HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation [preprint]

Laure Bridoux
University of Manchester

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs

Part of the Developmental Biology Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
HOX paralogs selectively convert binding of ubiquitous transcription factors into tissue-specific patterns of enhancer activation

Laure Bridoux¹*, Peyman Zarrineh²*, Joshua Mallen¹, Mike Phuycharoen³, Víctor Latorre¹, Frank Ladam⁴, Marta Losa¹, Charles Sagerstrom⁴, Kimberley A. Mace⁵, Magnus Rattray² and Nicoletta Bobola¹,⁶

¹School of Medical Sciences, ²School of Health Sciences, ³Department of Computer Science, ⁴Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA

* These authors contributed equally

⁶ Correspondence: Nicoletta.Bobola@manchester.ac.uk
Summary

Gene expression programs determine cell fate in embryonic development and their dysregulation results in disease. Transcription factors (TFs) control gene expression by binding to enhancers, but how TFs select and activate their target enhancers is still unclear. HOX TFs share conserved homeodomains with highly similar sequence recognition properties, yet they impart the identity of different animal body parts. To understand how HOX TFs control their specific transcriptional programs in vivo, we compared HOXA2 and HOXA3 binding profiles in the mouse embryo. HOXA2 and HOXA3 directly cooperate with TALE TFs and selectively target different subsets of a broad TALE chromatin platform. Binding of HOX and tissue-specific TFs convert low affinity TALE binding into high confidence, tissue-specific binding events, which bear the mark of active enhancers. We propose that HOX paralogs, alone and in combination with tissue-specific TFs, generate tissue-specific transcriptional outputs by modulating the activity of TALE TFs at selected enhancers.

Introduction

Gene expression programs instruct and maintain cell fate in embryonic development and adult tissue homeostasis. Transcription factors (TFs) control gene expression by binding to enhancers (Reiter et al., 2017; Spitz and Furlong, 2012). However, we still have no clear idea of how TFs select their precise sets of target enhancers. While TFs contain DNA binding domains which recognize DNA in a sequence-specific manner, these interactions are typically insufficient to direct a TF to its functional targets.

Transcriptional regulation is mediated by TFs working together, rather than in isolation. The widespread occurrence of collaborative TF binding is imposed by chromatin. A single TF cannot easily compete with nucleosomes to access DNA, but multiple TFs that recognize closely spaced binding sites can effectively displace nucleosomes and indirectly facilitate each other’s binding (Mirny, 2010; Moyle-Heyrman et al., 2011). Such indirect cooperativity can also result in TFs recognizing low affinity sites, i.e. sites that deviate from their optimal
consensus *in vitro* (Farley et al., 2015). Recent observations indicate that TF cooperativity does not end at binding enhancers: clusters of enhancer-bound TFs concentrate co-activators and other nuclear factors via dynamic fuzzy interactions, driven by their intrinsically disordered regions (IDRs). IDRs function in molecular recognition and mediate the interaction with a diversity of regulatory proteins (Cumberworth et al., 2013; Staby et al., 2017) to promote the liquid-liquid phase transition associated with gene activation (Boija et al., 2018). Thus, the formation, on DNA segments, of regulatory complexes made of different combinations of factors, is key to activation of gene expression. These distinct combinations of TFs produce virtually inexhaustible flavours of gene expression and cell fate (Spitz and Furlong, 2012).

HOX TFs provide an ideal model to explain how TFs select their target enhancers to direct specific transcriptional programs *in vivo*. They contain a homeodomain (HD), a highly conserved DNA binding moiety shared by hundreds of TFs (Bobola and Merabet, 2017; Burglin and Affolter, 2016). HD display highly similar sequence recognition properties and bind the same core of four-base-pair sequence TAAT (Noyes et al., 2008), yet HOX TFs function to establish the identity of entirely different body parts along the antero–posterior axis of all bilaterian animals (Krumlauf, 1994; Pearson et al., 2005). In mammals, there are 39 *Hox* genes, classified into anterior (HOX1–2), central (HOX3–8), and posterior (HOX 9–13) paralog groups (Rezsohazy et al., 2015). HOX paralogs occupy sequential positions along the chromosome, which are faithfully maintained across evolution (Duboule, 2007). This translates into precise HOX expression codes at different levels of the antero-posterior axis, conferring specific spatial and temporal coordinates to each cell.

HOX association with three amino acid loop extension (TALE) HD TFs PBX, and PBX partner MEIS, is a widely accepted mechanism underlying HOX target specificity (Bobola and Merabet, 2017; Merabet and Mann, 2016; Selleri et al., 2019). HOX-TALE cooperativity increases the affinity and sequence selectivity of HOX TFs *in vitro* (Merabet and Mann, 2016). *In vivo*, HOXA2 extensively binds with TALE TFs (Amin et al., 2015) and Ubx and Hth (fly homologs to vertebrate central HOX and MEIS respectively) co-localize in active nuclear...
microenvironments, suggesting that their interaction may be critical to trigger phase separation (Tsai et al., 2017). Interestingly, Hox binding selectivity can be observed in the absence of TALE TFs, and is strongly associated with chromatin accessibility (Porcelli, 2019). Although the concept of HOX and TALE interaction is long established, we still understand relatively little about the extent and functional significance of HOX-TALE association in vivo, where compaction of DNA into chromatin and the distribution of sequence-specific TFs (cell-specific and tissue-specific, but also ubiquitous) can considerably affect TF binding to DNA. Also, how the association with fairly ubiquitous proteins eventually translates into HOX paralog-specific transcriptional outputs in vivo, remains unclear.

To understand how HOX TFs execute their specific functions to impart different segmental identity in vivo, we compared binding of HOXA2 and HOXA3, an anterior and a central HOX proteins, in the physiological tissues where these TFs are active. Branchial arches (BA) are blocks of embryonic tissues that merge to form the face and the neck in vertebrates. The second and third branchial arch (BA2 and BA3) are the main domains of HOXA2 and HOXA3 expression respectively, and the embryonic areas most affected by inactivation of Hoxa2 and Hoxa3 in mouse (Gendron-Maguire et al., 1993; Manley and Capecchi, 1995; Rijli et al., 1993). We find that HOXA2 and HOXA3 occupy a large set of high-confidence, non-overlapping genomic regions, that are also bound by TALE TFs. We identify three main determinants of HOX paralog-selective binding, resulting in high-confidence cooperative HOX-TALE binding at different genomic locations: recognition of unique variants of the HOX-PBX motif, differential affinity at shared HOX-PBX motifs and, additional contribution of tissue-specific TFs. We propose that HOX paralogs operate, alone and in concert with tissue-specific TFs, to switch on TALE function at selected enhancers.

Results

HOXA2 and HOXA3 control diverse processes by targeting different regions of the genome
HOX TFs direct highly specific gene expression programs in vivo, but recognize very similar DNA sequences in vitro. However, it remains to be determined if HOX specificity of action reflects specificity of binding across the genome in vivo, i.e. the binding of paralog HOX TFs to distinct target regions. To establish this, we compared HOXA2 and HOXA3 binding profiles in their physiological domains of expression in the mouse embryo. BAs display an antero-posterior gradient of HOX expression, which replicates Hox gene positions on the chromosome (Fig. 1AB): BA1 does not express any Hox gene, BA2 expresses Hox2 paralogs, BA3 Hox3 paralogs, etc. We previously characterized HOXA2 binding in BA2 (Amin et al., 2015); here, we profiled HOXA3 binding in BA3-4-6 (hereafter referred to as posterior branchial arches, PBA), the embryonic tissues immediately posterior to the BA2 (identified by the expression of Hox paralogs 3-5, Fig. 1AB). Using a HOXA3-specific antibody (Fig. 1- Supplemental Fig. 1A), we identified 848 peaks with fold enrichment (FE) ≥10, which largely contained a second biological replicate (Fig. 1- Supplemental Fig. 1B).

TALE TFs (PBX and MEIS) display cooperative binding with HOX and increase HOX binding specificity in vitro (Merabet and Mann, 2016). De novo motif discovery (Heinz et al., 2010) identified HOX-PBX recognition sequence as the top enriched motif in HOXA3 peaks and uncovered MEIS binding site in the top three sequence motifs (Fig. 1- Supplemental Fig. 1C). HOXA3 recognition sites in PBA correspond to HOXA2 motifs in BA2; moreover, the distribution of HOX-PBX motifs is comparable across HOXA2 and HOXA3 peaks. HOX peaks without a canonical HOX-PBX consensus motif, contain potential low affinity variants of HOX-PBX sites (Fig. 1- Supplemental Fig. 1D-F). The occurrence of high affinity sites (perfect matches) positively correlates with peak FE, and is highest in top HOXA2 and HOXA3 peaks. Low affinity sites (1 mismatch) show the opposite trend and occur with higher frequency in lower confidence binding events (Fig. 1- Supplemental Fig. 1D-F).

We overlapped HOXA2 binding in BA2 with HOXA3 binding in PBA. About half of HOXA3 peaks are contained in the larger HOXA2 datasets (Fig. 1CD). When comparing the same number of peaks for both datasets, ranked by FE, we observed an increasing overlap at lower confidence peaks (Fig. 1E), suggesting that HOXA2 and HOXA3 select different sites
when binding with higher affinity and are more promiscuous at lower binding levels. Functional association of HOXA3-specific peaks in PBA and HOXA2-specific peaks in BA2 (McLean et al., 2010) (Fig. 1FG) highlights distinct biological processes and mouse phenotypes, including abnormal middle ear, sphenoid, temporal and squamosal bone morphologies, whose morphogenesis is controlled by HOXA2 (Gendron-Maguire et al., 1993; Rijli et al., 1993). In contrast HOXA3-specific binding is almost exclusively associated with heart and cardiac muscle development and cardiovascular phenotypes, consistent with the role of HOXA3 in the formation of the main arteries (Manley and Capecchi, 1995, 1997) (Fig. 1F). These observations are in line with HOX functional specificity and indicate that in their physiological domains of expression, HOXA2 and HOXA3 bind in the vicinity of, and potentially control, genes involved in very different processes. Hoxa2 expression displays a sharp anterior border between BA1 and BA2 and expands in the more posterior PBA (Fig. 1A; Fig. 4A). We profiled HOXA2 binding in PBA to understand if HOX-specific binding is determined by differences in the BA2 and PBA chromatin environment. We found that HOXA2 peaks in PBA very rarely overlap with HOXA3 ‘only’ peaks in the same tissue (1% overlap), but are largely contained in the pool of HOXA2-specific binding in BA2 and ‘common’ HOXA2 and HOXA3 binding events (Fig. 1H). This argues against differences in chromatin accessibility being a main determinant of HOX binding. In sum, analysis of HOXA2 and HOXA3 ChIP-seq in their respective domains of expression indicates that different HOX TFs control diverse and specific processes by targeting different regions of the genome in vivo. Tissue-specific chromatin accessibility does not appear to be a major determinant in HOX paralogs’ target site selection.

HOXA2 and HOXA3 select variants of the HOX/PBX motif

The observations above indicate that HOXA2 and HOXA3 select different genomic sites in vivo, while at a first glance, they recognize very similar DNA sequences. To investigate the determinants of HOX binding specificity, we focused on high confidence HOXA2 and HOXA3 peaks, which display the lowest overlap across the genome (Fig. 1E). De novo motif discovery identified enrichment of a HOX-PBX variant in HOXA3 top 250 peaks, which
contains a C in the second variable position (i.e. TGATNCAT) (Fig. 2A). We next counted the distribution of all permutations of the TGATNNAT motif in top HOXA2 and HOXA3 peaks and found the TGATTCAT variant to be highly differentially enriched in HOXA3 peaks (Fig. 2B). This sequence, which is highly represented in HOXA3 top peaks (~ 20%), is almost excluded from HOXA2 peaks (Fig. 2B). Supporting functional significance, HOXA3 peaks containing TGATTCAT display increased acetylation levels (a mark of active enhancers) (Creyghton et al., 2010) in HOXA3-expressing tissues (Fig. 2C). In addition, while HOXA2 peaks display a very high representation of TGATGGAT and TGATTGAT, HOXA3 high confidence binding allows higher variability (four variants are counted > 20 times in HOXA3 peaks as opposed to only two variants in top HOXA2 peaks) (Fig. 2B). The highest differential enrichment of TGATNNAT variants is observed in top HOXA2 and HOXA3 peaks (Fig. 2- Supplemental Fig. 1A), which also display minimal overlap across the genome (Fig. 1E); this suggests that the ability to recognize different sequences plays a role in genomic site selections. Finally, the majority of HOXA3 (158/250) and HOXA2 (160/250) top peaks contain MEIS recognition motif, at a preferential distance of less than 20 nt from the TGATNNAT motif (Fig. 2- Supplemental Fig. 1B). The Sulf2 locus exemplifies HOXA3 specific binding in PBA: it contains a single TGATTCAT motif and displays high HOXA3 occupancy, but no detectable HOXA2 binding (Fig. 2DE). We used electrophoretic mobility shift assay (EMSA) to establish if HOXA3 preferentially recognizes the TGATTCAT sequence in vitro. We did not observe any HOXA2 or HOXA3 binding to the Sulf2 probe (Fig. 2F). Incubation with PBX and MEIS resulted in a probe shift. Addition of HOXA3, but not HOXA2, resulted in the formation of a ternary complex, indicating that HOXA3 can bind this site in combination with PBX and MEIS, while HOXA2 cannot (Fig. 2F). In support of this conclusion, converting TGATTCAT to TGATTGAT (a single nucleotide substitution in the Sulf2 probe), enables binding of HOXA2, in addition to HOXA3 (Fig. 2G). These results indicate that HOXA3 and HOXA2 have diverse binding preferences and uncover the existence of sites that are exclusively recognized by HOXA3.

HOXA2 molecular control of BA2 identity
In contrast to HOXA3, which displays unique binding preferences for TGATTCAT, we did not detect HOX-PBX variants exclusively recognized by HOXA2. To investigate the mechanisms underlying HOXA2 control of BA2 identity, we examined HOXA2 binding events (top peaks) in the vicinity of well-established HOXA2 downstream targets. *Meis2* and *Zfp703* are associated with high levels of HOXA2 binding (Amin et al., 2015) (Fig. 3A and Fig. 3-Supplemental Fig. 1A) and are downregulated in *Hoxa2* null BA2 (Donaldson et al., 2012). In addition, consistent with *Meis2* and *Zfp703* expression being HOXA2-dependent, they are expressed at higher levels in BA2 than the HOX-less BA1 and the HOXA3-positive PBA (Fig. 3B). *Meis2* and *Zfp703* loci exhibit high HOXA2 and HOXA3 binding in their vicinity, suggesting their associated chromatin is largely accessible in both BA2 and PBA (Fig. 3A and Fig. 3-Supplemental Fig. 1A). We focused primarily on the *Meis2* enhancer, which is active in the main domains of HOXA2 expression, the hindbrain and BAs in zebrafish (Fig. 3C). When tested in a luciferase assay, the *Meis2* functional enhancer displays higher activity in the presence of HOXA2, in combination with MEIS and PBX, relative to HOXA3 (Fig. 3D). *Meis2* enhancer activity is strictly dependent on the integrity of its HOX-PBX site (Fig. 3D and Fig. 3F). Similar results were obtained with *Zfp703* putative enhancer, however in this case, HOXA2 and HOXA3 alone resulted in higher activation, presumably due to the presence of additional TAAT sites around the HOX/PBX motif (Fig. 3-Supplemental Fig. 1B). As for the *Meis2* enhancer, disruption of the HOX/PBX site nearly abolished activation (Fig. 3-Supplemental Fig. 1B). Finally, HOXD3, another HOX paralog group 3, also displayed a lower activating capacity than HOXA2 (Fig. 3-Supplemental Fig. 1C). In sum, HOXA2 is more efficient at activating both target regions, in the presence of PBX and MEIS.

To understand if this reflects HOXA2 and HOXA3 different DNA binding properties, we generated HOX chimeric proteins by swapping HOXA2 and HOXA3 DNA-binding HDs. We found that providing HOXA2 with HOXA3 HD did not substantially change the ability of HOXA2 to activate transcription from the *Meis2* enhancer (Fig. 3E). Similarly, the ability of HOXA3 to transactivate the *Meis2* and *Zfp703* enhancers, alone or in complex with MEIS and PBX, was not improved by swapping HOXA3 HD with HOXA2 HD (Fig. 3E and Fig. 3-
Supplemental Fig. 1B). As HOX TFs cooperate with MEIS and PBX to activate target enhancers and activation relies on the presence of an intact HOX/PBX motif, HOXA2 and HOXA3 diverse activation properties may depend on their respective abilities to interact with PBX and MEIS on DNA. On their own, HOXA2 and HOXA3 weakly bind the Meis2 enhancer, but interact with PBX and MEIS to form a ternary protein complex on DNA (Fig. 3G-H). A larger fraction of MEIS-PBX complex is bound by HOXA2, while addition of HOXA3 result in a less robust supershift (Fig. 3GH). We observed the same binding patterns using HOX chimeras: swapping HOXA3-HD with HOXA2-HD did not improve the ability of HOXA3 to form a ternary complex with PBX and MEIS, and did not affect HOXA2 ability to bind DNA in complex with MEIS and PBX (Fig. 3I). Finally, altering the sequence of the HOX-PBX motif abolished formation of a HOX-MEIS-PBX complex on DNA (Fig. 3J). These results indicate that the differential ability of HOXA2 and HOXA3 to bind and activate transcription does not depend on HOX-DNA binary binding. Rather, it reflects differential abilities to form functional HOX-TALE complexes on DNA and is encoded by residues outside the HOXA2 and HOXA3 HD. In summary, while HOXA2 does not exclusively access its sites (HOXA3 can bind as well, Fig. 3A), HOXA2 binds more efficiently with TALE at these sites, leading to increased transcriptional activation. Consistently, shared high-confidence HOXA2 and HOXA3 binding events are largely associated with genes expressed at higher levels in the BA2 (Fig. 3K). Thus, at least in part, HOXA2 instructs the formation of a BA2 by raising the expression levels of HOX-regulated genes. Crucially, among these genes is Meis2, which encodes a critical component for BA2 identity (Amin et al., 2015).

HOXA2 activity is decreased in PBA

The above results show that HOXA2 functions more efficiently with TALE relative to HOXA3. Given that HOXA2 is expressed in both the BA2 and in the PBA, why does HOXA2 not instruct a BA2-specific program in the PBA as well? More posterior Hox genes are typically able to repress the expression (and suppress the function) of more anterior genes, a process termed ‘posterior prevalence’ (Duboule, 2007). Indeed, Hoxa2 highest expression is detected in the BA2, while Hoxa2 is expressed at lower levels in Hoxa3 main domain of
expression, the BA3 (Fig. 4AB and Fig. 1B). To assess how changes in HOXA2 dose affect binding genome-wide, we compared HOXA2 binding in BA2 and in PBA. While HOXA2 binds similar locations in BA2 and PBA (Fig. 1H), HOXA2 binding levels are typically higher in BA2 (Fig. 4C, see also Fig. 3- Supplemental Fig. 1A). This is further confirmed by quantitative analysis of selected regions (Fig. 4D). Relative to BA2 cells, cells in the PBA display lower levels of HOXA2 and also express HOXA3 (Fig. 1B). We investigated the effect of decreasing HOXA2 levels and increasing HOXA3 levels on HOXA2 target enhancers. We found that co-expressing HOXA2 and HOXA3 reduced activation of HOXA2 target enhancers \textit{in vitro} (Fig. 4E). In conclusion, a lower dose of HOXA2 decreases HOXA2 binding and activating abilities. This effect, combined with the lower efficiency of HOXA3 to activate HOXA2 targets, dampens HOXA2 transcriptional program in the PBA.

HOX directly cooperates with MEIS

Our results indicate that HOX selectivity is displayed in concert with TALE. Generally, binding with TALE appears to be a dominant feature of HOX binding in the BAs. HOX peaks are enriched in HOX-PBX and MEIS motifs and similar to HOXA2 in BA2 (Amin et al., 2015), HOXA3 peaks overlap almost entirely with MEIS and PBX peaks in the same embryonic tissue at the same stage (Fig. 5A, Fig. 5- Supplemental Fig. 1A). We previously discovered that HOXA2 switches its transcriptional program by increasing binding of MEIS TFs to potentially lower-affinity sites across the genome (Amin et al., 2015). We investigated if HOXA3 can similarly increase MEIS binding levels. The fraction of MEIS peaks that overlaps HOXA3 binding displays higher FE in PBA, relative to the HOX-free BA1 (Fig. 5B). \textit{Hoxa2} is also expressed in PBA, where it could be entirely responsible for the observed increase in MEIS binding. Therefore, to assess HOXA3 unique contribution to MEIS binding increase, we extracted HOXA3-specific binding. We found that MEIS peaks in PBA that overlap HOXA3 ‘exclusive’ peaks, display higher FE (relative to MEIS non-overlapping HOX), indicating that HOXA3 also increases binding of MEIS (Fig. 5C), similar to HOXA2 in BA2 (Amin et al., 2015) (FigS5). Reciprocally, co-occupancy with MEIS enhances HOXA3 binding (Fig. 5D). Both HOXA2 and HOXA3 interact with MEIS1 and MEIS2 (Fig. 5E),
identifying direct cooperativity as the underlying mechanism. Direct cooperativity with MEIS appears to be a general operational principle of HOX TFs as, similar to HOXA2 and HOXA3, MEIS co-occupancy with HOXA1 and HOXA9 is associated with the highest MEIS binding levels in mouse embryonic stem cells (De Kumar et al., 2017) and bone marrow cells (Huang et al., 2012) respectively (Fig. 5- Supplemental Fig. 1B-D). In sum, HOX directly cooperate with TALE on chromatin. As HOXA2 and HOXA3 display sequence preferences and diverse binding affinities, HOX paralogs preferentially cooperate with distinct subsets of TALE binding events.

MEIS ‘ubiquitous’ binding is converted into tissue-specific enhancer activity. MEIS TFs bind broadly and to largely overlapping locations across different BAs (Fig. 6A) (Amin et al., 2015), and only a small fraction of TALE-bound regions is occupied by HOX (Fig. 5- Supplemental Fig. 1A). HOX-MEIS cooperativity predicts that the fraction of high MEIS peaks in HOX-positive areas (BA2 and PBA), should be enriched in HOX motifs. We systematically extracted differential MEIS binding across the BAs (Fig. 6- Supplemental Fig.1) and found, using convolutional neural network (CNN) models, that differential classification of MEIS binding is sufficient to uncover HOX motif features (Phuycharoen et al., 2019); specifically, the fraction of MEIS peaks higher in BA2 and in PBA (= lower BA1) is highly enriched in sequence features matching HOX-PBX motif (Fig. 6B). Interestingly, the same CNN models identify enrichment of other TF recognition motifs in differential MEIS binding (Fig. 6B). These signature motifs reflect a differential distribution of TFs across the BAs (Fig. 6C). Moreover, CNN models detect established TF interactions (Jolma et al., 2015), as well as TF co-occupancy detected *in vivo* (Losa et al., 2017). Namely, GATA recognition motifs are enriched in higher MEIS binding in PBA, and GATA TFs are exclusively expressed in PBA (Fig. 6C), where GATA6 and MEIS bind overlapping locations. These observations suggest that other tissue-specific TFs, in addition to HOX, can affect MEIS binding to chromatin. Next, we globally quantified changes in enhancer activity across the BAs to assess the function of MEIS differential binding. Consistent with MEIS positive effects on transcription (Choe et al., 2009), regions occupied by HOXA2 in BA2, or HOXA3
in PBA, display higher enhancer activity when associated with increased MEIS binding levels in the same tissue (Fig. 6D). More generally, higher MEIS binding levels in a tissue are highly predictive of increased enhancer activity in the same tissue (Fig. 6E), an effect only partly explained by HOX-MEIS cooperativity (Fig. 6, Supplemental Fig. 2AB). Finally, supporting the concept that MEIS ubiquitous binding (Fig. 6A) is transformed into BA-specific enhancer activity, top MEIS binding is BA-specific and associated with distinct biological processes (Fig. 6FG and Fig. 6, Supplemental Fig. 2C). De novo motif discovery on HOXA3- and HOXA2-specific peaks identifies enrichment of distinctive sequence features of MEIS differential binding in PBA and BA2, NKX (HD) and FOX (Forkhead) motifs and basic helix-loop-helix (bHLH) recognition sites respectively (Fig. 6H), suggesting that HOX and tissue-specific TFs may collaborate in binding with TALE. We focused on FOX TFs, because Fox genes are typically expressed at higher levels in PBA than BA2 (Fig. 6C). Consistent with the three factors cooperating on chromatin, HOX and FOX recognition sites co-occur in the same differential MEIS peaks (Fig. 6, Supplemental Fig. 2DE). Moreover, FOXC1 binding in the BA (Amin et al., 2015) partly overlaps with HOXA2 and HOXA3 binding (Fig. 6, Supplemental Fig. 2F). FOXC1, HOX and MEIS/PBX synergize to increase transcripational activation driven by the Sfrp2 distal region (co-occupied by HOX and FOXC1) (Fig. 6I). Interestingly, the presence of FOXC1 is sufficient to enhance MEIS/HOX transcriptional activation of Sfrp2 enhancer, suggesting that cooperation between these TFs could partly compensate for lack of PBX (Fig. 6I). While FOXC1 display similar cooperativity with TALE and HOXA2 or HOXA3 in vitro, the higher levels of FOX TFs in the PBA, relative to BA2, predict FOX TFs to have stronger effects on HOXA3 and MEIS binding in PBA; this expectation is supported by the enrichment of FOX motifs in HOXA3 and MEIS differential binding in PBA, but not HOXA2 and MEIS differential binding in BA2 (Fig. 6BH). Indeed, in silico mutagenesis predicts mutations in FOX TF recognition sites to affect binding of both HOXA3 and MEIS in PBA, but not HOXA2 and MEIS in BA2 (Fig. 6J, Fig. 6, Supplemental Fig. 2G). In contrast, mutagenesis of GATA motifs (enriched in MEIS differential peaks, but not in HOX peaks) does not appear to affect HOX-MEIS binding (Fig. 6J). These results
identify (direct or indirect) cooperativity with tissue-specific TFs as an additional mechanism for HOX selectivity. We propose that HOX and tissue-specific TFs (alone and in combination) increase TALE TF binding affinity and residence time at selected locations, identified using their sequence recognition motifs. Increasing MEIS residence time on chromatin has a positive effect on enhancer activity and results in BA-specific transcriptional outputs. Thus, TALE TFs function as a hub which integrates different signals instructing BA morphogenesis.

Discussion

HOX TFs contain a HD, which display highly similar sequence recognition properties and is shared by hundreds of TFs, yet they instruct diverse, segment-specific transcriptional programs along the antero-posterior axis of all bilaterian animals. By profiling HOXA2 and HOXA3 binding in their physiological domains, we identify three main determinants of HOX-selective binding across the genome: 1) recognition of unique variants of the HOX-PBX motif; 2) differential affinity at ‘shared’ HOX-PBX motifs and; 3) presence of additional tissue-specific, non-TALE, TFs. These mechanisms (with the possible exception of the first) are expected to generate quantitative (rather than qualitative, i.e. binding/no binding) differences in the relative levels of HOX/TALE occupancy on commonly bound regions. Such quantitative changes are a feature of continuous networks (Biggin, 2011), in which TFs bind a continuum of functional and non-functional sites and regulatory specificities derive from quantitative differences in DNA occupancy patterns.

HOX paralog-selective binding occurs in cooperation with TALE. The high degree of HOX and TALE interaction flexibility, mediated by paralog-specific protein signatures, has been proposed to generate paralog-specific functions of HOX TFs (Dard et al., 2018). Here, by defining the *in vivo* repertoire of HOX occupied sites, we identify DNA sequence as an additional determinant of HOX-TALE functional specificity *in vivo*. This finding is consistent with the mechanism of latent specificity described for *Drosophila* Hox/Exd (PBX) interaction (Slattery et al., 2011) and *in vitro* observations that HOX TFs bind longer, more specific
sequence motifs in the presence of TALE. However, the effects of TALE on HOX binding in vivo go beyond the refinement of HOX binding sites as, at least in the BA context, binding with TALE appears to be a requirement for loading HOX on chromatin. Our observations indicate that HOXA2-A3 overwhelmingly recognize genomic sites that are enriched in HOX-PBX motifs and are also occupied by TALE TFs in vivo. Therefore, TALE provides a platform for HOX to bind; selectivity enables HOX paralogs to preferentially bind different subsets of this common platform. In agreement with our finding that BA-specific chromatin states do not seem to play a role in HOX target site selection, TALE platform is largely similar across BA1-2-PBA.

What is the functional significance of HOX-TALE interaction on chromatin and how does it contribute to paralog-specific transcriptional programs? Many examples from animal development indicate that transcriptional regulation is mediated by distinct combinations of TFs. TALE TFs operate as a hub, which assists combinatorial assembly of TF complexes. TALE platform expands HOX functional interface and enables HOX to function in concert with other TFs, bypassing the need of direct protein-protein interaction. In doing so, it integrates positional signals (encoded by HOX) and local inputs (provided by cell type/tissue-specific TFs) into defined transcriptional outputs. While it is possible that MEIS and PBX facilitate access of diverse TFs to relatively inaccessible chromatin, MEIS TFs differ from conventional pioneer TFs, which function to open chromatin regions but are not directly involved in enhancer activation (Cirillo et al., 1998; Jacobs et al., 2018). Remarkably, independently of the type of TF involved (HOX or other tissue-specific TFs), positive changes in MEIS binding result in a functional effect, i.e. increased enhancer activity. High instances of MEIS binding are typically tissue-specific and highly correlated with enhancer activity. In fact, differential MEIS binding in a specific BAs is generally a very good predictor for matching changes in enhancer activity in the same tissue. Based on our observations and the well-established role of MEIS in transcriptional activation (Choe et al., 2009; Hau et al., 2017; Hyman-Walsh et al., 2010), we propose a model of transcriptional activation, where TALE (MEIS) TFs function as a broad or general activators and HOX paralog
selectivity is mainly directed at harnessing TALE functional activity at selected locations. Using their recognition motifs, HOX and/or tissue-specific TFs select specific MEIS binding locations, where they stabilize MEIS binding to generate precise functional outputs, or patterns of enhancer activation (Fig. 7). Interestingly, MEIS2 interacts with PARP1 (Hau et al., 2017), a large enzyme capable of triggering phase condensation (Altmeyer et al., 2015). Increasing MEIS residence time (as a result of the cooperation with HOX and other TFs) may favour PARP1 recruitment at selected loci and, in turn, generate the liquid-liquid phase transitions observed to promote gene activation (Boija et al., 2018; Hnisz et al., 2017). Because high instances of MEIS binding are typically associated with combinatorial TF binding, a precise identification of the critical steps for enhancer activation, and their sequential order, remains problematic. For similar reasons, MEIS and PBX shared genomic occupancy complicates dissecting their respective contributions to enhancer binding and activation. In addition to TALE, numerous other TFs are broadly, if not ubiquitously expressed during development, yet their inactivation results in tissue-specific phenotypes. It is tempting to speculate that similar principles of TF functional connectivity could explain other transcriptional networks, i.e. that cell type- tissue-specific regulators harness the activation abilities of broadly expressed TFs to generate cell type-specific gene expression programs.

Acknowledgements
We thank Ian Donaldson, Andy Hayes and the other members of the Genomic Technologies, Bioinformatics and Biological Services Core Facilities at the University of Manchester. We also thank Rene Reszohazy for sharing plasmids and Samir Merabet for helpful suggestions. This work was supported by MRC grant MR/L009986/1 to NB, BBSRC grant BB/N00907X/1 to NB, MR and KM and a BBSRC studentship to ML. FL and CS were supported by NIH grant NS038183 to CS.
Competing interests

The authors declare no competing interests

Material and methods

Animal experiments

CD1 mice were time-mated to obtain BA2 or PBA from E115 embryos. Mouse experiments were carried out under ASPA 1986. Wild type zebrafish were raised in the University of Massachusetts Medical Center Zebrafish Facility. Embryos and adult zebrafish were maintained under standard laboratory conditions. Enhancers were amplified from mouse genomic DNA using the primers (listed in S), cloned into pCR8/GW/TOPO vector (Life Technologies) and recombined using the Gateway system (Life Technologies) to an enhancer test vector that includes a strong midbrain enhancer (Minitol2-GwB-zgata2-GFP-48, a kind gift from JL Skarmeta) as an internal control. Fertilized zebrafish embryos were collected from natural spawns. Plasmid DNA was injected into the cytoplasm of one-cell stage embryos. Injected embryos were visualized intermittently by fluorescence microscopy up to 48 hr post fertilization to identify transgenic carriers. These were raised to adulthood, outcrossed to wildtype fish and the resulting F1 embryos were scored for GFP expression in order to generate stable transgenic lines.

Next-generation sequencing data and downstream analyses

ChIP-seq was performed as described (Losa et al., 2017) using rabbit polyclonal antibodies targeting HOXA3 (non-conserved N-terminal amino acids 24 to 180), HOXA2 (Kutejova et al., 2008), PBX1-2-3-4 (sc-25411X, Santa Cruz) and rabbit IgG (Millipore). DNA was recovered from two independent ChIP-seq experiments and purified using DiaPure columns (Diagenode). Enrichment was validated by SYBR green quantitative PCR (qPCR) using primers listed in Table S1. DNA libraries were constructed using the MicroPlex Library Preparation Kit v2 (Diagenode) and sequenced with the Illumina next generation sequencing platform. ChIP-seq experiments were analysed using Trimmomatic for trimming (Bolger et al., 2014), Bowtie2 for aligning to the mouse genome (mm9) (Langmead and Salzberg,
2012), samtools (Li et al., 2009) to remove the aligned reads with a mapping quality Q30 and MACS2 for peak calling (Zhang et al., 2008) with default narrow peak calling setting for TFs and broad peak calling setting for histone modification marks. ‘findMotifGenome’ module of the HOMER package was used to detect de novo motif in 200nt summit regions (Heinz et al., 2010). Venn diagrams were generated using 200nt peak summits with an overlap of at least 1nt. GREAT standard association rule settings (McLean et al., 2010) was used to associate ChIP-seq peaks with genes and uncover events controlled by TF binding. DiffBind (Ross-Innes et al., 2012) was used to re-center MEIS and H3K27ac peaks across BA1, BA2 and PBA (Figure 6_supplemental Fig. 1) and calculate RPKM values and raw counts in the re-centered regions. edgeR generalized linear model (GLM) method with TMM normalization (Robinson et al., 2010) was used to select differential peaks and calculate fold change in MEIS binding and H3K27ac across BAs used to generate boxplots and scatterplots. The best H3K27Ac replicate [highest FRiPs (fraction of reads in peaks)] RPKM values was used to produce boxplots. Gene expression CPM values and differential gene expression at E10.5 and E11.5 were derived from (Amin et al., 2015; Losa et al., 2017). ggplot2 package (Wickham, 2016) was used to generate CPM values heatmap. GALAXY (Geocks et al 2010), Bioconductor GenomicRanges package (Lawrence et al., 2013), and Bioconductor ChIPpeakAnno package (https://www.bioconductor.org/packages//2.10/bioc/html/ChIPpeakAnno.html) were used to intersect, modify and visualize genomic coordinates. Bioconductor Biostring (Pagès H, 2019) was used to locate fixed motif sequences in the binding regions. Distance between HOX and MEIS binding regions was calculated using GenomicRanges package and plotted with ggplot2. The Kernel density distribution of MEIS fold enrichment in HOX binding regions vs non-HOX binding regions were calculated by R kernel density distribution estimation (R core team 2013) and plotted with ggplot2.

All RNA-seq and ChIP-seq datasets are available on the ArrayExpress with accession numbers: E-MTAB-7963, E-MTAB-7966, E-MTAB-7766, E-MTAB-7767, E-MTAB-5394, E-MTAB-5407, E-MTAB-5536, E-MTAB-2696.
Convolutional neural network models and in silico mutagenesis

MEIS differential sequence features are detected by recently published differential convolutional neural network (CNN) structure (Phuycharoen et al., 2019). For in silico binding site knockout we trained a convolutional neural network (CNN) model for multitask regression of MEIS and HOX RPKM binding level. The CNN was trained by transfer learning, using convolution parameters from a previously published 1-convolutional layer MEIS RPKM model (Phuycharoen et al., 2019). Convolutional filters were transferred to a new model, which was then trained on a subset of MEIS regions also bound by HOX, to simultaneously predict log2RPKM values in 2 replicates of Hoxa2 in BA2, 2 from Hoxa3 in PBA, and one replicate of MEIS in BA1, BA2 and PBA. The training data consisted of 6795 regions of 600nt with HOX binding predicted by MACS2 in any tissue. The regression model was subsequently used to predict the change in RPKM values after binding site erasure. For simulated genomic knockout, a 25nt site containing each feature was replaced by random di-nucleotides from the remaining part of the region and RPKM levels were predicted. Random replacement was repeated 100 times for each feature, averaging the predicted RPKM change. To select candidate features for erasure, MEIS PBA up-binding features were first obtained from the previously published 3-task parallel model and subsequently filtered. Sites of HOXA3 and GATA were required to contain consensus motif “TGATNNAT” and “WGATAA” respectively, with no mismatch allowed. Forkhead sites were selected based on long distinct k-mers, derived from KSM motif representation method (Guo et al., 2018), namely exact matches to any of the following sequences: “AAAATAAAC”, “AAAAATAAAC”, “AATAAATCAA”, “ATNAATCAACA”, “AAATAAACAC”, “ATAAATCAAC”, “GAAAATAAAC”, “CAAAATAAAC”, “AAAATAAACT”, “AAATAAAACA”. These candidate sites were identified within a +/- 250nt window centred on HOXA3 and GATA6 ChIP-seq peak summits, FE of replicates was combined with edgeR (Robinson et al. 2010) and a Poisson test was performed as in MACS2 using false discovery rate (FDR) cutoff = 0.05. Only Forkhead and GATA motifs that did not contain internal matches to HOX-
PBX motif were selected. Subsets of GATA and Forkhead sites located within +/- 100nt from a HOX-PBX sites were selected for mutagenesis.

Elecrophoretic mobility shift assays

Probes were made from primers with 5' ATO700, and purified with QIAGEN PCR purification kit (Qiagen). Proteins were generated using TnT® Quick Coupled Transcription/Translation System (Promega) and the following plasmids: pcDNA3-Hoxa2, pcDNA3-Hoxa3, pcDNA3-Meis2, containing mouse coding sequences for *Hoxa2*, *Hoxa3* and *Meis2* (isoform 1), cloned into pcDNA3 (Invitrogen); pcDNA3-PBX1a is a gift from Francesco Blasi. Reactions (4% Ficoll, 20mM HEPES, 37.5mM KCl, 1mM DTT, 0.1mM EDTA, 2ug Poly dI.dC, 16ng probe, and 2ul of TNT extracts in total volume of 10ul) were mixed by gentle flicking, and incubated at room temperature for 12 minutes before being run on 3% / 4% acrylamide gel at 70V in 0.5X TBE.

Luciferase assay

Meis2 and Zfp703 enhancers were amplified from mouse genomic DNA using primers listed in Table S1 cloned into pCR8/GW/TOPO vector (Life Technologies) and recombined using the Gateway system (Life Technologies) into pGL4.23-GW (a gift from Jorge Ferrer; Addgene plasmid # 60323; http://n2t.net/addgene:60323; RRID:Addgene_60323). Enhancers were co-transfected with pcDNA3, pcDNA3-Hoxa2, pcDNA3-Hoxa3, pcDNA3-Meis2, pcDNA3-PBX1a (described above) and pcDNA3-Hoxd3 generated by GenScript. NIH3T3 cells were grown in DMEM (D6429) supplemented with 10% FBS and 5% penicillin/streptomycin, and seeded in 24-well plates at 100,000 cells/ml. Cells were transfected with GeneJuice Transfection Reagent (Novagen), using 250ng luciferase plasmid and 300ng pcDNA3 plasmids per well. Cells were harvested 24 hours after transfection and luciferase measured using Luciferase Assay System and the GloMax Multi-Detection System (Promega).

Antibody validation

Gateway® entry vectors for mouse *Hoxb1* and *Hoxb2* (Bridoux & al. 2015 PubMed PMID: 26303204), human *HOXA3* and *HOXC4* (http://horfdb.dfci.harvard.edu/hv7/) were used to
generate mammalian expression vectors for FLAG-HOX (v1899 destination vector) using the gateway technology (Barrios-Rodiles et al., 2005). Gateway® expression vectors for pExpFLAG-Hoxa1 and pExpFLAG-Hoxa2 are described in (Bergiers et al., 2013; Lambert et al., 2012). HEK293 cells were grown at 37°C, in a humidified atmosphere with 5% CO2 in DMEM (D6429) supplemented with 10% FBS, 5% penicillin/streptomycin, and 5% L-glutamine. Cells were seeded in 6-well plates at 400,000 cells/well and transfected 24 hours after plating using 1µg of HOX plasmid constructs and Fugene6 (Promega) according to the manufacturer’s instructions. Proteins were collected 48 hours after transfection, boiled in Laemmli buffer, run on SDS-page and visualized using anti-FLAG (M2) (#F1804, Sigma), HRP-conjugated anti-β-ACTIN (#A3854, Sigma) and anti-Hoxa3 antibody (1:2000) and HRP- HRP-conjugated secondary antibodies.

Co-immunoprecipitation experiments
Coding sequences for MEIS1b and MEIS2.1 were cloned in pEnt plasmids, confirmed by DNA sequencing and used to generate pExp mammalian expression vectors for GST-tagged proteins with the pDest-GST N-terminal destination vector using the gateway technology (Rual et al., 2005). HEK293 cells were transfected as above, using 500ng each of FLAG/GST constructs per well. Proteins were collected 48 hours after transfection and co-precipitation performed as described in (Bridoux et al., 2015).

References

Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J.,
separates active from poised enhancers and predicts developmental state. Proc Natl Acad
Sci U S A 107, 21931-21936.

functional trait: intrinsically disordered regions as central players of interactomes. Biochem J
454, 361-369.

Dard, A., Reboulet, J., Jia, Y., Bleicher, F., Duffraisse, M., Vanaker, J.M., Forcet, C., and
Merabet, S. (2018). Human HOX Proteins Use Diverse and Context-Dependent Motifs to

De Kumar, B., Parker, H.J., Paulson, A., Parrish, M.E., Pushel, I., Singh, N.P., Zhang, Y.,
Slaughter, B.D., Unruh, J.R., Florens, L., et al. (2017). HOXA1 and TALE proteins display
cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets.
Genome Res 27, 1501-1512.

Donaldson, I.J., Amin, S., Hensman, J.J., Kutejova, E., Rattray, M., Lawrence, N., Hayes, A.,
Ward, C.M., and Bobola, N. (2012). Genome-wide occupancy links Hoxa2 to Wnt-beta-

exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell
75, 1317-1331.

(KSM) motif representation improves regulatory variant prediction. Genome Res 28, 891-
900.

Figure legends

Figure 1. HOXA2 and HOXA3 control diverse processes by targeting different regions of the genome in vivo. A. BA organization in mammals. BA3-6 are collectively indicated as PBA. The same colour code (BA2 red, PBA green) is used throughout the manuscript. B. Heatmap of Hox expression in E10.5 mouse BA1, BA2 and PBA, based on the normalized expression values count per million (CPM)(Los a et al., 2017). C. Overlap of HOXA3 binding in PBA and HOXA2 binding in BA2 (200 nt summits, overlap at least 1 nt). Only peaks with FE≥10 are considered. D. UCSC tracks (mm9) of HOXA3 (green) and HOXA2 (red) specific and shared peaks. E. Overlap (%) of increasing numbers of top HOXA2 and HOXA3 peaks (ranked by FE). High-confidence peaks show the smallest overlap. FG. GREAT analysis of HOXA3- (F) and HOXA2- (G) specific peaks (non-overlapping, green and red bars respectively) shows association with genes involved in different biological processes and
whose mutations generate different phenotypes in mouse. The length of the bars corresponds to the binomial raw (uncorrected) P-values (x-axis values). H. HOXA2 binding in PBA. Overlap of HOXA2 summit regions in PBA (FE ≥10, green) with HOXA2 summit regions in the BA2 (red) and HOXA3 summit regions in the PBA (green); same rule as in C. HOXA2 binding locations are similar in BA2 and PBA.

Figure 2. HOXA2 and HOXA3 select variants of the HOX/PBX motif. A. Homer detects different variants of the HOX-PBX motif in top 250 HOXA2 and HOXA3 peaks, with a G/C (HOXA3) or mainly a G (HOXA2) in the second variable position. B. Occurrence of HOX-PBX motif variants (all permutations of the variable nucleotides in TGATNNAT) in top 250 HOXA2 and HOXA3 peaks (ordered into 50 region bins). The TGATTCAT motif (red arrows) is among the most enriched variants in HOXA3 peaks but does not virtually occur in HOXA2 peaks. C. Box plot of global H3K27 acetylation levels (PBA/BA2 ratio) at HOXA3 peaks containing different TGATNNAT variants. HOXA3 peaks containing the TGATTCAT variant are associated with increased enhancer activity in PBA (red line). D. UCSC tracks with HOXA3, HOXA2, PBX and MEIS binding profiles in BA2 (red) and PBA (green) at the Sulf2 locus, containing TGATTCAT. No HOXA2 binding is detected in BA2 or PBA. E. Sequence of HOXA3 peak summit in D, corresponding to the probe used in F. The TGATTCAT motif (underlined) is flanked by two MEIS motifs (also underlined); the C→G substitution tested in G is indicated in red. F. HOXA3 can selectively bind the Sulf2 probe in complex with PBX/MEIS. Incubation of the Sulf2 probe with TNT reticulocyte expressing HOXA2, HOXA3, MEIS/PBX, HOXA2/MEIS/PBX or HOXA3/MEIS/PBX. MEIS/PBX bind the Sulf2 probe in combination (arrow). Addition of HOXA3 to the probe results in the formation of a complex only in the presence of PBX/MEIS (arrow). No complex is formed when PBX/MEIS are co-translated with HOXA2. G. Same experiment as in F, using a mutant Sulf2 probe (the nucleotide substitution is shown in E). HOXA2 can bind the mutant probe in combination with MEIS/PBX (asterisk), similar to HOXA3 (arrow).

Figure 3. HOXA2 control of target enhancers. A. UCSC tracks of HOXA2, HOXA3, PBX, MEIS binding and H3K27 acetylation profiles in BA2 (red) and PBA (green) at the Meis2
locus. Strong HOX and TALE binding is observed in both tissues, with higher acetylation
levels in BA2. B. Heatmap shows *Meis2* and *Zfp703* expression in E11.5 mouse BA1, BA2
and PBA, based on the normalized expression values CPM (Losa et al., 2017). C. *Meis2*
enhancer is active in the hindbrain (h) and the BAs (ba, arrow) of developing zebrafish,
which correspond to *Meis2* expression domains in mouse (Amin et al., 2015). The enhancer
sequence spans the 200nt summit of HOXA2 peak in A. D. Luciferase activity driven by
Meis2 enhancer co-transfected with *Hoxa2* (red bar) or *Hoxa3* (green bar) in combination
with *Meis2* and *Pbx1a* expression vectors in NIH3T3 cells. The combination of *Hoxa2* with
Meis2 and *Pbx1a* results in the highest activation. Changing the HOX-PBX site (empty bars,
mutant sequence in F) reduces HOX-TALE activation. E. Luciferase activity driven by *Meis2*
enhancer co-transfected with *Hoxa2-a3HD* (red empty bar) or *Hoxa3-a2HD* (green empty
bar) and *Meis2* and *Pbx1a*. Values shown in DE represent fold activation over basal
enhancer activity and are presented as the average of at least two independent
experiments, each performed in triplicate. Error bars represent the standard error of the
mean (SEM). F. Sequence of *Meis2* wild-type and mutant probe. HOX-PBX (reverse) and
MEIS motifs are underlined. Nucleotide substitution in the HOX-PBX site are shown in red.
G-J. Incubation of the *Meis2* probe with TNT reticulocyte expressing HOXA2, HOXA3,
MEIS/PBX, HOXA2/MEIS/PBX or HOXA3/MEIS/PBX as indicated. G-H. HOXA2 (G, red
arrow) and HOXA3 (H, green arrow) weakly bind the *Meis2* probe. MEIS and PBX bind DNA
together (black arrow). Addition of HOXA2 results in a trimeric protein complex (arrowhead);
the intensity of the MEIS/PBX complex is reduced (black arrow). Addition of HOXA3 results
in a higher complex (arrowhead), but without affecting the intensity of the MEIS/PBX dimeric
complex (black arrow). I. Swapping HOXA3-HD with HOXA2-HD does not improve the ability
of HOXA3 to form a ternary complex with PBX and MEIS, and does not decrease HOXA2
binding with MEIS and PBX (arrowheads). Adding HOXA2 (or HOXA2-A3HD) results in
higher intensity of the trimeric complex and lower intensity of TALE dimeric complex relative
to HOXA3 (or HOXA3-A2HD), as observed in G-H. J. *Meis2* mutant probe (sequence in F)
does not interact with HOX and/or TALE. K. Top HOXA2 and HOXA3 overlapping peaks
(total of 60 intersecting top 250 HOXA2 and HOXA3 peaks) are more frequently associated
with genes with higher expression in BA2 (red) relative to PBA (green). The white portion of
the pie chart refers to genes that are not differentially expressed (no DE). Gene association
is based on GREAT standard association rules; expression levels are extracted from E11.5
RNA-seq (Losa et al., 2017).

Figure 4. AB. In situ hybridization on E9.5 embryos, using Hoxa2 (A) and Hoxa3 (B) probes.
A. Hoxa2 is highly expressed in the neural crest migrating from rhombomere 4 (asterisk) to
the BA2 (arrow). The portion of neural crest migrating just below the otic vesicle (OV) into
the BA3 (arrowhead) is also Hoxa2-positive. B. Hoxa3 is expressed in the BA3 (arrowhead).
C. Boxplots of FE of HOXA2 peaks in BA2 and PBA. D. Comparison of HOXA2 binding in
BA2 (red bars) and PBA (green bars) by ChIP-qPCR. Enrichment of each region following
immunoprecipitation with HOXA2 and IgG negative control antibody (Neg Ab) is calculated
as percentage input; numbers indicate the corresponding FE values in HOXA2 ChIP-seq
(BA2 and PBA). Peaks are labelled by their closest genes. Itih4 is a negative control
(unbound region). Values represent the average of duplicate samples, and error bars
indicate the SEM. D. Luciferase activity driven by Meis2 and Zfp703 enhancers co-
transfected with expression vector for Hoxa2 or Hoxa3, alone, or at diverse ratio of Hoxa2 to
Hoxa3 (3:1; 2:2; 1:3) as indicated. All samples, except the negative control, contain Hox in in
combination with Meis2 and Pbx1a expression vectors. For both enhancers, luciferase
activity decreases as Hoxa2 is progressively replaced by Hoxa3. Values represent fold
activation over basal enhancer activity and are presented as the average of at least two
independent experiments, each performed in triplicate. Error bars represent the SEM.

Figure 5. HOX directly cooperate with MEIS. A. Overlap of HOXA3 with MEIS and PBX
peaks in the same tissue (PBA) and at the same embryonic stage (E11.5) (200nt summit
regions, overlap at least 1nt). The proportional Venn diagram is cropped to focus on HOXA3
peaks. B. Barplots of fold change in MEIS binding levels in PBA versus BA1. Regions co-
occupied by MEIS with HOXA3 in PBA generally display higher MEIS binding levels in PBA
(HOX-positive) relative to the HOX-negative BA1. In contrast, MEIS binding not overlapping
HOXA3 can be higher in BA1 or in PBA. Fold changes were calculated using EdgeR (see also Figure 6- figure Supplement 1). C. Kernel density plots of MEIS peaks relative to FE (PBA). MEIS binding is sorted into peaks not overlapping HOX (light green), MEIS peaks overlapping HOXA3 only (‘exclusive’ peaks, i.e. not overlapping HOXA2 in PBA, darker green) and MEIS peaks overlapping HOXA2 and HOXA3 (darkest green). D. Distance of HOXA3 peaks relative to MEIS peaks (PBA). HOXA3 peaks are binned according to their log₁₀ distance to the nearest MEIS peak and labelled according to FE (high FE, dark red bars; low FE, dark blue bars). E. Co-immunoprecipitation assays. HEK293T cells were co-transfected with expression vectors for FLAG-tagged HOXA2 or HOXA3 and GST-tagged MEIS1, GST-tagged MEIS2 or GST alone. Protein interactions were assayed by co-immunoprecipitation on glutathione beads directed toward the GST tag and eluted proteins analysed by western blotting to detect the presence of HOXA2-FLAG or HOXA3-FLAG (red box, Co-IP). Cell lysates were analysed by western blotting prior to co-immunoprecipitation to detect protein expression (input).

Figure 6. A. Proportional Venn diagram shows highly overlapping binding of MEIS in BA1, BA2 and PBA. Out of 215830 MEIS peaks, 101055 are in common between the three tissues; MEIS peaks were combined and re-centered using DiffBind. B. CNN models of MEIS differential peaks uncover enrichment of tissue-specific sequence motifs as described in (Phuycharoen et al., 2019). MEIS binding was classified in six categories (i.e. peaks with higher/lower binding in BA1, BA2, PBA). CNN analysis identifies tissue-specific sequence features in each class of MEIS peaks. Predicted GATA binding in a MEIS PBA up-binding region is visualised as in the example (a feature matching GATA TF recognition motif on chr5:104257972-104258015 is shown) and annotated using HOMER. The GATA6 ChIP-seq verifies this prediction. HOMER was used to cluster and annotate tissue-specific sequence features; differentially enriched features are matched to TF families with known tissue-specificity (see also Fig. 6C). C. Heatmap of the expression of selected TF families, corresponding to cognate recognition motifs identified in MEIS PBA-up, in E11.5 mouse BA2 and PBA. Members of the GATA and TBX families, and the majority of expressed Forkhead
TFs are enriched in PBA relative to BA2. Only TFs with expression values > 10 cpm in at least one tissue are shown. D. Boxplots of the ratio of H3K27ac (log2 RPKM) in BA2 and PBA for all HOX peaks and for HOX peaks overlapping MEIS differential binding higher in BA2 (HOXA2 peaks) and higher in PBA (HOXA3 peaks). HOX binding generally increases H3K27Ac; peaks associated with increased MEIS binding display a higher increment of H3K27Ac in the same tissue. E. Correlation plot of differential MEIS binding and differential acetylation (enhancer activity) at intergenic regions (PBA versus BA2). Each point corresponds to a region with MEIS log2 fold change >1 (FC>2); the corresponding H3K27Ac value is plotted. Changes in MEIS binding levels are positively correlated with increased enhancer activity in the same tissue (correlation = 0.73). F. Different top MEIS peaks are observed in different BAs. The ratio of MEIS peaks, which are common to BA2 and PBA, increases as FE decreases. G. UCSC tracks illustrates MEIS increased binding at the Zfp496 and Zfpm1 loci. Instances of common MEIS peaks higher in one tissue (PBA) are shaded. H. HOMER de novo motif discovery in HOXA3-specific and HOXA2-specific peaks. HOXA3-specific are HOXA3 peaks excluding peaks overlapping with HOXA2 BA2; similarly, HOXA2-specific are HOXA2 peaks excluding peaks overlapping with HOXA3 PBA. HOMER identifies enrichment of the same motifs enriched in BA-specific MEIS differential binding, Forkhead motif in HOXA3-specific (shaded in green) and BHLH motif in HOXA2-specific subsets (shaded in red). Variations of HD recognition motifs potentially recognized by HOX and attributed by HOMER to PBA-specific TFs NKX and ISL1 in PBA and LHX/DLX in BA2 are also enriched. I. Luciferase activity driven by Sfrp2 enhancer co-transfected with Meis, and Meis and Pbx with and without Hoxa2 (red empty bars), Hoxa3 (green empty bars) and Foxc1 (grey) in 3T3 cells. Adding Foxc1 to Hoxa2 or Hoxa3 with Meis2 and Pbx1a results in the highest activation. J. In silico knockout of Forkhead and GATA motifs is used to predict the effects on HOX and MEIS binding. CNN MEIS PBA ‘up-binding’ features (Fig. 6B) were annotated as HOX, GATA, and Forkhead (see methods). Co-occurring HOX- Forkhead motifs (distance between 1 nt to 100 nt) were selected for in silico mutagenesis. Forkhead mutagenesis results in a significant drop in HOXA3 binding in PBA, but shows no average
significant effect on HOXA2 in BA2. Similarly, Forkhead mutagenesis significantly decreases
Meis PBA binding across most tested sites. In comparison, much weaker effects are
predicted on BA1 and BA2 MEIS differential binding. As a negative control, the same
procedure was applied to co-occurring HOX-GATA motifs. GATA motif mutagenesis does
not show significant average effects on HOX, or MEIS in HOX-bound regions.

Figure 7. Model. Low affinity, widespread binding of MEIS (blue square) defines a large
subset of accessible chromatin (grey line) for activation (PBX is not shown as PBX and
MEIS binding almost entirely overlaps). Direct cooperativity with HOX (A2 and A3, red and
green circles respectively) and/or indirect cooperativity with tissue-specific TFs (triangle)
increase MEIS binding affinity and residence time; prolonged residence time of MEIS at
enhancers promotes recruitment of general co-activators (yellow) and activation of
transcription. HOX paralogs preferentially bind different subsets of MEIS occupied regions,
resulting in differential transcription. Three examples of BA-specific transcription are shown.
In a, the red site is bound with higher affinity by HOXA2 than HOXA3, resulting in the
formation of a more stable HOX-TALE complex on DNA and a (higher) transcriptional output
in BA2. Conversely, in c, the green site is only recognized by HOXA3, leading to high affinity
MEIS binding only in PBA, and to PBA-specific transcription. In b, the effect of HOXA3 is
potentiated by a PBA-specific TF binding in the vicinity. Co-binding with tissue-specific TFs
may positively contribute to HOX-MEIS cooperativity by competing with nucleosome for DNA
binding, especially at HOX and/or MEIS low affinity sites. These mechanisms result in BA-
specific transcription.
Figure 1

A, Schematic representation of BAs in a mouse/human embryo (BA1, blue; BA2, red; posterior BAs=PBA, green). BAs appear in the developing vertebrate head as a transient series of similar segments, which take on individual identities. BAs are colonised by neural crest cells, an attractive example of progenitor cells with multiple cell fate choices.

B, MEIS differential binding in BA2 and PBA. While most TFs bind relatively few sites (e.g., <10^4) and in a tissue-restricted manner, MEIS TFs bind very extensively (>10^5 sites) and largely to the same locations across the BAs. Quantitative analysis of MEIS binding shows 'shared' MEIS peaks with log fold change (FC) <3 signal (n=6875; only peaks with fold enrichment >10 are shown) and with higher signal (logFC ≥3) in BA2 (red) and in PBA (green).

C, Diagram showing the number of top regions for HOXA2 and HOXA3. HOXA2 has 1920 top regions, HOXA3 has 401 top regions, and both have 447 overlapping regions.

D, Table showing the number of top regions for HOXA2 and HOXA3. The regions are listed by chromosome and band, with the number of regions indicated for each.

E, Graph showing the percentage of top regions for HOXA2 and HOXA3 over the number of top regions. The percentage increases as the number of top regions increases.

F, Diagram showing the GO Biological Process and Mouse Phenotype for HOXA2. The GO Biological Process includes terms such as heart development and muscle tissue development, while the Mouse Phenotype includes terms such as abnormal heart ventricle morphology and abnormal heart development.

G, Table showing the number of top regions for HOXA2 and HOXA3. The regions are listed by chromosome and band, with the number of regions indicated for each.

H, Diagram showing the overlap of HOXA2 and HOXA3 expression. HOXA2 has 34% overlap, HOXA3 has 37% overlap, and the total overlap is 28%.
Figure 2

A

HOXA3

ATGATTGATGAC

HOXA2

ATGATTGATGAC

B

HOXA2 top 250

HOXA3 top 250

D

Sulf2

5kb

HOXA3

MEIS

PBX

PBX

HOXA2

HOXA2

MEIS

E

AGCTGTCACTGTGATTGATGGCTCTCTGACATC

F

G

TALE

TALE+A3

TALE

TALE+A3

TALE

TALE
Figure 3

A Meis2

chr2:114,887,616-114,899,315

9kb

![Graph of Meis2](image)

B Zfp703

![Graph of Zfp703](image)

C pcDNA3

HOXA2

HOXA3

PBX

MEIS

![Image of H3K27Ac](image)

D Fold activation

pcDNA3

HOXA2

HOXA3

MEIS+PBX

HOXA2+M+P

HOXA3+M+P

![Graph of Fold activation](image)

E pcDNA3

HOXA2

HOXA2-A3HD

HOXA2

HOXA3-A2HD

HOXA3+M+P

HOXA2-A3HD+M+P

HOXA3+M+P

HOXA3-A2HD+M+P

![Graph of Fold activation](image)

F Meis2 wt: GGGTATCATCAATCACAGACACCCTGAGCATATGC

Meis2 mut: GGGTATCCGCAACACAGACACCCTGAGCATATGC

G H3K27Ac

H3K27Ac

![Image of H3K27Ac](image)

H pcDNA3

HOXA2

PBX

MEIS

MEIS+PBX

HOXA2+M+P

![Image of H3K27Ac](image)

I pcDNA3

PBX

MEIS

MEIS+PBX

HOXA2+M+P

![Image of H3K27Ac](image)

J pcDNA3

PBX

MEIS

MEIS+PBX

HOXA2+M+P

![Image of H3K27Ac](image)

K TOP shared HOXA2-HOXA3

38%

47%

15%

![Pie chart of TOP shared HOXA2-HOXA3](image)

- BA2
- PBA
- No DE
Figure 4

(A) Hoxa2 (B) Hoxa3

E

Fold activation

Meis2

Zfp703

C

D

log2 FE

HOXA2 BA2

HOXA2 PBA

% input

Zfp703

Wnt5a

FB11

Zfp503

Prickle

Itih4

*OV
Figure 5

A

HOXA3

MEIS

PBX

102

27

602

B

MEIS PEAKS (%)

 FC

-2

-1 to 2

0 to 1

1 to 0

>1

-HOXA3

+HOXA3

C

density

log2 FE

D

number of HOXA3 peaks

distance to closest MEIS peaks

E

Flag-HOXA 2 2 3 3 2 2 3

GST + - + - + - + -

GST-MEIS - 1 - 1 - 2 - 2

Flag-HOXA

FLAG-HOXA2

GST-MEIS2

GST-MEIS1

GST

coIP

Input

α-flag

α-GST

α-actin
Figure 6

A) Diagram showing the regulatory interactions involving MEIS.

B) Workflow for identifying enriched differential transcription factor (TF) families.

C) Heatmap showing the log2 fold change (FC) for HOXA2 and MEIS.

D) Box plots illustrating the log2 RPKM H3K27Ac ratio for HOXA2, MEIS, and their BA2 and PBA conditions.

E) Scatter plot depicting the log2 FC of MEIS for PBA/BA2 conditions.

F) Graph indicating the number of top regions for BA2/PBA.

G) MEIS ChIP-seq data showing the enrichment of specific binding sites.

H) Table summarizing the enriched differential TF families for HOXA3-specific and HOXA2-specific conditions.

I) Bar chart comparing the expression levels of different TF families across various conditions.

J) Graph illustrating the effect of Hoxa3 on Hox and Meis expression levels.

CC-BY-NC-ND 4.0 International license. It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
