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    Introduction 
 In December 1965, many of the world ’ s cell and molecular 

 biologists most keenly engaged in the nucleolus gathered in 

Montevideo, Uruguay, for a southern summer summit ( Perry, 

1966 ;  Vincent and Miller, 1966 ). Built upon previous momentum 

( Swift, 1959 ;  Perry, 1965 ), this conference conclusively estab-

lished the role of the nucleolus as the site of ribosome biosyn-

thesis, based on a confl uence of form and function as compelling 

as any that cell biology had witnessed at the time. The key evi-

dence was the demonstration that the nucleolus organizer locus 

contains DNA that hybridizes to ribosomal RNA (rRNA; 

 Ritossa and Spiegelman, 1965 ;  Birnstiel et al., 1966 ), that rap-

idly labeled precursors of rRNA are present in isolated nucleoli 

( Penman, 1966 ), and that anucleolate  Xenopus laevis  embryos 

fail to synthesize rRNA, arresting in development when their 

maternal stockpile of ribosomes becomes limiting ( Brown and 

Gurdon, 1964 ). Moving fast forward, it is now known that the 

nucleolus has other functions ( Pederson, 1998 ;  Olson et al., 

2000 ,  2002 ;  Raska et al., 2006 ;  Boisvert et al., 2007 ). Yet some-

thing remains unresolved: certain proteins accumulate in the 

nucleolus as apparently uninvited visitors with no identifi able 

roles in nucleolar functions, including the recently established 

ones. Does this signify a storage role of the nucleolus, keeping 

these proteins out of reach of their otherwise appropriate times 

and loci of function, or are these visitors moonlighting in other 

jobs while in the nucleolus? 

 Although molecular traffi c in and out of the nucleus has 

come to be understood quite well in the past 20 years, springing 

from an initial fi nding ( Kalderon et al., 1984 ) to a modern un-

derstanding as structural biology ( Lim and Fahrenkrog, 2006 ; 

 Alber et al., 2007 ), the same cannot be said for the question of 

how intranuclear bodies form by the accretion of various pro-

teins or RNA, which has just begun to be investigated ( Kaiser 

et al., 2008 ;  Misteli, 2008 ). With the genome itself being a clear 

organizing principle of the nucleus, one can easily envision how 

various molecular machines assemble at sites of replication, re-

pair, and transcription, as well as on chromosome-tethered 

structures such as nascent RNAs, because of their physical link 

to the genome. Wandering molecules encounter avid sites on the 

DNA or transcript and simply behave as dictated by the equilib-

rium association constants involved, operating as standard bi-

molecular (collision-dependent) reactions. But how then do 

intranuclear bodies form without any apparent physical connec-

tion with the genome, such as promyelocytic leukemia bodies 

and interchromatin granule clusters (also known as nuclear 

speckles) inter alia ( Gall, 2000 ;  Lamond and Spector, 2003 ; 

 Handwerger and Gall, 2006 ;  Borden, 2008 )? At these sites 

throughout the nucleoplasm, certain molecules seem to become 

concentrated for no apparent reason; i.e., without a (known) 

fi xed nucleating anchor. The formation of these protein-enriched 

bodies stands as a major unsolved issue in cell biology. 

 Although the nucleolus is often included in lists of 

 “ nuclear bodies, ”  it is more properly viewed as a cytogenetic 

phenomenon in which the transcriptional activity of the rRNA 

genes and the co- and posttranscriptional recruitment of rRNA 

processing factors, ribosomal structural proteins, and assembly 

promoting factors generate a specifi c cytological entity. This 

view is reinforced by the observations that formation of micro-

nucleoli or nucleolus-like structures can be induced by single 

copies of rDNA ( Nierras et al., 1997 ;  Oakes et al., 1998 ) or, even 

more remarkably, by a tandem array of DNA-binding sites for the 

upstream binding factor component of the RNA polymerase I 

The life of the nucleolus has proven to be more colorful and 

multifaceted than had been envisioned a decade ago. 

A large number of proteins found in this subnuclear com-

partment have no identifi able tie either to the ribosome 

biosynthetic pathway or to the other newly established activ-

ities occurring within the nucleolus. The questions of how 

and why these proteins end up in this subnuclear compart-

ment remain unanswered and are the focus of intense 

current interest. This review discusses our thoughts on the 

discovery of nonribosomal proteins in the nucleolus.
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as well as certain microRNAs ( Politz et al., 2006 ). This wave of 

information began to arise in the 1990s in a rather episodic fash-

ion and mostly came in beneath the radar. A major advance en-

sued when two groups described a proteomic catalog of purifi ed 

HeLa cell nucleoli, revealing that more than half of the 700 pro-

teins in the nucleolar complex were unrelated to ribosome bio-

synthesis ( Andersen et al., 2002 ,  2005 ;  Scherl et al., 2002 ). The 

most provocative of these were ones with known roles in cell 

cycle regulation. 

 The nucleolus in cell cycle control 
and beyond 
 How then would a nucleolus-centered mechanism come to work 

on behalf of cell cycle control? A connection between the nucle-

olus and cell cycle had been described in early literature, where 

UV microbeam ablation of interphase nucleoli in grasshopper 

neuroblasts was observed to cause an arrest of mitosis that could 

not be explained simply on the basis of ribosome defi ciency 

( Gaulden and Perry, 1958 ). This general notion has been more 

recently raised in connection with a human bone marrow failure 

disease ( Pederson, 2007 ). Indeed, there is now a compelling 

body of evidence showing that eukaryotic cell cycle progression 

is not only associated with ribosome biosynthesis, but that the 

nucleolus may indeed be the central regulatory link between 

these two cellular activities. Such evidence includes a crosstalk 

between a nucleolar protein involved in ribosome biosynthesis 

and the p53 regulation of cell cycle progression ( Pestov et al., 

2001 ), cyclin-dependent kinases involved in nucleolar inter-

phase maintenance ( Sirri et al., 2002 ), and cell cycle arrest and 

p53-tiggered apoptosis caused by inactivation of an rDNA tran-

scription factor ( Yuan et al., 2005 ). These and other recent 

fi ndings seem not to be as well known across the emerging 

nucleolus – cell cycle consolidated fi eld as would be ideal. What 

is needed to further pursue this concept of a nucleolus – cell 

cycle link is a nucleolar protein that has no role in ribosome pro-

duction but is nonetheless intimately connected to cell cycle 

progression or cell division. One such protein is the cyclin phos-

phatase Cdc14 and another is nucleostemin. Other examples 

 exist, but Cdc14 and nucleostemin are particularly enabling 

cases that cogently illuminate the issue. 

 Cdc14 
 The Cdc14 phosphatase is a prototypic example of the nucleo-

lus apparently acting as a storage site of cell cycle regulatory 

proteins. It was initially proposed that the nucleolar localization 

of Cdc14 prevents premature exit from mitosis. The notion is 

that Cdc14 is tethered by Net1 (also termed Cfi 1) in a nucleolar 

complex called RENT ( regulator of nucleolar silencing and 
telophase ) from G1 to metaphase. Upon entry into anaphase, 

Net1 is phosphorylated and Cdc14 is released from the nucleo-

lus ( Shou et al., 1999 ;  Azzam et al., 2004 ). The freed Cdc14 

then dephosphorylates and activates Cdh1. The anaphase-

promoting complex or cyclosome (APC/C)-bound Cdh1 (APC/

C Cdh1 ) functions as an E3 ubiquitin ligase and degrades mitotic 

cyclins, thereby inactivating mitotic cyclin-dependent kinases 

and triggering mitotic exit ( Visintin et al., 1998 ;  Shou et al., 

1999 ;  Visintin et al., 1999 ). Afterward, the return of Cdc14 back 

transcriptional machinery ( Mais et al., 2005 ). However, in the 

past decade, the nucleolus has taken on a broader life, with new 

functions and the revelation of many visiting molecules that have 

no apparent role in either ribosome production or in the recently 

discovered novel functions of the nucleolus. Thus, a paradox now 

looms before us: how and why do these molecules visit this sub-

nuclear compartment? We do not have the answer, but we believe 

that a clear statement of the problem is an essential fi rst step. 

 The open nucleolus 
 Two key points to be recognized from the start are that nucleoli are 

neither membrane-bound, which was never seriously entertained, 

nor are they as extremely compact as had once been assumed. 

Measurements of the refractive index of nucleoli reveal a mass per 

unit volume that is, surprisingly, only twice that of the nucleo-

plasm ( Handwerger et al., 2005 ). Therefore, all diffusing nuclear 

molecules may permeate nucleoli, with their nucleolar residence 

times determined simply by their relative affi nities for preexisting, 

anchored nucleolar elements. Although in this sense the nucleolus 

can be regarded as an open compartment for all nuclear proteins, 

here we will only address ones that concentrate in the nucleolus by 

increased retention. 

 The newly recognized nucleolar functions, 
and the visitors they beckon 
 When preribosomal particles (nucleolar ribonucleoprotein com-

plexes containing pre-rRNA) were fi rst characterized, it was noted 

that they had a higher protein:RNA ratio than mature cytoplasmic 

ribosomes ( Pederson and Kumar, 1971 ;  Kumar and Warner, 1972 ). 

More recent work has revealed a large number of proteins that 

bind to pre-rRNAs but do not remain with exported ribosomes 

( Fatica and Tollervey, 2002 ). In the context of this article, we do 

not regard these as provocative nucleolar visitors, as they have de-

monstrable affi nity for pre-rRNA or its processed intermediates. 

However, the situation is entirely different with respect to the nu-

cleolar transit of RNAs and proteins involved in assembly of the 

signal recognition particle (SRP;  Jacobson and Pederson, 1998 ; 

 Ciufo and Brown, 2000 ;  Politz et al., 2000 ;  Grosshans et al., 2001 ) 

and U2 and U6 spliceosomal small RNA modifi cation ( Ganot 

et al., 1999 ;  Yu et al., 2001 ), which are the most clearly established 

nonribosomal functions of the nucleolus at present. There is no 

known molecular basis for these nucleolar visitations, and no 

obvious reason, notwithstanding speculation (e.g.,  Pederson and 

Politz, 2000 ), why SRP assembly or U2 and U6 RNA modifi ca-

tion should occur in the nucleolus. To learn if the nucleolus is es-

sential for these latter functions, one would need new experimental 

approaches such as using the  X. laevis  embryo homozygous for 

the anucleolate mutation ( Elsdale et al., 1958 ) or cells in which the 

nucleoli are ablated by hyper-focused, thermally minimal laser ir-

radiation ( Berns et al., 2000 ). 

 New visitors to the nucleolus 
 Molecules that are present in the nucleolus but have no known 

roles in the biosynthesis of ribosomes, the SRP, or the modifi ca-

tion of U2 or U6 RNAs have now come into the spotlight. They 

include several proteins that are known to be involved in cell 

growth control, telomere maintenance, and protein degradation, 
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nucleostemin turn out to be like ARF, Net1, and B23, and pos-

sess independent roles in rRNA transcription or processing 

( Shou et al., 2001 ;  Sugimoto et al., 2003 )? A recent study indi-

cated a role of nucleostemin in pre-rRNA processing ( Romanova 

et al., 2008 ). The relationships between the ribosomal and non-

ribosomal functions of nucleostemin and others are nonexclu-

sive and await further clarifi cation. Even if a ribosome-related 

phenotype is found in connection with these nonribosomal pro-

teins, a major challenge still lies in how to dissect its direct ver-

sus indirect effects. 

 Beyond cell cycle control, nucleolar compartmentalization 

has also been linked to other biological events. One example is 

found in  Drosophila melanogaster  spermatogenesis, where nu-

cleolar sequestration of polycomb factors allows primary sper-

matocytes to differentiate into mature spermatids ( Chen et al., 

2005 ). More recently, the role of the nucleolus in the phased 

retention – release of a specifi c transcription factor has been demon-

strated to play a key role in cell fate determination ( Martindill 

et al., 2007 ). During placentation, the bHLH transcription factor 

Hand1 is stored in the nucleolus of trophoblast stem cells. It is re-

leased into the nucleoplasm when trophoblast stem cells become 

committed to differentiation into giant cells. The mechanism un-

derlying these two observations may reside in cell type or devel-

opmental stage – specifi c expressions of nucleolar anchors for 

these proteins, and this therefore broadens the regulatory land-

scape of the nucleolus to not only cell cycle progression but also 

developmentally regulated events ( Martindill and Riley, 2008 ). 

 How do nucleolar proteins make 
their moves? 
 Like most if not all nucleolar proteins, nucleostemin shuttles 

between the nucleolus and the nucleoplasm at an astonishingly 

fast pace. The unsolved mystery, which has perhaps not been 

emphasized enough to date, is how these proteins cycle so rap-

idly between the nucleolar-bound and unbound states, and why 

they act in this way. In the case of nucleostemin, although a 

nucleolar localization signal (NoLS) comprised mainly of a stretch 

of basic residues is suffi cient to mediate nucleolar accumulation 

when fused to GFP, the NoLS-tagged GFP does not display the 

same dynamic and regulated features as full-length nucleo-

stemin ( Tsai and McKay, 2005 ). The nucleolar residence time of 

full-length nucleostemin is longer than that of the NoLS-fused 

GFP, and involves a nucleolar retention signal localized in the 

separate GTP-binding domain of nucleostemin. Furthermore, 

its steady-state accumulation and dynamic cycling to and from 

the nucleolus is controlled additionally by a domain that favors 

its nucleoplasmic localization and acts essentially as a nucleo-

plasmic localization signal in a GTP-dependent manner ( Tsai 

and McKay, 2005 ;  Meng et al., 2007 ). Although structural biol-

ogy studies of nucleostemin in the GTP-bound or unbound state 

have yet to be undertaken, it can be plausibly anticipated that a 

conformational switch occurs and that this may be a key deter-

minant of the equilibrium binding affi nity constant of the two 

forms for nucleolar or nucleoplasmic proteins. 

 It should be noted that GTP-mediated binding is not the 

only mechanism that can control the nucleolar – nucleoplasmic 

cycling behavior of proteins. For example, a parallel case of an 

to the nucleolus is promoted by APC/C Cdh1 -controlled degrada-

tion of Polo kinase Cdc5, which is also a key factor in the nucle-

olar release of Cdc14 ( Visintin et al., 2008 ). This original 

concept of Cdc14 activation during mitosis has now been ex-

tended in two new directions. First, nucleoplasmic translocation 

of Cdc14 can also occur in response to stress and may play a 

role in solidifying the G2 DNA damage response checkpoint 

mechanism. This stress response role of Cdc14 is itself medi-

ated by the APC/C Cdh1 -controlled degradation of Polo kinase 

( Bassermann et al., 2008 ). In addition, Net1, the same protein 

that holds Cdc14 in the nucleolus in preparation for mitotic exit, 

has been shown to stimulate RNA polymerase I transcription 

independently of its cell cycle role ( Shou et al., 2001 ). The latter 

fi nding exemplifi es the potential versatility of nucleolar proteins 

in both ribosome biosynthesis and cell cycle progression, a 

point to be revisited in the following paragraph. 

 Nucleostemin 
 A newcomer to this fi eld is a nucleolar protein highly expressed 

by stem cells and cancer cells, hence named nucleostemin ( Tsai 

and McKay, 2002 ). Nucleostemin is a GTP-binding protein 

whose intranuclear distribution is regulated by its state of GTP 

binding ( Tsai and McKay, 2005 ). The pro – self renewal and cell 

cycle regulatory activities of nucleostemin may be related to its 

interaction with a multitude of proteins, including p53 ( Tsai 

and McKay, 2002 ;  Ma and Pederson, 2007 ), MDM2 ( Dai et al., 

2008 ;  Meng et al., 2008 ), TRF1 (telomeric repeat binding factor 1; 

 Zhu et al., 2006 ), ARF ( alternative reading frame ;  Ma and 

Pederson, 2007 ), RSL1D1 (ribosomal L1 domain containing 1; 

also known as cellular senescence-inhibited gene or CSIG; 

 Meng et al., 2006 ), and B23/nucleophosmin ( Ma and Pederson, 

2008a ). The complexity of nucleostemin ’ s activity is refl ected 

not only by the variety of its interacting partners but also by 

how it infl uences each of these proteins. In the case of p53 for 

example, nucleostemin depletion leads to p53 activation via its 

interaction and regulation of MDM2 ( Dai et al., 2008 ;  Meng 

et al., 2008 ). However, overexpression of nucleostemin may 

also trigger similar p53 phenotypes ( Dai et al., 2008 ;  Ma and 

Pederson, 2008b ). Based on data showing that nucleoplasmic 

mobilization of nucleostemin stabilizes MDM2 protein and 

promotes G2 – M progression, a proposed idea is that the nucleo-

lus operates as a counting device, which tallies the number of 

cell division by the loss of MDM2 protein during mitosis and 

signals cell cycle exit when MDM2 protein falls below a thresh-

old level ( Meng et al., 2008 ). In this model, nucleostemin plays 

a role in inactivating this counting mechanism to safeguard the 

proliferative potential of continuously dividing cells. Notwith-

standing these fi ndings, a potential function of nucleostemin 

within the nucleolus has just begun to emerge. Among the three 

nucleostemin-binding proteins in the nucleolus, ARF and B23 

have been known to participate in both the cell cycle regula-

tory and ribosomal-processing pathways. The other protein, 

RSL1D1, has recently been shown to delay replicative senes-

cence in human fi broblast cells by regulating PTEN ( Ma et al., 

2008 ). Could RSL1D1 be the primary nucleolar target of nucleo-

stemin that confers its anti-senescence activity, as seen in 

mouse embryonic fi broblast cells ( Zhu et al., 2006 ); or could 
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( Pederson and Kumar, 1971 ), and yet also points to a surveil-

lance mechanism that destroys excess ribosomal proteins. 

 Conclusions 
 Although the idea that nucleoli serve only as a passive, func-

tionally inert hideout for certain proteins has been the conven-

tional thinking for years, a different school of thought is gaining 

momentum; i.e., these proteins may be moonlighting in other 

jobs within the nucleolus. Of course, a question left hanging is 

why these functions would necessarily require a nucleolar siting 

as opposed to some discrete domain or body forming elsewhere 

in the nucleoplasm. It would seem that the most likely explana-

tion is that there is some fundamental cross-regulatory link be-

tween ribosome biosynthesis and cell cycle progression, an idea 

that fi rst arose many years ago in prokaryotic systems and 

remains a perfectly plausible scenario in eukaryotes as well 

( Rudra and Warner, 2004 ;  Bernstein et al., 2007 ;  Pederson, 2007 ). 

Not to be discounted is the possibility that this may occur sim-

ply because the nucleolus houses some enzymatic activities that 

are shared by the processing pathways of multiple proteins. As 

the production of ribosomes becomes the dominant event in 

cells and draws those utilitarian enzymes in and around the nu-

cleolus, so go the other proteins whose maturation depends on 

them. Though this is speculation, all these intriguing possibili-

ties can now be addressed one by one with the new methodolo-

gies available, and, most importantly, the always trustworthy 

catalyst of progress: an open mind. We expect the list of nucleo-

lar functions to grow in the future, and so will our view of this 

beguiling nuclear domain be changed again, with pleasure. 
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