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Abstract

The development of modular constructs that include antigenic regions targeted by protective immune responses is an
attractive approach for subunit vaccine development. However, a main concern of using these vaccine platforms is how to
preserve the antigenic identity of conformational B cell epitopes. In the present study we evaluated naturally acquired
antibody responses to a chimeric protein engineered to contain a previously defined immunodominant domain of the
Plasmodium vivax reticulocyte binding protein-1 located between amino acid positions K435-I777. The construct also includes
three regions of the cognate protein (F571-D587, I1745-S1786 and L2235-E2263) predicted to contain MHC class II promiscuous T
cell epitopes. Plasma samples from 253 naturally exposed individuals were tested against this chimeric protein named
PvRMC-RBP1 and a control protein that includes the native sequence PvRBP123-751 in comparative experiments to study the
frequency of total IgG and IgG subclass reactivity. HLA-DRB1 and HLA-DQB1 allelic groups were typed by PCR-SSO to
evaluate the association between major HLA class II alleles and antibody responses. We found IgG antibodies that
recognized the chimeric PvRMC-RBP1 and the PvRBP123-751 in 47.1% and 60% of the studied population, respectively.
Moreover, the reactivity index against both proteins were comparable and associated with time of exposure (p,0.0001) and
number of previous malaria episodes (p,0.005). IgG subclass profile showed a predominance of cytophilic IgG1 over other
subclasses against both proteins tested. Collectively these studies suggest that the chimeric PvRMC-RBP1 protein retained
antigenic determinants in the PvRBP1435–777 native sequence. Although 52.9% of the population did not present detectable
titers of antibodies to PvRMC-RBP1, genetic restriction to this chimeric protein does not seem to occur, since no association
was observed between the HLA-DRB1* or HLA-DQB1* alleles and the antibody responses. This experimental evidence
strongly suggests that the identity of the conformational B cell epitopes is preserved in the chimeric protein.
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Introduction

Malaria is the most relevant parasitic disease and a leading

cause of mortality in developing countries. The World Health

Organization estimates that malaria was responsible for 207

million clinical cases and 627,000 deaths in 2012 [1]. The

enormous progress in the implementation of malaria control

measures accounts for a 45% reduction in mortality rates in the

past 12 years due to their impact on Plasmodium falciparum
malaria. These measures include long-lasting insecticidal nets
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(LLIN), indoor residual spraying programs (IRS) and artemisin-

based combination therapy (ACT) [1]. Unfortunately, anti-vector

measures do not offer protection against clinical relapses of P.
vivax infections caused by activation of hypnozoites that occur

weeks or months after primary infection. In the light of the

epidemiological evidence of high morbidity, parasite drug

resistance, high prevalence of severe malaria and mortality, the

old concept that P. vivax infections are clinically ‘‘benign’’ is not

currently accepted. It is therefore imperative to develop novel

strategies for malaria control including vaccines.

The unique biological features of P. vivax particularly the

production of hypnozoites and invasion of reticulocytes have

delayed the development of experimental systems to understand

parasite-host interactions. Progress toward the development of an

effective vaccine has been therefore mainly focused on character-

ization of proteins orthologous to P. falciparum. Using this

approach, vaccine candidates that include the pre-erythrocytic P.
vivax circumsporozoite protein (CSP), and the sexual stage

25 kDa protein (Pvs25) have been unsuccessfully tested in clinical

trials [2–7]. Based on the evidence that P. vivax in contrast to P.
falciparum uses the Duffy binding protein (DBP) as a critical

invasion ligand, this protein has been broadly studied as a vaccine

candidate. DBP is localized within the merozoite’s apical

microneme organelles, is a member of the DBP-like erythrocyte

binding protein (DBP-EBP) family and is a target of neutralizing

antibodies involved in the inhibition of erythrocyte invasion [8].

Data derived from studies in endemic areas of malaria have shown

that in natural conditions exposed individuals can develop broadly

reactive antibodies that increase with age [9]. However, recent

evidence indicates that P. vivax can infect Duffy blood-group

negative individuals [10]. The merozoite proteins PvMSP-3 [11–

14] and PvMSP-9 [13,15,16] and the apical pole protein

Reticulocyte Binding Protein-1 (PvRBP1) have been also consid-

ered as potential vaccine candidates against P. vivax malaria.

A less characterized vaccine candidate is the P. vivax
Reticulocyte Binding Protein-1 (PvRBP1) that forms a complex

with PvRBP2 at the apical pole of the merozoite [17,18]. It has

been proposed that PvRBPs participate in a cascade of events

involved in invasion by specific interaction with reticulocytes and

subsequent release of the DBP essential for the junction formation

step required for merozoite entry into the target host cell [19].

PvRBP1 is a relatively large Type I integral membrane protein

that spans over 2,800 amino acids. The amino terminal region of

the protein contains a cluster of polymorphic residues suggesting

immune selection pressure [20]. The specificity of naturally

acquired antibodies reactive against PvRBP1 has been reported

in three different malaria exposed populations from the Brazilian

Amazon [21]. High prevalence of naturally acquired antibodies

against a region that spans 976 amino acids (PvRBP1431-1407) was

reported in this study [21]. Interestingly, the fragment representing

the amino terminal sequence PvRBP1435-777 within this fragment

contains the most polymorphic region of the protein suggesting

that it could be the target of functional antibodies [21].

Intriguingly, the prevalence of IgG antibodies against PvRBP1

reported by Tran et al. was lower than that observed with other P.
vivax recombinant proteins suggesting differences in malaria

transmission or differences in host population genetics. This can be

consistent with the finding that Plasmodium polymorphic proteins

are poorly immunogenic or may elicit antibody responses that are

short-lived in the absence of frequent natural boosting [22]. We

have reported that the genetic linkage of cognate T cell epitopes to

poorly immunogenic functional domains of Plasmodium proteins

can significantly improve their immunogenicity [23,24]. Here we

report the design of a chimeric PvRBP1 synthetic gene, codon

optimized for expression in E. coli, that encodes a protein that

includes three predicted putative promiscuous T cell epitopes,

derived from different regions of the native PvRBP1 protein,

arrayed in tandem and genetically fused to the immunodominant

PvRBP1435-777 region. Since direct comparisons of the natural

antibody response to these antigens provide valuable insight into

how such a vaccine might work, we aimed to evaluate if the

chimeric protein named PvRMC-RBP1 maintains the structural

features that identified the native PvRBP1435-777 region as a target

of naturally acquired antibodies. Comparative seroepidemiological

studies were done using PvRMC-RBP1, a non-chimeric control

protein PvRBP123-751 and a panel of plasma samples from

naturally exposed individuals with diverse HLA alleles.

Material and Methods

Study area and volunteers
The study involved 253 different individuals from communities

in the malaria endemic region of Rondonia, a state in the western

Amazon region of Brazil, where in the last five years P. vivax
malaria accounted for more than 70% of all malaria cases.

Samples and survey data were collected during the dry months of

June-August of 2004 (n = 202) and 2007 (n = 51), coinciding with

the period of increased malaria transmission in this region. The

majority of the studied population consists of rain forest natives

who have resided in the malaria-endemic region for over 25 years

or transmigrants from several non-endemic areas of Brazil that

have lived in Rondonia for 10 years or more. In addition, we have

included as a control 30 individuals living in non-endemic regions

of Brazil (Rio de Janeiro) with no history of malaria and who never

resided in endemic areas. The study was reviewed and approved

by the Oswaldo Cruz Foundation Ethical Committee and the

National Ethical Committee of Brazil.

Epidemiological survey
During the active case detection, subjects were informed about

the forms of malaria transmission, preventive measures and the

research project. Individuals who agreed to participate in our

study signed an informed consent document formalizing their

participation as volunteers. All volunteers were interviewed to

gather personal and epidemiological data with questions related to

demographics, time of residence in the endemic area, personal and

family histories of malaria, use of malaria prophylaxis, presence of

malaria symptoms, and personal knowledge of malaria. Survey

data was entered into a database created with Epi Info 2002

(Centers for Disease Control and Prevention, Atlanta, GA).

Human blood samples and malaria diagnosis
Blood samples (10 ml) were collected in heparinized tubes to

obtain plasma used in the study. Plasma from all blood samples

was separated, stored at 220uC and shipped on dry ice to the

Immunoparasitology Laboratory, IOC, Fiocruz. Malaria diagnosis

was made on thick and thin blood smears stained with Giemsa

(Sigma Chemical Co., St. Louis, USA). Parasitemia for smear

positive donors was determined by counting the number of

parasites (all species and stages present) per 200 leukocytes in the

thick smear. All smear-positive donors were subsequently treated

for P. vivax or P. falciparum per the regimen recommended by

the Brazilian Ministry of Health.

Recombinant proteins
A 1437 bp synthetic chimeric RMC-Pvrbp1 gene was com-

mercially produced by Geneart (Thermo Fisher, Regensburg,

Germany) using proprietary technology platforms. The codon

Naturally Acquired IgG Antibodies against Chimeric PvRBP1
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Figure 1. Schematic representation (A) of the recombinant proteins reported here. The control protein PvRBP123-751 was expressed as an
amino terminal thioredoxin (TXR)/6-histidine double fusion protein. PvRMC-RBP1 recombinant protein includes the promiscuous T cell epitopes
FYLMQIRKINTEKTKID, IFIKLKLKEYDMTGDLKNYGVKMNEIHGEFTKSYNLIETHLS and LYLFHQNSDISIVEGGVQNMLALYDKLNE interspaced with GPGPG
spacers and fused to the P. vivax RBP1 region K435-I777 Belem strain. Six copies of a P. falciparum sequence, derived from the repeat region of the
circumsporozoite protein (NANP)6 were included at the C-terminus for biochemical characterization and to provide a secondary tag for protein
purification. PvRMC-RBP1 also includes a C-terminal His tag that was added to the protein via the expression vector. (B) Sequence of the PvRMC-RBP1

Naturally Acquired IgG Antibodies against Chimeric PvRBP1
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usage was adapted to the codon bias of E. coli genes using a

proprietary algorithm (GeneOptimizer). The procedure was

optimized to avoid AT-rich or GC-rich sequence stretches,

internal TATA boxes and repeat sequences and RNA secondary

structures. The optimized gene resulted in a high Codon

Adaptation Index (CAI) value of 0.95 that resulted in high and

stable expression rates in E. coli [25]. The synthetic gene encodes

a chimeric protein based on the P. vivax RBP1 (GenBank:

AAS85750.1), with the topology: MA-F571-D587-GPGPG-I1745-

S1786-GPGPG-L2235-E2263GPGPG-K435-I777-(NANP)6 (Figure 1)

designated as a PvRMC-RBP1. The protein topology is similar

to that reported by us for the development of a chimeric vaccine

construct based on the P. yoelii merozoite surface protein-1 [23].

PvRMC-RBP1 includes three putative promiscuous T cell

epitopes FYLMQIRKINTEKTKID (F571-D587); IFIKLKLK-

EYDMTGDLKNYGVKMNEIHGEFTKSYNLIETHLS (I1745-

S1786) and LYLFHQNSDISIVEGGVQNMLALYDKLNE

(L2235-E2263) arrayed in tandem at the amino terminus. These

regions were predicted to contain promiscuous binding peptide

sequences that can bind to several HLA class II alleles as described

below. Synthetic peptides were used to validate predicted epitopes

as target of T cell recognition (manuscript in preparation).

Validated T cell epitopes were then genetically linked to the P.
vivax RBP1 region K435-I777 Belem strain that overlaps a

previously described immune-dominant fragment [21]. GPGPG

spacers were inserted between the individual promiscuous T cell

epitopes and between L2235-E2263 and the native sequence K435-

I777. Six copies of a P. falciparum sequence, derived from the

repeat region of the circumsporozoite protein (NANP)6, were

included at the carboxyl terminal end for biochemical character-

ization of antigenic integrity and to provide an optional affinity

purification tag. The chimeric Pvrmp1 was excised with NcoI and

SacI restriction enzymes and ligated into a linearized C-terminal

His tag expression vector (pET24d(+), Novagen).

Table 1. Predicted population coverage rate for PvRMC-RBP1 as predicted by IEDB.

Population/Area Coveragea Average hitb PC90c

Amerindian 98.45% 2.82 1.78

Arab 95.03% 2.21 1.23

Asian 98.39% 2.75 1.72

Australian Aborigines 95.66% 2.2 1.26

Austronesian 94.68% 2.07 1.19

Berber 98.71% 2.25 1.53

Black 99.77% 3.86 2.67

Caucasoid 99.63% 3.13 2.16

Hispanic 99.80% 3.47 2.46

Jew 97.93% 2.42 1.49

Kurd 97.12% 2.28 1.38

Melanesian 98.99% 2.8 1.97

Mestizo 99.39% 3.18 2.18

Micronesian 97.29% 2.43 1.45

Mixed 99.56% 3.22 2.23

Mulatto 96.16% 2.05 1.27

Oriental 97.17% 2.54 1.46

Persian 98.17% 2.56 1.6

Polynesian 99.33% 2.97 2.08

Siberian 99.03% 2.91 2.02

Average 98.01% 2.71 1.76

(Standard deviation) (1.56%) (0.48) (0.43)

aProjected population coverage [30].
bAverage number of epitope hits/HLA combinations recognized by the population.
cMinimum number of epitope hits/HLA combinations recognized by 90% of the population.
doi:10.1371/journal.pone.0105828.t001

protein. The amino acid sequence is shown in single letter code. The sequence enclosed in a gray box represents the K435-I777 fragment. The carboxyl
terminal (H)6 tag provided by the vector was not included in the sequence. (C) SDS -PAGE of the purified PvRMC-RBP1, PvRBP123-751 and thioredoxin
proteins expressed in E. coli BL21 (DE3). The panel to the left is a composite of two gels as indicated by the solid line. Coomassie stain after SDS-PAGE
separation, column purified proteins and total bacterial lysate are shown for PvRMC-RBP1 separated on 4–15% gradient gel (lanes 1 and 2) and
PvRBP123-751 separated on a 10% gel (lanes 3 and 4) and column purified thioredoxin separated on a 4–20% gradient gel (lane 5). The molecular
weight markers (BioRad) are indicated. Western blot analysis of the purified PvRMC-RBP1 (lanes 6–8) and PvRBP123-751 (lane 9) incubated with sera
samples from mice immunized with a synthetic peptide representing the T cell epitope L2235-E2263 (lane 6), a synthetic peptide representing the T cell
epitope I1745-S1786 (lane 7) or an anti-6X His tag monoclonal antibody (lanes 8 and 9). No reactivity was observed with sera from mice immunized with
adjuvant alone or with sera from mice immunized with synthetic peptides against the control protein (data not shown).
doi:10.1371/journal.pone.0105828.g001
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A control recombinant PvRBP1 protein, with a C-terminal

region that overlaps the immunodominant domain E23-V751 was

generated by PCR amplification using the P. vivax Belem strain as

a template [21] and the following primers: forward 59GGGAATT-
CAGAAAATGCAGAAGAAGACATAAGGA39 and reverse

59CCACGAATTCTTCTATAATTTAGCAAAAGTTTCTTTG-

GC39 containing EcoRI restriction sites (underlined). The high

fidelity thermostable KOD Thermococcus kodakaraensis KOD1

DNA polymerase system [26] was utilized following the manufac-

turer’s instructions (Novagen, WI). The insert was confirmed by

nucleotide sequencing. The PCR product, kindly provided by Mary

Galinski (Emory University), was subcloned into pET32b (Novagen)

for expression as amino terminal thioredoxin/6-His double fusion

protein. Expression of the PvRMC-RBP1 and the non-chimeric

PvRBP123–751 was performed as described [21,23] by re-transform-

ing the positive clones into E. coli BL21 (DE3) cells (Novagen,

Madison, WI) with kanamycin selection. Protein expression was

induced with 1 mM IPTG for 3 hours, following standard

procedures. The recombinant proteins were purified with a Ni-

NTA affinity column according to the manufacturer’s instructions

(Qiagen, Valencia, CA). Thioredoxin was expressed and purified

using similar procedures and used to determine the background

antibody reactivity of the fusion protein.

To characterize the PvRMC-RBP1 protein, groups of five

female BALB/c mice (8–10 weeks of age; Charles River,

Wilmington, MA) were immunized with synthetic peptides

representing the T cell epitopes I1745-S1786 and L2235-E2263. The

mice were immunized subcutaneously three times 20 days apart

with 50 mg of the individual peptides emulsified in Montanide ISA

51 (Seppic Inc., Fairfield, NJ) as described [27]. After the third

immunization sera samples were collected and used for western

blot analysis (Figure 1C).

Prediction of T cell epitopes
PvRBP-1 regions containing peptide sequences promiscuous for

binding to HLA class II molecules were initially predicted by using

the ProPred algorithm [28]. The IEDB server (http://www.iedb.

org/) was used for subsequent analysis including allele binding

score and population coverage [29]. Predictions were performed

for: 1) Twenty two DRB1*: 01:01; 01:02; 03:01; 03:02; 04:01;

04:02; 04:03; 04:04; 04:05; 07:01; 08:01; 08:02; 09:01; 09:02;

11:01; 11:02; 12:01; 13:01; 13:02; 14:01; 15:01; 15:02. 2) Nine

DQ/DP: HLA-DPA1*01/DPB1*0401; HLA-DPA1*0103/

DPB1*0201; HLA-DPA1*0201/DPB1*0501; HLA-DPA1*0301/

DPB1*0402; HLA-DQA1*0101/DQB1*0501; HLA-DQA1*0102/

DQB1*0602; HLA-DQA1*0301/DQB1*0302; HLA-DQA1*0401/

DQB1*0402; HLA-DQA1*0501/DQB1*0201. 3) Three DRB3*:

HLA-DRB3*0101; HLA-DRB3*0201; HLA-DRB3*0301; 4) One

HLA-DRB4*0101 and 5) One HLA-DRB5*0101. Most predictions

used the consensus algorithm in which scores equal or lower than 10

are considered to bind to the MHC allele interrogated. The fraction

of individuals in human populations responding to PvRMC-RBP1

was calculated by using a computational tool provided by the IEDB

server (http://tools.immuneepitope.org/tools/population/) [30].

This server uses MHC allele frequencies in human populations to

calculate the fraction of individuals that might respond to a given T

cell epitope when presented in the context of the MHC allele

investigated. Briefly, MHC class II peptide binders were predicted in

the PvRMC-RBP1 protein sequence for 22, 10 and 5 major DRB1,

DQ and DRB3/B5 major MHC alleles, respectively. MHC Alleles

predicted to bind sequences in PvRMC-RBP1 were used as ‘‘MHC

restricted allele’’ input and ‘‘all population groups’’ presented in

ethnicity field for output (Table 1).

Antibody assays
Plasma samples from study participants were screened by

ELISA for the presence of naturally acquired antibodies against

the recombinant proteins. Briefly, Maxisorp 96-well plates (Nunc,

Rochester, NY) were coated with 200 ng of the recombinant

protein. After overnight incubation at 4uC, plates were washed

with PBS containing 0.05% Tween 20 (PBS-Tween) and blocked

with PBS-Tween containing 5% non-fat dry milk (PBS-Tween-M)

for 1 hour at 37uC. Individual plasma samples diluted 1:100 in

PBS-Tween-M were added in duplicate wells and the plates

incubated at 37uC for 1 h. After four washes with PBS-Tween,

peroxidase conjugated goat anti-human total IgG (Sigma St.

Louis, MO) diluted by 1:1000 was added and plates were

incubated and washed as described above. Finally o-phenylene-

diamine and hydrogen peroxide were used to reveal bound

antibodies. The absorbance was read at 492 nm using a

Spectramax 250 ELISA reader (Molecular Devices, Sunnyvale,

CA). To determine specific reactivity to the control protein the

averaged OD value to thioredoxin alone was subtracted from the

averaged OD value to the fusion protein. This procedure was not

required for the chimeric PvRMC-RBP1 given that only the His

tag was incorporated into C-terminus of the protein. The results

for total IgG were expressed as reactivity indexes (RI) that were

calculated by dividing the mean optical density of tested samples

by the mean optical density plus 3 standard deviations of 5 non-

exposed controls tested on each plate. Subjects were scored

positive for serum IgG to a particular antigen if the RI was higher

than 1. IgG subclasses were determined in individual responders

by ELISA as described above where the following peroxidase

conjugated monoclonal mouse anti-human antibodies were used:

Mouse Anti-Human IgG1 (hinge)-HRP (clone HP6001, Southern

Biotechnology), Mouse Anti-Human IgG2 (Fc)-HRP (clone

HP6002, Southern Biotechnology), Mouse Anti-Human IgG3

(hinge)-HRP (clone HP6050, Southern Biotechnology), Mouse

Anti-Human IgG4 (Fc)-HRP (clone HP6023, Southern Biotech-

nology), all diluted by 1:1000. Subclass-specific prevalence for

each antigen was determined from OD values using 3 S.D. above

the appropriate mean OD of four non-exposed controls as the cut-

off for positivity.

Absorption treatment ELISA
To ensure that the naturally acquired antibodies detected in

ELISA were directed to PvRMC-RBP1 and not to the (NANP)6
tag used for biochemical characterization, we also performed an

IgG absorption ELISA protocol using a synthetic (NANP)6
peptide. Briefly, flat-bottom plates (NUNC, USA) were coated

overnight with 5 mg/mL of the peptide (NANP)6. After washing

and blocking steps, plasma from 62 randomly selected PvRMC-

RBP1 IgG responders were added to the plates at a 1:100 dilution

and incubated for two hours. After incubation, plasma samples

were transferred to plates coated with PvRMC-RBP1 (200 ng) and

the ELISA was performed as previously described.

HLA Genotyping of PBMC
Genomic DNA was isolated from whole blood drawn in EDTA

by using a mixture of 5 ml buffer G2 (QIAamp DNA Blood Midi

Kit; Qiagen Inc., Chatsworth, CA, USA) and 95 ml proteinase K

(20 mg/ml). After incubation at 50uC for 1 h the DNA was

ethanol precipitated, collected with a glass stick and transferred

into distilled water. DNA concentration and quality was checked

with a NanoDrop ND-1000 spectrometer (Thermo Fisher

Scientific Inc., Waltham, MA, USA). Sequence-specific oligonu-

cleotide probes (SSOPs) and Luminex xMAP technology were

used to determine the HLA-DRB1 and HLA-DQB1 allelic groups
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of the study populations. Briefly, the system is based on probe

arrays bound to color-coded plastic microspheres, and locus-

specific biotinylated primers for HLA-DRB1 and HLA-DQB1 loci

(LABType, One Lambda Inc, Canoga Park, CA, USA).

Biotinylated amplicons were denatured to ssDNA and incubated

with DNA complementary probes immobilized on fluorescent

coded microspheres (beads) followed by incubation with R-

phycoerythrin conjugated to streptavidin. After hybridization,

the samples were analyzed using a Luminex Flow Analyzer. The

HLA Visual 2.0 software (One Lambda, CA) analysis program

deduces the HLA-DRB1 and HLA-DQB1 allelic groups.

Statistical analysis
Analyses were done using Epi Info 2002 (CDC, Atlanta, GA),

Prism 5.0 and Instat (GraphPad Software, San Diego, CA)

according to the required statistical test. Differences in medians for

the study population data were tested by non-parametric Mann–

Whitney test when appropriate. Student’s t test was used to

compare the means of normally distributed data or normalized

transformations were performed on raw data before testing by

one-way ANOVA where appropriate. Differences in the propor-

tions of the frequencies between variables were evaluated by chi-

square (x2) test. Relationships between years of residence in the

endemic area and number of past malaria episodes or months

since last known malaria episode were assessed with Spearman’s

rank correlation. Stepwise multiple linear regressions were also

used to identify which independent variables (TREA, PMI and

TLI) were related to the dependent variable (IgG Reactivity

index). Allelic groups were grouped by DR status and data were

descriptively summarized using frequencies and percentages for all

categorical variables. Overall associations of immunological

responses with the alleles from each HLA-DRB1* and HLA-

DQB1* loci were evaluated by comparing the allele frequencies

between seronegative subjects and seropositive subjects using

standard contingency tables. Each person contributed two

observations to the table (one for each allele). Rare alleles, defined

as those with less than five occurrences among subjects, were all

pooled into a category labeled ‘‘other’’ for analysis. To evaluate

global differences in allele distribution, we performed analyses

using simulation methods as implemented in the software PASW.

This approach randomly generates new cell counts for contingen-

cy tables under the null hypothesis of no association, while keeping

the margins of the table fixed. We used an approach that

compares each allele versus all others combined, resulting in

multiple 262 tables, and used the maximum Chi-square statistic

from this series of tables as a global test statistic (bipartition). All

statistical tests were two-sided and HLA analyses were conducted

using the PASW software system.

Results

PvRBP1 recombinant proteins
In order to develop a PvRBP1 subunit vaccine candidate, we

selected in this large molecular weight protein the region spanning

the amino acids 435 to 777. This fragment was selected based on

the following considerations: 1) naturally exposed individuals

develop antibodies which preferentially recognize this extracellular

domain [21]; 2) this fragment includes a cluster of polymorphic

residues suggesting that could be the target of protective antibodies

and 3) it has been implied to include a functionally relevant

binding domain [20]. A caveat to this approach is the loss of

regions that elicit T helper responses required for the induction of

antibody responses. In fact, the use of a MHC peptide-binding

prediction algorithm (ProPred) indicated that although the 435–

777 PvRBP1 fragment includes regions recognized by most major

MHC class II DR and DQ MHC alleles, this fragment excluded

several regions with very high potential for the induction of T

helper responses (Table 2). As shown in Table 2, the three selected

sequences have mean scores of 0.2 indicating a great potential for

binding to a large number of MHC alleles. Peptides with IEDB

scores below 10 are considered high binders [29]. Even more

important, the predicted alleles cover a large proportion of

populations in malaria endemic areas (Table 1).

The synthetic gene encoding the PvRMC-RBP1 was codon

optimized for expression in E. coli. The gene encoding the

PvRBP123-751 control protein was produced by PCR amplification

and overlaps the functional domain K435-I777 included in

PvRMC-RBP1 (Figure 1). PvRMC-RBP1, PvRBP123-751 and

Table 2. PvRBP-1435-777 and the three regions selected to design PvRMC-RBP1 are predicted to contain peptide sequences that
bind to multiple HLA class II molecules.

MHC Alleles evaluated PvRBP1 regiona
Alleles with predicted , = 10
scoreb Geomean score Min score Max score

DRB1 22 K435-I777 22 4.4 0.1 10.0

F571-D587 19 0.2 2.4 8.8

I1745-S1786 17 0.2 3.1 10.0

L2235-E2263 16 0.2 4.8 9.9

DQ 10 K435-I777 9 3.4 0.1 9.9

F571-D587 2 6.6 4.9 8.8

I1745-S1786 3 8.2 6.0 9.9

L2235-E2263 8 7.5 6.0 9.7

DRB3/B5 5 K435-I777 5 2.7 0.0 9.9

F571-D587 4 6.1 1.6 9.4

I1745-S1786 1 4.2 2.2 6.6

L2235-E2263 4 0.7 4.8 9.1

aThe topology of the chimeric protein is summarized in Figure 1.
bScore generated by the IEDB server (http://www.iedb.org/ and [29]).
doi:10.1371/journal.pone.0105828.t002
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Table 3. Summary of the epidemiological characteristics of studied individuals enrolled in the survey.

Epidemiological characteristics

Gender N (%) X2 P

Female 103 (40. 7%) 17.46 p,0,0001

Male 150 (59. 3%)

Total 253 (100%)

Age (Mean 6 SD) 35616,9

Malaria exposure (Mean±SD)

Time of residence in malaria endemic area 30616.5

Time of residence in Rondonia 24615.2

Time of residence in current Address 8610

Number of past malaria infections 6.767.58

Past months since the last malaria infection 1566312

Previous malaria species contracted N (%)

P.falciparum 28 (11. 0%)

P. vivax 56 (22. 1%)

Both species 128 (50. 5%)

Never infected/Not reported 41 (16. 2%)

Species of the last infection N (%)

P. falciparum 67 (26. 4%)

P. vivax 114 (45. 0%)

P. falciparum + P. vivax 11 (4. 3%)

Never infected/Not reported 61 (24. 1%)

Diagnosis N (%)

P. falciparum 07 (2.7%)

P.vivax 18 (7.11%)

P.falciparum+P.vivax 0 (0%)

Not infected 228 (90.1%)

doi:10.1371/journal.pone.0105828.t003

Figure 2. Naturally acquired IgG antibodies against PvRMC-RBP1 and PvRBP123-751 recombinant proteins. (A) Frequency of IgG
responders in the studied population to the recombinant chimeric protein PvRMC-RBP1 and non-chimeric PvRBP123-751. The Chi squared test for
proportions analyses was performed to determine statistical differences. The frequency of IgG responders to PvRBP123-751 was significantly higher
when compared to PvRMC-RBP1. (B) The median of the IgG reactivity index against both antigens was not significant (Mann Whitney test, p = 0.6833).
(C) Reactivity indexes of IgG antibodies against PvRMC-RBP1 and PvRBP123-751 showed significant correlation by nonparametric Spearman test
(r = 0.5768; p,0.0001).
doi:10.1371/journal.pone.0105828.g002
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thioredoxin were purified from E. coli lysates by metal chelate

chromatography using a Ni-NTA resin. Analyses by SDS-PAGE

showed that purified proteins migrated as single bands of the

apparent mobility of 55 kDa for PvRMC-RBP1 and 100 kDa for

PvRBP123-751 (Figure 1). Biochemical identity of the recombinant

proteins was established by western blot analysis using polyclonal

antibodies recognizing the T cell epitopes I1745-S1786 and L2235-

E2263 and a His-tag monoclonal antibody (Figure 1C).

Epidemiological and demographical data
In this population the majority were adults and all individuals

were exposed to malaria infection (Table 3). The age range was

10–85 years with an average of 35 years and the proportion of

men was significantly higher (59.3%) than for women (40.7%;

x2 = 17:46, p,0.0001). Concerning prior history of malaria

infections, 15.9% of all studied individuals did not have or

remember previous malaria infections. Among those who reported

previous infections, the majority (50.8%) reported previous

episodes of P. falciparum and P. vivax malaria, the two most

prevalent species in Brazil [31]. The number of past infections

reported by individuals varied greatly among donors, ranging from

0 to 51 (mean = 6.7467.58). Finally, the fact that the time elapsed

since the last infection varied from 0 to 372 months (mean

= 1566312) indicated that the studied population have different

degrees of exposure and/or immunity.

Frequency and magnitude of IgG immune response
against recombinant antigens

Assessing the humoral immune response of all 253 studied

individuals against PvRMC-RBP1 and the control PvRBP123-751

protein, we observed that both proteins were recognized by

naturally acquired antibodies (Figure 2A). Total IgG responses

were observed in 47.1% of the population to the chimeric

PvRMC-RBP1 and in 60% to the non-chimeric protein

PvRBP123-751. There was a significant difference in the response

to these two recombinant proteins (p = 0.0031). The majority of

responders to PvRMC-RBP1 (83.8%) were also responders to

PvRBP123-751. Concerning the magnitude of the response against

the PvRMC-RBP1 and PvRBP123-751, the reactivity indexes (RI)

of IgG antibodies ranged from 0.21 to 7.30 and did not present

significant differences in responders (Figure 2B). Moreover, we

also observed a significant correlation between the RIs against

PvRMC-RBP1 and PvRBP123-751 (Figure 2C). Interestingly, 22

individuals were responders to the PvRMC-RBP1 and were not

responders to the non-chimeric PvRBP123-751 (Table 4). There-

fore, in order to determine if the (NANP)6 tag sequence plays a

role in the IgG antibody reactivity against PvRMC-RBP1, we

performed absorption ELISA experiments. Positive samples from

63 randomly selected individuals were pre-incubated with

(NANP)6 synthetic peptide prior the evaluation of IgG reactivity

against PvRMC-RBP1. These experiments showed that, despite

that 51% of samples were positive against (NANP)6 after the

absorption step with such synthetic peptide most plasma samples

did not differ in their reactivity to PvRMC-RBP1. Consequently

these results suggest that the antibodies are specific to PvRBP1 and

not to the (NANP)6 tag (Figure 3).

IgG subclass profile of responders against PvRMC-RBP1
and PvRBP123-751

We assessed the overall distribution of the IgG antibody subclass

responses to PvRMC-RBP1 and PvRBP123-751 proteins using

different comparative analyses. Firstly, we determined subclass-

specific prevalence in total IgG positive responders for both antigens

(Figure 4A). The results were comparable, IgG1 response was

predominant against PvRMC-RBP1 (73.3%) and PvRBP123-751

(86%) when compared respectively to IgG2 (33% and 39%), IgG3

(28% and 36%) and IgG4 (17% and 35%). Secondly, in relation to

magnitude of antigen-specific IgG subclasses, we also observed that

the RI of IgG1 cytophilic antibodies against PvRMC-RBP1 (1.83)

and PvRBP123-751 (1.95) was also significantly higher (p,0.0001)

than all other subclasses (Figure 4B). We did not observe differences

in the magnitude of the response for IgG subclasses against

PvRMC-RBP1 and PvRBP123-751 recombinant proteins.

Influence of malaria exposure in immune response
In order to assess whether epidemiological factors influence the

naturally acquired immune response against PvRMC-RBP1,

different parameters of the population were correlated with the

reactivity indexes of total IgG and the IgG subclasses. We first

observed a direct correlation between total IgG against PvRMC-

RBP1 and age (r = 0.1762, p = 0.005), time of residence in

endemic areas (TREA, r = 0.2781, p,0.0001) and also time of

residence at the present address (TRPA, r = 0.1762, p = 0.005)

(Figure 5). Assessing malaria history in relation to immune

response, we also observed that the number of previous malaria

infections reported also showed a direct correlation with the

reactivity indexes against PvRMC-RBP1 (r = 0.1765, P = 0.0049),

indicating an additive effect in specific immune response. We also

used the time (months) elapsed since the last infection as indicative

of protection in order to observe possible evidence of relationship

with antibodies against PvRMC-RBP1 or PvRBP123-751. Howev-

er, we did not observe any significant correlation in the evaluation

of total IgG and IgG subclasses specific against both antigens. In

relation to PvRBP123-751 we also observed a direct correlation

between IgG reactivity indexes and exposure factors (age:

r = 0.3217, p,0.0001; TREA: r = 0.2556, p,0.0001) and number

of previous malaria infections (r = 0.2875, p,0.0001). Lastly, by

multiple regression analysis (Table 5) we evaluated the contribu-

tion of each independent variable for the IgG magnitude against

both antigens. The time of residence in an endemic area had the

highest impact on acquired antibody response against the chimeric

Figure 3. Magnitude of IgG immune response against PvRMC-
RBP1 before and after (NANP)6-specific antibody absorption
step. The median of reactivity index of IgG to PvRMC-RBP1 presented
no significant difference between before and after absorption
(p = 0.2525).
doi:10.1371/journal.pone.0105828.g003
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(beta = 0.294; t = 4.545; p = 0.0001) and non-chimeric (be-

ta = 0.251; t = 3.785; p = 0.0001) PvRBP1 proteins, while time

since last malaria infection was confirmed as a non-associated

variable.

HLA distribution among studied individuals and the
associations with IgG response

We found 13 HLA-DRB1* and 5 HLA-DQB1* allelic groups.

There were two predominant HLA allelic groups in our studied

population, HLA-DRB1*04 (16% of all HLA-DR genotypes), and

HLA-DQB1*03 (40% of all HLA-DQ genotypes). The HLA-

DRB1*09, HLA-DRB1*10 and HLA-DRB1*12 were less frequent

in HLA-DRB1* and HLA-DQB1*04 was less frequent in HLA-

DQB1*. The number of positive individuals for the HLA-DRB1*

and HLA-DQB1* alleles and the frequency of each allele are

summarized in Table 6.

The association between HLA-DRB1* and HLA-DQB1* alleles

and haplotypes and the naturally acquired IgG response to the

recombinant proteins was also evaluated. Although 30.2% of the

studied individuals did not present detectable antibody titers to

PvRMC-RBP1 or PvRBP123-751, genetic restriction to this antigen

does not seem to occur, since no association was observed between

the HLA-DRB1* or HLA-DQB1* alleles and the frequency of

antibody responders to both antigens (Table 6). Moreover, we also

evaluated the difference between reactivity index of responders

among HLA-DRB1* and HLA-DQB1* allele carriers and no

difference was observed.

Discussion

A successful malaria vaccine requires the induction of long

lasting protective antibodies and robust T cell responses. However,

preclinical and clinical trials have shown that a number of vaccine

candidates are poorly immunogenic [32–35]. To overcome the

poor immunogenicity of subunit vaccines, we have produced

chimeric proteins that contain cognate promiscuous T helper

epitopes tailored for individual antigens [23,36]. Proof-of-principle

studies in mice have shown that such chimeric vaccine constructs

induced more robust antibody and T cell responses in comparison

to the native protein [23,36]. Relevantly, the magnitude and

Table 4. Frequency and magnitude of IgG response to PvRMC-RBP1 and/or PvRBP123-751.

Frequency RI (Mean ± SD)

n % PvRMC-RBP1 PvRBP123-751

PvRMC-RBP1 (+) and PvRBP123-751 (+) 98 56.0%* 1.9661.45 2.0361.97

PvRMC-RBP1 (+) and PvRBP123-751 (2) 22 12.6% 1.3660.53 0.7960.15

PvRMC-RBP1 (2) and PvRBP123-751 (+) 55 31.4% 0.6660.18 1.2761.03

PvRMC-RBP1 (+) or PvRBP123-751 (+) 175 100.0%

*Frequency of IgG double responders against proteins were significantly higher than PvRMC-RBP1 (X2 = 73.25; p = 0.0001) and PvRBP123-751 (X2 = 21.47; p = 0.0001) single
responders.
doi:10.1371/journal.pone.0105828.t004

Figure 4. IgG subclass profile in responders against PvRMC-RBP1 and PvRBP123-751 recombinant proteins. (A) Frequency of IgG
subclass responders to the recombinant chimeric protein PvRMC-RBP1 and non-chimeric PvRBP123-751 among the IgG responders. The Chi squared
test for proportions analyses was performed to determine that the frequency of IgG1 responders was significantly higher when compared with all
others IgG subclasses. (B) The medians of reactivity indexes of IgG1 subclass against both antigens tested were also higher than IgG2, IgG3 and IgG4
by Mann Whitney test. * The frequency of IgG1 responders to PvRMC-RBP1 was significantly higher when compared with IgG2 (X2 = 90.4; p = 0.0019),
IgG3 (X2 = 98.6; p,0.0001) and IgG4 (X2 = 108.5; p,0.0001). # The frequency of IgG1 responders to PvRBP123-751 was significantly higher when
compared with IgG2 (X2 = 73.6; p,0.0001), IgG3 (X2 = 54.6; p,0.0001) and IgG4 (X2 = 55.9; p,0.0001). 1 The median of reactivity index of IgG1 to
PvRMC-RBP1 was significantly higher than IgG2 (p,0.0001), IgG3 (p,0.0001) and IgG4 (p,0.0001) by Mann Whitney test. + The median of reactivity
index of IgG1 to PvRBP123-751 was significantly higher than IgG2 (p,0.0001), IgG3 (p,0.0001) and IgG4 (p,0.0001) by Mann Whitney test.
doi:10.1371/journal.pone.0105828.g004
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functionality of the antibody response is significantly improved

using this approach [23]. Following this rationale, we predicted

promiscuous T helper epitopes in PvRBP1, validated their ability

to elicit T cell responses in mice (manuscript in preparation) and

generated a synthetic gene encoding such promiscuous T helper

epitopes genetically linked to the sequence of the PvRBP1435-777

domain. Interestingly, sequences of the T cell epitopes included in

this chimeric protein (PvRMC-RBP1) were predicted to bind

multiple HLA alleles (Table 1). According to these predictions we

expect T cell responses in over 95% of the human population

(Table 2). Nevertheless, chimeric proteins have the potential of

generating neoantigens or masking antigenic domains that are

target of protective antibodies. We report here comparative

seroepidemiological studies that suggest that the identity of the

conformational B cell epitopes is preserved in PvRMC-RBP1.

Seroepidemiological studies have played a significant role in the

identification of leading vaccine candidates [37–39]. Studies using

recombinant proteins representing five different regions of the

PvRBP-1 protein have shown that naturally acquired antibodies

preferentially recognize the amino-terminal portion of the protein

that span 976 amino acids in length [21]. Interestingly, a

recombinant protein containing the 317 amino acid-long amino

terminal fragment of this region contains 48% of the polymorphic

residues reported in the 2,749 amino acid long extracellular

domain of the PvRBP-1 protein [21]. This region has also been

suggested to include a functionally relevant binding domain [20].

We therefore decided to characterize here the antigenic integrity

of the B cells epitopes included in the chimeric PvRMC-RBP1, in

comparative experiments with a control recombinant protein that

expressed the native PvRBP1435-777 fragment included in

PvRMC-RBP1 by testing naturally acquired antibodies and their

association with major HLA-DRB1* and HLA-DQB1* alleles.

Plasma samples were collected in cross-sectional studies with

Brazilian Amazon communities in 2004 and 2007. The profile of

studied individuals shows that our population included a majority

of rainforest region natives and also transmigrants from

non-endemic areas of Brazil who had lived in the area for more

than 10 years. The majority of individuals reported a prior

experience with P. vivax and/or P. falciparum malaria. In

relation to malaria history the highly variable range of number of

previous infections, time of residence in endemic area and time

since the last infection suggest differences in exposure and

immunity, since it is well known that the acquisition of clinical

immunity mediated by antibodies depends on continued exposure

to the parasite [38,40,41]. The correlation between time of

residence in endemic areas and months since the last infection

observed in our study also indicate that this phenomenon could be

occurring in low/medium endemicity areas like the Brazilian

Amazon. Therefore, the selection of these individuals was ideal to

detect the presence of antibodies against the new recombinant

antigen, distinguish whether the alterations found were related to

malaria exposure and determine genetic background associated

with the HLA allelic groups.

Firstly, we evaluated the naturally acquired humoral immune

response mediated by total IgG antibodies against the PvRMC-

RBP1 to identify the retention of naturally recognized epitopes

previously reported [21]. Our results of humoral immune response

mediated by IgG antibodies suggested that PvRMC-RBP1 retains

the antigenic identity, being widely recognized by almost half of

the studied individuals. Moreover, since P. falciparum infections

also occur in this area, we confirmed by absorption assays that

there was no significant influence of the P. falciparum (NANP)6
carboxyl terminal tag sequence in the specificity of the antibodies

to PvRMC-RBP1. This frequency of responders is comparable to

that reported by Tran and colleagues using five PvRBP1

fragments, including a recombinant protein representing the

sequence of the fragment PvRBP1435-777 studied here [21].

However, the frequency of the natural antibody responses

remained relatively low when compared to those against other

classical P. vivax vaccine candidates, such as MSP-119, MSP-9,

MSP-3 and AMA-1, which have frequencies that ranged between

60% and 90% of reactivity against their most immunogenic

Figure 5. Correlation between naturally acquired IgG immune response against PvRMC-RBP1 and exposure to malaria. (A)
Spearman’s rank correlation between age and IgG reactivity index against the chimeric recombinant protein in a population naturally exposed to
malaria (r = 0.3613; p,0.0001). (B) Spearman’s rank correlation between time of residence in malaria endemic area and IgG reactivity index against
the chimeric recombinant protein in a population naturally exposed to malaria (r = 0.2781; p,0.0001).
doi:10.1371/journal.pone.0105828.g005
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regions [12,15,42]. On the other hand, the data is still comparable

to proteins such as DBP [43] and the N-terminal region of MSP-9

[44].

In comparative experiments reported here, we observed a 13%

higher prevalence of responders against the control protein

compared to PvRMC-RBP1. This would indicate that structural

changes resulting from the inclusion of the T-cell epitopes

modified the antigenic properties of the native protein. However,

our results showed that the majority of responders (82%) against

PvRMC-RBP1 were also responders against the non-chimeric

PvRBP123-751 and the RIs were strongly correlated between both

proteins, indicating that PvRMC-RBP1 preserves the antigenic

domains present in the native protein that are the targets of

antibody elicited by natural exposure to P. vivax infections. We

also corroborated this hypothesis after observing the correlation

with the reactivity index against the chimeric antigen with age, the

time of exposure to malaria infections and the number of previous

malaria infections, reflecting the cumulative effect of the specific

immune response to epitopes represented in our chimeric antigen.

Table 5. Multivariate regression analysis of independent variables (PMI, TREA and TLI) associated with the magnitude of IgG
immune response against both studied antigens.

Unstandardized Coefficients Standardized Coefficients

B Std. Error Beta t P values

PvRMC-RBP1 constant 0.494 0.209 2.362 0.019

PMI 0.033 0.012 0.177 2.788 0.006

TREA 0.025 0.005 0.294 4.545 0.0001

TLI 0.000 0.002 20.015 20.227 0.821

PvRBP123-751 constant 0.841 0.262 3.213 0.002

PMI 0.023 0.011 0.133 2.042 0.042

TREA 0.026 0.007 0.251 3.785 0.0001

TLI 0.000 0.002 0.001 0.012 0.990

PMI (Past malaria infections); TREA (Time of residence in endemic area); (Time since the last malaria infection)
doi:10.1371/journal.pone.0105828.t005

Table 6. Frequency (F) and number (n) of IgG responders and non-responders to the PvRMC-RBP1and Pv-RBP123-751 recombinant
proteins tested by HLA-DRB1* and HLA-DQB1*allelic groups from individuals naturally exposed to malaria.

HLA F (n) PvRMC-RBP1 Pv-RBP123-751

Responder F Non Responder F Responder F Non responder F

HLA-DRB1*

DRB1*01 0.0988(51) 0.0737 0.1213 0.0806 0.1323

DRB1*03 0.0697(36) 0.0819 0.0588 0.0709 0.0637

DRB1*04 0.1627(84) 0.1885 0.1397 0.1774 0.1323

DRB1*07 0.0968(50) 0.0916 0.1029 0.0903 0.1078

DRB1*08 0.0910(47) 0.1024 0.0808 0.1032 0.0735

DRB1*09 0.0155(8) 0.0081 0.0220 0.0225 0.0049

DRB1*10 0.0116(6) 0.0081 0.0147 0.0096 0.0147

DRB1*11 0.1046(54) 0.1024 0.1066 0.1 0.1127

DRB1*12 0.0077(4) 0.0081 0.0033 0.0096 0.0049

DRB1*13 0.1085(56) 0.1188 0.0992 0.1064 0.1127

DRB1*14 0.0775(40) 0.0819 0.0735 0.0903 0.0588

DRB1*15 0.0794(41) 0.0737 0.0845 0.0741 0.0931

DRB1*16 0.0755(39) 0.0614 0.0882 0.0645 0.0882

HLA-DQB1*

DQB1*02 0.1375(71) 0.1311 0.1433 0.1522 0.1421

DQB1*03 0.4031(208) 0.3934 0.4117 0.4058 0.3827

DQB1*04 0.1085(56) 0.1311 0.0882 0.1225 0.0833

DQB1*05 0.1705(88) 0.1598 0.1801 0.1612 0.1711

DQB1*06 0.1802(93) 0.1844 0.1764 0.1580 0.2205

doi:10.1371/journal.pone.0105828.t006
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The absence of optimized assays to characterize functional

antibodies against P. vivax, the low frequency of infected

individuals and the lack of asymptomatic infections in our

population, limited the evaluation of possible associations between

anti-PvRMC-RBP1 antibody levels and clinical immunity. Based

on the evidence that cytophilic IgG1 and IgG3 antibodies to P.
falciparum are correlated with protection [45–50], whereas IgG2

and IgG4 even interfere with protective mechanisms, we also

evaluated the level of reactivity and profile of IgG subclasses

against both proteins. The high prevalence and magnitude of

IgG1 against the chimeric and non-chimeric RBP1 recombinant

proteins would indicate a protective effect. The lack of differences

in frequency profile and magnitude of IgG subclasses between the

studied proteins also suggest that the isotype response to the native

PvRBP1 is preserved. Moreover, the high frequency of IgG1

responders observed in our work confirm previous findings with

PvRBP1431-748, an overlapped fragment of PvRBP1435-777, indi-

cating an IgG1 biased response [21]. In P. vivax the association

between cytophilic isotypes and protection is not clearly defined.

In fact, reports from our group and others already demonstrated a

considerable frequency of non-cytophilic antibodies against P.
vivax MSP-3 [51], MSP-9 [15] and MSP-1 [51] in Brazilian

exposed populations.

Since many factors can contribute to the heterogeneity of the

immune response to antigens and genetic restriction may influence

the generation of protective immune responses to Plasmodium
target proteins, we also aimed to investigate for the first time the

association between HLA-DRB1* and HLA-DQB1* allelic groups

and the immunodominant RBP-1435-777 fragment expressed as

chimeric and non-chimeric proteins. Moreover we could investi-

gate if the small difference in antibody response against both

recombinant proteins was associated with genetic polymorphism

of the HLA Class II alleles. Our results demonstrated that the

studied population was heterogeneous, presenting 13 HLA-

DRB1* and 5 HLA-DQB1* allelic groups. HLA-DRB1*04,

HLA-DRB1*11, HLADRB1*13 and HLA-DQB1*03 were the

most frequent allelic groups found in the population and the most

frequent in native individuals from this Amazon area [52].

Analyses of IgG responders to PvRBP123-751 and PvRMC-RBP1

showed no association between frequency and specific HLA-

DRB1* and HLA-DQB1* allelic group. The lack of associations

between HLA allelic groups and P. vivax target proteins has also

been observed with other surface antigens such as PvAMA-1 and

PvDBP [42]. On the other hand, in previous work with individuals

from the Southwestern Brazilian Amazon, a high frequency of

responders against fragments of PvMSP3-a and PvMSP-9 were

defined in HLA-DRB1*04 carriers [52] while HLA-DRB1*07 was

associated with the absence of antibody responses to VK210

repeats of the CSP [53]. Although computational methods for the

definition of T cell epitopes is still far from perfect, these

algorithms predicted a relatively large number of promiscuous T

cell epitopes in PvRBP1 a finding that agrees with the lack of

correlation between antibody responses to this protein and HLA

types. In fact, although 40% and 52.9% of the population did not

present detectable titers of antibodies to PvRBP123-751 and

PvRMC-RBP1 respectively, we confirmed that genetic restriction

to these antigens does not seem to occur, since no association was

observed between the HLA-DRB1* or HLA-DQB1* alleles and

the antibody response.

Notwithstanding the naturally acquired IgG immune response

against chimeric and non-chimeric PvRBP1 and the lack of HLA

association with HLA-DRB1*/DQB1* reported here, it remains

unknown why only a fraction of the naturally exposed individuals

have antibodies against PvRBP-1. The lack of natural immune

response mediated by IgG in a significant part of studied

population could be explained by the presence of polymorphic

residues that could be the target of antibodies [20,21]. Moreover,

since we observed a correlation with the number of previous

infections, and Tran and colleagues reported a low response in

recently exposed individuals from a similar area [21], it is also

possible that multiple malaria episodes are necessary to induce

detectable antibody titers against PvRBP1. Therefore, the

presence of multiple promiscuous T cell epitopes in PvRMC-

RBP1 in future immunizations could increase the humoral

response against P. vivax Reticulocyte Binding Protein and

overcome the necessity of long time exposure and infections in

naturally exposed individuals.

In conclusion, our study provides valuable information

concerning the chimeric PvRMC-RBP1. Firstly, the recombinant

chimeric construct was broadly recognized by naturally acquired

antibodies, which is correlated with time of exposure and number

of malaria infections. Moreover, the predominance of the IgG1

cytophilic antibody subclass against the native and the chimeric

recombinant protein also indicates a possible role in protective

immunity. Lastly, our data suggest, that there was no genetic

restriction mediated by HLA-DRB1* and HLA-DQB1* against

this immunodominant fragment. Therefore, the confirmation that

PvRMC-RBP1 has maintained its functional identity in the

context of the immune response will support new studies

comparing the immunogenicity in different animal models to test

whether the strategy of using cognate promiscuous T cell epitopes

to enhance immunogenicity can be applied for nonlinear

structured domains.
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