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FIGURE 5 | Slx5 modulates the transcriptional activity due to expression of Htt-103Q-NLS. Depiction of 398 SLX5 modulated genes identified by RNA sequencing.
(A) RNA-seq analysis shows that Htt103Q-NLS leads to a global effect on the transcriptome as it affects the expression of 3438 genes (25Q [V] vs. 103Q [V]).
Plasmid-borne SLX5 affects the expression of 398 genes in Htt103Q-NLS cells (103Q [V] vs. 103Q [SLX5]) as shown in Supplementary Table S2. The overlap

(Continued)
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FIGURE 5 | Continued
between Htt25Q-NLS and Htt103Q-NLS (25Q [V] vs. 103Q [V]) is 363 genes. The expanded view of A shows that expression of most of the 363 genes (99.4%)
inversely correlates between 25Q [V] vs. 103Q [V] and 103Q [V] vs. 103Q [SLX5]. Expression of 247 of the 363 genes (68.0%) is down-regulated by Htt103Q, and
this effect is reversed by plasmid-borne SLX5 (Down – Up). Expression of 114 of the 363 genes (31.4%) is up-regulated by the Htt103Q, and this effect is reversed
by plasmid-borne SLX5 (Up – Down). (B) Subcellular localization of differentially expressed genes. The localization of proteins encoded by the 398 genes indicated in
Supplementary Table S2 was analyzed using cellular components assignment from the PANTHER Classification System and the Saccharomyces Genome
Database. Pie chart shows a ratio of the genes placed into cellular component categories. Individual genes are listed in Supplementary Table S4. (C) Schematic of
gene expression in Htt25Q-NLS and Htt103Q-NLS cells and the effect of plasmid-borne SLX5 on the transcriptome of Htt103Q-NLS cells. Expression of genes A
and B are downregulated and upregulated in Htt103Q-NLS cells relative to Htt25Q-NLS cells, respectively. Slx5 reduces the association of Htt with chromatin and
this contributes to the reversal in gene expression such that gene A is upregulated and gene B is downregulated. (D) RT-PCR validation of gene expression analysis.
Total RNAs were purified from strains expressing either Htt25Q-NLS or Htt103Q-NLS from a GAL promoter for 4 h with or without plasmid-borne SLX5. RT-PCR
analyses was performed using the same samples used for the RNA-seq. Relative intensities are reported as the mean ± SD of three biological repeats. Reactions for
YDL223C/HBT1 and YPL186C/UIP4 were performed in duplicate. N = 3 for YOR339C/UBC11 and YFL039C/ACT1, N = 6 for YDL223C/HBT1 and YPL186C/UIP4.

(Figures 2A,B). However, we failed to detect a reproducible,
STUbL-dependent, reduction of Htt by western blot analysis
(for example Supplementary Figure S3). Previously it has been
reported that the STUbL RNF4 is involved in the degradation
of another poly-Q expanded protein, Atxn1 82Q (Guo et al.,
2014). While our data are consistent with a re-distribution of
Htt aggregate, we did not observe that Slx5 altered the steady-
state levels of this aggregation-prone protein. One explanation
for this may be that budding yeast cells do not disassemble
the nuclear envelope, making it difficult to observe the effect of
nuclear localized STUbLs on aggregates of Htt in the cytosol. We
overcame this limitation in our yeast model by using nuclear-
targeted Htt-103Q to assess both the transcriptional activity and
the chromatin association of Htt in the presence or absence of
SLX5 (Figure 3 and Figure 4).

First, using Gal4-based two-hybrid reporter assays, we were
able to show that yeast Slx5 and human RNF4, both nuclear
localized proteins, curb the transcriptional activity of Htt.
Therefore, we predict that the role of RNF4 in mammalian
cells is to dispel transcriptionally active Htt complexes rather
than to degrade cytosolic Htt aggregates. However, at this point
we cannot entirely exclude the possibility that Slx5 and RNF4
form repressive promotor-associated complexes see (Cubeñas-
Potts and Matunis, 2013). Regarding the Gal4-AD-fusion of
Htt, similar constructs have proven invaluable in defining the
aberrant transcriptional activity of poly-Q expanded proteins.
The most important observation in this regard is that the poly-
Q domain is necessary and sufficient for both the targeting to the
Gal4 UAS and reporter gene activation (Atanesyan et al., 2012).
Furthermore, introduction of a poly-Q stretch into transcription
factors increases their transcriptional activity. Even though we
have not yet observed a direct, physical interaction between
Htt and Slx5 (we predict a transient interaction involving Htt-
associated proteins), our assays are consistent with an important
role of Slx5 in counteracting nuclear activities of aggregation
prone, chromatin associated proteins. The finding that a STUbL
plays an important role in transcriptional regulation is not
entirely surprising. Before it became known as a STUbL, RNF4
had already been identified as a co-regulator of androgen
receptor-dependent transcription (Yan et al., 2002). Furthermore,
RNF4 can act both as a transcriptional activator or a repressor
depending on the proteins it interacts with (Fedele et al., 2000).

Second, using Gal-driven, nuclear-targeted 103Q constructs,
we assessed the chromatin association of an aggregation-prone

Htt construct. This time we were able to clearly document
that an extra plasmid-borne copy of SLX5 reduced the levels
of chromatin-associated Htt (Figure 4). The association of
Htt with DNA, transcription factor recognition elements, and
transcription factors has previously been reported (Benn et al.,
2008). STUbLs may provide a mechanism to counteract these
inappropriate associations of Htt. For example, it is tempting
to speculate that Slx5 recruits Cdc48/Ufd1/Npl4 (Cdc48-UN), a
SUMO-targeted STUbL effector, to dislodge Htt from chromatin
(Nie et al., 2012; Bergink et al., 2013). Cdc48 has also been
identified in association with Htt aggregates and we are now
studying the effect that Cdc48-UN plays in Htt-mediated
transcriptional activation (Wang et al., 2008).

Finally, we have completed a global RNA sequencing study
to identify those transcripts that are affected by nuclear-targeted
Htt-103Q and modulated by an extra plasmid-borne copy of
SLX5. Our transcriptome analysis revealed that SLX5 counteracts
transcriptional abnormalities of 398 genes induced by expression
of 103Q-NLS. Dysregulated transcripts encode proteins localized
throughout the cells, with the majority enriched in the
cytoplasm (263) nucleus (33) and mitochondria (19). Functional
categorization of the differentially transcribed genes showed
that at least 22 are involved in transcription, transcriptional
regulation, and RNA/DNA binding (RTC3, RPA43, RPB7,
BUD27, TFA2, SRB7, YAP7, MCM1, PHO4, MAP1, HSP31, SNF5,
RPP1, TMA22, RPS27A, MRPL49, NHP2, RPL7A, RPL7B, MAP1,
HST2, and CBC2) (Supplementary Table S4). We posit that
some of the transcriptionally active and chromatin-associated
proteins identified in our study represent genuine STUbL
targets. Additionally, several SLX5-modulated genes identified
here have previously been described in other Htt studies [e.g.,
Glo2 (human HAGH1), ZTA1 (human zeta crystalline), Msb1,
COA2, BUD22, ERG5, and TIR1], supporting a genuine role
of STUbLs in counteracting huntingtin-mediated dysregulation
(Willingham et al., 2003; Wolfe et al., 2014). We prefer a model
in which Htt aggregates may contain both sumoylated and
non-sumoylated proteins, including those listed above. STUbL-
mediated ubiquitination could then result in the recruitment
of the Cdc48-UN desegregase and the subsequent proteasomal
degradation of ubiquitylated proteins in the aggregates (reviewed
in Kerscher, 2016).

In summary, the STUbL/Htt assay is one of the first of its
kind to assess the ability of RNF4 and other STUbLs to modulate
the activity of transcriptionally active, aggregation-prone
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proteins. This reporter assay should complement other
sophisticated genetic tools used to study protein aggregation
processes (Newby et al., 2017). Results from our reporter assays
are consistent with biochemical and genome-wide transcriptome
data and provide evidence for a role of STUbLs in preventing
toxicity due to aggregation-prone Htt in the nucleus. Overall,
our findings indicate that STUbLs can reduce the chromatin
association and abnormal transcriptionally activity of Htt (or
other aggregating proteins) and suggest that mammalian STUbLs
may play neuroprotective functions in Huntington’s Disease.
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FIGURE S1 | WT strain expressing Htt-103Q-GFP alone (YOK 2842) or
Htt-103Q-GFP together with SLX5 (YOK 2843) were grown to mid-logarithmic
phase in selective medium. Images of yeast cells with diffuse staining 103Q-GFP,
aggregates, and speckles were recorded, counted, and graphed. Additionally, we
stained cells with the LIVE/DEAD Yeast Viability Kit (Thermo Fisher) to quantitate
dead or dying cells in the culture (dead). Average counts for three independent
experiments were graphed +/− standard deviation. Y-axis: percent of cells.

FIGURE S2 | The slx5SIM mutant suppresses lethality of Htt-103Q in slx51. slx51

strain YOK821 expressing 103Q-Htt/URA3 was transformed with SLX5 plasmid
(BOK376), slx5SIM mutant (BOK463), and an empty vector (pRS425). Resulting
transformants were struck to appropriate selective media and incubated for
3 days at 30◦C.

FIGURE S3 | Steady-state protein levels of AD-25Q and AD-55Q are not grossly
affected by expression of BD-Slx5. AD-25Q and AD-55Q were expressed in the
presence or absence of BD-Slx5 in the yeast two-hybrid reporter strain. Proteins
were extracted, separated by SDS–PAGE and western blotted with an antibody to
the Gal4-AD or PGK, a loading control (Szymanski and Kerscher, 2013). EV –
empty Gal4-AD vector expressing only Gal4-AD.

TABLE S1 | Strains used in this study.

TABLE S2 | Expression profiles of 398 genes regulated by an extra copy of SLX5.
An extra copy of SLX5 alters the expression profiles of 398 genes in the Htt103Q
background (Htt103Q-NLS [Vector] vs. Htt103Q-NLS [SLX5]). 363 out of these
398 genes are also found to be differently expressed between Htt25Q-NLS and
Htt103Q-NLS (Htt25Q[Vector] vs. Htt103Q[Vector]). Expression of most of the 363
genes (99.4%) is inversely correlation between Htt25Q [Vector] vs. Htt103Q
[Vector] and Htt103Q [Vector] vs. Htt103Q [SLX5]. Only two genes do not exhibit
this inverse relationship (Exceptions: YDL182W and YGR092W). Up- and
down-regulated transcripts are shown in red and blue, respectively. Green shows
35 genes that are not detected the comparison between Htt-25Q and Htt-103Q
(Htt25Q [Vector] vs. Htt103Q [Vector]).

TABLE S3 | List of clustering genes. The 398 genes, differently expressed
between Htt103Q [Vector] and Htt103Q [SLX5], are analyzed. We used systematic
name to search the neighboring genes. Up- and down-regulated profiles are
shown in red and blue, respectively.

TABLE S4 | Cellular Components Categories of genes modulated by Slx5. The
number of individual genes placed into cellular component categories is listed in
the table. Individual genes are colored red (increased expression in cells with
Htt103Q-NLS and Slx5) or blue (decreased expression in cells with Htt103Q-NLS
and Slx5), black (only one data-point – compare Supplementary Table S2). Note
that some genes analyzed are part of multiple cellular component categories.
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