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ABSTRACT

The human genome contains ∼2000 transcriptional
regulatory proteins, including ∼1600 DNA-binding
transcription factors (TFs) recognizing characteris-
tic sequence motifs to exert regulatory effects on
gene expression. The binding specificities of these
factors have been profiled both in vitro, using tech-
niques such as HT-SELEX, and in vivo, using tech-
niques including ChIP-seq. We previously developed
Factorbook, a TF-centric database of annotations,
motifs, and integrative analyses based on ChIP-seq
data from Phase II of the ENCODE Project. Here we
present an update to Factorbook which significantly
expands the breadth of cell type and TF coverage.
The update includes an expanded motif catalog de-
rived from thousands of ENCODE Phase II and III
ChIP-seq experiments and HT-SELEX experiments;
this motif catalog is integrated with the ENCODE
registry of candidate cis-regulatory elements to an-
notate a comprehensive collection of genome-wide
candidate TF binding sites. The database also offers
novel tools for applying the motif models within ma-
chine learning frameworks and using these models
for integrative analysis, including annotation of vari-
ants and disease and trait heritability. Factorbook
is publicly available at www.factorbook.org; we will
continue to expand the resource as ENCODE Phase
IV data are released.

INTRODUCTION

The human genome includes the instructions for produc-
ing an estimated 2000 transcriptional regulatory proteins
that interact with DNA in order to modulate regulatory el-
ement activity and gene expression (1). These include both
sequence-specific transcription factors (TF) and co-binding
factors and RNA polymerase complex members that lack

sequence specificity but cooperate with sequence-specific
TFs. TFs typically possess a DNA binding domain (DBD)
which recognizes 6–20 base-pair (bp) long characteristic
consensus binding sequences, or a motif, present within
the TF’s target regulatory elements. TFs may be grouped
according to several known families of DBDs which fre-
quently recognize similar DNA sequences. The binding
specificities of these factors have been profiled both invitro,
using techniques such as HT-SELEX (2), and in vivo, using
techniques including ChIP-seq (3,4).

Numerous resources have been developed to catalog
TF motifs. The HOCOMOCO catalog (5) indexes binding
specificities for nearly 700 human TFs and >400 mouse TFs
identified from ChIP-seq and HT-SELEX data, and the
JASPAR catalog (6) contains more than 700 curated non-
redundant binding profiles for eukaryotic TFs. The earlier
UniPROBE (7) resource contains more than 700 binding
profiles from in vitro protein binding microarray experi-
ments, and the broader CisBP (8) incorporates data from
these sources and others, including our previous release of
Factorbook (9,10), to annotate both measured and inferred
binding profiles for thousands of TFs across hundreds of
species.

Here, we present an update to Factorbook which lever-
ages the extensive ChIP-seq data available through Phase III
of the ENCODE Project to build a comprehensive TF motif
catalog for ∼750 TFs. We also provide two notable features
not available in existing catalogs to our knowledge. First,
we catalog motif models built using convolutional neural
networks (CNNs), which are finding increasing applications
in genomics including in discovering TF motifs and pre-
dicting TF binding (11–13); these will be easily integrated
into future models for transfer learning. Second, we lever-
age the ENCODE Registry of candidate Cis-Regulatory El-
ements (cCREs) (14) to provide a genome-wide catalog of
motif sites in regulatory sequences, with associated epige-
netic and evolutionary annotations; we illustrate the useful-
ness of this catalog for downstream applications by using
it to quantify trait heritability using partitioned LD score
regression (15).
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OVERVIEW

Factorbook is a transcription factor-centric database cat-
aloging information for 694 distinct human and 62 mouse
transcriptional regulatory proteins profiled in 249 and 38
human and mouse cell types. These include sequence-
specific TFs, co-binding factors, and members of the RNA
polymerase complex; existing knowledge about sequence
specificity is provided from a recent review by Lambert
et al. (1) and the ENCODE Portal. The primary entry
point is a factor search (Figure 1A), which directs users
to a detailed factor information page curated information
from various external sources, including NCBI, Uniprot,
HGNC and Ensembl (Figure 1B). Data tables listing the
available factors and cell types are also available for brows-
ing (Figure 1C, indicating whether a factor is sequence spe-
cific). Furthemore, we display the expression levels of each
factor using ENCODE RNA-seq data in a variety of pri-
mary cells, primary tissues and cell lines (Figure 1D), and
also display primary data resulting from several integrative
analyses.

We additionally replaced the Wiki-based technology of
the first Factorbook release (10) with a ReactJS-based fron-
tend and GraphQL Application Programming Interface
which offers improvements and novel capabilities including
(i) facilitated programmatic data access, (ii) interactive vi-
sualizations and (iii) interactive analyses described in detail
below, including single nucleotide polymorphism (SNP) an-
notation and intersection of resources with user-uploaded
BED files.

A comprehensive motif catalog derived from ChIP-seq and
HT-SELEX data

A cornerstone of the primary data contained within Fac-
torbook is a comprehensive catalog of human and mouse
TF recognition motifs. We expanded on existing catalogs
(5,16) in two ways: first, we aimed to annotate binding se-
quences for as many transcription factors as possible, in-
cluding TFs not profiled by other efforts to our knowledge
(5,8,17,18); and second, we aimed to provide motifs in op-
timal formats that will integrate seamlessly into the variety
of machine learning frameworks which are actively being
developed to study TF binding (12,13,19) in addition to
conventional downstream analysis using tools such as the
MEME suite (20).

We thus designed two complementary pipelines for de
novo motif identification (Methods). First, we applied our
previous MEME-based pipeline (9) to the top 500 strongest
ChIP-seq peaks from each TF ChIP-seq dataset produced
during the first three phases of ENCODE. This pipeline
identifies up to five motifs per dataset; these are subse-
quently filtered by quality control metrics we developed
previously (9), including peak centrality and enrichment in
peaks as compared with randomly-selected non-peak ge-
nomic sequences with similar GC content. Second, we ap-
plied a convolutional neural network that we recently devel-
oped, ZMotif (manuscript in preparation), for discovery of
motifs from HT-SELEX data which can be used in down-
stream analysis with both other deep learning frameworks
and conventional tools.

MEME identifies 6921 motifs from human and mouse
ChIP-seq datasets. This includes several redundant motifs
for well-profiled factors such as CTCF and REST; we there-
fore applied UMAP (21,22) to the motifs to map them into
a reduced-dimension space (Figure 2A), revealing clusters
of known and novel motifs. The number of motif clusters
ranges from 100 to 300 depending on hyperparameter selec-
tion; we make several interactive UMAP plots with differ-
ent hyperparameters available through Factorbook to aid
users in identifying motif clusters for downstream analysis.
We then applied TOMTOM (23) to compare our MEME
motifs against the HOCOMOCO and JASPAR catalogs
(5,16); we find that the Factorbook catalog includes nearly
100% of the motifs in these two sources, and further iden-
tifies novel motifs not present therein including candidate
motifs for 101 TFs that have been previously classified as
‘likely sequence-specific factors’ (1) (Figure 2B). One ex-
ample novel motif is that of ZNF407 (Figure 2C), which
shows high evolutionary conservation (Figure 2D), prefers
to reside in the center of ChIP-seq peaks (Figure 2E), and is
protected from DNase I cleavage (Figure 2F). Each individ-
ual factor page contains indexed lists of all motifs identified
by MEME; these and the HT-SELEX motifs can also be
searched through Factorbook either by consensus sequence
or by uploading motifs in MEME format to match against
the catalog; visual results are provided in real time (Figure
2G).

ZMotif identifies a total of 6700 motifs from HT-SELEX
two public HT-SELEX datasets (2,24); we perform similar
UMAP projection and cluster annotation for these motifs
(Figure 3A). SELEX motifs are also available for visual-
ization on each TF’s information page; motifs are shown
for each HT-SELEX cycle along with QC statistics, includ-
ing the fraction of HT-SELEX reads containing the motif
and a receiver operator characteristic curve showing how
well the motif distinguishes reads from control sequences
(Figure 3B). Motifs from both methods are made available
for download as PWMs in MEME format; deep-learned fil-
ters are further available in a Numpy format that can be di-
rectly used by models such as neural networks for transfer
learning. The motif page also displays TOMTOM matches
against HOCOMOCO and JASPAR for each motif.

Genome-wide instances of motifs in ChIP-seq peaks

For ChIP-seq motifs identified with MEME, we use the
FIMO tool from the MEME suite (20) to scan irrepro-
ducible discovery rate (IDR) thresholded ChIP-seq peaks
from human TF ChIP-seq datasets for motif instances, fil-
tering at the standard P-value cutoff of 10–4. We identified
110 001 176 (overlapping allowed) motif instances in total;
when overlapping regions are merged, the motif sites num-
ber 6 720 871. These instances are available for download
through Factorbook in BED format through the associ-
ated motif page; additionally, we have implemented a novel
database-backed service allowing users to upload their own
BED files for real-time intersection with motif instances, ac-
cessible through the same page.

To aid the user in evaluating motif quality, we com-
pute three metrics for the motif instances. First, we assess
the evolutionary conservation of the motif instance and
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Figure 1. Overview of the main Factorbook interface. (A) An example of the main TF search for human and mouse. (B) The information page for REST,
highlighting information curated from external sources. (C) The transcription factor table, listing all 682 human TFs with available data for browsing. (D)
Factorbook’s display of the RNA-seq expression profile for GATA4 in human embryonic primary tissues.

surrounding peak sequence using phyloP scores across col-
lections of vertebrates and mammals (25) (Figure 2D). Sec-
ond, we compute the distance between each motif instance
and the corresponding peak summit since the instances of
bona fide motifs tend to be near peak summits (Figure
2E). Third, we compute the distribution of DNase-seq and
ATAC-seq reads around each motif instance when matched
data are available in the corresponding cell type (Figure 2F).
We display histograms and aggregated signal profiles for
each of these three metrics on the motif page. In general,
high quality motif instances are central within peaks, are
more evolutionarily conserved than the surrounding peak
sequences, and are less accessible to DNase I and Tn5 than
surrounding non-motif peak sequences.

Genome-wide motif instances in candidate cis-regulatory el-
ements

We previously developed the ENCODE Registry of cCREs,
a collection of nearly 1 million human regulatory elements.
The cCREs are the subset of representative DNase hyper-
sensitive sites (rDHSs) with high signals for H3K4me3,
a promoter mark, H3K27ac, an enhancer mark, and the
insulator-binding protein CTCF (14). The Registry inte-

grates data from >1000 cell types, while the ChIP-seq data
included in Factorbook derives primarily from five hu-
man cell lines (HepG2, K562, HEK293, GM12878 and
MCF-7). Accordingly, motif instances in ChIP-seq peaks
are most common within cCREs and rDHSs active in cell
types biologically similar to these five cell lines. For exam-
ple, embryonic bone marrow and liver are responsible for
hematopoiesis, and nearly twice as many rDHSs active in
those embryonic tissues contain peak motif instances as
those active in other tissues, in line with the prevalence of
ChIP-seq data in the red blood cell precursor K562 (Fig-
ure 4A, with the two tissues marked with asterisks). To cap-
ture candidate motif sites in other cell types, we applied
FIMO to identify instances of all the high-quality human
and mouse motifs from both our ChIP-seq MEME cata-
log and our HT-SELEX ZMotif catalog within cCREs and
rDHSs. Given the larger scale of the rDHS set, we used a
more stringent FIMO P-value threshold of 10–6 for MEME
ChIP-seq motifs and 10–5 for ZMotif HT-SELEX motifs to
reduce false positives. We also generated sets at more strin-
gent thresholds of P < 10–7 and P < 10–8 for users preferring
even higher confidence sets (Figure 4B).

In total, we define a catalog of 33 452 885 (overlapping al-
lowed) candidate regulatory transcription factor motif sites
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Figure 2. Overview of the Factorbook MEME ChIP-seq motif catalog. (A) A UMAP projection of motifs passing QC, with some DNA binding domains
colored (C2H2 Zinc Finger in red, GATA in teal, nuclear receptor in dark purple) and several motif clusters annotated. (B) Overview of novel motifs
cataloged by Factorbook. (C) A novel motif for ZNF407, with supporting evolutionary conservation (phyloP 100-way) (D), peak centrality (E), and
DNase-seq footprint (F) aggregate plots. (G) The Factorbook motif search interface, showing matches for the consensus sequence for the CTCF motif.

within rDHSs using MEME-identified ChIP-seq motif sites
at a FIMO P-value of <10–6. These number 7 189 228
when overlapping motif sites are merged; of these, 4 902
200 (68.2%) are not present in the TF ChIP-seq peak mo-
tif site catalog. More than 95% of rDHSs contain at least
one of these motif sites, with most having between 1 and
4; in total, the motif sites cover 30% of the base pairs in

rDHS sequence (Figure 4B). The more stringent sets, num-
bering 2 840 049 and 1 572 634 non-overlapping motif sites,
respectively, cover a smaller portion of sequence within a
smaller number of rDHSs (Figure 4B). We aggregate evo-
lutionary conservation and DNase-seq reads at each of the
motif sites at the most lenient threshold of P < 10–6; this
highlights that these motifs are significantly more conserved
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Figure 3. The Factorbook HT-SELEX motif catalog. (A) A UMAP projection of 6,700 HT-SELEX motifs with clusters annotated. (B) Example of
the SELEX motif interface for GATA4, showing motifs for each of the four SELEX cycles for a GATA4 HT-SELEX experiment as well as two motif
enrichment metrics, an ROC curve (top) and a readout of the fraction of reads at each cycle containing the motif (bottom).
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Figure 4. Overview of the Factorbook regulatory motif site catalog. (A) Fraction of representative DNase hypersensitive sites (rDHSs) active in a variety
of embryonic cell types containing at least one motif identified in a ChIP-seq peak; cell types similar to K562 (fetal liver) and GM12878 (fetal bone) are
most enriched due to the prevalence of ChIP-seq for those cell lines. (B) Distribution of motif sites within rDHSs and fraction of rDHS sequence covered
by motifs at different thresholds. (C) Aggregated evolutionary conservation and (D) DNase I cleavage in embryonic kidney at 10,000 randomly chosen
motif sites from the catalog within rDHSs active in embryonic kidney. (E) The motif site search interface, showing CTCF motif sites in a genomic region
on chromosome 1.
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Figure 5. Annotation of variants with Factorbook. (A) The variant annotation interface; the user inputs a SNP rsID and can optionally select to include
SNPs in LD with the searched SNP. (B) Example search results for a given SNP showing an impact on an E-box motif from the Factorbook rDHS motif site
catalog. (C) The variant peak intersection view showing ChIP-seq peaks intersecting variants in LD with an example query. (D) Heritability enrichment for
a variety of traits within motif sites identified in ChIP-seq peaks from seven distinct ENCODE cell lines, computed using partitioned LD score regression.

than surrounding rDHS sequences (Figure 4C) and are also
less accessible to DNase I (Figure 4D), suggesting the pro-
tection of the associated DNA by the bound TF; these find-
ings regarding conservation and DNase I protection hold
even for motifs present in rDHSs but not ChIP-seq peaks,
supporting the idea that at least a subset of these motifs
are true transcription factor binding sites which would be
identified if ChIP-seq were performed in the correct biolog-
ical context. These metrics are available through the motif
page for each TF, as are the complete sets of instances in
BED format. Instances can also be searched by BED file
upload (Figure 4E). We performed the same analysis for
HT-SELEX, identifying 9 205 043 distinct non-overlapping
motif sites within rDHSs at a FIMO P-value <10–5, also ac-
counting for ∼30% of rDHS sequence. These sites are also
available for download and searching through Factorbook.

Tools for integrating motifs with GWAS results

It is hypothesized that many non-coding disease-associated
variants confer risk for a given trait or disease by impact-
ing transcription factor recognition sequences within regu-
latory elements. We designed an interactive platform within
Factorbook to facilitate the annotation of SNPs with can-
didate impacts on instances of human and mouse TF motifs
in our catalog. Users input a SNP’s rsID and optionally se-
lect a population or subpopulation from the 1000 Genomes

Project from which to include SNPs in linkage disequilib-
rium (LD) (Figure 5A). Factorbook intersects these SNPs
with motif instances in real time and displays the results,
sorted by predicted impact on the motif (Figure 5B shows
an example). Simultaneously, Factorbook searches all TF
peaks from ENCODE that intersect the SNPs, allowing
users to determine if there is direct ChIP-seq support for
any candidate TFs identified by motif analysis (Figure 5C).

Additionally, we built heritability models for partitioned
LD score regression (15) from the motif sites in our cata-
log within ChIP-seq peaks. We provide one model which
includes the complete set of motif instances as well as one
which includes motif sites grouped by the cell type in which
the corresponding ChIP-seq peak was identified. Heritabil-
ity for traits is highly enriched within motif sequences, with
enrichment generally being the strongest within motif sites
identified in ChIP-seq peaks from disease-relevant cell lines.
For example, heritability for red blood cell distribution
width is most strongly enriched in TF motifs from K562,
an erythroid cell line, heritability for rheumatoid arthritis,
an autoimmune condition, is strongly enriched within TF
motifs in ChIP-seq peaks from GM12878, a B-cell line; and
heritability for serum cholesterol level is most strongly en-
riched in TF motifs from HepG2, a hepatocyte cell line (Fig-
ure 5D). These models are available for download through
Factorbook for application to the summary statistics of
additional genome-wide association studies (GWAS); we
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Figure 6. Epigenetic signal aggregation profiles on Factorbook. (A) Aggregated MNase-seq signal around CTCF motif sites, highlighting asymmetry
depending on motif orientation. (B) Aggregated H3K4me3 ChIP-seq signal around CTCF peak summits as displayed in Factorbook. (C) Aggregated
H3K4me1 ChIP-seq signal around CTCF peak summits as displayed in Factorbook.

A

B

Figure 7. The Factorbook embedded genome browser view. (A) For a given experiment, ChIP-seq signal and IDR peaks from the ENCODE portal are
displayed alongside transcripts and evolutionary conservation. (B) When the view is zoomed in, motif sites from the Factorbook catalog are displayed
along with the underlying sequence scaled according to evolutionary conservation using a novel sequence importance track.

provide a Docker image and associated scripts for running
this analysis through GitHub.

High-resolution nucleosome and epigenetic profiles around
binding sites

In the previous iteration of Factorbook, we generated ag-
gregated epigenetic signal profiles, including histone modifi-
cations and nucleosome positions from MNase-seq, around
the summits of TSS-proximal and TSS-distal transcription
factor ChIP-seq peaks. We find that aggregating around
motif instances rather than peak summits improves the res-
olution and phasing of epigenetic signals; additionally, it of-
fers a natural orientation which reveals asymmetries in the
organization of features around regulatory sites which have
previously been suggested to be of biological relevance (26);
we highlight, for example, asymmetric positioning of nu-
cleosomes assayed by MNase-seq around oriented CTCF
motif sites (Figure 6A). Therefore, on each factor’s page,

Factorbook now displays aggregated signal profiles around
motif instances for all cataloged motifs in addition to pro-
files surrounding ChIP-seq peak summits (illustrated for hi-
stone marks H3K4me3 and H3K4me1 around CTCF motif
sites, Figure 6B); we separate motif sites according to TSS
proximity, which highlights differences in epigenetic profiles
around TSS-proximal and TSS-distal sites.

Tools for machine learning and integrative analysis

Building deep learning models which can predict regu-
latory readouts is a primary focus of ongoing computa-
tional efforts in regulatory genomics. Prediction targets in-
clude cross-cell type transcription factor binding (13,19)
as well as epigenetic sequence profiles in a given cell type
(12). Frequently, these models include one-dimensional
convolutional neural network layers which learn predic-
tive sequences including transcription factor motifs. Trans-
fer learning, or using existing models as starting points for
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new models applied to new tasks, has been proposed for
sequence-based problems in biology (27,28); seeding new
models with our motif features could reduce training time
while improving the predictive power and human inter-
pretability of learned models. To aid users in applying the
kernels learned by our neural networks from HT-SELEX
data, we provide the option to export all ZMotif-derived
motifs in Numpy format. These kernels may then be loaded
into Python and used to seed weights in convolutional layers
in a variety of commonly-used machine learning packages
including PyTorch and Tensorflow. For users interested in
more conventional downstream analysis, we also offer the
option to export all MEME- and ZMotif-derived motifs as
PWMs in MEME format, which may then be used by a vari-
ety of downstream tools including those in the MEME suite
(20).

Genomic visualization of motifs and TF binding sites

Human interaction remains essential in interpreting the
biological significance of transcription factor motifs and
regulatory elements. We implemented lightweight embed-
ded genome visualizations within Factorbook which dis-
play TF peaks from ENCODE datasets alongside human
and mouse motif instances from our resource. Evolutionary
conservation and relevant epigenetic signal profiles from the
given species are displayed alongside gene and transcript
tracks (Figure 7A). Additionally, we have designed a novel
sequence importance track which scales bases in the ref-
erence sequence according to a signal track of associated
scores; we demonstrate the use of this track to highlight evo-
lutionarily conserved motif instances using PhyloP as the
scaling score (Figure 7B). We have engineered this track to
extend easily to additional scores provided through BigWig
format signal tracks. In addition, we have designed a pub-
lic Factorbook trackhub for release on the UCSC Genome
Browser (29).

Planned future expansion

We will further expand Factorbook to include integrative
analysis of ENCODE Phase IV ChIP-seq, DNase-seq and
ATAC-seq data as they are released, and will update our
motif and rDHS catalog accordingly. Additionally, we will
update our motif instance catalog with the release of the fi-
nal version of the ENCODE Registry of cCREs at the con-
clusion of ENCODE Phase IV. We additionally plan to ex-
pand coverage to additional in vitro motifs derived from
other assays such as protein binding microarray (PBM);
for completeness, we will also offer in vitro motifs derived
from existing methods, including the SELEX R package
(30,31), for comparison with our neural network-derived
motifs. Additionally, we will expand comparison of our mo-
tif catalog to other existing databases, including CisBP, via
TOMTOM.
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