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TABLE 1 | Platelet purinergic receptors assessed by RNA sequencing of healthy human or murine platelets.

Purinergic
receptor

Nucleotide/
nucleoside

G-Protein
coupling

Effect on
platelet
cAMP

Effect on
platelet
calcium

Large human
platelets

(Clancy et al.,
2017) (FPKM)

Small human
platelets

(Clancy et al.,
2017) (FPKM)

All human
platelets
(Rowley

et al., 2011)
(RPKM)

All murine
platelets
(Rowley

et al., 2011)
(RPKM)

P1 Purinergic receptors

A1AR Ado Gα i – – 0 0 0.05 0

A3AR Ado Gα i – – 0 1.80 0.08 1.86

A2aAR Ado Gαs ↑ – 0 2.23 31.80 0.36

A2bAR Ado Gαs ↑ – 0 0 5.37 0

P2 Purinergic receptors

P2X1 ATP Ion-gated
channel

– ↑ 4.21 1.55 90.79 630.06

P2Y1 ADP Gαq – ↑ 0 0 12.53 30.56

P2Y12 ADP Gα i ↓ – 13.19 1.77 73.75 1044.24

The two studies summarized here included healthy human donors and isolated platelets by sorting [large and small platelets (Clancy et al., 2017)] or by centrifugation
followed by leukocyte depletion (Rowley et al., 2011). The human cohorts, methods of platelet isolation, and RNA extractions are described in Rowley et al. (2011) and
Clancy et al. (2017). Mice sequencing data represent RNA transcripts in platelets from male and female C57BL/6 murine models (Rowley et al., 2011). Of note: The
data summarized here are derived from platelets from two human male donors (large and small platelets) and from one male and one female donor (data in “all platelet”
column). Data validation is required in various individuals of different ages and sexes in order to establish a broader distribution profile of purinergic receptors. cAMP,
cyclic AMP; FPKM, fragments per kilobase of transcript per million mapped reads; RPKM, reads per kilobase of transcript per million mapped reads; Ado, Adenosine;
ATP, adenosine triphosphate; ADP, adenosine diphosphate.

PURINERGIC RECEPTORS AND
PLATELET HETEROGENEITY

Circulating platelets are anucleate cell fragments originating from
their bone marrow precursor, the MK. Human platelets are
not a homogeneous population, but vary in size (2–5 µm) and
content. RNA sequencing shows that platelets may contain as
many as 9500 different transcripts (Rowley et al., 2011; Bray
et al., 2013; Clancy et al., 2017), most of which are prepackaged
from the MK. Additionally, platelets uptake transcripts and
transcript fragments from circulating cells and the endothelium
(Clancy et al., 2017). The heterogeneous size of platelets (Thon
and Italiano, 2012) is hypothesized to be a result of platelets
losing their contents into the circulation as they age; hence, large
platelets are also referred to as “immature” and small platelets
are referred to as “mature” (Penington and Streatfield, 1975;
Penington et al., 1976a,b). Alternatively, in the late 1970s, it was
proposed that platelets vary in density and structure depending
on ploidy of the MK from which platelets are originating. Low
ploidy MKs produce less hemostatically active platelets while
high ploidy MKs produce hemostatically functional platelets
(Penington and Streatfield, 1975; Penington et al., 1976a,b).
Direct experimental evidence is limited for each of these
hypotheses and it is possible that both of these explanations are
valid. Studies have shown that large (immature) platelets are
highly hemostatically active while small (mature) platelets are less
hemostatically functional (Thompson et al., 1984; Guthikonda
et al., 2008). It is noteworthy that the predominant size of platelets
in a healthy individual lies somewhere in between (Clancy et al.,
2017). In patients with acute coronary syndrome (developing
early stent thrombosis) there is a baseline platelet size increase
predicting platelet reactivity (Huczek et al., 2010). A population
study performed with patients after non-cardiac surgery has

provided evidence that large platelets may be a novel biomarker
for adverse cardiovascular events (Anetsberger et al., 2017).

Sequencing studies have addressed the overall platelet mRNA
transcriptome of the entire platelet population (Rowley et al.,
2011) and that of small and large platelets sorted from the
blood of healthy human donors (Clancy et al., 2017). Of
note, in platelets there is a reported mismatch between mRNA
and protein expression (Burkhart et al., 2012) that can be
partially justified by the ability of platelets to uptake mRNA
transcripts (Clancy et al., 2017). However, in cases when both
proteins and transcripts are detectable in platelets, there is
strong evidence that mRNA and the corresponding protein
expression are correlated (Rowley and Weyrich, 2013). Large
platelets (sorted as 10% of the entire platelet population) have
transcripts associated with classical platelet functions, such as
platelet activation/aggregation, hemostasis, and wound healing
(Clancy et al., 2017). Small platelets show a distinct and more
diverse platelet transcriptome as compared to large platelets,
and those transcripts are more involved in platelet-immune cell
interactions and apoptosis (Clancy et al., 2017). For instance,
small platelets contain distinct transcripts that are associated
with activation, proliferation and differentiation of T- and B-
lymphocytes (Clancy et al., 2017). Consistent with the hemostatic
role of large platelets and their contribution to aggregation,
transcripts for the P2 purinergic receptors, P2Y12 and P2X1,
seem to be present at higher levels in this platelet population
(Table 1). mRNA from the inhibitory P1 receptor A2aAR
is distinctly located in small platelets, similar to P1 A3AR
(Table 1). The function of platelet-A3AR is unclear. On the other
hand, sequencing of the entire platelet population, that includes
platelets of all sizes, shows the presence of all four P1 purinergic
receptors with the inhibitory A2aAR and A2bAR receptors in
the highest proportions (Table 1). Interestingly, P2Y1 is detected
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only in the mixed, non-sorted platelet population, but not in
the large or small platelet subpopulations. There is a possibility
that the P2Y1 receptor is present on platelets which compose
the rest of the platelet population that was not included in the
large/small platelet sorting, or P2Y1 was not detected due to low
expression levels in each group or in these particular donors.
The two sequencing studies also agree on transcripts for other
P2 purinergic receptors such as P2X5, P2Y10, and P2Y13 that
have not been previously reported to be present in platelets or to
have a functional role. Distinct signatures of purinergic receptors
in different platelet subpopulations suggests that the architecture
of the hemostatic plug may involve platelets of heterogeneous
size and function. Large platelets may be predominantly located
at the core while small platelets may be located (together with

the large) in the shell (Figure 1). Since small platelets have
more immune transcripts and are less hemostatically active,
their presence may allow for direct interactions with immune
cells inside of the shell of the thrombus. The mechanism
by which MKs mediate this diverse distribution of distinct
transcripts in platelets according to size and function is still
controversial.

CONCLUSION AND FUTURE
DIRECTIONS

The distinct distribution of purinergic receptor types across
different platelet sizes may provide a new approach to

FIGURE 1 | Distribution of purinergic receptor transcripts with known function in the entire platelet population vs. large and small platelets. Platelets are a
heterogeneous population of various sizes. Large platelets are highly hemostatically active while small ones are known to be much less active in hemostasis
(Thompson et al., 1984; Guthikonda et al., 2008). RNA sequencing studies shown in Table 1 suggest differential distribution of purinergic receptors across platelets
of different sizes, providing a provocative hypothesis related to potential functional differences in hemostasis when activated by adenine nucleosides and nucleotides,
depending on platelet size. Future protein studies will be needed to test this contention. P2X1 is a ligand-gated ion channel that requires binding of ATP for influx of
calcium; the rest of the P2 and P1 receptors in platelets are G-protein-coupled receptors. Of note, with the sensitivity of the above method of detection, P2Y1 or
A2bAR transcripts are not found in the small or large platelets; however, these receptors for ADP or adenosine (respectively) are detected in the entire platelet
population, suggesting a differential expression level in different platelet populations, possibly necessary for an extra layer of control over platelet function. These
findings further encourage future examination of the receptors at protein and functional levels in different platelet populations. It is not known, however, if all of the
purinergic receptors depicted in the top (or bottom) panel can be expressed on the same platelet, if there is differential signature of co-expression or if there is a mix
of both of these possibilities. Ado, adenosine; ATP, adenosine triphosphate; ADP, adenosine diphosphate; cAMP, cyclic adenosine monophosphate; AC, adenylate
cyclase.
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purinergic signaling manipulation in order to establish effective
antithrombotic therapies. The platelet mRNA profile may have
a broader impact on overall platelet function, and proposes
an explanation of previously identified functional differences
between small and large platelets, with increased mean platelet
volume being historically associated with increased hemostatic
potential. It remains unclear, however, if within the sophisticated
architecture of the thrombus there is a distinct arrangement of
platelets with differential expression of purinergic or immune
receptors. Perhaps, big platelets are primarily responsible for
the formation of the core of the hemostatic plug since they
predominantly contain transcripts related to the hemostatic
function of platelets, such as the P2 receptors. Small platelets
in turn contain more immune transcripts. These cells may
need to communicate with both aggregated platelets and
leukocytes and may be located in the porous shell of the
hemostatic plaque. In that sense, it would be necessary for
small platelets to be less prone to aggregation and hence
express only purinergic receptors for shape change (P2X1) and
reduction of aggregation (A2ARs). It is also not completely
clear if platelet heterogeneity increases as a function of
pathological conditions, thereby changing the balance between
P2/P1 receptors and limiting the beneficial effect of current
therapies.

It would be important to test these receptors at protein and
agonist functional levels in the different platelet subpopulations.
Additionally, future studies are necessary to elucidate the

complex cross-communication of purinergic receptors in the
hemostatic plug as a function of platelet heterogeneity and
to determine if there is a functional presence of the other
ADP/ATP receptors that were detected at mRNA level. These
future findings may provide additional pharmacological targets
in the management of thrombus growth and stability in patients.
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