8-1-1991

An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag

Rebecca A. Littaua
University of Massachusetts Medical School

Michael B. A. Oldstone

Akira Takeda
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/oapubs

Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

Repository Citation
Littaua, Rebecca A.; Oldstone, Michael B. A.; Takeda, Akira; Debouck, Christine; Wong, Johnson T.; Tuazon, Carmelita U.; Moss, Bernard; Kievits, Femia; and Ennis, Francis A., "An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag" (1991). Open Access Articles. 1571.
http://escholarship.umassmed.edu/oapubs/1571

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
An HLA-C-restricted CD8+ cytotoxic T-lymphocyte clone recognizes a highly conserved epitope on human immunodeficiency virus type 1 gag

Authors

This article is available at eScholarship@UMMS: http://escholarship.umassmed.edu/oapubs/1571
An HLA-C-Restricted CD8+ Cytotoxic T-Lymphocyte Clone Recognizes a Highly Conserved Epitope on Human Immunodeficiency Virus Type 1 gag

REBECCA A. LITTAUA,1 MICHAEL B. A. OLDSTONE,2 AKIRA TAKEDA,1 CHRISTINE DEBOUCK,3 JOHNSON T. WONG,4 CARmelita U. TUAzon,3 BERNARD MOSS,6 FEMIA KIEVITs,7 AND FRANCIS A. ENNIS*6

Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts 01655; Department of Neuropharmacology, Research Institute of Scripps Clinic, La Jolla, California 92037; Department of Molecular Genetics, Smith Kline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406-0939; Immunology/Allergy and Immunopathology Unit, Harvard Medical School, Boston, Massachusetts 02114; Division of Infectious Diseases, Department of Medicine, George Washington University Medical Center, Washington, D.C. 20037; Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, Bethesda, Maryland 20892; Department of Immunohematology and Laboratory of Experimental and Clinical Immunology, University of Amsterdam, 1060 CX Amsterdam, The Netherlands

Received 4 March 1991/Accepted 3 May 1991

A unique epitope on the gag protein of human immunodeficiency virus type 1 (HIV-1), located at amino acid 145 to 150, has been mapped by using a CD8+ cytotoxic T-lymphocyte (CTL) clone. This epitope is highly conserved among 18 HIV-1 strains. The HIV-1 gag-specific human leukocyte antigen (HLA) class I-restricted CD8+ CTL clone was generated from fresh peripheral blood mononuclear cells of an HIV-seropositive donor by stimulation with γ-irradiated allogeneic peripheral blood mononuclear cells in the presence of an anti-CD3 monoclonal antibody and recombinant interleukin-2. This gag-specific CTL clone killed autologous target cells infected with a recombinant vaccinia virus containing the gag gene of HIV-1 and target cells pulsed with an authentic p24gag construct expressed in Escherichia coli. Fine specificity was determined by using a panel of overlapping 30-amino-acid-long synthetic peptides and subsequently using smaller peptides to precisely map the CTL domain on p24. The epitope is on a highly conserved region, and it overlaps with a major B-cell epitope of gag. This CD8+ T-cell epitope is restricted by HLA-Cw3, which has not been previously identified as a restricting element for human CTL responses.

The development of vaccines against AIDS has focused primarily on the viral envelope gene product and has been complicated by the emergence of neutralization escape mutants (10, 12, 14) as well as sequence variation in the envelope glycoprotein (40, 44). Previous candidate vaccines that induced human immunodeficiency virus (HIV)-specific neutralizing antibodies in chimpanzees did not protect these animals from infection after challenge with live virus (14). A recent report demonstrating protection of these animals against homologous virus challenge for more than 6 months after vaccination with recombinant glycoprotein gp120 leaves questions about the length of this protective immunity (1). For a vaccine to be effective in humans, it should provide protection for a long period after vaccination. It should also elicit specific cytotoxic T-lymphocyte (CTL) effectors that are able to eliminate cells which are infected by virus that has escaped neutralization, either because of antigenic drift or because of concentrations of antibody inadequate to completely prevent infection. Efforts have thus been focused on studying CTL responses against different HIV proteins; however, only a few epitopes recognized by human CTL clones have been described.

A DR4-restricted gp120 epitope (amino acids [aa] 410 to 429) recognized by CD4+ clones has been identified, but this region is not conserved in other HIV-1 strains (40). Several epitopes defined by reverse transcriptase-specific CTL clones that were restricted by human leukocyte antigens (HLA) A and B have been reported (50). Koening et al. (16) demonstrated an epitope of 10 amino acids (aa 73 to 82) within nef recognized in association with HLA-A3 by a CD8+ CTL clone. The only available information concerning CTL epitopes on gag have been an HLA-B27-restricted epitope on p24gag, analyzed by using bulk stimulated peripheral blood mononuclear cells (PBMC) as effector cells (26) and HLA-A2-restricted epitopes that were described in bulk cultures (5). In contrast to the envelope glycoprotein, there is less heterogeneity exhibited by the internal viral proteins of sequenced HIV-1 isolates, which makes characterization of T-cell responses of these proteins a priority in view of AIDS vaccine design. In this report, we describe the first CTL response restricted by HLA-Cw3. This HLA antigen is quite common, and this epitope on p24 is highly conserved among HIV-1 strains.

MATERIALS AND METHODS

Recombinant vaccinia viruses and proteins. Vaccinia virus (VAC) and three previously described recombinant vaccinia viruses (VAC/gag, VAC/pol, and VAC/gp160) expressing the gag (48), reverse transcriptase (50), and envelope (4) genes of HIV-1 (IIIB strain), respectively, were used to infect target cells for CTL assays. Recombinant HIV-1 (IIIB strain) p24gag, expressed (6)
and purified (13a) from *Escherichia coli*, was also used for the preparation of target cells.

**Preparation of synthetic peptides.** Synthetic peptides of HIV-1 p24<sup>ag</sup> were prepared and purified as described previously (11, 29) on the basis of the HIV-1 (III B strain) sequence (34). The initial peptides tested overlapped with adjacent peptides by 10 or 20 amino acids, and subsequently shorter peptides were prepared and analyzed. The numbering of residues is based on the compilation of Myers et al. (24).

**Preparation of target cells.** B-lymphoblastoid cell lines (B-LCL) were established by Epstein-Barr virus transformation of the PBMC from an HIV-1-infected donor (autologous) and from major histocompatibility complex (MHC) HLA class I- and II-matched or mismatched allogeneic donors. Culture supernatant of B95-8 cells was used as an inoculum of Epstein-Barr virus. These B95-8 cells were provided by T. Sairenji of the University of Massachusetts Medical Center.

The B-LCL were either uninfected (control) or infected with vaccinia viruses at a multiplicity of infection of 20 for 12 to 16 h, labeled with sodium <sup>3</sup>H-chromate for 1 h, washed thrice, and resuspended to give the appropriate concentration for use as target cells in cytotoxicity assays. The B-cell lines were also used as targets after overnight pulsing with 100 μg of purified recombinant p24 protein per ml or pulsing with synthetic peptides at a concentration of 20 to 100 μg/ml for 1 h. These B-cell lines were labeled with <sup>31</sup>Cr, incubated for another hour, and then washed thrice before use.

**Preparation of effector cells.** PBMC were obtained from the blood of an asymptomatic HIV-1 antibody-positive individual (Walter Reed stage II) by Ficoll-Hypaque density centrifugation. Cells were resuspended in RPMI 1640 medium supplemented with 10% fetal calf serum (GIBCO Laboratories, Grand Island, N.Y.), penicillin (100 U/ml), and streptomycin (100 U/ml) and used directly as effector cells in cytotoxicity assays. To obtain T-cell clones, PBMC were seeded at 50 cells per well in 96-well plates with 2 × 10<sup>5</sup> γ-irradiated normal PBMC from HIV-1-seronegative donors in 0.2 ml of RPMI 1640 containing 10% fetal calf serum, recombinant human interleukin-2 (100 U/ml; Cellular Products, Buffalo, N.Y.), and anti-CD3 antibody 12F6 (0.1 μg/ml) as described by Walker et al. (49). Twice weekly, 0.1 ml of medium was removed from each well and replaced with fresh medium as described above. On day 14, when cell proliferation was observed in all of the wells, cells were transferred to 48-well flat-bottom plates (Costar) and further cultured with 10<sup>6</sup> γ-irradiated allogeneic feeders in 1 ml of the same medium. These cell lines were restimulated every 2 weeks and subsequently used as effector cells in the assay described below.

**Cytotoxicity assays.** Assays were performed in round-bottom 96-well plates. Various concentrations of effector cells in 0.1 ml of RPMI–10% fetal calf serum were added to 0.1 ml of a <sup>51</sup>Cr-labeled target cell suspension (10<sup>6</sup> cells per ml) in the wells to give the desired effector/target (E/T) ratios. After a 6-h incubation at 37°C, the supernatant was harvested from each well and counted in a gamma counter. The assays were performed in triplicate wells, and the percent specific cell lysis was calculated by the formula 100 × (mean experimental release – mean spontaneous release)/ (mean total release – mean spontaneous release). The results of an assay were excluded if the average spontaneous release was ≥30% or if the viability prior to <sup>31</sup>Cr labeling was <80%.

**HLA typing.** Most of the donor lymphocytes used in these experiments were typed for HLA-A, -B, -C, and -D antigens on unfractionated PBMC by the Tissue Typing Laboratory at the George Washington University Medical Center. Some donor lymphocytes were tissue typed by using their Epstein-Barr virus-transformed B-cell lines in the Tissue Typing Laboratory at the University of Massachusetts Medical Center.

**Phenotypic analysis.** Cell lines were stained with fluorescein isothiocyanate-conjugated monoclonal antibodies (MAbs) anti-Leu4 (CD3), anti-Leu2 (CD8), anti-Leu3 (CD4), and anti-Leu11a (CD16), purchased from Becton Dickinson and Co. (Mountain View, Calif.). The percentage of antigen-positive cells was analyzed by fluorescence-activated cell sorting (Becton Dickinson model 440 apparatus).

**Antibody blocking of target cell lysis by CTL.** MAb B7/21.7, S3/4, and OKIa1 recognize DP, DQ, and DR determinants, respectively. MAb W6/32 recognizes a framework determinant of HLA class I antigens. B7/21.7 and S3/4 were kindly provided by Nancy Reinsmoen of the University of Minnesota, Minneapolis. OKIa1 and W6/32 were provided by John Sullivan of the University of Massachusetts Medical Center. A total of 10<sup>5</sup> <sup>51</sup>Cr-labeled target cells in 0.1 ml were incubated with 0.05 ml of 1:20 diluted MAbs for 30 min. The effector cells were then added in 0.05 ml and incubated for 6 h. The percent specific cell lysis was determined as described above.

**RESULTS**

**HIV-1-specific cytotoxic activity in PBMC.** Fresh PBMC from an asymptomatic HIV-1-seropositive donor were tested for specific lysis of autologous B-LCL that were uninfected or infected with VAC, and the recombinant VAC/gag and VAC/gp160 as described in Materials and Methods. The K562 cell line was used to monitor natural killer cell activity (35). The results with different E/T ratios are presented in Fig. 1. No specific lytic activity of uninfected B-LCL and little lytic activity on VAC-infected targets were observed. Lysis of K562 cells was low. In contrast, we detected significant HIV-1 gag-specific and envelope-specific killer cell activity. No specific cytotoxic activities were detected with use of the PBMC of five HIV-1-seronegative normal individuals (data not shown).

**Establishment of HIV-1-specific CTL clones.** One month
after initiation of the culture, the developing clones were screened by testing for HIV-1-specific cytotoxic activity with autologous B-LCL that were uninfected or infected with VAC, VAC/gag, VAC/pol, and VAC/gpl60 and with the K562 cell line as a control. Two T-cell clones manifested specificity for HIV-1 envelope (data not shown), and the other clone (clone 165) was gag specific. There was no cytotoxic activity specific for the pol gene product, reverse transcriptase, and lysis of K562 cells was negligible. Phenotypic analysis showed that these cytotoxic clones were CD3+ CD8+ CD4—Leu11—(data not shown).

To further analyze antigenic specificity, we examined the ability of the gag-specific CTL clone 165 to lyse target cells pulsed with authentic HIV-1 p24\textsuperscript{ag} protein purified from a recombinant E. coli strain. We observed that clone 165 significantly lysed B-LCL target cells pulsed with purified p24\textsuperscript{ag} protein at levels comparable to the lysis of B-LCL infected with VAC/gag, but they did not lyse uninfected or VAC-infected targets (Fig. 2). We were unable to evaluate the two env-specific clones from this donor for HLA restriction and epitope mapping because of their limited ability to proliferate in vitro.

**Characterization of an HIV-1 gag-specific CTL clone.** (i) **Determination of the CTL epitope in p24\textsuperscript{ag}**. Fourteen overlapping synthetic peptides spanning the p24\textsuperscript{ag} region were used to map the viral epitope recognized by CTL clone 165. As shown in Table 1, target cells pulsed with either synthetic peptide 1 or 2 were significantly lysed, denoting that the epitope recognized by this clone lies within the overlap region.

The fine specificity of CTL clone 165 was further examined by using truncated peptides corresponding to the first 20-amino-acid sequence of peptide 1 (Table 2, experiment A). Targets pulsed with peptides 90-17B and 90-17C lacking the five or seven residues at the N-terminal end of peptide 90-17 were observed to have identical high levels of lysis, whereas targets pulsed with peptides having carboxyl-terminal deletions of four residues from peptide 90-17 were lysed poorly (90-18, -18A, and -18B). Peptide 90-17A, which has the first 13 amino acids of this region deleted, was not recognized by the clone. Additional peptides containing amino acid truncations from the N and C termini revealed that the epitope for this gag-specific CTL is located within aa 145 to 150 (Table 2, experiment B).

(ii) **HLA restriction of cytolyis by CTL clone 165**. We first examined HLA restriction of the lysis of target cells infected with VAC/gag by CTL clone 165, using MAbs to HLA antigens. Anti-HLA class I MAb W6/32 inhibited the lysis of VAC/gag-infected target cells by CTL clone 165, and this inhibition was more apparent when a lower E/T ratio of 2.5:1 was used. The anti-class II MAbs to DP, DQ, and DR (B7/21.7, S3/4, and OKI1a, respectively) had no effect on the lysis of the target cells by this gag-specific CD8+ T-cell clone (Fig. 3). The results indicate that this CD8+ T-cell clone lysed target cells in an HLA class I-restricted manner. The gag-specific clone 165 was also tested for its lytic activity on allogeneic B-LCL target cells infected with VAC/gag matched at a specific HLA class I locus or unmatched, as indicated in Fig. 4A. The HLA class I alleles of the donor of clone 165 are A3,25, B18, Bw62, and Cw3. This CD8+ clone was able to lyse two allogeneic target cells that shared Cw3 (Fig. 4A). Since target cells can also be sensitized to virus-specific lysis in vitro by incubation with the appropriate synthetic viral peptide (46), we examined the lysis of other allogeneic targets that had been pulsed with peptide 90-17C, the core peptide which contained the epitope recognized by the clone.

### Table 1. Lysis of target cells pulsed with synthetic peptides of HIV-1 p24\textsuperscript{ag} by CD8+ CTL clone 165

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Residues ( ^{\text{a}} )</th>
<th>% Specific lysis ( ^{\text{a}} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>133–162</td>
<td>57.7</td>
</tr>
<tr>
<td>2</td>
<td>143–172</td>
<td>37.0</td>
</tr>
<tr>
<td>3</td>
<td>153–182</td>
<td>4.8</td>
</tr>
<tr>
<td>4–14</td>
<td>173–363</td>
<td>0</td>
</tr>
</tbody>
</table>

\( ^{\text{a}} \) Autologous B-LCL were pulsed with peptides at a final concentration of 50 \( \mu \)g/ml for 1 h before labeling with \( ^{51} \)Cr and used as targets for clone 165 in a standard cytotoxicity assay. Percent specific lysis was determined at an E/T ratio of 4:1.

### Table 2. Fine specificity of the epitope recognized by CD8+ CTL clone 165

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Amino acid sequence</th>
<th>% Specific lysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90–17</td>
<td>133–152</td>
<td>PIVVNIQGQWMHQAISPRTL 67.7</td>
</tr>
<tr>
<td>90–17A</td>
<td>146–152</td>
<td>AISRPRTL 1.4</td>
</tr>
<tr>
<td>90–17B</td>
<td>138–152</td>
<td>IQGWMHQAISPRTL 65.0</td>
</tr>
<tr>
<td>90–17C</td>
<td>140–152</td>
<td>GQWMHQAISPRTL 62.4</td>
</tr>
<tr>
<td>90–18</td>
<td>133–148</td>
<td>PIVVNIQGQWMHQAIS 9.6</td>
</tr>
<tr>
<td>90–18A</td>
<td>138–148</td>
<td>IQGWMHQAIS 10.8</td>
</tr>
<tr>
<td>90–18B</td>
<td>140–148</td>
<td>GQWMHQAIS 3.1</td>
</tr>
<tr>
<td>Expt B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD–1</td>
<td>140–152</td>
<td>GQWMHQAISPRTL 36.5</td>
</tr>
<tr>
<td>LD–3</td>
<td>145–151</td>
<td>QAIRPRTL 12.5</td>
</tr>
<tr>
<td>LD–4</td>
<td>145–150</td>
<td>QAISPR 25.2</td>
</tr>
<tr>
<td>90–17A</td>
<td>146–152</td>
<td>AISPRTL 1.6</td>
</tr>
</tbody>
</table>

\( ^{\text{a}} \) Autologous B-LCL were pulsed with peptides at a final concentration of 50 \( \mu \)g/ml for 1 h before labeling with \( ^{51} \)Cr and used as targets for clone 165 in a standard cytotoxicity assay. Percent specific lysis was determined at an E/T ratio of 4:1.

\( ^{\text{a}} \) Residue numbering for the p24\textsuperscript{ag} sequence is based on the HIV-1 (III B strain) sequence.
nized by this CTL clone. As shown in Fig. 4B, three of four peptide-sensitized target cells that share Cw3 were lysed. The failure to lyse one target cell that shared Cw3 may be due to variability in HLA alleles, because the HLA determinants which are recognized by the T-cell receptors differ from those defined by typing sera. This has been shown to be true for the HLA-A2 locus, where A2-restricted influenza A virus-specific CTL clones lyse some allogenic target cells sharing an A2 locus but not other targets bearing A2 variants (2, 19). We were able to confirm the Cw3 restriction of clone 165 by using two transfected P815 (H-2b) mouse mastocyto
toma cells expressing human HLA-Cw3 that were pulsed with peptide 90-17C in a CTL assay. As shown in Fig. 4C, both cell lines expressing HLA-Cw3 were lysed by clone 165, while P815 control cells pulsed with the same peptide were not lysed. These data clearly show that the epitope on p24ag identified by clone 165 is definitely restricted by Cw3.

**FIG. 3.** Inhibition of HIV-1 gag-specific cytotoxicity by anti-
class I MAb W6/32. Target cells (10⁴) were incubated with effector
cells at E:T ratios of 10:1 (☐) and 2.5:1 (●) for 6 h in the presence of MAb at a final dilution of 1:80. B7/21.7, S3/4, and OKTal were used as anti-HLA DP, anti-HLA DQ, and anti-HLA DR antibodies, respectively.

**FIG. 4.** MHC restriction of clone 165. Autologous and allogeneic targets matched at one or more HLA loci as indicated were infected with VAC/vag (A) or pulsed for 1 h with peptide 90-17C (B). HLA-Cw3-transfected P815 mouse mastocytoma cells and untransfected P815 cells pulsed with peptide 90-17C were also used as target cells (C). Percent specific lysis was determined at E/T ratios of 10:1 ( ■) and 3:1 ( □ ).

**DISCUSSION**

We described a CD8+ cytotoxic T-cell clone, 165, which recognized an epitope that maps to a 6-amino-acid region (aa 145 to 150) of HIV-1 p24ag. This epitope is located within a region of highly conserved amino acid sequence among various HIV-1 isolates, with most strains (BH10, HBX2, BH5, PV22, HAN, NDK, Z2, BRU, JH3, CDC4, ELI, WMJ, SF2, RF, MN, MAL, and CDC-451) having complete homology and only one isolate (OYI) having an alanine-to-
proline substitution at position 146 (24). Interestingly, this HLA-Cw3-restricted CD8+ CTL epitope overlaps B-cell epitopes of p24ag (aa 135 to 149 and 145 to 159) (23). However, this site would not have been predicted by Ber-
zofsky’s amphi
pathicity algorithm or by any of the widely used computer models (7, 37, 43). This fact underlines the importance of definitively identifying CTL epitopes by using T-cell clones.

CTL responses to HIV-1 gag protein mediated by CD8-positive HLA class I-restricted T cells have previously been reported (5, 17, 26, 36, 48). In some studies they were detected in variable degrees in fresh PBMC from HIV-1-infected individuals without in vitro stimulation. Walker et al. (48) reported low gag-specific CTL in three of eight HIV-1-seropositive patients, while Riviere et al. (36) and Koup et al. (17) found gag-specific CTL activity in over 80% of tested HIV-1-seropositive subjects. In the study of Nixon et al. (26), gag-specific CTL activity was detectable only after in vitro mitogenic stimulation of the cells from HIV-infected individuals.

Despite these bulk culture CTL responses, only a few epitopes have been identified on HIV-1 gag. With use of computer program-predicted gag epitopes, HLA-A2-restricted epitopes were reported by Claverie et al. (5) in bulk culture experiments using four sites within gag different from that detected by clone 165, one of which was con-
In contrast, sequence variation in the HIV-1 env protein raises concerns associated with their potential use in subunit vaccines based on env alone. For instance, an HLA-DR-restricted gp120-specific clone directed against an epitope spanning residues 410 to 429 of gp120 demonstrated very
limits cross-reactivity against a range of HIV-1 variant peptides (40). Thus, our results with the p24-specific T-cell clone 165 and those of Nixon et al. (26) suggest that gag sequences that contain highly conserved T-cell epitopes may be very valuable and useful for inclusion in a combination vaccine for HIV.

The isolation of an HIV-1 gag-specific CD8+ T-cell clone from an HIV-1-seropositive and asymptomatic donor is consistent with the gag-specific CTL activity that was ob-
erved in the freshly isolated PBMC. This indicates ongoing antigenic stimulation in vivo since this cytotoxic activity was detected directly in fresh blood and continued to be detected in the cultured lymphocytes without in vitro HIV-1 antigenic stimulation. This T-cell clone has demonstrated a persistent gag-specific cytotoxic activity for the last 14 months and is presumably not polyclonal since it recognizes a single small peptide.

The highly conserved epitope on HIV-1 p24 is recognized by the CD8+ clone 165 in an HLA-Cw3-restricted manner. It has been assumed that HLA-C major histocompatible antigens function similarly to the structurally related HLA-A and -B antigens (13). This is the first report to our knowledge that HLA-C antigens are restrictive elements for human CTL, although it has been demonstrated recently that transgenic mice expressing the HLA-Cw3 gene as well as the CD8+ clone 165 in an HLA-Cw3-restricted manner.

Whether the role played by these CTLs is deleterious or helpful to the virus-infected host is unclear. Their beneficial role is suggested by the detection 14 months of a common HLA allele (45).

ACKNOWLEDGMENTS

We are grateful to Norman Letvin and Michael Miller for helpful discussions and for characterizing the MHC class I molecules of the B-LCLs by one-dimensional isoelectric focusing, to Michael Minich for purifying the recombinant p24pro from E. coli, to Lichen Dai for providing several synthetic peptides, to Anita LePorter for preparing the different recombinant vaccinia virus stocks, and to Victor E. Reyes for helpful discussions.

This work was supported by research grants NIH RO1-AI24750, NIH U01-AI26458, DAMD-C-6279, NIH-T32-A107272, and NIH AI25831 and by the U.S. Army Medical Research and Development Command under contract DAMD17-90-C-0070.

REFERENCES


