Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery

Norio Takizawa

University of Massachusetts Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Cell Biology Commons, and the Medicine and Health Sciences Commons

Repository Citation

This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery

Norio Takizawa1,3,*, Reiko Ikebe2,3, Mitsuo Ikebe2,3 and Elizabeth J. Luna1,3

1Department of Cell Biology, 2Department of Physiology and 3Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
*Author for correspondence (e-mail: Norio.Takizawa@umassmed.edu)

Accepted 6 August 2007
Journal of Cell Science 120, 3792-3803 Published by The Company of Biologists 2007
doi:10.1242/jcs.008219

Summary
During cell migration, myosin II modulates adhesion, cell protrusion and actin organization at the leading edge. We show that an F-actin- and membrane-associated scaffolding protein, called supervillin (SV, p205), binds directly to the subfragment 2 domains of nonmuscle myosin IIA and myosin IIB and to the N-terminus of the long form of myosin light chain kinase (L-MLCK). SV inhibits cell spreading via an MLCK- and myosin II-dependent mechanism. Overexpression of SV reduces the rate of cell spreading, and RNAi-mediated knockdown of endogenous SV increases it. Endogenous and EGFP-tagged SV co-localize with, and enhance the formation of, cortical bundles of F-actin and activated myosin II during early cell spreading. The effects of SV are reversed by inhibition of myosin heavy chain (MHC) ATPase (blebbistatin), MLCK promotes MLC phosphorylation in the cell periphery and along stress fibers (Chew et al., 2002; Totsukawa et al., 2004), but is not a major contributor during cell spreading (Betapudi et al., 2006; Totsukawa et al., 2004), perhaps via selective modulation of myosin IIB (Sandquist et al., 2006), but is not a major contributor during cell spreading (Betapudi et al., 2006; Totsukawa et al., 2004). MLCK promotes MLC phosphorylation in the cell periphery and along stress fibers (Chew et al., 2002; Totsukawa et al., 2004). MLCK also preferentially co-localizes with myosin IIA and myosin IIB and to the N-terminus of the long form of myosin light chain kinase (L-MLCK). SV inhibits cell spreading via an MLCK- and myosin II-dependent mechanism. Overexpression of SV reduces the rate of cell spreading, and RNAi-mediated knockdown of endogenous SV increases it. Endogenous and EGFP-tagged SV co-localize with, and enhance the formation of, cortical bundles of F-actin and activated myosin II during early cell spreading. The effects of SV are reversed by inhibition of myosin heavy chain (MHC) ATPase (blebbistatin), MLCK promotes MLC phosphorylation in the cell periphery and along stress fibers (Chew et al., 2002; Totsukawa et al., 2004), but is not a major contributor during cell spreading (Betapudi et al., 2006; Totsukawa et al., 2004). MLCK promotes MLC phosphorylation in the cell periphery and along stress fibers (Chew et al., 2002; Totsukawa et al., 2004). MLCK also preferentially co-localizes with myosin IIA (Blue et al., 2002) and regulates integrin-dependent cell survival (Connell and Helfman, 2006; Fazal et al., 2005), perhaps via a signaling cascade downstream of Ras and MEK (Nguyen et al., 1999). This model is consistent with the fact that some cells contain only one nonmuscle myosin isoform [e.g. COS7 cells contain only myosin IIIB (Betapudi et al., 2006)] indicates a large degree of functional redundancy among myosin II isoforms.

Myosin II activation is regulated by monophosphorylation of its regulatory 20 kDa light chain (myosin light chain, MLC) on serine-19 and diphosphorylation at a second residue, threonine-18 (Ikebe, 1989). Diphosphorylation also differentially stabilizes the extended, filamentous conformation of myosin (Ikebe et al., 1988; Matsumura, 2005; Murthy, 2006). These enzymes mediate both mono- and di-phosphorylation of MLC (Choi et al., 1994; Ikebe, 1989; Itoh et al., 1992; Ueda et al., 2002). Rho kinase regulates MLC phosphorylation in the cell interior (Totsukawa et al., 2004) and controls the development of traction forces in adhesive fibroblasts (Beningo et al., 2006), perhaps via selective modulation of myosin IIB (Sandquist et al., 2006), but is not a major contributor during cell spreading (Betapudi et al., 2006; Totsukawa et al., 2004). MLCK promotes MLC phosphorylation in the cell periphery and along stress fibers (Chew et al., 2002; Totsukawa et al., 2004). MLCK also preferentially co-localizes with myosin IIA (Blue et al., 2002) and regulates integrin-dependent cell survival (Connell and Helfman, 2006; Fazal et al., 2005), perhaps via a signaling cascade downstream of Ras and MEK (Nguyen et al., 1999). This model is consistent with the
requirement for the kinase activities of MLCK and extracellular signal-regulated kinase (ERK, also called MAPK), both of which are downstream of MEK during focal adhesion disassembly (Webb et al., 2004).

Negative regulation of MLC phosphorylation in nonmuscle cells is mostly mediated by a tripartite myosin phosphatase comprised of a ~130 kDa targeting subunit called MYPT1, a ~38 kDa catalytic subunit and a ~20 kDa subunit (reviewed in Matsumura, 2005; Murthy, 2006). MYPT1 binds to the myosin S2 subfragment, bringing the catalytic phosphatase into proximity with MLC (Johnson et al., 1997). Several of the kinases that promote MLC activation simultaneously phosphorylate and downregulate myosin phosphatase activity (Ito et al., 2004; Matsumura, 2005).

We have identified a plasma membrane-associated cytoskeletal fraction that contains myosin II, F-actin and signaling proteins in association with a tightly bound peripheral membrane protein called supervillin (SV, p205) (Nebel et al., 2002; Pestonjamasp et al., 1997). Over 95% of SV in differentiated cells localizes and co-fractionates with plasma membranes (Nebel et al., 2002; Oh et al., 2003; Pestonjamasp et al., 1997; Wulfkuhle et al., 1999). SV also co-isolates as part of a cytoskeletal complex with β2-integrin, receptor protein tyrosine phosphatase β and the P2X7 ATP-gated ion channel, which regulates cell growth, apoptosis and membrane blebbing (Kim et al., 2001). SV negatively regulates cell-substrate adhesion through interactions with the LIM domains of thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP) (Takizawa et al., 2006). Alternatively spliced forms of SV found in striated and smooth muscle are involved in the organization of muscle costameres, stimulus-mediated contractility of smooth muscle and myogenic differentiation (Gangopadhyay et al., 2004; Oh et al., 2003). Thus, SV apparently helps transmit signals across the plasma membrane to the actin- and myosin II-associated cortex.

A role for SV in regulating membrane-associated cytoskeletal assembly is supported by direct binding to both myosin II and F-actin (Chen et al., 2003). The first 171 amino acids in SV (SV1-171) bind to the S2 regulatory domains of nonmuscle and smooth muscle myosin II heavy chains. SV sequences containing combinations of two of the three F-actin-binding sites within the SV N-terminus (SV amino acids ~280-342, ~344-422 and ~700-830) also bundle or crosslink actin filaments in vitro (Chen et al., 2003). The TRIP6- and LPP-binding site lies within SV amino acids 342-571 (Takizawa et al., 2006), and the SV C-terminus (SV1542-1792) binds to calponin (Gangopadhyay et al., 2004), which also binds both actin and myosin II and regulates their interaction (El-Mezgueldi and Marston, 1996; Lin et al., 1993). Thus, direct or indirect sites of interaction with actin and myosin II are distributed throughout the SV sequence.

We therefore hypothesize that SV is part of a signaling scaffold that organizes and regulates actin and myosin II filaments at the membrane. In addition to mediating focal adhesion turnover via interactions involving TRIP6 in the center of the cell (Takizawa et al., 2006), we hypothesize that SV modulation of myosin II activity regulates the rate of cell spreading. We show here that SV does modulate cell spreading, apparently by promoting or stabilizing contractile assemblages of actin and myosin II with the long form of MLCK (L-MLCK).

Results

Supervillin inversely regulates cell spreading and associates with peripheral myosin bundles

SV negatively regulates cell spreading on fibronectin (Fig. 1, supplementary material Fig. S1). In populations of COS7 cells spreading onto fibronectin, we noticed that cells expressing EGFP-SV were less well spread than nontransfected cells at 30-45 minutes after plating; no such difference was apparent for cells expressing EGFP only. Initial spreading was essentially complete by 60 minutes for all cells. Defining a ‘spread’ cell as one exhibiting a radius greater than twice that exhibited by the average initially rounded cell (Fig. 1A, panel a), we quantified the number of spread cells as a function of time after plating (Fig. 1B). COS7 cells expressing an average ~5-fold excess of EGFP-SV (Takizawa et al., 2006) were

![Fig. 1. Overexpressed supervillin decreases the rate of cell spreading.](image_url)

(A) Quantification of spreading and spread cells. As compared with the diameter of rounded cells (a), ‘spreading cells’ (b) are smaller than twice the diameter of the average rounded COS7 cell, which is 23.0±0.7 μm (means±s.e.m., n=17), and ‘spread cells’ (c) are larger than twice the diameter of rounded cells. Bar, 46 μm. (B) Percentage of spread COS7 cells after plating onto 10 μg/ml fibronectin for 15, 30, 45, 60 or 90 minutes. Results for control nontransfected cells or cells expressing EGFP alone or EGFP-SV were obtained. Means±s.e.m. of 100 cells counted per experiment, n=6. Sample images are shown in supplementary material Fig. S1. (C) Histogram of the percentages of spread COS7 cells at 30 minutes after plating on 10 μg/ml fibronectin. Means±s.e.m.; n=6; ***P<0.001 for EGFP-SV versus both control and EGFP-expressing cells.
significantly less likely to be spread at 30 minutes, as compared with control cells or cells expressing EGFP alone (Fig. 1C). This result was reminiscent of our previous observations of SV-mediated inhibition of cell-substrate adhesion (Takizawa et al., 2006).

During early cell spreading, EGFP-SV and myosin heavy chain (MHC) IIB prominently co-localized in bundles at the cell periphery, in addition to their abundant signals in the cell interior (Fig. 2A, panels a-c). EGFP by itself did not co-localize with myosin bundles after 30 minutes of spreading (Fig. 2A, panels d-f). Indeed, the circumferential myosin bundles were far less prominent in untransfected cells (not shown) or cells expressing only EGFP at this time than in cells with EGFP-SV (Fig. 2A, panel e versus panel b). By 60 minutes of spreading, peripheral and interior bundles of myosin were observed in all three types of cells (Fig. 2B and not shown).

Peripheral bundles of F-actin, activated myosin II and endogenous SV also formed during spreading of A549 human lung carcinoma cells (Fig. 3). These cells spread onto fibronectin with a time course similar to that of COS7 cells (see below). Consistent with previous reports (Cai et al., 2006; LoRusso et al., 1997; Sumoza-Toledo et al., 2006), we found that both MHC IIA and MHC IIB isoforms localize with F-

\textbf{Fig. 2.} EGFP-supervillin (EGFP-SV) and myosin heavy chain (MHC) IIB co-localize at the cell periphery during spreading. (A,B) COS7 cells expressing EGFP-SV (upper panels) or EGFP only (lower panels) after 30 (A) or 60 (B) minutes of spreading were counterstained with anti-MHC IIB antibodies. EGFP signals (a,d; green in c,f) and MHC IIB signals visualized in the red channel (b,e; red in c,f) were merged (c,f); signal overlaps are shown in yellow. Arrows indicate peripheral co-localizations. Bar, 20 μm.

\textbf{Fig. 3.} Co-localization of endogenous proteins during cell spreading. After 30 minutes of spreading on 10 μg/ml fibronectin, A549 cells were stained with antibodies against MHC IIA (a), tubulin (c), MHC IIB (d), vinculin (f), mono-phosphorylated serine-19 in MLC (pS19-MLC; g,j,m), di-phosphorylated threonine-18, serine-19 in MLC (pT18pS19-MLC; h), or supervillin (k,n) and with Alexa-Fluor-350-conjugated phalloidin for visualizing F-actin (b,e,i,o). Alexa-Fluor-488-conjugated (a,d,h,k) and Alexa-Fluor-594-conjugated (c,f,g,j) secondary antibodies were used. (m-o) Enlargements of the boxed areas in j-l. (p-r) Cross-sections of signal intensities along the vertical lines in m-o, respectively. Bars, 10 μm.
Supervillin, myosin II and cell spreading

SV1-174, Fig. 4). These residues contain the binding site of SV for the smooth muscle myosin S2 domain (Chen et al., 2003). The S2 domains from both nonmuscle myosin isoforms bind to GST-SV1-174 (Fig. 4, left column), but not to GST lacking SV sequences (Fig. 4, right column). Although much less MHC IIB than MHC IIA S2 domain is eluted by physiological levels of salt (Fig. 4, left, lanes 2-4), significant amounts of both myosin isoforms resist extraction with even 0.3 M NaCl, eluting only when GST-SV1-174 is removed from the column (Fig. 4, left, lane 7). As reported previously (Chen et al., 2003), no detectable binding of SV to skeletal muscle myosin II could be observed. Thus, SV can interact with both nonmuscle myosin IIA and nonmuscle myosin IIB isoforms, although associations with myosin IIB might be somewhat stronger.

As expected if endogenous SV plays a role during cell spreading, we found that reduction of SV levels in A549 cells using two different dsRNAs increased the rate of spreading (Fig. 5). Targeting of human SV coding nucleotides 1680-1704 or 2026-2050 with two rounds of dsRNA transfection over 4 days reduced the levels of SV to ≤10% of normal amounts without affecting the levels of other proteins analyzed in this study (Fig. 5A). In both live-cell imaging (Fig. 5B; supplementary material Movies 1, 2) and counts of spread cells (Fig. 5C), A549 cells with reduced amounts of SV spread faster than either mock-transfected or cells or cells treated with a control dsRNA. As with COS7 cells, the largest difference in cell spreading was observed at 30 minutes, when cells treated with either dsRNA against SV were significantly more likely to be spread than cells with normal levels of endogenous protein (Fig. 5D).

During spreading, reduction of endogenous SV also reduces the extent of peripheral bundles (Fig. 6), defined as arrays of concentrated actin and myosin II at the cell edge or at the base of a lamellipodium (Small et al., 1999). After 30 minutes of

Fig. 4. Supervillin binds to the S2 domains of both of the nonmuscle myosins – myosin IIA and myosin IIB. GST-tagged SV1-174 (left) or GST only (right) were pre-bound to glutathione-agarose beads and incubated with the hexa-histidine (6×His)-tagged recombinant S2 domain from the heavy chain of nonmuscle myosin IIA (S2-MHC IIA), nonmuscle myosin IIB (S2-MHC II) or skeletal muscle myosin II (S2-Sk-MHC II). Samples (15 μl) of void volumes (V, lanes 1), washes with binding buffer (W, lanes 2), washes with the indicated concentrations of NaCl in binding buffer (lanes 3-6) and eluates with 5 mM glutathione (E, lanes 7) were analyzed on immunoblots stained with anti-GST antibodies (top panels) or anti-6×His antibodies (lower panels).

Fig. 5. Supervillin knockdown increases the rate of cell spreading. (A) Immunoblots of endogenous SV, MHC IIA, MHC IIB, long and short isoforms of MLCK (L-MLCK and S-MLCK), and ERK1/2, in lysates from cells treated with transfection reagent alone (lanes 1; Mock), dsRNAs 1680 (hSV1) or 2026 (hSV2) that target SV (lanes 2, 3), or control dsRNAs (lanes 4, Con). (B) Histogram showing the rates of area change for populations of A549 cells treated with control (white) or hSV1 (black) dsRNAs spreading on 10 μg/ml fibronectin. Spreading velocities in the bimodal distributions typical of unsynchronized cells (Dubin-Thaler et al., 2004) appear to be displaced, but the difference between the means (36.2±5.7 μm²/minute for controls; 51.7±11.3 μm²/minute for hSV1) is not statistically significant for the numbers of living cells (n=16; n=17) assayed. Movies 1 and 2 in the supplementary material show cell morphologies during linear spreading for average control- and hSV1-treated cells. (C) Percentage of spread A549 cells plated on 10 μg/ml fibronectin at 15, 30, 45, 60 or 90 minutes. Spread cells were defined as in Fig. 1; the average diameter of a rounded A549 cell was taken as 18.0±0.8 μm (means±s.e.m., n=18). Cells were mock-transfected, or were treated with hSV1, hSV2 or control dsRNA. Means±s.e.m. of 200 cells counted per experiment, n=5. (D) Percentage of spread A549 cells plated on 10 μg/ml fibronectin for 30 minutes. Means±s.e.m.; n=5; *P<0.05 for each SV dsRNA versus both mock and control dsRNA treatments.
spreading onto fibronectin, only ~18% \((n=200)\) of A549 cells treated with a dsRNA against SV contained well-defined peripheral bundles of myosin and actin, whereas 43% \((n=200)\) of cells treated with a control or no dsRNA contained these structures (Fig. 6A). Activated myosin II filaments were still detectable with antibodies against mono- or doubly-phosphorylated MLC, but these structures were more widely distributed throughout the cell cortex (Fig. 6B). Thus, reduced numbers of peripheral bundles of myosin II and F-actin accompany SV-mediated reductions in the rate of cell spreading.

Mediation via MLCK
To explore the mechanism of SV action during cell spreading, we first treated A549 cells, which contain endogenous SV, with inhibitors of myosin II function (Fig. 7). We found that the rate of cell spreading was increased by blebbistatin, which directly inhibits myosin II ATPase activity (Kovacs et al., 2004; Limouze et al., 2004; Straight et al., 2003); by ML-7 at a concentration (1 \(\mu\)M) that specifically inhibits MLCK (Bain et al., 2003); and by the drug U0126, an indirect inhibitor of MLCK via the upstream kinase MEK (Fincham et al., 2000; Nguyen et al., 1999). By contrast, Y-27632, which inhibits direct and indirect activation of myosin by Rho kinase (Amano et al., 1996; Kimura et al., 1996; Uehata et al., 1997), showed no significant effect (Fig. 7).

The formation of circumferential bundles of myosin II and F-actin during spreading of either A549 cells (Fig. 8) or COS7 cells (supplementary material Fig. S2) was inhibited by blebbistatin (20 \(\mu\)M, not shown) or by low concentrations (1 \(\mu\)M) of ML-7. As with SV knockdowns, these drugs reduced the percentage of A549 cells with peripheral bundles after 30 minutes of spreading, from ~40% to ~10% \((n=200)\). The effect appeared to be selective for peripheral bundles because cytoplasmic myosin II punctae and filaments remained in each cell line treated with 1 \(\mu\)M ML-7. Reduced numbers of peripheral bundles of myosin II and F-actin were also observed after indirect inhibition of myosin II activity with U0126 (2.5 \(\mu\)M); inhibition of Rho kinase with Y-27632 was without effect (supplementary material Fig. S2). ML-7 and U0126 also virtually eliminated the peripheral localization of phosphorylated MLC (i.e. activated myosin II) (supplementary material Fig. S3). Taken together, these results suggest that MLCK might mediate the effects of SV on the rate of cell spreading and on the formation of peripheral myosin and actin bundles.

The effects of the myosin II inhibitors on SV-mediated changes in cell spreading varied with concentration of blebbistatin and ML-7 (Fig. 9, supplementary material Fig. S4). Low amounts of blebbistatin (20 \(\mu\)M) and ML-7 (1 \(\mu\)M) abolished SV inhibition of COS7 cell spreading, whereas higher drug concentrations could themselves slow the rate of spreading (Fig. 9A,B), as described previously (Betapudi et al., 2006; Duxbury et al., 2004; Jurado et al., 2005). Slowed spreading at 10 \(\mu\)M ML-7 was associated with the disruption of myosin II filaments, of F-actin bundles and of focal adhesions throughout the cell (supplementary material Fig. S4), consistent with the inhibition of all cytoplasmic MLCK and/or inhibition of another myosin II kinase at higher ML-7 concentrations (Komatsu and Ikebe, 2004). By contrast, the inhibitory effects of the MEK inhibitor U0126 (Fig. 9C) and
Supervillin, myosin II and cell spreading

the absence of an effect of the Rho kinase inhibitor Y-27632 (Fig. 9D) were observed at all concentrations tested. These results suggest that SV might be slowing the rate of cell spreading by facilitating localized myosin II activation by MLCK.

To test the possibility of crosstalk between SV and MLCK, we co-transfected COS7 cells with plasmids encoding EGFP-SV and Flag-tagged long and short isoforms of MLCK (L-MLCK, S-MLCK; Fig. 10) (Blue et al., 2002; Herring et al., 2000). Murine L-MLCK contains the entire S-MLCK coding sequence. In addition, L-MLCK contains an extra N-terminal sequence of 954 amino acids with multiple actin-binding sites within its immunoglobulin (Ig) domains and two DXR repeats (repeats of a motif made up of the sequence DXRXXL) (Kudryashov et al., 2004; Poperechnaya et al., 2000; Smith et al., 2002; Stull et al., 1998; Yang et al., 2006). The shared S-MLCK C-terminus contains another three DXR repeats, the kinase domain and a myosin II-binding site (Fig. 11A). A lysine-to-alanine mutation in the kinase domain generates kinase-dead (KD) MLCK mutants that inhibit the catalytic activity of MLCK (Wadgaonkar et al., 2003).

KD mutants of L-MLCK and S-MLCK and the wild-type forms all co-localized with EGFP-SV in peripheral myosin II and F-actin bundles during cell spreading (Fig. 10A). Co-localization was more pronounced for the L-MLCK proteins (Fig. 10A, panels a-h) than for the S-MLCK proteins (Fig. 10A, panels i-p) because of the high proportion of cytoplasmic S-MLCK (Blue et al., 2002; Poperechnaya et al., 2000).

To determine whether the SV-mediated effects on cell spreading require the unique L-MLCK N-terminus, we determined the rates of spreading for COS7 cells co-transfected with each MLCK construct and either EGFP-SV or EGFP (Fig. 10B). Either wild-type L-MLCK or S-MLCK, when co-expressed with EGFP (Fig. 10B, columns 3, 7), mimicked EGFP-SV (Fig. 10B, column 2) in reducing the initial rates of Fig. 9. At low concentrations, specific inhibitors of myosin II activity abolish supervillin-mediated decreases in spreading of COS7 cells. Percentages of spread COS7 cells expressing either EGFP-SV or EGFP at 30 minutes after plating on fibronectin in the presence of inhibitors of myosin function: (A) MHC ATPase inhibitor, blebbistatin. **P=0.003 (20 μM versus 0 μM for EGFP-SV); (B) MLCK inhibitor, ML-7. **P=0.002 (1.0 μM versus 0 μM for EGFP-SV); (C) MEK inhibitor, U0126. *P=0.014 (2.5 μM versus 0 μM for EGFP-SV); (D) Rho kinase inhibitor, Y-27632, no significant effects. Means±s.e.m.; 100 cells per data point per experiment, n=4.
cell spreading (column 1). Co-expression of either wild-type MLCK isoform with EGFP-SV accentuated SV-mediated reductions in the rate of cell spreading (Fig. 10B, columns 4 and 8 versus column 2). As shown in Fig. 10B, KD L-MLCK (columns 5, 6) was less effective than wild-type L-MLCK (columns 3, 4) at reducing spreading rates for EGFP-expressing cells (column 1) and did not accentuate the effects of EGFP-SV (column 2). By contrast, KD S-MLCK (columns 9, 10) exhibited an effect similar to that of wild-type S-MLCK (columns 7, 8). Neither effect was significantly altered by the

Fig. 10. MLCK isoforms, especially L-MLCK, co-localize with supervillin, and mimic and potentiate supervillin-mediated decreases in the rates of cell spreading. (A) Fluorescence micrographs of co-transfected COS7 cells after spreading on fibronectin for 30 minutes, showing Flag-tagged MLCK proteins, as indicated (a,e,i,m; red in merged images), EGFP-SV (b,f,j,n; green in merges) and merged images (c,g,k,o; overlap in yellow). MLCK proteins were visualized with anti-Flag antibodies and Alexa-Fluor-594-conjugated anti-rabbit IgG antibodies; F-actin (d,h,l,p) was visualized with Alexa-Fluor-350–phalloidin. Bar, 20 μm.

(B) Percentages of spread cells 30 minutes after plating on fibronectin for cells expressing: (1) EGFP only (n=14); (2) EGFP-SV only (n=14); (3) EGFP plus wild-type (Wt) L-MLCK (n=6); (4) EGFP-SV plus wild-type L-MLCK (n=9); (5) EGFP plus L-MLCK KD (n=6); (6) EGFP-SV plus L-MLCK KD (n=9); (7) EGFP plus wild-type S-MLCK (n=6); (8) EGFP-SV plus wild-type S-MLCK (n=9); (9) EGFP-SV plus S-MLCK KD (n=6); or (10) EGFP-SV plus S-MLCK KD (n=9). Means±s.e.m.; 100 cells/experiment, n=6; ***P<0.001, **P<0.01 versus EGFP-only control. (C) The L-MLCK Ig domains, but not the 5DXRs, bind directly to SV1-174. GST-tagged SV1-174 (lanes 1-6) or GST only (lanes 7-12) were pre-bound to glutathione-agarose beads and incubated with purified recombinant 6×His-tagged Ig domains (upper panel) or 6×His-tagged 5DXRs (lower panel). Void volumes (V, lanes 1, 12), washes with the indicated concentrations of NaCl (lanes 2-5, 8-11) and glutathione eluates (E, lanes 6,7) were analyzed on immunoblots stained with anti-6×His antibodies.
Supervillin, myosin II and cell spreading

presence of EGFP-SV (columns 7 versus 8; 9 versus 10), implying a kinase- and SV-independent mechanism. The differences between the effects of KD L-MLCK and KD S-MLCK (columns 9 versus 5; 10 versus 6) suggest an additional kinase-independent effect associated with the unique L-MLCK N-terminus. Thus, these results are consistent with involvement of SV in an L-MLCK-mediated kinase-dependent mechanism and with one or more kinase-independent effects in the rate of cell spreading induced by S-MLCK (the L-MLCK C-terminus) and by L-MLCK N-terminal sequences.

Multiple mechanisms are supported by domain-mapping studies of L-MLCK and EGFP-tagged SV sequences (Figs 11, 12). Consistent with a kinase-independent mechanism, L-MLCK-specific N-terminal sequences (Fig. 11A), which lack the myosin-binding and kinase domains (Stull et al., 1998) but bundle actin filaments (Smith et al., 2002; Yang et al., 2006), slowed the rate of cell spreading by 30-53% (Fig. 11B). A ~26% reduction was also observed with the SV fragments that can bundle F-actin (Chen et al., 2003), SV343-830 and SV171-1792 (Fig. 12A).

However, F-actin bundling cannot be the sole mechanism by which SV reduces the rate of cell spreading. The N-terminal 171 residues in SV (SV1-171), which do not bind F-actin but do bind to myosin II (Chen et al., 2003) and to the L-MLCK N-terminal Ig domains (Fig. 11C), also slowed cell spreading (Fig. 12A). In addition, EGFP-tagged SV1-171 induces the formation of myosin punctae (Chen et al., 2003) that co-localize with mono- and di-phosphorylated MLC (Fig. 12B) and with L-MLCK (Fig. 12C, panels a-c). S-MLCK was far less efficiently associated (Fig. 12C, panels g-i), and these structures appeared to actually exclude the myosin phosphatase subunit MYPT1 (Fig. 12C, panels j-l). Time-lapse imaging of EGFP–SV1-171 showed that the elongated punctae arise from apparently hypercontractile segments of stress fibers (supplementary material Movie 3). Taken together, these results suggest that F-actin bundling is responsible for at least some of the kinase-independent reductions in cell spreading and implicate SV1-171 in a kinase-dependent mechanism involving myosin II activation by L-MLCK.

Fig. 12. Both F-actin-bundling and myosin II-binding sequences in supervillin slow cell spreading; SV1-171 co-localizes with mono- and di-phosphorylated MLC and L-MLCK, but not with S-MLCK or with the MYPT1 subunit of myosin phosphatase. (A) Percentages of spread COS7 cells transfected with EGFP (Control) or EGFP-SV: full length (SV-FL), SV1-171, SV343-571, SV570-830, SV343-830, SV171-1792. Means±s.e.m.; n=6; ***P<0.001 versus EGFP control; **P<0.01 versus EGFP control. (B) COS7 cells transfected with EGFP-SV1-171 (SV1-171, a.g; green in c.i) or EGFP only (Control, d; green in f) and counterstained with anti-phosphoSer19-MLC antibodies (pS19-MLC, b,e; red in c.i) or antibody against pThr18pSer19-MLC antibodies (h; red in i). Overlap in merged images (c,f,i) appears yellow. Bar, 20 µm. (C) Co-transfected COS7 cells expressing EGFP-SV1-171 (SV1-171, a.g) or EGFP only (Control, d) and Flag-tagged L-MLCK (b,e) or S-MLCK (h) and counterstained with Alexa-Fluor-350–phalloidin (c,f,i). Cells expressing EGFP-SV1-171 alone (j,m) were stained with antibodies against the MYPT1 subunit of myosin phosphatase (k,n) and phosphoS19-MLC (l,o). (m-o) Enlargements of the boxed areas in j-l. Arrows show punctae of SV1-171 with pS19-MLC that lack MYPT1. Bars, 20 µm (a-l); 5 µm (m-o).
Discussion
We demonstrate here that SV decreases the rate of cell spreading via interactions with myosin II, F-actin and L-MLCK. SV co-localized with F-actin and myosin II filament bundles at the plasma membrane, and SV levels correlated with the extent of bundle formation during initial cell spreading. SV binds directly to myosin IIA and myosin IIB and to the N-terminus of L-MLCK, as well as to actin filaments (Chen et al., 2003). SV-associated filament bundles are enriched in L-MLCK and, to a lesser extent, in S-MLCK. Pharmacological inhibition of MLCK or myosin motor activity reverses the SV-mediated decreases in the rate of cell spreading, and MLCK overexpression phenocopies the SV effect. Cell spreading is slowed by L-MLCK and SV sequences that bundle F-actin. Cell spreading is also slowed by SV1-171, which binds myosin II and L-MLCK in vitro and co-localizes with aggregates of L-MLCK and activated myosin II in vivo. Thus, SV apparently modulates cell spreading by promoting or stabilizing actomyosin bundles and/or upregulating myosin II activation at the plasma membrane.

The major new finding reported here is that SV, a membrane protein, enhances L-MLCK-mediated myosin II function during cell spreading. Others have used myosin II inhibitors, including blebbistatin, to show that myosin II plays an active role in promoting cell spreading (Betapudi et al., 2006; Cramer and Mitchison, 1995; Duxbury et al., 2004; Sumoza-Toledo et al., 2006; Wakatsuki et al., 2003). Inhibition of MLCK with high concentrations (>5 μM) of ML-7 slows cell spreading (Betapudi et al., 2006; Giannone et al., 2004). We show here that SV introduces a biphasic nature to the inhibitor dose-response curves (Figs 7, 9) consistent with SV-mediated enhancement of myosin II-mediated contractility that antagonizes cell spreading. Low concentrations of either blebbistatin (20 μM) or ML-7 (1 μM) alleviate the SV-mediated effect, returning the rate of cell spreading to that observed with lower SV levels. These results suggest that subpopulations of myosin II and MLCK, distinguished by myosin isoform and/or associated proteins, might be differentially sensitive to low concentrations of these drugs and/or to regulation by SV.

Our results also suggest that SV is part of an interconnected membrane-associated scaffold that helps position myosin II and F-actin with respect to MLCK. Myosin II and actin filaments have long been known to assemble at the membrane surface (DeBiasio et al., 1988; McKenna et al., 1989; Rhee et al., 1994) and to interact with both L-MLCK and S-MLCK (Blue et al., 2002; Dulyanina et al., 2004; Poperechnaya et al., 2000; Stull et al., 1998). The additional F-actin-binding and - bundling sequences in the unique L-MLCK N-terminus apparently increase the affinity of L-MLCK, relative to S-MLCK, for actin filaments (Smith et al., 2002; Yang et al., 2006). SV also binds to both myosin and actin filaments, with the physical separation of the F-actin- and myosin II-binding sites within SV consistent with its suggested potential for regulated recruitment of actin and myosin filaments during myofibril and stress fiber assembly at the membrane (Oh et al., 2003).

An interaction of SV with the N-terminus of L-MLCK is suggested by direct binding in vitro and by the preferential co-localization of L-MLCK with SV1-171 in vivo. Simultaneous binding of SV1-171 to myosin and to L-MLCK could provide the basis for SV-mediated activation of myosin II by helping to retain or position L-MLCK on the myosin II heavy chain. An SV-associated scaffold could mediate local MLCK activation via phosphorylation by ERK during cell spreading (Huang et al., 2004; Klemke et al., 1997). This possibility is consistent with the ability of the MEK inhibitor U0126 to reverse SV-mediated effects on cell spreading (Fig. 9) and with the co-localization of SV, myosin II and ERK in smooth muscle cells (Gangopadhyay et al., 2004). The suggestion that ERK signaling might be regulated by SV is also consistent with the observation that ERK activation during agonist-mediated contraction is inhibited by knockdown of the smooth muscle isoform of SV in ferret aorta (Gangopadhyay et al., 2004). The interaction between SV and calponin (Gangopadhyay et al., 2004) – a protein that binds directly to F-actin, myosin II and ERK (Leinweber et al., 1999; Morgan and Gangopadhyay, 2001) – suggests a further level of interconnection.

A second possible mechanism is that the binding of SV1-171 to subfragment 2 of myosin regulates its conformation and thus increases the affinity of L-MLCK for the myosin head-rod junction (Masato et al., 1997). For example, SV1-171 binding to myosin might promote myosin monomer unfolding and thus facilitate myosin activation by MLC phosphorylation and subsequent filament assembly (Kolega, 1998; Kolega and Taylor, 1993). Conversely, SV might stabilize the myosin filament or block myosin filament disassembly. For instance, by binding to subfragment 2 of myosin, SV might block binding of myosin phosphatase to this site (Johnson et al., 1997; Mitsui et al., 1992), shifting the dynamic equilibrium of dephosphorylated versus phosphorylated MLC and leading to the observed exclusion of MYPTI and the accumulation of mono- and di-phosphorylated MLC with SV and SV1-171 (Fig. 12).

SV might also stabilize contractile assemblies by bundling and thus stabilizing actin filaments against disassembly. This hypothesis is consistent with the observations that the actin-bundling fragments of SV and L-MLCK decrease the rate of cell spreading. This possibility is also consistent with recent work showing that myosin II slows cell protrusion by accelerating actin filament fragmentation in a contractile zone away from the leading edge (Medeiros et al., 2006), a process that is antagonized by actin filament stabilization, such as by tropomyosin (Huckaba et al., 2006). Given the sequence similarity between the SV C-terminus and the actin filament-severing proteins villin and gelsolin (Pestonjamasp et al., 1997), SV-mediated filament stabilization might seem unlikely. However, sequences required for F-actin severing in gelsolin and villin (Matsudaira et al., 1985) are absent from SV (Pestonjamasp et al., 1997; Wulfkuhle et al., 1999).

Another possibility is that the combined F-actin and myosin II binding capabilities of SV regulate the actomyosin cross-bridge cycle in the way proposed for calponin and caldesmon (Szymanski, 2004). Smooth muscle isoforms of these proteins are thought to act as ‘latch bridges’ that inhibit myosin cross-bridge cycling while binding to both F-actin and activated myosin II, stabilizing the contractile state. In this model, SV1-171 competes for binding on myosin subfragment 2 with endogenous full-length SV and/or nonmuscle caldesmon, releasing the latch state and inducing the localized contractions that apparently destabilize stress fiber integrity (supplementary material Movie 3).
These possible modes of action are not mutually exclusive because SV regulation of actin-myosin interactions at the membrane might differ with intracellular location. For instance, SV might promote myosin activation in the poised signaling scaffold with L-MLCK at the cell periphery (Mederios et al., 2006) and inhibit myosin II function elsewhere. SV1-171 and SV343-571 both reduce the number of large focal adhesions in the center of the cell (Takizawa et al., 2006). The effect of SV1-171 is consistent with a role for SV in potentiating L-MLCK-induced focal adhesion disassembly at various intracellular sites (Webb et al., 2004), but the lack of effect of SV343-571 on cell spreading (Fig. 12) argues strongly for a second regulatory mechanism. In fact, SV343-571 decreases cell-substrate adhesion via an interaction with the focal adhesion protein TRIP6, which leads to loss of stress fibers and of mature focal adhesions in the cell interior (Takizawa et al., 2006). Thus, SV apparently participates in at least two regulated interactions involving myosin II, F-actin, and focal adhesion proteins at different intracellular locations during different stages of cell migration.

Materials and Methods

Chemicals
Glutathione-Sepharose was purchased from Amersham Biosciences (Piscataway, NJ). ML-7 was from Calbiochem-Novabiochem (La Jolla, CA). Blebbistatin with a 2:1 stereochemical ratio of 1:1 was from Tocris (Bristol, UK). U0126 was from Sigma. Thapsigargin (Sigma) was used as a control dsRNA. Cell growth was similar for mock and dsRNAi-treated cells (data not shown).

Antibodies
Rabbit polyclonal anti-nonmuscle MHC IIA, rabbit polyclonal anti-nonmuscle MHC IIB, sheep polyclonal anti-MLCK and rabbit polyclonal anti-MYPT1 were from Babco-Covance (Richmond, CA). Rabbit polyclonal anti-ERK1/2 was from Upstate (Lake Placid, NY). Mouse monoclonal anti-β-tubulin (TUB2.1), mouse monoclonal vinculin (hVIN1) and rabbit polyclonal anti-Flag were from Sigma. Monoclonal anti-phospho-Ser19 MLC, rabbit polyclonal anti-phospho-Thr18/Ser19 MLC, and mouse monoclonal anti-6×His (27E9) were from Cell Signaling Technology (Beverly, MA). Goat polyclonal anti-GST antibodies were from Santa Cruz. Goat polyclonal anti-GST antibodies were from Santa Cruz. Mouse monoclonal anti-6×His (27E9) and rabbit polyclonal anti-Flag were from Sigma. Mouse monoclonal anti-phospho-MYPT1 (1:200) was from Cell Signaling Technology (Beverly, MA). Goat polyclonal anti-GST antibodies were from Amersham. Horseradish peroxidase (HRP)-conjugated secondary antibodies against rabbit, mouse, and goat/Sheep IgGs were from Jackson Immunoresearch (West Grove, PA). Rabbit polyclonal anti-SV (H340) have been described (Nebli et al., 2002; Oh et al., 2003).

Mammalian expression vectors
EGFP-SV and EGFP-SV fragment vectors were described previously (Chen et al., 2003; Wallkhué et al., 1999), EGFP-SV171-1792 was made by ligating the fragment released from EGFP-SV171-571 with AgeI into AgeI-digested EGFP-SV (Chen et al., 2003). Plasmids encoding Flag-tagged wild-type and KD murine 220 amino acid sequences 844-1192, LLQVTRQ-ETKNHEA) and human skeletal (amino acids 2-867 and 2-1024) and EGFP-tagged rabbit five DXR actin-binding domains (Smith et al., 2002) were provided by Anne R. Bresnick (Albert Einstein College of Medicine, Bronx, NY) (Dulyaninova et al., 2004).

Recombinant proteins
GST-tagged SV1-174 was described previously (Chen et al., 2003). The S2 domains of human nonmuscle Myosin II A (NP002464, coding amino acid sequences 837-1188, LLQVSRQ-THEAQIQ), human nonmuscle Myosin IIB (NP005955, coding amino acid sequences 844-1192, LLQVTRQ-ETKNEHA) and human skeletal muscle Myosin II (NP005954, coding amino acid sequences 843-1246, LLQVSRQ-THEAQIQ) were subcloned into the FastBac1 vector (Invitrogen, Carlsbad, CA) with a C-terminal hexa-histidine (6×His) tag. The Ig and five DRX domains from human L-MLCK (amino acids 2-867 and 2-1024) and EGFP-tagged rabbit five DXR actin-binding domains (Smith et al., 2002) were provided by Anne R. Bresnick (Albert Einstein College of Medicine, Bronx, NY) (Dulyaninova et al., 2004).

Cell culture and transfection
COS7-2 cells, a highly transfectable clone of COS7 (Kowalczyn et al., 1997), were a generous gift from Kathleen J. Green (Northwestern University, IL). COS7-2 cells were grown in Dulbecco’s Modified Eagle high glucose media (DMEM) supplemented with 10% fetal calf serum (FCS) for ~20 passages. A549 human non-small cell lung carcinoma cells (American Type Culture Collection, ATCC, Rockville, MD) were maintained in Ham’s F12 medium, 2 mM L-glutamine, 10% FCS for up to 12 passages.

Cell transfection methods have been described (Takizawa et al., 2006). Briefly, COS7 cells were transfected using Effectene Transfection Reagent (Qiagen) for 24 hours, except in experiments with L-MLCK N-terminal sequences, which were lethal to cells transfected for longer than 16 hours (Dulyaninova et al., 2004). A549 cells at ~60% confluence were transfected twice with 10 nM dsRNA and Lipofectamine 2000, as recommended (Invitrogen), and grown for 4 days. Two dsRNAs targeting human SV were made as Stealth duplexes (Invitrogen): human (h)SV1, 5′- CAGGCAAUAGGAACUAUAAGCU-3′ (coding nucleotides 1680-1704) and hSV2, 5′-GGAGAUGUUUCGUGGAGGAAUA-3′ (coding nucleotides 2026-2050). The Stealth duplex sequence, 5′-GAAAAGAAGGACCACCAAGGA-3′, was used as a control dsRNA. Cell growth was similar for mock and dsRNAi-treated cells (data not shown).

Cell-spaying assay
Cells were cultured in T25 tissue culture flasks (25 cm²) and detached by incubating in 37°C for 2 minutes with 0.5 ml trypsin/EDTA solution (0.1%/0.40 mg/ml for COS7 cells, or 0.25%/1.0 mg/ml for A549 cells). Trypsin was immediately neutralized with 5 ml culture medium containing 5 μg/ml aprotinin, and the cells were washed once with 10 ml PBS, pH 7.2-7.4. Cells were adjusted to 3.0×10⁴ cells/ml of serum- and antibiotic-free media (2.5 ml/well for COS7 cells, or 2.0 ml/well for A549 cells), and were transferred into wells (9.60 cm²) of six-well plates containing 18×18 mm coverslips coated with 10 μg/ml bovine plasma fibronectin (Sigma). For experiments with chemical inhibitors, 2% concentrations of cells were added to wells containing equal amounts of media with 2× concentrations of inhibitors. At each time point, cells were fixed with 4% paraformaldehyde and counted using a 40× Pan-NeoFluor oil immersion objective (NA 1.3) with phase-contrast optics on a Zeiss Axioskop microscope (Carl Zeiss MicroImaging, Thornwood, NY).

Immunofluorescence microscopy
Methods for indirect immunofluorescence microscopy have been described previously (Chen et al., 2003; Wallkhué et al., 1999), EGFP-SV171-1792 was made by ligating the fragment released from EGFP-SV171-571 with AgeI into AgeI-digested EGFP-SV (Chen et al., 2003). Plasmids encoding Flag-tagged wild-type and KD murine 220 amino acid sequences 844-1192, LLQVTRQ-ETKNEHA) and human skeletal muscle Myosin II (NP005954, coding amino acid sequences 843-1246, LLQVSRQ-THEAQIQ) were subcloned into the FastBac1 vector (Invitrogen, Carlsbad, CA) with a C-terminal hexa-histidine (6×His) tag. The Ig and five DRX domains from human L-MLCK (amino acids 2-867 and 2-1024) and EGFP-tagged rabbit five DXR actin-binding domains (Smith et al., 2002) were provided by Anne R. Bresnick (Albert Einstein College of Medicine, Bronx, NY) (Dulyaninova et al., 2004).

Cell culture and transfection
COS7-2 cells, a highly transfectable clone of COS7 (Kowalczyn et al., 1997), were transfected using Effectene Transfection Reagent (Qiagen) for 24 hours, except in experiments with L-MLCK N-terminal sequences, which were lethal to cells transfected for longer than 16 hours (Dulyaninova et al., 2004). A549 cells at ~60% confluence were transfected twice with 10 nM dsRNA and Lipofectamine 2000, as recommended (Invitrogen), and grown for 4 days. Two dsRNAs targeting human SV were made as Stealth duplexes (Invitrogen): human (h)SV1, 5′- CAGGCAAUAGGAACUAUAAGCU-3′ (coding nucleotides 1680-1704) and hSV2, 5′-GGAGAUGUUUCGUGGAGGAAUA-3′ (coding nucleotides 2026-2050). The Stealth duplex sequence, 5′-GAAAAGAAGGACCACCAAGGA-3′, was used as a control dsRNA. Cell growth was similar for mock and dsRNAi-treated cells (data not shown).

Live-cell imaging
dsRNA-transfected A549 cells were allowed to settle onto fibronectin (10 μg/ml)-coated 35 mm chambers (FluroDish, World Precision Instruments, Sarasota, FL) containing 3 ml DME without phenol red on a DMIRE 2 inverted microscope (Leica Microsystems, Allendale, NJ) in a Pilkiglass environmental chamber heated to 37°C. Phase contrast images of the chamber surface were acquired with an HC PL APO, 10×/0.25 NA, oil immersion objective lens (Zeiss, Thornwood, NY) in a Plexiglass environmental chamber heated to 37°C. Phase contrast images of the chamber surface were acquired with an HC PL APO, 10×/0.25 NA, oil immersion objective lens (Zeiss, Thornwood, NY). Images were processed with OpenLab software to generate movie files.
0.15, 0.2 and 0.3 M) of NaCl. Binding assays with L-MLCK fragments (100 µg) were performed similarly, except that the binding buffer was 10 mM MOPS, 100 mM imidazole, pH 7.5, 100 mM KCl, 50 µM EGTA, 0.05% β-mercaptoethanol, 3.25% glycerol, and the column was washed with 0.25 ml portions of a buffer containing 20 mM MOPS, 20 mM imidazole, pH 7.5, 0.1 mM EGTA, 0.1% β-mercaptoethanol with increasing concentrations (0.1, 0.1, 0.15, 0.2 and 0.3 M) of NaCl. GST proteins and bound myosin or L-MLCK fragments were eluted from the washed columns with 250 µl of 5 mM glutathione in washing buffer with 0.3 M NaCl. Fractionated proteins were analyzed by immunoblot analysis using anti-GST antibodies (goat polyclonal; 1:1000; Amersham) and anti-6X-His antibodies (mouse clone 27E9; 1:1000).

Immunoblotting and SDS-PAGE

SDS-PAGE and immunoblotting have been described (Takizawa et al., 2006). Primary antibodies and dilutions: anti-SV (H340), 1:10,000; anti-MHC IIA, 1:10,000; anti-MHC IIB, 1:10,000; anti-MLCK, 1:3000; anti-ERK1/2, 1:3000; anti-MLC, 1:10,000; anti-MHC IIB, 1:10,000; anti-MLCK, 1:3000; anti-ERK1/2, 1:3000; anti-MLC, 1:10,000; anti-goat/sheep IgG; 1:10,000.

Research was supported by NIH grants GM33048 to E.J.L., and AR41653 and HL073050 to M.I. We thank Patricia Gallagher and Anne Brenwick for the gifts of MLCK plasmids, and Fumio Matsumura for antibody against phosphorylated MLC used in preliminary experiments. We also thank Anne Brenwick, Fumio Matsumura, Tara Smith and Jessica Crowley for critical reading of the manuscript, and Louise Ohrn and Dona Castellanos for technical assistance.

References

