Fundamental limits on dynamic inference from single-cell snapshots

Caleb Weinreb
Harvard Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Cell and Developmental Biology Commons, Cells Commons, Genetic Phenomena Commons, and the Genetics and Genomics Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access Publications by UMass Chan Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Fundamental limits on dynamic inference from single-cell snapshots

Caleb Weinreba, Samuel Wolocka, Betsabeh K. Tusia, Merav Socolovskyb, and Allon M. Kleina,1

aDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115; and bDepartment of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605

Edited by Curtis G. Callan, Jr., Princeton University, Princeton, NJ, and approved January 24, 2018 (received for review August 22, 2017)

Single-cell expression profiling reveals the molecular states of individual cells with unprecedented detail. Because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. However, some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single-cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by extension, multiple possibilities for underlying mechanisms of gene regulation. Here, we describe the aspects of gene expression dynamics that cannot be inferred from a static snapshot alone and identify assumptions necessary to constrain a unique solution for cell dynamics from static snapshots. We translate these constraints into a practical algorithmic approach, population balance analysis (PBA), which makes use of a method from spectral graph theory to solve a class of high-dimensional differential equations. We use simulations to show the strengths and limitations of PBA, and then apply it to single-cell profiles of hematopoietic progenitor cells (HPCs). Cell state predictions from this analysis agree with HPC fate assays reported in several papers over the past two decades. By highlighting the fundamental limits on dynamic inference faced by any method, our framework provides a rigorous basis for dynamic interpretation of a gene expression continuum and clarifies best experimental designs for trajectory reconstruction from static snapshot measurements.

Author contributions: C.W. designed research; C.W., S.W., B.K.T., M.S., and A.M.K. performed research; C.W. contributed new reagents/analytic tools; C.W. and S.W. analyzed data; and C.W. and A.M.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

To whom correspondence should be addressed. Email: allon_klein@hms.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714723115/-/DCSupplemental.

Published online February 20, 2018.

Significance

Seeing a snapshot of individuals at different stages of a dynamic process can reveal what the process would look like for a single individual over time. Biologists apply this principle to infer temporal sequences of gene expression states in cells from measurements made at a single moment in time. However, the sparsity and high dimensionality of single-cell data have made inference difficult using formal approaches. Here, we apply recent innovations in spectral graph theory to devise a simple and asymptotically exact algorithm for inferring the unique dynamic solution under defined approximations and apply it to data from bone marrow stem cells.

Single-cell expression profiling reveals the molecular states of individual cells with unprecedented detail. Because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. However, some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single-cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by extension, multiple possibilities for underlying mechanisms of gene regulation. Here, we describe the aspects of gene expression dynamics that cannot be inferred from a static snapshot alone and identify assumptions necessary to constrain a unique solution for cell dynamics from static snapshots. We translate these constraints into a practical algorithmic approach, population balance analysis (PBA), which makes use of a method from spectral graph theory to solve a class of high-dimensional differential equations. We use simulations to show the strengths and limitations of PBA, and then apply it to single-cell profiles of hematopoietic progenitor cells (HPCs). Cell state predictions from this analysis agree with HPC fate assays reported in several papers over the past two decades. By highlighting the fundamental limits on dynamic inference faced by any method, our framework provides a rigorous basis for dynamic interpretation of a gene expression continuum and clarifies best experimental designs for trajectory reconstruction from static snapshot measurements.
define, cannot be practically solved using established computational tools. We therefore invoke an asymptotically exact and highly efficient solution to diffusion-drift equations using recent innovations in spectral graph theory. The ubiquity of diffusion-drift equations in fields of quantitative biology (17) and physics (18) suggests that applications of these methods may exist in other fields. Overcoming this computational challenge represents the major technical contribution of this work.

Results
A First-Principles Relationship of Cell Dynamics to Static Observations. When reconstructing a dynamic process from single-cell snapshot data, cells are typically observed in a continuous spectrum of states owing to asynchrony in their dynamics. The goal is to reconstruct a set of rules governing possible dynamic trajectories in high-dimensional gene expression space that are compatible with the observed distribution of cell states. The inferred rules could represent a single curve or branching process in gene expression space, or they could reflect a more probabilistic view of gene expression dynamics. In some cases, multiple time points can be collected to add clarity to the temporal ordering of events. In other cases, a single time point could capture all stages of a dynamic process, such as in steady-state adult tissue turnover.

To develop a framework for dynamic reconstruction from first principles, we want to identify a general, model-independent, mathematical formulation linking cell dynamics to static observations. One possible starting point is the "population balance equation" [also known as the flux balance law (19)], which has the following form:

\[
\frac{dc}{dt} = -\nabla (cv) + R_c. \tag{1}
\]

Eq. 1 states that, in each small region of gene expression space, the rate of change in the number of cells (left-hand side of the equation) equals the net cell flux into and out of the region (right-hand side) (Fig. 1A). The equation introduces the cell density, \(c(x,t)\), which is the distribution of cell states from which we sample a static snapshot of cells in an experiment. This density depends on the net average velocity, \(v(x)\), of the cells at point \(x\), a feature of the dynamics that we want to infer. Notably, being an average quantity, \(v\) is not necessarily a description of the dynamics of any individual cell, but it alone governs the form of the sampled cell density \(c\). Eq. 1 also introduces a third variable: \(R_c(x)\) is a rate of cell accumulation and loss at point \(x\) caused by the discrete phenomena of cell proliferation and cell death, and by entrance and exit from the tissue being isolated for analysis. Although Eq. 1 is likely a good starting point for analyzing many biological systems, it nonetheless introduces some specific assumptions about the nature of cell state space. First, it approximates cell state attributes as continuous variables, although they may in fact represent discrete counts of molecules such as mRNAs or proteins. Second, it assumes that changes in cell state attributes are continuous in time. This means, for example, that the sudden appearance or disappearance of many biomolecules at once cannot be described in this framework.

Multiple Dynamic Trajectories Can Generate the Same High-Dimensional Population Snapshots. Given knowledge of the cell population density, \(c(x,t)\), we hope to infer the underlying dynamics of cells by solving for the average velocity field \(v\) in Eq. 1. This approach falls short, however, because \(v\) is not fully determined by Eq. 1, and even if it were, knowing the average velocity of cells still leaves some ambiguity in the specific trajectories of individual cells. This raises the question: Do there exist a set of reasonable assumptions that constrain the dynamics to a unique solution? To explore this question, we enumerate the causes of nonuniqueness in cell state dynamics.

First, assumed cell entry and exit points strongly influence inferred dynamics: For the same data, different assumptions about the rates and location of cell entry and exit lead to fundamentally different inferences of the direction of cell progression in gene expression space, as illustrated in Fig. 1C. Cells can enter a system by proliferation, by physically migrating into the tissue that is being analyzed, or by up-regulating selection markers used for sample purification (e.g., cell surface marker expression). Similarly, cells exit observation by cell death, physical migration out of the tissue being studied, or by down-regulation of cell selection markers. Referring to Eq. 1, this discussion is formally reflected in the need to assume a particular form for the rate field \(R(x)\) when inferring dynamics \(v\) from the observed cell density \(c\).

Second, net velocity does not equal actual velocity: A second unknown is the stochasticity in cell state dynamics, reflected in the degree to which cells in the same molecular state will follow different paths going forward. A net flow in gene expression space could result from imbalanced flows in many directions or from a single coherent flow in one direction (Fig. 1D). If the goal of trajectory analysis is to go beyond a description of what states exist and make predictions about the future behavior of cells (e.g., fate biases) given their current state, then it is necessary to account for the degree of such incoherence of dynamics.

Third, rotations and oscillations in state space do not alter cell density: Static snapshot data cannot distinguish periodic oscillations of cell state from simple fluctuations that do not have a consistent direction and periodicity (Fig. 1E). As with incoherent motion above, predictive models may need to explicitly consider oscillatory behaviors. The inability to detect oscillations from snapshot data are formally reflected in Eq. 1 by invariance of the concentration \(c\) to the addition to \(v\) of arbitrary rotational velocity fields \(u\) satisfying \(\nabla (cu) = 0\).

Fourth, hidden features of cell state can lead to a superposition of different dynamic processes: Stable properties of cell state that are invisible to single-cell expression measurements, such as chromatin state or tissue location, could nonetheless impact cell fate over multiple cell state transitions (Fig. 1F). The existence of such long-term "hidden variables" would clearly compromise attempts to predict the future fate of a cell from its current gene expression state.

Because of these phenomena, no unique solution exists for dynamic inference. However, sensible predictions about dynamics can still be made by making certain assumptions. Our framework for cell trajectory analysis (see below) is based on explicit, reasonable assumptions that together are necessary and sufficient to constrain a unique solution (Fig. 2). These assumptions may nevertheless be inaccurate in certain situations.

Construction of the PBA Framework. To infer cell dynamics from an observed cell density \(c\), we make the following assumptions.

The Fokker–Planck equation models memoryless cell state dynamics. The first assumption is that the properties of the cell available for measurement (such as its mRNA content) fully encode a probability distribution over its possible future states. This assumption is made implicitly by all current approaches to trajectory analysis and cell fate prediction, and we reflect on it in the discussion. An equivalent statement of this first assumption is that cell trajectories are Markovian, or that any form of cellular memory is encoded in their measured properties. If so, the cell trajectories underlying Eq. 1 can be approximated as biased random walks, with a deterministic component that reflects the reproducible aspects of cell state changes such as their differentiation through stereotypical sequences of states, and a stochastic component that reflects random fluctuations in cell state, partly driven by bursty gene expression, fluctuations in cellular environment, and intrinsic noise from low–molecular-number processes. In this approximation, with noise specifically treated as Gaussian in nature, Eq. 1 takes the form of a Fokker–Planck equation.

Fokker–Planck equations have been applied previously to low-dimensional biological processes, such as differentiation with a
handful of genes (20) or a one-parameter model of cell cycle progression (13). Here, we apply them to high-dimensional data. Although Fokker–Planck descriptions are necessarily approximations, their emergence from first-principles descriptions of transcriptional dynamics in terms of chemical master equations (21), and their ubiquity in describing chemical reaction systems (22), help justify their use instead of the more general form of Eq. 1. Specifically, the generalized Fokker–Planck approximation takes the form of Eq. 1 with velocity field, $\mathbf{v} = \mathbf{J} - \frac{1}{2} \mathbf{D} \nabla \log c$, where the first term is a deterministic average velocity field, and the second term is a stochastic component of the velocity that follows Fickian diffusion with a diffusion matrix \mathbf{D} (Fig. 2). We assume here that \mathbf{D} is isotropic and invariant across gene expression space. Although more complex forms of diffusion could better reflect reality, we propose that this simplification for D is sufficient to gain predictive power from single-cell data in the absence of specific data to constrain it otherwise.

The resulting population balance equation is thus as follows:

$$\frac{dc}{dt} - \frac{1}{2} \mathbf{v} (\mathbf{D} \mathbf{v}) - \mathbf{v} (\nabla \mathbf{J}) + R_c. \quad [2]$$

Eq. 2 explains the rate of change of cell density (dc/dt) as a sum of three processes: (i) stochastic gene expression, $1/2 \mathbf{v} (\mathbf{D} \mathbf{v})$, which causes cells to diffuse out of high-density regions in gene expression space; (ii) convergences (and divergences) of the mean velocity field, $\mathbf{v} (\nabla \mathbf{J})$, which cause cells to accumulate (or escape) from certain gene expression states over time; and (iii) as before, cell entry and exit rates, R_c, will cause certain cell states to gain or lose cells over time.

Potential landscapes define a minimal model for dynamic inference. Our second assumption is that there are no rotational (e.g., oscillatory) gene expression dynamics. Although oscillations certainly do exist in reality—for example, the cell cycle—it is impossible to establish their existence from static snapshots alone. One is therefore forced to make an a priori assumption about their existence. In cases where oscillations are orthogonal to the process of interest, they may be safe to ignore. We systematically investigate the cost of ignoring oscillations through several simulations and identify circumstances where it has a large impact. Our analysis of scRNA-seq data in a later section suggests that useful predictions can be made despite this assumption.

In the Fokker–Planck formalism, the presumed absence of oscillations implies that the velocity field \mathbf{J} is the gradient of a potential function F (i.e., $\mathbf{J} = -\nabla F$). The potential would define a landscape in gene expression space, with cells flowing toward minima in the landscape, akin to energy landscapes in descriptions of physical systems. Applying the potential landscape assumptions to Eq. 2 gives rise to the simplified diffusion-drift equation below, where the potential is represented by a function $F(x)$:

$$\frac{dc}{dt} - \frac{1}{2} \mathbf{D} \mathbf{v}^2 + \mathbf{v} (\nabla F) + R_c. \quad [3]$$

A recipe for dynamic inference from first principles. Eq. 3 represents our best attempt to relate an observed density of cell states (c) to an underlying set of dynamical rules, now represented by a balance law, and not the noise in dynamic trajectories of individual cells. (E) A gauge symmetry of the population balance law means that static snapshots arising from periodic oscillations of cell state can also be explained by simple fluctuations that do not have a consistent direction and periodicity. (F) Hidden but stable properties of a cell—such as epigenetic state—allow for a superposition of cell populations following different dynamic laws. These unknowns are constrained by assumptions in any algorithm inferring dynamics from static snapshot data.
Population balance law
\[\frac{dc}{dt} = V(cv) + Rc \]

Make testable predictions about overall cell state dynamics

Temporal ordering of cell states
Mean first passage time in Markov chain

Assumptions to constrain model
1. No hidden variables
 - General Fokker-Plank equation
 \[\frac{dc}{dt} = \frac{1}{2} D \nabla^2 c + \nabla (vc) + Rc \]
2. No oscillations
 - Fokker-Plank with potential
 \[\frac{dc}{dt} = \frac{1}{2} D \nabla^2 c + \nabla (vcF) + Rc \]

Input fitting parameters
- Rates of cell entry and exit \(R \)
- Degree of stochasticity \(D \)
- Rate of change in cell density \(\frac{dc}{dt} \)

Solve Fokker-Plank equation for transition probabilities

Markov chain on sampled states
\[P(x_i \rightarrow x_j) \]

Reducing to Practice: Solving the Population Balance Equation with Spectral Graph Theory. Equipped with single-cell measurements and estimates for each fitting parameter, we now face two practical problems in using Eq. 3 to infer cell dynamics: the first is that Eq. 3 is generally high dimensional (reflecting the number of independent gene programs acting in a cell), but numerical solvers cannot solve diffusion equations on more than perhaps 10 dimensions (23). Indeed, until now, studies that used diffusion-drift equations such as Eq. 3 to model trajectories (10, 13, 20) were limited to one or two dimensions, far below the intrinsic dimensionality of typical scRNA-seq data (24). The second practical problem is that we do not in fact measure the net cell velocity \(v \). Crucially, we have, in these first few sections of Results, explained why the net cell velocity \(v \) is inherently unknowable from snapshot data, clarified why the description provided by a potential field \(F \) is the best that any method could propose without further knowledge about the system, and identified critical fitting parameters \((D, R, \text{and} \frac{dc}{dt}) \), which are not revealed by single-cell snapshot measurements but are required for determining aspects of the dynamics such as temporal ordering of states and fate probabilities during differentiation. By starting from first principles, it becomes clear that these requirements are not limited to any particular algorithm; they affect any method one might develop for trajectory inference.

The challenge now is to develop a practical approach that relates the fitting parameters \(D, R, \) and \(\frac{dc}{dt} \) to dynamic predictions through Eq. 3. In the following, we focus on steady-state systems where \(\frac{dc}{dt} = 0 \), and use prior literature to estimate \(R \). We report results for a range of values of \(D \). Building on the work here, more elaborate approaches could be taken, for example determining \(R \) from direct measurements of cell division and cell loss rates or integrating data from multiple time points to estimate \(\frac{dc}{dt} \), thus generalizing to non-steady-state systems.

Overcoming these problems represents the main technical contribution of this paper. We drew on a recent theorem by Ting et al. (25) in spectral graph theory to extend diffusion-drift modeling to arbitrarily high dimension. The core technical insight is that an asymptotically exact solution to Eq. 3 can be calculated on a nearest-neighbor graph constructed with sampled cells as nodes. Our approach, which we call PBA, actually improves in accuracy as dimensionality increases, plateauing at the underlying manifold dimension of the data itself. We thus avoid conclusions based on low-dimensional simplifications of data, which may introduce distortions into the analysis. In practice, some intermediate degree of dimensionality reduction could still be useful (say, to tens or hundreds of dimensions), a point elaborated in Discussion. SI Appendix provides technical proofs and an efficient framework for PBA in any high-dimensional system.

The inputs to PBA are a list of sampled cell states \(x = (x_1, \ldots, x_N) \), an estimate \(R = (R_1, \ldots, R_N) \) for the net rate of cell accumulation or loss at each state \(x_i \), and an estimate for the diffusion parameter \(D \). We are assuming steady state, so \(\frac{dc}{dt} = 0 \). The output of PBA is a discrete probabilistic process, that is, a Markov chain that describes the transition probabilities between the states \(x_i \). The analysis is asymptotically exact in the sense that—if a potential exists and the estimates for \(R \) and \(D \) are correct—the inferred Markov chain will converge to the underlying continuous dynamical process in the limit of sampling many cells (\(N \to \infty \)) and high manifold dimension of the data (SI Appendix, Theory Supplement, Theorem 4). We note that the requirement for many cells is to reduce the variance of PBA estimates, and the requirement for high dimension is to reduce the bias.

PBA computes the transition probabilities of the Markov chain using a simple algorithm, which at its core involves a single matrix inversion. Briefly:

1) Construct a \(k \)-nearest-neighbor (knn) graph \(G \), with one node at each position \(x_i \) extending edges to the \(k \) nearest nodes in its local neighborhood. Calculate the graph Laplacian of \(G \), denoted \(L \).
ii) Compute a potential \(V = 1/2 L^* R \), where \(L^* \) is the pseudoinverse of \(L \).

iii) To each edge \((x_i \rightarrow x_j)\), assign the transition probability

\[
P(x_i \rightarrow x_j) = \begin{cases}
 e^{(V(x_j) - V(x_i))/D} & \text{if } (x_i, x_j) \text{ is an edge in } G \\
 0 & \text{if } (x_i, x_j) \text{ is not an edge in } G
\end{cases}
\]

With the Markov chain generating Eq. 3 available, it is possible to calculate the temporal ordering of states, and the fate biases of progenitor cells in a differentiation process, by integrating across many trajectories (Fig. 2). These calculations are simple, generally requiring a single matrix inversion. Temporal orderings can be calculated from mean first-passage times; fate biases can be calculated as absorbing fate probabilities of the Markov chain, starting from each observed state. Specific formulas are provided in SI Appendix, Theory Supplement, section 3. Confidence intervals on inferred mean first-passage times and fate biases, and their sensitivity to parameter choices, can be estimated by bootstrapping. Code for implementing these and other aspects of PBA is available online at https://github.com/AllonKleinLab/PBA.

PBA Accurately Reconstructs Dynamics of Simulated Differentiation Processes. We tested PBA on a sequence of simulations, first using an explicit model of diffusion-drift process, and then moving on to direct simulations of gene regulatory networks (GRNs). In the first simulation (Fig. 3 and SI Appendix, Fig. S1), cells drift down a bifurcating potential landscape into two output lineages, defined formally as absorbing states in the dynamical system. Cell trajectories span a 50-dimensional gene expression space (two of which are shown in Fig. 3A). With 200 cells sampled from this simulated system (Fig. 3B), PBA predicted dynamical properties of the measured cells, including (i) their fate probabilities, defined as the probabilities of reaching either of the absorbing states; and (ii) their temporal ordering, defined as the mean first-passage time to reach them from the simulation starting point. PBA made very accurate predictions (Pearson correlation, \(\rho > 0.96 \); Fig. 1C and D) if provided with correct estimates of proliferation, loss, and stochasticity (parameters \(R \) and \(D \)). Estimates of temporal ordering remained accurate with even fivefold error in these parameters (\(\rho > 0.93 \)), but predictions of fate bias degraded (\(\rho > 0.77 \); SI Appendix, Fig. S2A–D). Thus, even very rough knowledge of the entry and exit points in gene expression space is sufficient to generate a reasonable and quantitative description of the dynamics. Interestingly, PBA also remained predictive in the presence of implanted oscillations (SI Appendix, Fig. S3; fate probability \(\rho > 0.9 \); temporal ordering \(\rho > 0.8 \)). In addition, the simulations confirmed the theoretical prediction that inference quality improves as the number of noisy genes (dimensions) increases, and as more cells are sampled: maximum accuracy in this simple case was reached after \(\sim 100 \) cells and 20 dimensions (SI Appendix, Fig. S2E–G). These simulations showcase the ability of PBA not just to describe continuum trajectories, but additionally to predict cell dynamics and by extension cell fate. At the same time, they show the fragility of dynamic inference to information not available from static snapshots alone.

Having demonstrated the accuracy of PBA on an explicit model of a diffusion-drift process, we next tested its performance on gene expression dynamics arising from GRNs (Fig. 4). As before, we simulated cell trajectories, obtained a static snapshot of cell states, and supplied PBA with this static snapshot as well as the parameter \(R \) encoding the location of entry and exit points. We began with a simple GRN representing a bistable switch, in which two genes repress each other and activate themselves (Fig. 4A). Simulated trajectories from this GRN begin with both genes at an intermediate expression level, but quickly progress to a state where one gene dominates the other (Fig. 4B). In addition to the two genes of the GRN, we included 48 uncorrelated noisy dimensions.

With 500 cells sampled from this process, PBA predicted cell fate bias (absorbing state probabilities) and temporal ordering (mean first passage time from the start point) very well (\(r > 0.98 \) for fate bias and \(r > 0.89 \) for ordering; Fig. 4C), although the precise accuracy depended on the assumed level of diffusion \(D \) (SI Appendix, Fig. S4; the values that gave the best results were used for Fig. 4). PBA assumes the absence of oscillations in gene expression space. Therefore, it is unclear how well PBA can infer cell trajectories that result from GRNs with oscillatory dynamics. We simulated an oscillatory GRN in the form of a “repressilator” circuit (26) with the addition of positive-feedback loops that create two “escape routes” leading to alternative stable fixed points of the dynamics (Fig. 4D). Simulated trajectories from this GRN begin with all genes oscillating, followed by a stochastic exit from the oscillation when one of the genes surpasses a threshold level (Fig. 4E). With 500 cells sampled from this process, PBA was significantly less accurate than for the previous simulations (Fig. 4F). Although PBA correctly identified which
HPCs reside in the bone marrow and participate in the steady-state production of blood and immune cells through a balance of self-renewal and multilineage differentiation. Descriptions of HPC differentiation invoke a tree structure, with gradual lineage-restriction at branch points. However, the precise tree remains controversial (27, 28), since existing measurements of fate potential reflect a patchwork of defined HPC subsets that may have internal heterogeneity (29) and provide only incomplete coverage of the full HPC pool. We asked whether PBA applied to single-cell RNA profiling of HPCs could generate predictions consistent with experimental data, and possibly help resolve these controversies by providing a global map of approximate cell fate biases of HPCs.

The single-cell expression measurements—derived from mouse bone marrow cells expressing the progenitor marker Kit—represent a mixture of multipotent progenitors as well as cells expressing lineage commitment markers at various stages of maturity. Since PBA depends on analyzing a k-nearest-neighbor (knn) graph of the cells, we developed an interactive knn visualization tool for single-cell data exploration, called SPRING (https://kleintools.hms.harvard.edu/tools/spring.html; ref. 30). The SPRING plot (Fig. 5A) revealed a continuum of gene expression states that pinches off at different points to form several downstream lineages. Known marker genes (SI Appendix, Table S1) identified the graph endpoints as mononuclear (Mo), granulocytic (G), dendritic (D), lymphoid (Ly), megakaryocytic (Mk), erythroid (Er), and basophil or mast (Ba/Mast) cell progenitors (SI Appendix, Fig. S5); we also identified cells in the graph expressing hematopoietic stem cell markers. The lengths of the branches reflect the timing of Kit down-regulation and the abundance of each lineage.

For steady-state systems, PBA requires as fitting parameters an estimate of the diffusion strength D and the net rates of cell entry and exit at each gene expression state (R). We estimated R using prior literature (Materials and Methods) and tested a range of values of D, with the range chosen to ensure that the number of cells predicted to be multipotent by PBA would lie within bounds established in the literature. All results that follow hold over the physiological range of PBA parameter values (SI Appendix, Fig. S6).

Applied to single-cell measurements, for the range of fitting parameters, PBA estimated seven fate probabilities for each cell, defined formally as the probabilities that a trajectory initiated at each cell would terminate among the most mature cells in each of the seven lineages (Materials and Methods). We compared PBA results to fate probabilities reported for subsets of the HPC hierarchy, which have been previously defined by cell surface marker expression, and transcriptionally profiled using microarrays. To carry out the comparison, we identified the cells in our data that were most similar to each subset using their published microarray profiles (Fig. 5B, red dots), and we then computed the average PBA-predicted fate probabilities across cells in each subset. Remarkably, for a panel of 12 progenitor cell populations from six previous papers (31–36) (SI Appendix, Table S2) the PBA-predicted fate outcomes (Fig. 5B, bar charts) closely matched fate probabilities measured in functional assays (defined as the proportion of clonogenic colonies containing a given terminal cell type; SI Appendix, Fig. S5). The main qualitative disagreement between PBA predictions and experiment was in the behavior of Lin−Sca1−Kit+IL7R−FcgRlowCD34− HPCs, previously defined as megakaryocyte-erythroid precursors (31). Our prediction was that these cells should lack megakaryocyte potential, which is indeed consistent with recent studies (27, 29, 37). Excluding these cells, our predicted fate probabilities matched experimental data with correlation $r = 0.91$ (Fig. 5C). In another study (16), we test several novel predictions in hematopoiesis emerging from PBA.

PBA Predictions of Fate Bias in Hematopoiesis Reconcile Past Experiments.

To test PBA on experimental data from real biological systems, we made use of single-cell gene expression measurements of 3,803 adult mouse HPCs from another study by our groups (ref. 16; data at Gene Expression Omnibus, accession no. GSE89754).
Discussion

In developing PBA, we hoped that an algorithm with clear assumptions would help to clarify the ways in which data analysis might mislead us about the underlying biology. More practically, we hoped that the algorithm would suggest how to best design experiments to extract dynamic information from static measurements, and how to visualize single-cell data to preserve aspects of the true dynamics. We discuss a number of points that follow from our analysis, along with a note about the technical underpinnings of PBA.

Fig. 5. Population balance analysis reproduces known fate probabilities of hematopoietic progenitor cell (HPC) subpopulations from single-cell data. (A) Single-cell profiles of 3,803 Kit+ HPCs reveal a continuum of gene expression states that pinches off at different points to form seven downstream lineages. Cells in this map are colored by marker gene expression and are laid out as a k-nearest-neighbor (knn) graph using SPRING, an interactive force-directed layout software. (B) PBA is applied to HPCs, and the predicted fate probabilities (blue bars) are compared with those observed experimentally (red bars) for reported HPC subpopulations (red dots on gray HPC map; identified using transcriptional similarity to existing microarray profiles for each reported subpopulation). Cell fates predicted by PBA but not measured experimentally are shaded gray. Error bars represent 90% confidence intervals across 120 parameter combinations for the PBA pipeline. (C) Summary of comparisons made in B; green points, in vivo measurements; yellow points, in vitro measurements.
Experimental Design for Trajectory Reconstruction from Static Snapshot Measurements. We have shown that accurate dynamic inference requires knowledge of the density of cells in high-dimensional state space, as well as the rates of cell entry and exit across the density. These requirements immediately suggest a set of principles for experimental design to optimize dynamic inference. First, to minimize distortions in the cell density in gene expression space, it is useful to profile a single, broad population, and to avoid merging data from multiple subpopulations fractionated in advance. Where possible, one should consider testing for uniform cell-sampling probability across states. Second, if cells of interest are sorted before analysis, it is best to minimize the number of sorting gates and enrichment steps, since each introduces an additional term to the entry/exit rates and subsequently a risk of distortion to the inferred dynamics. The HPC dataset analyzed in this paper was well suited for trajectory reconstruction because it consisted of a single population, enriched using a single marker (Kit). This contrasts with previous scRNA-seq datasets of hematopoietic progenitors that included a composite of many subpopulations (38) or used complex FACS gates to exclude early progenitors (29).

How PBA Could Go Wrong. To constrain a unique solution for trajectory reconstruction, PBA makes several strong assumptions, such as memoryless dynamics with respect to measured states, the absence of oscillations in gene expression space, and an adequately “large” number of sampled cells.

Oscillations. In SI Appendix, Fig. S3, we show that implanting oscillations into the bistable dynamical system shown in Fig. 3 does not significantly affect prediction accuracy. On the other hand, when we tested PBA on a GRN whose main fate decision-making circuit is driven by oscillations (shown in Fig. 4), accuracy declined. In cases where oscillatory dynamics strongly influence cell fate (e.g., refs. 39 and 40), single-cell snapshot data could therefore be misleading, and methods that infer dynamics from continua of cell states, such as PBA, may be ill suited. However, the simulation results suggest that oscillations may be somewhat benign unless they are the primary driver of cell fate decision making. The agreement of prediction to fate commitment assays when we applied PBA to single-cell profiles of HPCs suggests that, despite some sensitivity to assumptions, accurate inference is possible for complex differentiation systems.

Memory. In general, the extent to which cell trajectories are defined by the current state of each cell (i.e., Markovian) is unclear. Non-Markovian dynamics could arise from “hidden variables,” defined as stable properties of cell state that are not observed by scRNA-seq but still impact a cell’s behavior over time. Hidden variables could include chromatin state, posttranslational modifications, cellular localization of proteins, metabolic state, and cellular microenvironment. It is also possible that these properties percolate to some aspect of cell state that is observed, for example, effecting a change in the expression of at least one gene measured by RNA-seq. By altering the observed state, such variables would thus not be hidden. For example, chromatin state exists in constant dialogue with transcriptional state and could be well reflected in mRNA content.

Statistical error. The exact convergence of PBA is proved in the limit of high dimension and many cells, but it may be difficult to discern whether it is statistically well powered for any given dataset. Calculating statistical power is hampered by a lack of formal convergence results for the graph operator at the heart of PBA (25) and by the fact that the actual outputs of PBA (e.g., fate probabilities) are complex functions of this operator. Since a knn graph is not the only possible construction that could be considered, it is possible that other graph-construction approaches may converge faster and would be preferred for particular densities $c(x)$. In practice, statistical power can be estimated through bootstrapping, for example, by repeating the analysis for downsampled datasets or scanning over in parameters, including the number of neighbors, k.

Normalization, Principal-Components Analysis, and Other Coordinate Transformations. In this study, we described a framework for modeling the movement of cells in a space of gene expression, the units of which might be considered to be (dimensionless) counts of individual molecules. How then should one think about routine transformations of gene expression coordinates performed during practical low-level processing of single-cell expression data, such as transformation into logarithmic space, or dimensionality reduction by principal-components analysis? Here, the asymptotic analysis of PBA makes clear that coordinate transformations may not be important when cells are densely sampled, as they should leave the empirical single-cell graph topology unchanged. The equations of PBA are indeed invariant to coordinate transformations, with the exception of the diffusion operator, which is isotropic and spatially homogeneous but may not remain so upon coordinate system transformation. Since our assumption of isotropic and invariant diffusion is already an approximation, it does not support a priori one coordinate system over another. For small and noisy datasets, the choice of coordinate system could affect conclusions, however, and it is probably best to use the coordinate system that provides the richest view of single-cell population structure, or that agrees most with known biology.

A related question is whether technical noise in gene expression measurements can be distinguished from biological effects. For scRNA-seq methods that use techniques such as linear amplification and unique molecular identifiers, technical noise can mostly be attributed to undersampling of the mRNAs in a cell, and therefore follows a predictable Poisson distribution determined by the underlying gene expression and technical

Potential landscapes only arise from GRNs with symmetric interactions

Fig. 6. Potential landscapes arise from symmetric GRNs. (A) Inferences about the deterministic component of average cell velocities, \dot{x}, can be interpreted as statements about an underlying gene regulatory network (GRN), with \dot{x} giving the sensitivity of the dynamics of gene i to the expression level of gene j. (B) The existence of a potential landscape-driven dynamics implies that the underlying GRN has strictly symmetric interactions, which allows for some common gene regulatory motifs but rules out many others.
between genes has an equal and opposite
equation in high dimensions. This computation relies on a 2011
result in spectral theory by Ting et al. (25) that describes
the limiting behavior of k-nearest-neighbor graph Laplacians on
sampled point clouds. Interestingly, several recent studies (8, 15,
43) have developed k-nearest neighbor graph-based representa-
tions of single-cell data, and others have suggested embedding
cells in diffusion maps (24, 44) on the basis of other similarity
kernels. It has been unclear, until now, how to evaluate which of
these different methods provides the most useful description of
cell dynamics. Our technical results (SI Appendix, Theorems 1–4
in SI Appendix, Theory Supplement) confirm that certain graph
representations provide an asymptotically exact description of the
cell state manifold on which dynamics unfold, suggesting them to
be useful techniques for visualizing single-cell datasets. Therefore,
PBA formally links dynamical modeling to choices of single-cell
data visualization.

Materials and Methods
A formal derivation of PBA is provided with PBA pseudocode in SI Appendix, Theory Supplement. A PBA implementation in Python is made available at https://github.com/AllonKleinLab/PBA and was implemented as described in SI Appendix, SI Methods, section 1. PBA was then applied to simulated diffusion-drift processes, simulated GRNs, and to empirical data on HPCs: numerical simulations of diffusion-drift processes are detailed in SI Appendix, SI Methods, section 2; PBA application to these simulations in SI Ap-
pendix, SI Methods, section 3; the effect of gene oscillations on PBA predictions in SI Appendix, SI Methods, section 4; GRN simulations and cor-
responding applications of PBA are detailed in SI Appendix, SI Methods, section 5. For application to bone marrow data, data processing and
normalization of scRNA-seq data were carried out as described in SI Appendix, SI Methods, section 5; and determination of the PBA parameters R and D for empirical data was carried out as described in SI Appendix, SI Methods, sections 7 and 8. Comparisons of PBA-predicted fate probabilities to pub-
lished datasets were carried out as described in SI Appendix, SI Methods, section 9.

ACKNOWLEDGMENTS. We thank Kyogo Kawaguchi, Andreas Hilfinger, Jeremy Gunawardena, Johan Paulsson, and Rebecca Ward for their helpful feedback and comments. This work was funded by a Burroughs Wellcome Fund Career Awards at the Scientific Interface award and an Edward J. Mallinckrodt Foundation grant (to A.M.K.), and by Leukemia and Lymphoma Society Scholar Award 1728-13 and Grants R01DK100915 and R01099281 (to M.S.). S.W. and C.W. are supported by NIH Training Grant 5T32GM080177-07.

How Should We Visualize Single-Cell Data? At its core, the PBA algorithm performs dynamic inference by solving a diffusion-drift
equation in high dimensions. This computation relies on a 2011
result in spectral theory by Ting et al. (25) that describes
the limiting behavior of k-nearest-neighbor graph Laplacians on
sampled point clouds. Interestingly, several recent studies (8, 15,
43) have developed k-nearest neighbor graph-based representa-
tions of single-cell data, and others have suggested embedding
cells in diffusion maps (24, 44) on the basis of other similarity
kernels. It has been unclear, until now, how to evaluate which of
these different methods provides the most useful description of
cell dynamics. Our technical results (SI Appendix, Theorems 1–4
in SI Appendix, Theory Supplement) confirm that certain graph
representations provide an asymptotically exact description of the
cell state manifold on which dynamics unfold, suggesting them to
be useful techniques for visualizing single-cell datasets. Therefore,
PBA formally links dynamical modeling to choices of single-cell
data visualization.

Materials and Methods
A formal derivation of PBA is provided with PBA pseudocode in SI Appendix, Theory Supplement. A PBA implementation in Python is made available at https://github.com/AllonKleinLab/PBA and was implemented as described in SI Appendix, SI Methods, section 1. PBA was then applied to simulated diffusion-drift processes, simulated GRNs, and to empirical data on HPCs: numerical simulations of diffusion-drift processes are detailed in SI Appendix, SI Methods, section 2; PBA application to these simulations in SI Ap-
pendix, SI Methods, section 3; the effect of gene oscillations on PBA predictions in SI Appendix, SI Methods, section 4; GRN simulations and cor-
responding applications of PBA are detailed in SI Appendix, SI Methods, section 5. For application to bone marrow data, data processing and
normalization of scRNA-seq data were carried out as described in SI Appendix, SI Methods, section 5; and determination of the PBA parameters R and D for empirical data was carried out as described in SI Appendix, SI Methods, sections 7 and 8. Comparisons of PBA-predicted fate probabilities to pub-
lished datasets were carried out as described in SI Appendix, SI Methods, section 9.

ACKNOWLEDGMENTS. We thank Kyogo Kawaguchi, Andreas Hilfinger, Jeremy Gunawardena, Johan Paulsson, and Rebecca Ward for their helpful feedback and comments. This work was funded by a Burroughs Wellcome Fund Career Awards at the Scientific Interface award and an Edward J. Mallinckrodt Foundation grant (to A.M.K.), and by Leukemia and Lymphoma Society Scholar Award 1728-13 and Grants R01DK100915 and R01099281 (to M.S.). S.W. and C.W. are supported by NIH Training Grant 5T32GM080177-07.

How Should We Visualize Single-Cell Data? At its core, the PBA algorithm performs dynamic inference by solving a diffusion-drift
equation in high dimensions. This computation relies on a 2011
result in spectral theory by Ting et al. (25) that describes
the limiting behavior of k-nearest-neighbor graph Laplacians on
sampled point clouds. Interestingly, several recent studies (8, 15,
43) have developed k-nearest neighbor graph-based representa-
tions of single-cell data, and others have suggested embedding
cells in diffusion maps (24, 44) on the basis of other similarity
kernels. It has been unclear, until now, how to evaluate which of
these different methods provides the most useful description of
cell dynamics. Our technical results (SI Appendix, Theorems 1–4
in SI Appendix, Theory Supplement) confirm that certain graph
representations provide an asymptotically exact description of the
cell state manifold on which dynamics unfold, suggesting them to
be useful techniques for visualizing single-cell datasets. Therefore,
PBA formally links dynamical modeling to choices of single-cell
data visualization.

Materials and Methods
A formal derivation of PBA is provided with PBA pseudocode in SI Appendix, Theory Supplement. A PBA implementation in Python is made available at https://github.com/AllonKleinLab/PBA and was implemented as described in SI Appendix, SI Methods, section 1. PBA was then applied to simulated diffusion-drift processes, simulated GRNs, and to empirical data on HPCs: numerical simulations of diffusion-drift processes are detailed in SI Appendix, SI Methods, section 2; PBA application to these simulations in SI Ap-
pendix, SI Methods, section 3; the effect of gene oscillations on PBA predictions in SI Appendix, SI Methods, section 4; GRN simulations and cor-
responding applications of PBA are detailed in SI Appendix, SI Methods, section 5. For application to bone marrow data, data processing and
normalization of scRNA-seq data were carried out as described in SI Appendix, SI Methods, section 5; and determination of the PBA parameters R and D for empirical data was carried out as described in SI Appendix, SI Methods, sections 7 and 8. Comparisons of PBA-predicted fate probabilities to pub-
lished datasets were carried out as described in SI Appendix, SI Methods, section 9.

ACKNOWLEDGMENTS. We thank Kyogo Kawaguchi, Andreas Hilfinger, Jeremy Gunawardena, Johan Paulsson, and Rebecca Ward for their helpful feedback and comments. This work was funded by a Burroughs Wellcome Fund Career Awards at the Scientific Interface award and an Edward J. Mallinckrodt Foundation grant (to A.M.K.), and by Leukemia and Lymphoma Society Scholar Award 1728-13 and Grants R01DK100915 and R01099281 (to M.S.). S.W. and C.W. are supported by NIH Training Grant 5T32GM080177-07.

How Should We Visualize Single-Cell Data? At its core, the PBA algorithm performs dynamic inference by solving a diffusion-drift
equation in high dimensions. This computation relies on a 2011
result in spectral theory by Ting et al. (25) that describes
the limiting behavior of k-nearest-neighbor graph Laplacians on
sampled point clouds. Interestingly, several recent studies (8, 15,
43) have developed k-nearest neighbor graph-based representa-
tions of single-cell data, and others have suggested embedding
cells in diffusion maps (24, 44) on the basis of other similarity
kernels. It has been unclear, until now, how to evaluate which of
these different methods provides the most useful description of
cell dynamics. Our technical results (SI Appendix, Theorems 1–4
in SI Appendix, Theory Supplement) confirm that certain graph
representations provide an asymptotically exact description of the
cell state manifold on which dynamics unfold, suggesting them to
be useful techniques for visualizing single-cell datasets. Therefore,
PBA formally links dynamical modeling to choices of single-cell
data visualization.

Materials and Methods
A formal derivation of PBA is provided with PBA pseudocode in SI Appendix, Theory Supplement. A PBA implementation in Python is made available at https://github.com/AllonKleinLab/PBA and was implemented as described in SI Appendix, SI Methods, section 1. PBA was then applied to simulated diffusion-drift processes, simulated GRNs, and to empirical data on HPCs: numerical simulations of diffusion-drift processes are detailed in SI Appendix, SI Methods, section 2; PBA application to these simulations in SI Ap-
pendix, SI Methods, section 3; the effect of gene oscillations on PBA predictions in SI Appendix, SI Methods, section 4; GRN simulations and cor-
responding applications of PBA are detailed in SI Appendix, SI Methods, section 5. For application to bone marrow data, data processing and
normalization of scRNA-seq data were carried out as described in SI Appendix, SI Methods, section 5; and determination of the PBA parameters R and D for empirical data was carried out as described in SI Appendix, SI Methods, sections 7 and 8. Comparisons of PBA-predicted fate probabilities to pub-
lished datasets were carried out as described in SI Appendix, SI Methods, section 9.

ACKNOWLEDGMENTS. We thank Kyogo Kawaguchi, Andreas Hilfinger, Jeremy Gunawardena, Johan Paulsson, and Rebecca Ward for their helpful feedback and comments. This work was funded by a Burroughs Wellcome Fund Career Awards at the Scientific Interface award and an Edward J. Mallinckrodt Foundation grant (to A.M.K.), and by Leukemia and Lymphoma Society Scholar Award 1728-13 and Grants R01DK100915 and R01099281 (to M.S.). S.W. and C.W. are supported by NIH Training Grant 5T32GM080177-07.

