Association of Changes in Neighborhood-Level Racial Residential Segregation With Changes in Blood Pressure Among Black Adults: The CARDIA Study

Kiarri N. Kershaw
Northwestern University

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs

Part of the Cardiovascular Diseases Commons, Internal Medicine Commons, and the Public Health Commons

Repository Citation

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in University of Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Association of Changes in Neighborhood-Level Racial Residential Segregation With Changes in Blood Pressure Among Black Adults
The CARDIA Study

Kiarri N. Kershaw, PhD; Whitney R. Robinson, PhD; Penny Gordon-Larsen, PhD; Margaret T. Hicken, PhD; David C. Goff Jr, MD, PhD; Mercedes R. Carnethon, PhD; Catarina I. Kiefe, MD, PhD; Stephen Sidney, MD, MPH; Ana V. Diez Roux, MD, PhD

IMPORTANCE Despite cross-sectional evidence linking racial residential segregation to hypertension prevalence among non-Hispanic blacks, it remains unclear how changes in exposure to neighborhood segregation may be associated with changes in blood pressure.

OBJECTIVE To examine the association of changes in neighborhood-level racial residential segregation with changes in systolic and diastolic blood pressure over a 25-year period.

DESIGN, SETTING, AND PARTICIPANTS This observational study examined longitudinal data of 2280 black participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study, a prospective investigation of adults aged 18 to 30 years who underwent baseline examinations in field centers in 4 US locations from March 25, 1985, to June 7, 1986, and then were re-examined for the next 25 years. Racial residential segregation was assessed using the Getis-Ord Gi* statistic, a measure of SD between the neighborhood’s racial composition (ie, percentage of black residents) and the surrounding area’s racial composition. Segregation was categorized as high (Gi* >1.96), medium (Gi* 0-1.96), and low (Gi* <0). Fixed-effects linear regression modeling was used to estimate the associations of within-person change in exposure to segregation and within-person change in blood pressure while tightly controlling for time-invariant confounders. Data analyses were performed between August 4, 2016, and February 9, 2017.

MAIN OUTCOMES AND MEASURES Within-person changes in systolic and diastolic blood pressure across 6 examinations over 25 years.

RESULTS Of the 2280 participants at baseline, 974 (42.7%) were men and 1306 (57.3%) were women. Of these, 1861 (81.6%) were living in a high-segregation neighborhood; 278 (12.2%), a medium-segregation neighborhood; and 141 (6.2%), a low-segregation neighborhood. Systolic blood pressure increased by a mean of 0.16 (95% CI, 0.06-0.26) mm Hg with each 1-SD increase in segregation score after adjusting for interactions of time with age, sex, and field center. Of the 1861 participants (81.6%) who lived in high-segregation neighborhoods at baseline, reductions in exposure to segregation were associated with reductions in systolic blood pressure. Mean differences in systolic blood pressure were −1.33 (95% CI, −2.26 to −0.40) mm Hg when comparing high-segregation with medium-segregation neighborhoods and −1.19 (95% CI, −2.08 to −0.31) mm Hg when comparing high-segregation with low-segregation neighborhoods after adjustment for time and interactions of time with baseline age, sex, and field center. Changes in segregation were not associated with changes in diastolic blood pressure.

CONCLUSIONS AND RELEVANCE Decreases in exposure to racial residential segregation are associated with reductions in systolic blood pressure. This study adds to the small but growing body of evidence that policies that reduce segregation may have meaningful health benefits.

Published online May 15, 2017.

Copyright 2017 American Medical Association. All rights reserved.

Supplemental content
Association of Racial Residential Segregation With Blood Pressure

Methods

The CARDIA study is a prospective, multicenter investigation of changes in cardiovascular disease risk factors, onset, and progression during the transition from young adulthood to middle age. From March 25, 1985, to June 7, 1986, a total of 5115 black and white adults aged 18 to 30 years were recruited and examined in field centers in 4 locations: Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota; and Oakland, California.10,11 (The race/ethnicity of all participants were self-reported.) These participants were re-examined 2, 5, 7, 10, 15, 20, 25, and 30 years later, with a high participant retention rate of 91%, 86%, 81%, 79%, 74%, 72%, 72%, and 71%, respectively. Our current study uses data from all of the examination years in which participant addresses were geocoded: the baseline and 7-, 10-, 15-, 20-, and 25-year examinations. Given the unique historical context of residential segregation of black from white individuals in the United States and the nearly nonoverlapping levels of segregation scores in black and white CARDIA participants, we limited participation in our study to black adults. Of the 2637 baseline participants, 313 (11.9%) were excluded for not having 2 measures of blood pressure, and 44 (1.7%) were excluded for missing data on baseline covariates. The total final sample comprised 2280 participants. Data analyses were performed between August 4, 2016, and February 9, 2017. The CARDIA study was approved by the institutional review boards at each field center: the University of Minnesota, and Kaiser Permanente. All participants provided written informed consent.

Segregation was modeled continuously for the analyses of all black participants. Segregation was categorized as high (Gi* > 1.96), medium (Gi* 0–1.96), and low (Gi* < 0) for the analyses in the subset of participants in the high-segregation category at baseline. The cut points for the segregation categories were chosen to be consistent with the critical z score values for a 95% CI (-1.96 to 1.96), which corresponds to statistical significance at the α = .05 level.13 No participants lived in areas with Gi* less than -1.96; thus, we used a cut point of 0 for the low category to indicate a z score equal to or below the mean racial composition of the surrounding metropolitan area or county.

Blood pressure was measured at each CARDIA examination by trained technicians using either a random-zero mercury sphygmomanometer (baseline to year 15) or an oscillometer (years 20-25). Oscillometer readings have been calibrated to the sphygmomanometric measures.14 Resting systolic and diastolic blood pressure were measured 3 times at 1-minute intervals; the mean of the second and third measurements was used in the analyses. We accounted for treatment effects by adding 10 mm Hg to the observed systolic blood pressure and 5 mm Hg to the observed diastolic blood pressure in treated participants.15 We also conducted a sensitivity analysis in which we adjusted for self-reported medication use as a covariate instead.

In our analyses, we adjusted for several covariates associated with residential segregation and blood pressure as potential confounders or mediators, including age, sex, current

Key Points

Question Are changes in exposure to neighborhood-level racial residential segregation associated with changes in blood pressure?

Findings In this cohort study of 2280 black adults, increases in neighborhood-level racial residential segregation were associated with small but statistically significant increases in systolic blood pressure, and reductions in segregation levels were associated with more than a 1-mm Hg decrease in systolic blood pressure.

Meaning Policies that reduce racial residential segregation may have meaningful health benefits, such as reductions in blood pressure.
marital status (married or cohabiting vs not married or cohabiting), educational level (high school graduate or less, some college, or college degree or higher), neighborhood poverty (percentage of neighborhood residents living below the US Census Bureau–defined poverty threshold), and neighborhood population density. Individual income data were not collected at baseline and thus were not included in our primary analyses. For sensitivity analyses, we ran all models adjusting for time-varying income using data from the year 5 examination for baseline income.

Cigarette smoking was dichotomized as current vs not current. Leisure time physical activity was assessed with the CARDIA physical activity questionnaire, which included questions on the frequency of participation in 13 categories of sports and exercise during the previous 12 months. 16 A score was summed across all activities and expressed continuously in exercise units. The reliability and validity of the instrument are comparable to other activity questionnaires. 17,18 Body mass index was calculated as weight in kilograms divided by height in meters squared. Body weight in light clothing was measured to the nearest 0.5 lb using a balance beam scale. (To convert pounds to kilograms, multiply by 0.45.) Height without shoes was measured to the nearest 0.5 cm using a vertically mounted centimeter ruler and a metal carpenter’s square.

We calculated descriptive statistics for study variables by examination year and segregation category (high and medium/low). Segregation scores can change over time if participants move to neighborhoods with different levels of segregation or if participants stay in the same place and the level of segregation changes in their neighborhood. To get a better sense of what drove changes in segregation score, we used a paired t test to calculate the mean within-person change in segregation score between each successive examination separately for “movers” (those who changed census tracts between examinations) and “stayers” (those who did not). Fixed-effects regression models were used to estimate the association of within-person changes in segregation with within-person changes in blood pressure. 19 Fixed-effects models focus only on within-person variation rather than between-person variation. This approach has the advantage over mixed-effects models in that it tightly controls for all measured and unmeasured time-invariant characteristics. In fixed-effects models, characteristics that do not change over time are conditioned out of the estimation process. For this reason, fixed-effects models cannot be used to examine the main effects of time-invariant characteristics. However, interactions involving these variables can be examined. Baseline time-invariant covariates, including age, sex, and field center, were tested for interactions with time to allow for different trends in blood pressure over time that were associated with these characteristics. All statistically significant interactions (α = .05) were retained in the models.

Our first set of multivariable regression models was designed to assess the overall relationship between within-person changes in neighborhood-level racial residential segregation and within-person changes in blood pressure over the follow-up period. For these analyses, we modeled segregation continuously using the total sample of participants (n = 2280). We also assessed whether this relationship varied by participant age, neighborhood poverty, educational level, and income by testing interaction terms between these covariates and segregation. To investigate whether reductions in segregation were associated with reductions in blood pressure among residents who lived in highly segregated neighborhoods at baseline, we examined this relationship among the 1861 participants (81.6% of the total sample) living in highly segregated neighborhoods at baseline. For these analyses, we modeled segregation categorically to estimate changes associated with more meaningful changes in levels of segregation. As a sensitivity analysis, this same model was run excluding the participants who changed to lower-segregation neighborhoods but changed back to high-segregation neighborhoods at any subsequent examination. All statistical analyses were conducted using SAS, version 9.4 (SAS Institute Inc).

Results

Of the 2280 participants at baseline, 974 (42.7%) were men and 1306 (57.3%) were women. Of these, 1861 (81.6%) were living in a high-segregation neighborhood; 278 (12.2%), a medium-segregation neighborhood; and 141 (6.2%), a low-segregation neighborhood. The median (interquartile range) follow-up time for participants was 24.8 (4.8) years. Overall, the mean (SD) segregation score was 4.8 (3.1) at baseline, 3.9 (3.1) at year 7, 3.0 (3.1 and 2.8) at years 10 and 15, and 2.5 (2.9 and 2.6) at years 20 and 25. Table 1 presents baseline and subsequent examination year characteristics separately for those who lived in highly segregated census tracts at baseline (1861 [81.6%]) and those who did not (419 [18.4%]). Both the mean segregation scores and the mean percentage of neighborhood poverty decreased over time for participants who started out in high-segregation neighborhoods (Table 1). Segregation scores increased and neighborhood poverty remained steady among those who started in medium- or low-segregation neighborhoods, whereas the segregation scores and poverty rates both decreased for those who lived in a high-segregation census tract at baseline.

Almost all participants (2144 [94%]) moved at least once, and more than half (1179 [51.7%]) moved 3 or more times over the follow-up examinations. Participants lived in 10 different metropolitan areas or counties at baseline, and by year 7 they lived in more than 100 (Figure). By year 25, participants lived in more than 170 metropolitan areas or counties. Participants who stayed in the same neighborhood for more than 2 successive examinations did not experience large changes in segregation scores between those 2 examinations (Table 2). In contrast, those who moved tended to move to less segregated neighborhoods, particularly in earlier examinations.

A 1-SD increase in segregation score was associated with a mean systolic blood pressure increase of 0.16 (95% CI, 0.06–0.26) mm Hg after adjusting for time and interactions of time with baseline age, sex, and field center (Table 3; eAppendix 2 in the Supplement provides a more detailed description of the interactions of age, sex, and field center with time).
This association persisted with further adjustment for time-varying neighborhood poverty, educational level, marital status, body mass index, current smoking, and physical activity. Changes in segregation score were not associated with changes in diastolic blood pressure.

Findings were similar in magnitude and statistical significance when the models were adjusted for income. Point estimates were smaller but of the same statistical significance when blood pressure medication use was adjusted for (see eTable 1 in the Supplement for associations of changes in all covariates with changes in blood pressure.) Interactions of neighborhood poverty, educational level, and income with segregation were not statistically significant.

Among participants living in highly segregated neighborhoods at baseline, 278 (14.9%) remained in high-segregation neighborhoods throughout the follow-up examinations, and 243 (13.3%) spent the rest of the follow-up examinations in low- or medium-segregation neighborhoods. The remainder of the sample (1340 [72.0%]) spent time in high-segregation and low- or medium-segregation neighborhoods over the follow-up periods. For those who lived in high-segregation neighborhoods at baseline, 278 (14.9%) remained in high-segregation neighborhoods throughout the follow-up examinations, and 243 (13.3%) spent the rest of the follow-up examinations in low- or medium-segregation neighborhoods. The remainder of the sample (1340 [72.0%]) spent time in high-segregation and low- or medium-segregation neighborhoods over the follow-up periods. For those who lived in high-segregation neighborhoods at baseline, 278 (14.9%) remained in high-segregation neighborhoods throughout the follow-up examinations, and 243 (13.3%) spent the rest of the follow-up examinations in low- or medium-segregation neighborhoods. The remainder of the sample (1340 [72.0%]) spent time in high-segregation and low- or medium-segregation neighborhoods over the follow-up periods. For those who lived in high-segregation neighborhoods at baseline, 278 (14.9%) remained in high-segregation neighborhoods throughout the follow-up examinations, and 243 (13.3%) spent the rest of the follow-up examinations in low- or medium-segregation neighborhoods. The remainder of the sample (1340 [72.0%]) spent time in high-segregation and low- or medium-segregation neighborhoods over the follow-up periods. For those who lived in high-segregation neighborhoods at baseline, 278 (14.9%) remained in high-segregation neighborhoods throughout the follow-up examinations, and 243 (13.3%) spent the rest of the follow-up examinations in low- or medium-segregation neighborhoods. The remainder of the sample (1340 [72.0%]) spent time in high-segregation and low- or medium-segregation neighborhoods over the follow-up periods.

Table 1. Selected Baseline and Follow-up Examination Characteristics of Study Participants by Baseline Segregation Category

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Baseline Year 7</th>
<th>Baseline Year 10</th>
<th>Baseline Year 15</th>
<th>Baseline Year 20</th>
<th>Baseline Year 25</th>
<th>P for Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. examined</td>
<td>419</td>
<td>345</td>
<td>331</td>
<td>311</td>
<td>295</td>
<td>277</td>
</tr>
<tr>
<td>Systolic BP, mean (SD), mm Hg</td>
<td>111.1 (10.7)</td>
<td>110.2 (11.6)</td>
<td>112.1 (12.2)</td>
<td>116.2 (15.3)</td>
<td>119.8 (14.7)</td>
<td><.001</td>
</tr>
<tr>
<td>Diastolic BP, mean (SD), mm Hg</td>
<td>66.8 (10.1)</td>
<td>70.4 (10.1)</td>
<td>74.3 (9.6)</td>
<td>76.5 (11.5)</td>
<td>75.4 (11.4)</td>
<td><.001</td>
</tr>
<tr>
<td>Current BP-lowering medication use, No. (%)</td>
<td>1 (0.2)</td>
<td>7 (2.0)</td>
<td>9 (2.7)</td>
<td>27 (8.7)</td>
<td>52 (17.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Census tracts, No.</td>
<td>187</td>
<td>248</td>
<td>288</td>
<td>280</td>
<td>263</td>
<td>257</td>
</tr>
<tr>
<td>Census tracts, No.</td>
<td>0.51 (0.96)</td>
<td>1.56 (2.37)</td>
<td>1.61 (2.68)</td>
<td>1.80 (2.46)</td>
<td>1.83 (2.70)</td>
<td>1.89 (2.57)</td>
</tr>
<tr>
<td>Neighborhood poverty, mean (SD), %</td>
<td>15.5 (10.5)</td>
<td>15.1 (10.7)</td>
<td>14.2 (12.5)</td>
<td>13.9 (11.4)</td>
<td>13.5 (11.3)</td>
<td><.001</td>
</tr>
<tr>
<td>Neighborhood population density, median (IQR), No./km²</td>
<td>3846.4 (1850.4-7121.0)</td>
<td>3359.7 (1197.1-6163.6)</td>
<td>2172.2 (826.0-4564.8)</td>
<td>2239.3 (847.8-4592.7)</td>
<td>1784.3 (727.8-4186.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Educational level ≤ high school, No. (%)</td>
<td>34 (8.1)</td>
<td>16 (4.6)</td>
<td>22 (6.7)</td>
<td>20 (6.4)</td>
<td>12 (4.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Currently married or cohabiting, No. (%)</td>
<td>131 (31.3)</td>
<td>169 (49.0)</td>
<td>183 (55.3)</td>
<td>158 (50.8)</td>
<td>157 (53.2)</td>
<td><.001</td>
</tr>
<tr>
<td>Physical activity, mean (SD), exercise units</td>
<td>418.3 (296.9)</td>
<td>356.7 (328.9)</td>
<td>336.6 (336.9)</td>
<td>366.3 (353.2)</td>
<td>320.3 (307.9)</td>
<td><.001</td>
</tr>
<tr>
<td>Current smoking, No. (%)</td>
<td>108 (25.8)</td>
<td>89 (25.8)</td>
<td>85 (25.7)</td>
<td>81 (26.1)</td>
<td>59 (20.0)</td>
<td><.001</td>
</tr>
<tr>
<td>BMI, mean (SD)</td>
<td>25.0 (5.5)</td>
<td>27.6 (6.3)</td>
<td>28.4 (6.4)</td>
<td>30.0 (6.7)</td>
<td>30.5 (6.8)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); BP, blood pressure; IQR, interquartile range.

* Getis-Ord Gi* statistic scores: greater than 1.96, high segregation; 0 to 1.96, medium segregation; and less than 0, low segregation.
hoods at baseline, reductions in exposure to segregation were associated with reductions in systolic blood pressure (Table 4). Mean differences in systolic blood pressure were −1.33 (95% CI, −2.26 to −0.40) mm Hg when comparing high-segregation with medium-segregation neighborhoods and −1.19 (95% CI, −2.08 to −0.31) mm Hg when comparing high-segregation with low-segregation neighborhoods after adjustment for time and interactions of time with baseline age, sex, and field center. These associations remained essentially unchanged in fully adjusted models. (See eTable 2 in the Supplement for associations of changes in all covariates with changes in blood pressure.) Associations were even stronger in sensitivity analyses excluding participants who moved back to high-segregation neighborhoods at some point (n = 521). Changes to low-segregation neighborhoods were associated with 5.71–mm Hg (95% CI, −7.97 to −3.45–mm Hg) decreases, and changes to medium-segregation neighborhoods were associated with 3.94–mm Hg (95% CI, −6.47 to −1.41–mm Hg) decreases.

Changes in segregation category were not associated with changes in diastolic blood pressure.

Findings were similar in magnitude and statistical significance when the models were adjusted for family income. As in the models shown in Table 3, point estimates were smaller but of the same statistical significance when blood pressure medication use was adjusted for as a covariate. Associations between changes in segregation and changes in blood pressure did not vary significantly by age, educational level, income, or neighborhood poverty.

Discussion

Previous studies of the association of racial residential segregation with blood pressure have been cross-sectional, but no study has examined changes in blood pressure.7-9,20 In a geographically diverse sample of black adults followed up for more than 25 years, we found that increases in neighborhood-level racial residential segregation were associated with small but statistically significant increases in systolic but not diastolic blood pressure. In addition, among those living in high-segregation neighborhoods at baseline, reductions in exposure to neighborhood segregation were associated with decreases in systolic blood pressure of more than 1 mm Hg.

Reductions in systolic blood pressure of this magnitude could have important implications for reducing cardiovascular events, particularly in black individuals. Systolic blood pressure is more closely associated with incident cardiovascular events than diastolic blood pressure among middle-aged and older adults, and recent work in CARDIA showed that systolic blood pressure was associated with incident cardiovascular events in younger black adults as well.21 A study estimating cardiovascular disease incidence rates under a hypothetical population-wide intervention that reduced systolic blood pressure by 1 mm Hg found that this small change results in roughly

Table 2. Mean Unadjusted Within-Person Change in Gi* Statistic Between Successive Examinations Among “Movers” and “Stayers”

<table>
<thead>
<tr>
<th>Successive Examination Years</th>
<th>Stayers</th>
<th>Movers</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Within-Person Change in Gi* Statistic, Mean (SD)</td>
<td>No.</td>
</tr>
<tr>
<td>Year 0 to year 7</td>
<td>862</td>
<td>0.28 (0.84)</td>
</tr>
<tr>
<td>Year 7 to year 10</td>
<td>493</td>
<td>0</td>
</tr>
<tr>
<td>Year 10 to year 15</td>
<td>848</td>
<td>0.18 (1.09)</td>
</tr>
<tr>
<td>Year 15 to year 20</td>
<td>640</td>
<td>0</td>
</tr>
<tr>
<td>Year 20 to year 25</td>
<td>791</td>
<td>0.06 (0.85)</td>
</tr>
</tbody>
</table>

Table 3. Mean Within-Person Change in Systolic and Diastolic Blood Pressure (95% CI) Associated With a 1-SD Increase in the Gi* Statistic

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Model 1*</th>
<th>Model 2*</th>
<th>Model 3*</th>
<th>Model 4*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP, mean (SD), mm Hg</td>
<td>0.16 (0.06 to 0.26)</td>
<td>0.16 (0.05 to 0.28)</td>
<td>0.14 (0.03 to 0.26)</td>
<td>0.16 (0.04 to 0.27)</td>
</tr>
<tr>
<td>Diastolic BP, mean (SD), mm Hg</td>
<td>0.01 (~0.07 to 0.09)</td>
<td>0.03 (~0.06 to 0.12)</td>
<td>0.03 (~0.07 to 0.12)</td>
<td>0.05 (~0.04 to 0.14)</td>
</tr>
</tbody>
</table>

* Movers were those who changed census tracts between examinations; stayers, those who did not.

* Mean within-person change estimated using paired t tests comparing Gi* at successive examinations.

* Model 1 adjusted for time since baseline, baseline age × time, sex × time, and field center × time.

* Model 2 adjusted for Model 1, neighborhood poverty, and neighborhood population density.

* Model 3 adjusted for Model 2, education, and marital status.

* Model 4 adjusted for Model 3, body mass index, current smoking, and physical activity.
Among participants in our study, temporal changes in exposure to racial residential segregation were associated with changes in systolic blood pressure. Recent evidence suggests that differences of this magnitude at the population level can meaningfully reduce cardiovascular events, particularly in black individuals.22 Several strategies need to be employed at the policy level to reduce the persistent racial health disparities we see in the United States, including policies that not only improve access to resources for those who live in segregated neighborhoods but also provide residents in segregated neighborhoods with the opportunity to move to neighborhoods with better access to resources and opportunities for participants and their children could reduce stress and in turn systolic blood pressure. Differences in access to health care could also promote better blood pressure management.26

Limitations

This study is not without limitations. The use of fixed-effects models offers the advantage of accounting for measured and unmeasured time-invariant confounders, but there may still be residual confounding by unmeasured time-varying factors (eg, residential priorities and preferences). In addition, although retention rates in CARDIA are high, loss to follow-up could bias our findings if loss is patterned by residential segregation and blood pressure.

Conclusions

Among participants in our study, temporal changes in exposure to racial residential segregation were associated with changes in systolic blood pressure. Recent evidence suggests that differences of this magnitude at the population level can meaningfully reduce cardiovascular events, particularly in black individuals.22 Several strategies need to be employed at the policy level to reduce the persistent racial health disparities we see in the United States, including policies that not only improve access to resources for those who live in segregated neighborhoods but also provide residents in segregated neighborhoods with the opportunity to move to neighborhoods with better access to resources. Findings from our observational study suggest that social policies that minimize segregation, such as the opening of housing markets, may have meaningful health benefits, including the reduction of blood pressure.

Table 4. Mean Within-Person Change in Systolic and Diastolic Blood Pressure (95% CI) Associated With a Change in Segregation Category Among Study Participants in the High-Segregation Category at Baseline

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Model 1(^a)</th>
<th>Model 2(^b)</th>
<th>Model 3(^c)</th>
<th>Model 4(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic BP, mean (SD), mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium segregation</td>
<td>−1.19 (−2.08 to −0.31)</td>
<td>−1.29 (−2.21 to −0.37)</td>
<td>−1.22 (−2.14 to −0.30)</td>
<td>−1.31 (−2.23 to −0.39)</td>
</tr>
<tr>
<td>Low segregation</td>
<td>−1.33 (−2.26 to −0.40)</td>
<td>−1.49 (−2.51 to −0.47)</td>
<td>−1.38 (−2.40 to −0.37)</td>
<td>−1.48 (−2.50 to −0.47)</td>
</tr>
<tr>
<td>Diastolic BP, mean (SD), mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium segregation</td>
<td>0.42 (−0.27 to 1.12)</td>
<td>0.33 (−0.19 to 1.06)</td>
<td>0.33 (−0.19 to 1.06)</td>
<td>0.20 (−0.51 to 0.92)</td>
</tr>
<tr>
<td>Low segregation</td>
<td>0.67 (−0.06 to 1.41)</td>
<td>0.53 (−0.28 to 1.33)</td>
<td>0.54 (−0.27 to 1.34)</td>
<td>0.42 (−0.38 to 1.21)</td>
</tr>
</tbody>
</table>

Abbreviation: BP, blood pressure.

\(^a\) Model 1 adjusted for time since baseline, baseline age × time, sex × time, and field center × time.

\(^b\) Model 2 adjusted for Model 1, neighborhood poverty, and neighborhood population density.

\(^c\) Model 3 adjusted for Model 2, education, and marital status.

\(^d\) Model 4 adjusted for Model 3, body mass index, current smoking, and physical activity.
REFERENCES

