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 2 

ABSTRACT 41 

Generating durable humoral immunity through vaccination depends upon effective interaction of follicular 42 

helper T cells (Tfh) with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process 43 

shaping the success of Tfh-GC B cell interactions by influencing co-stimulatory and cytokine-dependent Tfh help 44 

to B cells. However, the question remains whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 45 

vaccine-induced anti-Envelope (Env) antibody responses. We investigated whether an HIV-1 vaccine platform 46 

designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env 47 

antibodies. Utilizing a novel interferon-induced protein (IP)-10-adjuvanted HIV-1 DNA prime, followed by an 48 

MPLA+QS-21-adjuvanted Env protein boost in macaques (DIP-10 PALFQ), we observed higher anti-Env serum 49 

IgG titers with greater cross-clade reactivity, specificity to V1V2, and effector functions when compared to 50 

macaques primed with DNA lacking IP-10 and boosted with MPLA+alum-adjuvanted Env protein (DPALFA) The 51 

DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibodies in serum, showing for the 52 

first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen 53 

also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed 54 

augmented GC B cell responses and promotion of Th1 gene expression profiles in GC Tfh cells. The frequency 55 

of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data 56 

suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude 57 

and quality of anti-Env antibody response. 58 

 59 
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 3 

IMPORTANCE  78 
 79 
The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and 80 

that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost 81 

vaccine regimen used in RV144 have indicated that booster immunizations increase serum anti-Env antibody 82 

titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This 83 

study was designed to identify the specific elements involved in the immunological mechanism necessary to 84 

produce robust HIV-1 specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways 85 

that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation 86 

necessary for rational development of an HIV-1 vaccine. 87 
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 4 

INTRODUCTION  125 
 126 
CD4 T follicular helper cells (Tfh) are a specialized subset of CD4 T cells that migrate to germinal centers (GC) 127 

within secondary lymphoid organs and provide growth and differentiation signals to GC B cells within a few 128 

days of immunization(1-3). GCs are populated by antigen-activated, rapidly proliferating B cell clones, which 129 

rely on cytokines and co-stimulatory signals from Tfh cells to undergo immunoglobulin affinity maturation, class-130 

switch recombination, and differentiation to memory B cells and plasma cells(4-6). The maturation of GC B 131 

cells to plasma cells and the resulting long-lived humoral immunity hinges on effective Tfh help.  132 

 133 

Tfh cells are heterogeneous and, depending on inflammatory signals during T cell priming, differentiate into Th1, 134 

Th2, Th17-type Tfh cells(7, 8). Th polarization of a Tfh cell influences cytokine profile and co-stimulatory molecule 135 

expression, and several recent studies demonstrate that within a single vaccine modality the relative proportion 136 

of Tfh1, -2, or -17 subsets induced following antigen stimulation can influence the duration and functional 137 

quality of the antibody response(9). In the setting of influenza and HIV-1 vaccination/infection, the frequencies 138 

of vaccine-induced Th1-polarized, CXCR3-expressing Tfh cells correlates with improved antibody titers and 139 

enhanced antibody function following immunization(10-12). These data led us to postulate that by stimulating 140 

production of Th1-Tfh cells via a tailored vaccine platform, humoral immunity against HIV-1 can be optimized in 141 

both duration and quality.    142 

 143 

The RV144 trial found that waning serum anti-HIV-1 envelope (Env) IgG titers following vaccination 144 

corresponded to a decrease in vaccine efficacy(13, 14). Therefore, there is a critical need to identify strategies 145 

that will augment vaccine-mediated humoral immunity for a successful HIV-1 vaccine. In RV144, development 146 

of antigen-specific CD4 T cells expressing IL-4 and CD40L, both important in effective Tfh help for B cells(15, 147 

16), positively correlated with anti-HIV-1 Env antibody titers. Furthermore, an increase in production of HIV-148 

specific CD4 T cells expressing IL-21, a Tfh cytokine that regulates plasma cell differentiation, was also 149 

observed(17-19). These data underscore the importance of CD4 Tfh cells in HIV-1 vaccine-induced antibody 150 

response and suggest that identifying and targeting the optimal Tfh subset may be an effective strategy to 151 

improve the magnitude and longevity of anti-HIV-1 Env-specific antibodies.  152 
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 5 

Based on evidence that Th1-polarized Tfh cells correlate with higher antibody responses, we set out to 153 

investigate empirically whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh 154 

cells would enhance the functional quality and magnitude of HIV-1 anti-Env antibodies.  155 

 156 

Utilizing a novel interferon-induced protein (IP)-10-adjuvanted HIV-1 DNA prime, followed by an MPLA+QS-21-157 

adjuvanted Env protein boost in macaques (DIP-10 PALFQ), we show increased HIV-1 anti-Env specific binding 158 

antibody in serum and mucosal compartments compared to vaccination with DNA lacking IP-10 and an 159 

MPLA+alum-adjuvanted Env protein boost (DPALFA). The DIP-10 PALFQ vaccine regimen augmented GC B cell 160 

responses and promoted Th1 gene expression profiles in GC Tfh cells. The number of GC Tfh cells positively 161 

correlated with both magnitude and avidity of anti-Env specific antibody responses. We report for the first time 162 

that adjuvants dramatically impact IgG antibody subclass profile in rhesus macaques. We made the striking 163 

observation that while both vaccine regimens induced IgG1 antibodies to gp120, the DPALFA regimen generated 164 

much greater IgG4 responses. Together, these data show that by stimulating production of Th1-Tfh cells during 165 

the prime and boost using an adjuvanted vaccine, we can enhance the magnitude and function of the anti-HIV-166 

1 -Env antibody response. 167 

 168 
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 6 

RESULTS  191 
 192 
Vaccination regimen. Twenty female rhesus macaques were assigned to one of two experimental groups: 193 

For Group 1 (n = 10), the DIP-10 PALFQ vaccine group, the Th1 chemokine, interferon-induced protein (IP)-10, a 194 

ligand for and an inducer of CXCR3, was used as a molecular adjuvant to a DNA vaccine, (DIP-10) to prime Th1-195 

type Tfh cells. Group 2 (n=10) animals received the same DNA vaccine without adjuvant (Figure 1). The DNA 196 

plasmid expressed SIVmac239 Gag, protease, reverse transcriptase, Tat, Rev, HIV C. 1086 Env, and the DIP-10 197 

plasmid additionally expressed rhesus IP-10. The DNA was delivered intradermally (ID) with electroporation 198 

(EP) in both experimental groups. 199 

 200 

Prior to immunizing animals, we evaluated plasmid constructs using 293 T cells. At 48 h following transfection, 201 

cells were harvested and expression of HIV proteins was assessed by flow cytometry using the monoclonal 202 

antibodies PG9, PG16, PGT121 for surface Env; 2F12 for intracellular SIV Gag, and J034D6 for intracellular 203 

IP-10. As illustrated in Figure 1A flow plots, both constructs expressed comparable levels of Env and Gag 204 

proteins as determined by staining with PGT121 and 2F12, respectively.  Cellular and secreted IP-10 as 205 

determined by intracellular cytokine staining (Figure 1A) and ELISA (Figure 1C), respectively, was specific to 206 

the DNA IP-10 construct.  When expressed as a percent of Gag+ cells, expression of trimeric Env as 207 

determined by binding of the monoclonal broadly neutralizing antibodies PG9, PG16 that bind the V1 V2 loop 208 

and the V3 binding monoclonal PGT 121 showed comparable expression across the two vaccine constructs.  209 

 210 

Following DNA immunization, we used clade C C.ZA 1197MB gp140 protein adjuvanted with Army Liposome 211 

Formulation (ALF) liposomes containing monophosphoryl lipid A (MPLA) and a detoxified saponin derivative, 212 

QS-21 (ALFQ)(20) to boost Th1 primed responses (DIP-10 PALFQ) (Figure 1D). Group 2 animals received an 213 

unadjuvanted ID, EP delivered DNA prime and protein adjuvanted with aluminum-adsorbed ALF formulation 214 

(ALFA) (21), wherein the protein was adsorbed to aluminum hydroxide and then added to ALF (DPALFA). Blood 215 

was collected at weeks -8 and 0 of vaccination, and at weeks 1, 2, 4, 8, 18, and 20 following each vaccination, 216 

as indicated. Fine needle aspirates of lymph nodes (LN) or LN biopsies (draining) were collected to examine 217 

GC responses, and rectal and vaginal secretions were sampled to assess mucosal antibodies.  218 
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 7 

To confirm that the DIP-10 PALFQ vaccine regimen induced relatively higher Th1-biased inflammatory responses, 219 

we evaluated induction of CXCR3 ligands in serum using a flow-based Legend plex assay at days 0, 3, and 7 220 

after the 1st protein boost. The data showed higher relative induction of IP-10 and the interferon-inducible T cell 221 

alpha chemoattractant (I-TAC) in the ALFQ-adjuvanted animals (p< 0.01, Figure 1E). Monokine induced by 222 

gamma, another CXCR3 ligand, was not induced following the 1st protein boost in either vaccine regimen (data 223 

not shown). We also observed significant induction of IL-6 following the ALFQ protein boost.  Induction of the 224 

chemokine regulated upon activation, normal T cell expressed, and secreted (RANTES) in both vaccine groups 225 

indicated presence of activated CD4 and CD8 T cells following vaccination.  In all, these data showed higher 226 

relative magnitude of Th1 chemokines in the DIP-10 PALFQ vaccine regimen.  227 

 228 

DIP-10 ProteinALFQ vaccine induces robust and durable anti-Env antibody titers with cross-clade breadth. 229 

To ascertain whether induction of greater magnitude Th1 inflammatory responses elicited anti-Env antibody 230 

responses of different magnitudes between the vaccine regimens, we first evaluated responses against C.1086 231 

gp140 Env using a binding antibody multiplex assay (BAMA)(22). We have previously shown that the transient 232 

extrafollicular plasmablast response contributes to peak serum IgG antibody titers following the boost, while 233 

titers at week 8 and beyond are mainly plasma cell derived(12). Therefore, we assessed antibody levels at 234 

weeks 0, 2, and 8 following each of the protein boosts to capture both extrafollicular (week 2) and plasma cell-235 

derived (week 8 and beyond) titers. The data showed robust induction of anti-C.1086 Env responses following 236 

the 1st protein immunization in all 20 animals and potent recall of memory B cells following the 2nd protein 237 

immunization as evidenced by a robust boost in antibody responses (Figure 2A). Strikingly, Env ALFQ 238 

boosted animals developed significantly higher responses against C.1086 gp140; median AUC values in ALFA 239 

and ALFQ vaccine groups were:  wk 0, 7496 and 20301, p < 0.01; wk 2, 46481 and 63469, p < 0.001; wk 8, 240 

20714 and 36709, p < 0.0001 post 2nd protein boost.  241 

 242 

We confirmed these findings by using an independent ELISA assay to explore C.1086 gp140 anti-Env antibody 243 

kinetics after the 2nd protein boost (Figure 2B). The assay revealed that anti-Env titers exhibited a median 5-244 
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 8 

fold increase at week 2 post-2nd protein immunization relative to week 0 indicating a successful booster 245 

response. In affirmation of the BAMA data, antibody titers were significantly higher in the DIP-10 PALFQ 246 

group compared to the DPALFA group at all time points post the 2nd protein boost.    247 

 248 

We next assessed the breadth of the serum IgG antibody response and found that AUC values against CH505 249 

subtype C Env were also significantly higher in the DIP-10 PALFQ group relative to the DPALFA group (p< 0.01, 250 

Figure 2C). Similarly, increased responses against the Con S (group M consensus) and Con C proteins at 251 

week 2 following the 2nd protein boost in the DIP-10 PALFQ group were sustained at week 8 demonstrating greater 252 

induction of antibodies with cross-clade breadth using the DIP-10 PALFQ vaccine regimen (p< 0.05, Figure 2D,E). 253 

We also assessed binding to gp120 V1V2 loops from isolate Case A2, scaffolded on murine leukemia virus 254 

(MLV) gp70, at weeks 2 and 8 and found that significantly higher specificity to these important regions was 255 

induced by the DIP-10 PALFQ vaccine regimen following the second protein boost (p < 0.05, Figure 2F).  256 

 257 

Based on significantly elevated anti-Env antibody responses in the DIP-10 PALFQ vaccine regimen we sought to 258 

quantify decline in antibody magnitude. To this end, we calculated fold change in titers at week 8 and 18 259 

following 2nd protein boost relative to titers at week 8 post 1st protein boost. Significantly higher titers at week 8 260 

(mean 1.7-fold in DPALFA versus 4.5-fold in DIP-10 PALFQ group; p< 0.05) and week 18 (mean 0.3-fold in DPALFA 261 

versus 1.3-fold in DIP-10 PALFQ group; p< 0.01) post 2nd protein boost in DIP-10 PALFQ vaccinated animals 262 

suggested that the DIP-10 PALFQ vaccine regimen was effective at enhancing magnitude of anti-HIV-1 Env serum 263 

IgG titers (Figure 2G). Together, the data show that the DIP-10 PALFQ group had higher induction of cross-clade 264 

breadth, elicited stronger binding to a gp70-V1V2 protein, and enhanced antibody responses relative to the 265 

DPALFA group. 266 

 267 
DIP-10 ProteinALFQ vaccine elicits high avidity anti-Env antibody with ADCC and ADP activities. Next, we 268 

quantified avidity of IgG binding antibodies (as disassociation constants, kd) in sera collected at 2 weeks post 269 

final DNA prime and after each of the protein boosts using Surface Plasmon Resonance (SPR) to C.1086 270 

gp140 protein (23). The data showed that gp140-specific antibodies reached higher avidity with each 271 

sequential immunization in both vaccine groups (p < 0.0001, Figure 3A, B). Consistent with ELISA results 272 
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 9 

(Figure 2), SPR-based IgG measurements, expressed as relative units, showed significantly higher gp140 IgG 273 

in the DIP-10 PALFQ vaccine group (p< 0.0001, Figure 3C). Therefore, we normalized avidity measurements to 274 

gp140 binding measurements and observed increased avidities in the DIP-10 PALFQ vaccine group relative to the 275 

DPALFA group, which was suggestive of more productive GC reaction in the DIP-10 PALFQ vaccine group (p< 276 

0.0001, Figure 3C). To confirm that higher avidity antibodies in the DIP-10 PALFQ vaccine group were sustained, 277 

we determined avidity at 8 weeks following the 2nd protein boost using a 2M sodium thiocyanate displacement 278 

ELISA with C.1086C gp140 antigen(12). The data showed sustained induction of higher avidity antibodies in 279 

the DIP-10 PALFQ group (p< 0.05, Figure 3D), which was further corroborated with a 0.1 M sodium citrate ELISA 280 

(p< 0.01, Figure 3E). Notably, higher avidity antibodies against Con C and Con S gp140 proteins were also 281 

induced in the DIP-10 PALFQ vaccine regimen (p< 0.01, Figure 3F,G).  282 

 283 

After establishing induction of higher avidity antibodies in the DIP-10 PALFQ vaccine group, we next evaluated 284 

capacity of immune sera to neutralize HIV-1 using the classic TZM-bl assay(12). We detected robust activity 285 

against MW965.26, a subtype C tier 1A variant (Figure 3H) whereas neutralization of tier 1B and tier 2 isolates 286 

was sporadic (data not shown)(24). The data showed higher induction of tier 1A neutralizing antibodies in the 287 

DIP-10 PALFQ vaccine group (ID50 range at week 2 post 2nd protein boost DPALFA: 37 -1126; DIP-10 PALFQ: 195-288 

4977, p < 0.01). These titers dropped to an ID50 value of 20 in the DPALFA group but were maintained between 289 

24-1057 in the DIP-10 PALFQ group (p< 0.001). To assess generation of Fc-mediated antibody effector 290 

responses, we measured antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent 291 

phagocytosis (ADP) triggered by engagement of the Fc receptors on antibody-bound target cells by innate 292 

cells (25) (26, 27). ADCC was assessed by measuring killing of Clade C CH505 SHIV-infected CEM.NKR 293 

target cells by a rhesus CD16+ (FcR3) NK cell line in the presence of immune serum. As shown in Figure 3I, 294 

serum from DIP-10 PALFQ vaccinated animals demonstrated significantly greater ADCC activity at week 2 and 295 

week 8 after the 2nd protein boost when compared to DPALFA immunized animals (p< 0.01). Serum collected 296 

from DIP-10 PALFQ vaccinated animals at week 8 post protein boost 2 also mediated significantly greater 297 

phagocytosis of C.1086 gp120-coated beads by the CD32+ (FcR2) and CD64+ (FcR1) THP-1 monocytic cell 298 

line (Figure 3J and K). To determine if the adjuvants given to animals in the vaccine  groups generated 299 

different rhesus IgG subclass antibody repertoires, we quantified C.1086 gp120-specific IgG1, IgG2, IgG3, and 300 
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 10 

IgG4 by ELISA. We found that IgG2 and IgG3 antibodies were extremely low and did not differ between groups 301 

(Figure 3L). However, DIP-10 PALFQ vaccinated animals had higher gp120-specific IgG1 (p< 0.0001, Figure 3L) 302 

while DPALFA vaccinated animals had higher gp120-specific IgG4 resulting in markedly elevated IgG1/IgG4 303 

ratio in the DIP-10 PALFQ vaccine group (p< 0.001, Figure 3M).  The IgG4 detection antibody (clone 78A) showed 304 

minimal cross-reactivity to IgG1 and IgG3 subclass antibodies indicating specificity of the antibody to rhesus 305 

IgG4 (data not shown). These results are consistent with the report that antibodies of the IgG1 subclass are 306 

the most abundant in rhesus macaques (28, 29).  307 

 308 
DNAIP-10ProteinALFQ vaccine elicits robust anti-Env antibody in vaginal and rectal mucosal 309 

compartments. Having established induction of higher serum IgG antibody titers in DIP-10 PALFQ vaccinated 310 

animals, we next sought to determine whether mucosal anti-Env antibodies were also correspondingly 311 

increased. To this end, we assayed rectal and vaginal secretions for C.1086 gp140-specific IgG and IgA 312 

antibodies at baseline and longitudinally after each of the protein boosts. We next asked whether either 313 

vaccine regimen induced mucosal antibody responses; we focused on quantifying concentrations following the 314 

1st protein boost, a time point when mucosal IgG and IgA concentrations are above baseline (background) 315 

levels in the majority of the animals. The appearance of gp140-specific IgG in secretions closely mimicked the 316 

kinetics of the serum IgG antibody response, with each protein boost increasing levels of Env-specific IgG 317 

antibodies in vaginal and rectal secretions (Figure 4A and B). As in serum, the DIP-10 PALFQ vaccine regimen 318 

generated higher levels of specific IgG in secretions when compared to the DPALFA vaccine. The gp140-specific 319 

IgA in vaginal and rectal secretions was also increased to a greater extent by the DIP-10 PALFQ vaccine regimen 320 

(Figure 4C and D). Notably, at week 16-post 2nd protein boost, vaginal IgA antibodies were still above the limit 321 

of detection in most DIP-10 PALFQ vaccinated animals but in only 2 of 10 DPALFA vaccinated animals. Analysis of 322 

gp140-specific IgA in serum revealed higher induction in the DIP-10 PALFQ  group (Figure 4E). However, the 323 

kinetics of the serum IgA response in DIP-10 PALFQ as well as DPALFA animals differed strikingly from the mucosal 324 

IgA responses, especially in the reproductive tract (Figure 4C-D), suggesting a true mucosal (locally-derived) 325 

IgA response was generated in these animals. This was most evident after the 2nd protein boost, when vaginal 326 

IgA antibodies to gp140 were found to be dramatically increased but serum IgA antibodies were reduced 327 

(Figure 4A and C). Together, these data demonstrate that the DIP-10 PALFQ vaccine regimen was more effective 328 

 on January 15, 2020 at U
N

IV
 O

F
 M

A
S

S
 M

E
D

 S
C

H
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 11 

than the DPALFA regimen for generating higher magnitude Env binding antibodies in serum and secretions, as 329 

well as serum IgG antibodies with greater breadth, avidity, and function.  330 

 331 

Next, we determined whether the relatively higher antibody concentrations of anti-gp140 antibody in mucosal 332 

secretions in the DIP-10 PALFQ vaccine group might result in delayed acquisition against the Clade C 333 

transmitted/founder virus, SHIV.C.CH505. To this end, we challenged monkeys intra-vaginally with eight 334 

repeat, low-dose inoculations of SHIV.C.CH505 at week 20 post the 2nd protein boost. While we observed no 335 

significant differences in delay in acquisition between the vaccine groups, 3 of 10 animals in the DIP-10 PALFQ 336 

 vaccine group were protected relative to 0 of 10 animals in DPALFA regimen (Figure 4F).  We observed that 337 

mucosal gp140 IgG antibody concentrations at week 16 post 2nd protein boost was a correlate of protection, 338 

with higher concentrations correlating with delayed acquisition in infected animals in each of the vaccine 339 

groups (r = 0.94, p < 0.01; DIP-10 PALFQ vaccine group, n = 7; r = 0.78, p < 0.01; DPALFA vaccine group, Figure 340 

4G).   341 

DIP-10 ProteinALFQ vaccine induces Env-specific Tfh cells and GC Tfh cells with distinctive Th1 signatures. 342 

The DIP-10 PALFQ vaccine promoted anti-Env antibody magnitude and functionality following the 1st protein boost. 343 

Based upon this finding, we wanted to determine whether this vaccine regimen also correspondingly enhanced 344 

Tfh cells in the periphery and LNs. To this end, we first assessed whether higher frequencies of Env-specific Tfh 345 

cells were induced in blood 7 days after the 1st protein boost, corresponding to the peak of the effector 346 

response. PBMCs were stimulated with overlapping peptide pools representing Con C gp140 together with the 347 

HIV-1 C.1086 Env gp140C protein C. The induction of the activation markers CD25 and OX40 was assessed 348 

by flow cytometry after stimulation (Figure 5A, flow plot)(30). The analysis revealed a higher frequency of Env-349 

specific CD4 T cells in the circulation of DIP-10 PALFQ animals. When expressed as a percentage of CD95+ CD4 T 350 

cells, median frequencies of Env specific-CD4 T cells were on average 10-fold higher in the DIP-10 PALFQ group 351 

indicative of a higher magnitude Env-specific Tfh response (p < 0.001, Figure 5B).   In all, these data showed 352 

robust recall responses following the 1st protein boost with higher relative magnitude of Env-specific Tfh cells in 353 

the DIP-10 PALFQ vaccine regimen.  354 
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Next, we assessed LN responses using biopsies collected at day 14 post 1st protein boost and identified GC Tfh 355 

cells as CXCR5+, PD-1+++ cells (red population, Figure 6A) and GC B cells as Ki-67+, Bcl-6+ CD20 cells. As 356 

expected, GC Tfh cells expressed Bcl-6 and ICOS and consistent with the functional ability of Tfh cells (12), our 357 

ex vivo analysis of sorted GC Tfh cells revealed their capacity to support IgG production by autologous LN B 358 

cells (Figure 6B). Evaluation of GC TFH frequencies over the course of immunization revealed a significant 359 

induction of GC Tfh cells 2 weeks after protein boost 1 relative to baseline, and significantly higher frequencies 360 

2 weeks after protein boost 2 relative to week 0 of protein boost 2 (Figure 6C).  361 

While frequencies of GC TFH cells were not significantly different between experimental groups, we found that 362 

GC B cell frequencies were significantly higher in the DIP-10 PALFQ vaccine regimen (n=10 animals in each group 363 

following the 1st protein boost; median DPALFA: 14.2% (of CD20+ cells) versus DIP-10 PALFQ : 25%, p < 0.05 and 364 

the frequency of GC Tfh cells strongly correlated with GC B cell responses (Figure 6D). Importantly, Env-365 

specific Tfh cell frequencies in the LN directly correlated with GC Tfh cell frequencies but not memory Tfh cells 366 

indicating that GC Tfh cells were enriched for vaccine-induced follicular cells (p<0.0001, Figure 6D). Next, we 367 

assessed expression of CXCR3, which is heterogeneously expressed by GC Tfh cells (Figure 6E) and found 368 

higher expression of CXCR3 on GC Tfh cells in the DIP-10 PALFQ group. We observed that the frequency of 369 

CXCR3+ Tfh cells within the GC was directly associated with gp140 serum antibody titers at week 18 post 2nd 370 

protein boost (r =0.44, p < 0.05; Figure 6E). Examination of GC B cells showed elevated CXCR3 expression in 371 

GC B cells from the DIP-10 PALFQ vaccine group (p< 0.05, Figure 6F). Notably, T-bet expression on B cells, a 372 

marker of memory B cells (31), corresponded with CXCR3 expression, suggesting a mechanistic basis for 373 

enhanced antibody responses in the DIP-10 PALFQ vaccine group. Together, these data support the contention 374 

that Th1 skewing of CD4 Tfh cells may support higher anti-Env antibody.  375 

 376 

To gain insights into the molecular mechanisms underlying successful antibody responses we next determined 377 

transcriptional signature in GC Tfh cells. To achieve this goal, we sorted naive CD4 cells, CD4 Tfh cells, and 378 

memory CD4 cells from the LNs of 3 DIP-10 PALFQ group animals with highest gp140 serum IgG at week 8 post 379 

1st protein boost. These subsets were identified using the following markers: naive cells (CD4+CD95-), Tfh cells 380 
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(CD95+CXCR5+PD-1+/++), memory Tfh cells (CD95+CXCR5+ PD-1-), and memory non-Tfh cells (CD95+ 381 

CXCR5-PD-1-).  382 

 383 

RNA samples meeting quality control checks were sequenced using 3'-Tag-RNA-Seq library prep protocol at 384 

the UC Davis Genome Center using the Illumina HiSeq 4000 platform. Prior to analysis of sequenced single-385 

end reads, genes with fewer than 40 counts per million reads were filtered, leaving 7,086 genes. Differential 386 

expression analyses were conducted using the limma-voom Bioconductor pipeline (32) to compare the 387 

transcriptome profiles of antigen-experienced CD4 subsets to naive cells. Principal component analysis of the 388 

500 most variable genes based on coefficient of variation showed that CD4 transcriptomes clustered by 389 

cellular differentiation status, with memory CD4 T cells (both CXCR5+ and CXCR5-) sharing transcriptional 390 

signatures relative to naive and Tfh subsets (data not shown). To extract information on biologically relevant 391 

gene-sets, we performed gene set enrichment analysis with the goal of determining biological pathways that 392 

were enriched in Tfh cells in the Th1 vaccine regimen. Genes regulating interleukin (IL)-12, tumor necrosis 393 

factor (TNFa), interferon gamma (IFNG), and IL-6 production were strongly enriched in Tfh cells. Consistent 394 

with metabolic activity of effector cells and functional capacity of Tfh cells, pathways regulating cellular 395 

metabolism, glucose homeostasis, and B cell proliferation were also enriched.  396 

 397 

To determine transcriptional activity of Tfh cells in the DIP-10 PALFQ vaccine group, we focused on differentially 398 

induced genes in Tfh cells relative to naive cells (n=89, adj. p < 0.05, Figure 6G), of which induction of key Tfh 399 

transcripts including CXCR5, ICOS, and Bcl-6 was common to both Tfh cells and memory Tfh cells. Heatmap 400 

shows expression of genes differentially expressed in Tfh cells relative to naive across four sorted CD4 401 

subsets. Consistent with representation of DIP-10 PALFQ genes in GSEA, Tfh cells showed higher expression of 402 

TBX21 and IFNG (Figure 6G,H). The class IV semaphorin protein (SEMA4A), a co-stimulatory molecule 403 

expressed by DIP-10 PALFQ cells(33) was significantly induced as was high-mobility group box 1 (HMGB1), an 404 

inflammatory mediator regulating TNF and IL-6 production (34). Induction of IL-18R suggested the capacity of 405 

IL-18 to drive IFNG production within the GC(35). Likewise, we noted higher expression of receptor interacting 406 

serine/threonine kinase 2 (RIPK2) which drives IFNG in Th1 cells and contributes to Th1 differentiation (36). 407 

The corresponding downregulation of IL-4R in Tfh cells indicated enrichment of the Th1 program within Tfh cells 408 
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in DIP-10 ProALFQ vaccinated animals. This together with increased protein expression of CXCR3 within the GC 409 

suggested that CD4 T cell help for humoral immunity was driven by Th1 Tfh cells in the DIP-10 PALFQ vaccine 410 

regimen.  411 

 412 

DNAIP-10 immunization induces systemic expansion of pro-inflammatory monocytes and enhances GC 413 

Tfh responses. Based on increased frequencies of Env-specific Tfh cells and evidence for induction of a Th1 414 

transcriptome program in DIP-10 PALFQ vaccinated animals after the 1st protein boost, we sought to assess Tfh 415 

responses during the DNA priming phase. First, we evaluated blood to quantify activated CXCR5+ CD4 T cells 416 

in both vaccine groups (Figure 7A). Based on co-expression of ICOS and PD-1, activation markers induced 417 

upon TCR stimulation, the data showed that DNA immunization significantly increased the relative frequencies 418 

and absolute counts of ICOS+ PD-1+ CXCR5+ CD4 T cells in blood at day 14 (n=20; median frequencies, day 419 

0: 3.38%; day 14: 6.7%, p < 0.0001; n =20; absolute counts, day 0: 3.04; day 14, 8.7 day 14, p < 0.01, Figure 420 

7A) in both experimental groups indicating that DNA delivery by electroporation was immunogenic.  421 

 422 

Next, we assessed whether DNA immunization elicited humoral responses against SIV Gag and HIV Env 423 

proteins expressed in the plasmid. We found that detectable responses to Gag were observed in 45% of 424 

animals at week 2 of the 1st DNA prime, in 65% at week 2 following the 2nd DNA prime, and all animals 425 

following the 3rd DNA prime (Figure 7B, significance symbols compare immunization time points relative to 426 

baseline). Antibody responses to C.1086 Env were low and undetectable until the 2nd DNA prime (data not 427 

shown), but were observed in majority of animals following DNA3 (Figure 7C, significance symbols compare 428 

immunization time points relative to baseline). Gag and Env antibody titers were not significantly different 429 

between the vaccine regimens during the DNA primes. Based on robust induction of anti-Gag antibody 430 

responses, we determined whether Gag specific CD4 T cells were induced at week 1 following DNA3, when 431 

the CD4 effector response peaked. PBMCs were stimulated with pooled SIVmac 239 Gag peptide pools and 432 

interrogated for expression of activation markers (AIM) and for induction of cytokines (ICS). The AIM assay 433 

captured a higher proportion of Gag-specific CD4 T cells (Figure 7D) and together, these data indicated that 434 

the DNA immunization was sufficiently immunogenic to prime T and B cell responses.   435 

 436 
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Based on the induction of antibody and T cell responses following DNA3, we next assessed whether a 437 

concomitant acute induction of pro-inflammatory monocytes (innate cells that drive Tfh responses) preceded 438 

the appearance of these cells in blood (37, 38). We quantified frequencies of CD14+ CD16+ HLA-DR+ (lineage-439 

) cells in blood (Figure 7 E,F) and discovered rapid and robust expansion of pro-inflammatory monocytes in 440 

both vaccine groups with significantly higher induction in the DIP-10 PALFQ vaccine group (Figure 7G). Based on 441 

this, we asked if LN responses differed between vaccine groups. Strikingly, the GC Tfh cell frequencies within 442 

the fine-needle aspirates of the draining LN were higher in the DIP-10 PALFQ vaccine group following the 3rd DNA 443 

immunization (Figure 7H). Notably, the greater inflammatory response was associated with increased levels of 444 

serum IgG antibodies, linking the innate immune response to priming of effective CD4 Tfh help (Figure 7I).   445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 on January 15, 2020 at U
N

IV
 O

F
 M

A
S

S
 M

E
D

 S
C

H
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 16 

DISCUSSION  465 

The present study gives rise to three main conclusions; first, that an HIV-1 vaccine platform designed to 466 

promote Th1-polarized Tfh cells increases the number of circulating Env-specific Tfh cells, enhances GC 467 

responses, increases anti-Env binding antibody titers in sera, stimulates serum antibody effector functions. 468 

Second, that a Th1 vaccine regimen can elicit anti-Env vaginal and rectal IgA responses; and third that 469 

induction of high avidity antibodies, reflective of productive GC responses, are engendered by a Th1 vaccine 470 

regimen. Collectively, the data suggest that adjuvant-induced stimulation of Th1-Tfh cell production during the 471 

vaccine prime and boost is an effective strategy to enhance magnitude and functionality of the anti-Env 472 

antibody response. 473 

Productive T cell responses critically depend on cytokine signals during priming, and recent studies 474 

demonstrate that monocyte-derived cytokines drive effective CD4 T cell differentiation and Tfh responses (38-475 

40). Here, investigation of the kinetics of pro-inflammatory monocytes - cellular innate biomarkers of 476 

adjuvanticity - revealed a transient increase in CD14+CD16+ monocytes in blood with a higher relative increase 477 

in the DIP-10 PALFQ vaccine group. Strikingly, fine-needle aspirates of the draining LNs showed higher GC 478 

frequencies in the DIP-10 PALFQ vaccine group, indicating active/productive GC responses. Notably, the improved 479 

inflammatory response was associated with increased antibody magnitude linking the innate immune response 480 

to effective induction of CD4 Tfh cells. Although titers against Gag and Env were not significantly different 481 

between the vaccine regimens during the prime, it is possible that the higher memory B cells, which we did not 482 

quantify, were induced with the Th1 prime. Indeed, several recent studies show that potent priming of the 483 

immune response sets the stage for stronger boosting of cellular and humoral immunity in the setting of DNA 484 

prime, NYVAC boost and Ad5 prime, NYVAC boost vaccine regimens(25, 41). The effectiveness of priming is 485 

not limited to CD4 T cells and B cells; a DNA vaccine targeting conserved elements of SIV Gag robustly primes 486 

cytotoxic T cells which are effectively boosted following a long rest period(42, 43). These data open the 487 

possibility to a critical window of opportunity during the priming phase. This window can be exploited to prime 488 

for long-lasting, durable CD4, CD8 T cell, and antibody responses to HIV-1 vaccination. 489 
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The HVTN studies 070 and 080 employed the IL-12 DNA adjuvanted plasmid with the subtype B PENNVAX-B 490 

(PV) DNA plasmid and showed 80% response rates after the third DNA vaccination in PV+IL-12 recipients 491 

compared to a 44% response rate with the PV alone vaccine. A subsequent follow up study demonstrated 492 

robust recall of binding anti-Env antibody titers with ADCC activity following an MVA boost in PV+IL-12 493 

recipients (44, 45). Because IL-12 is a classic innate mediator of Th1 responses, the data suggest that an 494 

increase in Th1 GC Tfh cells may underlie the observed effects. Correspondingly, studies in rhesus macaques 495 

with an ALVAC prime, ALVAC + gp120 protein boost using SIV immunogens showed higher SIV Env titers with 496 

MF59 compared to aluminum adjuvanted protein boosts 2 weeks following the final immunization(46). While Tfh 497 

responses and memory antibody titers were not examined, a recent study in humans showed enhanced 498 

binding antibody titers 26 weeks after booster immunization with a Th1 GLA-SE-adjuvanted malaria antigen 499 

relative to one formulated in aluminum(47). These studies in conjunction with our report provide support to the 500 

immune potential of Th1-Tfh cells in fostering high magnitude antibody titers. In contrast, a study using a 501 

homologous subtype C protein immunization reported induction of higher anti-Env antibody titers with 502 

aluminum-hydroxide (Ahydrogel) relative to Addavax, an MF59 analog, in rabbits(48).Collectively, these data 503 

indicate the importance of detailed studies to understand the context in which Th1 responses are superior to 504 

mixed Th1+2 responses and how viral versus DNA vectors and subunit proteins influence this paradigm.  505 

Our findings raise the question of the mechanisms underlying the DIP-10ProALFQ vaccine-mediated enhancement 506 

in Tfh responses. A few possibilities can be explored; IP-10 increases dendritic cell-T cell interactions, which 507 

could have favored Tfh differentiation(49). IP-10 also increases IL-6 production in B cells which is known to 508 

support Tfh differentiation and enhance plasma cell survival (50). This together with the potent immune 509 

stimulatory potential of MPLA+QS-21 boost may have synergized to enhance Tfh responses numerically and 510 

favored Th1 differentiation program within Tfh cells (51). Indeed, GC Tfh cells induced following viral infections, 511 

where Th1 inflammatory responses predominate, express Bcl-6, Tbx21, IFNG, and IL-21 consistent with the 512 

induction of Th1-type Tfh cells (52). Transcriptomic analysis of Tfh cells following the 1st protein boost in the DIP-513 

10 PALFQ vaccine regimen show coordinate expression of Th1 regulated genes as evidenced by enrichment of 514 

pathways related to IFNG signaling. It should be noted however that transcriptional analysis was only 515 

performed on 3 animals within the DIP-10 PALFQ group with the highest magnitude antibody responses and 516 
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therefore may yield false positive targets and furthermore not be representative of the GC Tfh signature elicited 517 

by the DIP-10 PALFQ vaccine regimen. Nonetheless, the higher relative expression of the Th1 chemokine receptor 518 

CXCR3 in GC Tfh cells and GC B cells, and CXCR3 ligands in sera lend support to the gene expression data. 519 

Together, our transcriptomic and phenotypic data on Tfh cells indicate a role for adjuvant induced quantitative 520 

(increased Tfh numbers) and qualitative (increased proportion of Th1 Tfh cells) effects on antibody magnitude. 521 

Mechanistic studies are needed to discern the respective contribution of increased Tfh numbers versus Th1 522 

skewing of Tfh cells on antibody responses as both these characteristics are inextricably linked in the current 523 

study. Additionally, because our vaccine regimen differed by two components; IP-10 in the prime and ALFQ 524 

during the boost further studies are needed to determine the specific role of the IP-10 prime versus ALFQ 525 

boost in driving CD4 Tfh and antibody responses. This will enable us to address whether the Th1 boost 526 

synergized with the Th1 prime to enhance antibody titers and functionality, or if a Th1 prime/ Th1 boost alone 527 

would be sufficient to elicit the observed anti-Env antibody profiles.  528 

 529 

While the DIP-10 PALFQ vaccine regimen increased magnitude of anti-Env IgG titers in the vaginal mucosa, which 530 

correlated with decreased acquisition in each of the vaccine groups, our study was not powered to assess 531 

protection from acquisition across the vaccine regimens.  Furthermore, the lack of an unvaccinated control 532 

group precludes determination of vaccine efficacy and is a major caveat to the interpretation of acquisition 533 

outcomes. Therefore, more extensive larger scale studies are needed to assess whether the DIP-10 PALFQ 534 

vaccine regimen induced protective antibodies with the capacity to mediate effective neutralization or antibody 535 

effector functions at the vaginal mucosa. Notably, in contrast to a previous study showing increased risk of 536 

intra-rectal acquisition with MF59 relative to an alum-adjuvanted protein immunization(46), the DIP-10 PALFQ 537 

vaccine regimen did not increase the risk of vaginal acquisition in the present study. While these studies differ 538 

in route of mucosal transmission, the difference in outcomes may also be attributed to timing of exposure 539 

following final immunization i.e., 4 weeks in the previous study versus 20 weeks in the current study. It is 540 

possible that the presence of higher frequency of CD4 T cell effectors at the rectal mucosa 4 weeks following 541 

immunization increased acquisition risk, which could have contributed the observed differences in outcomes. 542 

Indeed, higher frequencies of CCR5+ CD4 T cells in rectal mucosa were observed in vaccinated monkeys 543 

experiencing breakthrough infections relative to those remaining uninfected following a low-dose intrarectal 544 
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challenge (53). Therefore, whether increased immunogenicity detracts from protection is an important safety 545 

consideration in the use of Th1 adjuvants and other highly immunogenic vaccine platforms(46). This is 546 

particularly important as the HIV co-receptor CCR5 is primarily expressed on Th1 cells (12). Nevertheless, 547 

because Th1 cells also produce CCR5 ligands, it is important to determine frequency of Th17 cells at the 548 

mucosal portals following immunization as Th17 cells are preferential targets of infection within the vaginal 549 

mucosa(54). Another consideration is that the studies were performed on females and did not encompass the 550 

possible variability in vaccine response between sexes. Therefore, going forward, it is critical to determine and 551 

confirm if a Th1 vaccine regimen will also enhance antibody responses in males. 552 

 553 

In addition to adjuvant-dependent modulation of Tfh responses, our IgG subclass results also support the 554 

conclusion that the DIP-10 PALFQ and DPALFA vaccine regimens induced qualitatively different GC responses. This 555 

is also the first study to show that adjuvants can dramatically impact the IgG antibody subclass profile in 556 

rhesus macaques. We made the striking observation that while both vaccine regimens induced IgG1 antibodies 557 

to gp120, the DPALFA regimen generated much greater IgG4 responses. The Th2-promoting aluminum adjuvant 558 

is most likely responsible for the increased IgG4 in DPALFA animals because both vaccine groups received ALF 559 

liposomes. Rhesus IgG4 antibodies can mediate phagocytosis, but overall they appear to have poor effector 560 

functions (55, 56) and the most functional IgG subclass in macaques has been reported to be IgG1 (56). 561 

Humans immunized with an alum-formulated HIV-1 gp120 protein have been found to develop IgG1 and IgG4 562 

but not IgG2 and IgG3 antibodies(57). However, important functional differences in IgG subclass antibodies 563 

and FcR biology between non-human primates and humans (58, 59), and the fact that rhesus IgG subclasses 564 

are numbered by serum abundance not function preclude direct comparisons between species. Another 565 

consideration is that differing antigen affinities between IgG subclasses to HIV-1 gp140 could confound 566 

quantitation raising the possibility that subclass differences may be driven by differential affinities/epitope 567 

specificities rather than differential magnitudes. Therefore, more conclusive studies are needed to evaluate 568 

these possibilities.  569 

 570 

Another notable observation was the induction, in  DIP-10 PALFQ vaccinated animals, of a robust anti-Env vaginal 571 

IgA response with an accompanying decline in serum IgA antibodies after the 2nd protein immunization. This 572 
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incongruity between vaginal and serum IgA responses was also observed in the DPALFA vaccine group, 573 

suggesting that ALF liposomes may have generated IgA plasmablasts that homed to the reproductive tract, or 574 

possibly Th17-like Tfh cells which promote IgA responses in mucosal LNs (60) (61). The Th1-biased ALF and 575 

ALFQ adjuvants have been reported to generate Th17 responses in mice, with ALFQ being more effective and 576 

additionally generating IgA antibodies(62). Future studies of Tfh cell subsets and IgA plasma cells in mucosal 577 

LNs will be required to determine if our Th1 vaccine regimen may have promoted IgA responses in the female 578 

reproductive tract, and in the rectum to a lesser extent, by generating Th17 cells. 579 

In summary, our findings demonstrate that Th1-DNA prime substantially increases the frequency of Env-580 

specific Tfh cells and that Th1-Env protein boosting results in greater production of anti-Env IgG1 antibodies 581 

with enhanced magnitude, breadth, avidity, and function. How this regimen can be further optimized to 582 

significantly enhance and induce robust tier 2 neutralizing antibodies is an important question that warrants 583 

further study.  584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 
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 595 

 596 

MATERIALS AND METHODS  597 

Rhesus Macaques Twenty adult female colony-bred rhesus macaques (Macaca mulatta) were housed at the 598 

California National Primate Research Center and maintained in accordance with American Association for 599 

Accreditation of Laboratory Animal Care guidelines. All studies were approved by the University of California 600 

Davis Institutional Animal Care and Use Committee (IACUC). At study initiation, animals were 3.5 - 4.5 years 601 

of age with a median weight of 5.3 kg, were SIV- STLV- SRV-, had no history of dietary or pharmacological 602 

manipulation, and had intact ovaries.  603 

 604 

Immunizations and challenge. DNA immunizations were administered via intradermal injection with 605 

electroporation utilizing the ICHOR TriGrid Array (Ichor Medical Systems) at weeks 0, 8, and 16. For each DNA 606 

immunization, two groups of 10 animals received 4 mg of the pGA2/JS2 plasmid DNA vector(63) encoding 607 

either SHIV C.1086 T/F Env + interferon-induced protein (IP)-10 (Group 1) or SHIV C.1086 T/F Env alone 608 

(Group 2). Details of the SHIV DNA construct have been described(64). At weeks 30 and 44, Group 1 animals 609 

received boosts with 100 g C.ZA 1197MB gp140 protein (Immune Technology) adjuvanted with 100 g MPLA 610 

+50 g QS-21 (ALFQ) and Group 2 animals received 100 g C.ZA 1197MB gp140 adjuvanted with 100 g 611 

MPLA + 600 μg Aluminum (ALFA). The protein formulation (100 g protein in 500l formulation) was delivered 612 

in a 250 l volume with 50 g protein subcutaneously in each thigh during each of the two protein boosts. All 613 

animals were challenged at week 20 following the final protein immunization with 1:4 dilution of SHIV.C.CH505 614 

(stock at 189 ng/ml) obtained from George Shaw and Nancy Miller. The virus was diluted 1:4 in RPMI to obtain 615 

a challenge volume of 1 ml. Animals were positioned in prone position and 1 ml syringe without needle was 616 

used to inoculate virus. Animals were challenged weekly, with 8 repeat doses or until virus was detected in 617 

plasma.  618 

 619 
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Adjuvants. Dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylglycerol (DMPG) saturated 620 

phospholipids, cholesterol (Chol), and synthetic monophosphoryl lipid A (MPLA, 3D-PHAD) (Avanti Polar 621 

Lipids). DMPC and Chol were dissolved in chloroform, and DMPG and MPLA were dissolved in 622 

chloroform:methanol (9:1). Alhydrogel®, aluminum hydroxide (AH) in a gel suspension was purchased from 623 

Brenntag. The QS-21 saponin was purchased from Desert King International and was dissolved in Sorensen 624 

PBS, pH 5.6. 625 

Army liposome formulations (ALF) containing DMPC, DMPG, Chol, and MPLA were prepared by the lipid 626 

deposition method. For vaccine preparations adjuvanted with ALFA, dissolved lipids were mixed in a molar 627 

ratio of 9:1:7.5:0.36 (DMPC:DMPG:Chol:MPLA) and dried by rotary evaporation followed by overnight 628 

desiccation. Liposomes were formed by molecular biology grade water (Quality Biological), microfluidized, and 629 

sterile filtered, followed by lyophilization. 100 g of gp140 protein was adsorbed to 600 g of Alhydrogel in 630 

PBS, pH 7.4, and incubated on a tilted roller at room temperature (RT) for 1 h prior to adding to lyophilized 631 

ALF. For vaccine preparations adjuvanted with ALFQ (ALF containing QS-21), lipids were mixed in a molar 632 

ratio of 9:1:12.2:0.36 (DMPC:DMPG:Chol:MPLA), dried, rehydrated by adding Sorensen PBS, pH 6.2, followed 633 

by microfluidization and filtration. gp140 was mixed with ALFQ in a 1:1 volume ratio. Each vaccine dose in 500 634 

μl volume contained 100 g MPLA (and 100 g protein) and either 600 g aluminum or 50 g QS-21. 635 

 636 

Specimen collection and processing. Lymph node (LN) biopsies were obtained 2 weeks following each of 637 

the protein boosts and were manually processed by disassociation through 100 μM cell strainers and washing 638 

in complete media, as described previously (12). Two weeks after the 3rd DNA immunization, fine needle 639 

aspirates of LN were obtained using a 22 gauge needle, as previously described (65). PBMCs were isolated 640 

from whole blood collected in CPT vacutainer tubes by density gradient centrifugation as previously described 641 

(12). For serum, coagulated blood was centrifuged at 800 g for 10 min to pellet clotted cells, followed by 642 

extraction of fluid and storage at -80C. Rectal and vaginal secretions were collected using premoistened 643 

Weck-Cel sponges and eluted as described (66). 644 

 645 

Serum IgG ELISA. Serum IgG titers against HIV-1 C.1086 Env gp140 and  Gag (SIVmac 239) were 646 

determined by ELISA. In brief, 96-well microtiter plates with high binding capacity (Thermo Fisher) were coated 647 
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overnight at 4C with 1 g/mL C.1086 Env gp140C from the NIH AIDS Reagent Program (ARP) or with SIV239 648 

Gag (Immune Tech) diluted in 0.1 M carbonate-bicarbonate buffer, pH 9.2. Plates were washed with PBS 649 

containing 0.1% Tween-20 (PBST) and blocked with 5% w/v nonfat dry milk in PBS for 2 h at RT followed by 650 

four washes with PBST. Standard (PG9 monoclonal antibody from the ARP) and serum samples were run at 3 651 

dilutions/sample (1:50-1:450) in sample dilution buffer and incubated at RT for 2 h on a microplate shaker. 652 

After washing, the plate was incubated for 1 h with 1:10,000 HRP conjugated goat anti-monkey IgG (Nordic 653 

MUbio). The plates were washed and then developed with TMB substrate (Thermo Fisher) and the reaction 654 

was quenched with 2 N H2SO4 (Sigma). Absorbance was recorded at 450 nm with a reference filter at 570 nm 655 

using a Spectramax 5 plate reader (Molecular Devices). Baseline sera from each animal served as negative 656 

control and OD values 2-fold above baseline were considered positive and extrapolated to determine anti-Env 657 

antibody concentrations.  658 

 659 

Sodium thiocyanate avidity assay. C.1086 Env gp140C-specific IgG antibody avidity was determined using 660 

a chaotropic displacement ELISA with NaSCN. Serum samples were incubated in duplicate at 6000 pg per well 661 

for 2 h at RT. The plate was washed five times. For the dissociation step, one well of each sample was 662 

manually treated with 100 L of 2 M NaSCN (Sigma-Aldrich) to dissociate antigen-antibody complexes and a 663 

second well of the same sample was treated with PBS as a control. The plate was incubated for 15 min at RT, 664 

followed by washing three times. The plate was then developed as described above for the C.1086 gp140C 665 

ELISA. For each sample, antibody avidity was reported as an avidity index value (a percentage), which was 666 

calculated as the ratio of absorbance in the well treated with NaSCN to that in the well treated with PBS. 667 

 668 

Biacore binding and avidity analysis. Binding and avidity determination were conducted using Surface 669 

Plasmon Resonance (SPR) Biacore 4000 system. The immobilizations were performed in 10 mM HEPES and 670 

150 mM NaCl pH 7.4 using a standard amine coupling kit, as previously described (23, 67). The CM5-S series 671 

chip surface was activated with a 1:1 mixture of 0.4 M 1-ethyl-3-(3-dimethylaminopropyl) carbodimide 672 

hydrochloride (EDC) and 0.1 M N-hydroxysuccinimide (NHS) for 600 s (GE Healthcare). For the cyclic 673 

biotinylated V2 C.1086 peptide, 1 µM Streptavidin (Life Technologies) in 10 mM sodium acetate pH 4.5 (5,800 674 

- 7,400 RU) was coupled for 720 s. The immobilized surface was then deactivated with 1.0 M ethanolamine-675 
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HCl pH 8.5 for 600 s. Spot 3 in each flow cell was left unmodified to serve as a reference. Following surface 676 

deactivation, 0.06 - 1.5 µM cyclic biotinylated V2 C.1086 peptide was captured, resulting in two range of 677 

densities; high density (1,900 – 2,300 RU) and low/medium density (340 – 580 RU). For C.1086 gp140C, 0.56 678 

– 15 µg/mL protein was immobilized directly on the sensor CM5 chip, resulting in four ranges of densities; very 679 

high density (9.800 – 10,100 RU); high density (3,400 – 4,100 RU); medium density (960 – 1,700 RU) and low 680 

density (240 - 670 RU). Following surface preparation, heat inactivated serum samples were diluted 1:50 in the 681 

running buffer (10 mM Hepes, 300 mM NaCl and 0.005% Tween 20, pH 7.4). The diluted samples were 682 

injected onto the V2 peptide or gp140 protein surface for 320 s followed by 1,800 s dissociation period. The 683 

bound surface was then enhanced with a 240 s injection of 30 µg/mL secondary antibody goat anti-monkey 684 

IgG. To regenerate the bound surface, 175 mM HCl was injected for 70 s. For each serum sample or controls, 685 

4 - 8 replicates were collected at a rate of 10 Hz, with an analysis temperature of 25C. All sample injections 686 

were conducted at a flow rate of 10 L/min. Data analysis was performed using Biacore 4000 Evaluation 687 

Software 4.1 with double subtractions for unmodified surface and buffer for blank. The fitting was conducted 688 

using the dissociation mode integrated with the Evaluation software 4.1. 689 

 690 

Binding Antibody Multiplex Assay (BAMA) and sodium citrate avidity assay. HIV-specific serum IgG 691 

BAMA was performed as previously described (68) with a panel of Env and V1V2 antigens: C.1086 gp140, 692 

CH505 TF gp140, Con S (group M consensus) gp140, and Con C (clade C consensus) gp140, gp70-V1V2 693 

Clade B/Case A2 scaffolded protein. Samples were titrated in 5-fold serial dilutions starting at 1:80 and binding 694 

magnitude is reported as AUC. Positivity criteria (determined at dilution 1:80) was as follows: (1) MFI >100; (2) 695 

MFI > Ag-specific cutoff (95th percentile of all baseline binding per antigen); (3) MFI 3-fold > than that of the 696 

matched baseline before and after blank/MuLV subtraction. All BAMA and avidity assays were performed in a 697 

blinded fashion using magnetic beads. For avidity assays, samples were tested with and without sodium citrate 698 

(0.1 M, pH 3.0) at 2 dilutions for each antigen based on BAMA titration for maximum coverage of samples in 699 

the linear range of the assay. The dilutions were 1:80 and 1:400 for gp70-V1V2, 1:400 for C.1086 V1V2, 700 

1:2000 for CH505TF gp140, 1:2000 for ConC gp140, and 1:10000 for C.1086 gp140 and ConS gp140. 701 

Antibody avidity is reported as avidity index, which was calculated as 100 x (MFI in the citrate-treated well/MFI 702 

in the untreated well). Avidity index is reported for sample-antigen combinations that were (1) identified as 703 
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positive responders in the IgG BAMA assay and (2) had an MFI within the linear range for the untreated 704 

sample.  705 

 706 

Neutralization. Neutralization assays were performed as previously described(69) using TZM-bl cells. We 707 

measured neutralization activity against the tier 1 clade C pseudovirus MW965.26 using MLV-pseudotyped 708 

virus as an indicator of non-HIV-specific activity in the assay. Neutralization titers were measured  at week 2 709 

and week 8 post 2nd protein boost and were considered to be positive for neutralizing antibody activity based 710 

on the criterion of signal >3x detected against the MLV negative control virus. The majority of positive titers 711 

detected were against the tier 1 virus MW965.26 with occasional very weak neutralization titers against the tier 712 

2 C.1086_B2 713 

and SHIV CH505.375H viruses.  714 

 715 

Antibody-dependent cellular cytotoxicity. The rhesus CD16+ human KHYG-1 NK cell line (effector cells) 716 

and CEM.NKR-CCR5-sLTR-Luc (target cells) were provided by Dr. David Evans (Univ of Wisconsin) and were 717 

maintained in R10 culture medium consisting of RPMI 1640 supplemented with 10% fetal bovine serum, 25 718 

mM HEPES, 2 mM L-glutamine, and 0.1 mg/ml Primocin (70, 71). The R10 for CD16+ KHYG-1 cells was 719 

additionally supplemented with cyclosporine (CsA) and interleukin-2 (IL-2) at a concentration of 1 μg/ml and 5 720 

U/mL, respectively. 721 

 722 
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Luciferase-based ADCC assays were carried out as previously described with some modifications (70). Two 723 

million CEM.NKR-CCR5-sLTR-Luc target cells were spinoculated with SHIV.C.CH505.375H.dCT (38 ng p27) 724 

for 2 h at 2,600 rpm at 30°C in the presence of 10 μg/mL polybrene. Subsequently, the target cell/virus mixture 725 

was incubated overnight at 37°C in 5% CO2. The next day, virus was removed and cells were incubated for 726 

another 72 h prior to the ADCC assay. For the ADCC assay, serum: effector cells: target cells were plated in a 727 

1:1:1 volumetric ratio. Serum was heat inactivated and diluted (1:50 dilution in R10 containing 10 U IL-2 per 728 

mL, with no CsA), mixed with PBS-washed, infected target cells (1 x 104 cells per well), and effector cells (5 x 729 

104 cells per well). Serum and cells were incubated overnight at 37°C in 5% CO2. Plates were then centrifuged 730 

at 1,800 rpm for 5 min at room temperature and 100 uL of the supernatant was removed. The cell pellets were 731 

resuspended and mixed with 50 μl of the luciferase substrate reagent BriteLite Plus (Perkin Elmer). Relative 732 

light units (RLUs) were recorded in black 96-well plates according to the manufacturer’s instructions using a 733 

Synergy 2 microplate luminometer (BioTek). Percent ADCC activity of each tested serum sample (week 2 and 734 

week 8 post 2nd protein) was measured as the reduction in RLUs compared to the animal's week 0 pre-immune 735 

serum (100% RLU). All samples were tested in triplicate and experiments were performed twice. 736 

 737 
Antibody Dependent Phagocytosis. Serum antibodies were tested for ability to enhance phagocytosis of 738 

gp120 expressing beads by THP-1 cells using methods similar to those previously described(69). Briefly, 5 µL 739 

of 1 µm avidin-coated Fluorospheres (Invitrogen) were labeled with 2 µg biotinylated anti-His tag antibody 740 

(Pierce), then 3.5 µg His-tagged Clade C gp120 Du151 protein (Immune Technologies) per plate. The gp120 741 

beads and triplicate 5-fold dilutions of heat-inactivated serum in a 50 µL volume were then pre-incubated at 742 

37˚C in V-bottom plates. After 1 h, 2 x 104 THP-1 cells in 50 µL were added to each well. After 5 h at 37˚C in 743 

5% CO2, the cells were washed in Ca+2 and Mg+2 -free DPBS and resuspended in 180 µL of warm 0.12% 744 

Trypsin/EDTA. After 5 min at 37˚C, the trypsin was removed and the cells were resuspended in 1% 745 

paraformaldehyde. Fluorescence was evaluated using a FACS Canto (BD Biosciences) and Flow-jo software. 746 

Phagocytosis was measured by multiplying the percent fluorescent cells by their median fluorescence intensity. 747 

The phagocytic score was then calculated by dividing phagocytosis of test samples by the average 748 

phagocytosis measured with preimmune serum.  749 

 750 
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IgG subclass antibodies. Ten rows of a 96-well Immulon 4 microtiter plate (VWR) were coated overnight at 751 

4˚C with 50 ng per well of C.1086 gp120 ∆7 K160N protein (72) in PBS. The remaining 2 rows were coated 752 

with duplicate 2-fold serial dilutions of rhesus IgG1, IgG2, IgG3 or IgG4 (Nonhuman Primate Reagent Program) 753 

starting at 25 ng/mL in PBS to generate a standard curve. Plates were washed with PBS containing 0.05% 754 

Tween 20 and blocked for 30 min at RT with reagent buffer (0.1% bovine serum albumin in wash buffer). Two- 755 

or three-fold dilutions of serum in reagent buffer were then added to the wells coated with gp120. Reagent 756 

buffer was added to wells coated with standard. Following overnight storage at 4˚C, the plate was washed and 757 

reacted for 1 h at 37˚C with 1 µg/mL of the relevant monoclonal antibody from the Nonhuman Primate Reagent 758 

Resource: anti-rhesus IgG1 (mouse IgG2a clone 3C10.3), anti-rhesus IgG2 (mouse IgG1 clone 3C10), anti-759 

rhesus IgG3 (mouse IgG1 clone 2G11) or anti-rhesus IgG4 (mouse IgG1 clone 7A8). These antibodies were 760 

raised to react specifically with the respective rhesus IgG subclass and show negligible reactivity to other 761 

subclasses and the specificity of 7A8 was further confirmed in our lab. The plate was then consecutively 762 

washed and treated with 100ng/mL of biotinylated goat anti-mouse IgG1 or IgG2a for 1 h at 37˚C, neutralite-763 

avidin peroxidase for 30 min at RT, and TMB (all from SouthernBiotech). Absorbance was recorded at 370 nm. 764 

SoftMax Pro software (Molecular Devices) was used to to construct a standard curve and determine 765 

concentrations of antibody. Preimmune serum samples had < 10ng/mL of antibody in these assays.  766 

 767 

Mucosal antibodies and serum IgA.  BAMA with C.1086 gp140 K160N-labeled magnetic beads (MagPlex, 768 

BioRad) was used as previously described (72)  to measure concentrations of antigen-specific IgG in 769 

secretions and IgA in both secretions and serum depleted of IgG. Briefly, beads reacted with dilutions of 770 

standard (73) and specimens at 1100 rpm and 4˚C overnight were washed and developed with biotinylated 771 

anti-monkey IgG or -monkey IgA (Rockland) followed by Phycoerythrin-labeled Neutralite avidin 772 

(SouthernBiotech). Construction of standard curves and interpolation of antibody concentrations was done 773 

using Bioplex Manager software after measurement of fluorescence in a Bioplex 200 (BioRad). Concentrations 774 

of gp120-specific IgG or IgA in secretions were divided by the total IgG or IgA measured in the sample by 775 

ELISA (74) to obtain the specific activity (ng IgG or IgA antibody per µg total IgG or IgA).  776 

 777 
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Activation induced Marker (AIM) assay. Cells were stimulated with overlapping peptide pools of HIV 778 

consensus C and HIV-1 C.1086 Env gp140C protein; and SIV239 Gag in AIM media as previously described 779 

(30). All antigens were used at a final concentration of 2 g/mL in a stimulation cocktail made with using 0.2 g 780 

of CD28 and 0.2 g CD49d costimulatory antibodies per test. Unstimulated controls were treated with volume-781 

controlled DMSO (Sigma-Aldrich). Tubes were incubated in 5% CO2 at 37C overnight. Following an 18 h 782 

stimulation, the cells were stained, fixed, and acquired the same day. Phenotype panel on LNs and PBMCs 783 

was performed using standard flow cytometry assays(12).   784 

 785 
Serum cytokines. A Legendplex assay (Biolegend) was performed to evaluate cytokines in rhesus macaque 786 

sera. The assay was performed according to the manufacturer’s protocol. Samples were acquired on a BD 787 

LSR Fortessa cell analyzer.   788 

 789 

Flow cytometry and cell sorting. Cell staining and sorting was performed as previously described(12). 790 

Fluorescence was measured using a BD FACSymphony with FACS Diva version 8.0.1 software. 791 

Compensation, gating and analysis were performed using FlowJo (Versions 9 and 10). Cell sorting was 792 

performed using a BD FACSAria III. Reagents used for flow cytometry are listed in Table 1.  793 

 794 

RNA Sequencing and Bioinformatics. RNA was extracted from sorted subsets and DNA-free RNA was 795 

quantified and assessed for quality prior to sequencing. RNA samples with visible peaks, 260/280 ratio 796 

between 1.8 to 2.1, and RNA integrity number of greater than 7 were sequenced using Batch-Tag-Seq Gene 797 

Expression Profiling on the Illumina HiSeq sequencer at the DNA Technologies & Expression Analysis Core 798 

Laboratory at the UC Davis Genome Center. Samples were barcoded and run in a single HiSeq lane. Quality 799 

of data were verified using the Illumina SAV viewer; this included verifying low error rates based on 800 

alignments of the standard Illumina PhiX spike, and removal of PCR duplicates after alignments. Adapter 801 

trimming, QC of sequencing data & demultiplexing was performed by the UC Davis Bioinformatics Core. After 802 

read filtering, reads were mapped to a reference genome using HISAT-aligner. On average 82.17% (~55-61% 803 

uniquely mapped) reads were mapped, and the uniformity of the mapping result for each sample indicated 804 

comparability between samples.  Prior to differential gene expression analysis, genes with fewer than 40 805 
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counts per million reads were filtered, leaving 7,086 genes.  Differential expression analyses were conducted 806 

using the limma-voom Bioconductor pipeline (32).   807 

 808 
Statistical analysis. Statistical analysis was performed using GraphPad Prism 7. Results between groups 809 

were compared using the two-tailed nonparametric Mann-Whitney rank sum test. Within group comparisons, 810 

such as antibody levels at different time points, were done using the two-tailed Wilcoxon matched-pairs signed 811 

rank test. For correlation analysis, the two-tailed Spearman rank correlation test was used. 812 
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 834 

FIGURE LEGENDS  835 

Figure 1. Immunization schedule for subtype C HIV-1 Envelope DNA prime and protein boost vaccine 836 

regimen. (A) Flow cytometric plots illustrate expression of HIV Env, SIV Gag, and IP-10 by 293T cells 837 

transfected with DNA and DNAIP-10 plasmids. Grey overlay shows expression in non-transfected cells. (B) 838 

Surface expression of HIV Env based on detection with a panel of monoclonal antibodies as indicated. (C) IP-839 

10 concentrations in supernatants of transfected 293T cells show accumulation of IP-10 following transfection 840 

with DNAIP-10. (D) Immunization schedule. Two groups of 10 rhesus macaques each were immunized three 841 

times with DNA followed by two immunizations with protein. DNA was delivered intradermally and three 842 

seconds later electrical pulses were delivered around the injection site using the ICHOR TriGrid Array. Group 1 843 

animals (n=10) received DNA plasmid expressing IP-10 and an ALFQ-adjuvanted C.ZA gp140 boost (DIP-844 

10ProALFQ). Group 2 (n=10) animals were immunized with DNA and boosted with ALFA-adjuvanted C.ZA gp140 845 

protein (DPALFA).  (E) Induction of IP-10, I-TAC, IL-6, and RANTES in serum after the 1st protein immunization 846 

in both vaccine regimens. Significance was tested by Mann-Whitney; * p<0.05, **p < 0.01, *** p < 0.001.  847 

 848 

Figure 2. DIP-10ProteinALFQ vaccine induces robust anti-Env serum IgG antibody titers with cross-clade 849 

breadth. (A) Kinetics of the C.1086 anti-gp140 IgG response measured by BAMA in serum at weeks 0, 2, and 850 

8 following each protein boost. The right panel shows scatter plot values for each animal at weeks 0, 2, and 8 851 

post 2nd protein boost. (B) Kinetics of the C.1086 gp140-specific anti-Env IgG response measured by ELISA 852 

after the 2nd protein boost. The right panel shows titers for each individual animal. BAMA assay was used to 853 

measure responses against (C) CH505 gp140, (D) Con C gp140 (E) Con S gp140 and (F) gp70-V1V2 Case 854 

A2.  (G) Fold change in antibody titers at indicated time points after the 2nd protein boost relative to the 1st. 855 

Animals receiving the DPALFA vaccine are represented by blue circles and animals receiving the DIP-10PALFQ 856 

vaccine by red circles. Kinetic data show geometric means. Vertical dotted lines show immunization time 857 

points. In dot plots, geometric means are indicated as horizontal lines. Statistical significance across vaccine 858 

regimens was tested using the Mann-Whitney U test; *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001.  859 

 860 
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Figure 3. DIP-10 ProteinALFQ vaccine elicits high avidity anti-Env antibody with ADCC and ADP activities. 861 

(A) Surface Plasmon Resonance (SPR) was used to determine the avidity index (AI) in serum at 2 weeks after 862 

the final DNA immunization and each protein boost using C.1086 gp140 protein immobilized onto sensor chips. 863 

Violin plots show median (bolded line) and interquartile range (dashed lines) in both vaccine groups with each 864 

sample run in quadruplicate. Lower values indicate higher avidity.  (B) SPR-based AI values in the two vaccine 865 

regimens over time. (C) shows significantly higher IgG values in DIP-10 PALFQ. at 2 weeks post 2nd protein boost 866 

(expressed as relative units, as measured by SPR) and higher avidity after normalizing avidity to gp140 IgG 867 

RU. Lower values indicate higher avidity.  AI measured against C.1086 gp140 using (D) 2M sodium 868 

thiocyanate and (E) 0.1M sodium citrate at week 8 after 2nd protein boost. AI against (F) Con C and (G) Con S 869 

gp140 measured using 0.1M sodium citrate at week 8 post 2nd protein boost. (H) Serum neutralizing antibodies 870 

were assessed against tier 1A (MW965.26) pseudovirus and the 50% infective dose (ID50) was determined. (I) 871 

ADCC activity against SHIV CH505 infected target cells; data are represented with week 0 serum ADCC 872 

values normalized at 0% (dashed grey line) (J) ADP using Clade C Du151 gp120-coated beads was measured 873 

using sera from week 8 post 2nd protein boost at serum dilutions ranging from 1:100 to 1:2500. (K) Individual 874 

ADP scores at the 1:500 serum dilution. (L) C.1086 gp120-specific IgG subclass analysis was performed by 875 

ELISA using serum collected 8 weeks after the 2nd protein boost. (M) IgG1/IgG4 ratio across vaccine groups at 876 

week 8 post 2nd protein boost. Statistical significance across vaccine regimens was examined using the Mann-877 

Whitney U test and within group differences over time were tested using Wilcoxon matched-pairs signed rank 878 

test; *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001.  879 

 880 

Figure 4. DNAIP-10 ProteinALFQ vaccine elicits robust anti-Env antibody in vaginal and rectal mucosal 881 

secretions. Concentrations of anti-C.1086 gp140 IgG and IgA in secretions were measured by BAMA and 882 

adjusted in accordance with the total IgG and IgA, respectively, to obtain the specific activity. (A, B) 883 

Development of gp140-specific IgG and (C,D) IgA in vaginal and rectal secretions. (E) Kinetics of the C.1086 884 

gp140-specific IgA response in serum. Horizontal dashed lines represent the cut-off for significance. Kinetic 885 

data show geometric means. Vertical dotted lines show immunization time points. In dot plots, data post 2nd 886 

protein are shown and geometric means are indicated as horizontal lines. (F) Kaplan-Meier plot showing 887 

acquisition rates following eight repeat intra-vaginal challenges with SHIV.C.CH505. (G) vaginal anti-gp140 888 
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IgG concentrations at week 16 post 2nd protein boost correlated with delay in acquisition in infected animals in 889 

both vaccine regimens (DIP-10 PALFQ vaccine regimen, n = 7; DPALFA vaccine regimen, n = 10). Statistical 890 

significance was tested using unpaired, two-tailed Mann-Whitney U test; *p < 0.05, **p < 0.01, *** p < 0.001, 891 

**** p < 0.0001, and correlations with a Spearman rank correlation 892 

 893 

Figure 5. DIP-10 ProteinALFQ vaccine induces Env-specific T cells and Tfh cells in blood. (A) Gating strategy 894 

to identify CXCR5+ OX40+ CD25+ Env-specific Tfh cells within PBMC after stimulation with both whole C.1086 895 

gp140 protein and pooled overlapping peptides representing Con C gp140. Flow plot illustrating responses 896 

following stimulation with Env or volume-controlled DMSO (NS). (B) Frequency of Env-specific CD4 T cells at 897 

week 1 post 1st protein boost.  898 

 899 

Figure 6. DIP-10 ProteinALFQ vaccine induces GC Tfh cells with distinctive Th1 signatures. (A) Gating 900 

strategy to identify GC Tfh cells and GC B cells in LN at 2 weeks post 1st protein boost. Histograms show higher 901 

relative expression of Bcl-6 and ICOS in GC Tfh cells (red) compared to naive CD4 T cells (grey). Expression in 902 

GC B cells is shown in purple. (B) Total IgG was measured in ex vivo co-culture experiments with sorted GC 903 

Tfh cells and autologous LN B cells to demonstrate B helper capacity of the Tfh cells. (C) Frequencies of GC Tfh 904 

cells in LN at specified time points, symbols indicate significant differences from baseline for protein 1 and day 905 

0 for protein 2. (D) Dot plot illustrating higher frequencies of GC B cells in the Th1 vaccine group, and 906 

correlations between frequencies of GC Tfh cells and GC B cells or Env-specific Tfh cells in in LN.  Frequencies 907 

of Env-specific CD4 T cells in LN (D, figure on right) correlate with GC Tfh cells. (E) Histogram illustrating 908 

relative CXCR3 expression in GC Tfh cells (red) and GC B cells (purple). The dot plot shows significantly higher 909 

CXCR3 expression on GC Tfh cells in the Th1 vaccine group. Serum antibody titers at week 18 after the 2nd 910 

protein boost correlate with frequency of GC Tfh cells and proportion of CXCR3-expressing GC Tfh cells at 2 911 

weeks after the 1st protein boost. (F) The dot plot shows significantly higher CXCR3 expression on GC B cells 912 

from animals in the Th1 vaccine group. Flow plot illustrates higher expression of CXCR3 on T-bet+ memory B 913 

cells. (G) Log fold change values of key Tfh and Th1 genes in Tfh and memory Tfh cells in lymph node of Th1 914 

vaccinated animals (p adj <0.05). (H) Heatmap shows expression of genes differentially expressed in Tfh cells 915 

relative to naive across four sorted CD4 subsets.   Blue and red colors represent relative high and low log2 916 
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gene expression values, respectively. For construction of heat maps log 2 gene expression (counts per million 917 

or CPM) for the most differentially expressed genes in Tfh versus naive comparison, selected by threshold of p-918 

adjusted value <= 0.05. Statistical significance was tested using unpaired, two-tailed Mann-Whitney U test. 919 

Spearman coefficient of correlation values were computed to determine associations; * p<0.05, **** p < 0.0001.   920 

 921 

Figure 7. DNAIP-10 immunization induces systemic expansion of pro-inflammatory monocytes and 922 

enhances GC Tfh responses. (A) Gating strategy to identify activated CXCR5+ CD4 T cells in blood on day 0 923 

and day 14 following the 3rd DNA immunization, and transient accumulation of ICOS+ PD-1+ CXCR5+ cells in 924 

blood of all animals (n=20) when expressed as relative frequencies (left) or absolute counts (right). (B) Kinetics 925 

of the SIV239 anti-Gag IgG response and (C) C.1086 gp140-specific anti-Env IgG response measured by 926 

ELISA after DNA immunization at indicated time points. Significance indicated for all time points relative to 927 

baseline titers. (D) shows Gag-specific CD4 T cell responses measured at week 1 post DNA3 using AIM and 928 

ICS (IFNG+TNFA+)-based assays. (E) Gating strategy to identify inflammatory CD14+CD16+ monocytes in 929 

blood. (F) Appearance of CD14+CD16+ monocytes following the 3rd DNA immunization. (G Comparison of pro-930 

inflammatory monocytes in blood of DNA and DNA-IP-10 primed animals. (H) Frequencies of GC Tfh cells in 931 

fine needle aspirates of draining LNs from DNA and DNA-IP-10 primed animals on day 14 after the 3rd DNA 932 

immunization. (I) Spearman rank correlation between frequencies of pro-inflammatory monocytes in blood on 933 

day 3 and C.1086C gp140 IgG antibodies in serum on week 8 following the 2nd protein boost. Between group 934 

differences were assessed using the Mann-Whitney U test. * p< 0.05, ***, p < 0.001,  **** p < 0.0001. 935 
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