PI3-kinase mutation linked to insulin and growth factor resistance in vivo

Jonathon N. Winnay
Harvard Medical School

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs

Part of the Cellular and Molecular Physiology Commons, and the Endocrinology Commons

Repository Citation

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
PI3-kinase mutation linked to insulin and growth factor resistance in vivo

Jonathon N. Winnay,1 Marie H. Solheim,1,2 Ercument Dirice,1 Masaji Sakaguchi,1 Hye-Lim Noh,3 Hee Joon Kang,3 Hirokazu Takahashi,1 Kishan K. Chudasama,2,4 Jason K. Kim,3 Anders Molven,2,5,6 C. Ronald Kahn,1 and Pål R. Njølstad2,7

Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA. 2KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway. 3Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA. 4Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. 5Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway. 6Department of Pathology and 7Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.

The phosphatidylinositol 3-kinase (PI3K) signaling pathway is central to the action of insulin and many growth factors. Heterozygous mutations in the gene encoding the p85α regulatory subunit of PI3K (PIK3R1) have been identified in patients with SHORT syndrome—a disorder characterized by short stature, partial lipodystrophy, and insulin resistance. Here, we evaluated whether SHORT syndrome–associated PIK3R1 mutations account for the pathophysiology that underlies the abnormalities by generating knockin mice that are heterozygous for the Pik3r1^{Arg649Trp} mutation, which is homologous to the mutation found in the majority of affected individuals. Similar to the patients, mutant mice exhibited a reduction in body weight and length, partial lipodystrophy, and systemic insulin resistance. These derangements were associated with a reduced capacity of insulin and other growth factors to activate PI3K in liver, muscle, and fat; marked insulin resistance in liver and fat of mutation-harboring animals; and insulin resistance in vitro in cells derived from these mice. In addition, mutant mice displayed defective insulin secretion and GLP-1 action on islets in vivo and in vitro. These data demonstrate the ability of this heterozygous mutation to alter PI3K activity in vivo and the central role of PI3K in insulin/growth factor action, adipocyte function, and glucose metabolism.

Introduction

Insulin and most growth factors regulate diverse biological processes, including cell growth, cell survival, and metabolism, by virtue of their ability to activate phosphatidylinositol 3-kinase (PI3K). This leads to generation of phosphatidylinositol 3,4,5 trisphosphate (PIP3), which in turn activates AKT and other downstream kinases (1). Class 1a PI3Ks exist as obligate heterodimers composed of a regulatory subunit and a catalytic subunit. The regulatory subunits are products of one of 3 genes: PI3K (PIK3R1), which gives rise to p85α and its spliced isoforms p55α and p50α; PIK3R2, which encodes p85β; and PIK3R3, which encodes p55γ. The catalytic subunits are also encoded by 3 genes, PIK3C1, PIK3C2, and PIK3C3, which encode p110α, p110β, and p100γ, respectively. In most somatic tissues, the predominant regulatory and catalytic subunits are p85α and p110α. The fundamental importance of this pathway in insulin action, growth, and metabolism has been demonstrated in studies using pharmacological inhibitors of the enzyme and through the generation of animal models in which genes encoding regulatory or catalytic subunits have been disrupted (2–5). Indeed, homozygous deletion of the genes encoding p110α or p110β or all p85α gene products leads to embryonic or perinatal lethality. Conversely, constitutive activation of this pathway has been linked to the pathogenesis of a variety of cancers and diseases of overgrowth such as Cowden syndrome (6).

SHORT syndrome is an autosomal dominant disorder, which was originally characterized as a condition of short stature, hyperextensibility of the joints and/or hernia, ocular depression, rieger anomaly, and teething delay (7–10). Subsequent evaluation of additional patients revealed other prominent features, including partial lipodystrophy, with a selective reduction in subcutaneous adipose tissue in the face, flank, and buttocks, as well as marked insulin resistance (7, 8). Recently, we and others have shown that the SHORT syndrome is associated with mutations in the Pik3r1 gene that encodes p85α (11–15). Mutations cluster in the region encoding the C-terminal SH2 domain of p85α that is essential for binding of PI3K to tyrosine phosphorylated proteins, such as insulin receptor (IR) substrate-1 (IRS-1) and many growth factor receptors (11, 12, 14, 15). The most common mutation in the affected individuals is the Arg649Trp missense mutation; we have demonstrated that this mutation markedly attenuates the insulin-dependent activation of the PI3K pathway in vitro (11). Other missense mutations (Glu489Lys, Arg631Gln), as well as a deletion (Ile539del), truncation (Tyr657*), and frame-shift insertions (Asn636Thrfs*18, Asp643Aspfs*8, Arg649Profs*) have also been described (3, 7, 8, 15). In the present study, we have generated knockin mice that are heterozygous for the most common mutation (Arg649Trp) observed in patients with SHORT syndrome to define the role of this mutation on the...
PI3K pathway in vivo and to determine the mechanisms that contribute to the complex phenotype of this disease.

Results

Heterozygosity for the Pik3r1 R649W mutation in mice leads to growth abnormalities. To generate a mouse model of SHORT syndrome that could be used to study the role of the PI3K pathway in insulin action and cell growth in vivo, as well as the pathophysiology of this disease, a synonymous mutation (Arg649Trp or R649W) was introduced into the endogenous Pik3r1 locus in mice by gene targeting, as described in Supplemental Figure 1A (supplemental material available online with this article; doi:10.1172/JCI84005DS1). Successful introduction of the mutation was confirmed by sequencing genomic DNA from p85α WT/R649W animals (Supplemental Figure 1B).

Extended breeding of p85α WT/R649W mice failed to yield a single homozygous pup, suggesting that homozygosity for the R649W allele results in embryonic lethality. Consistent with clinical features of patients with SHORT syndrome, heterozygous mutant animals exhibited a decrease in size compared with WT littermates (Figure 1A). Growth curves over the first 3 months of life indicated that both male and female p85α WT/R649W mice had significant decreases in body weight when compared with that of controls at all time points examined (Figure 1B). This difference in body weight persisted at 6 months of age, at which time male p85α WT/R649W mice weighed 12.8% less than controls (Figure 1C).

Body length was also decreased at 12 weeks of age, with a mean nose-to-anus length of 98.4 ± 2.7 mm compared with 92.8 ± 1.8 mm for controls (P < 0.01; Figure 1D), and tibial length was significantly reduced in p85α WT/R649W mice compared with that in controls (16.3 ± 0.08 mm vs. 16.6 ± 0.08 mm, P < 0.05; Figure 1E). These changes occurred despite a modest, but significant, elevation in serum IGF-1 levels in p85α WT/R649W mice (12.3 ± 0.17 ng/dl vs. 11.4 ± 0.14 ng/dl, P < 0.005; Figure 1F), suggesting the presence of IGF-1 resistance in these animals.

Heterozygous mutant mice exhibit alterations in adipose tissue. Patients with SHORT syndrome exhibit partial lipodystrophy characterized by a selective reduction in subcutaneous adipose tissue (7, 8, 15). Mirroring this phenotype, p85α WT/R649W mice had a significant reduction in subcutaneous adipose tissue mass compared with that of controls (0.66 ± 0.05 g vs. 0.95 ± 0.1 g, P < 0.05); this occurred with no change in epididymal white or interscapular brown adipose tissue mass (Figure 2A). This was due to a significant decrease in average adipocyte size in subcutaneous adipose tissue (2.408 ± 29.9 μm² vs. 3.039 ± 30.6 μm², P < 0.001; Figure 2, B and C) and a change in adipocyte size distribution, with a higher frequency of smaller adipocytes (Figure 2, D and E). No change in lean mass was observed, as assessed by dual-energy X-ray absorptiometry analysis. There was also no change in tibialis anterior or liver weight, when adjusted for body weight, indicating proportional growth retardation in other organs of p85α WT/R649W mice (Supplemental Figure 2, A–C). When adjusted for body weight, food and water consumption were unchanged in p85α WT/R649W mice, and exogenous administration of leptin for 72 hours led to a comparable degree of weight loss in control and mutant mice, suggesting that the observed decrease in body size is likely not due to alterations in leptin action (Supplemental Figure 2, D and E). At 9 months of age, there was a significant decrease in epididymal and subcutaneous adipose tissue in mutant animals, and an evaluation of adipocyte area revealed an overall decrease in adipose tissue mass, with a size distribution consistent with a higher frequency of small adipocytes in both depots (Supplemental Figure 2, F–I). In contrast, brown adipose tissue weights, when normalized to body weight, remained unchanged at 9 months of age (Supplemental Figure 2J). Despite these alterations, liver histology as well as circulating free fatty acids and triglycerides remain unaltered in mutant mice (Supplemental Figure 4, A–C). The percentage of adipose tissue progenitor cells isolated from the stromalvascular fraction of epididymal and subcutaneous adipose tissue did not differ among the groups (Supplemental Figure 3A). In addition, no change in the differentiation potential of preadipocytes isolated from the stromal-vascular fraction of subcutaneous and brown adipose tissue was observed between the two groups (Supplemental Figure 3B).

Heterozygous mutant mice are insulin resistant. Most patients with SHORT syndrome are insulin resistant. Although no differences in fasting blood glucose levels were observed (Figure 3A and Supplemental Figure 5A), fed male p85α WT/R649W mice exhibited marked hyperglycemia when compared with controls (318.2 ± 25.3 mg/dl vs. 213.8 ± 15.7 mg/dl, P < 0.01; Figure 3A). Fed serum insulin levels were markedly elevated in female p85α WT/R649W mice, whereas both fasted and fed levels were significantly elevated in male p85α WT/R649W mice (Figure 3B and Supplemental Figure 5B), and there was an increase in insulin resistance, as measured by the homeostasis model assessment of insulin resistance (HOMA-IR), which was significantly increased in both male (1.36 ± 0.05 vs. 2.76 ± 0.29, P < 0.001) and female (1.29 ± 0.18 vs. 1.88 ± 0.18, P < 0.05) mutant mice (Figure 3C and Supplemental Figure 5C). This was associated with a significant elevation of glucose levels during an i.p. glucose tolerance test in both male and female p85α WT/R649W mice compared with that in controls (Figure 3D and Supplemental Figure 5D). Consistent with insulin resistance, both male and female p85α WT/R649W mice showed no decrease in blood glucose during an insulin tolerance test compared with that in controls (Figure 3E and Supplemental Figure 5E). Euglycemic-hyperinsulinemic clamps revealed marked insulin resistance in male p85α WT/R649W mice, with a 58% reduction in the glucose infusion rate when compared with that in controls (46.4 ± 6.63 μg/kg/min vs. 73.3 ± 3.03 μg/kg/min, P < 0.01) and a concomitant decrease in the rate of glucose turnover when compared with that in controls (51.8 ± 3.44 μg/kg/min vs. 63.8 ± 2.04 μg/kg/min, P < 0.05) (Figure 3G). In addition, hepatic glucose production was only suppressed by 76% in p85α WT/R649W mice compared with 100% suppression in controls, at the concentration of insulin used (P < 0.01; Figure 3H). Tissue glucose uptake was evaluated by assessing the uptake of 2-deoxy-[^14C] glucose into skeletal muscle, brown fat, and epididymal white adipose tissue following the clamp period. Somewhat surprisingly, no difference was observed in skeletal muscle and brown adipose tissue glucose uptake between WT and mutant mice, but a very significant impairment in glucose uptake in white adipose tissue was observed in p85α WT/R649W mice when compared with that in controls (70.8 ± 12.2 nmol/g/min vs. 32.6 ± 4.2 nmol/g/min; P < 0.01; Figure 3I and Supplemental Figure 5H).

Oxygen consumption, carbon dioxide production, and respiratory exchange ratio were unaltered in p85α WT/R649W mice when compared with those in controls (Supplemental Figure 6, A and B).
The R649W mutation attenuates IR signaling in vivo. In order to characterize the molecular mechanism(s) contributing to the development of the insulin resistance observed in p85αWT/R649W mice, insulin signaling was assessed in vivo 10 minutes following an insulin injection. Whereas insulin elicited a robust increase in IR phosphorylation in adipose tissue, liver, and skeletal muscle in control animals, this response was significantly attenuated in p85αWT/R649W mice (Supplemental Figure 7A), despite the presence of comparable IR levels (Figure 5A). Likewise, there was a marked decrease in stimulated IRS-1 tyrosine 608 phosphorylation in adipose tissue (89%), liver (37%), and skeletal muscle (83%) from p85αWT/R649W mice (Figure 5A and Supplemental Figure 7B). As predicted, despite the absence of any changes in AKT expression, the insulin-dependent phosphorylation of AKT was also markedly reduced in adipose tissue (63%) and liver (73%) from p85αWT/R649W mice in addition to a more modest, but significant, decrease in skeletal muscle (Figure 5, A and B). This reduction in insulin-dependent phosphorylation of AKT was associated with 72% and 46% reductions in AKT enzyme activity in extracts of liver and skeletal muscle, respectively, from mutant mice (Figure 5C). Immunohistochemistry revealed a robust, insulin-dependent increase in anti-PIP3 immunoreactivity in livers from p85αWT/WT mice, and this response was visibly diminished in livers from p85αWT/R649W animals (Figure 5D). Consistent with the decrease in AKT phosphorylation/activation, p85αWT/R649W mice also exhibited a decrease in insulin-stimulated phosphorylation of AKT substrates GSK-3α/β and FOXO1/3 in p85αWT/R649W hepatocytes, despite the absence of any change in the expression of the IR, AKT, GSK-3β, or FOXO1 (Figure 5E and Supplemental Figure 8A). Insulin signaling was also assessed in differentiated preadipocytes obtained from subcutaneous adipose tissue of control and mutant mice. In both control and mutant adipocytes, insulin elicited a robust increase in IRS-1 (Y608) and IR phosphorylation (Supplemental Figure 7C). In contrast, whereas
insulin robustly increased AKT (S473/T308) phosphorylation in control cells, this response was attenuated in mutant adipocytes (Supplemental Figure 7C). Collectively, these data demonstrate that the mutant p85α negatively affects the ability of insulin to efficiently activate the PI3K pathway, as well as upstream signaling, in all classical insulin target tissues. The small difference in AKT phosphorylation in skeletal muscle compared with that in other tissues in the knockin mice suggests that other regulatory subunits, such as p85β, may play a larger role in muscle than in other tissues or suggests the presence of some other compensatory pathway in this tissue.

The R649W mutation impairs insulin signaling in vitro. To better understand the multiple effects of the p85α mutation on insulin signaling, immortalized brown preadipocyte cell lines were derived from p85WT/WT and p85WT/R649W mice and were stimulated with insulin over a 30-minute time course. Whereas stimulation of p85αWT/WT cells resulted in a robust, time-dependent increase in IRS-1 and AKT phosphorylation, stimulation of p85αWT/R649W cells elicited only a modest increase in phosphorylation of both IRS-1 and AKT (Figure 6A). Likewise, PI3K activity assessed in anti–IRS-1 and anti-phosphotyrosine immunoprecipitates revealed a strong, insulin-dependent increase in p85αWT/WT cells, whereas no increase was observed in p85αWT/R649W cells (Figure 6B). This occurred with no change in the expression of p85α, p110α, and AKT.

In both patients and the knockin mice, the mutant p85α occurs in the presence of one normal p85α allele, as well as other potential regulatory subunits, such as p85β. To examine the signaling capacity of the mutant protein in the absence of endogenous p85α or p85β, we stably transfected immortalized mouse embryonic fibroblasts made from mice with genetic deletion of both Pik3r1 and Pik3r2 (and therefore devoid of p85α and p85β) with either WT or R649W p85α. Anti–pan p85 immunoblots confirmed the absence of p85α and p85β in control cells and the reconstitution of comparable levels of the WT or mutant p85α protein (Figure 6C). Reconstitution with either WT or mutant p85α had no effect on insulin-stimulated IR tyrosine phosphorylation when compared with the p8abe control (Figure 6C), but insulin-stimulated tyrosine 608 phosphorylation of IRS-1 was reduced in R649W mutant cells compared with that in controls (Figure 6C). By contrast, IRS-1 phosphorylation at tyrosine Y895 was augmented in cells which expressed either the WT or mutant p85α protein (Figure 6C). As expected, insulin-stimulated AKT phosphorylation was reduced in cells reconstituted with mutant p85α compared with that in controls (1.2 ± 0.16-fold vs. 3.0 ± 0.16-fold, P < 0.01; Figure 6C and Supplemental Figure 9). All of these changes in signaling occurred in the absence of any change in IR, IRS-1, or AKT levels.

Structural modeling and studies in primary fibroblasts isolated from patients with SHORT syndrome have suggested that the R649W mutation acts by reducing p85α binding to phosphorylated motifs on IRS-1 (7, 17, 18). To assess the interaction directly, we performed coimmunoprecipitation studies on p85α/β-deficient embryonic fibroblasts with enforced expression of WT or mutant p85α. p85α could be readily detected in IRS-1 immunoprecipitates from WT p85α cells following insulin stimulation but was not detected in IRS-1 immunoprecipitates from cells expressing mutant p85α (Figure 6D). The same was true when we immunoblotted for IRS-1 in anti-p85α immunoprecipitates from insulin-stimulated cells (Figure 6D). Similarly, coimmunoprecipitation studies performed on HEK293 cells transiently transfected with empty plasmid or vectors encoding V5-tagged WT p85α or p85αR649W showed a failure of the mutant protein to bind to IRS-1
dependent activation of AKT, which was reduced by >80% in cells expressing the mutant p85α. A modest decrease in AKT activation in cells expressing mutant p85α was also observed with EGF, although overall responsiveness to EGF was low in these cells (Figure 7A). Immunoblots performed with anti-actin antibodies confirmed equal protein loading under all conditions (Supplemental Figure 8B). Likewise, AKT phosphorylation in livers from p85αWT/R649W mice following exogenous administration of EGF was reduced compared with that in controls (Figure 7B and Supplemental Figure 11).

When the PI3K pathway was assessed in isolated hepatocytes from p85αWT/WT and p85αWT/R649W mice, stimulation of AKT phosphorylation by insulin, IGF-1, and EGF was reduced by >50% in p85αWT/R649W hepatocytes compared with that in controls, with no change in the level of receptor activation (Figure 7C). This resulted in a decrease in GSK-3α/β and FOXO1/3α phosphorylation in response to all 3 ligands, with no alteration in the expression of these proteins (Figure 7C and Supplemental Figure 8C). By

The R649W mutation confers resistance to growth factors. To determine whether the mutation would impair activation of the PI3K pathway downstream of growth factors other than insulin, p85α-deficient cells reconstituted with WT or mutant p85α were stimulated with insulin, PDGF, or EGF, and the extent of AKT phosphorylation was assessed. As noted in this and our previous study (11), expression of WT, but not mutant, p85α increased the insulin-dependent phosphorylation of AKT when compared with the control transfected cells (Figure 7A). Similarly, cells expressing WT p85α elicited a very robust increase in PDGF-dependent activation of AKT, which was reduced by >80% in cells expressing the mutant p85α. A modest decrease in AKT activation in cells expressing mutant p85α was also observed with EGF, although overall responsiveness to EGF was low in these cells (Figure 7A). Immunoblots performed with anti-actin antibodies confirmed equal protein loading under all conditions (Supplemental Figure 8B). Likewise, AKT phosphorylation in livers from p85αWT/R649W mice following exogenous administration of EGF was reduced compared with that in controls (Figure 7B and Supplemental Figure 11).

When the PI3K pathway was assessed in isolated hepatocytes from p85αWT/WT and p85αWT/R649W mice, stimulation of AKT phosphorylation by insulin, IGF-1, and EGF was reduced by >50% in p85αWT/R649W hepatocytes compared with that in controls, with no change in the level of receptor activation (Figure 7C). This resulted in a decrease in GSK-3α/β and FOXO1/3α phosphorylation in response to all 3 ligands, with no alteration in the expression of these proteins (Figure 7C and Supplemental Figure 8C). By
contrast, evaluation of ERK phosphorylation revealed a normal response to insulin and growth factors in mutant cells, indicating that the R649W mutation specifically impairs activation of the PI3K pathway.

Discussion

Although SHORT syndrome is a rare disease, it provides a unique opportunity to define the role of PI3K in human metabolism and growth. In the current study, we have generated mice heterozygous for the Pik3r1 R649W mutation, the most common mutation in SHORT syndrome, to explore the role of PI3K pathways in insulin action, physiology, and development in vivo. Mutant animals recapitulate many of the features of SHORT syndrome, including reduced body weight and length, reduced subcutaneous adipose tissue mass, alterations in glucose metabolism, and eye abnormalities (the latter will be reported separately). Moreover, using cell lines derived from this mouse and other in vitro models, we demonstrate that this single amino acid mutation in one SH2 domain of p85α, even in a heterozygous form, can impair the ability of insulin and other growth factors to activate the PI3K pathway and exert its downstream effects. This occurs through a loss of p85α binding to phosphorylated motifs on IR substrates and, in the same manner, to the phosphorylated motifs on growth factor receptors. Thus, this mutation negatively affects a variety of processes dependent upon insulin and growth factor action.

One interesting and unexpected aspect of the pathogenesis of this disease is that mice carrying the mutant p85α allele, even in a heterozygous form, are severely insulin resistant, with markedly decreased insulin activation of the PI3K pathway in insulin-responsive tissues, especially liver and adipose tissue. This occurs despite the presence of other PI3K regulatory subunits, such as p85β and p55γ (also known as p55αS). This is different from the phenotype of mice with a loss of one p85α allele, which demonstrate improved insulin signaling and glucose homeostasis and are protected from the development of diabetes when challenged with high-fat diet or bred to mice with genetic insulin resistance (19–21). The cause of this paradoxical increase in insulin sensitivity in heterozygous p85α-null mice and cells is the unusual stoichiometry of p85α and p110α/β catalytic subunits in normal cells. p85α is in excess of p110α, such that p85α exists as both monomeric (not p110-bound) and dimeric (p110-bound) forms. In p85α heterozygous knockout mice, there is a decrease in monomeric p85α, with only a slight decrease in the amount of p85α/p110 dimer, thereby creating a stoichiometric relationship that favors recruitment of the holoenzyme to IRS-1, leading to enhanced enzymatic activity (22). Likewise, overexpression of p85α in skeletal muscle increases the amount of monomeric p85α, leading to a reduction in insulin action and profound insulin resistance (23). The fact that the heterozygous p85α R649W mice do not phenocopy animals with a reduction in p85α levels indicates that the mutant protein is not simply inactive but is acting in a dominant-negative fashion.

Another unexpected finding in our studies is that the R649W p85α mutant protein also caused defects in signaling upstream of PI3K. In the case of insulin action, this manifested as a significant impairment in IR and IRS-1 tyrosine phosphorylation, which was observed in the knockin mouse in vivo and in some cell lines in vitro. While the exact mechanism of these upstream effects is unknown, several potential mechanisms exist, including changes in the activity of tyrosine phosphatases that dephosphorylate and inactivate the receptor and its substrates, such as protein tyrosine phosphatase 1B (PTP1B) and the LAR phosphatase (24, 25), or changes in subcellular localization or intracellular trafficking of...
these proteins mediated by changes in PI3K activity. Alternatively, the sustained hyperinsulinemia observed in mutant animals may lead to receptor desensitization and a concomitant decrease in insulin action, which we observed in vivo in insulin-responsive tissues (26–28). The decrease in the insulin-dependent phosphorylation of tyrosine 608 in IRS-1 that normally mediates binding of p85α may also reflect the fact that the mutant protein cannot bind to this site, leaving it more accessible to phosphotyrosine phos-

Figure 5. p85WT/R649W mice display impaired insulin signaling in vivo. (A) Analysis of insulin signaling in adipose tissue, liver, and skeletal muscle of p85WT/WT and p85WT/R649W mice administered insulin (5 U) or vehicle. Immunoblot analysis was performed with the indicated antibodies. (B) Quantification of p-AKT (S473) performed using ImageJ. Results are presented as mean ± SEM (n = 5–6 animals). (C) AKT activity was assessed in skeletal muscle and liver (n = 4–5 animals). (D) Immunofluorescence performed on liver sections using anti-PIP3 antibody (original magnification, ×40). (E) Immunoblot analysis of insulin signaling in primary hepatocytes isolated from p85WT/WT and p85WT/R649W mice in the absence or presence of insulin (10 nM) for the indicated times (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001; *P < 0.0005, unpaired Student’s t test.
syndrome has largely failed, most likely the result of a significant impairment in the IGF-1 axis.

Activation of the PI3K pathway is required for normal adipogenesis and insulin-dependent regulation of adipocyte metabolism (35–37). Although insulin is required for completion of the normal adipogenic program, we observed no difference in the frequency of adipocyte progenitor cells or the differentiation capacity of preadipocytes isolated from mutant animals. It is possible that the residual activation of the PI3K pathway in mutant cells is sufficient to effectively promote differentiation or the action of other growth factors that facilitate differentiation is not perturbed to a similar degree. Mice with the heterozygous R649W p85α mutation exhibit a reduction in adipose fat mass, primarily due to a reduction in adipocyte size. This is similar to that in mice with a fat-specific IR knockout (38). Missense mutations in AKT2, which is downstream of PI3K, lead to severe insulin resistance and partial lipodystrophy in humans (39). Multiple mechanisms are likely involved in these

A variety of growth factors involved in embryonic and postnatal development depend on PI3K for their action (29–32). Mice homozygous for the R649W mutation do not survive fetal life, and mice heterozygous for the R649W mutation exhibit a reduction in body length and tibial length, despite slightly increased IGF-1 levels, consistent with IGF-1 resistance. Humans with IGF-1 resistance due to IGF-1 receptor mutations exhibit intrauterine and postnatal growth defects and share some features with patients with SHORT syndrome, such as a growth deficit and craniofacial defects, including a triangular face and abnormal size and positioning of the ears (33, 34). Consistent with this hypothesis, growth hormone therapy in patients with SHORT syndrome has largely failed, most likely the result of a significant impairment in the IGF-1 axis.

Activation of the PI3K pathway is required for normal adipogenesis and insulin-dependent regulation of adipocyte metabolism (35–37). Although insulin is required for completion of the normal adipogenic program, we observed no difference in the frequency of adipocyte progenitor cells or the differentiation capacity of preadipocytes isolated from mutant animals. It is possible that the residual activation of the PI3K pathway in mutant cells is sufficient to effectively promote differentiation or the action of other growth factors that facilitate differentiation is not perturbed to a similar degree. Mice with the heterozygous R649W p85α mutation exhibit a reduction in adipose fat mass, primarily due to a reduction in adipocyte size. This is similar to that in mice with a fat-specific IR knockout (38). Missense mutations in AKT2, which is downstream of PI3K, lead to severe insulin resistance and partial lipodystrophy in humans (39). Multiple mechanisms are likely involved in these

Figure 6. The p85 R649W mutant shows reduced PI3K pathway activation.

(A) Insulin signaling in brown preadipocytes derived from p85αWT/WT and p85αWT/R649W mice. Cells were treated with insulin (10 nM) over a 30-minute time course. Insulin signaling was analyzed by immunoblotting (n = 3). (B) Quantification of PI3K assay measuring IRS-1-PI3K activity and PY-PI3K activity in arbitrary optical units in brown preadipocytes derived from p85αWT/WT and p85αWT/R649W mice. Results are presented as mean ± SEM. **P < 0.01; ***P < 0.001, unpaired Student’s t test. Cumulative data and statistical analysis of 3 independent experiments are presented (n = 3). (C) PI3K signaling assessed in reconstituted WT and R649W mutant immortalized mouse embryonic fibroblasts void of endogenous p85α/β (n = 3). pBabe was used as a control. (D) IRS-1 and p85 interaction assessed in p85α/p85β-deficient mouse embryonic fibroblasts reconstituted with WT or R649W mutant p85 (n = 2). (E) IRS-1 and p85 interaction assessed by coimmunoprecipitation performed in liver lysates from p85αWT/WT and p85αWT/R649W mice (n = 3).
in mutant islets at low glucose but significantly potentiated insulin secretion in high glucose conditions. GLP-1 stimulation has been demonstrated to lead to the acute stimulation of IRS-2 tyrosine phosphorylation and the subsequent recruitment of p85α as well as the p85α-dependent activation of Rap (43, 44). These data suggest that additional therapeutic modalities that augment insulin secretion in addition to insulin therapy may be warranted in patients with SHORT syndrome.

In conclusion, we have generated a mouse model of SHORT syndrome to investigate the pathophysiology of this disease and study the role of the PI3K pathway in vivo in biological processes, such as intrauterine and postnatal growth, development, and metabolism. These mice recapitulate multiple aspects of the disease, including reduced growth, a selective reduction in subcutaneous adipose tissue and the development of insulin resistance, and type 2 diabetes. More importantly, these mice present a clear in vivo demonstration of the role of PI3K in response to insulin as well as several growth factors, including IGF-1, PDGF, and EGF. These data provide mechanistic insight into the physiological role of the PI3K pathway in development and metabolism and demonstrate that the myriad of traits observed in patients with SHORT syndrome represent a state of generalized growth factor resistance.

Methods

Antibodies: Rabbit antibodies specific for phospho-IR/IGFR (product 3024), phospho-AKT (product 4060), pan AKT (product 4691), phospho-GSK-3α/β (product 8566), phospho-IRS-1 Y895 (product 3070) p110α (product 4255), p-FOXO1/FOXO3a (product 9464), GSK-3β (product 9315), and FOXO1 (product 2880) were from Cell Signaling Technology. Phospho-IRS-1 Y608 (catalog 09-432) and p85 (catalog ABS233) antibodies were from EMD Millipore, and antibodies for IR (sc-711), IRS-1 (sc-559), phospho-tyrosine (sc-508), and actin (sc-1616) were from Santa Cruz Biotechnology.

Generation of knockin mouse model with the Pik3r1 R649W mutation. Construction of the targeting vector and generation of the p85α WT/R649W mice was performed by GenOway. Briefly, the genomic DNA was digested using restriction enzymes, and the targeting vector was electroporated into ES cells. The ES cells were selected on G418 and X-gal selection plates. The positive clones were analyzed by Southern blotting and sequencing. The positive clones were then injected into blastocysts to generate chimeric mice, which were then mated with C57BL/6J mice to generate the pure genotypes. The offspring were genotyped using PCR and confirmed by sequencing. The mice were then used for further experiments.

Methods

Antibodies: Rabbit antibodies specific for phospho-IR/IGFR (product 3024), phospho-AKT (product 4060), pan AKT (product 4691), phospho-GSK-3α/β (product 8566), phospho-IRS-1 Y895 (product 3070) p110α (product 4255), p-FOXO1/FOXO3a (product 9464), GSK-3β (product 9315), and FOXO1 (product 2880) were from Cell Signaling Technology. Phospho-IRS-1 Y608 (catalog 09-432) and p85 (catalog ABS233) antibodies were from EMD Millipore, and antibodies for IR (sc-711), IRS-1 (sc-559), phospho-tyrosine (sc-508), and actin (sc-1616) were from Santa Cruz Biotechnology.

Generation of knockin mouse model with the Pik3r1 R649W mutation. Construction of the targeting vector and generation of the p85α WT/R649W mice was performed by GenOway. Briefly, the genomic DNA was digested using restriction enzymes, and the targeting vector was electroporated into ES cells. The ES cells were selected on G418 and X-gal selection plates. The positive clones were analyzed by Southern blotting and sequencing. The positive clones were then injected into blastocysts to generate chimeric mice, which were then mated with C57BL/6J mice to generate the pure genotypes. The offspring were genotyped using PCR and confirmed by sequencing. The mice were then used for further experiments.

Figure 7. The R649W mutant confers resistance to several growth factors. (A) AKT phosphorylation assessed in reconstituted WT and R649W mutant immortalized mouse embryonic fibroblasts treated with insulin, PDGF, and EGF for the indicated time course (n = 2), pBabe was used as a control. (B) Analysis AKT phosphorylation in livers of p85α WT and p85α R649W mice after administration of EGF (1 μg/g body weight) or vehicle for 5 minutes (n = 4–5). (C) Signaling in isolated primary hepatocytes following stimulation with insulin, IGF-1, and EGF for 10 minutes (n = 3). Immunoblotting was performed with the indicated antibodies.

Figure 7. The R649W mutant confers resistance to several growth factors. (A) AKT phosphorylation assessed in reconstituted WT and R649W mutant immortalized mouse embryonic fibroblasts treated with insulin, PDGF, and EGF for the indicated time course (n = 2), pBabe was used as a control. (B) Analysis AKT phosphorylation in livers of p85α WT and p85α R649W mice after administration of EGF (1 μg/g body weight) or vehicle for 5 minutes (n = 4–5). (C) Signaling in isolated primary hepatocytes following stimulation with insulin, IGF-1, and EGF for 10 minutes (n = 3). Immunoblotting was performed with the indicated antibodies.
region encompassing exon 17 was amplified by PCR and cloned into the pCR4-TOPO vector (Invitrogen). PCR-based site-directed mutagenesis was performed to introduce the mutation, and the insert was transferred into the targeting vector (CHU1-HR) containing a neomycin selection cassette flanked by FRT sites and loxP sites flanking exon 17 containing the R649W mutation (Supplemental Figure 1A). All exons and PCR fragments used for constructing the targeting vector were validated by DNA sequencing. The targeting vector was electroporated into C57Bl/6 ES cells, and G418-resistant clones were harvested and screened by PCR and Southern blot analysis. The recombined ES cell clones were injected into C57BL/6J blastocysts and were implanted into pseudopregnant females. PIK3R1-R649W-neo male mice were bred with female mice that express Flp recombinase to remove the selectable marker. Resultant animals were kept on a C57BL/6J background and housed on a 12-hour-light/12-hour-dark cycle, with ad libitum access to water and food (mouse diet F9; PMI Nutrition International).

Assessment of glucose metabolism. Blood glucose was measured in whole venous blood in the random fed state or following a 16-hour fast using the Infinity blood glucose monitoring system (USDiagnostic). Insulin levels were determined using an ELISA assay (Crystal Chem). For glucose tolerance testing, mice were fasted overnight (16 hours) and injected intraperitoneally with glucose at a dose of 2 g/kg body weight, and blood glucose concentrations were measured at the indicated time points. Insulin tolerance tests were performed by intraperitoneal administration of insulin (1 U/kg body weight) to mice in the random fed state followed by measurement of blood glucose concentrations at the indicated time points.

Hyperinsulinemic-euglycemic clamp and in vivo glucose uptake. The clamp was conducted in overnight-fasted, conscious mice by the National Mouse Metabolic Phenotyping Center at the University of Massachusetts Medical School (45). Briefly, whole-body glucose turnover was assessed using a continuous infusion of [3-3H]glucose, and a bolus injection of 2-deoxy-[14C]glucose was used during the clamp to measure insulin-stimulated glucose uptake in individual organs. Biochemical analysis and calculations were done as previously described (45).

Islet isolation and in vitro insulin secretion assay. Islets were isolated using the intraductal collagenase technique (46). Intact islets were hand picked under a stereomicroscope and allowed to recover overnight. Islets of similar sizes were then further selected, and 20 islets were transferred to each well of a 12-well plate to perform secretion experiments. Islets were preincubated in KRBB buffer supplemented with 2% BSA for 1 hour prior to incubation in low (2.8 mM) or high (16.7 mM) glucose in the presence or absence of GLP-1 (20 ng/ml). After incubation, media were collected, centrifuged, and stored at -20°C for determination of insulin levels by ELISA (Crystal Chem). Islets were collected, and DNA was extracted and quantified to normalize data.

Cell culture and treatment. All cells were cultured in DMEM supplemented with 10% FBS, penicillin, and streptomycin (Thermo Fisher Scientific) at 37°C and 5% CO2. Before treatment, cells were serum deprived in DMEM supplemented with 0.1% BSA for 3 hours and treated in the absence or presence of insulin, EGF, PDGF, or IGF-1 (Peprotech) for the indicated time points.

Protein extraction and immunoblotting. Cells and tissues were collected and lysed/homogenized in RIPA lysis buffer (EMD Millipore) supplemented with protease and phosphatase inhibitor cocktails (Biotools). Nuclei and insoluble debris were pelleted using a microcentrifuge at 21,130 g for 10 minutes at 4°C. Cells extracts were stored at -80°C or immediately subjected to SDS-PAGE. Protein concentrations were determined using the BCA assay according to the manufacturer’s instructions (Thermo Fisher Scientific). Protein lysates were subjected to SDS-PAGE and transferred to PVDF membrane (EMD Millipore). Immunoblotting was performed using the indicated antibodies. Quantification of immunoblots was performed using ImageJ. For immunoprecipitation studies, protein lysates were incubated overnight with the indicated antibodies. Immune complexes were captured by incubation with Protein A/G Plus-Agarose (Santa Cruz Biotechnology) for 1 hour at 4°C, washed 3 times with lysis buffer, and resolved by SDS-PAGE.

PI3K assay. Immunoprecipitations with the indicated antibodies were performed overnight in buffer A containing 25 mM Tris-HCl (pH 7.4), 2 mM NaVO4, 10 mM NaF, 10 mM Na3PO4, 1 mM EGTA, 1 mM EDTA, and 1% Nonidet P-40 supplemented with protease and phosphatase inhibitor cocktails (Biotools). Immune complexes were captured with Protein A/G Plus-Agarose (Santa Cruz Biotechnology) for 1 hour at 4°C. Immunoprecipitates were washed 3 times in buffer A containing 500 mM NaCl and 2 times in PI3K reaction buffer (20 mM Tris-HCl [pH 7.4], 100 mM NaCl, 0.5 mM EGTA) and suspended in 50 μl of PI3K reaction buffer containing 0.1 mg phosphatidylinositol/ml (Avanti Polar Lipids). The reactions were performed for 25 minutes at room temperature, and phosphorylated lipids were separated by thin-layer chromatography (TLC) as previously described (42).

AKT assay. AKT activity was assessed essentially as previously described (47). Briefly, cells were lysed with buffer A supplemented with protease and phosphatase inhibitors, and lysates were subjected to immunoprecipitation with anti-AKT antibodies (Santa Cruz Biotechnology). Immunoprecipitates were washed 3 times with buffer A and once with kinase reaction buffer (50 mM Tris-HCl [pH 7.5], 10 mM MgCl2, and 1 mM dithiothreitol). Immunoprecipitates were resuspended in kinase reaction buffer, to which 50 μM ATP, 5 μCi [γ-32P] ATP, and 1 μg peptide substrate was added. Following a 20-minute incubation at 30°C, the reaction was stopped, aliquots were spotted onto P81 phosphocellulose paper and washed with 0.5% phosphoric acid, and radioactivity was measured.

Isolation of primary hepatocytes. The isolation of primary hepatocytes from WT and p53ΔRT bearing animals was achieved as previously described with minor modifications (48). The liver was perfused via the portal vein with liver perfusion media (0.02% EGTA solution buffer) and digested with liver digestion media (Earl’s Balanced Salts, 2% penicillin and streptomycin, and 0.4 mg/ml collagenase). The liver was excised, and hepatocytes were released by manual disruption of the tissue. Hepatocytes were then layered on a 90% Percoll gradient and centrifuged at 180 g for 10 minutes. The viable cells were recovered from the bottom of the tube. Cells were seeded onto collagen-coated plates, and the media were changed after 4 hours. Primary hepatocyte experiments were performed the day after isolation.

Histological analysis. Tissues were fixed overnight with neutral-buffered 10% formalin at 4°C, paraffin embedded, sectioned, and stained with hematoxylin and eosin. Adipocyte area was determined by quantifying the adipocyte area of a minimum of 750 cells from 4 to 5 animals per study group using Adiposoft image analysis software.

Statistics. All data are presented as mean ± SEM. GraphPad Prism software (version 6) was used to perform the statistical analysis. Unpaired, 1-tailed t tests or 1-way ANOVA (Tukey’s multiple compar-
ison test) were used to analyze differences among the control group and one or more independent treatment groups. A P value of less than 0.05 was considered significant.

Study approval. All animal experiments were approved by and conducted in accordance with guidelines established by the Institutional Animal Care and Use Committee at the Joslin Diabetes Center.

Author contributions
ED, HT, MS, KKC, HN, HJK, and JKK designed and performed experiments and interpreted data. JNW, MHS, AM, CRK, and PRN oversaw all aspects of this research.

Acknowledgments
We would like to thank Rohit Kulkarni at the Joslin Diabetes Center for helpful discussion. We would like to thank the Physiology Core at the Joslin Diabetes Center for performing and interpreting the comprehensive lab animal monitoring system and dual-energy X-ray absorptiometry analysis and the National Mouse Metabolic Phenotyping Center at the University of Massachusetts Medical School for performing the hyperinsulinemic-euglycemic clamp study. This work was supported by R01 DK055545 (to C.R. Kahn) from the National Institute of Digestive and Diabetes and Kidney Diseases. The National Mouse Metabolic Phenotyping Center at the University of Massachusetts is funded by NIH grant U24-DK093000. This work was also supported by the European Research Council (293574 to P.R. Njølstad), the Research Council of Norway (to P.R. Njølstad), the University of Bergen, and the Western Regional Health Authorities. M.H. Solheim was supported in part by funds from the University of Bergen, the KG Jebsen Foundation, the Norwegian Society of Endocrinology, Eckbo’s Foundation, Tom Wilhelmsen Foundation, and the Norwegian Diabetes Association.

Address correspondence to: C. Ronald Kahn, Joslin Diabetes Center, Section on Integrative Physiology and Metabolism, One Joslin Place, Boston, Massachusetts 02215, USA. Phone: 617.732.2635; E-mail: c.ronald.kahn@joslin.harvard.edu. Or to: Pål R. Njølstad, Department of Clinical Science, University of Bergen, Department of Pediatrics, Haukeland University Hospital, N-5021 Bergen, Norway. Phone: 47.55.97.51.53; E-mail: pal.njolstad@uib.no.

32. Wallborn T, et al. A heterozygous mutation of...
the insulin-like growth factor-I receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation. J Clin Endocrinol Metab. 2010;95(5):2316–2324.

