Clarification of human blood ILC subtype interrelatedness and discovery of amphiregulin production by human NK cells shed light on HIV-1 pathogenesis [preprint]

Yetao Wang

University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs

Part of the Amino Acids, Peptides, and Proteins Commons, Animal Experimentation and Research Commons, Immunology of Infectious Disease Commons, Investigative Techniques Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons, Pathology Commons, and the Viruses Commons

Repository Citation

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in University of Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Clarification of human blood ILC subtype interrelatedness and discovery of amphiregulin production by human NK cells shed light on HIV-1 pathogenesis

Yetao Wang¹, Lawrence Lifshitz¹, Noah J. Silverstein¹, Esther Mintzer², Kevin Luk², Pam St. Louis³, Michael A Brehm³, Scot A. Wolfe², Steven G. Deeks⁴, and Jeremy Luban¹,⁵,⁶,⁷,⁸*

¹ Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
²Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
³Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
⁴Department of Medicine, University of California, San Francisco, CA, USA
⁵Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
⁶Broad Institute of Harvard and MIT, Cambridge, MA, USA
⁷Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
⁸Lead contact

*Correspondence: jeremy.luban@umassmed.edu
Abstract

Human blood innate lymphoid cells (ILCs), which include ILCs and natural killer (NK) cells, derive from a common CD117⁺ILC precursor (ILCP). Yet, the relationship among the ILC subsets remains unclear. Bulk and single cell RNA-Seq and ATAC-Seq showed that blood ILC subsets cluster into ILC2s, ILCPs, a mixed cluster of CD56dim and CD56⁻ NK cells, and a separate cluster of CD56hiNK cells that share features with both ILCs and CD56dim NK cells. In surprising contrast to mice, tissue repair protein amphiregulin was produced by human NK cells, with higher levels in CD56hiNK cells than in ILCs. Amphiregulin production by human NK cells was promoted by TCF7/WNT signaling and inhibited by TGFB1, a cytokine elevated in people living with HIV-1. Knockout of RUNX3, a WNT antagonist downstream of TGFB1, increased amphiregulin production in human NK cells. CD4⁺T cell depletion in people living with HIV-1, or from PBMCs in tissue culture, was associated with expansion of metabolically inert, nonfunctional CD56⁻NK cells. Experiments in tissue culture and in humanized mice revealed that CD56⁻NK cells are derived from CD56dimNK cells, and that CD4⁺T cell-derived IL-2 stimulates MTOR activity in CD56dimNK cells to prevent this transition. These findings clarify how ILC subsets are related to each other and provide insight into how HIV-1 infection disrupts ILC homeostasis and contributes to pathology.
INTRODUCTION

Innate lymphoid cells (ILCs) are a diverse population of cells which contribute to a broad range of biological functions, including tissue homeostasis and repair, inflammation, and protection from infection (Barrow and Colonna, 2019; Ebbo et al., 2017; Klose and Artis, 2016). All ILCs bear the leukocyte common antigen CD45, but lack markers of well-characterized cellular lineages, including T cells, B cells, hematopoietic stem cells, mast cells, and myeloid cells (Hazenberg and Spits, 2014; Wang et al., 2020; Yudanin et al., 2019).

CD127, the cell surface protein IL-7Rα encoded by IL7R, defines a heterogeneous subset of cytokine-producing ILCs, with developmental and functional parallels to CD4+ helper T cells (Artis and Spits, 2015; Cherrier et al., 2018). Specifically, ILC1s are analogs of Th1 cells, which are defined by the transcription factor TBX21, and produce IFN-γ. Similar to Th2 cells, ILC2s are defined by GATA3+, bear cell surface marker CRTH2+, and produce IL-4, IL-5, and IL-13. ILC3s are counterparts of Th17 cells, which express RORγT and produce IL-17 and IL-22.

Natural killer (NK) cells are a subset of ILCs, more akin to CD8+ T cells in that they have granzyme and perforin-mediated cytolytic activity against tumor cells, and virus-infected cells (Artis and Spits, 2015; Cherrier et al., 2018). NK cells bear proteins that distinguish them from the other ILCs, including CD56, CD16, and the transcription factor EOMES (Artis and Spits, 2015; Cherrier et al., 2018; Spits et al., 2016; Wang et al., 2020).

Despite diversity in gene expression, protein production, and phenotype, all human ILC subsets can be generated experimentally from a common innate lymphoid cell precursor (ILCP) found in the blood (Lim et al., 2017). Consistent with shared derivation from a common precursor, the canonical markers described above do not always discriminate between the ILC subsets. For example, unlike the vast majority of Cd56dimNK cells, Cd56hiNK cells bear CD127, CD117, and TCF7 (Wang et al., 2020), proteins typical of ILCs. Additionally, cytokines found in specific environments can reveal phenotypic and functional plasticity in ILCs. CD127 on ILC2s is downregulated by IL-33 in murine lung, mediastinal lymph node, and spleen (Li et al., 2017), or when human blood ILCs are incubated in vitro with common γ chain cytokines (Wang et al., 2020). NK cells
are commonly distinguished from ILCs based on expression of EOMES, but this is not absolute (Bal et al., 2020; Colonna, 2018); TGF-β in the salivary gland suppresses EOMES and promotes the ILC-associated genes TNFSF10 and CD73 (Cortez et al., 2016, 2017). Incubation of Lin−CD34−CD56−CD117+ cells from human tonsil with IL-7 and FLT3L, in the presence of OP9-DL1 feeder cells, generates a mixture of CD94+NK cells and NKp44+ILC3s (Chen et al., 2018).

Perturbation of ILC and NK cell subsets has been reported in association with Crohn’s disease, psoriasis, chronic obstructive pulmonary disease, non-small cell lung cancer, or infection with any of several viruses, including human immunodeficiency virus type 1 (HIV-1), human cytomegalovirus (HCMV), hepatitis C virus (HCV), and influenza A virus (Bal et al., 2020; Lugli et al., 2014; Wang et al., 2020). People living with HIV-1 have permanent depletion of ILC2s in the blood, and of ILC3s in the intestinal lamina propria, even after viremia has been suppressed by antiviral therapy (Kløverpris et al., 2016; Monticelli et al., 2015; Wang et al., 2020).

CD56+ NK cells are increased in the blood of people living with HIV-1 or HCV, and in people with systemic lupus erythematosus (Poli et al., 2009; Wang et al., 2020), presumably as a result of chronic inflammation. The numbers of a functionally-defective Lin−CD56−CD16+NK cell subset are also expanded by viral infection (HIV-1, HCV, HCMV, and hantavirus), or by autoimmune disease (Björkström et al., 2010; Lugli et al., 2014; Mavilio et al., 2005). These CD56−NK cells appear to be derived from CD56dim NK cells in that the expansion of CD56−NK cells is accompanied by a decrease in CD56dim NK cells (Björkström et al., 2010; Lugli et al., 2014; Mavilio et al., 2005), and when CD56−NK cells from people with untreated HIV-1 infection are incubated ex vivo with exogenous IL-2, CD56 becomes detectable, though cytolytic function is not restored to the level of CD56dim cells (Mavilio et al., 2005).

Taken together, these observations concerning human blood ILCs and NK cells, under conditions of normal homeostasis and in the context of pathogenic inflammation, indicate that much remains to be clarified regarding the relationship between these cell types. Here, global transcriptional and chromatin profiling was used to investigate the relationships between blood ILC and NK cell subsets, and the functional deviations of these cells in people living with HIV-1 infection. These studies provide new insight into
the relationship between these innate lymphoid cell types and revealed previously unappreciated functions of NK cells.
RESULTS

CD127 and CD56 identify four discrete cell populations among Lin− human PBMCs

Steady state human blood innate lymphoid cell populations are composed of Lin−CD127+CD56− ILCs and Lin−CD127−CD56+ NK cells (Bal et al., 2020; Hazenberg and Spits, 2014; Wang et al., 2020). However, Lin−CD127−CD56− cells distinct from ILCs are often apparent (Figure 1A). To better characterize this population, and to clarify its relatedness to ILCs, Lin−CD45+CD56−CD127+ blood cells were enriched for genes specific to ILC2s, or shared with ILCPs, including IL7R (CD127), IL4R, PTGDR2 (CRTH2), CCR6, CCR7, GATA3 and TCF7, and gene ontology (GO) analysis highlighted expressed genes associated with cytokine production (Figure 1C,1D and Table S1; adjusted p value cut-off <0.01).

The Lin−CD45+CD56−CD127− population was enriched for mRNAs typical of NK cells: TBX21, EOMES, IFNG, KLRD1 (CD94), 2B4 (CD244), FCGR3A, GZMB, GZMH, GNLY, KIR2DL3, KIR2DL4, KIR2DS4, KIR3DL1, KIR3DL2, and KIR3DL3 (Figure 1C and Table S1). SEMA4D regulates NK cell killing activity and IFN-γ production through interaction with CD72 on target cells (Eriksson et al., 2012; He et al., 2017; Kumanogoh and Kikutani, 2004; Mizrahi et al., 2007), and the SEMA4D signaling components, ARHGEF12, ERBB2, RHOC, and MYL9, were well expressed on these cells (Figure 1E and Table S1), as were NK cell-specific receptors, killer Ig-like receptors (KIRs), CD94-NKG2C, and NKp44, that use DAP12 as a signal transduction element (Lanier, 2009; Turnbull and Colonna, 2007) (Figure 1E and Table S1). TBX21 and CD16 proteins were detected by flow cytometry on the majority of Lin−CD45+CD56−CD127− cells, confirming that, despite undetectable CD56 protein, this population consists of bona fide NK cells, a rare cell type in steady state that expands in chronic inflammatory conditions such as HIV-
1 and HCV infection (Björkström et al., 2010; Lugli et al., 2014; Mavilio et al., 2005) (Figure 1F and 1G).

Taking together the transcriptional profiling and flow cytometry analysis, Lin−PBMCs can be divided into four main ILC subsets, CD56hiNK cells, CD56dimNK cells, CD56−NK cells, and CD127+ILCs, the latter including CD127+CRTH2+ILC2s and CD127+CRTH2−CD117+ILCPs (Figure 1F, 1G and S1B).

Global transcription and epigenetic features of the four ILC subsets in human blood

To better characterize the four ILC subsets in human blood, PBMCs from four healthy blood donors were sorted into ILCs (Lin−CD45+CD56−CD127+), CD56−NK cells (Lin−CD45+CD56−CD127−CD16+), CD56dimNK cells (Lin−CD45+CD56dim), and CD56hiNK cells (Lin−CD45+CD56hi). Each population was then separately subjected to bulk RNA-Seq (Figure S1C).

As compared with ILCs, CD56−, CD56dim, and CD56hi NK cells exhibited 1,128, 1,236, and 910 DEgenes, respectively (Figure 2A and Table S2). In contrast with CD56− and CD56dim NK cells, CD56hiNK cells shared many transcripts with ILCs, including IL7R (CD127), KIT, IL4R, IL1RL1 (IL33R), CCR7, GPR183, TCF7, and MYC (Figure S2A and Table S2) (Vivier et al., 2018). Surprisingly, AREG, the gene encoding the epidermal growth factor (EGF)-like amphiregulin that is produced by ILC2s and promotes tissue repair and homeostasis (Zaiss et al., 2015), was expressed in all NK cell subsets, with highest levels in CD56hi NK cells (Figure 2B and Table S2). In contrast, multiple mouse datasets showed that AREG was expressed by ILC2s, but not by other ILC subsets, nor by NK cells (Figure S2B-S2E and Table S3) (Pokrovskii et al., 2019; Shih et al., 2016; Yoshida et al., 2019), indicating a major difference in AREG regulation between mouse and human.

Principal component analysis confirmed that the human blood ILC transcriptome was distinct from that of all three NK cell subsets, that CD56dim and CD56− NK cell transcriptomes were nearly indistinguishable from each other, and that the CD56hiNK cell transcriptome was distinct from that of the other NK subsets (Figure 2C).
Reactome analysis showed that, as compared with ILCs, 86 classified pathways were enriched in CD56− and CD56dim NK cells, whereas only 8 pathways were enriched in CD56hi NK cells (Figure 2D and Table S2). All NK cell subsets, though, were distinguished from ILCs by five pathways, which highlight the fundamental role of IFN-γ and DAP12 signaling in the three NK cell subsets (Figure 2E, S2F and Table S2). Typical of cells with a primary role in secretion of cytokines, the ILCs had high-level expression of genes encoding ribosomal proteins, and proteins involved in translation initiation and elongation (Figure 2F, S2G and Table S2). The ILCs were further distinguished from CD56hi NK cells by higher level expression of IL-4, IL-13, and SCF-KIT pathways, consistent with the established functions of ILC2s and ILCPs (Figure 2G, S2H and Table S2).

The global transcriptional profiles of the ILCs and NK cell subsets were mirrored by the chromatin accessibility of genes, as determined by ATAC-Seq. DAP12, GNLY, EOMES, TBX21, NKG7, ILR2B, and CST7 loci were more accessible to Tn5 transposase in NK cell subsets, whereas IL13, IL17RB, PTGDR2, TNFRSF25, SOCS3, IL23A, and IL32 loci were more accessible in ILCs (Figure 2H and S3A). The IL7R promoter was open in both ILCs and CD56hi NK cells, but not in CD56dim− NK cells, and the AREG promoter was accessible in all NK subsets, as well as in ILCs (Figure 2H). In contrast to these results with human cells, the mouse Areg promoter was only accessible in mouse ILC2s, but not in other ILC subsets or in NK cells (Figure S3B). Interestingly, despite undetectable RORγT protein in blood ILCs (Figure 1G), which are primarily ILC2s in phenotype, the chromatin at the RORC promoter was open (Figure S3A), consistent with the phenotypic plasticity of these cells and their potential to acquire an ILC3 phenotype (Lim et al., 2017).

Single cell transcriptional analysis of human blood ILCs and NK cells

To clarify the relationship among different ILC subsets, PBMCs from three healthy blood donors were sorted into ILCs (Lin−CD45+CD56−CD127+), CD56−NK cells (Lin−CD45+CD56−CD127−CD16+), CD56dim NK cells (Lin−CD45+CD56dim), and CD56hi NK cells (Lin−CD45+CD56hi). Equal numbers of each subset were pooled and subjected to single cell RNA-Seq (Figure S1C). Transcriptomes from 5,210 individual cells were analyzed,
and 96% of the cells fit within one of four main clusters (Figure 3A), though surprisingly, not the same four subsets that had been sorted.

Lin−CD45+CD56−CD127+ cells formed two distinct clusters. Cluster one was enriched for expression of genes that define ILC2s, including IL7R (CD127), TCF7, PTGDR2 (CRTH2), GATA3, IL2RA, TNFRSF25, LTB, IL17RB (Figure 3B-3E and Table S4). GATA3-AS1, a gene which increases transcription of IL-5, IL-13, and GATA3 (Gibbons et al., 2018), was also enriched in this cluster, as were HPGD and HPGDS, genes encoding prostaglandin D2 biosynthetic enzymes required for ILC2 cytokine production (Figure 3C-3E) (Maric et al., 2019).

Cluster two lacked critical ILC2-associated transcripts, and had higher expression of TNFRSF4 and TNFRSF18, defining features of ILCPs (Lim et al., 2017). FOS, JUN, and JUNB, genes required for cell survival, proliferation, and development (Shaulian and Karin, 2001), were also enriched in this ILCP cluster (Figure 3C-3E and Table S4).

Cluster three was defined as CD56hiNK cells, based on expression of GZMK (Wang et al., 2020), and on enrichment for transcripts from both NK cells and ILCs, including TBX21, KLRD1, IL7R, LTB, GATA3, and TCF7 (Figure 3B-3E and Table S4). Consistent with the PCA analysis of bulk RNA-Seq data (Figure 2C), cluster four consisted of both CD56dim and CD56− NK cells, despite the fact that the two subsets had been separated by flow cytometry based on CD56 positivity. The CD56dim/− cluster was distinguished from CD56hiNK cells by exclusively expressing GZMH, and higher levels of CCL3, CCL4, and CCL5. The NK cell signature genes KLRD1, CMC1, NKG7, and CST7 were shared by the CD56hi and CD56dim/− NK cell clusters (Figure 3B-3E and Table S4) (Crinier et al., 2018). Consistent with bulk RNA-Seq data (Figure S2 and Table S2), AREG mRNA was detected in all four clusters (Figure 3C and Table S4).

Pseudotime analysis (Qiu et al., 2017a; Trapnell et al., 2014) was used to determine how the four clusters of blood ILCs are related to each other. ILCs and ILCPs formed one branch, and CD56− and CD56dim NK cells formed a second distinct branch (Figure 3F). ETS1, ID2, IKZF1, and IL2RG, genes essential for ILC and NK cell development (Barton et al., 1998; Walker et al., 2013; Zook et al., 2016), were expressed along the full trajectory from ILCs/ILCPs to CD56dim/−NK cells (Figure 3G). Consistent with CD56hiNK cells exhibiting epigenetic and transcriptional features of both ILCs (IL7R, KIT,
IL4R, IL1RL1, CCR7, GPR183, MYC and TCF7), and NK cells (EOMES, TBX21, NCAM1, KLRD1, GZMB, GNLY, and KIRs) (Figure 2 and Table S2), pseudotime analysis placed CD56^{hi}NK cells along the trajectory at the junction between ILCs/ILCPs and CD56^{dim/-} NK cells (Figure 3G), demonstrating that CD56^{hi}NK cells occupy an intermediate state between these clusters.

Human blood NK cells are major producers of amphiregulin

Given the unexpectedly high-level AREG expression in human blood NK cells (Figure 2B and 3C), flow cytometry was used to assess cell-associated AREG-encoded protein. Amphiregulin was readily detected in ILCs and all NK subsets after stimulation with PMA and ionomycin (Figure 4A). Whether assessed for mean fluorescence intensity or percent positive cells, the amphiregulin protein signal in CD56^{hi}NK cells was higher than in ILCs (Figure 4A-4C).

AREG-expressing ILCs maintain tissue homeostasis, and limit the tissue damage that results from inflammation (Monticelli et al., 2011, 2015; Zaiss et al., 2015). People living with HIV-1 infection have reduced numbers of ILCs, and this reduction correlates inversely with systemic inflammation (Wang et al., 2020). Compared with HIV-1⁻ individuals, people living with HIV-1 who were not taking antiretroviral therapy (ART) had a decreased percentage of AREG⁺ cells among all NK cell subsets (Figure 4C). This was even the case among the controllers who spontaneously maintained viral load below 2,000 copies of HIV-1 gRNA/ml without ART (Figure 4C). In HIV-1<sup+</sup> individuals on ART, the percentage of AREG⁺ cells was decreased, but only among CD56^{hi}NK cells and ILCs (Figure 4C). Interestingly, the percentage of AREG⁺NK cells correlated with the frequency of ILCs (Figure 4D), and, in people with viremia, AREG⁺NK cells correlated with the number of CD4<sup+</sup>T cells (Figure 4E). These results suggest that AREG⁺NK cells play an anti-inflammatory role that prevents disease progression during HIV-1 infection.

CD56^{hi}NK cells and ILCs were distinguished from the other NK cell subsets in that they are enriched for expression of TCF7, and other genes in the WNT signaling pathway (Figure S2A and Table S1). The open chromatin region surrounding the AREG promoter (chr4:75,310,271-75,311,679) contains six TCF7-binding sites (Figure 4F). Transcription factor RUNX3, an antagonist of TCF7 and WNT signaling (Ito et al., 2008; Shan et al.,
2017), was expressed at a higher level in all NK cell subsets than in ILCs (Figure 4G), and six RUNX3 binding sites were present in the open chromatin region of AREG (Figure 4F). Consistent with the biological significance of these differences in TCF7 and RUNX3 expression, WNT agonist CHIR99021 upregulated AREG production in NK cells, but not in ILCs (Figure 4H and 4I). Furthermore, TGF-β1, which activates RUNX3 signaling and is upregulated during HIV-1 infection (Ikushima and Miyazono, 2010; Ito and Miyazono, 2003; Theron et al., 2017; Wiercińska-Drapalo et al., 2004), attenuated the CHIR99021-induced AREG upregulation in NK cells (Figure 4J). Finally, the effect of Cas12a/RNP-mediated knockout (Liu et al., 2019) of RUNX3 was assessed in primary blood NK cells from healthy donors. The editing rate for either of two crRNAs was greater than 90% (Figure S4A, left panel) and, after knockout, RUNX3 protein was undetectable in most of these cells by flow cytometry (Figure S4A, right panel). As compared to cells treated with Cas12a/RNP and a control crRNA targeting the AAVS1, gene editing by either of the two RUNX-specific crRNAs increased AREG production in NK cells (Figure S4B and 4K). These results demonstrate that AREG production in NK cells and ILCs is differentially regulated by TCF7/WNT and RUNX3.

CD56dimNK cells become CD56− in the absence of IL-2-producing CD4+ T cells

The experiments above demonstrated that the majority of Lin−CD45+CD56−PBMCs are ILCs or CD56−NK cells (Figure. 1F). The stability of these innate lymphoid populations can be perturbed by autoimmune diseases or by the inflammation that accompanies viral infection (Bal et al., 2020; Lugli et al., 2014; Wang et al., 2020). In people living with HIV-1, ILCs are permanently depleted (Figure 5A) (Kløverpris et al., 2016; Wang et al., 2020) and this reduction correlated inversely with expansion of CD56−NK cells (Figure 5B, S4C and Table S5) (Kløverpris et al., 2016; Wang et al., 2020). However, among people living with HIV-1, CD56−NK cell expansion was greatest in HIV-1+ people who were not on ART (Figure 5C, S4D and Table S5) (Mavilio et al., 2005). The close similarity between CD56− and CD56dim NK cells revealed by our cell clustering algorithm (Figure 3), along with the inverse correlation in their numbers (Figure 5D), suggests that CD56dim NK cells give rise to CD56−NK cells in the context of HIV-1 infection (Figure S4E).
To identify an experimental condition in tissue culture under which CD56^{dim} NK cells give rise to CD56⁻ NK cells, and to determine whether a specific cell type among PBMCs stabilizes CD56^{dim}NK cells, PBMCs from HIV-1⁻ blood donors were maintained in culture for 5 days after selective depletion of either T cells (anti-CD3), CD4⁺T cells (anti-CD4), CD8⁺ T cells (anti-CD8), B cells (anti-CD19 and -CD20), monocytes and macrophages (anti-CD14 and -CD11b), stem cells (anti-CD34), myeloid cells (anti-CD33), or dendritic cells (anti-DC-SIGN and anti-BDCA3). Depletion of CD3⁺T cells, or of CD4⁺T cells, but not of any of the other cell types, increased the proportion of CD56⁻NK cells among Lin⁻TBX21⁺ cells in the cultures (Figure S5A, S5B and 5E). Consistent with this ex vivo experiment, CD56⁻NK cells were maximally increased in HIV-1⁺ individuals who were not treated with ART, in whom CD4⁺T cells were most severely depleted (Figure 5F and Table S5). This observation was further supported by the inverse correlation between the numbers of CD56⁻NK cells and CD4⁺T cells (Figure 5G).

Since CD4⁺T cells maintain NK cell physiology by secreting IL-2 (Jost et al., 2014; Wu et al., 2015), the effect of IL-2 was tested next. Addition of exogenous IL-2 to the PBMC cultures that had been depleted of CD4⁺ T cells maintained the stability of CD56^{dim}NK cells, and prevented the increase of CD56⁻NK cells (Figure 5H, 5I and S5C). The effect of IL-2 was counteracted by anti-IL-2 antibody (Figure 5I, 5J and S5D) or by inhibition of IL-2 signaling by STAT3 or JAK3 inhibitors, but not by STAT6, AKT, or ERK1/2 inhibitors, without compromising cell survival (Figure S5E and S5F). Moreover, TGF-β1 which suppresses IL-2 production by CD4⁺T cells during HIV-1 infection (Das and Levine, 2008; Ikushima and Miyazono, 2010; Ito and Miyazono, 2003; Theron et al., 2017; Wiercińska-Drapalo et al., 2004), increased the percentage of CD56⁻NK cells and decreased IFN-γ production, and exogenous IL-2 counteracted this effect (Figure 5K, 5L).

To test the importance of IL-2 in an in vivo model, NOD-scid Il2rg^{null} (NSG) mice reconstituted with human CD34⁺ hematopoietic stem cells were injected intravenously with PBS, or with recombinant adeno-associated virus expressing IL-2 (hIL-2-rAAV). 6 weeks later, the ratio of CD56^{dim} to CD56⁻ NK cells was greater in animals injected with hIL-2-rAAV than in controls (Figure 5M and S5G), and the NK cells from the hIL-2-rAAV-treated mice showed higher IFN-γ production than did cells from the control mice (Figure
Thus, IL-2 is critical for maintaining the physiologically intact CD56dimNK cells in vivo.

Metabolic difference between CD56dim and CD56−NK cells

Comparison of bulk RNA-Seq data from CD56dim and CD56−NK cells, sorted from healthy donors, revealed that genes associated with immune function (CD6, TRAF3, and IRAK2), and heightened glycolysis and oxidative phosphorylation (NCAM1, MRPL24, ACAT2, B3GAT1, DGKK), were enriched in CD56dimNK cells (Figure 6A and Table S6) (Poznanski and Ashkar, 2019). Genes regulating transcription, protein modification, and membrane trafficking (TXNDC5, PIGL, GORASP1, ARAP3 and AGAP1) were also enriched in CD56dimNK cells, whereas genes encoding proteins that inhibit AKT, G-protein signaling, transcription, and NK cell activation and survival (PRMT6, RGS1, ZBTB46, MED20, GNAQ) were enriched in CD56−NK cells (Figure 6A and Table S6).

Upon stimulation with IL-12, IL-15, and IL-18, as compared with CD56−NK cells, CD56dimNK cells had greater activation of genes involved in oxidative phosphorylation, translation, membrane trafficking, and immune activation, including DDX19B, RAB9B, RAB39B, TRMT13, GOLGA8B, NDUFAF4P1, COQ4, ACAD8, USP30, PPARGC1B, KLRF1, CXCR6, and STRA13 (Figure 6B and Table S6). Of note, the mitochondrial deubiquitinase USP30, which is important for protecting against depolarization-induced cell death (Liang et al., 2015), was also upregulated by stimulation to a greater extent in CD56dimNK cells. In contrast, genes encoding proteins that inhibit AKT-mTOR activity and transcription (CITED2 and TSHZ2), and genes associated with fatty acid and cholesterol catabolism (HADH and FDX1), all features of functionally impaired NK cells, were enriched in CD56−NK cells (Figure 6B and Table S6). The findings above indicate that CD56dimNK cells exhibit higher metabolic fitness upon stimulation than do CD56−NK cells. Consistent with this, multiple activators and targets of mTOR were upregulated, including MAPK6, SREF2, RPS6KA3, TFRC and SLC transporters. mTOR inhibitors, such as CITED2, FOXO3, and GSK3B, were downregulated by stimulation in CD56dimNK cells (Figure 6C and Table S6). Stimulation of CD56−NK cells downregulated mTOR activators or targets, such as MAPK3, MAPK13, MAPK14, SLC35A4 and COQ4 (Figure 6C and Table S6). Biological processes that are
critical for NK cell effector function were only enriched in CD56dimNK cells (Figure 6D, 6E and Table S6).

To better assess the effects of CD4+T cells and IL-2 on cultured CD56dimNK cells, RNA-Seq was performed on CD56dimNK cells which had been sorted from 5 day cultures of PBMCs, PBMCs depleted of CD4+T cells, or PBMCs depleted of CD4+T cells, but supplemented with exogenous IL-2. Gene set enrichment analysis (GSEA) revealed that CD56dimNK cells from the full PBMC culture, or from the CD4-PBMC culture supplemented with IL-2, but not from the CD4-PBMC culture, were enriched for transcripts that are highly expressed in sorted CD56dimNK cells, as compared with sorted CD56negNK cells from PBMC culture (Figure 6F, 6G and Table S7). The convergence of RNA-Seq data from the freshly sorted cells, and the cells cultured under different conditions, indicates that maintenance of metabolically healthy and functional CD56dimNK cells is dependent upon IL-2-producing CD4+T cells.

IL-2 prevents NK cell functional defects caused by mTOR inhibition

The above results indicate that CD56dim and CD56-NK cells have distinct metabolic profiles, with the former having greater mTOR activity (Figure 6). Glycolysis, oxidative phosphorylation, and RNA and protein synthesis, all processes regulated by mTOR signaling, are required for NK cell killing activity and cytokine production (Ganeshan and Chawla, 2014; Poznanski and Ashkar, 2019), and IL-2 induced AKT-mTOR activation is critical for NK cell effector function (Ray et al., 2015; Wu et al., 2017). In fact, IL-2 treatment increased the activity of multiple mTOR components in NK cells, as evidenced by enhanced phosphorylation of mTOR itself on Ser2448, AKT on Ser473, 4EBP1 on Thr36 and Thr45, and S6 on Ser235 and Ser236, and increased surface levels of the transferrin receptor CD71 (Figure 7A), the synthesis of which is known to be positively regulated by mTOR (Zheng et al., 2007). Depletion of CD4+T cells from cultured PBMCs resulted in downregulation of these markers (Figure 7B), consistent with the role of CD4+T cells in maintaining metabolic fitness of NK cells (Figure 5E-5I and 6F).

When mTOR was inhibited by incubating PBMCs in rapamycin, the percentage of CD56-NK cells was increased (Figure 7C and S5I) and IFN-γ production of NK cells cultured without CD4+T cells was decreased (Figure 7D). Moreover, IL-2 treatment
rescued IFN-γ production in the presence of rapamycin (Figure 7D). More potent inhibition by Torin 1 (mTOR kinase inhibitor) led to impaired IFN-γ production by NK cells, even in the presence of CD4⁺T cells; however, this inhibition was overcome by addition to the culture of exogenous IL-2 (Figure 7E). Thus, NK cell functionality is dependent on mTOR, the activity of which is maintained by IL-2-producing CD4⁺ T cells.

DISCUSSION

The bulk RNA-Seq profiling reported here identified four discrete subpopulations of lineage negative cells among human PBMCs: ILC2s, ILCPs, CD56^{hi}NK cells, and a distinct cluster which included both CD56^{dim} and CD56⁻NK cells (Figure 2C). Though ILCs and all NK cell subsets were well-separated, CD56^{hi}NK cells shared many features with both ILCs and conventional NK cells (Figure S2A and S2B). Reactome analysis showed that CD56^{hi}NK cells share DAP12 signaling with the other NK subsets, as well as translation regulators typical of ILCs (Figure 2E and 2F). Confirming the expression data, ATAC-Seq showed that CD56^{hi}NK cells have open chromatin at loci found in both CD56^{dim/−}NK cells and ILCs (Figure 2H). Pseudotime analysis of single cell transcriptome data placed CD56^{hi}NK cells at a position between ILCs/ILCPs and CD56^{dim/−}NK cells (Figure 3F and 3G). These observations provide new insight into the relationship between human ILCs and NK cells.

An important discovery here was that NK cells express AREG (Figure 4A and 4B), an epidermal growth factor family member that plays important roles in tissue repair and immune tolerance in both mouse models and human disease (Zaiss et al., 2015). Multiple datasets demonstrate that mouse ILC2s express Areg, but that, in mouse NK cells, the Areg locus is closed, and Areg is not expressed (Figure S2B and S3B). Furthermore, unlike in humans, the Areg open chromatin region in mouse ILC2s (chr5: 91,286,257-91,290,763) does not have TCF7 binding sites (http://jaspar.genereg.net/). The fact that the regulation of this gene is so different between the two species (Figure 4F) may explain why production of this homeostatic protein by NK cells has not been reported before. In fact, AREG expression was even higher in CD56^{hi}NK cells than in ILC2s (Figure 4A and 4B). AREG expression by NK cells suggests that, in addition to their well-characterized antiviral function, human NK cells may actively limit tissue damage and inflammation that accompanies immune activation. Such non-immune host defense strategies that promote...
host survival without decreasing pathogen burden have been called disease tolerance (Ayres, 2020; Medzhitov et al., 2012).

The AREG-deficiency described here in NK cells isolated from people living with HIV-1 would be expected to contribute to systemic inflammation and increase the risk of cardiovascular disease and cancer in these individuals (Deeks et al., 2013). Elevated TGF-β1 has been associated with non-AIDS inflammatory disorders (Theron et al., 2017) and the locus-specific chromatin assays performed here showed that TGF-β1-RUNX3 signaling negatively regulates AREG expression in NK cells (Figure 4J and 4K). Perhaps these effects on AREG expression explain in part the persistence of inflammation in this TGF-β1-induced immunosuppressive environment.

In people living with HIV-1, AREG⁺NK cells were not only decreased in viremic individuals, but also in spontaneous controllers (Figure 4C). In light of this observation, it is interesting that elite controllers experience more frequent hospitalizations for non-AIDS inflammatory complications than do HIV-1⁺ people on ART (Crowell et al., 2015). Though many people in the spontaneous controller group studied here do not satisfy the strict criteria required to be labeled as elite controllers, the reduction in AREG⁺ NK cells suggests that spontaneous control of viremia comes at the cost of inflammation. Drugs such as CHIR990212, which boost WNT signaling and AREG production by NK cells (Figure 4H) might provide benefit to people living with HIV-1 by countering HIV-1-associated inflammation.

Previous studies suggest that the numbers of CD56⁻NK cells increase in people with active HIV-1 replication at the expense of CD56dimNK cells (Björkström et al., 2010; Mavilio et al., 2005). However, the mechanism behind this shift towards a functionally defective NK cell population required further qualification. To mimic the CD4⁺T cell depletion caused by HIV-1 in vivo, CD4⁺T cells were depleted from PBMCs cultured ex vivo. This resulted in decrease in CD56dimNK cells and concomitant increase in CD56⁻NK cells (Figure 5E, 5H and S5B). In this experimental system, the basal levels of IL-2 secretion by the CD4⁺T cells maintained stable numbers of CD56dimNK cells, since exogenous IL-2 was sufficient to replace CD4⁺T cells, and IL-2 neutralization rendered CD4⁺T cells ineffective (Figure 5H-5J). Humanized mice treated with hIL-2-rAAV exhibit higher CD56⁺NK cells in the blood, spleen and liver, and elevated IFN-γ production than
their counterparts, indicating that IL-2 plays a critical role in maintaining NK cell homeostasis and function (Figure 5M and 5N).

As compared to CD56dimNK cells, CD56−NK cells were defective in multiple metabolic pathways, as evidenced by reduced expression, under both resting and stimulated conditions, of genes involved in glycolysis and oxidative phosphorylation (Figure 6A-6E). In response to stimulation, many mTOR related genes required for upregulation of RNA and protein synthesis (Table S6), were upregulated in CD56dimNK cells, but not in CD56−NK cells (Figure 6C-6E). Given the effect on NK cell subsets of culturing PBMCs in the absence of CD4+T cells or in the presence of exogenous IL-2 (Figure 6F and 6G), it was particularly interesting that exogenous IL-2 promoted mTOR activity whereas CD4+T cell depletion inhibited it (Figure 7A and 7B). Further, NK cell functional defects caused by pharmacologic inhibition of mTOR were rescued by exogenous IL-2 (Figure 7D and 7E). Gene set enrichment analysis demonstrated that CD4+T cells and IL-2 are similarly important for maintaining the transcriptional profile of CD56dimNK cells (Figure 6E and 6F), indicating that mTOR maintains normal NK cell physiology. It has been suggested that mTOR inhibition may serve as an effective intervention to control HIV-1 infection (Besnard et al., 2016; Donia et al., 2010; Heredia et al., 2015; Martin et al., 2017). However, the data obtained here suggests that mTOR inhibition would compromise NK cell effector functions important for viral clearance.
ACKNOWLEDGEMENTS

We thank the study participants who provided blood samples and their caretakers. M. Krone (UCSF) provided Institutional Review Board regulatory assistance, sample preparation, and record keeping. S. Maitland provided advice on the purification of programmable nuclease proteins. Ruijia Wang assisted with data analysis. This research was supported by NIH grants R37AI147868 to J.L., R01HL150669 to S.A.W., R24OD026440, R01AI132963, and UC4DK104218 to M.A.B., F30HD100110 to N.J.S., and F31HL147482 to K.L. The UCSF-based SCOPE cohort was supported by the UCSF/Gladstone Institute of Virology and Immunology CFAR (P30 AI027763), and the CFAR Network of Integrated Systems (R24 AI067039). The content of this publication does not necessarily reflect the views or policies of DHHS, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government.

AUTHOR CONTRIBUTIONS

Y.W. and J.L. designed the experiments. Y.W. performed the experiments with assistance from L.L., N.J.S., E.M., K.L., P.S.L., M.A.B. and S.A.W.. Y.W. and J.L. analyzed the experimental data. Y.W., L.L., N.J.S. and J.L. analyzed the expression data. S.G.D. obtained and provided the clinical samples. Y.W. and J.L. wrote the manuscript, which was revised and approved by all authors.

DECLARATION OF INTERESTS

M.A.B. is a consultant for The Jackson Laboratory. S.A.W. is a consultant for Chroma Medicine. K.L. and S.A.W. have filed a patent application related to genome editing reagents described in this work.
FIGURE LEGENDS

Figure 1. Characterization of Lin− lymphoid cells among human PBMCs.
(A) CD127+ and CD127− cells from Lin−CD56− population after gating on lymphoid, singlet, live, CD45+ cells of PBMCs. Lineage (Lin) markers include antibodies against: CD3, CD4, TCRαβ, TCRγδ, CD19, CD20, CD22, CD34, FcεRIα, CD11c, CD303, CD123, CD1a, and CD14. (B) Heatmap of differentially expressed genes by RNA-Seq, sorted Lin−CD56−CD16−CD127+ versus Lin−CD56−CD16−CD127− cells, from PBMCs of five donors (log2 fold change >1, padj<0.01 determined by DESeq2). (C) normalized counts of Lin−CD56−CD16−CD127+ (red) and Lin−CD56−CD16−CD127− (blue) cells related genes from B (n=5). (D, E) Reactome analysis based on enriched transcripts of Lin−CD56−CD16−CD127+ cells (D) or Lin−CD56−CD16−CD127− cells (E). (F) Gating strategy for CD56hiNK, CD56dimNK, CD56−NK cells and ILCs. (G) The indicated populations as in F were detected with TBX21, CRTH2 and RORγT. All data were generated using blood from healthy donors. See also Figure S1.

Figure 2. Transcriptional and chromatin accessibility analysis of human blood NK cells and ILCs.
(A) Heatmap of differentially expressed genes by RNA-Seq, sorted CD56hiNK, CD56dimNK, CD56−NK cells and ILCs, from PBMCs of 4 donors (log2 fold change >1, p<0.01 determined by DESeq2). (B) Normalized counts of AREG from (A). (C) PCA based on RNA-Seq data of indicated populations. (D) Number of enriched pathways based on differentially expressed genes of indicated NK subsets versus ILCs by Go Enrichment Analysis. (E) Enriched pathways shared by all NK subsets as compared with ILCs. (F) Shared enriched pathways of ILCs compared with CD56dim or CD56−NK cells. (G) Enriched pathways of ILCs compared with CD56hiNK cells. (H) ATAC-Seq analysis of sorted CD56hiNK, CD56dimNK, CD56−NK cells and ILCs at indicated gene loci (representative of two donors). All data were generated using blood from healthy donors. See also Figure S2 and S3.

Figure 3. Single cell transcriptome analysis of blood NK cells and ILCs.
(A) Two-dimensional t-SNE plot of single cell RNA-Seq of sorted CD56^{hi} NK, CD56^{dim} NK, CD56^{-} NK cells and ILCs. (B, C) Expression and density of the indicated genes within t-SNE plots. (D) Heatmap of uniquely higher or lower expressed genes of NK cell or ILC clusters. (E) Representative genes of indicated clusters. (F) Minimum spanning tree based on the transcriptome of individual cells from (A) showing pseudotime trajectory (black line, cells are color coded by clusters). (G) the expression of genes that are enriched by NK cells and/or ILCs along the pseudotime trajectory. All data were generated using blood from healthy donors.

Figure 4. NK cells are major AREG producers among lineage negative PBMCs.
(A) PBMCs were stimulated with PMA and ionomycin for 3 hrs then AREG from different subsets of NK cells and ILCs were detected. (B) The mean fluorescence intensity (MFI) of AREG detected in (A) (n=20). (C) PBMCs from HIV-1^{-} (n=20), HIV-1^{+} viremic (n=20), HIV-1^{+} ART suppressed (n=19), and HIV-1^{+} spontaneous controllers (n=20) were stimulated as described in (A) the AREG^{+} cells from indicated populations were detected. (D) Correlation of AREG^{+} NK cells with ILCs (n=79), correlation coefficient (r) by Pearson, zero slope p value determined by the F-test. (E) Correlation of AREG^{+} NK cells with CD4^{+} T cell numbers in HIV-1^{+} viremic people (n=20), correlation coefficient (r) by Pearson, zero slope p value determined by the F-test. (F) Schematic map of AREG open chromatin region in NK cells detected by ATAC-Seq, TCF7 and RUNX3 binding motif were predicted by JASPAR motif analysis (http://jaspar.genereg.net/). (G) Normalized counts of RUNX3 by RNA-Seq (n=4). (H, I) PBMCs were treated with CHIR99021 (10uM) for 48 hrs, then stimulated as described in (A), the percentage of AREG^{+} NK cells (H) and AREG^{+} ILCs (I) were shown (n=15). (J) As in (H), PBMCs were additionally treated with CHIR99021 and TGF-β1 before AREG^{+} NK cells were detected (n=8). (K) AREG^{+} NK cells were detected after IL-12+IL-15+IL-18 stimulation for 16 hrs from control or RUNX3 knockout groups (n=4). Data are mean ± s.e.m., (B, G-K), two-tailed paired t-test. (C), two-tailed unpaired t-test. ns, not significant, *p<0.05, **p<0.01, ***p<0.001. For (A, B, G-K) data were derived from healthy donors. For (C-E), cohort was described in Table S5. See also Figure S4.

Figure 5. CD4^{+} T cell depletion destabilizes NK cells.
(A) Percentage of ILCs from Lin−CD56− population. HIV−1− (n=40), HIV−1+ viremic (n=40), HIV−1+ ART suppressed (n=37), and HIV−1+ spontaneous controllers (n=40). (B) Correlation of ILCs and CD56−NK cells in Lin−CD56− population from (A). (C) Percentage of CD56− and CD56dim NK cells in total NK cells in indicated groups (n=40 for each group). (D) Correlation of CD56− and CD56dim NK cells from (C). (E) Percentage of CD56−NK cells in total NK cells were detected from PBMCs and CD4+PBMCs after culture for 5 days (n=7). (F) CD4+T cell number (counts/mm3) from indicated groups (n=40 for each group). (G) Correlation of CD4 number and CD56−NK cells (n=160). (H) Detection of CD56dim and CD56− NK cells after culture for 5 days in indicated conditions. (I) Percentage of CD56− NK cells in total NK cells was detected from CD4−PBMCs in the presence or absence of IL-2 (10ng/ml) combined with or without IL-2 neutralizing antibody (4ug/ml) (n=7). (J) Percentage of CD56−NK cells in total NK cells was detected from PBMCs after treatment with isotype or IL-2 neutralizing antibody (4ug/ml) for 5 days (n=10). (K, L) Percentage of CD56−NK (K) or IFN-γ+ NK (L) cells in total NK cells was detected from PBMCs after treatment with TGF-β1 (50ng/ml) or TGF-β1 (50ng/ml)+IL-2 (20ng/ml) for 5 days (n=8). (M, N) NSG mice reconstituted with human CD34+ hematopoietic stem cells were injected intravenously with PBS (n=5) or with hIL-2-rAAV (n=4), 6 weeks later, the blood, spleen and liver were harvested for detection of CD56 (K) or IFN-γ production (L) from human NK cells. Data are mean ± s.e.m., (A, C, F, M, N), two-tailed unpaired t-test. (E, I-L), two-tailed paired t-test. ns, not significant, *p<0.05, **p<0.01, ***p<0.001. For (E, H-L), data were derived from healthy donors. For (A-D, F-H), cohort was described in Table S5. See also Figure S4 and S5.

Figure 6. CD56dim NK cells are distinguished from CD56−NK cells by metabolic gene expression.
(A, B) Heatmap of metabolism and immune related genes that differentially express between CD56− and CD56dim NK cells directly sorted from PBMCs before (A, n=4) or after IL-12+IL-15+1L-18 stimulation (B, n=3) (log2 fold change >1, p<0.01 determined by DESeq2). (C) Log2 fold change of mTOR signaling related genes of IL-12+IL-15+IL-18 stimulated versus un-stimulated CD56− or CD56dim NK cells. ns, not significant, **p<0.01, ***p<0.001. (D, E) Protein classes analysis of CD56− or CD56dim NK cells enriched genes
after IL-12+IL-15+IL-18 stimulation. (F, G) GSEAs comparing the CD56^dimNK cell expression signature in PBMCs (determined by RNA-seq, CD56^dim versus CD56^–NK cells, Table S7) from sorted CD56^dimNK cells in PBMC versus CD56^dimNK cells in CD4^–PBMC (F) or CD56^dimNK in CD4^–PBMC with IL-2 versus CD56^dimNK in CD4^–PBMC (G) after culture for 5 days. All data were generated using blood from healthy donors.

Figure 7. IL-2 overcomes the effects of CD4^+T cell depletion or MTOR inhibition.

(A) PBMCs were cultured with or without IL-2 (50ng/ml) for 5 days, the phosphorylation of mTOR on Ser2448, AKT on Ser473, 4EBP1 on Thr36 and Thr45, and S6 on Ser235 and Ser236, and the surface CD71 from NK cells (Lin^-TBX21^+) were detected by flow cytometry (n=8). (B) PBMCs or CD4^-PBMCs were cultured for 5 days, the indicated targets from NK cells were detected as in (A) (n=8). (C) PBMCs were treated with or without rapamycin (10nM) for 5 days, the percentage of CD56^-NK cells in Lin^-TBX21^+ population was detected (n=7). (D, E) PBMCs or CD4^-PBMCs were cultured in the presence or absence of rapamycin (10nM) (D) or Torin 1 (250nM) (E) combined with or without IL-2 (10ng/ml) for 5 days, then were stimulated with IL-12+IL-15+IL-18 for 16 hrs, the IFN-γ from Lin^-TBX21^+ population were detected. Data are mean ± s.e.m., two-tailed paired t-test. ns, not significant, *p<0.05, **p<0.01, ***p<0.001. All data were generated using blood from healthy donors. See also Figure S5.
Materials and Methods

Reagent Table

<table>
<thead>
<tr>
<th>REAGENT</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Human CD3</td>
<td>BioLegend</td>
<td>Cat# 317306 Clone: OKT3</td>
</tr>
<tr>
<td>Anti-Human CD4</td>
<td>BioLegend</td>
<td>Cat# 317408 Clone: OKT4</td>
</tr>
<tr>
<td>Anti-Human TCRα/β</td>
<td>BioLegend</td>
<td>Cat# 306706 Clone: IP26</td>
</tr>
<tr>
<td>Anti-Human TCRγ/δ</td>
<td>BioLegend</td>
<td>Cat# 331208 Clone: B1</td>
</tr>
<tr>
<td>Anti-Human CD19</td>
<td>BioLegend</td>
<td>Cat# 302206 Clone: HIB19</td>
</tr>
<tr>
<td>Anti-Human CD20</td>
<td>BioLegend</td>
<td>Cat# 302304 Clone: 2H7a</td>
</tr>
<tr>
<td>Anti-Human CD22</td>
<td>BioLegend</td>
<td>Cat# 363508 Clone: S-HCL-1</td>
</tr>
<tr>
<td>Anti-Human CD14</td>
<td>BioLegend</td>
<td>Cat# 325604 Clone: HCD14</td>
</tr>
<tr>
<td>Anti-Human CD34</td>
<td>BioLegend</td>
<td>Cat# 343504 Clone: 581</td>
</tr>
<tr>
<td>Anti-Human FcγR1α</td>
<td>BioLegend</td>
<td>Cat# 334608 Clone: AER-37</td>
</tr>
<tr>
<td>Anti-Human CD1a</td>
<td>BioLegend</td>
<td>Cat# 300104 Clone: HI149</td>
</tr>
<tr>
<td>Anti-Human CD11c</td>
<td>BioLegend</td>
<td>Cat# 301604 Clone: 3.9</td>
</tr>
<tr>
<td>Anti-Human CD123</td>
<td>BioLegend</td>
<td>Cat# 306014 Clone: 6H6</td>
</tr>
<tr>
<td>Anti-Human BDCA1</td>
<td>BioLegend</td>
<td>Cat# 354208 Clone: 201A</td>
</tr>
<tr>
<td>Anti-Human RORγT</td>
<td>ebioscience</td>
<td>Cat# 12-6988-82 Clone: AFKJS-9</td>
</tr>
<tr>
<td>Anti-Human RORγT</td>
<td>ebioscience</td>
<td>Cat# 17-6988-82 Clone: AFKJS-9</td>
</tr>
<tr>
<td>Anti-Human TBX21</td>
<td>ebioscience</td>
<td>Cat# 25-5825-82 Clone: ebio4B10</td>
</tr>
<tr>
<td>Anti-Human CRTH2</td>
<td>BioLegend</td>
<td>Cat# 350116 Clone: BM16</td>
</tr>
<tr>
<td>Mouse IgG1 k Isotype control</td>
<td>ebioscience</td>
<td>Cat# 25-4714-80 Clone: P3.6.2.8.1</td>
</tr>
<tr>
<td>Rat IgG2a k Isotype control</td>
<td>ebioscience</td>
<td>Cat# 12-4321-80 Clone: eBR2a</td>
</tr>
<tr>
<td>Rat IgG2a, k Isotype control</td>
<td>BioLegend</td>
<td>Cat# 400532 Clone: RTK2758</td>
</tr>
<tr>
<td>Anti-Human IFN-γ</td>
<td>BioLegend</td>
<td>Cat# 502512 Clone: 4S.B3</td>
</tr>
<tr>
<td>Anti-Human IFN-γ</td>
<td>BioLegend</td>
<td>Cat# 502509 Clone: 4S.B3</td>
</tr>
<tr>
<td>Antibody or Protein Description</td>
<td>Manufacturer</td>
<td>Catalog Number</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Anti-Human IFN-γ</td>
<td>BioLegend</td>
<td>Cat# 502528</td>
</tr>
<tr>
<td>Anti-Human AREG</td>
<td>ebioscience</td>
<td>Cat# 17-5370-42</td>
</tr>
<tr>
<td>Anti-Human CD16</td>
<td>BioLegend</td>
<td>Cat# 980104</td>
</tr>
<tr>
<td>Anti-Human CD45</td>
<td>BD</td>
<td>Cat# 560178</td>
</tr>
<tr>
<td>Anti-Human CD56</td>
<td>BioLegend</td>
<td>Cat# 318306</td>
</tr>
<tr>
<td>Anti-Human CD56</td>
<td>BioLegend</td>
<td>Cat# 318310</td>
</tr>
<tr>
<td>Anti-Human CD56</td>
<td>BioLegend</td>
<td>Cat# 318322</td>
</tr>
<tr>
<td>Anti-Human CD117</td>
<td>BioLegend</td>
<td>Cat# 313213</td>
</tr>
<tr>
<td>Anti-Human CD127</td>
<td>BioLegend</td>
<td>Cat# 351316</td>
</tr>
<tr>
<td>Anti-Human CD127</td>
<td>BioLegend</td>
<td>Cat# 351304</td>
</tr>
<tr>
<td>Anti-Human CD127</td>
<td>BioLegend</td>
<td>Cat# 351320</td>
</tr>
<tr>
<td>Anti-Human CD71</td>
<td>BioLegend</td>
<td>Cat# 334114</td>
</tr>
<tr>
<td>Anti-Human IL-2</td>
<td>R&D</td>
<td>Cat# MAB202</td>
</tr>
<tr>
<td>Mouse IgG1 Isotype Control</td>
<td>R&D</td>
<td>Cat# MAB002</td>
</tr>
<tr>
<td>Anti-Human pMTOR Ser 2448</td>
<td>ebioscience</td>
<td>Cat# 12-9718-42</td>
</tr>
<tr>
<td>Anti-Human pAKT Ser 473</td>
<td>ebioscience</td>
<td>Cat# 17-9715-42</td>
</tr>
<tr>
<td>Anti-Human p4EBP1 Thr 36, 45</td>
<td>ebioscience</td>
<td>Cat# 12-9107-42</td>
</tr>
<tr>
<td>Anti-Human pS6 Ser 235, 236</td>
<td>ebioscience</td>
<td>Cat# 12-9007-42</td>
</tr>
</tbody>
</table>

Biological Samples

- **PBMCs**
 - UCSF Medical Center
 - https://hividgm.ucsf.edu/scope-study
- **PBMCs**
 - New York Biologics
 - https://www.newyorkbiologics.com/

Chemicals, Peptides, and Recombinant Proteins

- **IL-2**
 - PeproTech
 - Cat# 200-02
<table>
<thead>
<tr>
<th>Name</th>
<th>Supplier</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-12p70</td>
<td>PeproTech</td>
<td>Cat# 200-12</td>
</tr>
<tr>
<td>IL-15</td>
<td>PeproTech</td>
<td>Cat# 200-15</td>
</tr>
<tr>
<td>IL-18</td>
<td>InvivoGen</td>
<td>Cat# rcyec-hil18</td>
</tr>
<tr>
<td>TGF-b</td>
<td>PeproTech</td>
<td>Cat# 100-21</td>
</tr>
<tr>
<td>Rapamycin</td>
<td>Millipore</td>
<td>Cat# 553211-500UG</td>
</tr>
<tr>
<td>Torin1</td>
<td>TOCRIS</td>
<td>Cat# 4247</td>
</tr>
<tr>
<td>CP-690550</td>
<td>InvivoGen</td>
<td>Cat# tirl-cp69</td>
</tr>
<tr>
<td>CHIR99021</td>
<td>TOCRIS</td>
<td>Cat# 4423</td>
</tr>
<tr>
<td>C188-9</td>
<td>Selleckchem</td>
<td>Cat# S8605</td>
</tr>
<tr>
<td>AS-1517499</td>
<td>Selleckchem</td>
<td>Cat# S8685</td>
</tr>
<tr>
<td>MK-2206</td>
<td>Selleckchem</td>
<td>Cat# S1078</td>
</tr>
<tr>
<td>Ravoxertinib</td>
<td>Selleckchem</td>
<td>Cat# S7554</td>
</tr>
<tr>
<td>cell stimulation cocktail</td>
<td>ebioscience</td>
<td>Cat# 00-4970-03</td>
</tr>
<tr>
<td>protein transport inhibitor</td>
<td>ebioscience</td>
<td>Cat# 00-4980-03</td>
</tr>
<tr>
<td>TRIzol reagent</td>
<td>Invitrogen</td>
<td>Cat# 15596018</td>
</tr>
<tr>
<td>NEBNext Multiplex Oligos for Illumina</td>
<td>NEB</td>
<td>Cat# E6609S</td>
</tr>
<tr>
<td>AMPure XP beads</td>
<td>Beckman Culter</td>
<td>Cat# A63880</td>
</tr>
<tr>
<td>enAsCAS12a</td>
<td>Wolfe Lab (University of Massachusetts Medical school)</td>
<td>N/A</td>
</tr>
<tr>
<td>ExoSAP-IT</td>
<td>Affymetrix</td>
<td>Cat# 78200</td>
</tr>
<tr>
<td>Product Name</td>
<td>Manufacturer</td>
<td>Catalog Number</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Nextera Tn5 Transposase</td>
<td>Illumina</td>
<td>Cat# FC-121-1030</td>
</tr>
<tr>
<td>SuperScript VILO Master Mix</td>
<td>Invitrogen</td>
<td>Cat# 11755050</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Manufacturer</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live and Dead violet viability kit</td>
<td>Invitrogen</td>
<td>Cat# L-34963</td>
</tr>
<tr>
<td>Mycoplasma detection kit</td>
<td>Lonza</td>
<td>Cat# LT27-318</td>
</tr>
<tr>
<td>NEBNext Ultra II DNA library Prep kit for Illumina</td>
<td>NEB</td>
<td>Cat# 7645L</td>
</tr>
<tr>
<td>PCR product purification kit</td>
<td>Promega</td>
<td>Cat# A9282</td>
</tr>
<tr>
<td>P3 Primary Cell 4D-NucleofectorTM X Kit S</td>
<td>Lonza</td>
<td>Cat# V4XP-3032</td>
</tr>
<tr>
<td>EasySep Human NK Cell Isolation Kit</td>
<td>STEMCELL</td>
<td>Cat#17955</td>
</tr>
<tr>
<td>NK MACS Medium human</td>
<td>MACS</td>
<td>Cat# 130-114-429</td>
</tr>
<tr>
<td>Single Cell 3’ Reagent Kits v2</td>
<td>10xGenomics</td>
<td>Cat# 120234</td>
</tr>
<tr>
<td>NEBNext Ultra II Non directional Second Strand Synthesis Module</td>
<td>NEB</td>
<td>Cat# E6111L</td>
</tr>
<tr>
<td>HiScribe T7 High Yield RNA Synthesis Kit</td>
<td>NEB</td>
<td>Cat# E2040S</td>
</tr>
</tbody>
</table>

Deposited Data

<table>
<thead>
<tr>
<th>Data Description</th>
<th>Database</th>
<th>Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk and single cell RNA-Seq, ATAC-Seq data generated in this study</td>
<td>NCBI Gene Expression Omnibus</td>
<td>GSE168212</td>
</tr>
<tr>
<td>Mouse RNA-Seq and ATAC-Seq generated by previous research</td>
<td>NCBI Gene Expression Omnibus</td>
<td>GSE77695, GSE109125, and GSE11609</td>
</tr>
</tbody>
</table>

Software and Algorithms

<table>
<thead>
<tr>
<th>Software</th>
<th>Manufacturer</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlowJo</td>
<td>FlowJo, LLC</td>
<td>https://www.flowjo.com/</td>
</tr>
<tr>
<td>Software</td>
<td>Author(s)</td>
<td>Website</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>GraphPad Prism</td>
<td>GraphPad Software, Inc</td>
<td>https://www.graphpad.com/scientific-software/prism/</td>
</tr>
<tr>
<td>Cell Ranger</td>
<td>10xGENOMICS</td>
<td>https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest?</td>
</tr>
<tr>
<td>Tophat</td>
<td>Kim et al., 2013</td>
<td>https://ccb.jhu.edu/software/tophat/index.shtml</td>
</tr>
<tr>
<td>samtools</td>
<td>Li et al., 2009</td>
<td>http://www.htslib.org</td>
</tr>
<tr>
<td>ESAT</td>
<td>Derr et al. 2016</td>
<td>https://github.com/garber-lab/ESAT</td>
</tr>
<tr>
<td>Rtsne</td>
<td>Van Der Maaten, 2014</td>
<td>https://cran.r-project.org/web/packages/Rtsne/index.html</td>
</tr>
<tr>
<td>RSEM</td>
<td>Li and Dewey, 2011</td>
<td>https://cran.r-project.org/web/packages/rsem/index.html</td>
</tr>
<tr>
<td>MACS2</td>
<td>Zhang et al., 2008</td>
<td>https://github.com/macs3-project/MACS/wiki/Install-macs2</td>
</tr>
<tr>
<td>IGVTools</td>
<td>Robinson et al., 2011</td>
<td>https://software.broadinstitute.org/software/igv/download</td>
</tr>
<tr>
<td>Trimmomatic</td>
<td>Bolger et al., 2014</td>
<td>https://github.com/usadellab/Trimmomatic</td>
</tr>
<tr>
<td>STAR</td>
<td>Dobin et al., 2013</td>
<td>https://cran.r-project.org/web/packages/stars/index.html</td>
</tr>
<tr>
<td>JASPAR</td>
<td>JASPAR</td>
<td>http://jaspar.genereg.net/</td>
</tr>
<tr>
<td>Seurat 3.0</td>
<td>Sturat and Butler, 2019</td>
<td>http://satijalab.org/seurat/</td>
</tr>
</tbody>
</table>
Clinical samples. PBMCs of HIV-1−, HIV-1+ viremic, HIV-1+ on ART, and HIV-1+, controllers used in this study, were from the University of California San Francisco SCOPE Cohort. The clinical characteristics of each individual in the SCOPE cohort was provided in Table S5. All participants provided written informed consent for protocols that were included in study of cellular immunity in HIV-1 infection, in accordance with procedures approved by the University of Massachusetts Medical School (UMMS), and the University of California, San Francisco (UCSF) Institutional Review Boards. Consent was obtained from all participants the day of the procedure. All PBMCs from the SCOPE cohort were tested blindly with the code broken after analysis, and no samples were excluded from the analysis.

Human mononuclear cell isolation and NK cell enrichment. Human peripheral blood was diluted in equal volume of RPMI-1640 (Gibco), overlaid on Lymphoprep (STEMSELL, 07851), and centrifuged at 500 x g at room temperature for 30 minutes. Mononuclear cells were washed 3 times with MACS buffer (0.5% BSA and 2 mM EDTA in PBS), and either used immediately, or frozen in FBS containing 10% DMSO. NK cells were negatively enriched using EasySep™ Human NK Cell Isolation Kit (STEMCELL, 17955), according to the manufacturer’s instructions.

Flow cytometry. Cells were first stained with Live and Dead violet viability kit (Invitrogen, L-34963). To detect surface molecules, cells were stained in MACS buffer with antibodies for 30 min at 4°C in the dark. To detect IFN-γ or AREG, cells were stimulated with the IL-12 (10 ng/ml), IL-15 (50 ng/ml) and IL-18 (50 ng/ml) for 16 hrs, or with PMA and ionomycin (eBioscience, 00-4970-03) for 3 hrs. In both cases, protein transport inhibitors (eBioscience, 00-4980-03) were present during the stimulation. To detect transcription factors or cytokines, cells were fixed and permeabilized using Foxp3 staining buffer kit (eBioscience, 00-5523-00), then intracellular molecules were stained in permeabilization buffer with antibodies.

Sorting of NK cells and ILCs. PBMCs were stained with a panel of lineage markers, CD56, CD16 and CD127. The CD56hi, CD56dim, CD56− and ILCs were sorted as indicated
in Extended Data Fig. 1a and c using a BD FACSARia Ilu. Enrichment of the sorted cell populations was confirmed by flow cytometry before initiation of downstream experiments.

Bulk RNA-Seq Library preparation. The sequencing library was prepared using CEL-Seq2 (Hashimshony et al., 2016). RNA from sorted cells was extracted using TRIzol reagent (ThermoFisher, 15596018). 10 ng RNA was used for first strand cDNA synthesis using barcoded primers (the specific primers for each sample were listed in Table S8). The second strand was synthesized by NEBNext Second Strand Synthesis Module (NEB, E6111L). The pooled dsDNA was purified with AMPure XP beads (Beckman Coulter, A63880), and subjected to in vitro transcription (IVT) using HiScribe T7 High Yield RNA Synthesis Kit (NEB, E2040S), then treated with ExoSAP-IT (Affymetrix, 78200). IVT RNA was fragmented using RNA fragmentation reagents (Ambion), and underwent another reverse transcription step using random hexamer RT primer-5’-GCC TTG GCA CCC GAG AAT TCC ANN NNN N-3’ to incorporate the second adapter. The final library was amplified with indexed primers: RP1 and RPI1 or RPI2 (as indicated in Supplementary Table 8), and the beads purified library was quantified with 4200 TapeStation (Agilent Technologies), and paired-end sequenced on Nextseq 500 V2 (Illumina), Read 1: 15 cycles; index 1: 6 cycles; Read 2: 60 cycles.

Library preparation for single cell RNA-Seq. The sequencing library was prepared by Single Cell 3’ Reagent Kits v2 (10xgenomics, 120234). Isolated cells were 2x washed and resuspended in 1xPBS containing 0.05% BSA. Cell number and viability were measured by Bio-Rad TC 20 cell counter, cell concentration was adjusted around 1000-1500 cells/ul (viability>90%). Single cell suspension was loaded onto Chromium Controller (10xGenomics) to participate 3000-6000 single cells into gel beads in emulsions (GEMs). Libraries were constructed according to the instruction of single cell 3’ reagent kits v2. The yield and the quality of amplified cDNA were checked using High Sensitivity D5000 ScreenTape on TapeStation (Agilent Technologies). The final library was amplified using PCR cycles determined by cDNA quantification, and the quality of the library was checked again by TapeStation. The sequencing depth was controlled at
more than 50,000 reads per cell. Sorted CD56−, CD56dim, CD56hi NK cells and ILCs from three donors were pooled and were sequenced as one sample, indexed using primers from the B2 position of the index plate.

ATAC-Seq. Nuclei were precipitated after sorted CD56hi, CD56dim, CD56− NK cells and ILCs were suspended in lysis buffer (10 mM Tris⋅Cl, pH 7.4; 10 mM NaCl; 3 mM MgCl2, 0.1% NP-40). 2.5 ul of Tn5 transposase (Nextera DNA Library Prep Kit, Illumina, FC-121-1030) was added per 50 ul reaction, for 30 min at 37°C. Released DNA fragments were purified by PCR product purification kit (Promega, A9282) and used to generate libraries. The barcode primers and common primers used for each sample from 2 donors were listed in Table S8. Libraries were paired-end sequenced on Nextseq 500 V2 (Illumina) using Read 1: 42 cycles; Index 1: 8 cycles, and Read 2: 42 cycles.

Bulk RNA-Seq Processing and Analysis. The pooled reads were separated by CEL-Seq2 barcodes and mapped to the hg19 genome using Tophat (Kim et al., 2013) (version 2.0.14, default parameters). ESAT (Derr et al., 2016) was used to quantify aligned reads using a transcript annotation file containing all RefSeq genes filtered to select only ‘NM’ transcripts, and extending the transcripts up to 1,000 bases past the end of the annotated 3’ end (-wExt 1000, -task score3p), multi-mapped reads (-multimap ignore) were discarded. DEBrowser was used to analyze the most varied genes, DESeq2 was used to perform differential expression analysis (Love et al., 2014). Data were transformed using rlog within DEseq2, and prcomp was used to calculate the PCs for principal component analysis (PCA). Mouse RNA-seq data were downloaded from GSE77695, GSE109125, and GSE116092, and aligned to the mouse reference genome (mm10) using STAR (version 2.1.6) (Dobin et al., 2013). Counts of reads aligned to RefSeq genes were quantified using RSEM (version 1.3.1) (Li and Dewey, 2011) and normalized using DEseq2.

Single cell RNA-Seq processing and analysis. The Cell Ranger software package (10X Genomics) was used to perform sample demultiplexing, barcode processing, and single cell 3’ gene counting. Default settings were used. The filtered gene matrices
generated by Cell Ranger were used as input into the open-source R package Seurat 3.0 (http://satijalab.org/seurat/) (Stuart et al., 2019). FindNeighbors and FindClusters (using the default resolution of 0.6) were then run on the PCA reduction. FindMarkers was used to identify differentially expressed genes among clusters. Pseudotime analysis was done using monocle (version 2) (Qiu et al., 2017b). Cluster information (for color coding the cells for display) was imported from the Seurat analysis. The raw count data from the Seurat object was read into monocle and the standard workflow was followed: estimateSizeFactors, estimateDispersions, and detectGenes(min_expr=1) were called. Then, the dispersion table was calculated and subsetted to generate ordering genes with mean_expression >= 0.1 and dispersion_empirical >= dispersion_fit. The data was reduced to two dimensions and the cells were ordered (using the orderCells function). plot_cell_trajectory was used to create pseudotime trajectories and plot_genes_in_pseudotime (with its default settings, which rescales expression to relative values) used to show individual gene expression as a function of pseudotime.

ATAC-Seq analysis. Paired-end reads were filtered with trimmomatic (version 0.32) (Bolger et al., 2014), aligned with Bowtie2 (version 2.2.3) (Langmead and Salzberg, 2012) to a reference genome hg19. The duplicates were removed using Picard’s MarkDuplicates (version 0.32). To be able to accurately call the peaks, each aligned read was first trimmed to the 9-bases at the 5’ end, the region where the Tn5 transposase cuts the DNA. To smooth the peaks, the start site of the trimmed reads were extended up and down stream for 10 bases. Peaks were called using these adjusted aligned reads with MACS2 (Zhang et al., 2008). The adjusted aligned reads were converted to tdf files using IGVTools (IGVtools count –w5) (version 2.3.31) (Robinson et al., 2011) for visualization. The Tn5 transposase accessible region was used as input for JASPAR motif analysis (http://jaspar.genereg.net/). Mouse ATAC-Seq data was downloaded from GSE77695, GSE100738, and GSE116091, and was analyzed as above using mm10 as the reference genome.

Cas12a RNP-mediated knockout in NK cells. NK cells from PBMCs were isolated with EasySep™ Human NK Cell Isolation Kit (STEMCELL, 17955), and after culture in NK
MACS Medium (MACS, 130-114-429) for 7 days, the NK cells were ready for electroporation. Two Cas12a target sites (PAM underlined) within RUNX3 sequences were chosen for editing: 5'-TTTCACCCTGACCATACTGTGTTCAC-3' and 5'-CTTACCTGCAGCTGCCCCACGAA-3'. The following Cas12a target site in adeno-associated virus integration site 1 (AAVS1) was used as a control chromosomal DNA target: 5'-TTTAATGTGCCCCCTCCACCCCCACAGTG-3'. Chemically end-protected (Alt-R) AsCas12a crRNAs were synthesized for each target site by IDT. Enhanced AsCas12a (enAsCas12a) (Kleinstiver et al., 2019) coding sequence was engineered to include three nuclear localization signal sequences and cloned into a pet21a expression vector for expression in, and purification from E. coli, as previously described (Liu et al., 2019). For each electroporation, 200 pmol crRNA and 100 pmol recombinant enAsCas12a protein were mixed at room temperature for 20 min. 1 million NK cells were resuspended in 20 ul 4D nucleofector master mix (82% P3 + 18% supplement 1; Lonza, V4XP-3032) and then mixed with Cas12a RNPs for electroporation using program CM137 (Rautela et al., 2020). The electroporated NK cells were ready for downstream experiments after culture in MACS medium for 5 days.

In vivo treatment of IL-2. NOD-Prkdc^{scid}IL2rg^{tm1Wjl} (NSG) mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and engrafted with human CD34⁺ hematopoietic stem cells derived from umbilical cord blood (UCB). UCB was obtained from donors that were consented under an approved IRB protocol at the UMass Memorial Medical Center, Department of General Obstetrics and Gynecology (Worcester, MA), and all samples used for engraftment were de-identified. UCB was processed as previously described and underwent CD3 T cell depletion (Brehm et al., 2010). For engraftment, NSG mice between 3 to 4 weeks of age received 100 cGy irradiation and were then injected IV with 100,000 CD34⁺ cells (Hasgur et al., 2016). Human immune system development was evaluated by flow cytometry at 16 weeks post-HSC injection.

The double-stranded (ds) adeno-associated virus (AAV) vectors were engineered and packaged as previously described (He et al., 2013). Briefly, full-length cDNA encoding human IL-2 were subcloned into a dsAAV plasmid (McCarty et al., 2001).
containing the murine preproinsulin II promoter. dsAAV vector packaging with serotype 8 capsid protein was produced by the Viral Vector Core at the University of Massachusetts Medical School Horae Gene Therapy Center (Worcester, MA, USA). HSC-engrafted NSG mice were intraperitoneally injected with 2.5×10^{11} particles of the purified AAV8-huIL-2 (AAV-IL-2). 6 weeks later, the blood, spleen, and liver were harvested for detection of CD56 or IFN-γ production from NK cells.

Statistics
Statistical test was performed using GraphPad Prism. The usage of paired or unpaired two-tailed student’s t-test was indicated in the figure legends. $p<0.05$ was considered as significant. Variance was estimated by calculating the mean ± s.e.m. in each group. Variances among groups of samples were compared using the F-test function in GraphPad.

Data and code availability
The data that support the findings of this study are available within the manuscript and in its supplementary information files. Bulk and single-cell RNA-Seq, and ATAC-Seq datasets generated by this study, can be found at: NCBI Gene Expression Omnibus (GEO): GSE168212. Areg expression and ATAC-Seq data generated by previous studies are available from NCBI GEO: GSE77695, GSE109125, and GSE11609 (Pokrovskii et al., 2019; Shih et al., 2016; Yoshida et al., 2019).
REFERENCES

we miss them? Nature Reviews Immunology 13, 75–87.

SSC-A
FSC-A
FSC-H
Live/Dead
CD45
CD56
CD127
CD127-
401
CD127+

A

B

C

ILC related genes
NK cell related genes

Normalized counts

0.1
1
10
100
1000

D

Death receptor signaling
Cytokine signaling in immune system
Interleukin-4 and Interleukin-13 signaling
Binding of TCF7/LEF:CTNNB1 to target gene promoter

Fold enrichment (CD127+)

1.44e-03
2.85e-02
1.62e-03
6.02e-03

E

Platelet degranulation
Immunoregulatory interactions between a lymphoid and a non-lymphoid cell
DAP12 interactions
DAP12 signaling
Sema4D in semaphorin signaling
Sema4D induced cell migration and growth-cone collapse

Fold enrichment (CD127+)

4.31e-02
9.61e-02
3.52e-02
3.80e-02
1.72e-02

F

G

Lin
CD56
CD56+NK
CD56dim+NK
CD56-NK
CD56+NK
ILCs
CD127

Row min
Row max

Wang et al, Figure 1
A

B

C

D

E

F

G

H

Wang et al, Figure 2
E. **Cluster**	**Representative genes that are highest in a given cluster**
ILC2 | IL-32, KLRB1, GATA3-AS1, HPGD, HPGDS, RPL18A, RPLP0
ILCP | FOS, JUN, JUNB, FXYD5, TNFRSF4, TNFRSF18
CD56\(^{hi}\)NK | CD2, CD74, KIR2DL1, DUSP4, XCL1, CMC1, KLRC1, KLRC2, GZMK, NCAM1
CD56\(^{dim/−}\)NK | PRF1, GZMA, GZMB, GZMH, GZMM, NKG7, CST7, FGFBP2, CCL3, CCL4, CCL5

Wang et al, Figure 3
Figure 5

A. Scatter plot showing the relationship between % ILC in Lin and % Lin CD56.

B. Scatter plot showing the relationship between % Lin CD56 NK and % ILC in Lin CD56.

C. Scatter plot showing the relationship between % total NK and % CD56 NK.

D. Scatter plot showing the relationship between % CD56 NK in total NK and % CD56 NK in Lin.

E. Line graph showing the trend of % CD56 NK in total NK across different conditions.

F. Line graph showing the trend of CD4 number/mm³ across different conditions.

G. Scatter plot showing the relationship between % CD56 NK in Lin and CD4 number/mm³.

H. Flow cytometry plots comparing PBMC, CD4 PBMC, NK+CD4, and CD4 PBMC+IL-2.

I. Bar graph comparing % CD56 NK in total NK across different conditions.

J. Bar graph comparing % CD56 NK in total NK across different conditions.

K. Bar graph comparing % CD56 NK in total NK across different conditions.

L. Bar graph comparing % CD56 NK in total NK across different conditions.

M. Bar graph comparing % CD56 NK in total NK across different conditions.

N. Bar graph comparing % IFN-γ across different conditions.