Cell-type specific circadian bioluminescence rhythms recorded from Dbp reporter mice reveal circadian oscillator misalignment [preprint]

Ciearra B. Smith
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs

Part of the Cellular and Molecular Physiology Commons, and the Neuroscience and Neurobiology Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in UMass Chan Medical School Faculty Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Cell-type specific circadian bioluminescence rhythms recorded from *Dbp* reporter mice reveal circadian oscillator misalignment

C. B. S and V. v. d. V contributed equally to this work.

1 C.B.S and V.v.d.V contributed equally to this work.

2 Present address: University of California, San Diego, La Jolla, CA USA

3 To whom correspondence may be addressed:

Email: David.weaver@umassmed.edu

David R. Weaver, Ph.D., Department of Neurobiology, LRB-723, UMass Medical School, 364 Plantation St., Worcester MA 01605
ORCID ID’s:

CBS 0000-0003-2999-3387 Ciearra.Smith@umassmed.edu
VvdV 0000-0003-3926-5041 vv5@williams.edu
EM 0000-0002-5806-1995 mccartneyee1921@gmail.com
ACS 0000-0002-7007-9135 astowie@msm.edu
TLL 0000-0002-7458-7604 tleise@amherst.edu
BMB 0000-0002-1388-9123 bmartinb@ucsd.edu
PCM 0000-0002-1388-9123 pmolyneu@smith.edu
LAG 0000-0002-9366-4468 L.A.Garbutt@warwick.ac.uk
MHB 0000-0001-7703-4872 Michael.brodsky@umassmed.edu
AJD 0000-0003-4205-1968 adavidson@msm.edu
MEH 0000-0003-2266-6455 mharrinj@smith.edu
RD 0000-0002-7490-0218 R.Dallmann@warwick.ac.uk
DRW 0000-0001-7941-6719 david.weaver@umassmed.edu

Classification

Major Classification: Biological Sciences
SubClassification: Physiology

Keywords (at least three and no more than five).
Circadian Rhythms, Bioluminescence, Luciferase, Misalignment, Liver

Conflict of interest statement: The authors declare no conflicts of interest.

This PDF contains
Main Text
Figures 1 to 7
Table 1
Abstract
Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre-recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vitro and in vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei in vitro. In vivo studies show stable Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpK/+ “liver reporter” mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies provide clear evidence for circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.
Significance Statement

Disruption of temporal coordination among circadian oscillators and exposure to light at biologically inappropriate times are important drivers of the increased incidence of adverse health outcomes observed in shift workers and rodent models of chronic circadian disruption. Here, we demonstrate the utility of a new mouse line that enables tissue-specific monitoring of circadian molecular rhythms \textit{in vivo} and \textit{ex vivo}. This reporter mouse provides a major advance in our capabilities for monitoring rhythms in a variety of tissues under normal and disruptive conditions. Our studies provide an unprecedented longitudinal assessment of tissue-specific rhythmicity, a key step in the identification of mechanisms underlying the circadian disruption inherent to life in modern 24/7 societies.
Introduction

Circadian rhythms are endogenous rhythms with a cycle length of ~24 hours. The mammalian circadian system is hierarchical. The hypothalamic suprachiasmatic nuclei (SCN) serve as the pacemaker1,2. The SCN are synchronized by environmental cues, of which the light-dark cycle is the most influential. The SCN are not unique in their capacity for rhythmicity, however. The transcriptional-translational feedback loop regulating molecular oscillations in the SCN is also present in individual cells throughout the body1,2. SCN-driven neural, behavioral and hormonal rhythms synchronize these cell-autonomous oscillators, leading to rhythmicity with predictable phase relationships among tissues, genes and physiological processes1-4. Repeated disruption of this internal temporal order by inappropriately timed light exposure or food intake leads to adverse health consequences in shift-working humans and animal models4,15. Progress in identifying the mechanisms by which chronic circadian disruption leads to adverse health consequences will require long-term monitoring of central and peripheral rhythms7,8.

Rhythmically expressed reporter genes have been extremely important for demonstrating cell-autonomous circadian clocks in several organisms16-23, and in screens identifying clock genes and modifiers24-28. Circadian reporters have also been used to assess rhythmicity in peripheral tissues and the impact of dynamic alterations in environmental conditions (food availability, lighting cycles) on peripheral oscillators, conducted by measuring bioluminescence rhythms in tissue explants monitored \textit{ex vivo}21,29-35. These studies complement work done by assessing population rhythms in gene expression in tissue samples36-42 indicating altered rhythm amplitude, phase, and phase relationships in and between SCN and peripheral oscillators following resetting43. More recent advances include development of methods for monitoring bioluminescence rhythms from the SCN \textit{in vivo}44-50, and for assessing peripheral rhythms in anesthetized51-53 and ambulatory54,55 mice.

Here, we report a new transgenic mouse line in which firefly luciferase is expressed from the mouse \textit{Dbp} locus in a \textit{Cre}-recombinase-dependent manner. \textit{Dbp} is widely and rhythmically expressed3,57, allowing detection of circadian bioluminescence rhythms in numerous tissues, \textit{in vivo} and \textit{ex vivo}. \textit{Cre}-dependent bioluminescence in specific cell types revealed unexpected differences among SCN neuronal populations.
Furthermore, we observed transient misalignment between behavioral and hepatic bioluminescence rhythms in freely moving mice subjected to a shift of the light-dark cycle or restricted food access.

Results

Generation of a bifunctional reporter mouse. CRISPR/Cas9 genome editing was used to introduce a bifunctional reporter into the mouse *Dbp* locus (Fig. 1). The reporter consists of a T2A sequence (to allow expression of separate proteins from a single transcript\(^5\)), a destabilized, enhanced GFP (d2EGFP, hereafter GFP) sequence flanked by loxP sites, and a codon optimised synthetic firefly luciferase (luc2 from *Photinus pyralis*, hereafter luc). In the absence of Cre expression, DBP and GFP are expressed as separate proteins. After CRE-mediated recombination, the floxed GFP is removed, and separate DBP and luciferase proteins are expressed from the *Dbp* locus. Sequencing of genomic DNA confirmed successful generation of the *Dbp*\(^{KI}\) conditional reporter allele.

GFP expression from the *Dbp*\(^{KI}\) allele. To examine expression of GFP from the conditional allele, *Dbp*\(^{KI/+}\) mice (n=5-6 mice per time-point) were anesthetized and perfused with fixative at 4-h intervals over 24 h (Fig. S1). Liver sections from *Dbp*\(^{KI/+}\) and control (WT) mice were examined by confocal microscopy. Fluorescence signal intensity did not differ between time-points (ANOVA \(F_{5,26}=1.279, p = 0.7560\)). GFP signal from *Dbp*\(^{KI/+}\) liver sections was 5-10x higher than from WT sections, but absolute levels were quite low. The low level of GFP expression may be due to the use of destabilized GFP with a 2-hour half-life, intended to more accurately track changes on a circadian time-scale. The relatively low level and lack of detectable rhythmicity in GFP expression was unexpected, especially considering that liver is the tissue with the highest levels of *Dbp* expression\(^5\) and thus may represent a ‘best-case’ scenario. As the primary objective of this project was to generate a mouse model with Cre-dependent expression of bioluminescence from the *Dbp* locus, however, the absence of robust GFP-driven fluorescence rhythms in Cre-negative cells did not preclude achieving this objective. GFP is effectively serving as a ‘floxed stop’ to make luciferase expression from the *Dbp* locus exclusively Cre-dependent.
Non-conditional luciferase expression from the Dbp^{Lac} allele. A non-conditional reporter allele was generated by breeding to combine the conditional Dbp^{KI} allele with Cre-recombinase expressed in the germline, leading to germline excision of GFP. The resulting Dbp^{Lac} allele produces wide-spread, rhythmic luciferase expression, both and in vivo and ex vivo. More specifically, explants of lung and anterior pituitary gland from $Dbp^{Lac/+}$ mice incubated with D-luciferin had robust circadian rhythms in bioluminescence (Fig. 2). Furthermore, in vivo imaging of $Dbp^{Lac/+}$ mice at 7 time-points over a ~30-h period revealed rhythmic bioluminescence in the abdomen and throat in ventral views, and in the lower back in dorsal views (Fig. 3B), similar to the distribution of bioluminescence signal from $Per2^{Lac}$ mice51-53 (Fig. 3A). The level of light output was ~2.5-fold greater in ventral views than in dorsal views (p<0.0001, Wilcoxon matched pairs test, W=151, n=17). In the abdomen, we defined a rostral (“liver”) region of interest (ROI) and a more caudal “lower abdominal” ROI. The liver ROI accounted for 46.6 ± 3.0% (Mean ± SEM; n=17) of bioluminescence from the ventral view, while the lower abdomen contributed another 38.4 ± 3.5%. Bioluminescence rhythms from the throat region have previously been shown to originate in the submandibular gland51. Bioluminescence was absent in mice with wild-type Dbp alleles or with the conditional Dbp^{KI} allele (in the absence of Cre).

Post-mortem dissection and imaging revealed that tissues of the gastrointestinal tract (intestine, cecum and colon), pancreas and mesenteric fat, perigonadal fat and uterus were major contributors to overall light output, with liver and kidney emitting lower levels (Fig. S2). Organs contributing minor amounts to total bioluminescence in dissected mice were esophagus, heart, lung, thymus, spleen, and testes.

Previous reports have shown that in a number of tissues, Dbp RNA levels peak earlier than $Per2$ RNA levels3. Consistent with this literature, the time of peak of bioluminescence rhythms from $Dbp^{Lac/+}$ tissues preceded the time of peak of bioluminescence rhythms from $Per2^{Lac/+}$ tissues by ~6 hours, both in vitro (Fig. 2C, 2F) and in vivo (Fig. 3G-3I). Unexpectedly, bioluminescence rhythms from $Per2^{Lac/+}$ tissue explants had significantly greater period length than explants from $Dbp^{Lac/+}$ mice (Lung: 25.29 ± 0.13 vs
Molecular and Behavioral Rhythms in Mice with Dbp Reporter Alleles. To confirm that the introduction of the reporter construct into the Dbp locus did not alter circadian clock function, molecular and behavioral rhythms were assessed. Male mice used for these analyses had either one or two copies of the GFP-containing conditional allele (Dbp$^{Kl/+}$ and Dbp$^{Kl/Kl}$, respectively), one or two copies of the luciferase-expressing allele (Dbp$^{Luc/+}$ and Dbp$^{Luc/Luc}$, respectively), or were wild-type (WT) littermate controls.

RNA was isolated from livers collected at 4-h intervals over 24-h. Northern blots were prepared and probed for Dbp and Actin (loading control). As expected, the transcripts from DbpKl and DbpLuc alleles migrated more slowly than the wild-type transcript (Fig. 4A), due to inclusion of GFP and luciferase coding sequence in these transcripts, respectively, as verified by probing for reporter sequences in a replicate blot. Peak levels of Dbp expression in liver occurred at ZT10 in all genotypes (Fig. 4B), as expected based on previous studies. For each transcript type, the Dbp/Actin ratios were ranked within each series of 6 timepoints. These ranks differed significantly among the timepoints for each transcript (Friedman’s One-Way analysis of variance, $p < 0.002$), and post-hoc testing indicated significantly higher rankings at ZT10 than at ZT2, ZT18 and ZT22 (Dunn’s test, $p < 0.05$). These data indicate that the temporal profile of transcript expression from the Dbp locus was unaffected by the inclusion of reporter sequences.

Heterozygous mice expressed both Dbp and Dbp-plus-reporter transcripts. The two transcript types did not differ in abundance: optical density over film background of the DbpKl transcript was 100.5 ± 5.3 % of the Dbp$^+$ transcript in Dbp$^{Kl/+}$ mice ($t=0.084$, df=7, $p=0.94$, one-sample t-test vs 100%), while the DbpLuc transcript was 102.3 ± 5.0 % of Dbp$^+$ transcript in Dbp$^{Luc/+}$ mice ($t=0.446$, df=7, $p=0.669$). The equivalent expression level of the two transcript types in heterozygous animals strongly suggests that transcript regulation and stability were not altered by inclusion of reporter-encoding sequences.
Potential influences of the *Dbp* reporter alleles on locomotor activity rhythms were assessed in constant darkness. Mice of the same five genotypes and both sexes were examined ([Table 1; Fig. S3]). This assessment was complicated by a significant sex-by-genotype interaction (*F*$_{4,102}$ = 2.904, *p* = 0.0254) that post-hoc tests indicated was the result of an unexpected sex difference in the *Dbp*$_{Lac/Luc}$ mice. Indeed, when this genotype was excluded from the analysis, no significant sex-by-genotype interaction was observed (*F*$_{3,88}$ = 1.349; *p* = 0.2636) and one-way ANOVA demonstrated the absence of a significant main effect of genotype (*F*$_{3,91}$ = 1.174; *p* = 0.3242). One-way ANOVA within each sex with all five genotypes included revealed no genotype effect in males (*F*$_{4,50}$ = 1.299, *p* = 0.283). While there was a significant genotype effect in females (*F*$_{4,52}$ = 2.716, *p* = 0.040), Tukey HSD post-hoc tests did not find a significant result among any of the pairwise genotype comparisons (all *p* values > 0.05). Similarly, an alternative post-hoc analysis revealed that none of the other female genotypes differed from WT females in their free-running period in constant darkness (Dunnett’s test, *p* > 0.5 in each case). To further examine the effect of sex on free-running period, males and females of each genotype were compared directly. In both homozygous reporter lines (*Dbp*$_{Lac/Luc}$ and *Dbp*$_{KII}$), males had significantly longer period lengths than females (*p* < 0.01), while this was not seen in wild-type controls or heterozygous reporters (*p* > 0.46). Together, these assessments of molecular and behavioral rhythms indicate that the reporter alleles do not alter circadian function or change *Dbp* expression.

Cre-dependent Luciferase Expression in Liver. The main use we envision for the *Dbp* reporter alleles involve *Cre* recombinase-mediated excision of GFP, leading to expression of luciferase in cells expressing *Cre*. The effectiveness of this approach was first assessed in the liver. Hepatocytes were targeted using an *Albumin-Cre*-driver line. *In vivo* bioluminescence imaging of intact *Albumin-Cre*$_{+}$; *Dbp*$_{KII}$ “liver reporter” mice at the time of expected maximal bioluminescence revealed that 96.6 ± 0.48% of light originated in the “liver” ROI (relative to total ventral-view bioluminescence; *p*<0.0001 versus 46.6 ± 3.0% in *Dbp*$_{Lac}$ mice, U-test, U=0, *n*=19 and 17, respectively). Light output from the ventral side was 5.14 ± 0.53 times greater than from the dorsal view (*p*<0.0001, Wilcoxon matched pairs test, *W*=190, *n*=19). Notably, post-mortem...
imaging of dissected parts confirmed that the bioluminescence signal originated exclusively from the liver in these mice (97.4% of light from liver; n=12).

In a separate cohort of liver reporter mice, bioluminescence was assessed around the clock by IVIS imaging. The cosinor-fitted time of peak of Dbp-driven bioluminescence rhythms from the liver ‘region of interest’ of these mice (ZT11) was indistinguishable from the peak time of the liver ROI analyzed in whole-body Dbp^{Luc} mice (Fig. 3I).

Cell-type Specific Bioluminescence Rhythms in SCN Slices. The heterogeneity of SCN neurons has complicated our understanding of central clock function⁵⁸. Neuromedin S (NMS) is expressed in ~40% of SCN neurons, while Arginine Vasopressin (AVP) is expressed in ~10% of SCN neurons and is contained within the NMS-expressing population⁵⁹. The utility of our conditional reporter line was demonstrated by monitoring bioluminescence rhythms within specific subpopulations of SCN neurons (Fig. 5). NMS-iCre; Dbp^{KI/+} mice and AVP-IRES2-Cre; Dbp^{KI/+} mice were generated, and single-cell bioluminescence rhythms were compared to those from non-conditional Dbp^{Luc/+} mice in SCN slices in vitro. For the conditional mice, bioluminescence was apparent in subsets of cells within the SCN (Fig. 5). The anatomical pattern of bioluminescence in the SCN differed based on the Cre line used, consistent with the expected distribution for each neuronal subtype.

The cell-type specificity of bioluminescence signals from the different genotypes enabled the assessment of rhythm quality in the different neural populations. This assessment revealed a significantly shorter period in AVP⁺ neurons compared to NMS⁺ cells (Fig. 5D; F_{2,14.64} = 4.259, p = 0.0345). Although the time of peak of Dbp-driven bioluminescence did not differ significantly between the different cellular populations examined (Fig. 5E; F_{2,18.31} = 0.6570, p = 0.5302), a reduction in rhythm robustness was observed in AVP⁺ neurons compared to rhythms of NMS⁺ neurons as well as compared to all neurons (Fig. 5F; F_{2,18.11} = 14.34, p = 0.0002). In line with this reduced robustness of individual cellular oscillators, the distribution of peak times was also more dispersed in AVP⁺ cells compared to NMS⁺ neurons (Fig. 5G).
These results complement the recent report from Shan et al using a Cre-dependent Color Switch PER2::LUC reporter mouse demonstrating period and phase differences among sub-populations of SCN neurons (AVP+ and VIP+), relative to the rest of the SCN. Our DbpKI mice and the recently reported Color-Switch PER2::LUC mouse line will be important additions to our molecular/genetic armamentarium for unravelling the complicated relationships among the cellular components of the central circadian pacemaker in the SCN.

Continuous, Non-invasive Detection of Bioluminescence Rhythms from Liver in Ambulatory Mice.

Addressing issues of internal desynchrony and misalignment of oscillators requires monitoring the dynamics of tissue resetting over time after a phase-shifting stimulus. The use of in vivo bioluminescence imaging for repeated assessments of organ-level regions of interest over multiple days is feasible but requires repeated, potentially disruptive anesthesia sessions per circadian cycle for several days, and intensive effort by investigators. As a result, in vivo bioluminescence imaging has generally been relegated to assessing phase of reporter gene oscillations on relatively few occasions after a shifting stimulus, with rare exception. An attractive alternative is to perform long-term, non-invasive bioluminescence recordings, as pioneered by Saini et al. who administered a virally encoded luciferase reporter by tail vein injection to transduce liver, allowing bioluminescence recording from awake, behaving mice using a specialized detector unit. This virally mediated reporter method is only appropriate for assessing rhythms in liver, however. Other studies have attached recording devices directly to mice or used fiber optics to collect light from specific brain regions in broadly luminescent Per1-luc or Per2-luc mouse reporter lines, which allow monitoring rhythms from tethered but ‘freely moving’ mice. An elegant but more invasive approach involves administering Cre-dependent viral reporters to mice with cell- or tissue-specific Cre expression, allowing specific cellular populations to be monitored in vivo. A less invasive approach that allows long-term assessment of rhythms in a variety of specific tissues is desirable.

In vivo bioluminescence imaging also suffers from a lack of anatomical resolution, with the light from several abdominal organs potentially merging. Tissues of the gastrointestinal tract are a major source
of abdominal bioluminescence in “whole-body” \((Dbp^{Luc/-}) \) reporter mice, and these tissues likely overshadow (or, more literally, out-glow) surrounding tissues, making it impossible to specifically assess rhythmicity in smaller abdominal structures \textit{in vivo}. Bioluminescence from even relatively large organs like liver and kidney is likely ‘contaminated’ by light from the gastrointestinal tract in non-conditional reporter mice.

To overcome these difficulties with assessing the origin of bioluminescence in “whole-body” reporter mice, and to refine recently developed methods for long-term monitoring of peripheral rhythms in ambulatory mice\(^5\), we generated \textit{Albumin-Cre;Dbp}^{Kd/+} (“liver reporter”) mice. First, we examined the potential impact of route of substrate administration on rhythms using a Lumicycle \textit{In Vivo} system\(^5\) (Actimetrics, Wilmette IL). Mice were entrained to 12L:12D followed by a skeleton photoperiod consisting of 4 1-h pulses of light every 24 hr (1L:1D:1L:6D:1L:1D:1L:12D) with the 12-h dark phase coinciding with 12-h dark phase of the preceding lighting cycle. A skeleton photoperiod was used because detection of bioluminescence requires the absence of ambient light, while studies of light-induced phase shifting obviously require light; a skeleton photoperiod is a compromise between these conflicting constraints. After 7 days in the skeleton photoperiod, mice were anesthetized for subcutaneous implantation of a primed osmotic minipump (Alzet, Model #1002 (0.25µl per hour)) containing either D-luciferin (100 mM) or phosphate buffered saline (PBS). Mice with PBS-containing pumps received D-luciferin in the drinking water (2 mM). The time of peak of bioluminescence rhythms was determined 5 days after pump implantation on the first day of exposure to constant darkness. Time of peak was determined by discrete wavelet transform (DWT) analysis. There was no difference in time of peak for these routes of D-luciferin administration (drinking water: mean peak time (± SEM) CT 8.75 ± 0.20 (n = 7); osmotic minipumps: mean peak time CT 8.76 ± 0.19; unpaired t-test, t = 0.0342, df =12, \(p = 0.9733 \)). Thus, the presumed rhythm of substrate intake, secondary to the rhythm of water intake, does not change the time of peak of the bioluminescence rhythm from liver reporter mice. This is consistent with recent results from Sinturel et al. 2021\(^7\). Our subsequent studies used D-luciferin (2 mM) administered in the drinking water.
Circadian Misalignment Following a Phase Shift of the Lighting Cycle. The approach described above provides an unparalleled system for assessing the timing of rhythmicity in a specific tissue over long periods of time. Thus, hepatic bioluminescence rhythms were monitored in Albumin-Cre; Dbp^{KII+} (liver reporter) mice before and after a 6-hr phase advance of the skeleton lighting cycle described above. Control mice remaining in the original (non-shifted) skeleton lighting regimen had a stable phase of hepatic bioluminescence (Fig. 6C). In contrast, mice exposed to a phase-advance of the skeleton photoperiod displayed a gradual phase-advance in both locomotor activity and hepatic bioluminescence rhythms (Fig. 6A, B). Notably, locomotor rhythms shifted more rapidly than hepatic bioluminescence rhythms: the liver lagged behind (Fig. 6B). To compare the re-entrainment of bioluminescence and locomotor activity rhythms, peak time for each rhythm each day was normalized to the time of peak on the last day before shifting the lighting cycle in the shifted group (e.g., Day 2 in Fig. 6) for each animal. Data from each lighting group were analyzed separately using a general linear model with Animal ID as a random variable (allowing comparison of the two rhythms within individuals) and the main effects of the endpoint (locomotor activity or bioluminescence) and Day number. In animals not undergoing a phase shift, the phase relationship of these endpoints was unchanged over time (F < 1.1, p > 0.39). In contrast, in animals exposed to a 6-hr phase advance of the skeleton photoperiod, the phase relationship of the locomotor activity and bioluminescence rhythms differed significantly (Measure*Day interaction, F_{9,54.98} = 3.358, p = 0.0024). Post-hoc testing revealed a significant difference in phase between the two measures on day 9 (Tukey HSD, p<0.05). A separate analysis to compare phase (relative to Day 2 baseline) between bioluminescence and locomotor activity rhythms revealed significant differences between the two measures on days 5,6,7,8,9 and 10 (t-tests on each day, p < 0.05). Thus, both locomotor activity and hepatic bioluminescence rhythms shifted following a phase shift of the lighting cycle, but the rhythms differ in their kinetics of re-adjustment, with the liver lagging behind. These data provide clear evidence for misalignment of SCN-driven behavioral rhythms and rhythmicity in the liver.
Recovery from Circadian Misalignment Induced by Temporally Restricted Feeding. We next conducted a study to examine misalignment induced by restricted feeding, as previous studies have shown that food availability limited to daytime significantly alters phase of peripheral oscillators. Due to our desire to study bioluminescence rhythms without interference from the light-dark cycle, our experiment assessed the timing of the Dbp-driven liver bioluminescence rhythms in constant darkness after different feeding regimens were administered in a light-dark cycle. This allowed us to determine the time of peak bioluminescence of the liver after restricted feeding, and the unprecedented opportunity to observe its return toward a normal phase relationship with SCN-driven behavioral rhythms over time in constant darkness with ad libitum food access.

Alb-Cre;Dbp^{KI/+} liver reporter mice were exposed to one of three feeding regimes (ad libitum, nighttime, or daytime food availability; Fig. 7A) for ten days preceding bioluminescence recording in constant darkness under ad libitum feeding conditions. A previously described automated feeder system was used to restrict food availability. This system limits total daily consumption (to prevent hoarding). With the setting used, this system restored daily food allotments to ad libitum fed and night-fed mice daily at 0000h (ZT18), and restricted food pellet delivery for day-fed mice to 0600-1800 h (ZT0-ZT12), and for night-fed mice to 1800-0600 h (ZT12 – ZT24/0). This midnight food replenishment resulted in unusual temporal profiles of food intake in ad libitum and night-fed mice. Nevertheless, ad libitum and nighttime food access both resulted in food intake being concentrated in the night while daytime food availability resulted in the midpoint of daily food intake occurring during the first half of the light phase (Fig. 7A, 7C). Within-group variability in the timing of food intake was low except for three clear outliers (Fig. 7C) that were excluded from subsequent analyses.
Ad libitum fed mice showed consistently phased rhythms in bioluminescence after transfer to constant darkness from 12h L:12h D, as did night-fed animals ([Fig. 7A, 7D]). In contrast, mice fed only during the light period for 10 days prior to housing in DD with *ad libitum* food had an earlier time of peak of the hepatic bioluminescence rhythm. Daytime feeding resulted in a significantly advanced peak time compared to both night-fed and *ad libitum* fed mice, while these latter groups were statistically indistinguishable (F$_{2,259.6}$ = 76.66, p < 0.0001; [Fig. 7D]). Subsequent exposure to constant darkness with *ad libitum* feeding allowed the hepatic clock of day-fed mice to return toward the appropriate phase relationship with the locomotor activity rhythm regulated by the SCN circadian pacemaker.

Although daytime feeding resulted in an advanced time of peak bioluminescence, the timing of the liver bioluminescence rhythm was not solely controlled by the timing of food intake. First, no significant correlations between the timing of food intake and time of peak bioluminescence were observed within any of the three feeding regimes (F < 1.13, p > 0.32; [Fig. 7C]). Second, the relationship between the timing of liver bioluminescence rhythms relative to the midpoint of food intake was significantly different between the different groups (F$_{2,17}$ = 313.2, p < 0.0001; [Fig. 7E]). While Dbp-driven hepatic bioluminescence rhythms were roughly in anti-phase with the midpoint of feeding in *ad libitum* and night-fed mice, daytime feeding resulted in near synchrony between these different rhythms ([Fig. 7E]). Furthermore, although the average midpoint of feeding was significantly earlier in night-fed compared to *ad libitum* fed mice (t$_{10}$ = 6.21, p < 0.0001; [Fig. 7C]), no significant difference was observed in bioluminescence phase relative to the preceding light-dark cycle ([Fig. 7D]), with the timing of liver bioluminescence rhythms relative to the midpoint of food intake being significantly delayed in night-fed compared to *ad libitum* fed mice ([Fig. 7E]). Overall, these results demonstrate that although the timing of
food intake strongly influences liver rhythms, the timing of bioluminescence rhythmicity in liver reporter mice is not solely driven by the timing of food intake (with food intake regulated for this duration and in this way).

Discussion

Numerous studies have made use of rhythmically expressed bioluminescent reporter genes to monitor circadian rhythms. The Per2Lac mouse has been especially useful as it generates robust bioluminescence rhythms from numerous tissues in vitro. The widespread expression of PER2::LUC (and other ‘non-conditional’ bioluminescence reporters) comes at a cost, however, as it is not possible to assess rhythmicity in specific cell populations within a larger tissue without dissection. Tissue explant preparation can cause phase-resetting, however, especially after exposure to phase shifting stimuli. Furthermore, ex vivo culturing of tissues does not allow assessment of rhythmicity in the context of the hierarchical circadian system or dynamic changes during environmentally-induced resetting.

We chose to modify the Dbp gene to generate a conditional reporter for several reasons. Dbp is widely and rhythmically expressed at readily detectable levels in numerous tissues. This feature ensures that the reporter mouse would be useful for detecting rhythmicity in numerous tissues. In addition, individual clock genes are responsive to different signaling pathways. This differential regulation can lead to circadian misalignment within the circadian clock. As an output gene, Dbp rhythmicity is likely a good proxy for the integrated output of the molecular clockwork in total. Finally, concern that the targeting event could disrupt function of the modified gene led us to steer away from core clock genes. For example, the GFP-expressing Dbp transcript lacks the native 3’ UTR and uses an exogenous polyadenylation sequence, which could affect Dbp
gene expression and regulation. Notably, however, our Northern blot analysis suggests little or no alteration in expression level or dynamics of the reporter transcripts; an observation in line with the previous finding that mice homozygous for a targeted allele of Dbp have only a modest circadian phenotype.\(^{72}\)

Shan et al.\(^{60}\) recently reported development of a Color-Switch PER2::LUC line which they used to demonstrate the utility of a Cre-dependent reporter approach for interrogating SCN circuitry. The Color-Switch PER2::Luc line has the advantage of reporting on both Cre-positive and Cre-negative cells in different colors. This strength of the Color-Switch PER2::LUC reporter can simultaneously be a weakness, in that detection of bioluminescence requires segmentation of the bioluminescence signal between wavelengths. Our ‘simpler’ approach of only inducing a bioluminescence signal in Cre-positive cells of $Dbp^{KI/+}$ mice enables recording of bioluminescence rhythms without the need for wavelength segmentation. In addition, the Dbp reporter can easily be used in $Per2$ mutant mice. Like the Color-Switch PER2::LUC line, our Dbp conditional reporter line is useful for \textit{ex vivo} studies, allowing specific cellular populations to be monitored by crossing to the appropriate Cre-expressing lines. Our studies reveal subtle differences among the population of oscillators defined by AVP-Cre, NMS-Cre, and the entire SCN cohort. More specifically, AVP cells had a shorter period, reduced rhythmicity index, and larger within-slice dispersal of peak times than the NMS cell population with which it overlaps. Our results suggest that AVP cells are coordinated less well and are less robust, in contrast to the typical view of AVP cells as high-amplitude ‘output’ neurons that also contribute to determination of period and rhythm amplitude.\(^{58}\)

We envision this line being very useful for monitoring additional neuronal subpopulations in the SCN in wild-type and mutant animals. Additional technical development may allow \textit{in vivo} detection of bioluminescence rhythms from neuronal populations in awake behaving mice.
Approaches to optimize the signal detected from brain include use of highly efficient and cell- and brain-penetrant substrates73,74, cranial windows75 and hairless or albino mice55,74. These approaches may allow interrogation of the SCN circuit \textit{in vivo}, extending the elegant studies being performed with SCN slices \textit{in vitro}. Bioluminescence rhythms can also be examined in neuronal populations outside the SCN, by using an appropriate Cre driver and/or viral delivery of Cre recombinase.

\textit{In vivo} bioluminescent imaging allows assessment of bioluminescence from several organs \textit{in vivo}, but the signal from these areas likely includes light emitted from nearby organs (e.g., intestinal tract and abdominal fat likely contribute to the signal attributed to liver and kidney). Indeed, the size and shape of the “liver” ROI seen by IVIS imaging differs between \textit{Dbp} liver reporter mice and whole-body reporter \textit{Dbp}\textsubscript{Luc} mice. Furthermore, bioluminescence from nearby tissues can be obscured by the high level of light output coming from liver, kidney and intestines. \textit{Cre}-mediated recombination of the conditional \textit{Dbp} reporter allele thus enables assessment of bioluminescence from other tissues.

\textit{Cre}-mediated recombination of the \textit{Dbp}KI allele in liver enabled us to perform continuous, \textit{in vivo} bioluminescence monitoring of liver in freely moving mice. These studies demonstrate transient misalignment between the liver oscillator and SCN-regulated behavioral rhythms. Repeated misalignment among oscillators is thought to contribute to adverse metabolic and health consequences of chronic circadian disruption. Up until now, technical and practical limitations have restricted our ability to monitor the behavior of circadian rhythms in different peripheral tissues during and following environmental disruption of circadian homeostasis. Our \textit{Cre}-conditional reporter line and the approaches described here for assessing bioluminescence rhythms \textit{in vivo} will allow longitudinal and tissue-specific characterization of misalignment and recovery.
after a variety of circadian-disruptive lighting and food availability paradigms, allowing more extensive testing of the consequences of repeated misalignment of peripheral clocks.

Previous studies have shown misalignment between central and peripheral clocks induced by altering the time of food access to daytime, by assessing oscillator phase at various time-points after a phase shift of the lighting cycle, or by exposure to non-24hr light-dark schedules. The vast majority of these studies monitored bioluminescence rhythms ex vivo or assessed transcript levels following tissue collection at various times after a shift. Notably, ex vivo bioluminescence rhythm timing may be affected by prior lighting conditions. Few studies have followed bioluminescence rhythms in vivo over time after a light-induced phase shift or after a food manipulation that phase-shifts peripheral oscillators. Our current data leverage the unprecedented ability to non-invasively monitor rhythmicity from a peripheral oscillator in individual animals over many days to show the time course of internal misalignment and recovery after a phase shift. Other studies with minimally invasive monitoring of bioluminescence rhythms have relied upon viral introduction of the reporter into liver, and thus are limited to studies of liver. Moreover, efficient expression of virally delivered reporter constructs is limited by the promoter size and specificity. Future studies of additional tissues in Cre-conditional reporter mice will enable a full deciphering of how other components within the hierarchical, multi-oscillatory circadian system respond to disruptive stimuli. Several studies suggest that organs differ in their response to resetting stimuli. For example, the Dbp mRNA rhythm in liver is more fully reset than the rhythm in heart and kidneys 3 days after restricting food availability to daytime, and several studies indicate the SCN (and the locomotor rhythms it regulates) reset more rapidly than peripheral tissues.
A further advance in studying the behavior of peripheral oscillators is provided by the ability to temporally regulate the timing of feeding. A recent study used a feeding device similar to the one used here to recapitulate food intake patterns in mice with restricted food access that were more naturalistic than the severe ‘all or none’ patterns typically used in studies with time-restricted access to food. The authors found that peripheral oscillators of Per2Lac mice were not effectively entrained by these imposed ‘natural’ feeding patterns. Similarly, our restricted food access study produced a smaller and more variable phase shift of the hepatic circadian clock (as indicated by the initial time-of-peak of Dbp-driven bioluminescence) than expected based on published results using presence / absence food availability cycles. A longer period of adjustment to the restricted feeding schedule or more complete and abrupt transitions between food presence and absence would likely produce a stronger entraining signal for the liver. Use of a variety of different Cre drivers will allow assessment of whether different peripheral organs respond similarly to food restriction paradigms. In addition, tissue-specific reporter models will be very useful in assessing how more naturalistic food ingestion paradigms influence peripheral circadian clocks in several tissues. These approaches will characterize circadian organization in normal and disruption paradigms, helping to identify factors contributing to the adverse consequences of circadian disruption.

Materials and Methods

Animals and Housing Conditions

All animal procedures were reviewed and approved by the Institutional Animal Care and Use Committees of the University of Massachusetts Medical School, Morehouse School of Medicine, the University of Warwick, and/or Smith College.
Unless otherwise noted, animals were maintained in a 12h light: 12h dark (LD) lighting cycle with access to food (Prolab Isopro RMH3000; LabDiet) and water available ad libitum. Zeitgeber Time (ZT) refers to time relative to the lighting cycle. ZT 0-12h is the light phase and ZT 12-24h is the dark phase.

Cre recombinase-expressing lines were obtained from the Jackson Labs and were crossed to mice bearing the conditional (DbpKi) reporter allele to generate mice expressing luciferase in specific cells or tissues. The following tissue-specific Cre lines were used:

- Albumin-Cre (B6.Cg-Sper6-ps1Tg(Alb-Cre)21Mgn/J; JAX 003574), AVP-IRES2-Cre (B6.Cg-Avp$^{tm1.1(Cre)Hze}$/J; JAX 0023530), and NMS-Cre (Tg(Nms-iCre)20Ywa, JAX 027205). These lines direct Cre recombinase expression to hepatocytes, neurons expressing arginine vasopressin (AVP), and neurons expressing neuromedin S (NMS), respectively. In addition, a Prrx1-Cre female (B6.Cg-Tg(Prrx1-CreCjt/J), JAX 005584) was used for germline deletion of the conditional allele (see below). All Cre-expressing lines were on the C57BL/6J background.

Founder Per2$^{Luc/+}$ mice with an in-frame fusion of firefly luciferase to PER2, and an SV40 polyadenylation signal were generously provided by Dr. Joseph Takahashi, University of Texas Southwestern Medical School, Dallas. This line was maintained by backcrossing to C57BL/6J mice (JAX 000664). All Per2Luc reporter mice used for experiments here were heterozygous (e.g., Per2$^{LucSV/+}$).

CRISPR/Cas9 targeting the Dhp locus

The mutant allele was generated by CRISPR/Cas9 mediated engineering of the Dhp locus. The targeting construct consisted of a 5' homology arm terminating just 5' of the Dhp stop codon followed by in-frame sequences encoding a T2A linker, LoxP, GFP with the bovine growth hormone polyadenylation signal, LoxP, and Luc2 followed by the 3'-UTR of Dhp (3' homology arm). Two sets of injections were done. In the first injection set, which led to 17 mice, C57BL/6J blastocysts were microinjected with the donor construct, and 20 ng/ul of each of two guide RNAs (MmDBPki_gR49f 5' GCCCAGCAUGGGACACUGUG 3' and MmDBPki_gR69f 5' AGGCCACCUCUCACCCUGCGA 3'). This set of injections did not lead to any putative founders. For the second set of microinjections, blastocysts...
were injected with 40 ng/ul guide RNA MmDBPK_i_gR49f, 50 ng/ul Cas9 mRNA (synthesized from a Cas9 PCR product using mMessage mMachine T7 Ultra Kit from Life Technologies) and 20 ng/ul CAS9 protein (IDT). From 34 mice generated in this set, two putative founders were identified using a primer pair internal to the construct (primer pair C, see Table S1). Primer pairs consisting of a primer in flanking DNA, external to the construct, and a primer within the construct were used to confirm that one of these animals had the desired targeting event (primer pairs F and H, which spanned the 5’ and 3’ ends, respectively). Genomic DNA from this mouse was then amplified using a primer pair flanking the entire construct; sequencing the product confirmed the construct was inserted properly, in vivo. The founder carrying the targeted (knock-in or Dbp^{KI}) allele and its offspring were backcrossed to C57BL/6J mice (JAX 000664) for three generations before any intercrossing to reduce off-target mutations.

To generate mice with germline deletion of GFP (and thus leading to expression of luciferase throughout the body), a male Dbp^{KI/+} was bred to a Prrx1-Cre female (JAX 005584), which we had on hand and which produces germline deletion of floxed alleles at high frequency. Several mice bearing the newly generated Dbp^{Luc} allele were identified and backcrossed to C57BL/6J, selecting against Prrx1-Cre.

Genotyping

Genotyping was performed by PCR amplification of DNA extracted from ear punches. Amplification products were separated by agarose gel electrophoresis. Genotyping protocols for Cre recombinase and Per2^{Luc} have been published previously⁵³,⁷⁹ A primer set (“4A”) capable of detecting all possible Dbp allele combinations was used for colony genotyping; the three possible alleles (Dbp⁺, Dbp^{KI}, Dbp^{Luc}) generate amplicons of different size with this primer set (299, 399 and 490 bp, respectively). Primer sets are listed in Table S1.

Generation of Digoxigenin (DIG) DNA Probes and Northern Blot Assay

DIG-labeled DNA probes were generated by PCR in reactions containing 28 µM of DIG-labeled UTP following the manufacturer’s protocol (Roche). Primer sets are listed in Table S1.
WT, DbpKI/+, DbpKI/KI, DbpLuc/+, and DbpLuc/Luc mice were euthanized by Euthasol injection and liver tissue was collected at 4-h intervals (ZT 2, 6, 10, 14, 18, 22). RNA was isolated from the liver tissue by Trizol extraction (Ambion). RNA was quantitated by Nanodrop. Five micrograms per lane were separated by electrophoresis on a 1.2% formaldehyde gel. RNA was transferred to a nylon membrane and cross-linked by UV exposure. Blots were prehybridized, probed and detected following the manufacturer’s protocol (Roche), bagged and exposed to X-ray film.

Locomotor Activity Rhythms

Male and female mice of five genotypes (WT, DbpKI/+, DbpKI/KI, DbpLuc/+, and DbpLuc/Luc) were transferred to the experimental room and single-housed with a running wheel. Animals had access to food and water \textit{ad libitum}. Running-wheel activity was monitored using ClockLab collection software (Actimetrics). Mice were entrained to a 12-h light/12-h dark cycle for 18 days, then were placed into constant darkness (dim red light) for 15 days. The free-running period for each animal was determined on days 4-15 in DD by periodogram analysis using ClockLab analysis software.

Bioluminescence Recordings from Tissue Explants

Tissue explants were prepared late in the afternoon from \textit{Per2}Luc/+ and DbpLuc/+ mice housed on a 12-h light/12-h dark lighting cycle. Mice were deeply anesthetized with Euthasol and decapitated. Tissues were dissected and immediately placed in ice-cold 1X HBSS (Gibco). Pituitary gland was subdivided into 4 sections (~2mm3) with a scalpel and each piece was cultured separately. Lung explants were placed three per dish. Up to three replicate dishes were studied per tissue per animal. Explants were placed on sterile 35-mm Millicell culture plate inserts (Millipore) in a sealed petri dish containing air-buffered bioluminescence medium 53,80 plus D-luciferin (100 µM) (Gold Biotechnology) and incubated at 32 °C. Bioluminescence was measured from each dish for 1 minute every 15 minutes using a Hamamatsu LM-2400 luminometer.

Bioluminescence records were analyzed to determine period and peak time. The first 12-h were discarded to exclude acute responses to explant preparation. Photon counts were smoothed to a 3-h running average and baseline subtracted using a 24-h running average. Circadian period was determined from the
average of the period between each peak, trough, upward crossing and downward crossing between 24 and 88 hr of recording for each record. Peak time was calculated as the clock time of the first peak in the background-subtracted data. Tissues from mice of the two genotypes were studied together in each run.

Imaging of In Vivo Bioluminescence Rhythms

In vivo imaging was performed in the UMass Medical School Small Animal Imaging Core Facility using an In Vivo Imaging System (IVIS-100, Caliper, now Perkin Elmer) as previously described. Alb-Cre+, DbpKl/+; DbpLuc/+ and Per2Luc/+ mice were anesthetized with 2% isoflurane (Zoetis Inc.) and skin covering the liver, kidneys and submandibular glands was shaved. Mice were injected with D-luciferin (i.p., 100 µl at 7.7 mM, Gold Biotechnology) and Dorsal (9 min post-injection) and Ventral (10.5 min post-injection) images were captured from each animal. To assess bioluminescence rhythms, anesthesia, D-luciferin injection and imaging was repeated at 4- to 8-hour intervals over approximately 30 hours. Experiments to localize the source of bioluminescence utilized a single injection of D-luciferin at the time of the expected peak bioluminescence, followed by euthanasia, dissection, and *ex vivo* imaging.

IVIS images were analyzed using Caliper Life Sciences’ Living Image software (version 4.4). Bioluminescence within Regions of Interest (ROI) of fixed size for all time-points in each mouse was determined and analyzed as previously described.

Assessing Distribution of Bioluminescence In Vivo and Ex Vivo

Whole-body reporters (DbpLuc+/) and liver reporters (Alb-Cre+; DbpKl+) were used to assess the distribution of bioluminescence by IVIS imaging. Mice were anesthetized with isoflurane, shaved, and injected with D-luciferin (100 microliters at 7-10 mM, i.p.) at times of peak expression (ZT 11-16). Images were captured of ventral and dorsal views at 9-12 minutes after injection.

Bioluminescent counts within regions of interest (ROIs) were calculated using Living Image 4.4 software. ROIs identified on the ventral surface were the whole rectangular region containing the mouse, and sub-ROI’s where a region in the throat (submandibular gland), upper abdomen, and lower abdomen, and any other hot-spots observed. Dorsal ROI’s were the rectangle containing the entire mouse and a sub-
ROI over the lower back, corresponding to the abdomen on the dorsal side. Subsequent calculations were performed in Microsoft Excel.

Animals were euthanized while under anesthesia, and organs were dissected and imaged to assess the distribution of light. Due to the time required for sequential dissection and image capture of multiple animals, some images of dissected tissues were captured as long as 60 minutes after D-luciferin injection, and up to 10 minutes after euthanasia. Preliminary studies conducted by capturing images at various time after euthanasia suggested there is no change in the distribution of bioluminescence with time, although absolute levels fall with time. These studies indicated significant contribution of bioluminescence from small intestine, colon, cecum, pancreas and mesenteric fat, uterus and perigonadal fat, with liver and kidney emitting less light. Thymus, heart, lung and spleen contributed very little light output under the imaging conditions used.

Bioluminescence Imaging of SCN Explants

Coronal sections containing SCN from *NMS-Cre; Dbp!/+*, *AVP-IRES-CRE; Dbp!/+*, and *Dbp!/+* mice were dissected, cultured, and imaged as previously described. Briefly, sections containing SCN (150 μm) were collected from adult mice, cultured on a membrane (Millicell CM; Millipore) in 1.2 mL of air-buffered media containing 100 μM D-luciferin (Gold Biotechnology), and imaged for 5 days using a Stanford Photonics XR/MEGA-10Z cooled intensified charge-coupled device camera.

Rhythmic parameters of luciferase expression were calculated for each slice and for cell-like regions of interest (ROIs) within each slice using computational analyses in MATLAB (R2018a, MathWorks) as described previously. Briefly, to locate and extract data from cell-like ROIs, we employed an iterative process identifying clusters of at least 20 bright pixels after background and local noise subtraction (through application of a 2D wavelet transform using Wavelab 850, [https://statweb.stanford.edu/~wavelab/]) of a slice image summed across 24 h of bioluminescence. To extract time series for the ROI’s, each image in the sequence was smoothed via convolution with a Gaussian kernel applied to 12x12-pixel regions and reduced from 512x640 resolution to 256x320. A discrete wavelet transform (DWT) was applied to each time series to remove the trend and to extract the circadian and noise
components using the \textit{wmtsa} toolbox for MATLAB (https://atmos.uw.edu/~wmtsa/). The criteria for circadian rhythmicity in the ROI time series were a peak autocorrelation coefficient of at least 0.2, a circadian component peak-to-peak time between 18 and 30 h, an amplitude above baseline noise (standard deviation of noise component), and a cross-correlation coefficient of at least 0.4 with an aligned sine wave over a 48h window. Peaks of the DWT circadian component were used to estimate peak time of each ROI.

Rhythmicity index (RI) is the peak in the autocorrelation of the DWT-detrended time series, corresponding to a lag between 16 and 36 hrs, as previously described84,85. The time of peak bioluminescence, rhythmicity index and the scatter of peak times within each slice for each ROI was assessed on the first day \textit{in vitro}. Period of rhythmicity in each ROI was determined as the average peak-to-peak interval in the second and third cycles. These measures were compared between genotypes by a general linear model, with slice ID included as a random variable to account for multiple cells being measured on each slice. Where applicable, post-hoc comparisons were performed using Tukey’s HSD pairwise comparisons.

\textbf{Bioluminescence Rhythms in Ambulatory Liver Reporter Mice}

Bioluminescence was measured in freely moving \textit{Alb-Cre+; DbpKKI/+} reporter mice with the “Lumicycle \textit{In Vivo}” system (Actimetrics, Wilmette, IL) using methods as recently described55. Each unit contained two PMTs (Hamamatsu H8259-01), and programmable LED lights. A programmable shutter blocked the PMTs during periods of light exposure and to measure ‘dark counts’. Each 1-minute dark-count value was subtracted from the counts recorded during the subsequent 14 minutes to obtain the background-corrected count values, to compensate for the effect of temperature fluctuations on PMT signal. Locomotor activity was recorded using passive infrared motion sensors (Visonic, K940) and Clocklab software (RRID:SCR_014309). Animals were checked daily at varied times using an infrared viewer (Carson OPMOD DNV 1.0), or goggles (Pulsar Edge Night Vision Goggles PL75095).

\textbf{Analysis of Ambulatory Bioluminescence Rhythms.} Ambulatory bioluminescence data were analyzed using RStudio. A discrete wavelet transform (DWT) was applied to each time series to detrend and to calculate the time of peaks using the \textit{wmtsa} R package (https://cran.r-
As described\(^{83-85}\), the S12 filter was applied on 15-min median binned data; medians were used (instead of means) to reduce the effect of large outliers. Data before the first trough and after the last trough were discarded to avoid edge effects.

Assessing Routes of Administration of Luciferin. To determine whether rhythmic substrate intake influences the pattern of bioluminescence, we compared the time of peak bioluminescence between animals receiving continuous administration of substrate (from a subcutaneous osmotic minipump) with trials in which mice received D-luciferin in the drinking water (2 mM) and implantation of a PBS-filled osmotic pump.

Liver reporter mice previously housed in 12L:12D were entrained to a skeleton photoperiod (SPP) consisting of four 1-hour light pulses. A skeleton photoperiod provides additional periods of darkness in which to record bioluminescence. In the SPP, illumination occurred in four 1-hour blocks within the light phase in the preceding lighting cycle (e.g., lights were on from ZT 0-1, 2-3, 9-10, and 11-12, so the first and last hours of light in SPP coincided with light onset and offset, respectively, in the full photocycle with lights on ZT0-12 and lights off ZT12-24/0). On the seventh day of SPP entrainment, mice were given analgesics (0.05 mg/kg Buprenorphine and 2.0 mg/kg Meloxicam), anesthetized with 3% isoflurane, shaved from hips to shoulders, and a primed osmotic minipump (Alzet Model #1002, 0.25µl per hour, 14 day) containing D-luciferin (100 mM dissolved in PBS) or PBS vehicle was implanted subcutaneously. Mice were returned to their cages with a warming disc and were provided soft food during the first 24 hours of recovery. Animals were placed into the LumiCycle *In Vivo* unit 2.5 days after surgery. Bioluminescence was recorded in SPP lighting for 2.5 days, then lights were disabled at the time of lights-out. The time of peak bioluminescence was determined by wavelet analysis on the first day in constant darkness. No difference in peak time of bioluminescence was found (see Results); in subsequent studies we administered D-luciferin (2 mM) in the drinking water.

Re-entrainment following a Phase Shift of the Skeleton Photoperiod. Additional studies were conducted to assess re-entrainment of the bioluminescence rhythms after a 6-hr advance of the light-dark cycle. Animals previously entrained to a full 12L:12D lighting cycle were transferred to the skeleton...
photoperiod described above for several days before study. Mice were anesthetized with isoflurane and shaved 2.5 days prior to placement in the LumiCycle In Vivo units. D-Luciferin (2 mM) was provided in the drinking water. Skeleton photoperiod lighting conditions were either maintained at the initial pattern or advanced by 6 hr after the second day of recording. Locomotor activity was detected by passive infrared motion sensors.

Analysis. The circadian time of peak bioluminescence and the mid-point of locomotor activity were determined by wavelet analysis on each day of recording. For studies of phase shifts in response to shifting the skeleton photoperiod, the timing of bioluminescence rhythms and locomotor activity rhythms were normalized relative to the timing of these rhythms on Day 2 (e.g., the last day before shifting the lighting cycle in the shifted group) for each animal. Data are expressed as mean ± SEM for each genotype and endpoint on each day. Data from each lighting group were analyzed separately using a general linear model with Animal ID as a random variable (allowing comparison of the two rhythms within individuals) and the main effects of the endpoint measure (locomotor activity or bioluminescence) and Day number, and the 2-way interaction Measure*Day. In animals not undergoing a phase shift, potential changes in the timing of the locomotor or bioluminescence rhythm were assessed separately for either measure by testing the influence of Day number.

Food Restriction Followed by Bioluminescence Recording. Liver reporter mice (*Albumin-Cre; Dbp^{KI/+}*) were fed pellets (300 mg, Dustless Precision Pellets, Rodent, Grain-Based, F0170, BioServ, Flemington, NJ, USA) through the Actimetrics timed feeding apparatus designed by Phenome Technologies, Skokie, IL, USA. Pellets were spaced by a minimum of 10 minutes to prevent hoarding behavior⁶⁹. Three groups were studied: those with ad libitum access to food, those with feeding restricted to the light phase of the LD cycle (daytime feeding), and mice with access to food restricted to the dark phase of the LD cycle (nighttime feeding). Mice were held under their feeding regime for 10 days prior to bioluminescence recording. They were weighed regularly to ensure body weight did not decrease below 95% of initial weight. All mice were kept on a 12L:12D lighting schedule during the period of food manipulation, and then were released into constant darkness for bioluminescence recording. During the LD
period, data were collected on feeding, light levels, and locomotor behavior (using motion sensors). Three
days before entering the Lumicycle In Vivo units, cage bottoms were changed at dark onset. *Ad libitum* and
night-fed mice were placed into the LumiCycle In Vivo units at dark onset with food immediately available.
Day-fed mice were placed into the LumiCycle In Vivo units at dark onset but were provided food after 12
hours (at the time of light onset in the previous LD cycle) to continue the daytime feeding regime during
the first day of the recording period. Bioluminescence was recorded for 7 days.

Liver reporter animals were randomly assigned to treatment groups and recording boxes.
Experimental groups and controls ran in parallel over five cohorts lasting 3 months. 24 hours prior to
placement in the recording boxes, mice were shaved from hips to shoulders on their front and back under
3% isoflurane and returned to their cages. 6 hours prior to placement into the in vivo boxes, mice were
provided with D-luciferin (2mM) in the drinking water to enable instantaneous bioluminescence upon
recording onset.

Analysis. For each animal the center of gravity (COG) of food intake was calculated for the last 5
days of the feeding regimen. Food intake patterns were also independently assessed qualitatively by four
observers. These assessments led to identification of three cohorts of mice, based on food intake patterns.
Three mice were identified as clear outliers compared to these three cohorts based on visual inspection of
the food intake timing. In line with this qualitative assessment, the feeding COG of each of these 3 animals
was >2 h removed from the other animals in their cohort (**Fig. 7C**). These three animals were excluded
from cohort-based assessments. Peak of bioluminescence on each day was calculated by DWT analysis as
above. Missing data resulted from inability to define a time of peak on some days. Hair regrowth contributed
to loss of signal and loss of rhythm amplitude, and thus to missing data in some cases.
Acknowledgments

We thank Christopher Lambert and Jamie Black for technical assistance, and Steven A. Brown (University of Zurich) for discussions and encouragement in the development of this project.

Use of UMass Medical School core facilities (Mutagenesis Core, Mouse Modeling Core, and Small Animal Imaging Core) is gratefully acknowledged.

Research reported in this publication was supported by the National Institute for Neurological Diseases and Stroke and the National Institute of General Medical Sciences of the National Institutes of Health under award numbers R21NS103180 (DRW), SC1GM112567 (AJD), and NIGMS R15GM126545 (MEH), the Hartmann Müller Stiftung (RD), MRC MC_PC_15070 (RD) and BSN (RD and LAG). CBS was a participant in the UMass Medical School Initiative for Maximizing Student Development, supported by NIH grant R25GM113686. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the other funding agencies.

Author Contributions

R.D and D.R.W. conceived the project

C.B.S., V.v.d.V., and D.R.W. wrote the paper

All authors have approved this version of the manuscript.

72. L. Lopez-Molina et al., The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. *EMBO J* 16, 6762-6771 (1997).

Figure 1. Generation of a bifunctional reporter from the mouse Dbp locus.

A. The mouse Dbp locus was modified by CRISPR-mediated insertion of the donor construct shown. The construct contained homology arms from the Dbp locus (gray and black) and inserted the reporter sequences with a T2A-encoding sequence (orange) between DBP and the reporter. Destabilized EGFP (d2EGFP) with a bovine growth hormone polyadenylation site (PA) was flanked by loxP sites (red). Downstream of GFP is a luciferase (Luc2) reporter gene. Without recombination Dbp and GFP are expressed as a single transcript from the conditional (Dbp^{KI} allele).

B. With Cre-mediated recombination, GFP-encoding sequences are excised and Dbp and luciferase are expressed as a single transcript. The T2A sequence generates separate proteins from these bifunctional transcripts. Cre-mediated germline recombination led to mice expressing luciferase non-conditionally from the Dbp^{Luc} allele.
Figure 2. Tissue explants from $\text{Dbp}^{\text{Luc/+}}$ mice have an earlier time of peak bioluminescence than explants from $\text{Per2}^{\text{Luc/+}}$ mice in vitro.

A., B., D., and E. are representative bioluminescence rhythms from triplicate tissue explants from $\text{Per2}^{\text{Luc/+}}$ (A, D) and $\text{Dbp}^{\text{Luc/+}}$ mice (B, E). ‘Days’ refers to time in culture, not projected ZT. Values are 24-h background-subtracted, 3-h smoothed values.

C,F. Time of peak bioluminescence in vitro. The large circles represent a 24-h day for each organ. ZT’s refer to the lighting cycle to which the mice were exposed prior to sample collection, with ZT0-12 being the light phase. Colored points at the perimeter of the large circle indicate the timing of peak bioluminescence of individual $\text{Per2}^{\text{Luc/+}}$ (dark blue) or $\text{Dbp}^{\text{Luc/+}}$ (teal) tissue explants (n=12-14 mice). Within each tissue/genotype combination, there was significant clustering of times of peak bioluminescence. Radial lines represent the mean peak time, which differed significantly between genotypes for each tissue (Watson-Williams test, p<0.001).

File: Fig 2 in vitro-032821.jpg
Figure 3. Bioluminescence rhythms measured in vivo

A-C. Bioluminescence images captured at 4-6 hr intervals from a representative mouse of each genotype.

A. $\text{Per2}^{L\text{uc}+/}$

B. $\text{Dbp}^{L\text{uc}+/}$

C. $\text{Alb-Cre; Dbp}^{Kl+/}$

D-F. Cosinor-fitting of bioluminescence signal over time for the animals shown in Panels A-C to determine peak time. Bioluminescence rhythms were assessed in submandibular gland, liver, and kidneys of (D.) $\text{Per2}^{L\text{uc}+/}$ and (E.) $\text{Dbp}^{L\text{uc}+/}$ reporter mice, and from liver of $\text{Alb-Cre}+; \text{Dbp}^{Kl+/}$ mice (F.).

G-I. Time of peak bioluminescence in vivo as assessed by IVIS imaging. G. Submandibular gland, H. Kidneys, and I. Liver. Data plotted as in Fig. 2C and 2F. Dark blue symbols are $\text{Per2}^{L\text{uc}+/}$ tissues (n=10), teal symbols are $\text{Dbp}^{L\text{uc}+/}$ tissues (n=7). In Panel H, open symbols represent the right kidney and filled symbols represent the left kidney. In Panel I, purple circles represent livers from $\text{Alb-Cre}+; \text{Dbp}^{Kl+/}$ mice.
(n=8). Radial lines represent the mean peak time for each genotype and tissue. Radial lines from the two kidneys of a genotype are nearly overlapping. For liver, radial lines for the two Dbp reporter lines are overlapping and appear as a single line. Time of peak for each Per2Luc/+ organ examined differed significantly from time of peak of the corresponding organs from DbpLuc/+ and Alb-Cre+; DbpKI/+ mice (p=0.002, Watson-Williams test). There was no significant difference in peak time between DbpLuc/+ and Alb-Cre+; DbpKI/+ liver tissues (P >0.05).

File: Fig 3 in vivo IVIS_032821scaled.jpg
Figure 4. *Dbp* mRNA rhythms are not altered in reporter mice

A-C. Representative Northern Blots probed to detect *Dbp* and *Actin* mRNA. A. From each of five genotypes, RNA samples were extracted from livers collected at ZT 2 and 10. For each genotype, there are two samples at ZT10 and one sample at ZT2 on this blot. B. and C. Representative Northern Blots of RNA samples collected from WT and reporter mouse livers at each of six Zeitgeber times (ZT).

D-F. Quantification of *Dbp* mRNA rhythms for each allele in time-series experiments (6 time-points each). Results are expressed as mean (± SEM) percent of the peak *Dbp*/Actin ratio, which occurred at ZT 10 on every blot. D. Wild-type *Dbp* transcript (n=12 sample sets). E. *Dbp*^{KI} transcript (n= 6). F. *Dbp*^{Luc} transcript (n= 6). For each transcript, there was a significant rhythm (Friedman’s One-way ANOVA, Q > 19, p < 0.002). Asterisks indicate time-points that differed significantly from ZT10 (Dunn’s test, * p < 0.05, ** p
< 0.01, *** $p < 0.001$, **** $p \leq 0.0001$). Significant differences among some other time-points are not shown for clarity.

File: Fig 4_Northern figure with bar graphs_010321.jpg
Figure 5. Cell-type-specific imaging of LUCIFERASE expression in SCN slices
A) 24h summed bioluminescence overlaid onto bright field images of a section through the SCN from

DBP^{Luc}+/− (global reporter expression, left), and in mice expressing luciferase from specific subsets of SCN

neurons (NMS⁺ cells, center; AVP⁺ cells, right).

B. Representative bioluminescence traces from single neuron-like ROIs in slices from each genotype.

C. Circular plots indicate the peak time of bioluminescence rhythms from each genotype. Time is expressed
relative to the light-dark cycle the mice were housed in prior to sacrifice; numbers >24 are used to indicate
that these measures are recorded on the first day <i>in vitro</i> and are plotted relative to previous <i>in vivo</i> lighting
conditions. Each slice is represented by a small dot. Placement of the dot relative to outer circle indicates
average peak time (±SD), while the distance from the center corresponds to the number of cells incorporated
in the average (√<i>cell#</i>).

D. Mean period (± SEM) by genotype. The number of slices per genotype is indicated at the base of each
bar (D-G).

E. Circular mean peak time (± SEM) by genotype.

F. Mean rhythmicity index score (± SEM) by genotype.

G. Mean peak time dispersal (quantified by circular SD of peak times within each slice) by genotype.

File: Fig 5_Smith et al_032821.jpg
Figure 6. Light-induced resetting produces misalignment between liver bioluminescence rhythms and locomotor activity rhythms.

A. Representative double-plotted actogram showing locomotor activity (dark gray) and bioluminescence (dark red) of an Alb-Cre; DbpK/C liver reporter mouse before and after a 6-h advance of the skeleton photoperiod consisting of four 1-h periods of light per 24-h day, as indicated by white. The skeleton photoperiod was advanced by 6 h by shortening the dark phase after the last light pulse on Day 2. Red squares represent the peak of the bioluminescence rhythm, while black circles represent the midpoint of locomotor activity each day. These values were determined by discrete wavelet transform analysis. Six hours of each cycle are double-plotted to aid visualization of the data. Light and dark are indicated by white and light-gray backgrounds, respectively.

B. Mean (± SEM) midpoint of locomotor activity (black) and peak of liver bioluminescence (red) rhythms are shown, relative to their initial value, in a group of 4 mice exposed to a shifted skeleton photoperiod. Both rhythms reset gradually after a 6-h phase advance of the skeleton photoperiod, but the locomotor activity rhythm re-sets more rapidly than the bioluminescence rhythm within animal (Significant Measure * Day interaction, and significant phase difference between the rhythms on Day 9 (Tukey HSD, \(p < 0.05 \)).

C. Mean (± SEM) time of midpoint of locomotor activity (black) and peak liver bioluminescence (red) rhythms are shown, relative to their initial phase, in a group of 4 mice not subjected to a phase shift of the skeleton photoperiod.
File: Fig 6_Liver Reporter SPP phase shift.JPG
Figure 7. Time-restricted feeding alters the timing of liver bioluminescence rhythms.

A. Representative actograms of three Alb-Cre; Dbp^{KI/+} liver reporter mice exposed to the different feeding regimes as indicated above each panel. Mice were housed in a 12h:12h light-dark cycle and exposed to the specified feeding regime for ten days (-10 to 0) preceding bioluminescence recording. The timing of food intake (blue triangles) and general locomotor activity (dark gray) was recorded continuously. The midpoint of food intake over the last five days preceding bioluminescence recording is indicated by a cyan diamond on day 0. Mice were transferred to the bioluminescence recording setup at the start of the dark phase and housed in constant darkness with <i>ad libitum</i> food access starting 12 hr later. Liver bioluminescence levels are depicted in dark red. Red squares represent the time of peak of the bioluminescence rhythm, determined by discrete wavelet transform. Six hours of each cycle are double-plotted and the y-axis has been stretched during the last 6 days to aid visualization of the data. Light and dark are indicated by white and light gray backgrounds, respectively.

B. Individual and mean (± SEM) phase of liver bioluminescence rhythms relative to clock time for three feeding groups. Mice previously exposed to <i>ad libitum</i>, nighttime and daytime feeding are plotted in grey/black, blue/cyan and magenta, respectively (key in Panel C). Prior to recording
bioluminescence, mice were entrained to a 12L:12D lighting cycle with lights on at 0600. Mice previously exposed to daytime feeding show an advanced peak phase of liver bioluminescence that reverts over time in constant darkness with \textit{ad libitum} food.

C. Relationship between preceding feeding phase and peak liver bioluminescence phase for individual animals on the first day under constant conditions. \textit{Ad libitum} and night-fed groups had similar midpoint of food intake; three “outliers” with respect to midpoint of food intake (shown by open symbols) were not included in further analyses (Panels B, D and E).

D. Mean (± SEM) peak liver bioluminescence phase on the first day under constant conditions, relative to clock time for the three feeding regimens. The low variability within groups resulted in error bars that were nearly or completely contained within the symbols.

E. Mean (±SEM) peak liver bioluminescence phase on the first day under constant conditions, relative to the midpoint of preceding food intake for the three feeding regimens. The low variability within groups resulted in error bars that were nearly or completely contained within the symbols.

File: Fig 7_Smith et al_032921.JPG
Table 1: Period length of locomotor activity rhythms in constant darkness, by sex and genotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Sex</th>
<th>N</th>
<th>tau(_{DD}) (Mean +/- SEM), h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dbp(^{+/+})</td>
<td>Male</td>
<td>15</td>
<td>23.88 +/- 0.027</td>
</tr>
<tr>
<td>Dbp(^{KI/+})</td>
<td>Male</td>
<td>10</td>
<td>23.91 +/- 0.057</td>
</tr>
<tr>
<td>Dbp(^{KI/KI})</td>
<td>Male</td>
<td>11</td>
<td>23.92 +/- 0.036</td>
</tr>
<tr>
<td>Dbp(^{Luc/+})</td>
<td>Male</td>
<td>11</td>
<td>23.86 +/- 0.025</td>
</tr>
<tr>
<td>Dbp(^{Luc/Luc})</td>
<td>Male</td>
<td>8</td>
<td>23.97 +/- 0.029</td>
</tr>
<tr>
<td>Dbp(^{+/+})</td>
<td>Female</td>
<td>21</td>
<td>23.87 +/- 0.021</td>
</tr>
<tr>
<td>Dbp(^{KI/+})</td>
<td>Female</td>
<td>9</td>
<td>23.89 +/- 0.036</td>
</tr>
<tr>
<td>Dbp(^{KI/KI})</td>
<td>Female</td>
<td>11</td>
<td>23.79 +/- 0.030</td>
</tr>
<tr>
<td>Dbp(^{Luc/+})</td>
<td>Female</td>
<td>8</td>
<td>23.82 +/- 0.053</td>
</tr>
<tr>
<td>Dbp(^{Luc/Luc})</td>
<td>Female</td>
<td>8</td>
<td>23.75 +/- 0.042</td>
</tr>
</tbody>
</table>