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SUMMARY 

 

Interactions between RNA binding protein (RBP) and mRNAs are critical to post-

transcriptional gene regulation. Eukaryotic genomes encode thousands of 

mRNAs and hundreds of RBPs. However, in contrast to interactions between 

transcription factors (TFs) and DNA, the interactome between RBPs and RNA has 

been explored for only a small number of proteins and RNAs. This is largely 

because the focus has been on using ‘protein-centered’ (RBP-to-RNA) interaction 

mapping methods that identify the RNAs with which an individual RBP interacts. 

While powerful, these methods cannot as of yet be applied to the entire RBPome. 

Moreover, it may be desirable for a researcher to identify the repertoire of RBPs 

that can interact with an mRNA of interest – in a ‘gene-centered’ manner, yet few 

such techniques are available. Here, we present Protein-RNA Interaction Mapping 

Assay (PRIMA) with which an RNA ‘bait’ can be tested versus multiple RBP 

‘preys’ in a single experiment. PRIMA is a translation-based assay that examines 

interactions in the yeast cytoplasm, the cellular location of mRNA translation. We 

show that PRIMA can be used with small RNA elements, as well as with full-

length Caenorhabditis elegans 3´UTRs. PRIMA faithfully recapitulates numerous 

well-characterized RNA-RBP interactions and also identified novel interactions, 

some of which were confirmed in vivo. We envision that PRIMA will provide a 

complementary tool to expand the depth and scale with which the RNA-RBP 

interactome can be explored.  
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INTRODUCTION 

The post-transcriptional regulation of gene expression is vital to organismal 

development and homeostasis. Post-transcriptional gene regulation affects many 

aspects of an mRNA, including splicing, 3´-end formation, nuclear-cytoplasmic export, 

localization, translation and stability (Glisovic et al., 2008). These processes are 

controlled by physical interactions with different RBPs that often occur through the 3´ 

untranslated region (UTR)(Moore, 2005; Szostak and Gebauer, 2013).  

Thousands of 3´UTRs have been experimentally defined in several model 

organisms (Derti et al., 2012; Jan et al., 2011; Mangone et al., 2010; Ulitsky et al., 

2012). In addition, compendia of hundreds of RBPs encompassing ~5% of all protein-

coding genes have been predicted or experimentally determined in various model 

organisms and humans (Baltz et al., 2012; Castello et al., 2012; Gerstberger et al., 

2014; Tamburino et al., 2013). Thus, there is a vast matrix of potential interactions 

between 3´UTRs and RBPs, or interactomes, that needs to be explored. Several assays 

are available to identify or study RNA-RBP interactions. Most of these are what we refer 

to as ‘protein-centered’, or RBP-to-RNA, because they study a single RBP at a time and 

identify the RNA molecules with which this RBP interacts. These in vivo methods 

include microarray profiling of RNAs associated with immunopurified RBPs (RIP-Chip) 

(Keene et al., 2006; Tenenbaum et al., 2000), cross-linking of the RBP to the RNA 

followed by and immunoprecipitation (CLIP) (Ule et al., 2005), plus variations of CLIP 

that use high-throughput sequencing (HITS-CLIP)(Licatalosi et al., 2008) and 

Photoactivatable-Ribonucleoside-Enhanced CLIP (Hafner et al., 2010). In vitro methods 

to characterize the binding specificity of RBPs include electromobility shift (EMSA) and 
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RNAcompete assays, which can be used to test binding of individual RBPs to single or 

multiple RNA elements, respectively (Pagano et al., 2011; Ray et al., 2009). These 

methods can be limited in their use because they require suitable anti-RBP antibodies 

or purified RBPs, because they are carried out in vitro, or because they cannot be used 

in a gene-centered, or RNA-to-RBP manner, which is what one would like to do when 

the focus is a single gene, an individual 3´UTR, or a particular RNA element or 

structure. 

Several RNA-to-RBP interaction mapping methods have been developed, 

including proteomic methods that involve the pull-down of mRNAs or non-coding RNAs 

using oligo d(T) beads (Butter et al., 2009; Castello et al., 2012; Matia-Gonzalez et al., 

2015), and examining the precipitated RBP interactome by mass spectrometry. This 

type of approach identifies tens to hundreds of putative RBPs, but provides no 

information about whether the interaction is direct or indirect, or if it is specific to a 

particular structure or sequence. Further, these approaches can be challenging to apply 

to intact organisms or tissues due to cellular heterogeneity and (low) RBP or mRNA 

expression levels. A heterologous method that can be used in either an RBP-to-RNA or 

RNA-to-RBP configuration is the yeast three-hybrid (Y3H) system. This system is based 

on the reconstitution of a functional transcription factor via an RNA-RBP interaction in 

nucleus of yeast cells (SenGupta et al., 1996). However, many RNA-RBP interactions 

occur in the cytoplasm. Further, Y3H assays can be limited by the length and nucleotide 

sequence of the RNA (Zhang et al., 1999).  
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The nematode Caenorhabditis elegans is a powerful model organism for the 

study of biological interactome networks (Lee et al., 2008; Li et al., 2004; MacNeil et al., 

2015; Reece-Hoyes et al., 2013; Walhout et al., 2000a). C. elegans transgenic strains 

can be generated that express a fluorescent reporter protein under the control of a 

promoter (with fixed 3´UTR)(Chalfie et al., 1994; Grove et al., 2009; Hunt-Newbury et 

al., 2007; Martinez et al., 2008; Ritter et al., 2013), or 3’UTR (with fixed promoter) of 

interest (Merritt et al., 2008). Such strains can then be used with RNAi knockdown 

screening to identify or characterize proteins that regulate that promoter or 3´UTR either 

directly or indirectly (MacNeil et al., 2015; Watson et al., 2013)((Merritt et al., 2008)). We 

predicted that the C. elegans genome contains up to 887 RBPs, and this estimate has 

largely been verified by proteomic findings (Matia-Gonzalez et al., 2015; Tamburino et 

al., 2013). In vitro assays have been used to determine the binding specificities of 

several C. elegans RBPs (Farley et al., 2008; Pagano et al., 2011; Pagano et al., 2007). 

However, it has proven difficult to use these specificities to predict complex mRNAs that 

are bound by the RBP and, therefore, RBP interactions with larger mRNA 3´UTRs 

remain largely unexplored. Most studies of RBPs in C. elegans have been limited to 

protein-centered methods, examining RNA targets of specific RBPs, including Y3H 

studies (Bernstein et al., 2005; Koh et al., 2009; Opperman et al., 2005; Stumpf et al., 

2008). To our knowledge, RNA-centered studies have been limited to a few in vitro 

yeast-based assays and one proteomics study (Hook et al., 2005; Matia-Gonzalez et 

al., 2015), illustrating the need for additional methods and tools.  

We have shown extensively that the mapping of the transcription factor 

interactome greatly benefits from the use of multiple complementary approaches, 

.CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/074823doi: bioRxiv preprint first posted online Sep. 12, 2016; 

http://dx.doi.org/10.1101/074823
http://creativecommons.org/licenses/by-nd/4.0/


 6

including both protein- and DNA-centered methods (Fuxman Bass et al., 2015; Reece-

Hoyes et al., 2013). Multiple, complementary methods are needed to map networks 

because not all proteins are amenable to protein-centered methods, because 

experiments with intact organisms have different caveats, and because no single 

method will be able to capture the entire interactome (Walhout, 2011).  

Here, we present PRIMA, a gene-centered Protein-RNA Interaction Mapping 

Assay that can be used to study RNA-RBP interactions with a variety of RNA elements 

or 3´UTRs, and different RBPs within the cytoplasm of yeast cells, the cellular milieu 

where many RBP-RNA interactions occur. PRIMA enables the pairwise testing of 

numerous RBPs for their capacity to bind an RNA of interest in a single experiment. 

PRIMA is based on the stabilizing effect of a physical interaction between the 3´ end 

and 5´ end of an mRNA, which results in effective translation. PRIMA uses expression 

of the green fluorescent protein (GFP) as a reporter. The fluorescent signal is detected 

in a quantitative manner using high-throughput flow cytometry, and positive interactions 

are calculated using computational data processing and statistical analyses of 

replicates. We show that PRIMA can be used with small RNA elements, as well as with 

C. elegans 3´UTRs to capture known and novel interacting RBPs. PRIMA will provide 

an addition to the toolkit for the mapping of the RNA-RBP interactome. 
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DESIGN 

 

PRIMA is based on the endogenous function of yeast poly(A)-binding protein (Pab1p), 

which binds the 3´ poly(A) tail and interacts with the 5´ end of an mRNA through the 

scaffold protein, eIF4G, and the cap binding protein, eIF4E, thereby stabilizing the 

mRNA and increasing translation of the mRNA into protein (Mangus et al., 2003). We 

reasoned that we could reconstitute this interaction by using a reporter mRNA that 

encodes GFP and replacing its poly(A) tail with a selected RNA ‘bait’ element (e.g., a 

3´UTR) of interest, and fusing a candidate interacting ‘prey’ RBP to Pab1p (Figure 1A). 

When the RBP binds the RNA element, Pab1p interacts with the 5´ end of the reporter 

mRNA resulting in stabilization and production of GFP. However, when challenged with 

a non-interacting RBP, the mRNA is unstable and little GFP is produced.  

To avoid endogenous Pab1p from binding to and stabilizing the reporter mRNA, 

we removed the poly(A) tail by adding a cis-encoded, self-cleaving hammerhead 

ribozyme (Dower et al., 2004) to the 3´ end of the mRNA, just 5´ of the poly(A) tail 

(Figure 1A). Ribozyme cleavage removes the 3´ end of the message, leaving it unable 

to be protected from degradation by Pab1p. Finally, we added a generic C. elegans 

unc-54 3´UTR upstream of the RNA bait/ribozyme and downstream of the GFP-

encoding open reading frame to facilitate RNA export to the cytoplasm (Dower et al., 

2004; Okkema et al., 1993). 

The first step in a PRIMA experiment is to generate a yeast bait strain that 

produces the reporter mRNA in which the RNA element of interest is located in between 

the unc-54 3´UTR and the ribozyme (Figure 1A). The second step involves the 
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transformation of the RNA bait strain with a plasmid encoding a chimeric protein 

consisting of an RBP and Pab1p. GFP expression is then measured in ~50,000 cells 

per transformant, using automated flow cytometry (Figure 1B). Once collected, the data 

is filtered to select cells of uniform size and morphology. Next, ‘non-zero’ fluorescent 

cells are selected and the peak density of the population is calculated for each replicate 

(Figure 1C and S1A, S1B). The peak density is then compared across the dataset to 

determine positive RNA-RBP interactions. 

 

RESULTS 

 

Detection of Known RNA-RBP Interactions 

As a proof-of-concept we used two well-characterized RNA-RBP interactions: one 

involving the bacteriophage MS2 stem-loop binding site (MS2BS), which interacts with 

the MS2 coat protein (MS2), and the other being the stem-loop binding element from 

the 3´ end of histone mRNAs (HBE) that binds the mammalian stem-loop binding 

protein (SLBP)(Johansson et al., 1998; Michel et al., 2000). We tested each RNA bait 

versus both RBPs to simultaneously assess PRIMA’s sensitivity and specificity. 

Quantification by flow cytometry showed that PRIMA could detect each test interaction 

with high specificity as only the cognate pairs activated GFP expression (Figure 2A and 

2B). Perhaps not surprisingly, there is a spread of fluorescence between the individual 

strains, indicating the need for multiple replicates and statistical testing. 

We further assessed the sensitivity of PRIMA by introducing two different single 

nucleotide point mutations in the MS2BS that reduce the interaction affinity of MS2 to 66 
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nM and 300 nM, respectively (Johansson et al., 1998). As expected, the highest degree 

of GFP expression occurs with the original, high-affinity MS2BS (pM affinity). The 66 nM 

interaction moderately induced GFP expression yet still showed a statistically significant 

difference between prey interactions, while the low-affinity interaction (300 nM) was not 

detected by PRIMA (Figure 2C). In all cases the MS2BS showed no significant 

fluorescence with the SLBP-Pab1p prey. Thus, PRIMA can detect specific interactions 

with native RNAs and their cognate RBPs. 

 

Optimizing PRIMA 

We tested several known interactions with C. elegans RBPs (Figure 3A). Initial 

attempts failed to specifically induce high levels of GFP expression in any of the test 

cases (Figure S2A). There are several potential reasons for low sensitivity, including 

poor expression of the bait mRNA reporter or RBP prey in yeast, mislocalization of the 

prey, for instance to the nucleus, or toxic effects of prey expression. To address these 

issues, we first introduced a high-affinity MS2BS to the 3´ end of each RNA bait (Figure 

3B). This modification allowed us to determine that the RNA baits used are functional in 

PRIMA because co-expression with MS2-Pab1p increased GFP expression for all baits 

tested (Figure S2B). Second, we tested whether any of the RBP preys were toxic to 

yeast. We obtained no or very few colonies upon transformation of the GLD-1-encoding 

plasmid, suggesting that expression of this RBP is toxic to yeast (Figure S2C). Third, 

we tested the functionality of the other preys by expressing them as RBP-MS2-Pab1p 

fusion proteins and introducing these constructs into the bait strain harboring a GFP 

reporter with a high-affinity MS2BS as RNA bait (Figure S2D). GFP was induced by all 
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five of the C. elegans RBP-MS2-Pab1p preys tested, demonstrating that all RBPs are 

appropriately expressed and localized. Altogether, these results indicate that, with the 

exception of the one toxic RBP, all baits and preys tested are functional within the 

context of PRIMA. Therefore, we hypothesized that the cognate RBP-mRNA interaction 

affinities may be below the detection limits of PRIMA. 

We reasoned that the sensitivity of PRIMA could be improved by including a high 

specificity, low-affinity driver interaction adjacent to the test interaction. We selected the 

interaction between MS2BS and MS2 because it is highly specific, and it can be 

modified to lower affinities. We introduced the moderate (66 nM) or low-affinity (300 nM) 

MS2BS at the 3´ end of each RNA bait (Figure 3B). Additionally, we added the MS2 

protein to the preys to create RBP-MS2-Pab1p fusion proteins. To test whether these 

modifications result in enhanced sensitivity, we used the SLBP prey, and found that 

GFP production was dramatically increased when the SLBP-MS2-Pab1p prey was 

tested with RNA baits that are located adjacent to either a moderate or low-affinity 

MS2BS (Figure 3C). 

 Next, we re-assayed the test set of RNA-RBP interactions using the MS2 fusion 

strategy. The 300 nM low affinity MS2BS was fused to each RNA bait because this 

sequence show little background binding in the presence of MS2-fused RBPs (Figure 

3D). RNA-binding domains (RBD) were used in place of full-length RBPs to reduce 

potentials for steric hindrance. Additionally, bait constructs were integrated into the 

yeast genome to reduce cell-to-cell variability in bait RNA expression. Five RNA baits 

were tested against four RBD preys (Figure 3A). These preys contain different types of 

RBDs: FBF-2 and PUF-8 contain PUF domains, MEX-3 has a KH domain, and POS-1 
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contains CCCH zing finger. SLBP-Pab1p and SLBP-MS2-Pab1p were included as 

negative controls for basal GFP expression and increases mediated by MS2 binding, 

respectively. Previously characterized interactions were detected for all five RNA baits 

(Figure 3D). Two of these, fog-1 fragment and gld-1 FBF binding element (FBE), were 

bound by FBF-2 as expected (Bernstein et al., 2005; Thompson et al., 2005). The glp-1 

SCR1 was bound by POS-1 (Farley et al., 2008; Farley and Ryder, 2012). The nos-2 

subC fragment was bound by MEX-3 (Jadhav et al., 2008; Pagano et al., 2009). The 

previously characterized Y3HRNA1 fragment interaction with PUF-8 was also confirmed 

by PRIMA (Opperman et al., 2005). Overall this reference set demonstrates that PRIMA 

can detect previously known C. elegans RNA-RBP interactions involving different types 

of RBDs.  

 

PRIMA Can Use Full Length 3´UTRs as Bait 

Next, we asked whether PRIMA can detect RNA–RBP interactions with full-length 

3´UTRs as RNA baits. We selected six C. elegans 3´UTRs: nos-2 (318 nt) and glp-1 

(363 nt), mex-3 (437 nt), atg-4.2 (104 nt), set-6 (284 nt) and usp-14 (213 nt), and tested 

these versus a mini-library of 40 C. elegans prey RBPs that are expressed in the 

germline (Tamburino et al., 2013; Wang et al., 2009). These included several well-

characterized RBPs such as POS-1 (which binds glp-1 and mex-3)(Farley et al., 2008; 

Farley and Ryder, 2012; Ogura et al., 2003), MEX-3, which binds and regulates glp-1 

and nos-2 (Pagano et al., 2009) and PUF-5, which binds and regulates glp-1 

(Hubstenberger et al., 2012; Lublin and Evans, 2007). For each 3´UTR, PRIMA 

detected several RBP preys that significantly activated GFP expression (Figure 4). 
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These interactions are visualized in network format in Figure 5. From these data, we 

can glean, for the first time, differences between 3´UTRs as well as RBPs using data 

obtained from a single experiment that was carried out under exactly the same 

conditions. First, interacting RBPs were identified for each 3´UTR and the number of 

interacting proteins ranged from six for mex-3, to nine for usp-14. Secondly, we 

detected interactions for half of the 40 RBPs tested, most of which have not been 

studied for their RNA binding specificity prior to our study. Half of the detected RBPs 

bind only one of the 3´UTRs tested, while four bound five of the six 3´UTRs. These data 

indicate that PRIMA can detect specific interactions, both for 3´UTRs, and for RBPs, 

and, with increasingly comprehensive RBP libraries, has the potential to greatly expand 

the knowledge of the RNA-RBP interactome.  

 

PRIMA Can Detect Biologically Active Interactions 

The 3´UTRs and RBPs tested are all expressed in the C. elegans germline (cartoon in 

Figure 6A). We used RNAi knockdown of five RBPs that interact with the glp-1 3´UTR 

in PRIMA (Figure 6B), using single copy transgenic animals that express labile GFP 

under the control of the mex-5 promoter, which is broadly active in the C. elegans 

germline (Merritt et al., 2008), and under the control of the glp-1 3´UTR, which restricts 

expression to the distal end of the germline (Farley and Ryder, 2012; Pagano et al., 

2009). As previously reported, GFP levels increased in the posterior cells of the 4-cell 

stage embryo of the glp-1 3´UTR strain following RNAi-mediated knockdown of pos-1 

(Farley and Ryder, 2012) (Figure S3). Importantly, GFP levels also increased in the 

developing oocytes following RNAi of either puf-3 or puf-5 (Figure 6B, 6C). While puf-5 
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was known to regulate glp-1 (Lublin and Evans, 2007), the interaction with puf-3 is 

novel. Altogether, these results indicate that PRIMA can detect biologically relevant 

interactions. 

 

DISCUSSION 

 

PRIMA provides a novel protein-RNA interaction mapping assay that can be used to 

identify and study RBPs that interact with an RNA element or 3´UTR of interest. We 

have focused the testing of PRIMA using C. elegans RNAs and RBPs, although the 

method should be applicable to interactions from a variety of organisms.  

To our knowledge very few RNA-RBP interactions have been examined in C. 

elegans, and most of these prior studies have been protein-centered to identify RNAs 

associated with an RBP of interest, or yeast three-hybrid analysis (Table 1). One group 

has studied RNA-RBP interactions on a proteomic level in C. elegans mixed stage and 

L4 animals, using oligo(dT)25 beads followed by mass spectrometry analysis, and 

identified 549 RBPs (Matia-Gonzalez et al., 2015). However, it is not clear whether 

these RBPs bind to specific RNA sequences or structures, if some of the co-precipitate 

with other RBPs.  

 PRIMA will provide a gene-centered method to the expanding toolkit for mapping 

RBP-RNA interactions. It is important to note that PRIMA, like any method, has different 

advantages and disadvantages (Table 1), and therefore should be thought of as 

complementary to other techniques. Advantages of PRIMA, aside from being gene-

centered, include its ability to use relatively long RNA fragments as bait. For instance, 
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while the Y3H system is limited to 150 nucleotide baits (Zhang et al., 1999) we have 

shown that fragments nearly three times the length (the mex-3 3´UTR, which is 437 

nucleotides long) can be used effectively. An additional advantage of PRIMA is that it 

does not require anti-RBP antibodies, the purification of large numbers of proteins, or a 

large number of animals to detect interactions. This advantage will likely enable 

studying RBPs that were heretofore not amenable to interactome studies.  

Finally, it is important to note that not all RNA-RBP interactions detected by 

PRIMA may be biologically meaningful. Indeed, more evidence is becoming available 

that not all physical transcription factor-DNA interactions, detected either in vivo or by 

yeast-based methods, have a (measurable) regulatory consequence in vivo (Kemmeren 

et al., 2014; MacNeil et al., 2015; Walhout, 2011). This finding could be because the 

potential regulatory effects were examined under irrelevant physiological conditions, 

because the interaction effect is masked by redundantly functioning RBPs, or because 

the interaction is harmless, and can occur without any regulatory consequence (and 

thus would not be selected for or against). 

 

Limitations 

PRIMA may not detect low affinity RNA-RBP interactions and therefore may miss some 

important RBPs (Table 1). The addition of the MS2 coat protein at the 5´ end of the 

RBP prey may sterically hinder some RBP prey-RNA bait interactions. As PRIMA is a 

yeast-based assay, it does not detect in vivo interactions that may lead to problems 

such as poor expression in yeast or competition with endogenous yeast proteins. 

Further, RNA-RBP interactions that depend on post-translational modifications of the 
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RBP, or on protein co-factors, will not be detected. However, our successful use of 

yeast one-hybrid (Y1H) assays for assessing transcription factor (TF)-DNA interactions 

demonstrates that this type of approach is extremely useful despite such limitations 

(Deplancke et al., 2006; Fuxman Bass et al., 2015; Reece-Hoyes et al., 2013). The C. 

elegans RBP library is currently small with 40 RBPs, but we anticipate expanding this 

library as we have done previously for our transcription factor collection (Reece-Hoyes 

et al., 2011). In the future, we also anticipate streamlining the PRIMA pipeline such that 

we can make the process higher throughput, similar to yeast one-and-two hybrid assays 

used for the study of protein-DNA and protein-protein interactions, respectively (Reece-

Hoyes et al., 2011; Yu et al., 2011). We have not tested 3´UTRs longer than 437 

nucleotides. It is important to note that a majority of 3´UTRs in C. elegans are shorter 

(Mangone et al., 2010), indicating that PRIMA should be broadly applicable to this 

organism’s RNA-RBP interactome. However, human 3´UTRs are on average longer and 

are frequently alternatively polyadenylated (Derti et al., 2012). We envision that the 

future development of PRIMA-compatible RBP libraries from different organisms, 

together with the cloning of full-length 3´UTRs will enable the broad and deep 

exploration of the RNA-protein interactome, which is essential to gain systems-level 

insights into post-transcriptional gene regulation. 

 

EXPERIMENTAL PROCEDURES 

 

Cloning of RNA Elements and RBPs 
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All DNA sequences and plasmid configurations used in this manuscript are available in 

Table S1 and Figure S4. The 3´UTR sequences were taken from the worm UTRome 

(http://tomato.biodesign.asu.edu/cgi-bin/UTRome/utrome.cgi)(Blazie et al., 2015). 

The pADH1::GFP:unc-54:MCS:Ribozyme plasmid expression vector was 

generated using sequential PCR stitching and gap repair of DNA constructs(Orr-Weaver 

et al., 1983)  into the pDest22 backbone (Life Technologies). The S65T GFP sequence 

was amplified from pFA6:GFP (kindly provided by Paul Kaufman). The shortest unc-54 

3´UTR isoform is included in all RNA baits. It was amplified from the 3´UTRome entry 

vector (Mangone et al., 2010). The multiple cloning site (MCS) and hammerhead 

ribozyme were generated synthetically (Life Technologies). Binding sites were inserted 

into the MCS of the expression vector using yeast gap repair of synthetic oligos into 

AflII/SmaI (NEB) or AflII/ClaI (NEB) digested vectors. 

The pGPD:eGFP:unc-54:HBE:Stem-loop:Ribozyme integration expression vector 

was generated from pAG303GPD-EGFP-ccdB (Alberti et al., 2007) by inserting the 3´ 

end of pADH1:GFP:unc-54:HBE:Stem-loop:Ribozyme vector (this work) into the 

NotI/SalI (NEB) fragment. Additional RNA element constructs were generated by 

replacing the AflII/ClaI fragment with synthetic oligos. 3´UTR constructs were generated 

by replacing the EcoRI/ClaI fragment with PCR products amplified from C. elegans 

cDNA. 

The pDest Pab1p vector was generated using a Gateway cassette PCR product 

amplified from pGBKCg (Stellberger et al., 2010) using Platinum HiFi Taq (Invitrogen) 

and TA cloned into pGEMT (Promega). The SacII/XhoI digested product was ligated 

into the SacII/XhoI site of YCplac111-MS2–Pab1p (Amrani et al., 2004) (kindly provided 

.CC-BY-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/074823doi: bioRxiv preprint first posted online Sep. 12, 2016; 

http://dx.doi.org/10.1101/074823
http://creativecommons.org/licenses/by-nd/4.0/


 17

by Allan Jacobson). The pDest-MS2-Pab1p vector was generated similarly using a 

separate SacII/SacII product ligated into the SacII site of YCplac111-MS2–Pab1p. 

 RBDs were determined according to the literature (Table S1) or using 

InterProScan software (Jones et al., 2014). Domains determined using InterProScan 

were extended by 30 residues on both ends. Primers were designed using Primer3Plus 

(Untergasser et al., 2007) with one additional nucleotide on both ends of the RBD (to 

maintain frame). Gateway B1 and B2 tails were included on the forward and reverse 

primers, respectively. Gateway reactions were performed as previously described 

(Walhout et al., 2000b). 

 

Yeast Manipulations and Assay Conditions 

All assays were performed using the Y1H-aS2 yeast strain (Reece-Hoyes et al., 2011). 

Plasmid expressed baits were generated by yeast transformations as previously 

described (Walhout and Vidal, 2001) and plated on synthetic complete (Sc) -Trp agar 

media. Integrated baits were generated by transformation of yeast with NheI (NEB)-

digested plasmids plated on Sc -His agar media. PRIMA assay strains were generated 

by yeast transformations of RNA-element harboring strains with individual prey plasmids 

plated on Sc -Leu, -Trp (plasmid baits) or Sc -Leu, -His (integrated baits). Individual 

colonies were picked and frozen at -80oC in 20% glycerol prior to performing the assay. 

All yeast strains are listed in Table S2. 

Assays were performed as follows: Thawed yeast strains were inoculated in 

200μl appropriate Sc liquid media in 96 deep well plates and grown overnight at 30oC 

with 200 rotations per minute (RPM) agitation. 10μl of overnight culture was diluted into 
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1mL of fresh media and grown to log phase (~6.5 h). Cultures were centrifuged at 2,000 

RPM for 3 min. and resuspended in 400μl of 1X Phosphate Buffered Saline (PBS). 

Individual cells were then measured using a BD Accuri C6 flow cytometer using the 

510/15 FL1 emission filter according to manufacturer’s protocols. 

 

Data Processing and Quantitative Scoring 

The standard flow cytometry data files (FCS3.0) were exported from BD Accuri C6 

software and analyzed using custom R project software (http://www.R-project.org/) and 

the FlowCore and FlowViz packages. Briefly, forward scatter (FSC), side scatter (SSC) 

and fluorescence (FL1) measurements were imported for each sample. A lower FSC 

cutoff of 240,000 was applied as it corresponded to cellular debris (data not shown). A 

uniform cell population (~50% of the population) was selected using the FSC and SSC 

vectors and the norm2Filter function with scale factor=1. Briefly, the norm2filter function 

fits a bivariate normal distribution to the dataset and selects data points according to 

their standard deviation from the fit. 

The resulting cells were plotted as fluorescence (FL1) vs. cell count and the two 

clear peaks were observed for nearly all cell populations. The low fluorescence peak 

overlapped with GFP-minus (LacZ) control yeast, indicating that zero GFP expression 

was present. The high fluorescence peak overlapped with GFP+ control yeast with 

poly(A) tails. We selected all ‘non-zero’ GFP cells by using a lower FL1 cutoff of 2048, 

which corresponded to the upper bound of GFP- control yeast. A FL1 cutoff of 1024 was 

used for the HBE:MS2BS RNA baits due to their low background. The population 

density was smoothed using a kernel density estimate. The peak of the density was 
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determined for each sample. Eight replicates were tested for the initial experiments with 

the MS2BS, HBE, and RBP binding site baits (Figures 1 and 2). 16 replicates (two sets 

of eight) were collected for each 3´UTR bait and the two highest and two lowest values 

were removed. The average was calculated for the remaining 12 replicates from each 

bait-prey pair. The average fluorescence for each test prey was compared to the 

average SLBP-MS2-Pab1p negative control. Test preys with >1.20 fold increase in 

fluorescence were considered positive provided they were statistically significant 

(p<0.01, student’s t-test). 

 

RNAi and Imaging of C. elegans Strains 

Knockdowns were performed using the RNAi feeding method as described (Kamath et 

al., 2003). The RBD entry clones were cloned into the RNAi feeding vector construct 

L4440 using Gateway reactions and transformed into HT115(DE3) cells. The 

transformed colonies were grown to OD600 = 0.4 and induced with isopropyl 1-thio-β-D-

galactopyranoside (IPTG) at a final concentration of 0.4mM for 4 hours. After induction 

the 50ml cultures were concentrated 10- fold and 50μl of the culture was added onto 

NGM plates containing 1mM IPTG and 100μg/ml Ampicillin. After bleaching adult 

animals in 0.5N NaOH and 2% clorox, eggs were washed once with distilled water, 

plated onto these plates and incubated at 25°C for 2 days before imaging. HT115 strain 

bacteria transformed with the empty vector L4440 was used as the control RNAi. 

Adult animals were placed in 0.4mM levamisole on to 2% agarose pads before 

imaging. Embryo dissections were done in M9 solution and dissected eggs were 

mounted on 2% agarose pads. DIC and GFP fluorescence images were taken on Zeiss 
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Axioscope 2 plus microscope (Carl Zeiss) using an oil-immersion 40X objective. 

Confocal images were taken under 40X magnification using Leica DMIRE2 microscope  

(Leica) using 488 nm excitation at 100% intensity. A single section was imaged for each 

worm and each line was scanned an average of 16 times to help eliminate background 

fluorescence. 

 

SUPPLEMENTAL INFORMATION 

Supplementary Information includes four figures and two tables.  
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FIGURE LEGENDS 

 

Figure 1. PRIMA Design and Experimental Workflow 

(A) In PRIMA, RNA-RBP interactions are measured by GFP expression from a reporter 

mRNA or ‘RNA bait’. RBP ‘preys’ are fused to Pab1p, which binds the translation 

initiation machinery when bound to the 3´ end of the mRNA. The GFP reporter mRNA 

(green) including a minimal unc-54 3´UTR (gray) and an RNA bait (red) is expressed 

without a poly(A) tail by using a cis-encoded, self-cleaving hammerhead ribozyme 

(black) (part 1). An RBP-Pab1p fusion protein (red or blue) is co-expressed with the 

reporter bait RNA. When the RBP binds the RNA element of interest, the mRNA is 

stabilized and translated resulting in increased GFP levels (part 3). In contrast, when 

the bait mRNA and RBP prey do not interact the mRNA is unstable and the GFP signals 

remain low (part 4). 
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(B) A yeast RNA bait strain is transformed with an RBP-Pab1p-encoding plasmid. 

Multiple plasmids can be transformed in parallel. Independent colonies are isolated and 

grown to log phase in liquid media. GFP expression is measured in ~50,000 cells per 

replicate using automated flow cytometry.  

(C) Data filtering. The 50% most uniform cells are selected according the forward 

scatter (FSC, size) and side scatter (SSC, granularity) dot plot profiles. Next, 

fluorescence of the uniform cells is plotted as a Kernel density plot and ‘non-zero’ GFP 

positive cells are selected to ensure basal mRNA expression. The minimum 

fluorescence threshold (FL1>2048 i.e. fluorescence) is determined using GFP(-) control 

cell populations. Finally, the peak fluorescence was determined for each replicate (see 

Experimental Procedures for details).  

 

Figure 2. PRIMA Validation 

(A) The MS2BS stem-loop RNA bait was tested with its known RBP partner MS2 and a 

non-binding RBP SLBP. Kernel density plot vs. GFP fluorescence: positive interaction 

(red curve) and negative control interaction (blue curve). Dot plots show the peak 

fluorescence for each of the eight replicates. The bar represents the mean of eight 

independent replicates. (**p<0.01, *p<0.05, student’s t-test). 

 (B) The same experiment as Part A, only the HBE stem-loop is the RNA bait with its 

partner SLBP, while the MS2 RBP is the negative control. Kernel density plot vs. GFP 

fluorescence: positive interaction (blue curve) and negative control interaction (red 

curve).  
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(C) High (MS2BS pM) and medium (MS2BS 66 nM) RNA-RPB affinity interactions can 

be detected by PRIMA for the MS2 RBP, while low affinity (MS2BS 300 nM) and non-

specific (HBE 4nM) interactions cannot be detected. The bar represents the mean of 

eight independent replicates. (**p<0.01, *p<0.05, student’s t-test). 

 

Figure 3. Known RNA-RBP interactions can be detected by PRIMA 

(A) RNA Binding Domains (blue) were tested for interactions with their known RNA 

elements (white).  

(B) Schematic of the modified bait strain (green, GFP; grey, 3´UTR; blue, bait RNA; red, 

weak affinity MS2BS; blue half circle, Prey RBP; red half circle, MS2 RBP; orange, 

Pab1p). 

(C) Fusion baits containing both HBE and weak and low affinity MS2BS were tested 

against single RBP-Pab1p preys and SLBP-MS2-Pab1p (SLBP+) prey as a proof-of-

concept. PUF-8-Pab1p is included as a non-binding negative control. (**p<0.001, 

student’s t-test). 

(D) Fluorescence levels for each RNA-RBD interaction. SLBP-Pab1p (�) and SLBP-

MS2-Pab1p (�) preys were negative controls for each bait. Bars indicate the mean 

fluorescence for all eight replicates. Positive interactions are shown in blue (*p<0.01, 

**p<0.001, student’s t-test). 

 

Figure 4. Identification of known and novel C. elegans RNA-RBP interactions 

using full-length 3´UTRs and a RBP prey mini-library 
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Specific interacting RBPs were detected for six full-length 3´UTRs. Two sets of eight 

biological replicates were measured for each prey. The fluorescence intensity at the 

peak was measured for each and the two highest and two lowest samples were 

removed. The remaining 12 replicates were plotted and the average intensity for each 

prey is shown. Preys with average intensity >1.20 fold compared to negative control are 

shown in green (p<0.01, student’s t-test). Preys are labeled on the x-axis and include 

the fusion of MS2 to the prey (except for SLBP-Pab1p).  

 

Figure 5. Network graph of known and novel RNA-RBP interactions detected by 

PRIMA  

 

Figure 6. In vivo validation of interactions involving RBPs that bind the glp-1 

3’UTR  

(A) Schematic of the C. elegans germline. The syncytial region of nuclei is shown in the 

distal arm of the gonad. The oocytes and the embryos are shown in the proximal are of 

the gonad.  

(B) Five RBPs found to interact with the glp-1 3´UTR were tested by RNAi in vivo. 

(C) The GFP expression patterns of single copy integrated GFP reporter strains that 

express GFP under the control of the glp-1 3´UTR is shown in the top image. The 

expression level throughout the germline of the reporter fusion treated with control RNAi 

is compared to the expression pattern of the strain treated with RNAi to puf-3, puf-5, 

and fbf-1;fbf-2. Yellow bars denote a change in expression levels in oocytes observed 

under puf-3 and puf-5 RNAi conditions. 
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(D) Quantifications of the confocal images of the glp-1 reporter strains under the RNAi 

conditions described above. GFP intensities normalized to average pixel intensity of 

wild-type oocytes are plotted against bin-number. Red plots show intensities measured 

under RNAi treatment conditions whereas black bars show intensities measured under 

control conditions. 

 

Table 1. Comparison of RNA-RBP interaction detection methods 

Assay directionality, advantages and disadvantages of each method, and how often 

they are used to study C. elegans RBPs. 
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Method Directionality Advantages Disadvantages Used to study C. 
elegans RBPs? 

Number of C. 
elegans 

publications 

PRIMA RNA-
Centered 

Test specific RNAs, 
full-length RNA baits, 
cytoplasmic milieu, no 
need for antibodies or 

protein purification 

in yeast, requires RBP 
library, cannot detect 
dimers or modified 

proteins 

Yes This study 

Yeast three-
hybrid 

RNA- or 
Protein-

Centered 

Bi-directional, no 
need for antibodies or 

protein purification 

in yeast, nuclear milieu, 
short RNA baits (<150 

nt), requires RBP 
library, cannot detect 
dimers or modified 

proteins 

Yes 
Protein-centered: 

~20, RNA-
centered: <5 

RNA Interaction 
Capture 

RNA-
Centered 

in vivo, capture entire 
RBP-ome bound by 
all polyadenylated 

RNAs 

No specificity, need 
very large amount of 

starting material, need 
RNA-capture beads for 
pull down, challenging 

to detect low 
abundance interactions 

Yes 1 

Electrophoretic 
Mobility Shift 

Assay (EMSA) 

Protein-
Centered 

Quantitative RBP 
binding site 

determination 

Requires purified 
RBPs, low throughput, 
binding specificity has 

limited predictive power 

Yes >40 

RAP-MS (RNA 
Antisense 

Purification) 

lncRNA-
centered 

in vivo, genome-
scale, quantitative 

Limited UV crosslinking 
efficiency, need large 

amount of starting 
material, challenging to 
detect low abundance 

interactions 

No 0 

ChiRP-MS 
(Chromatin 
Isolation by 

RNA 
Precipitation) 

lncRNA-
centered 

in vivo, genome-
scale, quantitative 

No specificity, may be 
difficult to design 

probe, need a large 
amount of starting 

material 

No 0 

RIP/RIP-Chip 
(RBP immuno-
precipitation-
microarray) 

Protein-
centered 

Physiological (native) 
conditions, genome-
scale RNA detection, 

in vivo 

Requires high affinity 
antibodies or epitope 
tagged RBPs, post-

lysis in vitro association 
of RBPs with spurious 

targets, lots of 
contaminating rRNA 

Yes 3 

CLIP (including 
PAR-CLIP and 

HITS-CLIP) 

Protein-
centered 

Cleaner than native 
conditions, genome-
scale RNA detection, 
in vivo, can determine 
precise RBP binding 

site on RNA 

Non-physiologic 
conditions, Requires 

high affinity antibodies 
or epitope tagged 

RBPs, low efficiency of 
cross-linking 

Yes 1 

RNAcompete 
Protein-
centered 

High-throughput 
binding site 

determination 

Requires purified 
RBPs, short RNA 
libraries, binding 

specificity has limited 
predictive power 

Yes 
Some C. elegans 

proteins were 
included 
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