as 2 “shared activity links” (see Materials and methods)

and also suggests many new links between individuals without any known contacts. Indirect

links, however, are difficult to identify using genomic data alone, illustrating the complemen-

tary contributions of genomic and epidemiological data for reconstructing detailed transmis-

sion, which can guide response efforts for mumps and other outbreaks in close-contact

settings.

Conventional sequence-based mumps surveillance has been limited to the SH gene. The

SH gene is a small (316-nucleotide), convenient target for sequencing [20,33] and is thus the

region for which the most sequence data are available. We used the 3,646 publicly available

SH sequences from mumps cases around the world (Fig 3A) to assess whether SH sequences

would be adequate to distinguish the lineages and transmission patterns identified above. To

do this, we constructed the mumps phylogeny using the SH sequence alone and compared it

to the whole genome phylogeny. There was limited variation within each genotype (genotype

Fig 3. Global spread of mumps virus based on SH gene sequences. Colors in all panels are by region (legend in bottom right). (A)

Number of SH sequences in our data set from each of the 15 regions. (B) Identical genotype G sequences over time from 1995 through

2017. Each dot represents a sample; each row contains samples with identical SH sequences, except the bottom, which includes samples

with sequences distinct from those in the above 5 categories. Numbers on the right: percentage of all genotype G samples found in that

row. (C) Maximum clade credibility tree of 3,646 publicly available SH gene sequences, including 193 complete SH sequences generated

in this study. SH, small hydrophobic.

https://doi.org/10.1371/journal.pbio.3000611.g003
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G shown in Fig 3B), and neither of our main phylogenetic conclusions based on whole genome

data could be ascertained from SH alone: we could not determine the relationship between the

spillover into the local community and its source in Harvard (other than that they belonged to

the same clade), and we were unable to determine the relationship between the 2016 and 2017

outbreak and the 2006 lineage (S8 Fig). Our other key findings, such as the detailed picture of

transmission within Harvard and a refined RE estimate, rely on these 2 conclusions. Neverthe-

less, SH data were sufficient to resolve population structure on a global scale and to confirm

that the 11 known clinically relevant genotypes are associated with particular world regions

(Fig 3C) [34]. Moreover, an analysis of global migration reveals significant movement of

mumps virus between the US and Europe. For details on the global SH analysis, including a

discussion of its limitations, see S1 Text, S9 and S10 Figs.

The combination of high-quality genomic and epidemiological data from the Massachusetts

mumps outbreak revealed the extent to which mumps is circulating in the US, connected pre-

viously unrelated outbreaks, and allowed us to trace transmission within and between individ-

ual communities. Given the high-quality genomic data we were able to produce from mumps

clinical samples, as well as the limited information that can be gleaned from SH sequencing, it

is worth considering whether future public health surveillance of mumps should incorporate

whole genome sequencing. The collection of these detailed data, which we have made available

to the community (see Materials and methods), was only possible through extensive collabora-

tion between state and national public health agencies, academic researchers, and affected uni-

versities throughout the greater Boston, Massachusetts area. We hope that these partnerships,

fostered in response to a surge in mumps cases in Massachusetts in 2016 and 2017, will facili-

tate real-time genomic and epidemiological data generation, analysis, and sharing in future

outbreaks of any pathogen.

Materials and methods

Ethics statement

The study protocol was approved by the MDPH, Centers for Disease Control and Prevention

(CDC), and Massachusetts Institute of Technology (MIT) Institutional Review Boards (IRB)

(MDPH IRB 00000701, project 906066). Harvard University Faculty of Arts and Sciences and

the Broad Institute ceded review of sequencing and secondary analysis to the MDPH IRB

through authorization agreements. The MDPH IRB waived informed consent given this

research met the requirements pursuant to 45 CFR 46.116 (d). The CDC IRB determined this

project to be nonhuman subjects research as only deidentified leftover diagnostic samples

were utilized. In compliance with the IRB agreement, Harvard University, University of Mas-

sachusetts Amherst, and Boston University granted approval for publication of their institu-

tion names in this paper.

Sample collections and study subjects

Buccal swab samples were obtained from suspected and confirmed mumps cases tested at

MDPH and CDC. Samples from MDPH (“Cases in Study,” Fig 1B) include all cases with a pos-

itive mumps PCR result (see “PCR diagnostic assays performed at MDPH and CDC” below)

collected between 1 January 2014 and 30 June 2017. Demographic information for all cases

reported in Massachusetts (Fig 1B and Table 1) includes all confirmed and probable mumps

cases reported to MDPH in that time period. Probable cases include cases with a positive

mumps IgM assay result or those with an epidemiological link to a confirmed case [35]. Sam-

ples from CDC are a selection of PCR-positive cases submitted to the CDC for testing between
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2014 and 2017. See S1 Data for deidentified information, including metadata, about study

participants.

Viral RNA isolation

Sample inactivation and RNA extraction were performed at the MDPH, Broad Institute, and

CDC. At MDPH, viral samples were inactivated by adding 300 μL Lysis/Binding Buffer

(Roche) to 200 μL sample, vortexing for 15 seconds, and incubating lysate at room temperature

for 30 minutes. RNA was then extracted following the standard external lysis extraction proto-

col from the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche) using a final elution

volume of 60 μL. At the Broad Institute, samples were inactivated by adding 252 μL Lysis/

Binding Buffer (ThermoFisher) to 100 μL sample. RNA was then extracted following the stan-

dard protocol from the MagMAX Pathogen RNA/DNA Kit (ThermoFisher) using a final elu-

tion volume of 75 μL. At CDC, RNA extraction followed the standard protocol from the

QiaAmp Viral RNA mini kit (Qiagen).

PCR diagnostic assays performed at MDPH and CDC

Diagnostic tests for presence of mumps virus were performed at the MDPH and CDC using

the CDC Real-Time (TaqMan) RT-PCR Assay for the Detection of Mumps Virus RNA in

Clinical Samples [8,36]. Each sample was run in triplicate using both the Mumps N Gene assay

(MuN) and RNase P (RP) assay using this protocol. RT-PCR was performed on the Applied

Biosystems 7500 Fast Real-Time PCR system or Applied Biosystems Prism 7900HT Sequence

Detection System instrument.

PCR quantification assays performed at Broad Institute

Mumps virus RNA was quantified at the Broad Institute using the Power SYBR Green RNA-

to-Ct 1-Step qRT-PCR assay (Life Technologies) and CDC MuN primers. The 10 μL assay mix

included 3 μL RNA, 0.3 μL each of mumps virus forward and reverse primers at 5 μM concen-

tration, 5 μL 2x Power SYBR RT-PCR Mix, and 0.08 μL 125x RT Enzyme Mix. The cycling

conditions were 48 ˚C for 30 minutes and 95 ˚C for 10 minutes, followed by 45 cycles of 95 ˚C

for 15 seconds and 60 ˚C for 30 seconds with a melt curve of 95 ˚C for 15 seconds, 55 ˚C for 15

seconds, and 95 ˚C for 15 seconds. RT-PCR was performed on the ThermoFischer QuantStu-

dio 6 instrument. To determine viral copy number, a double-stranded gene fragment (IDT

gBlock) was used as a standard. This standard is a 171 bp fragment of the mumps genome

(GenBank accession: NC_002200) including the amplicon (sequence: GGA TCG ATG CTA

CAG TGT ACT AAT CCA GGC TTG GGT GAT GGT CTG TAA ATG TAT GAC AGC

GTA CGA CCA ACC TGC TGG ATC TGC TGA TCG GCG ATT TGC GAA ATA CCA

GCA GCA AGG TCG CCT GGA AGC AAG ATA CAT GCT GCA GCC AGA AGC CCA

AAG GTT GAT TCA AAC).

23S rRNA content in samples was quantified using the same Power SYBR Green RNA-to-

Ct 1-Step qRT-PCR assay kit and cycling conditions. Primers were used to amplify a 183 bp

universally conserved region of the 23S rRNA (fwd: 93a - GGG TTC AGA ACG TCG TGA

GA, rev: 97ar—CCC GCT TAG ATG CTT TCA GC) [37]. To determine viral copy number, a

double-stranded gene fragment (IDT gBlock) was used as a standard. This standard is a 214 bp

fragment of the Streptococcus HTS2 genome (accession: NZ_CP016953) (sequence: AGC

GGC ACG CGA GCT GGG TTC AGA ACG TCG TGA GAC AGT TCG GTC CCT ATC

CGT CGC GGG CGT AGG AAA TTT GAG AGG ATC TGC TCC TAG TAC GAG AGG

ACC AGA GTG GAC TTA CCG CTG GTG TAC CAG TTG TCT CGC CAG AGG CAT

CGC TGG GTA GCT ATG TAG GGA AGG GAT AAA CGC TGA AAG CAT CTA AGT
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GTG AAA CCC ACC TCA AGA T). Data from both assays—each performed only on a subset

of samples—is reported in S1 Data.

Bacterial rRNA depletion

Bacterial rRNA was depleted from some RNA samples (see S1 Data) using the Ribo-Zero Bac-

teria Kit (Illumina). At the hybridization step, the 40 μL reaction mix included 5 μL RNA sam-

ple, 4 μL Ribo-Zero Reaction Buffer, 8 μL Ribo-Zero Removal Solution, 22.5 μL water, and

0.5 μL synthetic RNA (25 fg) used to track potential cross-contamination (gift from M. Salit,

NIST). Bacterial rRNA-depleted samples were purified using 1.8x volumes Agencourt RNA-

Clean XP beads (Beckman Coulter) and eluted in 10 μL water for cDNA synthesis.

Illumina library construction and sequencing

cDNA synthesis was performed as described in previously published RNA-seq methods [38].

In samples in which bacterial rRNA was not depleted, 25 fg synthetic RNA was added at the

beginning of cDNA synthesis to track sample cross-contamination. Positive control libraries

were prepared from a mock mumps virus sample in which cultured Enders strain (ATCC VR-

106) mumps was spiked into a composite buccal swab sample from healthy patients and diluted

to mumps virus RT-qPCR Ct = 21. This mock sample was extracted using the viral RNA isola-

tion protocol described above, except that total nucleic acid was eluted in 100 μL. Negative con-

trol libraries were prepared from nuclease-free water. Illumina Nextera XT was used for library

preparation: indexed libraries were generated using 16 cycles of PCR, and each sample was

indexed with a unique barcode. Libraries were pooled equally based on molar concentration

and sequenced on the Illumina HiSeq 2500 (100 or 150 bp paired-end reads) platform.

Hybrid capture

Viral hybrid capture was performed as previously described [38] using 2 different probe sets.

In one case, probes were created to target mumps and measles virus (V-MM probe set), and in

one case, probes were created to target 356 species of viruses known to infect humans (V-All

probe set) [39]. Capture using V-All was used to enrich viral sequences primarily in samples in

which we could not detect mumps virus, as well as in other samples (see S1 Data for a list of

which samples were captured using which probe set). As described in the work by Metsky and

colleagues [39], the probe sets were designed to capture the diversity across all publicly avail-

able genome sequences on GenBank for these viruses. Probe sequences can be downloaded

here: https://github.com/broadinstitute/catch/tree/cf500c69/probe-designs.

Genome assembly

We used viral-ngs version 1.18.1 [40] to assemble genomes from all sequencing runs. Viral-

ngs is freely available under a BSD license (https://viral-ngs.readthedocs.io/en/latest/). We

used a set of mumps sequences (accessions: JX287389.1, FJ211586.1, AB000386.1, JF727652.1,

AY685920.1, AB470486.1, GU980052.1, NC_002200.1, AF314558.1, AB823535.1, AF467767.2)

to taxonomically filter these reads. We de novo assembled reads and scaffolded against the

mumps genome with accession JX287389.1 to assemble a genome for each replicate. Then, we

pooled read data from all sequencing replicates of each sample and repeated this assembly pro-

cess to obtain final genomes. Each time we ran viral-ngs, we set the “assembly_min_length_-

fraction_of_reference” and “assembly_min_unambig” parameters to 0.01. Technical replicates

had high concordance: in 27 samples prepared more than once, only 2 base calls differed

across replicates.
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We replaced deletions in the coding regions with ambiguity (“N”). In one sample,

MuVs/Massachusetts.USA/11.16/5 [G], with an insertion at position 3,903 (based on a full

15,384-nucleotide mumps virus genome, e.g., accession JN012242.1) we removed a poorly

supported (<5 reads covering the site) extra “A” in a homopolymer region.

To calculate sequencing metrics (S1 Fig), we used SAMtools [41] to downsample raw reads

for each replicate to 1 million reads and then reran assembly as described above. Samples from

1 contaminated sequencing batch were excluded, as were all replicates from PCR-negative

samples. In cases in which samples from 2 time points were sequenced from a single patient,

we included only the first time point in the collection interval analysis (S1D Fig).

Metagenomic analysis

We used the V-All probe set for capture on all samples from suspected mumps cases with a

negative mumps PCR result (n = 29). A subset of PCR-positive samples was also sequenced

with this probe set (n = 145; without capture = “unbiased,” n = 111). We used the mock Enders

strain mumps sample as a positive control on a sequencing run containing all PCR-negative

samples, as well as a water sample as a negative control. We used the metagenomic tool Kraken

version 0.10.6 [42] via viral-ngs to identify the presence of viral taxa in each sample. We built a

database similar to the one described in the work by Metsky and colleagues [39], except with-

out insect species. This database encompasses the known diversity of viruses known to infect

humans. It is publicly available, in 3 parts, at https://storage.googleapis.com/sabeti-public/

meta_dbs/kraken_full_20170522/ [file], where [file] is database.idx.lz4 (595 MB), database.

kdb.lz4 (75 GB), and taxonomy.tar.lz4 (66 MB). Because of the possibility of contamination,

we prepared a second, independent sequencing replicate on all PCR-negative samples with evi-

dence for mumps or another virus and required both replicates to contain reads matching the

virus detected in the sample. We found no evidence of pathogenic viruses other than mumps

in PCR-positive samples.

We required the total raw read count for any genus in any sample to be twice (in practice, 7

times) that in any negative control from any sequencing batch. For any sample that had one or

more pathogenic viral genera that passed this filter and had deduplicated reads well distributed

across the relevant viral genome, we attempted contig assembly: we used viral-ngs to filter all

sample reads against all NCBI GenBank [43] entries matching the identified species and then

de novo assembled reads using Trinity [44] through viral-ngs and scaffolded against the closest

matching full genome identified by a blastn query [45]. We report all viruses identified via this

method in S3 Table.

In parallel, we used SPAdes [46] within viral-ngs to de novo assemble contiguous sequence

from all de-duplicated, depleted reads. We used the metagenomic tool DIAMOND version

0.9.13 [47] with the nr database downloaded 29 May 2017, followed by blastn [45] of DIA-

MOND-flagged contigs. Using this method, we confirmed the presence of all previously iden-

tified viruses except influenza B virus, for which we never assembled a contiguous sequence.

We found no evidence of additional pathogenic viruses using this method.

Criteria for pooling across replicates

We prepared one or more sequencing libraries from each sample and attempted to sequence

and assemble a genome from each of these replicates. We required a replicate of a sample to

contain 3,000 unambiguous base calls for its read data to be included in that sample’s final

genome assembly. This threshold was based on the maximum number of unambiguous bases

(2,820) observed in negative controls across all uncontaminated sequencing batches. One

sequencing batch showed evidence of contamination: we were able to assemble 7,615
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unambiguous mumps bases from a water sample, with a median coverage of 4x. For samples

prepared in this batch only, we implemented an additional requirement for including a repli-

cate in pooling: the assembly must have a median depth of coverage of�20x, 5 times the

median depth of coverage of the water sample.

Multiple sequence alignment of genotype G whole genomes

We required a mumps genome to contain 11,538 unambiguous base calls (75% of the total

15,384-nucleotide genome with GenBank accession JN012242.1) for inclusion in the align-

ment of whole genome sequences that we used for downstream analysis. For 2 patients with

samples taken at 2 time points (MuVs/Massachusetts.USA/19.16/5 [G] (1) and MuVs/Massa-

chusetts.USA/19.16/5 [G] (2–20.16); MuVs/Massachusetts.USA/16.16/6 [G] (1) and MuVs/

Massachusetts.USA/16.16/6 [G] (2–17.16)), we only included the earlier sample in down-

stream analyses. The final alignment of whole genome sequences contains only samples

belonging to genotype G; we did not include MuVs/Massachusetts.USA/24.17/5 [K], which

belongs to genotype K, in the alignment.

In this alignment, we also included 25 mumps virus genomes published on NCBI GenBank

[43]. These comprise all of the sequences with organism “Mumps rubulavirus” available as of

September 2017 that meet the following criteria: sequence length�14,000 nucleotides, belong

to genotype G, sample collection year and country of origin reported in GenBank, no evidence

of extensive virus passaging or modification (for vaccine development, for example). The acces-

sions are KY969482, KY996512, KY996511, KY996510, KY680540, KY680539, KY680538,

KY680537, KY006858, KY006857, KY006856, KY604739, KF738114, KF738113, KF481689,

KM597072, JX287391, JX287390, JX287389, JX287387, JX287385, JN012242, JN635498,

AF280799, EU370207.

We aligned mumps virus genomes using MAFFT version 7.221 [48] with default parame-

ters. We provide the sequences and alignments used in analyses at http://doi.org/10.5281/

zenodo.3338599.

Visualization of coverage depth across genomes

We plotted aggregate depth of coverage across the 200 samples whose genomes were included

in the final alignment (S1C Fig) as described in the work by Metsky and colleagues [49]. We

aligned reads against the reference genome with accession JX287389.1 and plotted over a

200-nt sliding window.

Analysis of within- and between-sample variants

We ran V-Phaser 2.0 [50] via viral-ngs on all pooled reads mapping to a sample assembly to

identify within-sample variants (S2 Data). To call a variant, we required a minimum of 5 for-

ward and reverse reads, as well as no more than 10-fold strand bias, as previously described

[51]. Samples with genomes generated by the sequencing batch that showed evidence of con-

tamination (see “Criteria for pooling across replicates” above) were not included in within-

host variant analysis. When analyzing variants in known contacts, we used pairs of samples

designated as “contact links,” as described in “Relationship between epidemiological and

genetic data” below.

Between-sample variants were called by comparing each final genome sequence to

JX287385.1, the earlier of the 2 available whole genomes from the 2006 mumps outbreak

in Iowa, US (S2 Data). We ignored all fully or partially ambiguous base calls and excluded

sequences that did not descend from the USA_2006 clade from this analysis. When examining
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amino acid changes in HN given vaccination status (see “SH and HN multiple sequence align-

ment” below), we ignored sequences from patients with unknown vaccination history.

Maximum likelihood estimation and root-to-tip regression

We generated a maximum likelihood tree using the whole genome genotype G multiple

sequence alignment. We used IQ-TREE version 1.3.13 [52] with a GTR substitution model

and rooted the tree on the oldest sequence in this data set (accession KF738113.1) in FigTree

version 1.4.2 [53].

To estimate root-to-tip distance of samples in the primary US lineage, we subsetted the full

genotype G alignment to include only samples descendent of the USA_2006 clade, including

samples in this clade (see Fig 1A) and used TempEst version 1.5 [54] with the best fitting root

(heuristic residual mean squared function) to estimate distance from the root. We used scikit-

learn version 0.14.1 [55] in Python to perform linear regression of distances on dates.

We also generated maximum likelihood trees using the SH gene only (full 316-nucleotide

mRNA), HN (coding region only), F (coding region only), and a concatenation of the afore-

mentioned SH, HN, and F regions (S8 Fig). For each tree, we started with the whole genome

genotype G alignment (225 sequences) and extracted the relevant region(s). We then removed

any sequence with 2 or more consecutive ambiguous bases (“N”s) in any of SH, HN, or F, leav-

ing 209 sequences in each alignment. We used IQ-TREE version 1.5.5 with a GTR substitution

[56] model to generate maximum likelihood trees.

Molecular dating using BEAST

We performed all molecular clock analyses on whole genome sequences using BEAST version

1.8.4 [57]. We excluded from the CDS the portion of the V protein after the insertion site [58]

because of reading frame ambiguity in that region. On the CDS, we used the SRD06 substitu-

tion model [59], which breaks codons into 2 partitions (positions [1+2] and 3) with HKY sub-

stitution models [60] and allows gamma site heterogeneity [61] (4 categories) on each. We

used a separate partition on noncoding sequence with an HKY substitution model and gamma

site heterogeneity. To accommodate inexact dates in 7 sequences from NCBI GenBank, we

used sampled tip dates [62].

We tested 6 models as described in the work by Metsky and colleagues [49]. Each was a

combination of one of 2 clock models (strict clock and uncorrelated relaxed clock with log-

normal distribution [63]) and 1 of 3 coalescent tree priors (constant size population, exponen-

tial growth population, and Bayesian Skygrid model [64] with 20 parameters). On each model,

we estimated marginal likelihood with path-sampling (PS) and stepping-stone sampling (SS)

[65,66] (S2 Table) after sampling 100 path steps each with a chain length of 2 million.

We sampled trees and other parameters on each model by running BEAST for 200 million

MCMC steps, sampling every 20,000 steps, and removing 20 million steps as burn-in. We

report the mean clock rate as the substitution rate for relaxed clock models. On the sampled

trees, we used TreeAnnotator version 1.8.4 to find the maximum clade credibility (MCC) tree

and visualized it in FigTree version 1.4.3 [53]. To estimate tMRCAs (Fig 1C and S2 Table), we

ran BEAST again for each of the 6 models, drawing from these same sets of sampled trees

(without any parameters), for 10,000 steps, sampling every step. We selected a relaxed clock

and Skygrid model for plots of tMRCA distributions (Fig 1C) and MCC trees over the whole

genome genotype G sequences.

Additionally, we plotted (S11 Fig) a Skygrid reconstruction of the scaled population size

(Neτ) using results from the selected model. The earliest time point on this plot is the lower

(more recent) 95% HPD bound on the estimated root height.
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Gene- and site-specific dN/dS analyses

We used BEAST version 1.8.4 [57] to estimate dN/dS per-site (S4C Fig and S3 Data) and per-

gene (S4D Fig) using the same alignment of 225 whole genome sequences described above

(again, removing the portion of the V gene after the insertion site).

For site-specific dN/dS estimation, we used the CDS as input and created a separate parti-

tion for each codon position (3 partitions). We used an HKY substitution model [60] on each

partition and an uncorrelated relaxed clock with log-normal distribution [63] for branch rates.

Here, we sampled from the same set of trees that were sampled as described above in “Molecu-

lar Dating using BEAST” (relaxed clock with Skygrid tree prior). We ran BEAST for 10 million

MCMC steps, sampling every 10,000 steps. We estimated site-specific dN/dS at each sampled

state using renaissance counting [67,68] and show summary statistics at each site after discard-

ing 1 million steps as burn-in.

For per-gene estimation, we created 8 separate partitions: 7 correspond to the CDS of a

gene (F, HN, L, M, NP, SH, partial V), and the last corresponds to noncoding sequence. For

each gene partition, we used a Goldman-Yang codon model [69] with its own parameters for

dN/dS (omega) and clock rate. For the noncoding partition, we used an HKY substitution

model [60] and gamma site heterogeneity [61] (4 categories). We sampled tip dates as with the

molecular clock analyses above and used a Bayesian Skyline tree prior [70] (10 groups). We

ran BEAST for 200 million MCMC steps to sample trees and parameter values, discarded 20

million steps as burn-in, and plotted the posterior distribution of omega for each gene

partition.

Principal component analysis

The data set for PCA consisted of all SNPs from sites with exactly 2 alleles in the set of all geno-

type G genomes. We imputed missing data with the R package missMDA [71] and calculated

principal components with the R package FactoMineR [72]. We discarded 14 samples as outli-

ers based on visual inspection, leaving 211 samples in the final set.

Relationship between epidemiological and genetic data

We obtained detailed epidemiological data for samples shared by MDPH from the Massachusetts

Virtual Epidemiologic Network (MAVEN) surveillance system, an integrated web-based disease

surveillance and case management system [73]. We defined 2 types of epidemiological links:

“contact links,” between individuals who were determined to be close contacts during public

health investigation and had symptom onset dates 7 to 33 days apart (individuals with mumps

are usually considered infectious 2 days before through 5 days after onset of parotid swelling,

with a typical incubation period of 16–18 days, ranging from 12–25 days) [26]; and “shared activ-

ity links,” between individuals who participated in the same extracurricular activity (e.g., a sports

team or university club) or frequented a specific residence or athletic facility. When we refer to

epidemiological links without specifying link type, we include both types of links.

We calculated pairwise genetic distance between all pairs of samples in the whole genome

genotype G alignment. For each pair, the genetic distance score is s/n, in which s is the number

of unambiguous differing sites (both sequences must have an unambiguous base at the site,

and the called bases must differ) and n is the number of sites at which both sequences have an

unambiguous base call.

To visualize the similarity between genomes and its relationship to epidemiological linkage,

we performed a multidimensional scaling on sequences in Clade II-outbreak (Fig 1A). This

clade is comprised of mostly cases from Harvard and the related community outbreak. Using

their pairwise genetic distances, we calculated a metric multidimensional scaling to 2
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dimensions in R with cmdscale [74]. We then evenly split the range of the output coordinates

into a 100 × 100 grid and collapsed each point into this grid and plotted the number of points

at each grid coordinate; this improves visualization of nearly overlapping points (identical or

near-identical genomes). We plotted curves that represent epidemiological links between cases

within each of the grid coordinates. This is shown in S7A Fig.

To determine the ability of genetic distance to predict epidemiological linkage, we again

looked specifically at cases within Clade II-outbreak (Fig 1A). Using the Python scikit-learn

package [55], we constructed a receiver operating characteristic (ROC) curve using pairwise

distance between II-outbreak cases as the predictor variable and presence or absence of an

epidemiological link as the binary response variable. This is shown in S7B Fig.

Model of mumps transmission in a university setting

We developed a stochastic model for mumps virus transmission accounting for the natural his-

tory of infection, vaccination status, and control measures implemented in response to the out-

break at Harvard. Our stochastic model of mumps virus transmission included the stages after

initial infection, the durations of which we inferred using data from previous clinical studies

(S6A and S6C Fig). These included the gamma-distributed incubation period from infection

to onset of mumps virus shedding in saliva [75]; the gamma-distributed period of latent infec-

tion from shedding onset to parotitis onset [75,76]; and the log-normally distributed time

from parotitis onset to the cessation of shedding (defined in the work by Polgreen and col-

leagues [77]). For asymptomatic cases, we defined the total duration of shedding (γ) as the

sum of independent random draws from the durations of shedding before and after parotitis

onset, based on the lack of any reported difference in durations of shedding for symptomatic

and asymptomatic cases [75]. To account for case isolation interventions implemented at Har-

vard, we modeled the removal of symptomatic individuals one day after onset of parotitis. In

comparison to the 70% probability for symptoms given infection among unvaccinated individ-

uals [78], we modeled the probability of symptoms given infection as uniformly distributed

between 27.3% and 38.3% [5,79].

We used previous estimates of the effectiveness and waning rate of mumps vaccination [5]

and of the vaccination status distribution of individuals on a university campus [80] to account

for susceptibility to infection among the Harvard population (N = 22,000). We scaled risk for

mumps infection, given exposure, to time since receipt of the last vaccine dose, yielding the

hazard ratio

xi ¼ eo0ti
o1

for an individual i who received their last dose τi years previously, relative to an unvaccinated

individual. For fitted values from the work by Lewnard and Grad [5], estimates were below 1.0

for individuals vaccinated since 1967, when the Jeryl Lynn vaccine was introduced (S6D Fig).

Given the instantaneous hazard of infection for an as yet uninfected individual i exposed to

I(t) infected individuals

liðtÞ ¼ bxiIðtÞN
� 1;

the probability of evading infection over the course of a 1-day simulated time step was exp
(−λi (t)). The per-contact transmission rate (β) was measured from the initial (preintroduc-

tion) value of the effective reproductive number:

b ¼ REð0Þ�gx
� 1
:
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Inferring transmission dynamics

The number of cases (71) and identification of multiple, distinct viral clades within Harvard

suggested limited permeation of mumps after any introduction. We simulated dynamics of

individual transmission chains to understand the epidemiological course of introduced viral

lineages and to infer values of RE(0) and the number of importations of mumps virus. We used

the simulation model to sample from the distribution of the number of cases (X, including the

index infection if symptomatic) resulting from a single introduction over a 1.5-year time

course:

f fxi jREð0Þg ¼ P½X ¼ xi jREð0Þ�:

We resampled according to f{xi|RE(0)} to define the distribution of the cumulative number

of cases (Z) resulting from Y introductions, conditioned on RE(0):

gfzk jREð0Þ;Yg ¼ P½Z ¼ zk ¼
Xyj

i¼1

xi jREð0Þ;Y ¼ yj�:

Of the 71 cases at Harvard, 66 had mumps genomes in our data set, so we ran simulations

where Z� 66, drawing k = 66 cases at random to determine the number of distinct lineages (S,

defined by the index infection) expected to be present within such a sample. The probability of

obtaining 66 sequences and observing S = sm lineages among them is

hfsm jREð0Þ;Y;K ¼ 66g ¼ P½S ¼ sm jREð0Þ;Y ¼ yj;K ¼ 66� � P½Z � 66 jREð0Þ;Y�:

The posterior density of our model also accounted for the probability of observing 71 symp-

tomatic cases in total. Defined in terms of the number of introductions and the initial repro-

ductive number, the model posterior was proportional to

hf4 jREð0Þ;Y;K ¼ 66g � gf71 jREð0Þ;Yg;

where 4 is the number of viral lineages in the 66 Harvard cases (representing clades 0-HU, II-

community, and 2 subclades within Clade II). We measured this probability from 100,000 iter-

ates for each pairing of RE(0) 2 {0.10, 0.11, . . ., 2.50} and Y 2 {1, 2,. . ., 200}.

Last, we defined the minimum necessary third-dose vaccine coverage (C) to bring the effec-

tive number below unity using the relation

½1 � VEð0Þ� � CREðt ¼ 0Þ � 1

sampling from previous estimates [5] that mumps vaccination protects against infection, prior

to waning of immunity (here defined as VE(0)).

Transmission reconstruction using outbreaker

We used the R package outbreaker version 1.1–7 [81] to reconstruct transmission for samples

included in Clade II-outbreak. We estimated the generation interval by fitting a gamma distri-

bution, via maximum likelihood, to the time between symptom onset dates for cases with con-

firmed epidemiological links (S6E Fig). We used the same distribution for the colonization

time and set the maximum number of generations between a case and its most recent sampled

ancestor to 40. The resulting estimates are nearly identical to those reported in previous studies

[82]. We ran outbreaker 6 times in parallel, each with 1 million MCMC steps, and discarded

the first 10% of states as burn-in. We assessed run convergence and combined results for 5 of

the 6 parallel runs to determine the reconstructed transmission tree (Fig 2C right). For each

link in the reconstruction, the support is the frequency of the link in the samples from the
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posterior (excluding the burn-in). To reconstruct transmission using SH sequences only (S7C

Fig), we extracted the SH gene from the II-outbreak alignment and ran outbreaker as

described above, using the results from all 6 parallel runs in the analysis.

SH and HN multiple sequence alignment

To analyze all published SH and HN mumps sequences, we searched NBCI GenBank in July

2017 for all nucleotide sequences with organism “Mumps rubulavirus.” We performed a pair-

wise alignment between each sequence si and a reference genome (accession: JX287389.1)

using MAFFT version 7.221 [48] with parameters: “—localpair—maxiterate 1000—preserve-

case.” We then extracted the SH sequence from each si based on the reference coordinates in

the alignment, removing all SH sequences without the full 316-nucleotide region and all SH

sequences with an insertion or deletion (“indel”) relative to the reference. We then used

MAFFT with parameters “—localpair—maxiterate 1000—retree 2 –preservecase” to create a

multiple sequence alignment of the extracted SH gene sequences and removed any sequences

with indels in this final alignment. We repeated the same process for the HN region, requiring

the full 1,749-nucleotide coding region.

In both the SH and HN alignments, we removed sequences from vaccine strains (i.e., geno-

type N, or another genotype marked as “(VAC)” or “vaccine”). We also removed sequences

with GenBank records indicating extensive passaging. In the SH alignment only, we removed

sequences with no reported collection date or country of origin, because these data are

required for phylogeographic analyses. In samples with a collection decade (e.g., 1970s) but

not a specific year, we assigned the first year of the decade; in samples with only a collection

year, we assigned a decimal year of year + 0.5 (e.g., 1970.5); in samples with year and month

but no day, we used the day halfway through the given month (e.g., 2015–03 becomes 2015-

03-15) to calculate the decimal year; and in samples with an epidemiological week but no spe-

cific day, we approximated the decimal year as year + (epi week / 52), except samples collected

in epidemiological week 52 were relabeled as week 51.999 to avoid confusion with year-only

samples.

In both the SH and HN alignments, we relabeled outdated genotypes (M, E, and any subge-

notypes [21]) and constructed a maximum likelihood tree (using IQ-TREE with a GTR substi-

tution model, as described above) to assign a genotype if one was not reported on GenBank.

We preserved genotypes designated as “Unclassified” [21].

To each alignment, we added all SH or HN sequences from individual patients generated in

this study, except those with 2 or more consecutive ambiguous bases (“N”s) in the SH or HN

region. The sequences used in the SH and HN analyses are listed in S4 Data.

SH phylogeographic analysis

To perform phylogenetic and phylogeographic analyses of the SH gene sequence, we first sam-

pled trees using BEAST version 1.8.4 [57]. We used constant size population and strict clock

models and used the HKY substitution model [60] with 4 rate categories and no codon parti-

tioning. We ran BEAST in 4 replicates, each for 500 million states with sampling every 50,000

states, and removed the first 150 million states as burn-in. We verified convergence of all

parameters across the 4 replicates and then combined the 4 replicates using LogCombiner.

We used TreeAnnotator to determine the MCC tree (Fig 3C) from a resampling of 350

trees and visualized the result in FigTree version 1.4.3 [53]. We computed a kernel density esti-

mate of the probability distribution of the tMRCA over all sampled states for the 11 genotypes

in this data set (S9 Fig).
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To construct distributions of estimates, we used resampling on the input sequences, similar

to prior work facing sampling biases [83]. To perform this resampling, we focused on only

samples that were collected both within a window of time and from a geographic region with

sufficient sampling. Namely, we considered only sequences sampled in 2010 or afterward and

collapsed the locations shown on the full data set (Fig 3A) to just 4 global regions: US (consist-

ing of only samples from the US), Europe (consisting of samples whose location was labeled as

Eastern Europe, Northern Europe, Southern Europe, Western Europe, or the United King-

dom), East Asia (consisting of samples whose location was labeled as Eastern Asia or Japan),

and South/Southeast Asia (consisting of samples whose location was labeled as Southeast Asia

or Southern Asia). These 4 regions encompass 3,541 of the 3,646 SH gene sequences used in

our analysis. We ignored samples from 5 locations: Canada; Caribbean, Central America, and

South America; Middle and Eastern Africa; Northern Africa; Middle East. See S10A Fig for a

visual representation of these 4 regions. Then, we randomly sampled 10 sequences (without

replacement) from each region for each year (i.e., 2010–2011, 2011–2012, etc.). We resampled

the input sequences with this strategy 100 times.

See S1 Text for a description of limitations of this resampling strategy.

For each of the 100 resamplings of the input sequences, we ran BEAST to sample trees, as

described above, for 100 million states sampling every 10,000 states; we removed 10 million

states as burn-in and resampled to obtain 1,000 sampled trees.

Then, we performed phylogeographic analyses on each of the 100 samplings of input

sequences by drawing from their sampled trees. We used a discrete trait substitution model

[84] on location in BEAST version 1.8.4. To estimate transition rates between locations we

used a nonreversible CTMC model with 42 − 4 = 12 rates. Furthermore, to evaluate the signifi-

cance of routes in the diffusion process, we added indicator variables to each rate through

Bayesian stochastic search variable selection (BSSVS); we set the number of nonzero rates to

have a Poisson prior with a mean of 3.0, placing considerable prior probability on having the

fewest rates needed to explain the diffusion. We ran BEAST with 10 million states, sampling

every 1,000 states, and removed the first 1 million as burn-in. At each sampled state, we logged

the complete Markov jump history [85,86], as well as a tree with the reconstructed ancestral

location of each node.

To determine an MCC tree across the 100 samplings of input sequences, we ran TreeAnno-

tator on the sampled trees from each of the 100 samplings and then selected the MCC tree,

from the 100 options, with the highest clade credibility score. We show this one, colored by

reconstructed ancestral locations, in S10B Fig.

For each sampling xi of the 100 samplings of input sequences, we counted the number of

jumps between each pair of locations at each state using the complete Markov jump history

after resampling the jump history every 10,000 states. For each xi, at each state, we calculated

the fraction of migrations between each region pair by dividing the number of migrations

between the pair by the total number of migrations at that state. To quantify support for migra-

tion routes in each xi, we calculated Bayes factors (BFs) on the rate indicator variables. We cal-

culated the posterior probability that a rate is nonzero as the mean of the indicator variable

over the MCMC states, thereby providing a posterior odds. We calculated the prior probability

that a rate is nonzero as the expected number of nonzero rates divided by the number of rates,

which reduces to 1/N, where N is the number of locations; thus, the prior odds is 1/(N-1) or, in

this case, 1/3. We set an upper limit of 10,000 on the BF and a lower limit of 1.0. To estimate

the proportion of ancestry for each xi, we used skyline statistics via PACT [87] to calculate pro-

portion of ancestry at each location from each other location: in particular, for each xi, we used

the sampled trees with ancestral locations as input (after resampling them every 10,000 states),

padded the trees with migration events, broke the trees into temporal windows of 0.1 year
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going back 5 years prior to sampling, and estimated the proportion of history from tips in each

time window.

To summarize phylogeographic results across the 100 resamplings xi of the input sequences,

we show probability distributions across the xi. When plotting the fraction of migrations to

each region from each other (S10C Fig), we calculated the mean of this fraction across all the

sampled states in each of the 100 runs to produce a point estimate for each xi and show the dis-

tribution of these means across the 100 xi. We calculated the BFs on migration routes between

the 4 regions by combining the sampled indicator variables across all 100 xi to compute the

posterior odds (S10D Fig). Similarly, the proportion of ancestry plotted between a pair of loca-

tions in a time window (S10E Fig) is the mean across the 100 xi of the mean proportion for

that pair in that time window from each xi. We calculated the pointwise percentile bands in

S10F Fig from the mean proportions in each xi across the xi (i.e., they are percentiles across the

resamplings of the input sequences).

Supporting information

S1 Fig. Sequencing results and predictors of outcome. (A) Distribution of mumps virus

(MuV) RT-qPCR Ct value, taken at sample source, for all sequencing replicates prepared with

both depletion and capture (see Materials and methods). Genome (blue): a replicate produces

a genome passing the thresholds described in Materials and methods. MuV RT-qPCR serves

as a predictor of sequencing outcome. (B) Distribution of collection interval (days between

symptom onset and sample collection) for all samples prepared with both depletion and cap-

ture. Genome (blue) is defined as in panel A. Samples taken more than 4 days after symptom

onset did not produce genomes in this study [88]. (C) Relative sequencing depth of coverage

aggregated across 203 mumps genomes. (D) Number of unambiguous bases in the genome

assembly of each sample by MuV:23S ratio (MuV copies by MuV RT-qPCR divided by 23S

copies by 23S RT-qPCR; see Materials and methods). Each point is a replicate, colored by

sequencing preparation method. (E) Normalized MuV reads (unique MuV reads divided by

raw sequencing depth) in each sample by MuV:23S ratio. Points are as in panel D. Nine points

with fraction mumps reads >0.04 are beyond the y-axis limits. In panels A, B, D, and E, reads

from each replicate were downsampled to 1 million prior to assembly (see Materials and meth-

ods). In panels D and E, 1 point with a MuV:23S ratio <10−8 and 3 points with a MuV:23S

ratio >10−3 are beyond the x-axis limits. Ct, cycle threshold; MuV, mumps virus; RT-qPCR,

real-time quantitative polymerase chain reaction.

(TIF)

S2 Fig. Maximum likelihood tree, root-to-tip regression, and principal component analy-

sis. (A) Maximum likelihood tree of the 225 mumps virus genotype G genomes used in this

study. Tips are colored by sample source (MDPH or CDC); previously published genomes are

indicated by unfilled circles. (B) Root-to-tip regression of genomes shown in panel A, rooted

on GenBank accession KF738113 (Pune.IND, 1986). (C) Root-to-tip regression of genomes in

the clade containing the two USA 2006 sequences (USA_2006; see Fig 1A) as well as their

descendants. (D) Principal component analysis of genetic variants from the genomes in panel

A. Each point is a genome colored by its geographic location. CDC, Centers for Disease Con-

trol and Prevention; MDPH, Massachusetts Department of Public Health.

(TIF)

S3 Fig. Phylogenetic tree colored by institution. MCC tree of the 225 mumps virus genotype

G genomes used in this study, colored by academic institution. Clades are labeled as in Fig 1A.
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MCC, maximum clade credibility.

(TIF)

S4 Fig. Amino acid substitution in the mumps virus genome. (A) Variation in genomes gen-

erated in this study. Each row represents one of the 119 mumps HN amino acid sequences

from the individuals in our study who had known vaccine status. Samples are displayed in

order of descending time since last MMR vaccine dose. Colored variants indicate variation

from the consensus of all included sequences. (B) Variation in all published genotype G HN

sequences. Each row represents one of the 456 publicly available mumps genotype G HN

sequences (including from genomes generated in this study). Identical sequences are collapsed

and then grouped by hierarchical clustering. In both panels, amino acid substitutions relative

to the Jeryl Lynn vaccine strain are highlighted in blue, with orange indicating a second variant

allele and green indicating a third. Light red bars indicate possible neutralizing antibody epi-

topes, and dark red bars indicate potential N-glycosylation sites. (C) Estimate of dN/dS at each

amino acid site in MuV coding regions, calculated across all 225 genotype G genomes used in

this study. At each site, the mean estimate and 95% credible interval (not corrected for multiple

testing) is shown. (D) Posterior density of dN/dS in each gene, using the same data set. (E)

MCC tree of the 225 mumps genotype G genomes used in this study, colored by vaccination

status. Clades are labeled as in Fig 1A. HN, hemagglutinin gene; MCC, maximum clade credi-

bility; MMR, Measles-Mumps-Rubella; MuV, mumps virus.

(TIF)

S5 Fig. Comparison of PCR-positive and PCR-negative Massachusetts samples. Compari-

son between 521 mumps PCR-negative samples tested in Massachusetts between 2016-01-01

and 2017-06-30, and 198 mumps samples from unique patients in Massachusetts in the same

time period. In all panels, percentages have been recalculating after removing unknowns. (A)

Vaccination status of positives (n = 198) and negatives (n = 309) with known vaccination sta-

tus. A chi-square test suggests there is no relationship between PCR result and vaccination sta-

tus (p = 0.012). (B) Years since vaccination for positives (n = 198) and negatives (n = 309) with

known vaccination status. A chi-square tests suggests there is a relationship between PCR

result and vaccination status (p = 1.19 × 10−7), and the plot shows that most recently vacci-

nated individuals were PCR-negative. (C) Collection interval for positives (n = 196) and nega-

tives (n = 477) with known symptom onset and known collection date. A chi-square test

suggests there is no relationship between PCR result and collection interval (p = 0.918). PCR,

polymerase chain reaction.

(TIF)

S6 Fig. Parameters used in epidemiological models. We illustrate fitted distributions of

parameters of the modeled natural history of mumps infection. (A) We calibrate a gamma dis-

tribution to the duration of the incubation period—defined from the time of mumps virus

exposure to the onset of shedding—using data from experimental human mumps virus infec-

tions with known exposure times [75]. (B) Onset of mumps shedding generally precedes onset

of symptoms in the clinical course. We fit a gamma distribution describing the period of latent

shedding to pooled data from 2 studies [75] and (C) apply previous estimates of the distribu-

tion of the duration of shedding after parotitis onset [77]. (D) We obtain estimates of the dis-

tribution of vaccine protection within a university protection by pairing previous estimates of

the association between the strength of vaccine protection and time since receipt of the last

dose [5] to data on vaccine coverage in a large university [80]. (E) We infer the distribution of

the generation interval length in the Harvard using data from 10 cases with known exposure

sources (“contact link”). A gamma distribution fitted by maximum likelihood recovers mean
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and dispersion estimates nearly identical to those reported in earlier mumps outbreaks [82].

(TIF)

S7 Fig. Connection between epidemiological and genetic data. (A) Multidimensional scaling

applied to samples in Clade II-outbreak (see Fig 1A). Each point is a mumps genome and pair-

wise dissimilarities are based on Hamming distance (see Materials and methods). Genomes

with known epidemiological links are connected with a red line. (B) ROC curve for samples

within Clade II-outbreak using pairwise genetic distance (calculated as in panel A) as a predic-

tor of epidemiological linkage. (C) Transmission reconstruction using individuals within

Clade II-outbreak, using the SH gene or whole genome sequences. Inferred links with proba-

bility�0.7 are shown; arrows are colored by data set. Nodes with one or more inferred links

are shown and are colored by institution. See also Fig 2C, right. ROC, receiver operating char-

acteristic; SH, small hydrophonic.

(TIF)

S8 Fig. Trees produced with single-gene and multigene sequences. Maximum likelihood

trees using (A) the SH gene only, (B) the HN protein only, (C) a concatenation of the HN pro-

tein, the F coding region, and the SH gene, and (D) the complete mumps genome. In all pan-

els, tips are colored by clades as defined in Fig 1A and S2 Table. The HN protein sequence

does a significantly better job at capturing the epidemiologically-relevant clades than the SH

gene, and the tree created from SH+HN+F (nearly 25% of the genome) closely resembles the

tree created from whole genome sequences. F, fusion protein; HN, hemagglutinin-neuramini-

dase; SH, small hydrophobic.

(TIF)

S9 Fig. tMRCA probability distributions for mumps genotypes using SH gene sequences.

The date of the most recent genotype A clinical sample is indicated, excluding samples that

closely resemble a mumps vaccine strain. SH, small hydrophobic; tMRCA, time to the most

recent common ancestor.

(TIF)

S10 Fig. Additional analyses of global mumps spread using SH gene sequences. (A) World

map indicating number of SH sequences in our data set from each of 15 regions; the 4 cir-

cled global regions represent the 4 regions from which we resampled input for migration

analyses (see Materials and methods for details regarding geographic and temporal resam-

pling of sequences). (B) Tree with the highest clade credibility across all trees generated on

resampled input from 4 global regions. Branch line thickness corresponds to posterior sup-

port for ancestry (indicated by branch color). (C) Migration between the 4 global regions

shown in panel A. Each plot shows a posterior probability density, taken across resampled

input, of the fraction of all reconstructed migrations that occur to the destination (indicated

in upper right) from each of the other 3 sources. (D) Migration between the 4 global regions

shown in panel A. Shading of each migration route indicates its statistical support (quanti-

fied with BF) in explaining the diffusion of mumps virus. (E) Average proportion of geo-

graphic ancestry of samples in each of the 4 global regions (labeled) from each of the 4

regions (colored), going back 5 years from sample collection. (F) Average proportion of

Europe in geographic ancestry of US samples, and vice-versa. Shaded regions are pointwise

percentile bands (2.5% to 97.5%) across 100 resamplings of the input sequences. Colors for

panels B,C,D,E,F are by global region, as shown in the bottom right. BF, Bayes factor; SH,

small hydrophobic.

(TIF)
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S11 Fig. Skygrid reconstruction of population size. The scaled population size (Neτ) according

to a Skygrid reconstruction. Dark line represents the median population size across samples from

the posterior, and shaded area represents the 95% HPD interval. HPD, highest posterior density.

(TIF)

S1 Table. Sample metadata. Demographic information of all mumps cases in Massachusetts

between 2016-01-01 and 2017-06-30, and the subset of these included in this study.

(TIF)

S2 Table. Model selection and tMRCA estimates across models. (A) Marginal likelihoods

estimated in 6 models: combinations of 3 coalescent tree priors (constant size population,

exponential growth population, and Skygrid) and 2 clock models (strict clock and uncorrelated

relaxed clock with log-normal distribution). Estimates are with PS and SS. The BF are calcu-

lated against the model with constant size population and a strict clock. (B) Mean estimates of

clock rate, date of tree root, and tMRCAs of the clades shown in Fig 1A (excluding Clade

0-HU, which consists of one sample). USA-4 corresponds to “Clades I and II” in Fig 1A. Below

each mean estimate is the 95% highest posterior density interval. tMRCAs of additional unla-

beled nodes are available at http://doi.org/10.5281/zenodo.3338599. BF, Bayes factor; PS, path

sampling; SS, stepping-stone sampling; tMRCA, time to the most recent common ancestor.

(TIF)

S3 Table. Viruses identified in mumps PCR-negative samples. Influenzavirus B is the only

segmented virus listed, and we identify 51 reads mapping to 6 of the 8 segments: in order, 2, 6,

0, 0, 8, 10, 4, 21 reads to each segment. PCR, polymerase chain reaction.

(TIF)

S1 Data. Sample metadata. Information and metadata regarding all mumps PCR-positive and

PCR-negative samples on which sequencing was attempted. PCR, polymerase chain reaction.

(XLSX)

S2 Data. Single nucleotide polymorphisms. List of identified nonsynonymous SNPs, includ-

ing the frequency of each SNP. Separate list of identified within-host variants above 2% fre-

quency. Separate list of SNPs in possible immunogenic regions of HN and NP in US samples

from 2016 to 2017 (all positions relative to the relevant gene). HN, hemagglutinin-neuramini-

dase; NP, nucleoprotein; SNP, single nucleotide polymorphism.

(XLSX)

S3 Data. dN/dS values. Calculated dN/dS value and confidence interval for each amino acid

position across the mumps virus genome.

(XLSX)

S4 Data. Publicly available SH and HN sequences. List of SH and HN sequences and corre-

sponding metadata used in analysis, as well as SH sequences available for resampling. HN,

hemagglutinin-neuraminidase; SH, small hydrophobic.

(XLSX)

S1 Text.

(DOCX)
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