5-HT2A deletion protects against Clozapine-induced hyperglycemia

Radhika Sudhir Joshi
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Biochemical Phenomena, Metabolism, and Nutrition Commons, Hemic and Lymphatic Diseases Commons, Medical Pharmacology Commons, Medicinal Chemistry and Pharmaceutics Commons, Nutritional and Metabolic Diseases Commons, and the Pharmacology Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access Publications by UMass Chan Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Short Communication

5-HT2A deletion protects against Clozapine-induced hyperglycemia

Radhika Sudhir Joshi a, b, *, 1, Shishu Pal Singh a, 1, Mitradas M. Panicker a, c, *

a National Centre for Biological Sciences, TIFR, GKV Campus, Bellary Road, Bengaluru, India
b Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
c Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA

Article info

Article history:
Received 11 March 2018
Received in revised form 9 October 2018
Accepted 30 November 2018
Available online 18 December 2018

Keywords:
5-HT2A
Clozapine
Hyperglycemia

Abstract

Clozapine is an antipsychotic known for its superior efficacy in treating drug-resistant Schizophrenia. However, Clozapine induces various side effects such as hyperglycemia, agranulocytosis, weight gain etc. The mechanisms of these Clozapine-induced side effects have remained largely elusive though an important role is ascribed to 5-HT2A (Serotonin receptor subtype-2A). In this pilot study, we report for the first time that the 5-HT2A ‘global’ knockout mice (Htr2a−/−) are resistant to the Clozapine-induced hyperglycemia. Importantly though, the Htr2a−/− mice exhibit near normal basal glucose metabolism in the glucose tolerance tests. Collectively, the Htr2a−/− mice provide an important tool to study the Clozapine-induced hyperglycemia.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Among atypical antipsychotics, Clozapine is considered to be the most effective, clinically. However, it is associated with the increased risk of metabolic disorders such as weight gain and glucose dysregulation.1-4

Clozapine acts as an inverse agonist/antagonist at the Serotonin receptor 5-HT2A, blocking the canonical signaling.5 However, recently Clozapine was shown to have agonist-like properties at the 5-HT2A.6,7 5-HT2A knockout mice (Htr2a−/−) are also resistant to a side effect of Clozapine, i.e. Sedation.8,9 Here we have studied the response of the Htr2a−/− mice to Clozapine-induced metabolic side effects, particularly the acute Clozapine-induced hyperglycemia (CIH). We have used global Htr2a−/− mice, where 5-HT2A is absent from all tissues to fertilization.

CIH is observed in patients and also in animal models.2-4 CIH is reversible and ceases with the treatment.4 Therefore it would be very useful to study the acute form of CIH, disentangled from the chronic side effects such as weight gain. The mechanism of CIH with respect to its receptor dependence, if any, has not been well studied. 5-HT2A is one of the potential candidates for CIH.

5-HT2A is expressed in the brain10 and in several peripheral organs.11 5-HT2A agonists have been shown to increase glucose uptake, which is inhibited by the 5-HT2 class antagonist- Ketanserin.11 Moreover, Ketanserin impairs insulin sensitivity in healthy volunteers.12 Conversely, 5-HT2A agonists have also been shown to cause hyperglycemia in animals.13 Since these ligands can have multiple targets and distinct pharmacokinetics, the role of 5-HT2A in CIH is hard to discern. Therefore, we used the Htr2a−/− mice to address this question.

The Htr2a−/− strain was maintained under standard laboratory conditions.3 Male mice, minimum 3 months old, were used for the experiments. The mice were obtained from heterozygous matings and genotyped as described in Joshi et al., 2016.3 Mice were randomly assigned to either the vehicle or the drug group for CIH. All experiments were approved by the Institutional Animal Ethics Committee (NCBS-IAE-2016/15(E)).

For CIH we arrived at a dose of 5 mg/kg of Clozapine based on the following a) at this dose our group and others have reported differences between Htr2a−/− and Htr2a+/+ mice for Clozapine-induced sedation b) at 5 mg/kg of Clozapine we have observed 5-HT2A dependent Clozapine-specific cellular responses in the mice brain (Joshi et al., BioRxiv 226050) and previous literature. For the CIH test, mice were not allowed to feed for 6 hours prior to the drug administration to avoid immediate effects of feeding on the blood glucose levels (BGL) (Fig. 1a). Clozapine (0444, Tocris, Bristol, UK) was administered intraperitoneally, and blood was obtained at the defined intervals from the tail tip. The BGL were determined with

* Corresponding authors. NCBS, GKVK Campus, Bellary Road, Bengaluru 560065, India.
E-mail addresses: Radhika.Joshi@umassmed.edu (R.S. Joshi), shishups@ncbs.res.in (S.P. Singh), panic@ncbs.res.in, mmpanicker@gmail.com (M.M. Panicker).
Peer review under responsibility of Japanese Pharmacological Society.
1 Shishu Pal Singh and Radhika Joshi are equal first authors of the paper.

https://doi.org/10.1016/j.jphs.2018.11.015
© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Glucose and glucose metabolism

After 30 and 60 min of drug administration, the Htr2a+/− mice showed a significant increase in the BGL compared to the vehicle-treated group and the Htr2a+/− group at 30 and 60 min time points. After 120 min of drug administration, the Htr2a+/− mice only showed a trend towards increased BGL, which did not reach significance. Two-way ANOVA − “Comparison with 0 mg/kg, # comparison with the Htr2a+/− at the same dose. e & f) Basal body weight and BGL did not differ between the Htr2a+/− and Htr2a−/− mice. Student’s t-test. (n. s. – not significant). Number in the bar represents ‘N’s. Data shown as Mean ± SEM. *p < 0.05, **p < 0.001, (two-way ANOVA, 30 min post-drug treatment: effect of drug, F(1,36) = 4.87, p = 0.0337, genotype, F(1,36) = 3.62, p = 0.0648, interaction, F(1,36) = 4.34, p = 0.0444, 60 min post-drug treatment: effect of drug, F(1,36) = 17.04, p = 0.0002, genotype, F(1,36) = 7.06, p = 0.0116, interaction, F(1,36) = 2.72, p = 0.1077).

To account for any pre-existing differences in the glucose metabolism of the Htr2a+/+ and Htr2a−/− mice, we conducted glucose tolerance tests (GTT). For GTT, mice were food deprived overnight, and blood samples were obtained as described above. To reduce the number of animals, mice were subjected to the GTT, followed by the CIH test, with a minimum interval of a one-week. Glucose (1 mg/kg) (G8270, Sigma–Aldrich, USA) was administered intraperitoneally.

Glucose administration produced the expected and similar patterns of the BGL in both the Htr2a+/+ and Htr2a−/− mice (Fig. 2a). We further analyzed the total area under the curve (AUC). However, it was statistically indistinguishable between the Htr2a+/+ and Htr2a−/− mice (Fig. 2b). These results suggest that the basal glucose metabolism in the Htr2a+/− and Htr2a−/− mice is largely similar and unlikely to explain the differences seen with CIH.

Interestingly, there was a subtle yet significant difference between the baseline BGL of the Htr2a+/+ and Htr2a−/− mice (94.89 ± 3.8) and 120.4 ± 7.5 mg/dL, respectively, after 12 h of food deprivation (Fig. 2a). 5-HT2A expression in the liver and muscles is thought to regulate glucose metabolism.11,15 Thus, it is possible that the lack of 5-HT2A exerts subtle effects on glucose metabolism which builds up over prolonged fasting. Further experiments on the basal metabolism of the Htr2a−/− mice under different dietary regime might shed some light on this aspect.

Taken together this report presents the Htr2a−/− mice as a useful tool to investigate some of the pathways underlying the acute form

Fig. 1. Htr2a−/− mice are protected against the CIH. a) Schematic representation of the protocol for CIH. b), c) and d) The graphs show Clozapine-induced increase in the BGL - 30, 60 and 120 min after the drug/vehicle administration. The Htr2a+/− mice showed a significant increase in the BGL compared to the vehicle-treated group and the Htr2a−/− group at the same dose. e & f) Basal body weight and BGL did not differ between the Htr2a+/− and Htr2a−/− mice. Student’s t-test. (n. s. – not significant). Number in the bar represents ‘N’s. Data shown as Mean ± SEM. *p < 0.05, **p < 0.001, (two-way ANOVA, 30 min post-drug treatment: effect of drug, F(1,36) = 4.87, p = 0.0337, genotype, F(1,36) = 3.62, p = 0.0648, interaction, F(1,36) = 4.34, p = 0.0444, 60 min post-drug treatment: effect of drug, F(1,36) = 17.04, p = 0.0002, genotype, F(1,36) = 7.06, p = 0.0116, interaction, F(1,36) = 2.72, p = 0.1077).

Fig. 2. Htr2a+/+ and Htr2a−/− mice show similar basal glucose metabolism. a) The Htr2a+/+ and Htr2a−/− mice showed similar and a clear increase in the BGL, 30 min after glucose administration. two-way ANOVA − “Comparison with 0 mg/kg, # comparison with the Htr2a+/− at the same dose. (Data was transformed for two-way ANOVA, effect of time, F(3,114) = 2173, p < 0.0001, genotype, F(1,38) = 9.147, p = 0.0044, interaction, F(3,114) = 4.501, p = 0.0051), b) The Htr2a+/+ and Htr2a−/− mice showed no difference in the Area Under the Curve in Figure 2a (AUC). Student’s t-test. (n. s. – not significant). Number in the bar represents ‘N’s. Data shown as Mean ± SEM. ***p < 0.0001.
of CIH. It would be of interest to determine if the observed effects in the Htr2a−/− mice are a result of a direct interaction of Clozapine with the 5-HT2A or a secondary effect. It would also be vital to determine if any compensatory changes in the expression of other GPCRs (such as 5-HT1A, 5-HT2B, 5-HT2C, and H1 receptor etc.) and the endocannabinoid system are present in the Htr2a−/− mice.

Since we have used a global knockout of the 5-HT2A, we cannot dissect the roles played by specific tissues in CIH. Genetic or virus-induced tissue-specific deletion of 5-HT2A would be appropriate in this regard. While this study has explored very specific effects, and a limited aspect of the metabolic side effects of Clozapine, namely hyperglycemia, it should still serve as a stepping stone to understand the chronic metabolic side effects of Clozapine.

Contributors

Author RJ, SPS performed experiments. All authors contributed to the design of the study and have approved the final manuscript.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgment

We thank the Animal Care and Resource Centre at NCBS, India. We thank the funding sources- Grant BT/PR10961/MED/30/1310/2014 Department of Biotechnology, Government of India and intramural funding from NCBS. We would like to thank Prof. Dhandapani (InStem, Bengaluru) for tissue samples.

References

