
region leading to a frame shift similar to our model and

which shows only residual levels of the mutant protein

in western blot and immunofluorescence assays.25 Fur-

thermore, normal amounts of the RPGRconst isoform

were produced and are correctly localized in the CC in

our mouse model, while no S3 antibody staining was

detected in the rd9 mouse.25 A possible reason for this

difference could be a differential regulation of the

Fig 6. Functional examination using electroretinography (ERG). (A) Representative scotopic single flash

recordings of young (3�6 months of age) and old (18�21 months of age) wild type (wt) and mutant (mut) ani-

mals. (B) Scotopic a-wave amplitudes separated for each flash intensity for wild type (wt) and mutant (mut) ani-

mals between 3 and 21 months of age (n =4 animals per time point). (C) Scotopic a-wave amplitudes separated

for each flash intensity for wild type (wt) and mutant (mut) animals between 3 and 21 months of age (n = 4 ani-

mals per time point). (D) Representative photopic single flash recordings of young (3�6 months of age) and old

(18�21 months of age) wild type (wt) and mutant (mut) animals. (E) Photopic a-wave amplitudes separated for

each flash intensity for wild type (wt) and mutant (mut) animals between 3 and 21 months of age (n = 4 animals

per time point). (F) Representative photopic flicker responses of young (3�6 months of age) and old (18�21

months of age) wild type (wt) and mutant (mut) animals. (G) Correlation of photopic flicker amplitude and

flicker frequency in wild type and mutant animals at young (3�6 months) and old (18�21 months) age. (H) Cor-

relation of scotopic a-wave amplitudes with age. Differences between wild type and mutant animals start to be

significant at 12 months of age. * P < 0.05.
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RPGRconst isoform in both disease models, a mecha-

nism already seen in selective KO models of either

Rpgrconst or RpgrOrf15.26 Further studies to decipher

this potential mechanism are currently ongoing.

We observed thinning of the ONL and reduction of

photoreceptor nuclei at later stages of the disease. In

the context of a therapeutic setting, such late reductions

of photoreceptor cells and function may not be advan-

tageous, since readout parameter following treatment

would become significant only at late stages.14 On the

other hand, this long-lasting presence of photoreceptors

generates potentially a long therapeutic window. More

importantly, the early alterations to the photoreceptor

morphology, that is, the absence of the outer retinal

bands on OCT scans early in the disease process, repre-

sent a useful readout parameter to study treatment out-

come at an early age.27

ONL thinning has already been shown for other

Rpgr mouse models, for example, in the rd9 mutant

mice becoming clear and significant around 12 months

Fig 7. Genome editing at the I-SceI site in vitro. (A) Scheme of the generation of the cell line HEK293¡mORF15

by cloning the mutant RPGR-ORF15 region into the HEK293 cell line under the control of a CMV promoter.

Stars indicate the point mutations integrated into the ORF15 sequence. (B) The vector plasmid contains the I-

SceI cDNA linked with the GFP reporter gene by a T2A linker und the control of a CMV promoter, thus allow-

ing production of equal amounts of protein. Microscopy image shows the green fluorescent cells after transfec-

tion. FACS data show the enrichment of the GFP positive cell population. (C) Visualization of the DNA repair

events following transfection of the cell line with the plasmid vector and subsequent enrichment of the GFP pos-

itive cells. T7 surveyor assay demonstrates NHEJ activity at the target site in the GFP enriched cell population

and to a lower extend in the transfected cells without GFP enrichment. "+" and "¡" refers to whether FACS

enrichment, I-sceI expression and T7 endonuclease digestion took place or not.
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of age.25 The Rpgr knock-out mouse model developed

by Hong et al23 also showed a thinning of the photore-

ceptor nuclear layer with a loss of 2 rows of nuclei on

average by the age of 6 months, an observation that

was also reported by other groups.28,29 These findings

suggest that frame shift mutations in the Orf15 (like

the ones occurring in the rd9 model and the model pre-

sented here) lead to milder forms of degeneration com-

pared to knock-out mutations, which may be related to

a residual function of the altered protein.

Concerning the function of the photoreceptors, ERG

amplitudes in our model are reduced in scotopic

a-wave as well as b-wave, starting at the age of 12

months, coinciding with the start of photoreceptor

nuclear cell loss. Photopic flicker responses are simi-

larly reduced in older animals. These observations

indicate that both types of photoreceptors, rods and

cones are involved in the pathology. The impact of

aging on function is relatively small, since age-

matched wild type animals only show a slight reduc-

tion of the measured amplitudes. Similarly, functional

analysis showed reduced amplitudes for all known

Rpgr mouse models at later stages of the dis-

ease.25,23,28,30,31 Similar to our model, the rd9 model

shows a moderate but constant reduction of a-wave as

well as b-wave amplitudes until the age of 24

months.25 The knock-out mouse model by Hong et al

shows reduced a-wave amplitudes for rods as well as

for cones at the age of 6 months,23 while the model

established by Brunner et al shows only a mild reduc-

tion of the scotopic a-wave from the age of 3 months

onwards and no alteration of the scotopic b-wave.28

The pathologies observed in our model or in the pub-

lished rd9 mouse are less severe than those observed in

human patients. One base pair frame shifts with long

C-terminal protein chain alteration seem to be reason

Fig 8. Genome editing at the I-SceI site in vivo. (A) The two AAV vector constructs are depicted. The AAV2/5

vector contained an expression cassette in which I-SceI and GFP, linked by a T2A linker, were under the control

of a CMV promoter, thus allowing transgene expression in all transduced cells. The AAV2/8 vector contained

an expression cassette in which I-SceI and GFP were under the control of a Rhodopsin kinase (RK) promoter,

which ensures photoreceptor specific transgene expression. (B) In vivo fluorescence image from transduced ret-

ina showing the GFP expression in the injected area. onh: optic nerve head; bv: blood vessel. (C) FACS data

showing the enrichment of the GFP positive cell population. (D) DNA repair events following AAV mediated I-

SceI gene transfer and subsequent enrichment of the GFP positive cells resulted in measurable NHEJ activity in

both injected eyes, while control eyes did not reveal such activity. Positive control experiment was the in vitro

experiment described in Fig 7. "+" and "¡" refers to whether FACS enrichment, I-sceI expression and T7 endo-

nuclease digestion took place or not. DNA, deoxyribonucleic acid; FACS, fluorescent activated cell sorting;

NHEJ, nonhomologous end-joining.
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for the most severe phenotypes in humans, but only a

mild phenotype in mice (this study).25 Recent in vivo

analysis of human retinae with SD OCT technology

revealed early ONL thinning outside the fovea despite

the presence of identifiable ISe (inner segment retinoid)

and OS structures,5 which was also observed in other

studies.32,33 In contrast, the murine ISe and OS struc-

tures, which can be distinguished in wild type mice, are

not visible in mutant retinae. This has also been

observed in the knock-out mouse generated by Huang et

al.29 Since current understanding of functional correlates

identifies ISe as a valid morphologic indicator of func-

tional photoreceptors in OCT scans of humans, this is

not the case for murine OCT scans. In young affected

animals of our model, ERG recordings are unchanged,

yet the ISe band is not detectable from the beginning.

In summary, the newly generated mouse model dis-

plays a degenerative phenotype with thinning of retinal

layers starting at 9 months and loss of photoreceptor

function beginning at 12 months of age, indicating the

activation of a similar or at least closely related patho-

logic pathway like in human patients. Therefore, this

model is an eligible model for the development of gene-

therapeutic applications in the future. In addition, it may

help to gain further insight into the pathological mecha-

nisms involved in retinal degeneration and the expression

pattern of mutant Rpgr-Orf15. Moreover, the influence of

point mutations in the ORF15 repetitive region on

expression and splicing of the mRNA, as well as the bio-

chemical reason for the toxicity of emerging proteins

could be addressed by the model in further experiments.

Finally, the use of this model to study genome editing in

the degenerating retina in vivo using all nuclease classes

currently available renders the model very important.
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