Retrograde fluxes of focal adhesion proteins in response to cell migration and mechanical signals

Wei-Hui Guo
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

Repository Citation

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Retrograde Fluxes of Focal Adhesion Proteins in Response to Cell Migration and Mechanical Signals

Wei-hui Guo and Yu-li Wang

Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605

Recent studies suggest that mechanical signals mediated by the extracellular matrix play an essential role in various physiological and pathological processes; yet, how cells respond to mechanical stimuli remains elusive. Using live cell fluorescence imaging, we found that actin filaments, in association with a number of focal adhesion proteins, including zyxin and vasodilator-stimulated phosphoprotein, undergo retrograde fluxes at focal adhesions in the lamella region. This flux is inversely related to cell migration, such that it is amplified in fibroblasts immobilized on micropatterned islands. In addition, the flux is regulated by mechanical signals, including stretching forces applied to flexible substrates and substrate stiffness. Conditions favoring the flux share the common feature of causing large retrograde displacements of the interior actin cytoskeleton relative to the substrate anchorage site, which may function as a switch translating mechanical input into chemical signals, such as tyrosine phosphorylation. In turn, the stimulation of actin flux at focal adhesions may function as part of a feedback mechanism, regulating structural assembly and force production in relation to cell migration and mechanical load. The retrograde transport of associated focal adhesion proteins may play additional roles in delivering signals from focal adhesions to the interior of the cell.

INTRODUCTION

Recent studies suggest that mechanosensing is involved in several physiological processes, including embryogenesis (Newman and Comper, 1990; Belousov et al., 1994) and wound healing (Hinz et al., 2001; Tomasek et al., 2002), and in pathological processes such as fibrosis and carcinogenesis (Pastek et al., 2005). Adherent cells seem capable of both responding to applied mechanical forces (Tzima et al., 2005) and applying contractile forces to probe mechanical properties of the environment (Discher et al., 2005). The downstream responses include changes in migration (Pelham and Wang, 1997; Sheetz et al., 1998; Lo et al., 2000), cell–cell interactions (Guo et al., 2006), proliferation (Wang et al., 2000; Nelson et al., 2005), differentiation (Engler et al., 2004, 2006), and apoptosis (Wang et al., 2000). For cultured adherent cells, focal adhesions are thought to mediate mechanosensing through integrin-mediated anchorage to the extracellular matrix (Larsen et al., 2006). The molecular repertoire of focal adhesions includes >100 adaptor and signaling proteins (Bershadsky et al., 2006), in addition to associated actomyosin bundles that provide mechanical forces for probing the environment (Choquet et al., 1997), inside-out signaling (Chrzanowska-Wodnicka and Burridge, 1996; Schwartz and Ginsberg, 2002), and cell migration (Ridley et al., 2003). However, few details are available concerning how these components work in concert to generate the responses to mechanical signals.

Several aspects have emerged recently as the key features of integrin-mediated mechanosensing. First is the increase in cortical organization and contractility in response to mechanical signals. Application of mechanical forces to integrin-associated beads causes “reinforcement” of cortical resistance (Wang et al., 1993; Choquet et al., 1997), whereas pushing the dorsal cortex or pulling the focal adhesion causes enlargement of focal adhesions (Riveline et al., 2001). In addition, substrate rigidity induces the appearance of large focal adhesions, prominent stress fibers, and strong traction forces (Pelham and Wang, 1997; Discher et al., 2005). Such responses are often accompanied by the induction or enhancement of centripetal cortical movements, which may manifest as flow of actin arcs in lamella or retrograde movements of integrin-associated beads (Felsenfeld et al., 1996). Chemical signals involved in these processes include the activation of small GTPases, including Rho and Rac (Chrzanowska-Wodnicka and Burridge, 1996), and tyrosine kinases, including Src family kinases (Suter and Forscher, 2001) and focal adhesion kinase (FAK; Burridge et al., 1992; Schmidt et al., 1998), as well as the entry of Ca^{2+} through stretch-activated ion channels (Guharay and Sachs 1984; Lee et al., 1999; Munevar et al., 2004).

A more intriguing response is the redistribution of some focal adhesion proteins upon mechanical stimulations. Several proteins, including zyxin and vasodilator-stimulated phosphoprotein (VASP), are known to localize to a variable extent at focal adhesions (Crawford et al., 1992; Rottner et al., 2001), or to shuttle between focal adhesions and the nucleus (Nix and Beckerle, 1997; Aplin and Juliano, 2001). Recent studies further indicated that mechanical stimulation can induce the change in distribution of zyxin from focal adhesions to either actin stress fibers in cultured fibroblasts (Yoshig et al., 2005), or the nucleus of vascular smooth muscle cells (Cattaruzza et al., 2004). The latter may be related to the
suspected ability of zyxin to regulate gene expression (Degenhardt and Silverstein, 2001). However, the mechanism of redistribution from focal adhesions is unclear, because these studies showed only the steady-state localization after mechanical stimulation.

To reach a better understanding of mechanosensing, we have examined the dynamics of actin and several focal adhesion proteins suggested to play a role in mechanosensing, by combining live cell imaging, fluorescence recovery after photobleaching (FRAP), substrate engineering, and mechanical stimulation. We show that actin filaments and some focal adhesion proteins, including zyxin and VASP undergo retrograde fluxes in response to the state of cell migration and mechanical signals. The common aspect of conditions that stimulate the flux lead us to propose a mechanism that controls structural assembly at focal adhesions based on migration- or force-induced structural shear within the focal adhesion. The flux may in turn provide feedback regulation of force production in relation to cell migration, and/or facilitate the delivery of long-range signals released by focal adhesions.

MATERIALS AND METHODS

Cell Culture, Plasmids, and Application

NIH3T3 mouse embryonic fibroblasts NIH3T3 (American Type Culture Collection, Manassas, VA) were maintained in DMEM (Sigma-Aldrich, St. Louis, MO) supplemented with 10% donor calf serum (Hyclone Laboratories, Logan, UT), 10 mM l-glutamine, 50 U/ml penicillin, and 2 mM l-glutamine. Normal rat kidney (NRK) epithelial cells (American Type Culture Collection) were cultured in F12K medium (Sigma-Aldrich) containing 10% fetal bovine serum (Hyclone Laboratories), 2 mM l-glutamine, 50 μg/ml streptomycin, and 50 μU/ml penicillin. All cells were maintained in an incubator with 5% CO₂ at 37°C.

Red Fluorescent protein (RFP)-zyxin was constructed by recombining the enhanced green fluorescent protein (EGFP) construct (Rottner et al., 2001) into the pDsRed-N1 vector (Clontech, Palo Alto, CA). RFP-VASP and EGFP-tagged paxillin (Rottner et al., 2001), and yellow fluorescent protein (YFP)-vinculin were kindly provided by Dr. Jrnchen Wehland (Deutsche Forschungsgemeinschaft, Braunschweig, Germany), and YFP-dSH2 was kindly provided by Dr. Benny Geiger (Weizmann Institute; Israel; Kirchner et al., 2003). EGFP-tagged N-fragment of tensin was kindly provided by Dr. Shin Lin (University of California, Irvine). EGFP-actin was purchased from Clontech. NIH3T3 and NRK were nucleofected using Amaxa Nucleofector I and kit R (Amaxa Biosystems, Gaithersburg, MD).

Preparation of Micropatterned Substrates and Local Mechanical Stimulation by Stretching

Patterned substrates with 40- × 40-μm² islands were generated by spin coating of SU-8 2002 photosensit (MicroChem, Newton, MA) on a dried polycrylamide film, which was prepared with 50 μl of 10% acrylamide. 0.26% bis-acrylamide spread over a circular area 32 mm in diameter on a glass surface. Grafting 8% linear polyacrylamide with (TEMD) directly onto the exposed glass surface.

Micropatterned polyacrylamide gels were prepared by activating the gel surface with 50 mM sultosucinimidyl 6-(4-azido-2-nitrophenyl-amino)-hexa- noate (Pierce Chemical, Rockford, IL) in 200 mM HEPES, pH 8.5, as described previously (Wang and Wang, 1998). Excess liquid on the surface was removed by blowing with nitrogen gas, and the surface was stamped for 1 min with a patterned polydimethylsioxane stamp inked with collagen. The stamp was made as described by LeDuc et al. (2002), by using a molding made from the SFR 150.7.0.0.0.0 photostore (Shipley, Marlboro, MA) patterned with the same photomask as for the SU-8 substrates. The stamp was soaked in 100 μg/ml type I collagen (USB, Cleveland, OH) for 45 min and rinsed with PBS briefly. Excess liquid was blown off with nitrogen gas before the stamp was applied to the gel surface. The same procedure was applied to gels with 10% acrylamide/0.26% bis-acrylamide (Young’s modulus ∼50 kPa; referred to as the stiff gel), and gels with 10% acrylamide gel/0.03% bis-acrylamide (Young modulus ∼5 kPa; referred to as the soft gel).

Local stretching forces were applied to NIH3T3 cells plated on polyacrylamide gel of 5% acrylamide/0.08% bis-acrylamide as described previously (Lo et al., 2000). Briefly, glass capillary tubing was pulled into needles with a vertical micropipette puller (David Kopf Instruments, Tujunga, CA). The tip of the needle was then melted and shaped with a microforge (Narishige, East Meadow, NY). The blunt needle tip was gently pressed into the gel near the cell and moved away from the cell with a micromanipulator (Leitz, Wetzlar, Germany), to generate pulling forces. The manipulation caused a ∼10% overall increase in cell length, which was prominent at the cell proximal to the needle but became undetectable at the opposite end (Lo et al., 2000). Based on an estimated Young’s modulus of 1–5 kPa for fibroblasts (Engler et al., 2004), the induced cell strain reflected an applied stress of 1–5 × 10⁻¹⁰ N/m² cellular cross-sectional area.

Immunofluorescence Staining and Imaging, FRAP, and Image Analysis

Cells were fixed with 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) and permeabilized with 0.2% Triton X-100 in PBS for 10 min. Samples were blocked with 1% bovine serum albumin/PBS for 15 min at room temperature, and then they were incubated for 1 h at 37°C with 1:200 dilution of primary antibody, and for 1 h at room temperature, and then they were incubated for 1 h at 37°C with 1:200 dilution of primary antibody, and then with 1:200 dilution of secondary antibody (Alexa Fluor 546-conjugated goat-anti-rabbit or Alexa Fluor 488-conjugated goat-anti-mouse from Invitrogen, Carlsbad, CA) and applied at a dilution of 1:400. Alexa 488-conjugated phalloidin (Invitrogen) was applied following manufacturer’s procedure. Images were collected with a 100× Plan-Neofluor numerical aperture (NA) 1.3 oil lens and a low-light electron multiplication charged-coupled device (CCD) camera (FVE, Irvine, CA) or a conventional cooled CCD camera (NTE/CCD-512-EBBF; Princeton Instruments, Trenton, NJ), attached to an inverted microscope (Axiovert 200M; Carl Zeiss, Thornwood, NY), equipped with a 100× Plan-Neofluor NA 1.3 oil lens and a stage incubator for live cell time-lapse imaging. Fluorescent images were recorded every 2 min.

Green fluorescent protein (GFP) fluorescence was bleached with an Argon ion laser (Lexel, Palo Alto, CA), by using 10-ms pulses of the 457-nm line at 50 mW. To bleach RFP-zyxin, we used the 514-nm line at a power of 200 mW and 10-ms duration. Fluorescence images before bleaching and during fluorescence recovery were captured every 5 s with spinning-disc confocal optics (QLC100; Solamere Technology, Salt Lake City, UT), using 488 nm for the excitation of GFP and 532 nm for the excitation of RFP and the corresponding filter set provided by the manufacturer. To allow simultaneous bleaching and imaging, the epifluorescence filter cube was mounted with a 525-nm dichroic mirror (525DRLP; Omega Optical, Brattleboro, VT) or a 475-nm dichroic mirror (475DRLP; Chroma Technology, Brattleboro, VT) for GFP signals. These mirrors allowed the excitation and emission wavelengths for confocal imaging to pass through while directing the bleaching beam at the sample. Conventional fluorescence imaging was carried out with the Omega Optical 100-3 filter set for GFP and Chroma Technology 41002 filter set for RFP. Image resolution intensity was measured by imaging signals within a user-defined, closed boundary of any shape, using custom software written in C + . Kymographs also were produced and analyzed using custom software, which allowed the user to define the location, orientation, length, and width of a rectangular area in an image series. Images within the defined area were then extracted from the series, smoothed vertically, and flattened and averaged side by side into a kymograph. All experiments involving single cell time-lapse and immunofluorescence assays have been performed at least three times with consistent results. Statistical significance was determined using Student’s t test.

4520

Molecular Biology of the Cell
Crawford adhesions and stress fibers, as shown in previous studies. The hypothesis was that their variable association with focal zyxin or VASP (referred to as RFP-zyxin and RFP-VASP).

We started by examining the dynamics of zyxin and VASP in living NIH3T3 cells transiently expressing DsRed-labeled zyxin or VASP (referred to as RFP-zyxin and RFP-VASP). We noticed that focal adhesions with zyxin tails were located away from the cell center. An example of cells in this subpopulation is shown in Figure 1A.

Time-lapse recording and kymograph analysis indicated that both zyxin and VASP underwent active retrograde flux along these tails (Figure 1B), whereas focal adhesion at the tip of the flux remained largely stationary (Figure 1B, arrows). In addition, the tails showed lateral swings while fluxing (Supplemental Movie 1). Similar results were obtained with NIH3T3 fibroblasts (Figure 1A) and NRK epithelial cells (Figure 1C and Supplemental Movie 1), although the latter showed zyxin tails in a higher percentage of cells (>20% of 100 cells examined), with an average flux rate of 0.71 ± 0.04 μm/min (n = 9). Furthermore, immunofluorescence staining of zyxin showed similar tail structures, which colocalized with RFP-zyxin in transfected cells over a wide range of expression levels (Supplemental Figure 1), indicating that the tails of zyxin and VASP were physiological structures. Because RFP-zyxin generated images with low background and few clumps, the following experiments were performed mainly with RFP-zyxin.

We noticed that focal adhesions with zyxin tails were located mainly in relatively stationary NIH3T3 cells and in NRK epithelial cells, which were not as motile as NIH3T3 cells. In addition, plots of the number zyxin tails in NIH3T3 cells against the speed of migration shows an inverse relationship (A). The formation of zyxin tails is amplified on square patterned substrates (B), where long tails are concentrated at the four corners of an RFP-zyxin transfected NIH3T3 fibroblast (C). Bar, 20 μm.

RESULTS

Retrograde Flux of Zyxin at Focal Adhesions in Relation to Cell Migration

We started by examining the dynamics of zyxin and VASP in living NIH3T3 cells transiently expressing DsRed-labeled zyxin or VASP (referred to as RFP-zyxin and RFP-VASP). The hypothesis was that their variable association with focal adhesions and stress fibers, as shown in previous studies (Crawford et al., 1992; Rottner et al., 2001), may reflect different states of focal adhesions in responses to mechanical signals and/or cell migration. We observed two discrete patterns of the distribution of these proteins near focal adhesions in the lamella region of NIH3T3 cells. In most cells they were confined to the typical plaque-shaped focal adhesions; however, in a small percentage (~10% of 100 cells examined) of cells they were present both at focal adhesions and along a “comet tail” that extended away from some focal adhesions toward the cell center. An example of cells in this subpopulation is shown in Figure 1A.

Time-lapse recording and kymograph analysis indicated that both zyxin and VASP underwent active retrograde flux along these tails (Figure 1B), whereas focal adhesion at the tip of the flux remained largely stationary (Figure 1B, arrows). In addition, the tails showed lateral swings while fluxing (Supplemental Movie 1). Similar results were obtained with NIH3T3 fibroblasts (Figure 1A) and NRK epithelial cells (Figure 1C and Supplemental Movie 1), although the latter showed zyxin tails in a higher percentage of cells (>20% of 100 cells examined), with an average flux rate of 0.71 ± 0.04 μm/min (n = 9). Furthermore, immunofluorescence staining of zyxin showed similar tail structures, which colocalized with RFP-zyxin in transfected cells over a wide range of expression levels (Supplemental Figure 1), indicating that the tails of zyxin and VASP were physiological structures. Because RFP-zyxin generated images with low background and few clumps, the following experiments were performed mainly with RFP-zyxin.

We noticed that focal adhesions with zyxin tails were located mainly in relatively stationary NIH3T3 cells and in NRK epithelial cells, which were not as motile as NIH3T3 cells. In addition, plots of the number zyxin tails in NIH3T3 cells against the speed of migration showed an inverse relationship (Figure 2A). The dependence on cell migration was further tested by immobilizing NIH3T3 cells on patterned substrates consisting of 40 × 40-μm² islands of SU-8 photoresist on an otherwise nonadhesive polyacrylamide surface (Figure 2B). Constraining NIH3T3 cells on such substrates induced an increase in the percentage of cells with zyxin tails, from <10% of cells on glass or uniform SU-8 surfaces to 30–40% (50 cells examined) on SU-8 islands. Moreover, 86 ± 6% of the tails were located within 23° from the four corners of these square-shaped cells (Figure 2C; based on 250 tails in 10 cells), where ruffling activities and strongest traction forces were concentrated (Parker et al., 2002; Wang et al., 2002).

Relation of Retrograde Zyxin Flux to Flux of Actin Filaments

Staining of transfected cells with fluorescent phalloidin, and cotransfection of EGFP-actin and RFP-zyxin, showed several distinct configurations of focal adhesions in the lamella region. Some focal adhesions carried neither an actin bundle nor zyxin tail, whereas other focal adhesions were associated with a tapering tail containing both zyxin and actin filaments (Figure 3, A and B). In cells cotransfected with RFP-zyxin and EGFP-actin, all the tails showed concomitant flux of zyxin and actin (Supplemental Movie 2). The similar flux rates of 0.71 ± 0.04 and 0.75 ± 0.02 μm/min for zyxin and actin, respectively, in NRK cells (Figure 3, C–E; n = 9 for each), suggested that zyxin was carried away by the flux of actin subunits. Spot photobleaching of RFP-zyxin and EGFP-actin confirmed the flux (Figure 3, F and G, and Supplemen-
tal Movies 3 and 4). However, photobleached RFP-zyxin spot recovered within 90 s while traveling along the flux (Figure 3F and Supplemental Movie 3), suggesting that zyxin associated dynamically with the actin bundle and

Figure 3. Correlation between zyxin and actin fluxes. NRK epithelial cells are double stained with anti-zyxin antibodies and fluorescent phalloidin (A), or transfected with RFP-zyxin then stained with fluorescent phalloidin (B). Three categories of focal adhesions exist, those with neither an associated actin bundle nor zyxin tail (A; arrowheads), those with a tail containing both zyxin and actin (A and B), and in some situations, those with an associated bundle of actin but no zyxin tail (A; arrows). Kymograph analysis of images of RFP-zyxin (C) and actin filaments (D) from the same bundles shows a similar flux rate (p = 0.449; n = 9 for each; E). Kymographs of RFP-zyxin (F) and EGFP-actin (G) after photobleaching show similar retrograde movements of the bleaching spot (lines in F and G). However, signals of zyxin recover at a much higher rate than actin. Error bars represent standard deviations. Bar, 20 μm.

Figure 4. Differential behavior of focal adhesion proteins. The distribution of various focal adhesion proteins is compared against RFP-zyxin expressed in NRK epithelial cells, after fixation and staining with antibodies against vinculin (A), paxillin (B), or FAK (C). Both zyxin and FAK form tails that extend away from focal adhesions, as defined by the localization of vinculin and paxillin. Bar, 20 μm.
underwent exchange with a cytoplasmic pool. There were also focal adhesions with an associated actin bundle but without a tapering zyxin tail. These bundles typically showed staining of zyxin as weak, punctuate structures with no detectable flux of either actin or zyxin, and likely represent mature stress fibers.

Thus, the appearance of zyxin tails was tightly coupled with the flux of both zyxin and actin. Because RFP-zyxin has a longer wavelength and lower autofluorescence than EGFP-actin, and the expression of EGFP-actin tended to enhance robust, mature stress fibers not typically found in nontransfected cells, we used the appearance of zyxin tails as a reliable indicator for the flux of both zyxin and actin in the following experiments (referred to hereafter as focal adhesion fluxes).

Characterization of Retrograde Focal Adhesion Fluxes
We compared the immunofluorescence localization of zyxin with other focal adhesion proteins, including paxillin, vinculin, and FAK. The tail of zyxin and VASP extended far beyond focal adhesions as defined by vinculin or paxillin (Figure 4, A and B), although limited fluxes of these proteins have been detected with total internal reflection fluorescence optics (Brown et al., 2006; Hu et al., 2007). Interestingly, FAK extended further into the tail than vinculin or paxillin (Figure 4C). These observations may reflect differential affinities of focal adhesion proteins with the actin bundle versus the structural scaffold at focal adhesions.

To determine whether focal adhesion fluxes colocalized with fibrillar adhesions, we examined the distribution of fibronectin, a known component of fibrillar adhesions (Pankov et al., 2000; Zamir et al., 2000). Immunofluorescence staining indicated that fibronectin colocalized only partially with zyxin tails (Figure 5A). In addition, ventral fibronectin-containing fibrils were localized within a single optical section against the substrate (data not shown), whereas some zyxin tails extended over several optical sections (Figure 5B).

Moreover, unlike fibrillar adhesions (Zamir et al., 2000), zyxin tails disappeared rapidly upon the inhibition of contractile force as described below. However, EGFP tagged N-fragment of tensin, which associates with fibrillar adhesions, did localize to zyxin tails (Supplemental Movie 5), suggesting that focal adhesion fluxes may contribute to the formation of fibrillar adhesions.

Dependence of Focal Adhesion Fluxes on Cellular Contractility and Mechanical Stimulation
We noticed that focal adhesion fluxes were concentrated in the regions known to be active in generating traction forces, such as frontal region of the cell and corners of square-shaped cells (Pelham and Wang, 1999; Wang et al., 2002). Therefore, mechanical forces, either generated internally by
myosin II or applied externally through focal adhesions, may play a role in inducing the fluxes. Y-27632, an inhibitor of the Rho-dependent kinase, and blebbistatin, an inhibitor of myosin II ATPase, both caused strong inhibition of traction forces (Beningo et al., 2006), and focal adhesion fluxes, while reducing zyxin tails to small dot-like structures (Figure 6, A–C, and Supplemental Movie 6). Conversely, application of pulling forces to cells plated on flexible polyacrylamide substrates stimulated the appearance of focal adhesion fluxes (Figure 6, D–G).

Previous studies showed that adherent cells not only respond to applied forces but also actively probe the rigidity of the environment (Discher et al., 2005). To determine the effect of substrate rigidity on focal adhesion flux while maintaining a similar cell shape and spread size, we applied soft lithography to polyacrylamide substrates to generate extracellular cell matrix (ECM)-coated islands of different stiffness (Wang et al., 2002). NIH3T3 cells showed prominent zyxin tails on islands of stiff polyacrylamide as they did on photoresist (n = 10 cells; Figure 7A and Supplemental Movie 7), but they formed only small focal adhesions with few zyxin tails on soft substrates (n = 10 cells; Figure 7, B and C).

Dependence of Focal Adhesion Fluxes on Tyrosine Phosphorylation

Given the response of tyrosine phosphorylation to mechanical signals (Pelham and Wang, 1997; Schmidt et al., 1998), we asked whether tyrosine phosphorylation might be involved in regulating focal adhesion fluxes. Immunofluorescence localization showed that phosphotyrosine was concentrated only at focal adhesions irrespective of the presence of zyxin tails (Figure 8A). Consistent results were obtained with live cells expressing YFP-dSH2, a probe for sites of tyrosine phosphorylation (Kirchner et al., 2003; Figure 8B and Supplemental Movie 8). Interestingly, although FAK was found both at focal adhesions and along the flux, FAK phosphorylated at Tyr397, which is known to activate its kinase activity (Schaller et al., 1994), was localized predominantly at focal adhesions (Figure 8C), consistent with the localization of phosphotyrosine.

To determine the involvement of Src family tyrosine kinases in focal adhesion flux, we examined the effects of various inhibitors of tyrosine kinases. Treatment of cells with a broad-spectrum tyrosine kinase inhibitor, genistein, caused disappearance of zyxin tails ~30 min after treatment, without causing disappearance of focal adhesions as shown by RFP-zyxin (Figure 9, A and B, and Supplemental Movie 9), or immunofluorescence (Figure 9G). PP2, which selectively inhibits Src family kinases, also reduced zyxin flux without disassembling focal adhesions (Figure 9, C and D), whereas PP3, an inactive analogue of PP2, had no significant effect (data not shown).
DISCUSSION

In this report, we showed that cell migration and mechanical signals regulate the formation and flux of actin filaments anchored at focal adhesions, which also carries several focal adhesion proteins toward the cell center. The flux is active in stationary cells and it is suppressed during cell migration. In addition, mechanical stimulations, including stretching forces and substrate rigidity, promote the flux, whereas inhibitors of Src tyrosine kinases inhibit the flux. A similar flux of actin, dependent on the nucleation factor formin, was observed at nascent focal adhesions, and it was suggested as the mechanism for the formation of stress fibers (Cramer et al., 1997; Hotulainen and Lappalainen, 2006).

The maintenance of a steady-state flux requires treadmilling of actin subunits, where subunits are continuously added at focal adhesions and removed at the proximal ends. The process may be regulated by the rates of actin nucleation, elongation, dissociation, and possibly myosin-dependent forces that pull on actin filaments (Medeiros et al., 2006). The dependence of the flux on cell migration and mechanical signals explains why prominent stress fibers are present only in relatively immotile cells (Herman et al., 1981; Tomasek et al., 1982), and in cells on stiff substrates (Pelham and Wang, 1997).

The responses to cell migration and substrate compliance are likely related, because conditions that favor the focal adhesion flux share a common feature, that the actin cytoskeleton undergoes large retrograde displacement relative to the substrate anchorage site, as a result of either contractile forces pulling against a stationary anchorage site (Figure 10D), or anterograde deformation of a flexible substrate (Figure 10C). Conversely, conditions that inhibit the flux, including migration of the cell body (Figure 10A), and large substrate deformability (Figure 10B), are likely to cause a smaller retrograde displacement of the actin cytoskeleton relative to the substrate anchorage site. Therefore, the regulation of the flux may be explained by a structural shear model (Figure 10), where focal adhesion proteins at different distances from the membrane anchorage site are displaced by different distances along the direction of migration or mechanical forces under different conditions, which may in turn regulate tyrosine phosphorylation and actin assembly, e.g., by exposing tyrosine kinase binding domains and/or activating the substrates (Sawada et al., 2006).

This structural shear mechanism also explains the different degrees of correlated movements with actin flux for different focal adhesion proteins (Brown et al., 2006; Hu et al., 2007), and they may serve as a feedback mechanism that adjusts structural assembly, possibly coupled with the generation of contractile forces, in response to the needs of cell migration. The mechanism will provide the strongest propulsive forces for slow-moving cells on stiff substrates, which are known to induce strong resistive adhesions as well as traction forces (Guo et al., 2006). A second potential function of a regulated flux at focal adhesions is to serve as a slippage clutch for cell migration (Smilenov et al., 1999; Hu et al., 2007). Retrograde flux may reflect disengagement of the clutch, when contractile forces are consumed in the transport of actin filaments rather than transmitted to the substrate for cell migration.
Focal adhesion fluxes may also be involved in the formation of fibroblast adhesions and the assembly of a fibronectin network to guide cell migration in tissues (Boucaut et al., 1990; Darribere and Schwarzbauer, 2000). Although the flux does not correlate exactly with fibroblast adhesions in their localization and sensitivity to cell contractile forces (Zamir et al., 2000), the colocalization of zyxin with tensin and the partial colocalization with fibronectin in NIH3T3 suggest that the flux may serve as a precursor for the formation of fibroblast adhesions in fibroblasts (Zamir et al., 2000; Figure 4D), through recruitment and retrograde transport of α5β1 integrins along the flux followed by fibronectin binding (Pankov et al., 2000). Because focal adhesion fluxes also exist in epithelial cells, which produce different extracellular matrix proteins than fibroblasts, the fluxes may play a general role in organizing the extracellular matrix. Further evaluation of the role of fluxes in three-dimensional environment may elucidate this possible function of fluxes.

An alternative function of the focal adhesion flux is to facilitate the transport of signals from focal adhesions in response to mechanical cues, as suggested by impaired responses of zyxin−/− cells to ECM anchorage and mechanical stimulations (Yoshigi et al., 2005; Hoffman et al., 2006). Although focal adhesions have been recognized as an important source of signals with multiple downstream effects such as activation of the mitogen-activated protein kinase pathway and eventually gene expression (Giancotti and Rousslahti, 1999), how these signals propagate is unclear. A diffusion-like mechanism seems inefficient within a crowded cytoplasmic environment, and transport along the flux of actin filaments may serve as a much more effective mechanism. Particularly relevant is the relocation of zyxin from focal adhesions into the nucleus of vascular smooth muscle cells in response to mechanical signals, where zyxin itself may serve as a transcription activator (Degenhardt and Silberstein, 2001). In addition, retrograde flux of FAK may have a profound effect on the state of phosphorylation at focal adhesions and actin filaments, which in turn affects the maturation and turnover of focal adhesions (Webb et al., 2004). Our results further suggest that the flux of focal adhesion proteins requires tyrosine phosphorylation, which, in conjunction with the small GTPases Rac and Rho, represents the primary molecular switches in response to integrin-ECM anchorage and mechanical signals (Burridge et al., 1992; Schmidt et al., 1998). Tyrosine phosphorylation regulates the dynamic turnover of focal adhesion proteins through a number of substrates including paxillin, p130Cas, and FAK (Carragher and Frame, 2004). In addition, Rho activities show a transient decrease followed by an increase upon integrin signaling, which may be responsible for the activation of formin that in turn nucleates the assembly of actin filaments at focal adhesions (Wallar and Alberts, 2003). Understanding the regulation of focal adhesion flux is likely to shed light on a wide range of activities that involve cell migration and mechanosensing.

ACKNOWLEDGMENTS

We thank Mian Zhou for preparing RFP-zyxin plasmid and Margo Frey and Mian Zhou for helpful discussions. We are indebted to Drs. Benjamin Geiger, Shin Lin, Vic Smillie (Austrian Academy of Sciences, Vienna), and Juergen Wehland for providing the plasmids. This work was funded by National Institutes of Health grant GM-32476 (to Y.W.).

REFERENCES

