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ABSTRACT 

Integral membrane proteins (IMPs) assume critical roles in cell biology 

and are key targets for drug discovery.  Given their involvement in a wide range 

of diseases, the structural and functional characterization of IMPs are of 

significant importance. However, this remains notoriously challenging due to the 

difficulties of stably purifying membrane-bound, hydrophobic proteins.  

Compounding this, many diseases are caused by IMP mutations that further 

decrease their stability.  One such example is cystic fibrosis (CF), which is 

caused by misfolding or dysfunction of the epithelial cell chloride channel cystic 

fibrosis transmembrane conductance regulator (CFTR). Roughly 70% of CF 

patients world-wide harbor the ΔF508-CFTR mutation, which interrupts CFTR’s 

folding, maturation, trafficking and function.  No existing treatment sufficiently 

addresses the consequences of ΔF508, and the substantial instability that results 

from this mutation limits our ability to study ΔF508-CFTR in search of better 

treatments.  To that end, my colleagues at Sanofi generated homology models of 

full-length wild-type and ΔF508-CFTR +/- second-site suppressor mutations 

(SSSMs) V510D and R1070W, and performed molecular dynamics (MD) 

simulations for each model.  Using information obtained from this analysis, I 

tested several hypotheses on the mechanism by which ΔF508 destabilizes full-

length CFTR and how SSSMs suppress this effect. Leveraging studies of the 

purified NBD1 subdomain and of full-length CFTR in a cellular context, I 

confirmed the prediction of a key salt-bridge interaction between V510D and 

K564 important to second-site suppression. Furthermore, I identified a novel 
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class of SSSMs that support a key prediction from these analyses: that helical 

unraveling of TM10, within CFTR’s second transmembrane domain, is an 

important contributor to ΔF508-induced instability.  In addition, I developed a 

detergent-free CFTR purification method using styrene-maleic acid (SMA) 

copolymer to extract the channel directly from its cell membrane along with the 

surrounding lipid content. The resulting particles were stable, monodisperse 

discs containing a single molecule of highly-purified CFTR. With this material, I 

optimized grid preparation techniques and carried out cryo-EM structural analysis 

of WT-hCFTR which resulted in 2D particle class averages which were 

consistent with an ABC transporter shape characteristic of CFTR, and a 

preliminary 3D reconstruction. This result establishes a foundation for future 

characterization of ΔF508-CFTR in its native state. I have also applied this SMA-

based purification method to the facilitated glucose transporter GLUT1 

(SLC2A1). SLC2A1 mutations contribute to a rare and developmentally 

debilitating disease called GLUT1-deficiency syndrome. Using SMA, I 

successfully extracted GLUT1 in its native state. With the application of this 

method, I was able to purify endogenous GLUT1 from erythrocytes, in complex 

with several associated proteins as well as the surrounding lipids, in its 

monomeric, dimeric and tetrameric forms without the use of cross-linking or 

chimeric mutations. These results point to the potential for studying isolated IMPs 

without the use of destabilizing detergents and thereby offer a pathway to 

analysis of wild-type and mutant membrane protein structure, function and 

pharmacodynamics.  
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CHAPTER I: INTRODUCTION 

1.1 Membrane proteins in human disease 
 

In 1958, the first crystal structure of a protein, myoglobin, was determined 

to a resolution of 6Å (Kendrew et al., 1958).  Within two years this structural 

model was improved to 2Å (Kendrew et al., 1960).  It was 25 more years before 

the first high-resolution structure of a membrane protein  – the photosynthetic 

reaction center of Rhodopseudomonas viridis – would be solved (Deisenhofer et 

al., 1985).  In the early 1980’s, the first studies to demonstrate reversible 

unfolding of a membrane protein were published (Huang et al., 1981; London 

and Khorana, 1982); however, not until 1995 was this behavior quantitatively 

measured and reported (Booth et al., 1995), 33 years after the same was 

accomplished with ribonuclease (Haber and Anfinsen, 1962). And while still 

meaningful, these landmark membrane protein (MP) experiments were all 

performed with thermostable, endogenously expressed and readily available 

bacterial proteins like photosystems (Kurisu et al., 2003; Palczewski et al., 2000), 

ATP synthases (Abrahams et al., 1994; Liu et al., 2004) and electron transport 

chain complexes (Sakai and Tsukihara, 1998; Sun et al., 2014).  In fact, this was 

true for nearly all structural and functional analysis of α-helical MPs, with the 

occasional exception being a mammalian protein recombinantly expressed in 

bacteria (Palczewski et al., 2000).  This remained the case until 2005, when Long 
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et al. published the first eukaryotic MP structure at atomic resolution for a 

mammalian voltage-dependent K+ channel using recombinant expression (Long 

et al., 2005).   

While this discrepancy in structural analysis between soluble and 

membrane-bound proteins isn’t at all surprising, considering the tendency of 

eukaryotic proteins to be low-expressing and highly unstable, it is unfortunate for 

a number of reasons.  MPs occupy a valuable place within the drug discovery 

landscape, given the extensive relationship between integral MP (IMP) 

dysregulation and human disease.  In fact, protein folding defects are implicated 

in nearly all types of disease (Sanders and Myers, 2004).  Often times, it is a 

single point mutation or incorrect molecular interaction that triggers misfolding, 

making them attractive candidates for pharmacological folding chaperones 

(Marinko et al., 2019; Sanders and Myers, 2004). Accordingly, MPs are the target 

of nearly 70% of drugs currently approved by the FDA (Niesen et al., 2017). Yet 

even though they hold such a significant role in human health and disease, and 

represent 30% of the human genome (Uhlen et al., 2015), MPs only account for 

a small fraction of published protein structures.  In fact, of the >150,000 

structures deposited into the protein data bank (PDB), only 884, or 0.59%, are of 

membrane proteins (White, 2019).   
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1.1.1 The challenge of membrane protein characterization 
 
 Important gaps in our understanding of MP biology, especially those that 

relate to protein structure, can be attributed to several factors: low expression 

levels, limited stability when purified, prevalence of hydrophobic residues, and 

the need for an ordered and stabilizing environment provided by exogenous 

lipids or detergents, to name a few (Niesen et al., 2017; Seddon et al., 2004; 

Yang et al., 2014). For these, one key limitation underlies all: MPs are defined by 

their endogenous location within a lipid bilayer, and have evolved to exist there 

for a purpose and occupy certain roles accordingly (Bigay and Antonny, 2012; 

Hirama et al., 2017). It therefore stands to reason that removing MPs from their 

preferred context can change their intrinsic properties (i.e., structure and 

function), as MPs often rely on the lateral pressure and proximity of certain 

phospholipids for support (Bayburt and Sligar, 2010; Niesen et al., 2017). 

Proteins adopt conformations that result in local energy minima in relation to their 

surrounding environment.  Consequently, removing MPs from their normal 

membrane context can have deleterious effects, altering their kinetic and 

structural characteristics.  

With that said, there are reasonable membrane mimetics that can be 

employed for the purpose of solubilizing MPs; however, it is necessary to 

consider the impact these may have on the protein of interest. The current 

methods for purifying full-length MPs into detergent micelles often result in 
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suboptimal yields of functional protein with limited stability (Hildebrandt et al., 

2017; Yang et al., 2014). In addition, detergent molecules such as n-Dodecyl β-

D-maltoside (DDM), a standard for MP purification, often interfere with 

biophysical characterization. 

Moreover, if we hope to fully understand the endogenous characteristics 

of a membrane protein, it behooves us to consider the lipid bilayer that 

accompanies it.  Just as there exists a canonical understanding that protein 

structure and function are inextricably linked, the same holds true for the wide 

array of lipids that comprise a eukaryotic cell membrane. Indeed, the Fluid 

Mosaic Model of non-specific lipid-protein interactions that once served as the 

standard for our understanding of the lipid bilayer has, in recent decades, been 

replaced by a more deliberate model of lateral organization (Corradi et al., 2018; 

Singer and Nicolson, 1972; van Meer et al., 2008).  This is of particular 

importance when considering that lipids are involved in the regulation of MP 

trafficking, localization, oligomerization and activity, and are known to act as 

messengers in receptor signaling cascades (Contreras et al., 2011; van Meer et 

al., 2008).  Hence, to fully form our understanding of how a MP functions, our 

interpretation of its structure should not solely consist of the amino acids that 

define its secondary and tertiary structure, but should reflect the lipids that 

surround it as well. And whenever possible, including these lipids in the analysis 

is preferable, albeit challenging with methods currently available.        
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However, despite the continued difficulty inherent in studying MPs and the 

relatively modest progress made in the field of MP structural biology, examining 

the rate at which new atomic-level MP structures are being deposited to the PDB 

confirms that the field is experiencing exponential growth (Figure 1.1). From the 

time the first MP high resolution structure was solved in 1985 to about the year 

2000, the annual rate of new structures being reported was in the single digits 

(White, 2019).  Around the year 2000, however, technological advances like the 

development of lipidic cubic phase (LCP) (which is still the preferred method for 

creating MP crystals) and improvements in automation and analysis software 

helped propel MP structural analysis forward (Pebay-Peyroula et al., 1997).  

Despite this, atomic resolution of MPs is still challenging with the standard 

methodology, particularly given the difficulty of creating an ordered crystal with 

an inherently disordered protein. 
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Figure 1.1 Total accumulated (top) or per-year (bottom) number of unique 
membrane protein structures deposited to the protein data bank (PDB).  
Graph adapted from Membrane Proteins of Known 3D Structure Database; Data 
compiled by the White Lab, UC Irvine, values are as of April 9, 2019; 
https://blanco.biomol.uci.edu/mpstruc/ 

https://blanco.biomol.uci.edu/mpstruc/
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1.1.2 Cryo-Electron Microscopy and the “resolution revolution” 
 

The advent of the cryo-EM “revolution” has provided a new path to high-

quality, high-resolution structures of MPs.  This method offers structural 

biologists not only a way to visualize MPs, but also provides insight into their 

function, given that particles of any conformation can be captured (Qiu et al., 

2018; Zhang et al., 2017), a significant limitation of crystallography. Electron 

microscopy has been in use for nearly 100 years, and has allowed scientists to 

view structures at a resolution that visible light wavelength never could (de Jonge 

et al., 2014; Gordon, 2014), yet the use of such a powerful source of energy for 

imaging is not without certain drawbacks. Particle damage due to beam heat, 

staining with heavy metal salt like uranyl acetate, and the required removal of 

water molecules that interfere with imaging  limited the resolution that could be 

obtained (Frank, 2006). Then in 1960, Humberto Fernández-Morán published on 

the concept of suspending particles in ice as a means of capturing them in their 

native state with water molecules intact (Fernandez-Moran, 1960); a concept that 

was perhaps ahead of its time.  It took about 15 years for that concept to be a 

tangible reality, when Taylor and Glaeser (Taylor and Glaeser, 1974, 1976) 

published the first evidence of imaging a frozen, hydrated specimen with true 

success; thus providing the basis for cryo-EM. Around the same time, Henderson 

and Unwin successfully applied the concept of class-averaging to acquire a 3-

dimensional model of a 7-transmembrane protein embedded in a purple-colored 
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membrane patch of H. halobium, a specimen that provided the basis for much of 

the early work surrounding 3-dimensional electron microscopy (3DEM) 

(Henderson, 1977; Henderson and Unwin, 1975).  

While the concept of frozen specimen preparation solved the issue of 

dehydration effects and (to a certain extent) particle damage, it also introduced a 

level of variation and imaging interruption due to crystalline ice formation. This 

issue was overcome with the introduction of vitreous ice formation (Brüggeller 

and Mayer, 1980; Dubochet and McDowall, 1981), a biological concept that, 

amusingly, was characterized as “bending nature” by a dubious journal editor 

(Dubochet, 2012).  From there, developments in thin film vitrification and image 

processing (Dubochet et al., 1988; Frank, 2006) helped to establish this method 

as a tangible approach to atomic-level microscopy, and not simply a “niche” 

method (Callaway, 2015). And in between the landmark findings of Dubochet and 

Frank were the small, step-wise advances in sample preparation, 2D- and 3D-

particle averaging, phase contrast imaging, and direct electron detection 

(Bammes et al., 2012; Murata and Wolf, 2018).  

In 2008, Direct Electron (San Diego, CA) changed the landscape of MP 

structural biology with the development of the direct detection device (DDD) for 

electron microscopy (Jin et al., 2008; Milazzo et al., 2011). This technology was 

created as a radiation-tolerant alternative to the charge coupled device (CCD) 

system, which required the use of a resolution-limiting scintillation screen to allow 
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for electron-to-photon conversion (Jin et al., 2008; Xuong et al., 2004). In 2011, 

FEI (The Netherlands) followed with the commercial launch of its first direct 

electron detector, the “Falcon” (Kuijper et al., 2015). The availability of this 

improved detection system was responsible for the second significant increase in 

the rate of MP structure determination (White, 2019).  Two years later, Gatan, 

Inc. (Pleasanton, CA) followed the release of the Falcon with the Gatan K2, and 

in 2015 they introduced the Gatan K2 Summit direct electron detector, which was 

responsible for the most significant increase in the number of high resolution 

maps obtained using cryo-EM (White, 2019).    

 Today, cryo-EM is widely seen as the standard for high-resolution 

structural analysis.  The method lends itself to particle visualization across a wide 

range of conformations, molecular sizes - published structures range from low 

kilo-Daltons up to mega-Daltons – and specimen types (Liu et al., 2018; Murata 

and Wolf, 2018). With the exponential wealth of knowledge that has sprung from 

the early discoveries of scientists like Jacques Dubochet, Joachim Frank and 

Richard Henderson, cryo-EM will likely continue to change the course of biology.     
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1.2 Cystic Fibrosis Transmembrane Conductance Regulator 

 
1.2.1 Structure, function and clinical relevance 
 

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-

gated, phosphorylation-regulated chloride channel found in the apical membrane 

of epithelial cells.  It contains 1480 amino acid residues and measures ~170kD in 

size (Meng et al., 2019; Riordan, 2008; Sheppard and Welsh, 1999).  CFTR is a 

large, multi-pass protein that comprises five domains: two transmembrane 

domains (TMD1 and TMD2) each with six transmembrane (TM) α-helices, two 

cytoplasmic nucleotide-binding domains (NBD1 and NBD2) and a regulatory (R) 

domain with multiple PKA and PKC phosphorylation sites (Figure 1.2) (Amaral 

and Kunzelmann, 2011; Chiaw et al., 2011; Hegedűs et al., 2009; Hunt et al., 

2013; Lewis et al., 2010; Linsdell, 2014). Although a member of the ATP-binding 

cassette (ABC) transporter family (ABCC7), which normally function as active 

transporters, CFTR instead utilizes its ATP binding domains as a non-catalytic 

gating mechanism.  Upon ATP binding to the NBDs, CFTR is held in an outward-

facing, open conformation, facilitating passive transport of chloride ions down a 

concentration gradient (Dean et al., 2001; Pezzulo et al., 2012). CFTR channel 

gating is driven by phosphorylation and dephosphorylation, primarily of the R 

domain (Cheng et al., 1991; Rich et al., 1993).  When in the inactive, or closed 

state, the unstructured R domain appears to reside (at least in part) in an 
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inhibitory position within a cavity between TMDs 1 and 2, interfering with the 

dimerization of the NBDs (Zhang et al., 2017), However, upon phosphorylation 

by the cAMP-dependent protein kinase (PKA), CFTR undergoes a significant 

conformational change that starts with movement of the R domain away from the 

channel opening, which allows ATP-driven dimerization of NBD1 and NBD2 and 

subsequent channel opening (Zhang et al., 2017). See Figure 1.3 for cryo-EM 

structures in both the open and closed conformations. In the two structures, the 

visible portion of the largely unstructured R domain is represented by a purple 

helix. Remaining residues of the domain that were disordered and not visualized 

in the final map are not present in the PDB and not included in the figure. 

The two heterodimeric NBDs are each characterized by the presence of 

nucleotide-binding Walker motifs A and B: NBD1 containing the sequences 

GSTGAGKTS and LYLLDSP, and NBD2, GRTGSGKST and ILLLDEP, for A and 

B, respectively. Although both NBDs have the capacity to bind ATP, it is the 

Walker B domain of NBD2, specifically Glu1371, which is necessary for ATP 

hydrolysis (Stratford et al., 2007). NBD1 is catalytically inactive due to the 

replacement of the Walker-B carboxylate residue (often a Glu or His) needed to 

facilitate ATP recognition and hydrolysis, which is instead a Ser residue (Ser573) 

(Lewis et al., 2004). Immediately preceding the Walker B site is a highly 

conserved sequence motif ‘linker peptide’ (LSGGQQ/R/KQR) that is shared 

among members of the ABC transport family (Chen and Hwang, 2008; Schneider 

and Hunke, 1998).   
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Figure 1.2 Topology of CFTR in both the closed (top) and open (bottom) 
conformations.  These topologies show the two transmembrane domains 
(TMDs), two nucleotide binding domains (NBDs), the adjacent regulatory 
insertion (RI), and the regulatory domain (R domain), which is the site of several 
CFTR phosphorylation sites (top) (Hegedűs et al., 2009). Residues 
phosphorylated by PKA are denoted in green (stimulatory) or red (inhibitory) 
(Wilkinson et al., 1997), while PKC sites are purple (Chappe et al., 2004). 
Residues not known to be involved in channel activation are shown as black. 
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Figure 1.3  Cryo-EM structures of human CFTR in the open and closed 
conformations.  Domain names and TM helix numbers are listed with color-
coding as they appear in the corresponding structural models. Structures were 
obtained from the protein data bank (PDB IDs 6MSM and 5UAK; (Liu et al., 2017; 
Zhang et al., 2018b) and models were prepared using PyMol (2015). 
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1.2.2 Structural determination of CFTR 

It has now been well-established that CF is the direct result of genetic 

mutations that cause the loss of CFTR function (Cheng et al., 1990; Rich et al., 

1990; Riordan et al., 1989b).  It has also been well-established that the scope 

and severity of this disease is directly related to the mutation or combination of 

mutations the patient possesses (Brodlie et al., 2015; Welsh and Smith, 1993a), 

and that if the CFTR defect(s) can be addressed, channel conductance and 

subsequently the patient’s overall health can be greatly improved.  It stands to 

reason, then, that a clear picture of the structure and function of CFTR is of 

paramount importance to CF drug discovery efforts.  And accordingly, it has been 

the subject of much extensive research for the last thirty years (Callebaut et al., 

2004; Callebaut et al., 2017; Hunt et al.; Mornon et al., 2008; Rosenberg et al., 

2004; Rosenberg et al., 2012; Zhang and Chen, 2016).   

Homology modeling of CFTR 

Until recently, the standard models for full-length CFTR structure were 

based on homology models comprised of (once available) NBD1 [PBD ID: 2pze] 

and NBD2 [PDB ID: 3gd7] crystal structures (Dalton et al., 2012; Lewis et al., 

2010), paired with known structures of homologous bacterial efflux transporters 

Sav1866 (Dawson and Locher, 2007; Dawson and Locher, 2006), MsbA (Ward 

et al., 2007) and p-glycoprotein (Aller et al., 2009).   Despite having broad 

similarities to these orthologous ABC transporters (two domains comprised of 6 
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α-helices each and similar cytoplasmic NBDs), there were striking differences 

between P-glycoprotein 1 (P-gp) and some orthologs of ATP-binding protein 

MsbA compared to Sav1866, namely the distance between the two NBDs and 

the overall orientation of the TMDs.  Taking into account structural analysis of the 

CFTR sequence and the predicted lengths of loops and helices, Sav1866 was 

most often used as a starting point for molecular modeling (Callebaut et al., 

2004; Lewis et al., 2004).  

Indeed, before the availability of cryo-EM made structural analysis of 

membrane proteins a more attainable goal, there was a great deal of information 

to be collected from CFTR homology models.  For example, in early 2008 

Serohijos et al. first described the interaction between F508 and ICL4 

(“…Phe508 mediates a tertiary interaction between the surface of NBD1 and a 

cytoplasmic loop (CL4) in the c-terminal membrane spanning domain”) (Serohijos 

et al., 2008).  Later that year, Mornon et al., who, like Serohijos, used Sav1866 

as a starting point for modeling CFTR in an outward-facing conformation, 

provided a slightly more in-depth analysis, highlighting “an intricate H-bond 

network (involving especially the ICL4 R1070 and the main chain of NBD1 

F508),” which, they proposed, stabilized the interface between TMD2 and NBD1 

(Mornon et al., 2008).  However, despite the overall similarities these models 

possessed and the great deal of early information they provided, discrepancies 

between models did exist with regard to side-chain rotamers and relative 

positions of residues adjacent to the membrane (Hunt et al., 2013), as well as the 
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lack of precedent for the R domain which is specific to CFTR, once again 

highlighting the importance of a high-resolution structure of full-length human 

CFTR. 

Experimental structural determination of CFTR 

Despite a dedicated effort toward obtaining structural information about 

CFTR, most attempts have been met with frustration in the form of an atomic 

resolution “ceiling,” due largely to the limitations of available technology, and the 

difficulties inherent in working with the large, hydrophobic and generally unstable 

CFTR. In 2004, the first successful 2D crystallization and TEM imaging of n-

dodecyl-β-maltopyranoside (DDM)-purified human CFTR, albeit of very limited 

resolution, was published (Rosenberg et al., 2004).  Later a 9-Å resolution map 

of CFTR in its apo form was obtained using the sitting droplet method of 2D 

crystallization (as opposed to the hanging drop method previously employed) 

(Rosenberg et al., 2012). While this work represented significant progress in the 

field of CFTR structural biology, the model relied heavily on high-resolution data 

previously reported for Sav1866 (PDB ID: 2HYD). For several years, this was the 

highest resolution (non-homology) structural model of full-length, wild-type CFTR 

that existed.  

In 2016 the first high-resolution, full-length atomic model of CFTR – of any 

species – was resolved. These structural analyses showed zebrafish and human 

CFTR in both the dephosphorylated (closed) (Zhang and Chen, 2016; Zhang et 
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al., 2017) and phosphorylated (open) conformations (Liu et al., 2017; Zhang et 

al., 2018b), and offers novel insights about the structure and function of CFTR. 

(The human CFTR cryo-EM structures are seen in Figure 1.3.) 

 Zebrafish CFTR shares 55% sequence identity with human CFTR, 

including 42 of the 46 missense mutational sites that lead to CF in humans. Its 

successful purification as a larger, more stable sample of CFTR into detergent 

micelles than is usually possible with its human ortholog (Zhang and Chen, 2016) 

facilitated the high-resolution structure determination. In addition to obtaining a 

3.7 Å structural model in the dephosphorylated (ATP-free) state, the Chen lab 

showed ATPase-mediated channel activity of CFTR, lending support to the 

validity of the structural model (Zhang and Chen, 2016).  A dephosphorylated 

human CFTR structural model - this time at 3.9 Å - followed soon thereafter, 

displaying remarkable similarity to its zebrafish counterpart (Liu et al., 2017).  

Within a year and a half, two more structures were published from the lab: one 

zebrafish and one human CFTR, both in the phosphorylated, ATP-bound, “open” 

conformation (Zhang et al., 2017; Zhang et al., 2018b).  

This work was important not only because it represented the first time a 

high-resolution CFTR structure had been published, but because of the number 

of insights this collection of models provided about both the open and closed 

conformations and because it offered concrete evidence to support years of 

biophysical analysis on CFTR’s helical positioning (Gao and Hwang, 2016; 
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Serohijos et al., 2008; Wang and Linsdell, 2012; Zhou et al., 2010).  These 

models confirmed a “head-to-tail” dimerization of the two NBDs upon ATP 

binding, and although not fully visible, presented a partial view of the CFTR-

specific R-domain, along with evidence that phosphorylation of this unstructured 

region may be the gatekeeper responsible for CFTR conformational changes 

(Zhang et al., 2017).  Perhaps most importantly, this work provided valuable 

information on how several CF-causing mutations might lead to channel 

dysfunction, offering up a roadmap for structure-based drug design  (Liu et al., 

2017; Zhang and Chen, 2016; Zhang et al., 2017; Zhang et al., 2018b).  

Yet while Jue Chen’s collection of CFTR structures does represent a 

significant step forward in the field of CFTR structural biology, some limitations 

remain in the model determination and the overall interpretation of the results.  

As previously mentioned, the first publication released from the Chen lab was of 

zebrafish CFTR in a dephosphorylated or “closed” conformation (PDB ID: 5UAR, 

(Zhang and Chen, 2016).  In this paper, Zhang mentions that in the course of 

model determination, because the “densities corresponding to the NBDs are not 

as sharply resolved, (they) relied on the crystal structures of mouse NBD1 and 

human NBD2 (PDB: 1Q3H and 3GD7, respectively) to guide model building” 

(Zhang and Chen, 2016).   

This approach was again used by the Chen lab when determining the 

structure of dephosphorylated human CFTR (PDB ID: 5UAK, (Liu et al., 2017), 
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however human NBD1 and NBD2 were docked into the cryo-EM map as 

opposed to murine NBD1. Using the human NBD crystal structures as a guide, 

side-chain positions were then adjusted to conform to the EM density (Liu et al., 

2017).  Additionally, to determine positioning of TMD1 and TMD2 in their model 

of hCFTR, the authors relied on their structure of zebrafish CFTR as a starting 

point, and reworked their human CFTR cryo-EM map around the zebrafish 

model.  In instances where densities were weak, “the residues were kept as they 

were in the models” (Liu et al., 2017). It is unlikely that this represented an 

optimal approach for modeling human CFTR, given the modest sequence 

homology (55%) between human and zebrafish CFTR, the lack of an obvious 

evolutionary common thread, and the vast differences in their overall stability.  In 

fact, work has since been published highlighting differences in the functional 

properties of the two isoforms, including differences in gating patterns and the 

strong preference of zCFTR to reside in the closed conformation (Zhang et al., 

2018a).   

 When the phosphorylated, open conformation zCFTR structure was 

published later that year, it included a point mutation made to the consensus site 

within NBD2 (E1372 in zCFTR and E1371 in human CFTR) in order to abolishes 

ATP hydrolysis and hinder the rate of pore-closing by ∼1,000-fold (Vergani et al., 

2005). And in 2018, the successively published model of phosphorylated, open 

channel hCFTR was again based on an initial model of ATP-bound zebrafish 

CFTR (Zhang et al., 2018b).  According to Zhang et al., a comparison of hCFTR 
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and the zCFTR structure it was modeled after highlighted major structural 

differences in the two orthologs: most notably displacement of equivalent 

residues up to 6Å and structural shifts in TMs 1, 6 and 12 between the two 

structures, and differences in nucleotide binding symmetry between human 

(symmetrical) and zebrafish (asymmetrical) NBDs (Zhang et al., 2018b). 

Moreover, because Chen’s lab has created their phosphorylated hCFTR 

structural model using a hydrolysis-null version of CFTR that had been held in an 

open conformation, they were unable to confirm that this observed structural 

conformation is true, despite making several claims about the channel gating 

properties and functional data. In such cases, the potential for variability that is 

introduced when dealing with detergent purification cannot be overlooked, 

particularly with such a large protein.  It is well-established that detergent 

purification does introduce variability and instability to membrane proteins, and in 

some cases such as with digitonin, may bias the protein toward a specific (in the 

case of CFTR, closed) protein conformation. There is mounting evidence that 

membrane protein function is sensitive to the composition of the bilayer in which 

it is embedded, with a preference for lipid compositions that resemble the native 

environment (Bigay and Antonny, 2012; Corradi et al., 2018; Fang et al., 2010; 

Hildebrandt et al., 2017; Teo et al., 2019; van Meer et al., 2008). Moreover there 

is direct evidence that cholesterol is essential for proper CFTR structure and 

function (Abu-Arish et al., 2015; Fang et al., 2010). With this in mind, the 

replacement of this environment with exogenous detergents – particularly one 
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that is known to precipitate sterols, such as digitonin (Bloor and Knudson, 1916; 

Zhong et al., 2010) - should be carefully considered, and the results of such 

studies carefully interpreted. 

 In an area of study where experimental structural data is limited, it can be 

easy to make sweeping assumptions about a protein’s characteristics based on a 

snapshot.  It can, however, be very misleading, and scrutiny should be applied, 

particularly when such data is used to inform the next iteration of studies (Abreu 

et al., 2019), or perhaps inform the next generation of drug development. 

A list of the 7 full-length structures of CFTR (<10 Å) is seen in Table 1.1. 

 

Table 1.1 Current list of full-length CFTR cryo-EM structures of sub-
nanometer resolution.  Table adapted from Meng et al, 2019. 
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1.2.3 Cystic Fibrosis 

CF pathophysiology  

Cystic Fibrosis (CF) is a genetic disease caused by loss-of-function CFTR 

mutations.  CF primarily affects exocrine tissues within the respiratory and 

digestive systems, notably the lungs, intestines, pancreas and sweat glands 

(Amaral and Kunzelmann, 2011).  In these tissues, CFTR serves as the primary 

apical conduit for important anions, including chloride, bicarbonate and 

thiocyanate.  Through this function, CFTR controls the movement of water to and 

from the cell surface as well as the apical pH, which together regulate the 

viscosity of luminal secretions, especially mucus (Rich et al., 1990). In the lung, 

when CFTR function is lost, anions are prohibited from moving to the apical 

surface of the lung epithelial cells, causing dehydration and acidification of the 

airway surface liquid. This, in turn, increases viscosity of the normal mucosal 

layer and impairs mucociliary clearance (McKoy et al., 2016).  As a result, mucus 

builds up and blocks oxygen transfer, trapping bacteria that thrive in low-pH 

environments.  In addition, the immune response that follows is rendered largely 

ineffective, as the lymphocytes, neutrophils and phagocytes that respond also 

become trapped, further contributing to the build-up (Southern et al., 2019). 

These factors make patients particularly vulnerable to lung infections and 

inflammation, which continue to be the leading causes of morbidity and mortality 

in people with cystic fibrosis (Pezzulo et al., 2012). Despite recent progress in 

treatment options for CF such as CFTR potentiators and correctors (discussed in 
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greater detail below) and increased prevalence of newborn screening, the 

median life span for a patient living with CF in the US, Canada or the UK is only 

about 37.5 years (CFF.org, 2018). However, given the rapid advancements in CF 

therapies, a patient born between 2013 and 2017 is expected to survive into their 

mid-40’s.  This number decreases, however, for patients living in developing 

countries such as India, Bolivia and Mexico, where newborn screening and 

access to healthcare are not readily available (Mirtajani et al., 2017; Spoonhower 

and Davis, 2016). 

 

CFTR mutations 

In 1989, the gene for CFTR was first identified (Kerem et al., 1989; 

Riordan et al., 1989a), and the molecular basis of cystic fibrosis was described 

shortly thereafter (Cheng et al., 1990).  Within two more years, nearly 300 

mutations had been reported (Tsui, 1992) and the first four classes of mutations 

were defined (Welsh and Smith, 1993b). Since then, the classes have evolved 

and increased in number as our understanding of the disease and the list of 

known CF mutations has expanded.  There are currently 6 traditional mutational 

classes categorizing over 2,000 reported CF-causing mutations; however, this 

classification model continues to evolve as the development of new drugs 

targeting specific CF phenotypes advances (De Boeck and Amaral, 2016; 

Marson et al., 2016).  
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The current classification of CF mutations is as follows: 

 

I. Production mutations – This type of mutation encodes a premature stop 

codon within the open reading frame, resulting in truncated and non-

functional CFTR variants. This category also includes nonsense 

mutations, deletions and splicing mutations. 

II. Processing mutations – This class results from folding defect mutations 

of CFTR, which ultimately prevent trafficking to the apical cell surface.   

III. Gating mutations – With these mutations, CFTR reaches the cell surface 

but fails to activate channel opening. These proteins are non-functional. 

IV. Conduction mutations – CFTR is processed normally, yet has abnormal 

channel function, which results in limited activity. 

V. Insufficient protein mutations – This class results from splice variants in 

which an insufficient quantity of functional CFTR or irregular CFTR 

proteins are produced due to incorrect mRNA splicing. 

VI. Stability mutations – CFTR is produced with normal function, but is 

recovered more rapidly from the cell surface as a result of these 

mutations. One example is rescued ΔF508 (rΔF508), which is partially 

functional and benefits from CFTR gating potentiators. 
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The most common CFTR mutation occurs in approximately 70% of patients 

worldwide and results in the deletion of a phenylalanine at position 508 within 

NBD1 (ΔF508-CFTR) (De Boeck and Amaral, 2016; Dean et al., 2001; Goor et 

al., 2009). ΔF508 prevalence is higher for patients in the United States (~88%) 

and throughout Europe (~80%) (CFF, 2017; CFF.org, 2018; Orenti et al., 2018; 

Prinz et al., 2019). Despite the rather modest change in sequence that the loss of 

F508 causes, loss of this residue prevents proper folding of NBD1, which 

consequently disrupts the interface between NBD1 and the intracellular loop 4 

(ICL4) within membrane spanning domain 2 (TMD2) (Serohijos et al., 2008).  The 

resulting protein is far less stable at physiologic temperatures, with a 

thermostability that is about 10°C less than that of wild-type CFTR, and it is 

quickly recognized by the endoplasmic reticulum-associated protein degradation 

(ERAD) pathway before it can traffic to the cell membrane (Brodsky, 2001).   

Additional mutations can impair normal channel function by impacting gating 

or conductance once the protein is embedded in the cell membrane.  Figure 1.4 

outlines the six (current) classifications of CF-causing mutations and lists the 

therapeutic approach that would be required for effective treatment.  
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Figure 1.4  Classification of CFTR mutations and corresponding 
therapeutic strategies  The current classification system for cystic fibrosis 
mutations encompasses six classes of defects in addition to wild type (WT). Each 
mutational class is designated by its impact on CFTR biogenesis, maturation, 
stability and function. Therapeutic strategies are discussed in greater detail in the 
Treatment Options section of this chapter. Figure on previous page. Adapted 
from (Vallières and Elborn, 2014). 

 

 

Second-site suppressor mutations that correct the ΔF508-CFTR defect 

Although no existing therapy fully corrects the ΔF508 defect, various 

second-site suppressor mutations (SSSM) have been identified, in part through 

patient genotyping, which reduce the impact of the ΔF508 mutation.  In 1990, 

secondary mutation R553Q was identified in a CF patient homozygous for F508 

who exhibited near-normal sweat test chloride levels and yet suffered from 

typical CF symptoms of gastrointestinal and pulmonary disease (Dörk T, 1991; 

Teem et al., 2007).  Further genotyping of CF patient samples revealed a series 

of SSSMs (I539T, G550E, R553Q, and R555K) located within NBD1, which were 

capable of reducing the impact of the ΔF508 mutation by increasing CFTR 

trafficking and function, resulting in a milder disease phenotype (Teem et al., 

2007).  These mutations, known commonly as R mutations (revertant) or -3M 

mutations (when R553M is used), increase the thermal stability of NBD1, but 

they do not reestablish the NBD1:ICL4 interface that is lost with ΔF508 (He et al., 

2010).  However, when these NBD1 stabilizing mutations exist alongside a small 

molecule or SSSM that corrects the NBD1:ICL4 interaction, a vast improvement 
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can be seen in CFTR global assembly and channel function (He et al., 2015; He 

et al., 2010). 

In addition to NBD1, several CF-causing point mutations have been 

reported in the cytoplasmic loops; the most prevalent being ICL4, where 

mutations have been observed at 36 of the ~60 residues comprising the loop 

(Krasnov et al., 2008; Seibert et al., 1996).  Within ICL4, Arg1070, which resides 

at the NBD1:ICL4 interface, has been the site of three different missense 

mutations: R1070W, R1070P and R1070Q.  Patients who have the latter two 

mutations present with a classic CF phenotype, while those with R1070W 

experience a much milder phenotype and live a normal lifespan. Of the 29 

patients worldwide who have been identified with R1070W, clinical data is 

available for 24, and of these, 16 reportedly also carry ΔF508 (Krasnov et al., 

2008).  In nearly all cases of this mutation, disease phenotype was significantly 

ameliorated and patients had pancreatic-sufficient CF, suggesting that R1070W 

was acting to suppress the ΔF508 mutation in patients.  In the years since clinical 

data was first reported, much work has been done to better understand this 

secondary mutation, which may reduce the ΔF508 defect by replacing the 

missing aromatic ring of F508 with a tryptophan at the ICL4 interface (Kalid, 

2010; Loo, 2010).   

 In 2007, Wang et al. first reported that the SSSM V510D improved 

trafficking in normal and Cys-less mutants of ΔF508-CFTR, despite reported 
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inactivity of the mutant in iodide efflux assays (Wang et al., 2007). Shortly 

thereafter, Mornon et al. used evidence obtained through molecular modeling to 

propose that V510D likely compensates for the loss of F508 by creating a salt 

bridge with arginine 1070 (R1070) of CFTR’s intracellular loop 4, restoring an 

important domain-domain interaction lost in ΔF508 that appears important to 

CFTR folding, stability and apical localization (Mornon et al., 2008). Three years 

later, fellow members of Wang’s lab reported that in addition to rescuing 

trafficking, V510D is also capable of increasing ΔF508-CFTR half-life by about 5-

fold, similar to that of WT protein (Loo et al., 2010).   

Although the rescue effects of these suppressor mutations have been 

repeatedly confirmed, their mechanism of action is, in many cases, not fully 

defined.  A more thorough understanding, however, may provide a solid platform 

for the design and optimization of therapeutics that address the ΔF508 defect 

more effectively.  

Clinical biomarkers of cystic fibrosis 

 Since 2010, every state in the U.S. has incorporated testing for cystic 

fibrosis into its standard newborn screening panel. This evaluation is done by 

testing for elevated blood levels of immunoreactive trypsinogen, or IRT. 

Additionally, genetic testing to look for specific mutations can be conducted, 

particularly if one or both parents are carriers or if certain risk factors are 

identified. Another means of diagnosis is the sweat test, which can be 
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administered once a child reaches two weeks old.  For this test, a patient’s skin is 

treated with a chemical to induce perspiration, and the resulting sweat is tested 

for chloride content. Given that CFTR is involved in normal chloride transport out 

of epithelial cells, CF patients have a greater concentration of chloride ions leave 

their body through perspiration. Hence, a higher-than-normal level of measured 

sweat chloride signals the presence of defective CFTR, and a diagnosis of CF 

may be suspected. 

Once a patient has been positively diagnosed with CF, there are clinical 

biomarkers that can be utilized to monitor disease progression and comorbidities 

such as lung infection, as well as to evaluate therapeutic efficacy.  Doctors often 

measure C-reactive protein levels in a patient’s blood as a biomarker for 

inflammation (Levy et al., 2007).  Calprotectin, a neutrophil protein also detected 

through a blood test, has been shown to predict pulmonary exacerbations and 

lung function decline with good correlation (Muhlebach et al., 2016; Schechter, 

2018).  The most well-established biomarker for CF disease progression is 

forced expiratory volume in 1 sec, or FEV1, which assesses a patient’s 

pulmonary function by measuring the maximal amount of air that a patient can 

forcefully exhale in one second (Szczesniak et al., 2017). 

Treatment options: mutation-dependent therapies 

A number of therapeutics in development seek to ameliorate CF pathology 

by targeting specific mutations, either by aiding proper CFTR folding and 
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stabilization (correctors), by improving channel performance (potentiators), or by 

overriding a premature termination codon (read-through compounds) (Rabeh 

MW 2012).  In some situations, gene therapy may be the most effective 

approach for functional protein recovery.  At this point, only the first two types of 

therapies have been approved by the FDA and are available to patients.   

Potentiators 

This class of drugs leads to increased CFTR chloride flow.  Potentiators 

are effective in cases of gating and conductance mutations such as G551D, 

where the CFTR that is at the cell surface does not adequately manage the flow 

of chloride out of the cell (Bompadre et al., 2007).  In 2012, the FDA approved 

Vertex’s CFTR potentiator, Kalydeco® (Ivacaftor), for patients with the G551D 

gating mutation, making it the first drug available to patients that addresses the 

underlying cause of CF, rather than managing the symptoms (Eckford et al., 

2012). While this marked a major milestone in the field, the patient population 

that most benefits from Kalydeco® is relatively small, about 5%, and in non-

clinical studies, it has been shown to further destabilize temperature-rescued 

F508-CFTR (Meng et al., 2017b).  However, as described below, in recent 

years Kalydeco® has been approved for use in patients with severe processing 

mutations like ΔF508 in combination with another class of CFTR modulators 

know as correctors (CFF.org, 2019b) (https://www.cff.org/trials/pipeline.) When 

paired with a corrector, potentiators can also improve CFTR efficiency in patients 

with processing defects by increasing the amount of current achieved in cases 

https://www.cff.org/trials/pipeline
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where a corrector is used to traffic misfolded CFTR to the cell surface (CFF, 

2017; Meng et al., 2019). 

Correctors 

Nearly half of all CF patients have two copies of the F508 mutation, a 

processing defect that leads to the misfolding and subsequent degradation of 

~99% of translated CFTR.   Despite the rather modest change in sequence that 

the loss of F508 causes, the resulting protein is far less stable at physiologic 

temperatures, with a thermostability that is about 10°C less than that of wild-type 

CFTR. As a consequence, F508-CFTR is quickly recognized by the 

endoplasmic reticulum-associated protein degradation (ERAD) pathway before it 

has the chance to traffic to the apical cell membrane (Brodsky, 2001).  The use 

of an effective corrector to guide proper tertiary folding and trafficking, and 

stabilize the protein once at the cell surface, offers tremendous therapeutic 

potential for patients living with this mutation. There are currently two CFTR 

correctors available to patients, Lumacaftor and Tezacaftor.  Neither has been 

FDA approved for single agent use; however, they have both been approved as 

combination therapies with the potentiator, Ivacaftor, as Orkambi® and 

Symdeko®, respectively (CFF.org, 2019b; Walker, 2015). It should be noted, 

however, that the impact seen with these currently-approved therapies is modest.  

In one study of CF patients harboring Class II mutations, an approximately 2.5%-

6% increase in FEV1% was reported for patients being treated with Vertex 

combination therapy Orkambi® (lumacaftor-ivacaftor) (Southern et al., 2018).    
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Amplifiers 

The limited response seen with potentiators and correctors may be 

attributed to insufficient substrate availability at the cell surface, due in large part 

to the rapid degradation of mutant protein that occurs with many CF-causing 

mutations. This presumption is supported by the greater therapeutic benefit that 

Orkambi® provides for patients homozygous for ΔF508 as compared to 

heterozygous (Drew et al., 2016). In such cases, a therapeutic that increases the 

amount of CFTR made by the cell could have advantageous effects when paired 

with potentiators or correctors (Biswas et al., 2017).  This class of therapeutic, 

known as “amplifiers,” increases the steady-state of CFTR protein available in 

the cell through post-transcriptional amplification of CFTR mRNA, irrespective of 

mutation (Drew et al., 2016). Currently, clinical trials are underway for a CFTR 

amplifier, PTI-428 (Proteostasis Therapeutics, Cambridge, MA), which is being 

evaluated both alone and in combination with Symdeko® in ΔF508 homozygous 

patients (CFF.org, 2019b). 

Treatment options: mutation-agnostic treatments 

Mucociliary clearance  

As mentioned previously, infection as a result of mucous accumulation in 

the airways is a major complication for patients with cystic fibrosis.  As such, the 

management of mucous build-up is an important component of their daily 

treatment regimens.  In addition to several mechanical airway clearance 
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techniques (physical therapy, high-frequency chest compression, intrapulmonary 

percussive ventilation, etc.), prescribed treatments such as mucolytics and 

airway hydrators can also help mobilize mucous and reduce the likelihood of 

infection (Southern et al., 2019). Because a significant component of the mucous 

build-up is polymerized DNA and filamentous actin that results from the 

degradation of trapped white blood cells, inhalable recombinant human DNase 

treatments, such as Pulmozyme® (dornase alfa), may be effective (Aitken et al., 

1992; Shak et al., 1990; Southern et al., 2019). A second type of mucolytic 

known as OligoG and currently in phase 2 clinical trials, works to detach 

pulmonary mucin fibers through calcium chelation, a necessary component of 

mucin unfolding and detachment in healthy cells (Ermund et al., 2017).   

Improvements in hydration can also help to reduce mucous levels, and 

can be effected in multiple ways.  The first is with the inhalation of 6% or 7% 

hypertonic saline, administered twice daily to increase the concentration of 

sodium ions at the apical surface of the lungs, and in so doing, increase water 

levels at these surfaces by creating an osmotic gradient (Wark and McDonald, 

2018).  The second option, which is already approved for use in Australia and the 

U.K., is the inhalation of mannitol, a naturally-occurring osmotic agent.  In the 

U.S., Australian-based company Pharmaxis is currently in phase 3 trials with 

Bronchitol®, an inhaled dry-powder form of mannitol (Burness, 2012; De Boeck, 

2017). Another therapeutic option in the drug development pipeline that leads to 

improved hydration and mucociliary clearance is the inhibition of the epithelial 
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sodium channel (ENaC).  While several early candidates have been 

unsuccessful in the clinic (limited bioavailability and short duration of activity have 

proven problematic) (Moore and Tarran, 2018), testing is currently in phase 2 for 

several ENaC inhibitors which may prevent further influx of water and sodium 

ions into the cell, instead restoring it at the cell surface (Butler et al., 2015).   

Anti-inflammatory/Anti-infective therapy 

Because lung infection-related complications continue to be the most 

significant comorbidity associated with cystic fibrosis, one of the more critical 

components of a CF patient’s treatment regimen is the use of antibiotics (Levy et 

al., 2007; Martin et al., 2016). As the CF therapeutic landscape continues to 

evolve, so must the treatments available to combat this issue.  A new subset of 

research pertaining to lung infection deals specifically with how microorganisms 

in the lung interact with CFTR-modulating compounds.  Another significant area 

of study for CF researchers is how to manage the spread of nontuberculous 

mycobacteria (NTM), a difficult-to-treat and constantly evolving family of bacteria 

that can lead to severe lung infection and sometimes death (Gilljam et al., 2004; 

Maiz-Carro and Navas-Elorza, 2002; Viviani et al., 2016).  

Moreover, because a prolonged inflammatory response can lead to lung 

damage, the use of anti-inflammatory drugs may help slow the progression of 

CF. Recently, several candidates have proven unsuccessful in the clinic; 

however, as this type of drug must be able to moderate inflammatory cells and 
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the corresponding cytokines without completely suppressing the patient’s 

immune system, finding such a balance has proven challenging (Chmiel et al., 

2013). While a handful of clinical trials remain ongoing, the standard of care for 

combatting inflammation in CF patients continues to be high-dose ibuprofen. 

Nutritional/Gastro-intestinal supplements 

 In addition to the lungs, patients with CF must also manage complications 

related to their digestive system, specifically the pancreas, liver and intestines 

that can sometimes lead to liver disease and CF-related diabetes (CFRD). The 

reduction in hydration and bicarbonate levels in the luminal space of the digestive 

system as a result of defective CFTR can render digestive enzymes inactive, 

leading to a condition known as pancreatic insufficiency (Eggermont, 1996; 

Littlewood, 1992). To combat this, patients must adhere to a routine of digestive 

supplements to ensure absorption of nutrients is possible in the small intestines.  

Moreover, the aberrantly thickened mucus, mucostasis, and pancreatic 

obstruction that result from defective CFTR can lead to autodigestion of the 

pancreatic tissue, and cause CF-related diabetes.  To ensure that this serious 

comorbidity is detected and managed as early as possible, it is recommended 

that people with CF that are 10 years-old and up get tested for CFRD every year 

(CFF.org, 2019a).     

 CF patients must work with their physicians to decide which combination 

of approaches is most suitable. Strict adherence to the regimen of treatments 
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must be met for long-term survival. While great progress is being made in CF 

therapeutic availability, no truly effective treatment option currently exists. In 

order for patients to have a realizable chance at living a full life, scientists must 

continue to draw upon the clinical successes as well as the failures that have 

occurred in recent years, remain mindful of what CFTR biology is telling us, and 

continue to tap into vast research networks like those provided by the Cystic 

Fibrosis Foundation.  
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1.3 GLUT1 
 

1.3.1 Function and clinical relevance  
 

 Glucose Transporter I, or GLUT1, is an integral membrane facilitative 

glucose transporter found ubiquitously throughout the human body (Yeagle, 

2016).  GLUT1 belongs to the major facilitator superfamily (MFS), an extensive 

class of transporters that is present in many different organisms, and is 

responsible for the movement of a broad range of organic molecules across the 

lipid bilayer through thermodynamically passive means (Pao et al., 1998).  Unlike 

other major transporter super-families such as the ABC transporters, which 

require ATP binding and hydrolysis to catalyze transport, MFS transporters act in 

response to a chemiosmotic gradient of their preferred solute (Jones and 

George, 2004; Pao et al., 1998). 

In humans, MFS orthologs are known as solute linked carriers (SLCs), 

and represent about half of all human transporter/channel genes expressed 

(Hediger et al., 2004). Within the family of SLCs, glucose transporters (GLUTs) 

belong to the SLC2 family, of which GLUT1 (encode by the SLC2A gene) is a 

member (Reddy et al., 2012).  The SLC2 transport family comprises 14 

transporters: GLUTs 1-12, GLUT13 (also called H(+)-myo-inositol transporter or 

HMIT), and GLUT14, which until 2002 was presumed to be a pseudogene of 

GLUT3 (Amir Shaghaghi et al., 2017; Jones et al., 2000b; Joost et al., 2002; Wu 
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and Freeze, 2002). Most SLC2 family members function as uniporters, facilitating 

the passive movement of sugars between cells and across tissues, with the 

exception of HMIT, which handles the exchange of protons and inositol, primarily 

in the brain (Uldry et al., 2004).  

Because glucose is utilized as a metabolic substrate by many cell types, 

and can be utilized by the human body at a rate upwards of 200 g/day (Berg JM 

et al., 2002), it must be readily available at sufficient concentrations in the blood, 

and must be capable of permeating tissues and crossing the blood-brain barrier.  

The latter requirement is particularly important, given that the brain is responsible 

for consuming the majority share of available glucose (Berg JM et al., 2002). 

Basal levels of circulating glucose serum levels tend to be between 4-12 mM, 

which is necessary given this metabolic burden (Wright, 2009).  To ensure 

widespread availability of glucose throughout the body, GLUT1 is expressed in 

high abundance within the lipid bilayers of erythrocytes and the endothelial cells 

lining the cardiovascular system (Kayano et al., 1990).  It is also highly 

expressed in cardiomyocytes, astrocytes, and in the endothelial cells that line the 

blood-brain barrier, ensuring continuous transport of glucose to the brain (Cura 

and Carruthers, 2012; Hertz et al., 2007; Luiken et al., 2004; Maher et al., 1994).   
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GLUT1 Deficiency Syndrome 

 Given the significant role transport proteins play in cellular metabolism and 

homeostasis, their proper function is critical to human health.  Under-expression 

or dysregulation of metabolic transporters can often lead to severe clinical 

outcomes due to the body’s inability to process certain molecules. Such is the 

case with glutamate transporter SLC1A2, which is implicated in the pathogenesis 

of amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) (Hediger et 

al., 2013).  Similarly, when defects arise within SLC2A1, the result is GLUT1-

deficiency syndrome (G1DS), a genetic disorder stemming from loss of function 

to GLUT1 which is characterized by a range of neurological symptoms such as 

motor dysfunction, seizures, acquired microcephaly and  intellectual disabilities 

(Gras et al., 2014b).  G1DS can be diagnosed by evaluating glucose levels in the 

cerebrospinal fluid relative to the patient’s blood; elevated serum levels indicate 

ineffective transfer of glucose from the blood to its required destinations (Gras et 

al., 2014a). 

 Around 100 different GLUT1 mutations have been reported, most of which 

are heterozygous de novo mutations, giving rise to random occurrences of the 

disease, although a handful of familial cases have been described (Klepper et al., 

2009; Wang et al., 2005). Reported cases have included missense, nonsense, 

insertion, deletion, frameshift and splice mutations, with no apparent correlation 

between genotype and phenotype (Klepper and Voit, 2002; Wang et al., 2005).  

Bi-allelic mutations to SLC2A1 result in a near-total loss of residual GLUT1 
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function and, as a result, are more often than not embryonic lethal (Wang et al., 

2005).  To date, the only treatment option for patients with G1DS is a ketogenic 

diet (KD), which reduces or eliminates the body’s dependence on glucose, and 

instead provides high-fat and moderate-protein fuel alternatives.  

GLUT1, tumor cells, and the Warburg Effect 

 While a loss-of-function mutation to SLC2A1 leads to G1DS, the opposite 

expression pattern can be just as detrimental.  It has been well-established that 

in order to maintain an accelerated rate of growth and proliferation, cancer cells 

default to a metabolic pattern of increased glucose uptake and fermentation, 

even in aerobic conditions, rather than undergo oxidative phosphorylation (a 

process 10-100 times slower) as a means of energy production (Liberti and 

Locasale, 2016).  This observation, known as the Warburg Effect, says that 

cancer cells must consume significantly higher amounts of glucose to facilitate 

this inefficient process and provide sufficient biomass for tumor growth (Molenaar 

et al., 2009). And often times, the required kinetics of glucose transport acts as a 

rate-limiting step.  In some cancers, GLUT1 protein expression may increase to 

meet the growing demand for glucose by the tumor cells, as evidence of GLUT1 

overexpression has been detected in a range of cancer types, including ovarian, 

lung, brain, pancreatic and thyroid cancers (Chan et al., 2011; Feng et al., 2017; 

Wang et al., 2007). This overexpression is thought to result from a variety of 

tissue-specific interactions with GLUT1 promoter enhancer elements (Amann et 

al., 2011; Macheda et al., 2005).   
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 Solid tumor studies of breast and colorectal cancers have shown a direct 

correlation between areas of hypoxia and upregulated GLUT1 expression (Chen 

et al., 2001; Kim et al., 2013; Korkeila et al., 2011).  This has also been seen in 

studies involving ovarian and lung carcinoma cells, where in vitro induction of 

hypoxic conditions leads to an increase in GLUT1 mRNA levels (Chen et al., 

2001; Zhang et al., 1999).  When this relationship was studied in murine 

hepatocellular carcinoma, researchers found that GLUT1 upregulation resulted 

when a complex comprised of HIF-1α and aryl hydrocarbon nuclear translocator 

(ARNT) bound to the GLUT1 promoter (Okino et al., 1998).  In other cases, 

upregulation isn’t driven by hypoxia-induced gene regulation, but by hormones, 

particularly estrogen (Macheda et al., 2005; Wellberg et al., 2016).  This (perhaps 

indirect) correlation is proposed to be due to an increase in glucose metabolism 

that occurs upon treatment with 17β-estradiol (E2) (Lippman et al., 1987).  While 

GLUT1 mRNA levels were not seen to change with hormone treatment, the 

increased consumption of glucose by the cells points to the potential for 

therapeutic intervention via GLUT1 inhibition.  In fact, several studies have 

recently shown that the use of small molecule inhibitors of GLUT1 can be 

effective in reducing tumor size and sensitizing cells to radiation that were 

previously impervious (Peng et al., 2019; Zhang et al., 2010; Zhao et al., 2016).  
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1.3.2 Structural determination 
 

 Similar to other members of the MFS family, GLUT1 topology consists of 

12 transmembrane α-helices, arranged in two inverted domains of six pseudo-

repeats, generally referred to as the amino- and carboxy-terminal domains  

(Colas et al., 2016).  The two domains are connected by a long cytoplasmic loop.  

GLUT1 contains 492 amino acids, has a predicted molecular weight of ~55 kDa, 

and has a single site (N45) of N-linked glycosylation.  In humans, two distinct 

degrees of glycosylation have been described, which results in a range of 

detected molecular weights between 45-60 kDa in biochemical studies (Asano et 

al., 1991).  Complex glycosylation patterns tend to occur in erythroid GLUT1, as 

compared to GLUT1 expressed in non-vascular brain cells such as astrocytes 

and oligodendrocytes (Maher et al., 1994). 

As previously discussed, the task of elucidating the structure of a complex 

membrane protein is often difficult due to the refractive nature of large, 

unstructured MPs to create organized crystals.  However, the relatively small size 

of GLUT1 coupled with the symmetrical nature of its 12 α-helices and lack of 

large intracellular domains have aided in its crystallization.   

 In 2014, the Yan lab at the University of Beijing successfully solved the 

structure of GLUT1 to 3.2Å (PDB ID: 4PyP) (Deng et al., 2014).  To facilitate 

crystallization, two stabilizing mutations were added to the recombinant protein.  

The first was N45T, which prevented heterogeneity of GLUT1 due to 
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glycosylation, and the second was E329Q, which is reported to lock the protein in 

a static endofacial conformation.  The crystallized protein, which was detergent-

purified, exists as a monomer in an inward-facing orientation (see Figure 1.5) 

(Deng et al., 2014; Schurmann et al., 1997).  
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Figure 1.5 Crystal structure of GLUT1  (PDB: 4PYP)  For each of the four 
lateral perspectives, the structure was rotated approximately 90° CCW.  The 
lower perspective is a top-down, extracellular view. Structure was obtained from 
RCSB (http://www.rcsb.org) (Deng, 2014) and formatted using PyMOL ("The 
PyMol Molecular Graphics System," 2015)    (Figure on previous page.) 

 

Shortly after the first apo structure was published, three more high-

resolution structures were released by the Stroud lab, all of which were inhibitor-

bound forms of human GLUT1 (Kapoor et al., 2016).  The first, a co-structure 

with cytochalasin B, was resolved to 3.0Å (PDB: 5EQI); the second, bound with 

glucose transporter-inhibitor 1 (GLUT-i1), was resolved to 2.9Å (PDB: 5EQG); 

and the third, bound with glucose transporter-inhibitor 2 (GLUT-i2), resolved to 

2.99Å (PDB: 5EQH) (Kapoor et al., 2016).   

 The four crystal structures that have been deposited to the PDB to date all 

display a detergent-purified, monomeric form of GLUT1 in the inward-open 

conformation.  This representation of the transporter is in contrast to biochemical 

evidence demonstrating that endogenous GLUT1 exists as non-covalently bound 

homodimers and homotetramers (Hebert and Carruthers, 1991; Hebert and 

Carruthers, 1992).    

 

 

 

http://www.rcsb.org/
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1.3.3 Evidence of GLUT1 oligomerization  
 

In studies that evaluated oligomerization state of cholate-solubilized 

GLUT1 under native (-DTT) and reducing (+DTT) conditions, distinct size 

populations were detected for each treatment group using sucrose-gradient 

ultracentrifugation and size-exclusion chromatography (Hebert and Carruthers, 

1991).  More recent studies have been performed that utilized Bioluminescent 

Förster Resonance Energy Transfer (BRET) to determine whether oligomeric 

state is dependent upon high levels of expression for dynamic aggregation to 

occur (Looyenga et al., 2016). They also addressed whether oligomerization is 

the result of the elevated GLUT1 concentration found in erythrocyte membranes, 

or if it is possible in any cell type and if a high concentration is required for 

higher-order oligomers to form.  With this work, the investigators were able to 

detect the formation of higher-order oligomers of GLUT1 by labeling the N- and 

C-terminus of GLUT1 with mCherry and NanoLuc, respectively, and measuring 

the levels of intermolecular BRET (a measure of oligomerization using this 

model) that resulted with increased GLUT1 expression levels (Looyenga et al., 

2016).   What they found was that while a minimum concentration threshold of 

cell-surface GLUT1 may be required to catalyze the formation of higher-order 

oligomers (they estimated this to have an EC50 of 1.27x103 molecules/µm2), the 

requirement was only about 3-fold higher than endogenous expression levels of 

GLUT1 in a 293T cell, and less than what exists for a red blood cell (2.21x103 
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molecules/µm2).  In other words, GLUT1 oligomers could biologically exist on any 

cell type that expresses it.  Moreover, when membrane complexes were 

disrupted with the addition of detergents, results indicated that although NanoLuc 

donor signal intensity was unchanged, no BRET signal was detected, suggesting 

a total loss of oligomeric structures in detergent (Looyenga et al., 2016). This is 

consistent with earlier biophysical studies demonstrating that some detergents 

stabilize GLUT1 oligomeric structure while others results in reversible 

dissociation of GLUT1 tetramers into dimers and monomers (Graybill et al., 

2006). 

Earlier studies demonstrate that purified, cholate-solubilized GLUT1 

(which retains its native oligomeric structure) also co-purifies with sufficient lipid 

to form a lipid bilayer annulus surrounding the protein (Hebert and Carruthers, 

1991). The oligomeric state of GLUT1 under different conditions is an important 

distinction to consider when evaluating the protein’s role as a solute transporter.  

GLUT1 structural analysis (Deng et al., 2014) and extensive biochemical studies 

on the monomeric protein (De Zutter et al., 2013) indicate that the sugar 

translocation pathway consists of 8 amphipathic α-helices (TMs 1, 2, 4, 5, 7, 8, 

10 and 11) that are protected by four hydrophobic α-helices (TM3, 6, 9 and 12), 

an arrangement presumed to be the basic functional catalytic unit of GLUT1 (De 

Zutter et al., 2013).  When present as a dimer, GLUT1 subunits are thought to 

function independently, despite being associated.  However, in its tetrameric 

form, GLUT1 has been shown to display augmented capacity to transport 
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glucose (Zottola et al., 1995).  This difference in glucose transport suggests that 

GLUT1 may exhibit cooperative interactions between exofacial and endofacial 

glucose binding sites that present in this tetrameric form (Blodgett et al., 2008; 

Blodgett et al., 2007).  

Understanding the specific kinetic behavior of GLUT1 across different cell 

types becomes important when considering how best to treat GLUT1-related 

diseases.  Although G1DS represents a loss-of-function disorder, and the 

opposite is true in cancer, the ability to modulate GLUT1 activity with small 

molecules - whether activators or inhibitors - relies on a deeper understanding of 

its endogenous structure and predicted transport behavior.  Due to the impact of 

oligomeric state on glucose transport kinetics, the ability to characterize the 

native protein structure is important, not only with regard to structure-based drug 

design, but also to predict the downstream augmentation or disruption of glucose 

transport that may result from ligand binding. It becomes important to understand 

whether tumor cells primarily contain GLUT1 in tetrameric form, for example, and 

what the impact may be on interrupting this endogenous state. Yet when 

standard membrane protein solubilization methods are used for this 

characterization, such information is often lost. Through the use of a non-

denaturing solubilization method, it is possible to capture this structural 

information, which may potentially create a link between the impact of oligomeric 

state and glucose transport.  
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1.4 Membrane Protein Nanoparticles 
 

1.4.1 Preface 
 

Text and figures are reproduced from a published review that originally 

appeared in Biochemistry Society Transactions. This article focuses on recent  

progress in the field of polymer purification of membrane proteins, the limitations 

inherent in using styrene-maleic acid (SMA) and predictions for this area of 

research.   

Simon, K.S., N.L. Pollock, and S.C. Lee, Membrane protein nanoparticles: the 
shape of things to come. Biochem Soc Trans, 2018. 46(6): p. 1495-1504. 
 
Figure 1.6. Polymerization of styrene and maleic anhydride. Reprinted from “The 
styrene–maleic acid copolymer: a versatile tool in membrane research,” by Dörr, 
J.M., Scheidelaar, S., Koorengevel, M.C. et al. Eur Biophys J, (2016) 45: 3. 3-
21. Copyright by Springer Berlin Heidelberg. 
 
Figure 1.7. A schematic representation of the preparation of SMALP MP using 
SMA. Adapted from Dorr et al, 2015 (full citation above). 
 
Figure 1.9 Cryo-EM structures of two proteins in SMALPs. Figure contains data 
that originally appeared in two published articles.   

 Panels A and B were reprinted from “Using a SMALP platform to 
determine a sub-nm single particle cryo-EM membrane protein structure” 
by Parmar, M., Rawson, S., Scarff, C.A., Goldman, A., Dafforn, T.R., 
Muench, S.P., and Postis, V.L.G., (2018), BBA Biomembranes, 1860(2), 
378-383. Copyright 2018 by Elsevier.  

 Panels C and D were reprinted from “Structure of the alternative complex 
III in a supercomplex with ctyochrome oxidase” by  Sun, C., Benlekbir, S., 
Venkatakrishnan, P., Wang, Y., Hong, S., Hosler, J. (2018) Nature 557, 
123–126  

 
Creative Commons User License: https://creativecommons.org/licenses/by/4.0/ 
  
 

https://creativecommons.org/licenses/by/4.0/
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1.4.2 Abstract 
 

The use of styrene-maleic acid (SMA) for the purification of a wide range 

of membrane proteins (MPs) from both prokaryotic and eukaryotic sources has 

begun to make an impact in the field of MP biology. This method is growing in 

popularity as a means to purify and thoroughly investigate the structure and 

function of MPs and biological membranes. The amphiphilic SMA copolymer can 

effectively extract MPs directly from a native lipid bilayer to form discs 

approximately 10 nm in diameter.  The resulting lipid particles, or SMALPs, 

contain SMA, protein and membrane lipid. MPs purified in SMALPs are able to 

retain their native structure and, in many cases, functional activity, and growing 

evidence suggests that MPs purified using SMA have enhanced thermal stability 

compared to detergent-purified proteins. The SMALP method is versatile and is 

compatible with a wide range of cell types across taxonomic domains. It can 

readily be adapted to replace detergent in many protein purification methods, 

often with only minor changes made to the existing protocol. Moreover, 

biophysical analysis and structural determination may now be a possibility for 

many large, detergent-destabilized MPs. Here we review recent advances in the 

area of SMALP purification and how it is impacting the field of MP biology, 

critically assess recent progress made with this method, address some of the 

associated technical challenges which may remain unresolved, and discuss 



52 
 

opportunities for exploiting SMALPs to expand our understanding of structural 

and functional properties of MPs. 

1.4.3 Introduction 
 

Proteins embedded within lipid-based membranes mediate the 

interactions between cells and their environment, define the boundaries of 

intracellular organelles and influence the passage of most molecules into and out 

of the cells. In short, they are of critical importance. However, the study of 

membrane proteins (MPs) presents several challenges: they are not typically 

abundant and can be difficult to stably purify and subsequently characterize. As a 

result, our understanding of the structure and function of MPs has failed to keep 

pace with our burgeoning knowledge of soluble proteins, limiting our 

understanding of fundamental biological processes and impacting our ability to 

treat diseases. 

Detergent purification has been essential in the MP methodological toolkit 

and has allowed us to answer important questions surrounding the structure and 

function of key targets (Birch et al., 2018).  Head-and-tail detergents like dodecyl 

β-D-maltoside (DDM) act as a simple replacement for the lipid bilayer and 

provide a membrane mimetic. Detergent micelles are dynamic, and over time, 

detergent molecules will fully replace lipids adjacent to the MP. Without these 

lipids, many MPs no longer function natively. Indeed, purified MPs are generally 

considered to be unstable and susceptible to aggregation. There is an increasing 
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understanding that this instability is not an intrinsic quality of MPs, but a result of 

their removal from the lipid bilayer. Therefore, many recent advances in MP 

biochemistry have focused on preserving stability by developing purification 

methods that provide better membrane mimetics. These mimetics can be 

grouped into four classes: next-generation detergents (Birch et al., 2018), 

amphipols (Le Bon et al., 2018; Zoonens and Popot, 2014b), nanodiscs (Denisov 

and Sligar, 2017), and styrene-maleic acid lipid particles (SMALPs).  While the 

first three technologies are essential for membrane protein science, they have 

been thoroughly reviewed elsewhere. The focus of this review is SMALPs, and 

the evolution of this method to involve new polymers and experimental progress. 

The use of the styrene-maleic acid (SMA) copolymer allows the direct 

isolation of proteins and their local lipids from the surrounding crude membrane 

(Figure 1.6).  SMA, which results from the hydrolysis of precursor styrene-maleic 

anhydride (SMAnh), consists of alternating styrene and maleic acid moieties, 

forming an amphipathic copolymer.    
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Figure 1.6 Polymerization of styrene and maleic anhydride at a 2:1 or 3:1 
ratio followed by hydrolysis of the maleic anhydride moieties results in a styrene 
maleic acid copolymer suitable for use in the extraction of transmembrane 
proteins from cell membranes.  The alternating hydrophobic (styrene) and 
hydrophilic (maleic acid) moieties of SMA render it amphipathic and capable of 
inserting into biological membranes. 

 

The resulting SMA copolymers contain distinct ratios of styrene:maleic 

acid, depending on the polymerization reaction that is utilized to create the 

SMAnh precursor. These differences in the SMA can modulate their properties in 

membrane protein purification. Isolation of transmembrane proteins using SMA 

creates monodisperse lipid discs of 10-11 nm in diameter containing the protein 

of interest as well as its surrounding native lipid bilayer (Knowles et al., 2009) 

(See Figure 1.7).  
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Figure 1.7 A schematic representation of the preparation of SMALP MP 
using SMA  When SMA is added to the MP preparation, it inserts into the lipid 
bilayer forming a SMALP. The SMALP contains MP and the proximal lipid bilayer 
surrounded by SMA polymer. The SMALPs containing the MP of interest can be 
purified by affinity chromatography. Thus, the MP can be purified within its local 
lipid environment, which maintains structural integrity and stability. (Figure by 
Ashley Souza and adapted from Dörr et al. (Dörr et al., 2016)).  
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Previous work with SMA has focused on its application as a drug delivery 

system for enhanced bioavailability of hydrophobic molecules, as an antiviral 

treatment, and as a tumor-targeting agent due to its enhanced cell permeability 

and size, which makes it well-suited for invading the compromised vasculature of 

tumors (Daruwalla et al.; Fang et al., 2009; Greish et al., 2004). More recently, 

however, SMA copolymer has been used to extract a variety of α-helical and β-

barrel transmembrane proteins, with much success (Gulati et al., 2014; Orwick-

Rydmark et al., 2012; Parmar et al., 2018). For this application, SMA copolymers 

with a ratio of either 2:1 or 3:1 are most often utilized (Orwick-Rydmark et al., 

2012; Prabudiansyah et al., 2015). By capitalizing on the properties of SMA as 

an amphipathic copolymer capable of permeating a cell membrane, we can 

create SMA lipid particles (SMALPs) that contain an intact MP in its native form, 

with a lipid composition likely to reflect the native membrane environment.  In 

contrast, detergent-purified proteins typically do not retain interactions with lipids 

or other proteins.   

One significant advantage of the SMA purification method is the absence 

of detergent from the protocol.  As a consequence, proteins purified in this way 

can be extracted along with both their natural lipid support-system and any 

interacting proteins. Not only does this provide useful information about 

associated proteins and their potential roles in regulating MPs, but it also offers a 

means for identifying the endogenous lipid composition surrounding the protein 

of interest (Jamshad et al., 2015; Landreh et al., 2016; Lee, 2004, 2005). Another 
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advantage is the remarkable stability of proteins that have been purified into 

SMALPs.  It is common for protein-SMALPs to remain intact and monodisperse 

at 4°C for at least a week, and to have the ability to undergo several rounds of 

freeze/thaw with minimal loss to particle integrity or protein function (Lee and 

Pollock, 2016; Logez et al., 2016). 

In 2016 we presented a summary of research using the SMALP 

technology (Lee and Pollock, 2016). We considered its advantages and 

limitations. As part of that discussion, we explored three potential future 

directions for the SMALP field: 1) expanding our understanding of amphipathic 

copolymers and the means of improving their utility; 2) using SMALPs to solve 

high-resolution structures of MPs, and 3) exploring the potential of using 

SMALPs to better understand the local lipids surrounding an MP. It is a 

remarkable testament to the utility of this method that progress has already been 

made in all three areas and that the number of publications pertaining to this 

technology has tripled since 2016 (Figure 1.8). In this section, we will return to 

these predictions. We will also discuss new developments related to SMA and its 

associated methods, and consider what could and should be next. 
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Figure 1.8 Growth of publications describing membrane proteins purified 
using SMALP technology and its associated derivatives from 2009 to 2018 
(Year-to-date) The graph shows the total number of publications by the end of 
each year. Data was assembled by searching for [SMALP or DIBMA or styrene-
maleic acid] and [membrane protein]. 
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1.4.4 Overview of membrane mimetics 

Next-generation detergents 

The use of head and tail detergents has been comprehensively discussed 

by many authors (Helenius and Simons, 1975; Moraes et al., 2014; Seddon et 

al., 2004) and detailed presentation of this material is outside the scope of this 

review. However, it is important to emphasize that detergents continue to be a 

vital tool in membrane biochemistry and an area for innovation. Over the years 

there have been attempts, some very successful, to create detergents that 

provide stability to membrane proteins [foscholine, lyso-lipids]. Most recently the 

maltose-neopentyl glycol detergents have produced promising results (Chae et 

al., 2010). 

Amphipols 

Amphipathic polymers, or amphipols, were the first deliberate effort to 

move beyond detergents for membrane protein stabilization. Amphipols (APols) 

were created with the intent of stabilizing membrane proteins by binding tightly to 

hydrophobic portions of the protein and replacing the lipid bilayer (Etzkorn et al., 

2013; Park et al., 2011; Scott et al., 2013; Thomas et al., 1994; Tribet et al., 

1996).  Several iterations and functionalized versions have been reported that 

cover a wide variety of polar groups, bestowing a range of stabilizing properties 

(Bon et al., 2014; Popot et al., 2011; Scott et al., 2013). The most widely-

characterized APol, known as A8-35, is comprised of short-chain sodium 
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polyacrylates (~35 units) derivatized with octylamine and isopropylamine 

functional groups (Calabrese et al., 2015; Giusti et al., 2012; Popot et al., 2011; 

Tribet et al., 1996; Zoonens et al., 2007; Zoonens and Popot, 2014a; Zoonens et 

al., 2014). In some cases, it has been possible to use amphipols to support the 

refolding of membrane proteins to their native conformation, either to recover 

denatured protein from inclusion bodies within a cell or to assist in cell-free 

expression systems in vitro (Baneres et al., 2011; Pocanschi et al., 2006).   

Despite stabilizing proteins, amphipols have not typically been used to 

solubilize membranes; rather, a traditional detergent is used to purify protein from 

the lipid bilayer, which is subsequently replaced with an amphipol (Zoonens et 

al., 2014). Moreover, in the vast majority of cases where amphipols have been 

successful, the target protein has been prokaryotic in origin, and perhaps 

inherently more stable (Zoonens and Popot, 2014a). 

Nanodiscs 

Nanodiscs are self-assembling lipid discs that are surrounded by an 

amphipathic helical polymer, known as the membrane scaffold protein (MSP).  

Similar to amphipols, nanodiscs rely on detergent purification for the removal of 

the target protein from its lipid bilayer.  In this case, however, exogenous lipids 

are also added along with the MSP, while detergent molecules are 

simultaneously removed with the addition of adsorbent beads (Bayburt and 

Sligar, 2010; Denisov and Sligar, 2017).  In its simplest form, a nanodisc consists 
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of phospholipids that form the nanodisc bilayer and an MSP, recombinant human 

apolipoprotein A-1 (ApoA1) that holds the raft together (Lee et al., 2016a). The 

length of the scaffold protein dictates the nanodisc size and can be increased or 

decreased to accommodate the protein being stabilized. Evaluating different 

molar ratios of MSP to protein and lipid to MSP is necessary to determine the 

composition that best stabilizes each target protein, which can entail extensive 

screening (Denisov and Sligar, 2017; Mitra, 2013). One major advantage of this 

approach is the ability to regulate nanodisc size to ensure homogeneity.  This is 

of particular concern when the intended goal is biophysical characterization or 

structural analysis of the material, where variable raft sizes could be a hindrance 

(Bayburt and Sligar, 2010; Lee et al., 2016a).  Both amphipols and nanodiscs 

have a good track record for compatibility with standard methods in biochemistry, 

biophysics and structural biology (Gao et al., 2016; Hagn et al., 2013; Huynh et 

al., 2014).  

Polymer-based lipid particles (PoLPs) 

The use of the styrene maleic acid (SMA) copolymer allows the direct 

isolation of proteins and their local lipids from the surrounding crude membrane. 

Isolation of transmembrane proteins using SMA creates monodispersed lipid 

disks of 10-11 nm in diameter containing a single molecule of the protein of 

interest, as well as its surrounding native lipid bilayer (Knowles et al., 2009). This 

protein/lipid disc, which is held in place by the amphipathic SMA band, can be 

purified using affinity purification to ensure clean evaluation of the target protein 
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without the need for detergents.  By capitalizing on the properties of SMA as an 

amphipathic copolymer capable of permeating a cell membrane, we can create 

SMA lipid particles (SMALPs) that contain an intact MP in its native environment, 

allowing the protein to stay in contact with both its natural lipid support-system 

and any interacting proteins.  

 

1.4.5 Latest applications of SMALPs 
 

Use of SMALPs in high-resolution structure determination  

High-resolution structural information is a cornerstone of protein 

biochemistry. It is critical that new purification methods yield MP samples that 

facilitate structure determination. Therefore reports of atomic-resolution 

structures from X-ray crystallography and cryo-transmission electron microscopy 

(cryo-EM) are an essential validation of the SMALP method.  

Crystallography using LCP  

The first X-ray structure of an MP extracted and purified as a SMALP was 

reported by Broecker et al. (Broecker et al., 2017). SMA-purified recombinant 

microbial rhodopsin (bR), a seven-transmembrane α-helical MP, was crystallized 

using the lipidic cubic phase (LCP) method (van 't Hag et al., 2016) resulting in a 

structure of 2.0Å resolution. This comparative study undertook the parallel LCP 

crystallization of both SMA- and detergent-purified bR. In the LCP method, the 
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MP spontaneously transfers from the SMALP or detergent micelle into the lipid 

meso phase, where crystallogenesis occurs. The two bR structures were nearly 

identical: the bR-SMALP was determined to a resolution of 2.0-Å and the 

detergent-purified bR resolved to 2.2-Å. This paper showed that high-resolution 

structural determination is possible for MPs purified using the SMALP 

methodology. 

High-resolution cryo-EM structures 

Despite success using the LCP method, most MPs have remained elusive 

to crystallography. To date, only the LCP method has been reported as a 

successful means for crystallizing an SMA-purified protein.  The advent of the 

cryo-EM revolution, however, has provided a new path to high-quality, high-

resolution structures of MPs (Zhang and Liu, 2018). Cryo-EM offers structural 

biologists a way to visualize MPs in several different orientations by suspending 

particles in vitreous ice prior to imaging. Recent advances in instrumentation 

have resulted in a sharp increase in the number of high-resolution MP structures 

deposited into the Protein Data Bank (PDB).   

Following an early 23Å structure of the Escherichia coli multidrug 

transporter AcrB in SMALPs (Postis et al., 2015), Parmar et al. recently 

published the first sub-nanometer resolution structure of a protein-SMALP 

(Parmar et al., 2018). The resulting AcrB-SMALPs Cryo-EM map (Figure 1.9a 

and b) is consistent with high-resolution crystal structures of other EM-derived 
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maps for AcrB (Ababou and Koronakis, 2016; Murakami et al., 2002). These 

studies demonstrated the suitability of the SMALP method for structural analysis 

of MPs. It is interesting to note that when preparing cryo-EM grids, the authors 

found it essential to blot the grids with ash-free filter paper low in metal ion 

content; its use proved critical to avoid destabilizing the AcrB-SMALPs, which are 

sensitive to divalent cations.    

Very recently, Sun et al. (Sun et al., 2018) showed that protein-SMALPs 

could be visualized at high resolution using cryo-EM when they published a 3.4 Å 

resolution structure of a protein-SMALP (Figure 1.9c and d). Alternative Complex 

III (ACIII) was isolated as a functional supercomplex with an aa3-type 

cytochrome c oxidase (cyt aa3) using 3:1 SMA. Collectively this represents a 

total mass of 464 kDa and 48-TM spanning a-helices, the largest SMA-purified 

protein complex reported to-date. The final map of this complex revealed 11 lipid 

molecules adjacent to the protein and post-translational modifications (PTMs) 

that were previously indiscernible when traditional detergent purification methods 

were employed. This work highlights a significant advantage of SMA purification, 

which is the ability to gather information about the native protein complex, 

including endogenous lipids and associated binding partners - both soluble and 

membrane-bound - without the need for cross-linking (Komar et al., 2016; 

Laursen et al., 2013; Reading et al., 2017).    
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Figure 1.9 Cryo-EM structures of two proteins in SMALPs  (a) AcrB-
SMALP from E.coli (Parmar et al., 2018) Representative 2D classes for the AcrB 
single particle cryo-EM dataset. Side views of AcrB-SMALP and high angle views 
shown on the top and bottom row, respectively. The corresponding particle 
number in each class is shown on the bottom left. The white scale bar represents 
100 Å. (Parmar et al., 2018) (b) The AcrB- SMALP 8.8 Å single particle 
reconstruction coloured by local resolution and shown as a surface (left) and 
slice through (right) (c) Two representative 2D class average images of the 
Alternative Complex III (ACIII) in a supercomplex with an aa3-type cytochrome c 
oxidase (cyt aa3) from  Flavobacterium johnsonia, in a SMALP nanodisc 
(Laursen et al., 2013).  (d) Side (left) and top (right) views of the ACIII–cyt aa3 
supercomplex cryo-EM map. The transparent surface indicates the boundary of 
the nanodisc. Scale bars, 50 Å. (Sun et al., 2018)  
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Hydrogen-Deuterium Exchange-Mass Spectrometry 

Another method of interrogating protein structure and dynamics is 

Hydrogen-Deuterium Exchange-Mass Spectrometry (HDX-MS), an approach 

historically challenging for analyzing hydrophobic MPs.  HDX-MS, which 

measures the exchange rate of deuterium in place of the amine hydrogens along 

the polypeptide backbone, provides valuable insight into higher-order protein 

folding of solvent-accessible portions of the molecule.  This is accomplished by 

incubating the protein of interest in deuterated buffer for set time intervals before 

quenching the reaction in low-pH buffer and immediately freezing the sample to 

prevent loss of deuterium atoms (referred to as “back-exchange”). Despite 

several advantages to applying HDX-MS to stable, monodisperse SMALPs as 

opposed to MPs indiscriminately surrounded by detergent micelles, it has 

remained a challenge, as exposure to quench buffer causes the sample to 

immediately and irreversibly aggregate due to the pH sensitivity of SMA. To 

overcome the hurdle, Reading et al. (Reading et al., 2017) have outlined a 

protocol for HDX evaluation that is suitable for use with SMALPs.  They 

prevented total protein aggregation during the quench step by including 0.1% 

DDM to the buffer, and avoided sample incompatibility issues with ESI-MS by 

filtering the sample through a pre-chilled 0.22 μm spin filtration device following 

trypsin digestion to remove lipid molecules. This overcomes the aforementioned 

technical issue to provide another sample characterization method that is 

compatible with protein-SMALPs.  
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Exploiting SMALPs for lipidomics work   

Retention of local lipids is arguably the most unique aspect of SMALPs, as 

compared to other membrane mimetic systems. Lipids have been detected in 

SMALPs in several studies and lipid preferences for a number of proteins have 

been characterised for the first time using SMALPs (Smirnova et al., 2011; 

Swainsbury et al., 2018). A study of Rhodobacter sphaeroides proteins 

solubilized by SMA showed that they retained significant numbers of lipids (Dorr 

et al., 2017). However, they also related the solubilization efficiency of R. 

sphaeroides membrane proteins to their local lipid environment. This finding 

supports a similar observation that some membrane regions display resistance to 

solubilization by SMA (Hall et al., 2018). This highlights the fact that to use SMA 

to probe the lipidomics of MPs, we first need to develop a detailed understanding 

of the ability of SMA to solubilize proteins from different membrane types and 

regions. Similarly, the tendency of protein-SMALPs to retain, lose, gain or 

exchange lipids must be better understood or we risk misinterpreting data on lipid 

preferences of proteins (Barrera and Robinson, 2011; Cuevas Arenas et al., 

2017; Cuevas Arenas et al., 2016; Grethen et al., 2018). Nonetheless, it is clear 

that SMALPs provide a tool to address questions about the lipid preferences of 

MPs, which otherwise lack practical approaches. 
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Mass spectrometry of membrane proteins 

As a more general application, mass spectrometry (MS) is a powerful 

technique for the detection of both proteins and lipids. Obtaining intact masses of 

MPs and their complexes is challenging, as their hydrophobic regions are difficult 

to isolate and ionize (Laganowsky et al., 2013). However, some methods have 

been reported for MS using membrane protein-detergent complexes (Gupta et 

al., 2018; Stroud et al., 2018), that may be adaptable to SMALPs. Significantly, 

such studies are also beginning to probe the lipids that associate with MPs; 

SMALPs are an excellent platform for such studies, since they isolate MPs along 

with their local lipids. 

 

1.4.6 Understanding and Developing the Polymer Family   
 

Fundamentals of the formation of SMALPs have been investigated largely 

using lipid-only discs (Barrera and Robinson, 2011; Cuevas Arenas et al., 2017; 

Cuevas Arenas et al., 2016; Grethen et al., 2018). This has recently been 

thoroughly reviewed (Vargas et al., 2015) and a couple of key points emerge. 

Firstly, SMA is an effective but mild solubilizer of model lipid bilayers (Hall et al., 

2018). However, SMALPs may be more dynamic than we initially assumed, and 

there is evidence that lipids exchange between discs (Barrera and Robinson, 

2011; Cuevas Arenas et al., 2016). Secondly, this work has also shown that the 

size of the discs can be, to some extent, manipulated by adjusting the ratio of 
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polymer to lipid during disc formation (Lee et al., 2016b). This modification may 

allow us to accommodate larger proteins within SMALPs. However, it is important 

to reiterate that much of this work has been done using lipid-only SMALP discs, 

and their behavior may be altered by the presence of a membrane protein.  

While the SMALP technology already has a strong track-record for MP 

purification it is not without limitations, principally its sensitivity to divalent cations 

(e.g., Mg2+) and pH (SMA is insoluble below pH 6.5) (Oluwole et al., 2017). 

These properties, which are the result of the negatively charged, outward-facing 

maleic acid moiety, complicate certain analyses such as MgCl2-dependent 

ATPase assays.   

Another challenge associated with this method has been the light-

absorbing properties of SMA. Its styrene group absorbs at ~260 nm, which 

partially overlaps with UV-absorption by proteins. While purified protein-SMALPs 

contain only the SMA associated with each nanodisc, enough may be present to 

interfere with UV absorption and light-scattering assays (e.g., differential 

scanning fluorimetry, static light scattering and protein quantification).  

Alternative and Functionalized Polymers 

The limitations of SMA have prompted the rapid discovery and 

development of additional disc-forming polymers. Both the hydrophilic and 

hydrophobic moieties of SMA can be varied to make new copolymers. In 

addition, the maleic acid side chains can be chemically altered to adjust their 
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properties, without sacrificing the ability of the polymers to form lipid discs. The 

properties of a selection of the new and alternative polymers are summarized in 

Table 1.2.  

 

Table 1.2 Selected alternative and functionalized amphipathic polymers, 
showing structures, size of nanodiscs, and tolerance to divalent cations 

 

To date there are limited publications describing the application of these 

new polymers to membrane proteins, and it will be interesting to see how this 

develops in the future. 

Diisobutylene maleic acid (DIBMA)  

Similar to SMA, DIBMA is a maleic acid-containing copolymer capable of 

solubilizing MPs into lipid discs known as DIBMALPs (Ravula et al., 2018). In this 
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case, the hydrophobic region of the polymer consists of aliphatic di-isobutylene 

and therefore lacks the aromatic styrene moiety found in SMA. Hence, DIBMA is 

compatible with optical spectroscopy permitting routine characterization of the 

sample (Ravula et al., 2018). Lipid exchange rate studies using FRET indicate 

that DIBMALPS may retain lipid bilayers better than SMALPs, which presents an 

exciting opportunity to investigate the lipids associated with different proteins 

(Cuevas Arenas et al., 2016). Surprisingly, DIBMA is reported to be more tolerant 

to divalent cations than SMA (despite the presence of the maleic acid moiety), 

remaining soluble in up to 35mM CaCl2 and >20 mM MgCl2 for lipid-only DIBMA 

particles. Improved cation tolerance could be critical for functional 

characterization of proteins that reply on magnesium or calcium binding for their 

function. However it should be noted that the insensitivity to divalent cations has 

not yet been reported on DIBMALPs containing a membrane protein (Schmidt 

and Sturgis, 2018).   

Styrene maleic imide (SMI)  

Styrene maleic imide (SMI), a positively charged polymer comprised of 

alternating styrene and maleimide moieties, is also capable of solubilizing MPs 

into lipid discs of approximately 11 nm in diameter (Cuevas Arenas et al., 2017; 

Cuevas Arenas et al., 2016).  As is the case with SMA, the presence of the 

styrene head group complicates analysis involving optical spectroscopy; 

however, unlike SMA, it can tolerate divalent cations at high concentrations, and 

its solubility range is pH 5 - 7.8. Biophysical characterizations of lipid-only SMI-
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lipid particles indicate that its lipid content is low, but that SMI is capable of 

solubilizing proteins across a broad range of molecular weights (Cuevas Arenas 

et al., 2017).  

Styrene maleimide quaternary ammonium (SMA-QA) 

Ravula et al. (2018) describes the synthesis of a pH-resistant form of SMA 

that is effective at solubilizing proteins into discs >20 nm in diameter, and within a 

pH range of 2.5 – 10: styrene maleimide quaternary ammonium (SMA-QA) 

(Lindhoud et al., 2016). The resulting lipid discs exhibit “ultra-stability” even in the 

presence of divalent metal ions.  

Thiolated styrene-maleic acid (SMA-SH) 

Functionalization of SMA to include a thiol group has also been reported, 

resulting in a lipid-solubilizing derivative called SMA-SH (Hall et al., 2018; 

Morrison et al., 2016a). Using a fluorescent label attached to the SMA-SH, 

Förster resonance energy transfer (FRET) experiments have demonstrated that 

polymer, as well as lipids, can be rapidly exchanged between discs. This is 

another key insight into the dynamic nature of SMALPs (Morrison et al., 2016b). 

The production of polymers that can be conjugated with a range of functional 

groups will also offer new possibilities for how protein-SMALPs can be studied 

(Morrison et al., 2016a).  
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1.4.7 Perspectives 
 

Head-and-tail detergents, MSPs, APols, SMA and other amphipathic 

polymers share many similarities. By some measures, SMA combines the best 

features of the other systems, but we are a long way from understanding both its 

full capabilities and its full limitations. The publication of high-resolution structural 

data from both crystallography and cryo-EM are an enormous milestone and 

provide a high-profile vindication of the SMALP method. Meanwhile, its proven 

utility in biophysical and functional work is growing as more publications appear. 

The next challenge is to build on the existing success to contribute further insight 

into membrane protein structure and function.   

  Because the capacity to extract the local lipid environment surrounding a 

protein is a unique aspect of SMALPs, it provides an opportunity to study the 

lipids associated with MPs. However, our understanding of the dynamics of 

SMALPs is still developing, and until we understand the fundamentals, we may 

struggle to interpret lipidomic data. On a similar note, reintegration of proteins 

from SMALPs into a bulk lipid bilayer would be a significant milestone and would 

open up the possibility of isolating proteins for transport assays.  

In order to maximize the potential of SMALPs, there is a need to catalogue 

successes as well as failures with SMA (and similar polymers). Early successes 

have been dominated by more abundant bacterial proteins, arguably the lower-

hanging fruit. As we turn to SMALPs to purify less abundant, and potentially less 
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stable, proteins, it is essential to document outcomes, both positive and negative, 

to deepen our understanding of the potential of this method. 

Another consideration is how we can use SMALPs mostly effectively. The 

generic applicability of 2:1 SMA has frequently been discussed as an advantage 

of this method, but as more polymers are developed, we may be moving back 

towards the screening approach that has become de rigeur for detergents. 

Indeed, important advances have been reported using both the 3:1 and 2:1 S:M 

polymer variants and each may be appropriate for different proteins and studies.  

An alternative to screening would be to adopt a funnel approach, whereby the 

most widely applicable polymer (2:1 SMA) is tried first and others are used if 

needed for specific applications and proteins. Once again, extensive and honest 

cataloguing of results will increasingly allow patterns to emerge from the data 

that can guide these strategies. 

Amongst the unknowns, it is critical to remember that SMA has already 

provided a generic, cost-effective and successful method for isolating a wide 

range of MPs, including several considered to be highly challenging (Logez et al., 

2016; van 't Hag et al., 2016). While the fundamental chemistry of SMA presents 

certain challenges when it comes to biophysical and biochemical characterization 

of protein-SMALPs, the rapid accumulation of data and publications are 

indisputable proof of its utility.  
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As more lipid-disc forming polymers are discovered and synthesized, it may 

be useful to consider them as a family of polymer/lipid particles (PLPs), rather 

than just SMALPs.  However, the remarkable ability of SMA to directly and 

efficiently solubilize and stabilize MPs bodes well for its ongoing potential to 

deepen our understanding of membrane proteins. As MP purification continues to 

evolve and the limits of our capabilities become apparent, we must address 

these limitations by continuing to develop new technologies and by using them 

judiciously.  
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1.5 Scope of Thesis 
 

This thesis attempts to offer a multidimensional approach to studying the 

structural and biochemical properties of CFTR and GLUT1. It provides new 

evidence for the molecular mechanism of the CF-causing ΔF508 mutation and its 

second-site suppression by V510D, and evaluates the stabilizing effects of novel 

SSSM P1050R on ΔF508-CFTR. Given that cystic fibrosis continues to be an 

area of high unmet medical need, a more thorough understanding of the effects 

of the ΔF508 mutation on CFTR conformational dynamics and how it leads to the 

molecular pathology of CF is of critical importance. However, several challenges 

exist with studying CFTR, a large membrane protein. For this reason, our team 

utilized molecular dynamics simulations to visualize full-length WT and ΔF508-

CFTR, and added suppressor mutations V510D and R1070W to ΔF508-CFTR as 

a proof-of-concept for the MD simulations.  From the four simulations generated, 

several testable hypotheses regarding ΔF508-CFTR molecular pathology and the 

role of SSSMs within it were gleaned. Through mutational analysis on full-length 

CFTR and purified NBD1, I was able to support the validity of the predictions that 

were obtained, including the role of K564 in V510D second-site suppression, the 

occurrence of helical instability within TMD2 of ΔF508-CFTR, and the stabilizing 

impact of novel SSSM P1050R when combined with NBD1 stabilizer V510D 

(Chapter II). 
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This thesis also explores the utility of styrene-maleic acid solubilization of 

both CFTR (Chapter III) and GLUT1 (Chapter IV) into lipid nanoparticles.  By 

developing a protocol for CFTR solubilization using SMA, I was able to work 

toward evaluation of the protein’s native structure without interference from 

potentially destabilizing detergents.  This also allowed for the determination of 

the surrounding lipid content, which is an element of CFTR biology that has not 

yet been published, yet is critically important to our ability to study the structure 

and function of CFTR in its purified form.  Furthermore, with the application of 

this non-denaturing solubilization protocol to GLUT1 protein purification in both 

HEK expression cells and primary erythrocytes, I was able to elucidate 

endogenous GLUT1 oligomerization in both systems, and identify protein 

interactions in erythrocytes without the need for cross-linking. This work 

represents the first time GLUT1’s native oligomeric state in both an expression 

system and primary cells have been visualized with Native PAGE separation, 

and supports the use of SMA for native membrane protein complex 

characterization and purification. 
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CHAPTER II: DETERMINING THE MOLECULAR MECHANISM 
OF SUPPRESSOR MUTATION V510D AND THE 

CONTRIBUTION OF HELICAL UNRAVELING TO THE ΔF508-
CFTR DEFECT 

2.1 Preface 
Chapter II is a collaborative study that is in the final stages of manuscript 
preparation and will be submitted for publication within 2019.  

 Simon K., Nagarajan K, Mechin I, Duffy, C, Manavalan P, Altmann S, 
Majewski A,  Foley J, Maderia M, Hilbert B, Batchelor J, Ziegler R, 
Kaczmarek S, Bajko J, Kothe M, Scheule R, Nair A, and Hurlbut G. 
Determining the Molecular Mechanism of Suppressor Mutation V510D and 
the Contribution of Helical Unraveling to the ΔF508-CFTR Defect. Manuscript 
in preparation 
 

 
This project was conceptualized by Greg Hurlbut and Ron Scheule. Tested 
hypothesis were based on homology models and molecular dynamics 
simulations by Partha Manavalan, Ingrid Mechin, Karthigeyan Nagarajan and Anil 
Nair. I contributed to the design of experiments and performed the cloning, 
western blotting and HRP trafficking assays for the V510D mechanism of action 
work. Stefan Kaczmarek and Jeff Bajko performed the electrophysiological 
evaluation of K564 mutational constructs. I performed NBD1 thermal shift assays 
with the help of Robin Ziegler using protein expressed and purified by Joe Foley. 
I created NBD1-V510D crystals with guidance from Michael Kothe. The crystal 
structure was solved by Brendan Hilbert and Joseph Batchelor. Caroline Duffy 
performed the Q1042, L1096 & P1050R mutation construct cloning and initial 
western blotting evaluation.  Additional constructs for the P1050R work were 
made by me, Steve Altmann, Aliza Majewski and Matt Maderia, and I performed 
the additional P1050R western blot and HRP trafficking assays. I analyzed and 
interpreted all data with the exception of the crystal structure. I wrote the text and 
made the figures for this manuscript with contributions from Gregory Hurlbut, 
Ingrid Mechin, Partha Manavalan and Anil Nair. 
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2.2 Abstract 
 

Cystic fibrosis (CF) results from mutations within the gene encoding the Cystic 

Fibrosis Transmembrane Conductance Regulator (CFTR), a transmembrane 

chloride channel found on the apical surface of epithelial cells. The most 

common CF-causing mutation results in a deletion of Phenylalanine 508 (ΔF508-

CFTR), a residue normally found within the NBD1 domain. Loss of F508 causes 

NBD1 to be less thermodynamically stable and prevents proper tertiary folding of 

CFTR. As a result, CFTR is not properly trafficked to the cell surface. Recently, 

progress has been made towards the development of small molecule “correctors” 

that can restore CFTR tertiary structure and stabilize the channel to overcome 

the instability of ΔF508-CFTR. However, the resultant improvement in channel 

activity has been modest, and the need for potent correctors remains. To fully 

inform such efforts, a better understanding of the molecular pathology associated 

with ΔF508-CFTR is required. Here we present a comprehensive study of the 

impact of F508 deletion on both full-length CFTR and purified NBD1. Through the 

use of homology modeling, molecular dynamics simulations, mutational analysis, 

biochemical, biophysical and functional characterization studies, we obtained 

insight into how the ΔF508 mutation may lead to helical unraveling of TMs 10 

and 11, and how suppressor mutations V510D and R1070W, as well as novel 

SSSMs identified in this work, may act to rescue ΔF508-CFTR maturation and 

trafficking.  
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2.3 Introduction 
 

Cystic Fibrosis (CF) is a genetic disease caused by mutations to the gene 

that encodes cystic fibrosis transmembrane conductance regulator (CFTR), a 

chloride channel found in the apical membrane of epithelial cells. Its basic 

topology consists of two transmembrane domains (TMD1 and TMD2), two 

nucleotide-binding domains (NBD1 and NBD2) and a unique regulatory (R) 

domain with multiple phosphorylation sites (Amaral and Kunzelmann, 2011; 

Chiaw et al., 2011; Lewis et al., 2010). CFTR gating is regulated by PKA-

dependent phosphorylation of the R-domain, ATP-binding and dimerization of the 

cytoplasmic NBDs, resulting in an outward-facing, open conformation of the 

channel, facilitating passive transport down a concentration gradient (Dean et al., 

2001).  

Roughly 70% of CF cases worldwide results from a deletion of F508 

(ΔF508-CFTR) within NBD1. Loss of this aromatic residue reduces NBD1 

stability, lowering the unfolding transition temperature (Tm) of purified NBD1 by 

6–8°C, disrupting the interface between NBD1 and intracellular loop 4 (ICL4) of 

the second transmembrane domain (TMD2). Together, these defects diminish 

proper CFTR folding, apical trafficking, and channel function (Protasevich et al., 

2010).  CFTR is instead retained in the endoplasmic reticulum and targeted for 

subsequent degradation (Lewis et al., 2010; Rich et al., 1990).  While the impact 

of ΔF508 on CFTR folding and stability has been known for some time (Cheng et 



81 
 

al., 1990; Rich et al., 1990), the mechanisms by which F508 loss destabilizes the 

channel have more recently been described (He et al., 2014; Lewis et al., 2010; 

Rich et al., 1990).  

Previously reported crystal structures and HDX analysis of both WT and 

ΔF508-NBD1 have provided biochemical evidence that the loss of F508 does not 

impact NBD1 structure globally, but instead results in localized solvent exposure 

of the V510 loop (Atwell et al., 2010; Lewis et al., 2010; Thibodeau et al., 2005). 

This result is consistent with in silico models of NBD1, which suggest the same 

localized impact at the V510 loop (Bisignano and Moran, 2010; Callebaut et al., 

2004; Zhenin et al., 2015).  Because a full-length structure of ΔF508-hCFTR has 

not yet been published, much of what is known about the molecular interactions 

and structural defects at the NBD1:ICL4 interface that result from the ΔF508 

mutation is the product of molecular modeling. For example, such work has 

provided valuable insight into the local environment of the V510 loop, and its 

proximity to ICL4 as a consequence of the mutation (Mornon et al., 2008; 

Serohijos et al., 2008).  CFTR homology modeling published by Kalid, et al. 

predicted that the loss of the large, aromatic ring structure of F508 leaves a 

hydrophobic cavity at the inter-domain interface of NBD1 and ICL4 (Kalid et al., 

2010).  

A series of CFTR mutations have been identified, in part through patient 

genotyping, which significantly reduce the impact of ΔF508 when these are 



82 
 

simultaneously present.  Such CFTR second site suppressor mutations (SSSMs) 

result in improved CFTR trafficking and function, and a milder disease phenotype 

(Dörk T, 1991; Teem et al., 2007). Among SSSMs, I539T, G550E, R553Q, and 

R555K are located within NBD1. These have been shown to increase the thermal 

stability of the domain, but do not reestablish the NBD1:ICL4 interface that is lost 

with ΔF508 (Chiaw et al., 2011).  However, when coupled with SSSMs that act 

as interface correctors between NBD1 and ICL4, a vast improvement can be 

seen in CFTR global assembly and channel function (Dörk T, 1991; Rabeh et al., 

2012a; Teem et al., 2007).  One such example, R1070W, may drive ΔF508 

phenotype suppression by replacing the missing aromatic ring of F508 with a 

tryptophan at the ICL4 interface (Kalid et al., 2010; Loo et al., 2010).  Another 

example, which was first identified during an attempt to create Cys-less CFTR 

(Wang et al., 2007) and supported with homology modeling and biochemical 

characterization shortly thereafter, is V510D (Loo et al., 2010; Mornon et al., 

2008), which is thought to restore the NBD1:ICL4 interface by creating a salt 

bridge with R1070 on ICL4. The half-life of ΔF508/V510D-CFTR at the cell 

surface is reported to be similar to that of wild type CFTR, about 5-10 fold longer 

than the ΔF508 mutation alone (Loo et al., 2010).  In addition to correcting the 

NBD1:ICL4 interface, other possible interactions may be occurring within this 

ΔF508/V510D CFTR double mutant that may be critical to our understanding of 

how such mutations act to suppress ΔF508. 
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While it is well-established that suppressor mutations do have the ability to 

rescue ΔF508-CFTR trafficking, the mechanism driving this rescue is only 

partially understood.  In our objective to understand the effects of these 

mutations at the atomic level, we generated homology models of WT and ΔF508-

CFTR with and without SSSMs R1070W or V510D, and performed 1 

microsecond molecular dynamics simulations for each of these systems.  These 

simulations provided key insights into how the ΔF508 defect might impact CFTR 

structural integrity, both within NBD1 and of full-length CFTR overall (sans the 

regulatory domain), and identified possible residues - most notably K564 - that 

may play a critical role in the mechanism by which V510D both stabilizes NBD1 

and improves ΔF508-CFTR pathology.    

This work was intended to accomplish three goals: i.) to validate a 

molecular model of ΔF508-CFTR in the absence of a full-length structure, ii.) to 

gain insight into the effects of the ΔF508 mutation on CFTR conformational 

dynamics, and iii.) to determine how second-site suppressor mutations may 

influence such ΔF508-CFTR conformational dynamics.  

To accomplish this, we generated homology models of full-length wild-type 

and ΔF508-CFTR +/- SSSMs V510D and R1070W, and performed MD 

simulations for each. With information acquired from these simulations, we 

developed several testable hypotheses regarding ΔF508 destabilization of full-

length CFTR. By creating full-length WT and ΔF508-CFTR constructs containing 
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certain SSSM or other point mutations, we gained new insights into how the 

V510D suppressor mutation has a corrective effect on ΔF508. Moreover, by 

comparing the crystal structures of ΔF508-NBD1 and ΔF508/V510D-NBD1, we 

determined what structural changes and interactions resulted within NBD1, either 

at the V510 loop or other regions of ΔF508-NBD1 that drive V510D stabilization 

of the soluble domain. In an effort to improve the stability of the TMD2 domain, 

we introduced charged residue substitutions along TM10 and TM11 with a view 

to create salt bridges within TMD2. We then evaluated the impact of these 

mutations on CFTR maturation and trafficking, both alone and in the context of 

additional mutations within NBD1 and ICL4. The experimental data (expression, 

trafficking and functional) obtained for these mutants support the hypothesis that 

a contributing factor of the ΔF508 defect may be the cause of helical instability 

within the second transmembrane domain.  

2.4 Results 

2.4.1 CFTR homology model and molecular dynamics simulation  
Using homologous ABC transporter, Sav1866 (PDB code 2HYD) as a 

model, we generated novel CFTR models of wild-type and ΔF508-CFTR (Figure 

2.1) (Dawson and Locher, 2006). We replaced the NBDs of Sav1866 in the WT 

model with hCFTR NBD1 and NBD2 crystal structures (PDB IDs 2PZE and 

3GD7 respectively), and the ΔF508-NBD1 crystal structure (PDB ID 2PZF) into 

the ΔF508-CFTR variant model (Atwell et al., 2010; Lewis et al., 2010). Relative 
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positioning of the NBDs was based on Sav1866 and NBD1 homodimer 

structures.  

 

Figure 2.1 CFTR homology models of full-length WT and ΔF508 CFTR 
highight differences at V510 loop.  Models were based on the crystal structure 
of SAV1866 in the outward facing conformation (PDB ID 2HYD). The Sav1866 
NBD1 domain was replaced with hCFTR NBD1 crystal structure (PDB ID 2PZE) 
in the WT model, and the ΔF508-NBD1 crystal structure (PDB ID 2PZF) was 
incorporated for the ΔF508-CFTR variant models with V510D and R1070W 
mutations (not shown).  Sav1866 NBD2 was replaced with the crystal structure of 
CFTR-NBD2 fused to maltose-binding protein (PDB ID 3GD7).  A comparison of 
secondary structure that exists near the ICL4 loop reveals significant differences 
between the models.  The blue loop/helix circled in yellow represents the V510 
loop and flanking residues, including F508 in WT CFTR (left).  This residue is 
absent in ΔF508-CFTR (right), which causes the blue V510 loop to become more 
solvent-exposed, turning away from its normal interface with ICL4 (represented 
as the red helical structure).     
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To ensure accuracy of our models, we compared them to the recently 

published cryo-EM structures of outward-facing, open conformation CFTR, 

paying particular attention to NBD1, NBD2 and the intracellular loops (ICLs), as 

those regions of CFTR are the focus of this study. Structural alignment of those 

regions of our model and the experimentally-derived cryo-EM data (PDB ID 

6MSM, (Zhang et al., 2018b)) show high structural similarity.  Alignment of NBD1 

from our WT-CFTR model (based on NBD1 crystal structure PDB ID 2PZE) and 

the cryo-EM structure returned a root-mean-square deviation (RMSD) value of 

1.139 Å. Alignment of NBD2 from our model (based on the CFTR-NBD2-maltose 

binding protein fusion complex crystal structure; PDB ID 3GD7) with the cryo-EM 

structure resulted in an RMSD value of 1.916 Å.  

When we aligned our WT-CFTR homology model to the full-length cryo-

EM structure of phosphorylated, outward-facing CFTR [PDB ID 6MSM, (Zhang et 

al., 2018b)] we obtain an overall RMSD value for C-alpha atoms of 3.76A (Figure 

2.2).  Table 2.1 provides RMSD values comparing our full-length WT-CFTR 

homology model and the CFTR cryo-EM structure.   
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Table 2.1  RMSD values by domain for the full-length WT-CFTR homology 
model when compared to the published full-length CFTR cryo-EM structure in 
the same open channel conformation [PDB ID 6MSM, (Zhang et al., 2018b)]. 
Values were derived for both the intracellular loop (ICL) regions as well as the 
overall transmembrane helices (TMs) that comprise each ICL, and span from the 
cytoplasmic to extracellular side of the plasma membrane.  

Region Associated 
helices Residues RMSD 

(Å) 
Panel in 

Figure 2.2  
ICL1 TMs 2 & 3 162-182 1.513 A 

TMs 2 & 3  125-215, includes ICL1 2.857 B 

ICL2 TMs 4 & 5 261-284 1.056 C 

TMs 4 & 5  225-320, includes ICL2 3.296 D 

NBD1  387-646 (Δ405-436) 1.139 I 

ICL3 TMs 8 & 9 951-974 1.330 E 

TMs 8 & 9  911-1005, includes ICL3 2.890 F 

ICL4 TMs 10 & 11 1060-1080 0.774 G 

TMs 10 & 11  1020-1110, includes ICL4 1.709 H 

NBD2  1193- 1427 1.916 J 
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Figure 2.2 Structural comparison and corresponding RMSD values of ICL 
and NBD regions for the human WT-hCFTR homology model (colored 
ribbon structures) and the published cryo-EM structure of hCFTR (grey 
ribbon structures, PDB ID: 6MSM) (Zhang et al., 2018b). Both structures 
represented in the figure are of CFTR in an outward-facing conformation. The 
figure highlights structural similarity between the two models for each intracellular 
loop (ICL) (panels A, C, E and G) displayed alongside the corresponding pair of 
transmembrane helices that comprise the ICL (B, D, F, and H, respectively), and 
an overall comparison of NBD1 (panel I) and NBD2 (panel J). Both NBDs display 
a high level of correlation between the model and cryo-EM structure, which is 
likely because the authors that published the cryo-EM structures used the same 
set of crystal structures to establish their models as were used in our homology 
model.  Positioning in relation to the TMs would likely be slightly different, given 
that the model is based on Sav1866. Panels B, D and F highlight greater 
differences in TMs 3, 5 and 8, respectively, between the homology model and 
cryo-EM structure.  In the model, the helices appear to be slightly straighter, 
while the cryo-EM model displays a helix-loop-helix structure for TMs 3 and 8. In 
all cases, the alignment appears different for one or both TMs that make up the 
pair.  This may be due to the discrepancies in the channel pore size between 
Sav1866, which is larger to facilitate the passage of bigger molecules, and 
CFTR, which need only allow for the passage of ions. (Figure on previous page.) 

 

 

 

 

 

 

 



90 
 

Additional ΔF508-CFTR variant models were generated by adding known 

SSSMs V510D and R1070W. Using these models, we built corresponding 

~160,000 atom explicit membrane/explicit solvent systems to conduct MD 

simulations of 1µsec timeframe for each model (Figure 2.3).  

 

Figure 2.3 CFTR MD simulation preparations.  A 160,000 atom system 
based on WT and ΔF508 CFTR models prepared for MD simulations.  The 
system was soaked in TIP3 water model (red, in bottom image) and 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane (gray) was placed near 
residues in the MSD region. 

 

 

Quality Analysis for Molecular Dynamics Simulations 

 A quality analysis comparison was completed for the MD simulations 

(Figure 2.4). Macroscopic properties of the models that were evaluated during 

quality analysis confirmed a stable simulation was performed. All properties 

indicated an initial relaxation and eventual stabilizatio
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Figure 2.4 Quality control analysis for Molecular Dynamics Simulations 
of WT, ΔF508, ΔF508/V510D and ΔF508/R1070W CFTR.  Analysis of  potential 
(purple) and kinetic (teal) energy, pressure (green), volume (blue) and 
temperature (red) all indicated an initial relaxation of the molecule. Eventually all 
parameters were stably maintained for the duration of the 1 µs simulation. 
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Figure 2.5 CFTR residues of interest for MD simulation.  CFTR regions and 
corresponding residue numbers that were highlighted for differences in 
secondary structure throughout the course of the 1µsec MD simulation. Through 
the course of the MD simulation, the model was color-coded to signify a given 
secondary structure:  Helix – red; strand/anti-strand – yellow; turns – blue; no 
secondary structure – grey.  
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While analyzing these MD simulations outcomes, we looked for specific 

and testable changes in secondary structure (Figures 2.5 and 2.6), solvent 

exposure, residue geometry, and the existence and conservation of salt bridges 

between selected residues in each of the models (Figure 2.8).  

 

 

Figure 2.6 % Occurrence of secondary structure changes was consistent 
with reported stability data for CFTR variants ΔF508, ΔF508+V510D and 
ΔF508 + R1070W.  A comparison of secondary structure classifications by 
percent occurrence for each residue of interest within the four CFTR homology 
models shows helical regions in red, loops in blue, strands in yellow and 
unstructured regions in grey. Significant changes were seen within TMD2 for 
ΔF508 and ΔF508+R1070W, which are highlighted by the increased prevalence 
of unstructured regions (grey) from residues 1044 to 1095.  When V510D is 
added to ΔF508, helical structure appears to be maintained, as evidenced by a 
secondary structure profile more closely resembling WT (comparison of this is 
highlighted by the purple box to the left). 
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Overall, a comparison of the four (one each of the WT, ΔF508, 

ΔF508+V510D and ΔF508+R1070W) 1μs MD simulations demonstrated a strong 

correlation between in silico protein stability and published experimental data 

such as secondary structure stability (WT ~ ΔF508+V510D >> ΔF508+R1070W 

> ΔF508), and supported a proposed salt-bridge interaction between V510D and 

R1070 at the NBD1:ICL4 interface (Meng et al., 2019; Meng et al., 2017a). This 

work also supports previously made predictions regarding increased solvent 

exposure of the V510 loop in the V510D mutant (Mornon et al., 2008).  

 

Identification of V510D salt bridge interactions  

The analysis also offered several new insights concerning key residues 

within NBD1 that may play a role in V510D stabilization of ΔF508-NBD1. For 

example, frequency analysis of intra- and inter-domain salt bridge possibilities for 

the MD run of ΔF508/V510D model identified that 510D may interact with K564 

and also, to a lesser extent, with R487 in NBD1 (Figure 2.7). This is in addition to 

its anticipated interaction with R1070 of the ICL4 loop. Potential salt bridges are 

retrieved (based on distance) for each charged residue from individual frames of 

the simulation.  Residues with a high occurrence of interactions are analyzed 

further for the total number of salt bridge interactions that occur as a function of 

time and the residues involved in the detected salt bridge formation.  See Figure 

2.7 for analysis of salt bridge interactions with V510D within ΔF508/V510D-

NBD1. 
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Figure 2.7 Salt bridge interactions with V510D.   The prevalence of potential 
salt bridge interactions occurring between V510D and R1070 in the MD 
simulation model of ΔF508/V510D-CFTR was evaluated.  When the interactions 
made with V510D were displayed as a function of time (occurrences of individual 
residues interacting with D510 are spaced along the ordinate axis for clarity), the 
results suggest that R1070 and V510D form a salt bridge only during the initial 
phase of the model, and that V510D forms a more consistent interaction with 
K564, and very briefly with R487.   
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Evidence of helical unraveling observed in ΔF508-CFTR MD simulation 

An interesting observation from our MD simulations was the inherent 

instability of the TMD2 domain and a propensity to lose helical secondary 

structures of TM10 and TM11 as a consequence of ΔF508. This significant 

structural change in helices 10 and 11 may contribute to the short half-life and 

dysfunction of ΔF508-CFTR (Figures 2.8 and 2.9). Moreover, when we evaluated 

ΔF508/V510D-CFTR using the same parameters, the model suggests 

stabilization and structural integrity is somewhat restored. However, our MD 

simulation results for ΔF508/R1070W-CFTR suggest that the resulting helical 

stabilization is less than what was observed for the ΔF508/V510D-CFTR.  
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Figure 2.8 Molecular dynamics simulations of WT, ΔF508, ΔF508/V510D 
and ΔF508/R1070W show evidence of helical unraveling along TMs 10 and 
11, and at ICL4 which connects them. Still shots were taken of each of the four 
movies at the same point of progression in the simulation, highlighting the vast 
differences in helical stability across the four CFTR molecules. 
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Figure 2.9 Superposition of TM10 alpha helical region (residues 1028 – 
1055) taken from the first (red) and last frame (green/teal) of MD 
simulations for WT (A) and ΔF508 (B) models of full-length CFTR. The 
simulation time between first and last frames is 1 µsec. A.) MD simulation for 
WT-CFTR suggests that the alpha-helical conformation of TM10 does not 
change over the course of the simulation; however a slight adjustment in position 
may occur. RMS deviation between these two conformations is 1.551 Å. B.) A 
comparison of conformations for ΔF508-CFTR TM10 region between the first 
frame (red helix) and last (cyan) highlights changes in conformation between 
residues 1034 and 1048, which is unwound and loses alpha helical conformation. 
RMS deviation between these two conformations is 2.375 Å.  
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2.4.2 The role of K564 on V510D-mediated suppression on the ΔF508 
trafficking defect 
 

To validate the model’s prediction of how V510D helps restore ΔF508-

CFTR folding and trafficking, we performed site-directed mutagenesis on full-

length hCFTR to modify residues that appeared to create salt bridges with D510 

(in addition to D510’s possible salt bridge interaction with R1070), in the context 

of the ΔF508/V510D-hCFTR in silico model.  The two basic residues, K564 and 

R487, were replaced with alanine or serine residues in WT, ΔF508–hCFTR, and 

ΔF508/V510D-hCFTR expression constructs to test the impact of removing a 

positive charge in close proximity to D510, effectively eliminating a potential 

stabilizing interaction for the solvent-exposed V510 loop of ΔF508-NBD1. A 

ΔF508/V510K/K564D construct was also created to evaluate whether V510D 

rescue occurs if the K564/V510D salt bridge is maintained within NBD1 while the 

V510D:R1070 interaction at the NBD1:ICL4 interface is interrupted.  We 

assessed the impact of each mutation on CFTR maturation and trafficking by 

transiently transfecting each construct into CF patient-derived submucosal gland 

epithelial cells (CFSME0
-) and comparing expression levels of mature, fully 

glycosylated CFTR (“C-band”) and immature, ER-trapped CFTR (“B-band”) 

detected 48 hours post-transfection. Results are reported as a ratio of C/B band 

(Figure 2.10). 
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We simultaneously created a second set of constructs with the same point 

mutations that contained an in-frame fusion of horseradish peroxidase (HRP) 

within CFTR’s 4th extracellular loop which allows us to detect membrane-bound 

CFTR via an HRP-mediated signal. When CFTR variants traffic to the apical cell 

surface, the HRP tag is exposed on the outside of the plasma membrane, 

rendering it accessible to HRP substrate. To ensure the measured signal was the 

result of extracellular HRP localization, a qualification experiment was performed 

using Brefeldin A, a lactone antiviral that inhibits protein transport from the 

endoplasmic reticulum to the Golgi apparatus (Helms and Rothman, 1992). The 

addition of this compound to the cultured CFSMEo- cells interrupted normal 

trafficking of the CFTR HRP reporter to the outer membrane, which translated to 

a reduction in extracellular HRP signal that was comparable to ΔF508-CFTR. 

Relative CFTR surface localization can then be determined in live cells by 

measuring the resultant chemiluminescent signal (Phuan et al., 2018; Phuan et 

al., 2014). To ensure that samples in both the western blot and HRP trafficking 

assays were normalized for CFTR transfection efficiency, constructs were 

designed with a co-expressing soluble eGFP marker using the 2A bicistronic 

expression system (de Felipe, 2002; Minskaia and Ryan, 2013). This system 

ensures a 1:1 ratio of CFTR and GFP protein production.  
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Figure 2.10   Presence and position of residue K564 is key to V510D 
suppression of the ΔF508 trafficking defect.   A & B. Immunoblotting analysis 
(A) and corresponding C/B ratio values (B) comparing WT-CFTR to WT 
constructs containing V510D and K564 mutations show no deleterious impact to 
CFTR maturation when mutations are added, and suggests an increase in 
detectable levels of mature CFTR. Panels C and E: immunoblotting analysis (C) 
and C/B ratio values (E) comparing WT and ΔF508-CFTR to V510D and K564 
mutants, showing partial CFTR rescue (as indicated by the increase in “C band”) 
when V510D is added to ΔF508.  This rescue effect is diminished when the 
K564A mutation is added to V510D. K564S and residue-swap mutations 
containing K564D and V510K completely eliminate CFTR trafficking.  (D.) 
Cartoon of HRP-tagged CFTR molecule displaying the placement of an HRP tag 
on the fourth extracellular loop (ECL).  F.) This HPR reporter molecule with 
mutations is used in the CFTR trafficking assay to measure trafficking of mutated 
CFTR.  Results are displayed as RLU values relative to WT-CFTR.   
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Initial analysis was performed on WT-CFTR constructs containing the 

K564A mutation +/- V510D prior to evaluation on ΔF508-CFTR to confirm that 

the K564 mutation had no deleterious effect on CFTR maturation.  

Immunoblotting for CFTR displayed no reduction in levels of fully-glycosylated 

CFTR when mutations were added and an increase in overall amounts of mature 

CFTR was detected. While some rescue of ΔF508-CFTR is evident when V510D 

is present, (restoring trafficking to approximately 5-10% of WT levels), our data 

suggests that removal of charged residue K564 disrupts V510D rescue of the 

ΔF508 trafficking defect. When K564 is mutated to an alanine on a ΔF508/V510D 

background, roughly half of the rescue effect is preserved, suggesting that the 

impact of V510D rescue within NBD1 may rely on the presence of the lysine. 

Interestingly, when K564 is replaced with a serine, or when D510 and K564 are 

transposed, trafficking in both the HRP and western blot assays drops to ΔF508 

levels.  

Additionally, we performed electrophysiology on these CFTR variants to 

more thoroughly understand the effect of the V510D mutations on the chloride 

channel’s function as compared to WT and ΔF508-CFTR, and what impact 

changing the positively charged residues at K564 and R487 to alanines would 

have on WT- and ΔF508-CFTR maturation (Figure 2.11).  For this experiment, 

fisher rat thyroid (FRT) cells were transfected with equal amounts of DNA 

expressing the K564A mutations, with and without V510D present. To ensure all 

signal measured could be attributed to CFTR, we first treated the cells with 
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benzamil to block the function of the Na+ channel ENaC, a major contributor to 

ion conductance in epithelial cells. We then treated the cells with forskolin to 

activate adenylyl cyclase and increase cAMP levels to maximize CFTR 

phosphorylation and its subsequent activation, as well as CFTR potentiator, 

Genistein.  CFTR-specific inhibitor, CFTR-inh 172, was then added to confirm the 

increased signal was the result of CFTR activity.  The maximal current after the 

addition of both Forskolin and CFTR potentiator Genistein (FPmax) for each tested 

variant was then compared to WT and ΔF508-CFTR. Data trends were similar to 

those of the HRP trafficking and western blot assays. K564S-containing 

constructs and residue-swap constructs were not evaluated in this assay, given 

the lack of CFTR trafficking seen. In addition, all tested CFTR variants with 

mutations that replaced  R487 with amino acids of shorter side chain length, 

(e.g., R487A and R487S) led to a complete loss of trafficking (data not shown), 

and these were not investigated further.    
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Figure 2.11 Electrophysiological analyses of FRT cells expressing ΔF508-
containing CFTR mutants +/- V510D and K564A.  Fisher rat thyroid cells 
expressing mutated CFTR constructs were evaluated for channel conductance to 
determine how V510D impacts ΔF508-CFTR function in the presence and 
absence of proximal residue K564A. Panel A shows current traces for CFTR 
mutants compared to wild-type. In panel B, the WT trace is removed to allow a 
more precise view of the current traces for cells expressing mutations on a 
ΔF508 background. Data in panel C shows current traces for cells expressing 
CFTR mutants on a wild-type background. Panel D shows a quantitative 
comparison of all constructs  displayed as peak forskolin + potentiator max 
response which is calculated by subtracting the post-inhibitor current from the 
peak forskolin + Genistein current (indicated by the highlighted region in each of 
the three trace panels). (Figure is seen on previous page.) 

 

 

2.4.3 The impact of V510D on the structure and stability of NBD1  
 

Given the inherent instability of NBD1 in its native form, much has been 

done to identify both point mutations and peptide deletions that improve yield and 

solubility of the purified protein (Aleksandrov et al., 2010; Lewis et al., 2010; 

Protasevich et al., 2010; Rabeh et al., 2012b).  As described above, such NBD1 

mutations include known CFTR SSSMs like G550E, R553Q, and R555K. NBD1-

stabilizing modifications also include removal of NBD1’s 37-residue regulatory 

insertion (RI, residues 402-438) with or without a further truncation of the majority 

of the 38-residue regulatory extension (RE, residues 638-676), either of which 

result in improved NBD1 thermostability as well as increased trafficking and half-

life of full-length WT and ΔF508 CFTR (Protasevich et al., 2010). To that end, in 

an effort to better understand how the V510D suppressor mutation impacts 
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folding and stability of the NBD1 subdomain independent of ICL4, we performed 

a series of assays on purified ΔRI- and ΔRI/ΔRE-NBD1 that included K564A/S 

mutations +/- V510D, and compared these to the ΔF508 and WT versions. 

 

Removal of K564 Decreases NBD1 Stability in the Presence and Absence of 
V510D 

To evaluate each NBD1 variant for changes in thermostability, we utilized 

two complimentary, label-free thermal shift assays.  The first, differential static 

light scattering (DSLS), measures heat-induced changes in light scattering to 

determine a protein’s aggregation temperature (Tagg). The second, nano 

differential scanning fluorimetry (nanoDSF), records changes to the intrinsic 

tryptophan (and to a lesser extent, tyrosine) fluorescence profile with increasing 

temperatures as a measure of thermal protein denaturation.  The temperature at 

which the denaturation transition occurs is defined as the inflection point of the 

fluorescent shift (Tm).  

Results from both assays show that the V510D suppressor mutation 

increases the ΔF508-NBD1 Tm by 2-3.5 °C (Figure 2.12).  Mirroring results in the 

immunoblotting and HRP-trafficking assays for full-length CFTR variants, the 

K564A mutation minimizes the stabilizing effect of V510D on the ΔF508 

background, reducing its Tm by about 2 °C, which represents roughly 60% loss in 

V510D stabilization. Similarly, the K564S mutation eliminates the V510D rescue 
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effect, dropping both the melting and aggregation temperatures to below that of 

ΔF508-NBD1. When compared to ΔF508 alone, K564S/V510D/ΔF508-NBD1 has 

a ΔTm of -1.37 ± 0.01 ºC (ΔRI/ΔRE) and -1.68 ± 0.025 ºC (ΔRI), and a ΔTagg of -

1.6 ± 0.20 ºC (ΔRI/ΔRE) and -0.31± 0.16 ºC (ΔRI).  

Consistent with previously published data (Protasevich et al., 2010), the 

addition of the ΔRE truncation did not appear to contribute to NBD1 

thermostability when compared to the ΔRI removal alone in this set of assays, 

with the exception of the ΔRI/ΔF508/K564S-NBD1 protein in the nanoDSF assay, 

which exhibited a Tm of 2.1 °C lower than its ΔRI/ΔRE counterpart. Additionally, 

reported Tagg values for all mutations were an average of 3.6 °C or 3.9 °C higher 

for ΔRI/ΔRE or ΔRI samples when compared to their Tm values, likely owing this 

difference to the distinct phase change between native, denatured and 

aggregated monomeric NBD1 protein previously reported by Protasevich et al. 

(Protasevich et al., 2010). 
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Figure 2.12  Removal of K564 decreases NBD1 thermal stability in the 
presence and absence of V510D as indicated by DSLS and nanoDSF 
thermal shift assays. Purified NBD1 protein (ΔRI or ΔRI/ΔRE) was evaluated 
for changes in aggregation temperature (Tagg) and melting temperature (Tm). 
When point mutations K564A (yellow) and K564S (red) were made to ΔF508-
NBD1 (green), a reduction of both Tagg and Tm was seen, which was partially 
restored by the addition of V510D in all cases (as indicated by blue, orange and 
pink). The K564S mutation resulted in a net loss of both Tagg and Tm as 
compared to ΔF508-NBD1, regardless of whether V510D was added. (Panels 
A/B) Overall Tm and Tagg (displayed as °C) for NBD1 mutants; (C/D) changes in 
thermal stability (ΔTagg and ΔTm) as compared to ΔF508-NBD1; (E) Melting 
temperature curves for NBD1 mutants obtained by nano Differential Scanning 
Fluorimetry (nanoDSF). Curves are displayed as a ratio of fluorescent signals 
measured at 350 nm and 330 nm (top) and the first derivative of each (bottom), 
resulting in an inflection point indicating the Tm of each protein. Every effort was 
made to ensure protein was measured under parallel conditions and at equal 
concentrations. (Figure is seen on previous page.) 
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Structural analysis of ΔF508/V510D-NBD1 via crystallography 

 

While full-length CFTR trafficking and NBD1 stability data provided 

support for the key residues involved in V510D-mediated rescue of ΔF508-

CFTR, identifying the presence of the predicted salt bridge between K564 and 

V510D required a structural approach.  To that end, we used crystallography to 

analyze changes in ΔF508-NBD1 when V510D is present.  

 

The ΔF508 NBD1/V510D Crystal Structure Confirms the D510 – K564 Salt 

Bridge 

To further investigate a possible interaction between the mutated aspartic 

acid residue at position 510 and K564 or R487 suggested by our molecular 

dynamics simulation, we determined the crystal structure of NBD1 delta 

F508/V510D. As has been shown previously (Lewis et al., 2010), deletion of 

F508 and the associated shortening of the adjoining loop results in a more 

solvent-exposed position for V510 (Figure 2.13). Introduction of the V510D 

mutation in the ΔF508 context results in a side chain rotation for D510 towards 

the main body of NBD1 and formation of a salt bridge with K564, whose side 

chain adopts an alternative rotamer from that observed in other CFTR NBD1 

structures, where the amino moiety is hydrogen-bonded to the backbone 

carbonyl of I488. However, when V510D is present, K564 positions the residue 

side chain facing toward the aspartic acid, so as to create the salt bridge.  There 
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are two molecules in the asymmetric unit in our crystal form. In one of them, we 

observe partial occupancy for both the original rotamer of K564, and the one that 

allows for K564-V510D salt bridge formation, while in the second molecule K564 

exclusively adopts the new rotamer that allows for interaction with D510 (figure 

2.13). No interaction appears to exist between R487 and V510D in our structure, 

and instead R487 is involved in a crystal contact (data not shown). 

The observed interaction of the D510 side chain with K564 in the crystal 

structure supports the hypothesis from our molecular dynamics simulations that 

D510 predominantly interacts with residues in NBD1 to exert its stabilizing effect 

on CFTR. Interaction with K564 may stabilize the F508 loop, which in turn would 

be expected to increase productive folding of NBD1 and proper assembly of the 

full–length channel, a hypothesis that was consistent with corresponding in vitro 

data. The mutation also eliminates the exposed hydrophobic side chain of V510, 

further impacting NBD1 stability in a positive manner. Our structure of isolated 

NBD1 cannot rule out potential interactions of D510 with R1070, but given that 

we see a similar pattern of effects for the V510D and K564 mutants in the context 

of full-length CFTR and NBD1, it appears that the predominant effect of V510D is 

confined to NBD1. A cryo-EM structure of full-length dF508/V510D CFTR would 

be helpful to provide a more definitive conclusion regarding the role of the V510D 

mutation. 
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Figure 2.13 The ΔF508/V510D NBD1 crystal structure confirms the D510-
K564 salt bridge. Panel A. NBD1 ΔF508/V510DNBD1 structure solved to 1.86Å 
resolution (shown in blue) is aligned with ΔF508 NBD1 (gray).A clear salt bridge 
is formed between D510 and K564.  Panel B shows local change in NBD1 
structure at V510 loop (in grey) with the addition of the V510D mutation (blue). 
Wild-type NBD1 crystal structure shown in green for positional reference.   Panel 
C/D K564 moves about 5.4Å between the standard and V510D conformations.  It 
appears to alternate from the standard rotamer to a new rotamer capable of 
creating a salt bridge with D510. In chain A (at left), K564 is mostly in the salt-
bridge conformation and partially in the standard NBD1-1D conformation.  In 
chain B (at right), K564 is fully in the salt-bridge conformation. Density looks 
better for the salt-bridge conformation, but there is a population in the standard 
conformation. 
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Table 2.2  ΔF508/V510D-NBD1 structure determination/refinement statistics 
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2.4.4 Evaluation of Helical Unraveling 
 

In an attempt to validate the helical unraveling predicted by the MD 

simulation of ΔF508–hCFTR, and to better understand the impact ΔF508 may be 

having on TMD2, including whether NBD1 stabilization with and without ICL4 

correction might lessen this impact, we created a series of constructs to 

introduce mutations along TMs 10 and 11, with the potential to stabilize helical 

structure. Using our structural models, we selected residues Q1042, P1050 and 

L1096, all within the region predicted to unravel, based on their likelihood to 

create salt bridges with existing residues in close proximity, and replaced each 

with charged residues in full-length WT, ΔF508–hCFTR, and ΔF508/V510D-

hCFTR expression constructs. To ensure that the potential introduction of salt 

bridges along TMs 10 and 11 did not interrupt normal CFTR trafficking, we first 

tested the mutations on the WT-CFTR background, and saw no changes to 

normal CFTR maturation. We then evaluated mutations for their impact on 

ΔF508- and ΔF508/V510D-CFTR. No measurable increase in CFTR complex 

glycosylation and maturation was observed when the charged residue mutations 

were added to ΔF508-CFTR, with the exception of the P1050R mutation. This 

effect is significantly augmented when V510D is added to ΔF508-NBD1; an 

increase in fully-glycosylated CFTR was seen (albeit to varying degrees) with 

nearly all salt-bridge mutations when added to ΔF508/V510D-CFTR.  Based on 

this work, P1050R was identified as a potentially strong second-site suppressor 
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of ΔF508-CFTR helical unraveling and was marked for further evaluation. 

Immunoblotting data of the initial evaluation panel for ΔF508 and ΔF508/V510D-

CFTR constructs is seen in Figure 2.14.   

 

Figure 2.14 Preliminary western blot analysis of helical stabilization 
mutations along TMs 10 and 11. Initial analysis of ΔF508-CFTR (panel A, 
samples included under purple rectangle) and ΔF508/V510D CFTR (panel B, 
samples included under pink rectangle) expression when single point mutations 
were added along TMs 10 and 11 suggest that the addition of charged residues 
leads to an increase in ΔF508/V510D maturation, indicated by the increase in “C 
band” intensity when samples are immunoblotted for CFTR. Samples were 
evaluated in duplicate, with an n of 3 for this set of constructs, and mutation sites 
are indicated by the green (Q1042), orange (P1050) or blue (L1096) rectangles.   

 

This first round of mutation screening was repeated to include control 

construct ΔF508/V510D-CFTR and was performed using plasmids that contained 

the bicistronic GFP internal transfection control which were absent in the original 

set of experiments 
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Figure 2.15 Western blot and C/B ratio analysis of helical stabilization 
mutations along TMs 10 and 11. Repeat analysis of ΔF508/V510D CFTR 
expression with the addition of charged residue point mutations at Q1042 (A and 
D), L1096 (B and E) and P1050 (C and F) along TMs 10 and 11 confirm the 
stabilizing effect previously seen. Expression was normalized using a bicistronic 
GFP expression control. Similar to previous experiments, maturation is increased 
in nearly all cases when stabilizing mutations are added to ΔF508/V510D CFTR 
as measured by an increase in fully-glycosylated CFTR. Again, P1050R was 
identified as a strong stabilizer of ΔF508/V510D CFTR, as was Q1042R. A 
representative western blot from each mutation set is shown, with samples 
loaded onto the gel as biological replicates. This experiment was performed three 
times for this set of constructs. Mutation sites are indicated by the green 
(Q1042), orange (P1050) or blue (L1096) rectangles.  Corresponding C/B ratio 
values reflect an n of 3 separate experiments for each mutational replicate. Bar 
graphs are colored based on the mutation made to a given residue in an effort to 
draw a comparison across experiments (orange: lysine; red: arginine; yellow: 
aspartic acid; teal: glutamic acid). 
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 Overall, it appeared that the positively charged lysine and arginine 

residues were a more favorable fit than the negatively charged aspartic acid and 

glutamic acid residues, and that the slightly larger and more basic arginine 

resulted in the greatest level of CFTR maturation in all cases. Additionally, when 

such mutations were paired with V510D, a synergistic effect was seen on the 

levels of CFTR maturation when the double mutant was compared to either 

ΔF508-CFTR or ΔF508/V510D-CFTR alone. We observed that when the 

P1050R mutation was made to ΔF508/V510D-CFTR it was capable of restoring 

trafficking better than V510D alone, and in a few instances, restored trafficking to 

near wild-type levels (Figure 2.15). This mutation was subsequently used for 

more in-depth analysis of helical stabilization. While P1050K had the highest C/B 

ratio via densitometry analysis, it produced slightly less CFTR overall. Significant 

increases were also noted in protein maturation when Q1042K or Q1042R was 

added to ΔF508/V510D-CFTR, translating to a C/B ratio similar to that of P1050R 

(Figure 2.15, panels A and D). In only one instance, L1096D, did the mutation not 

act cooperatively with V510D to restore CFTR trafficking (Figure 2.15, panels B 

and E).  

The role of V510D in P1050R-mediated helical rescue 

The V510D suppressor mutation is postulated to correct ΔF508-CFTR 

dysfunction through partially-independent effects on the stability of both NBD1 

and the ICL4-NBD1 interface. We sought to understand the extent to which 

V510D’s cooperativity with helix stabilization was dependent on each 
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mechanism.  To accomplish this, we first disrupted V510D’s interaction with 

R1070 at the ICL4 interface by adding the R1070S mutation to ΔF508/V510D-

CFTR, both alone and in combination with TM10 salt-bridge mutation, P1050R.  

As previously mentioned, when P1050R is added to ΔF508-CFTR, a small 

improvement in CFTR maturation occurs that is approximately half that of the 

ΔF508/V510D mutation alone (Figure 2.15). A synergistic increase in trafficking 

and maturation is measured when P1050R is combined with V510D, which 

restores the level of mature CFTR at the cell surface to ~80% of WT levels when 

analyzed by both western blotting (C to B ratio) and HRP trafficking assays 

(Figure 2.16).  When the ICL4 interface is interrupted by the addition of R1070S, 

however, V510D-mediated rescue of ΔF508-CFTR drops from approximately 

15% to 5% of WT levels.  A similarly modest rescue effect (~5% of WT) is seen 

when P1050R is added to ΔF508/R1070S-CFTR; however, a synergistic effect is 

seen when both P1050R helical stabilization and V510D NBD1/ICL4 stabilization 

are added to ΔF508/R1070S-CFTR, which improves trafficking to roughly half 

that of WT CFTR.  To solely evaluate NBD1:ICL4 interface stabilization with and 

without P1050R, we assessed the impact of R1070W on ΔF508-CFTR, and saw 

a very modest improvement in trafficking similar to V510D alone, as anticipated.  

When ΔF508/R1070W/P1050R was evaluated, trafficking was restored to about 

half that of WT-CFTR, similar to the combination of V510D and R1070S with 

P1050R. 
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Figure 2.16 NBD1 stabilization is critical for P1050R rescue of ICL4-
stabilized ΔF508-CFTR.  The impact of ICL4 and NBD1 stabilization on 
P1050R-mediated rescue of ΔF508-CFTR was evaluated via western blotting 
(panel A; corresponding C/B ratio graph in panel B) and HRP trafficking (panel 
C). The addition of P1050R to ΔF508-CFTR results in very modest 
improvements in CFTR maturation (yellow bar). However, when suppressor 
mutation V510D is paired with P1050R, the greatest impact on ΔF508-CFTR 
maturation and trafficking is seen (orange) at about 80% of WT CFTR. When 
R1070S is then added to explore the impact of interrupting the NBD1:ICL4 
interface, this level of CFTR maturation drops from ~80% to 50%. When R1070W 
is included to partially restore the ICL4 interface and V510D is removed, the 
impact on ΔF508-CFTR is about half that of V510D, and the addition of P1050R 
to R1070W/ΔF508-CFTR only improves this to roughly 25%, suggesting that 
NBD1 stabilization is critical to the P1050R rescue effect of ΔF508-CFTR. For 
western blot, n=3; for trafficking assay, n=6 for each assay plate, with 3 replicate 
assays performed. 
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Next, we disrupted V510D-mediated NBD1 stability by again introducing 

K564A to remove the V510D salt-bridge interaction. Consistent with earlier 

results, V510D rescue of ΔF508-CFTR is diminished by the replacement of a 

charged lysine residue at 564 with an alanine. However, when P1050R is added 

to ΔF508/V510D/K564A-CFTR, a synergistic effect is again seen and trafficking 

is restored to approximately 40% of WT levels, despite the loss of K564 (Figure 

2.17), supporting the hypothesis that V510D requires K564 for complete NBD1 

stabilization, which is an essential component of ΔF508-CFTR maturation and 

trafficking.  
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Figure 2.17 NBD1 stabilization and K564/V510D interactions are critical for 
P1050R rescue of ΔF508.  K564A leads to a 30-40% reduction in 
V510D/P1050R rescue of ΔF508-CFTR as measured by immunoblotting and 
HRP trafficking assays, underscoring the importance of NBD1 stabilization on 
P1050R ΔF508-CFTR rescue. For western blot, n=4; for trafficking assay, n=8 for 
each assay, with 3 replicate assays performed. 

To understand whether the element of P1050R’s mechanism that is 

NBD1-dependent required V510D specifically, we replaced V510D with alternate 

NBD1 stabilizing mutations F494N/Q637R (2S), or F494N/Q637R/F429S (3S) 

(Lewis et al., 2004; Lewis et al., 2010; Rabeh et al., 2012a), which do not reside 

at the ICL4 interface. When the 2S or 3S mutations were added to ΔF508-CFTR, 

a modest amount of rescue occurred via western blotting and HRP trafficking 
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(6.5% and 9.5% of WT, respectively, Figure 2.18). However, when the NBD1 

stabilizing 2S or 3S mutations were coupled with P1050R, maturation and 

trafficking of the resulting protein improved synergistically, with 

ΔF508/P1050R/2S reaching ~40% of WT and ΔF508/P1050R/3S resulting in 

~80% of WT trafficking levels. 

 

Figure 2.18  The role of NBD1 stabilization on ΔF508-CFTR rescue does not 
require dual correction by V510D when P1050R helical stabilization is 
added. When the 2S or 3S mutations were added to ΔF508-CFTR, 
improvements in trafficking of 6.5% and 9.5% of WT respectively were seen. 
However, when 2S or 3S mutations were coupled with ICL4 stabilizing mutation 
P1050R, maturation and trafficking significantly improved. ΔF508/P1050R/2S 
resulted in ~40% of WT and ΔF508/P1050R/3S in ~80% of WT trafficking levels. 
Western blot analysis and C/B ratios represent an n=4; for trafficking assay, n=8 
for each assay, with 3 replicate assays performed. 
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2.5 Discussion 
 

This work was intended to accomplish three goals: i.) to gain insight into 

the effects of the ΔF508 mutation on CFTR conformational dynamics, ii.) to 

determine how second-site suppressor mutations may influence these, and iii.) to 

validate a molecular model of ΔF508-CFTR in the absence of a full-length 

structure.  

Given the potential impact of structure-based drug design on the 

development of CF therapeutics, structural and biophysical properties of full-

length CFTR continue to be of great importance.  Recently, two high-resolution 

cryo-EM structures of hCFTR were published, providing “snapshots” of both 

inward- and outward-facing conformations, as well as new insight into CFTR 

channel gating and function (Liu et al., 2017; Zhang et al., 2018b).  Ultimately, 

however, the native structure of ΔF508-CFTR and a better understanding of the 

mutation’s impact on CFTR conformational dynamics would be invaluable, yet 

remains a significant challenge given the protein’s instability.  And while a high-

resolution structure of ΔF508-CFTR with stabilizing mutations might provide 

important information, this stabilization may also mask key elements of the 

ΔF508 folding defect.  In silico models and MD simulations may offer a 

complementary view of the protein and its intramolecular interactions, as well as 

a better understanding of the ΔF508 mutation’s impact on CFTR structure and 

how second-site suppressor mutations may influence this.  With this in mind, we 
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generated novel CFTR models of wild-type and ΔF508-CFTR (Figure 2.1) based 

on the crystal structure of the homologous ABC transporter, Sav1866 in the 

outward facing conformation (PDB code 2HYD) (Dawson and Locher, 2006), 

given its precedent as a model for CFTR structure (Dalton et al., 2012; Mornon et 

al., 2008; Serohijos et al., 2008).  

One aspect of the CFTR and Sav1866 structures that is notably different 

is the size of these proteins’ extracellular pores, an observation that is highlighted 

by Zhang et al. (Zhang et al., 2017) when comparing the structure of homologous 

protein, Sav1866 to phosphorylated zebrafish CFTR. In Sav1866, the channel 

opening that results from the separation of TM 4/6 and TM 10/12 is relatively 

large so as to accommodate drug-like substrates (Zhang et al., 2017). In 

contrast, CFTR’s extracellular pore is considerably smaller but is of sufficient size 

to provide a conduit for chloride ions. Because of this difference, several TM 

helices, which in our CFTR model were based on Sav1866, are rotated and 

displaced relative to the recently published CFTR cryo-EM structure. Notably, 

such differences are mostly limited to the extracellular side of CFTR’s 

intramembrane region. Perhaps surprisingly, Sav1866 served as an appropriate 

template for CFTR’s intracellular TMs, where substantial structural similarity is 

seen between the model and the solved structure (Figures 2.2 and 2.3). As 

described above, CFTR’s NBD1 and NBD2 (Figures 2.2I and J), were modeled 

from crystal structures of the isolated domains. Both are very similar to the CFTR 

cryo-EM structure, including side chain orientations and, importantly, their 
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interactions with ICL regions. This similarity is not surprising, however, as the 

cryo-EM structures and our homology model incorporated the same NBD1 and 

NBD2 crystal structures as starting models for those domains. 

While the results from our MD simulation represent only one random seed, 

the data provided a good starting point for hypothesis generation and subsequent 

experimental verification.  However, multiple runs with different random seeds 

are needed for a comprehensive statistical analysis. With that said, the 

secondary structure (SS) analysis that resulted was in close agreement with 

previously reported experimental data for WT- and ΔF508-CFTR stability with 

and without V510D or R1070W (Aleksandrov et al., 2015; Krasnov et al., 2008; 

Loo et al., 2010; Meng et al., 2017a). Our simulation also provided a solid 

platform for testable hypotheses regarding the impact of ΔF508 on TMD2 and 

critical interactions that support V510D suppression of ΔF508, which we then 

successfully verified experimentally.  For example, our models clearly show 

stronger conservation of ΔF508-CFTR secondary structure with the addition of 

V510D compared to R1070W, an outcome previously predicted to be the result 

of V510D’s dual stabilization of both the NBD1:ICL4 interface and NBD1 alone, 

as opposed to R1070W’s primary role of interface correction (He et al., 2013; 

Protasevich et al., 2010).   

By evaluating the impact of these mutations alone and with additional 

NBD1 stabilizers in full-length CFTR, and coupling this with structural and 
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stability data collected from solubilized ΔF508/V510D-NBD1, we effectively 

supported the hypothesis that V510D plays a role in both interface correction and 

NBD1 stabilization, an outcome we observed in both WT and ΔF508-CFTR. 

However, when the V510D mutation is made to WT CFTR, the result is a hyper-

stabilized, yet less functional molecule, as significant increases are seen in 

trafficking, but activity is reduced when WT/V510D-CFTR is analyzed via 

electrophysiology (Figure 2.11). Given that no reduction in CFTR maturation, 

trafficking or function was seen when residue K564 was altered within the context 

of WT-CFTR, regardless of the presence of V510D, it is likely that in WT/V510D-

CFTR, no interaction exists between D510 and K564 (Figures 2.10 and 2.11). 

Rather, D510’s primary interaction becomes the salt-bridge with R1070, creating 

an interface that is too rigid, and may hinder the flexibility seen when the 

interface is mediated by F508. This level of interaction is not seen in ΔF508-

CFTR, however, likely due to the flexibility and solvent exposure of the V510 

loop, which may make this interaction easier to disrupt.     
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2.5.1 Presence and position of residue K564 is key to V510D 
suppression of the ΔF508 trafficking defect 
 

In addition to providing support for V510D’s dual role of ICL4 and NBD1 

stabilization, we experimentally validated the salt-bridge interaction between K564 and 

V510D that was predicted from our MD simulation of ΔF508/V510D-CFTR in several 

different ways. Quantitative data collected from CFTR immunoblotting (C/B band ratio), 

HRP-trafficking (Relative Fluorescence Units) and electrophysiology (FPmax values) 

experiments display highly correlative trends (Figures 2.7 and 2.8).  In all cases, the 

addition of V510D results in modest rescue of CFTR trafficking (an average of ~5-10% of 

WT), which is diminished by half with the removal of K564’s positive side chain. The 

validity of this 50% reduction is further supported by the positional likelihood of the K564-

V510D salt bridge that is seen in the crystal structure. With regard to the near-total loss 

of trafficking that occurs in the case of K564S, (regardless of V510D), this may be 

attributed to perturbations that arise from the addition of a serine hydroxyl group at the 

tail-end of the α-helix spanning residues 549-564 within NBD1.  In such a conformation, 

it is energetically unfavorable for the hydroxyl group to lack an interaction and may 

compete with the peptide backbone for available hydrogen bonds, potentially 

destabilizing the domain and altering its conformation.  

Another possible explanation for the inactivity of K564S is the potential 

creation of a phosphorylation site for Casein Kinase 2. The Ser phosphorylation 

motif for CK2 kinase is a critical acidic residue (preferably Asp) at position +3. 

Phosphorylation potential is enhanced further if it has additional acidic residues 

(again, preferably Asp) spanning from -2 to +7. Additionally, this requires the 
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absence of a proline or bulky hydrophobic side chain at n+1, or bulky 

hydrophobic doublets at +1 and +2. All of these criteria are met in CFTR 

sequence 564 – 572, i.e. K564(S)-D-A-D-L-Y-L-L-D. Ser564 is at the C-terminal 

end of an α-helix while the N-terminal end and the preceding loop have close 

interactions with ATP; a number of stabilizing residues are located in this region 

and hence any perturbation of this region may destabilize NBD1 and its 

interaction with ATP.   

Despite the modest occurrence of an interaction that appeared between 

V510D and R487 in our salt bridge analysis performed for the ΔF508/V510D-

CFTR MD simulation, mutating the positively charged arginine residue at position 

487 to an alanine does appear to significantly reduce trafficking and function of 

both WT- and ΔF508-hCFTR (data not shown). This reduction in maturation may 

be due to the residue’s potential role in ATP binding and hydrolysis, specifically 

transition state stabilization (Manavalan et al., 1995). Indeed, no interaction is 

observed between D510 and R487 in our crystal structure. Rather, R487 is 

involved in a crystal contact in our crystal form and might therefore be 

unavailable for interaction with D510. If such an interaction were critical to V510D 

stabilization of ΔF508 NBD1, however, one might expect that as a result we 

would not be able to obtain the observed crystal form for the mutant. It is 

therefore probable that interaction with R487 is not a significant manifestation of 

the observed effects of the V510D mutation. 
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2.5.2 The occurrence and subsequent rescue of TMD2 helical 
unraveling in ΔF508-CFTR  
 

Our MD simulations data also provided insights into how TMD2 helical 

unraveling may be a key component of ΔF508-CFTR destabilization, a prediction 

that has not previously been reported. It is suggested through our models that 

the α-helical region of ICL4 spanning 1034 to 1050 (aa sequence ESEGRSP) is 

one of the most destabilized within ΔF508-CFTR, likely owing to the presence of 

helix-breaking residues serine and proline, which make this region vulnerable to 

conformational perturbations. In WT-CFTR, when the NBD1:ICL4 interface and 

the α-helical conformation of this region are intact, salt bridges exist between 

E1044 and K1041, and potentially with R1158 or K978 (from ICL2), which may 

help stabilize the loop. In ΔF508-CFTR on the other hand, these salt bridges are 

broken, as E1044 and K1041 move away from each other, and L1040, which 

may normally create stabilizing interactions with L1091 and W0189 in TM11, 

becomes completely exposed.  Based on this information, we hypothesized that 

the addition of polar residues at the intracellular side of helices 10 and 11 may 

produce stabilizing salt bridge interactions, effectively creating second-site 

suppressors of ΔF508.  

In order to determine which mutation sites would produce the most 

impactful stabilization, we referred to sequence and structural information for 

TMD1 for guidance, given the presumably greater stability that our model 
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suggests. Sequence comparison of the two TMDs shows a higher prevalence of 

charged residues within TMD1 (AA 66-431), which contains 19 Arg and 24 Lys, 

as well as 21 Glu and 9 Asp for a total of 43 positively charged and 30 negatively 

charged side chains.  In comparison, TMD2 (AA845-1198) contains only 30 

positively charged side chains (13 Arg and 17 Lys), and 19 negatively charged (9 

Asp and 9 Glu). We did not take into account His residues in either case, as they 

are generally neutral. Based on this comparison, three residues were highlighted 

by our analysis as potential mutation sites: Q1042 and P1050, which are both on 

TM10 of ICL4, and L1096, which resides at the bilayer interface of TM11, with 

preference given to the former two based on their likelihood for success.  

With the introduction of polar residues at these sites, patterns arose with 

which changes successfully increased the level of CFTR maturation and which 

had either no impact or a deleterious one. In all cases, polar residue insertions 

made no improvement to CFTR maturation and trafficking when added to ΔF508-

CFTR (Figure 2.12), which is unsurprising given the unstable nature of the 

protein overall, and if our model is any indication, the significant helical disorder 

that may be present. However, when the charged residue substitutions are 

paired with V510D, we see stabilizing trends emerge.   Overall, a greater 

increase in CFTR trafficking was seen when replacements were made at Q1042 

and P1050 with basic residues Arg and Lys, suggesting the possible interaction 

of either residue with E1046; however, a favorable position of the sidechains 

would be required, as the distance is too great for an interaction to occur 
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otherwise. The replacement of either Q1042 or P1050 with acidic residues Asp 

and Glu did not appear to improve trafficking more so than V510D alone, 

suggesting that the insertion of a negative charge, while not potentially 

destabilizing, provided no suppression of helical instability. This is in keeping with 

the “positive inside rule,” which states that positively charged residues (Arg and 

Lys) will frequently be located at the cytoplasmic edge of transmembrane helices, 

(Lew et al., 2003; von Heijne, 1992), with the opposite being true for negatively 

charged residues (Baker et al., 2017), a trend that is supported by extensive 

statistical observations for most MPs (Baeza-Delgado et al., 2013; Baker et al., 

2017). The proposed utility of this “charged-residue flanking bias” (Baker et al., 

2017) is that positively charged amino acids bordering hydrophobic helices might 

be involved in TM orientation within the lipid bilayer (Lew et al., 2003), as well as 

helix-helix interactions (Cosson and Bonifacino, 1992; Lew et al., 2003; Smith et 

al., 1996). With regard to L1096, we must consider that leucine is highly 

hydrophobic, and is known to play a critical role in both helical stabilization and 

TM helix-helix interactions (Baker et al., 2017; Lew et al., 2003; Zhao and 

London, 2006). Unsurprisingly, modifying this residue did not improve ΔF508-

CFTR trafficking as shown via western blot, and in the case of the L1096D 

mutation, abolished the V510D stabilizing effect.    
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Synergy between NBD1 stabilizing SSSMs and P1050R 

The impact of V510D on NBD1 and interface stabilization both contribute 

to its activity as an SSSM and its synergy with P1050R. Our studies with NBD1 

stabilizing mutations help us understand the relative importance of these two 

effects. As described above, combinations of NBD1 stabilizing mutations 

F494N/Q637R (2S), or F494N/Q637R/F429S (3S) (Lewis et al., 2004; Lewis et 

al., 2010; Rabeh et al., 2012a) both robustly synergize with P1050R to further 

rescue ΔF508-CFTR maturation and trafficking in the absence of V510D. The 2S 

mutations, which together stabilize purified ΔF508-NBD1 by ~2 ºC (He et al., 

2015) when combined with P1050R, rescue ΔF508-CFTR maturation to 

approximately 40% of WT levels. A larger impact is seen in the presence of the 

3S mutations, which together stabilize purified ΔF508-NBD1 by 5.7 ºC (Rabeh et 

al., 2012a). Rescue of the ΔF508-CFTR maturation and trafficking are highly 

similar when either 3S/P1050R or V510D/P1050R is present. In each case, 

rescue to levels >80% of WT was observed. It is noteworthy that the 2.5 to 3 ºC 

increase in ΔF508-NBD1 stability when V510D is present is far closer to that 

seen with 2S than 3S. The ΔF508-CFTR rescue by V510D in the presence of 

P1050R is therefore greater than would be predicted from its impact on NBD1 

stability alone. It is also noteworthy that R1070W/P1050R rescues ΔF508-CFTR 

maturation to a similar level, 40% of WT, seen in the presence of 2S/P1050R. 

These levels of ΔF508-CFTR rescue are roughly half those provided by P1050R 

in the presence of V510D, consistent with its dual activity. The findings are also 
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consistent with our studies of ΔF508/R1070S/V510D CFTR, where, relative to 

ΔF508/V510D CFTR, a significant reduction in apically localized CFTR and the 

band C/band B ratio are observed. Similar differences in relative rescue 

efficacies are seen for these mutations in the presence of P1050R.  

It should be noted that while close correlation is generally seen between 

the HRP trafficking assay and C/B ratio values obtained by immunoblot 

densitometry, it is necessary to consider both values when interpreting the level 

of CFTR maturation.  Although western blotting and increased C/B band ratio 

continue to be the canonical means of measuring increases in CFTR maturation, 

overall increases or reductions in CFTR protein expression are not reflected 

when reported as a ratio. The HRP-trafficking assay provides a much more 

quantitative measurement that is capable of discerning differences in relative 

levels of both overall and fully-glycosylated, apical surface CFTR.  

Together, our findings further highlight the dual nature of V510D’s SSSM 

mechanism. In addition, the data validate novel predictions derived from our in 

silico CFTR model and MD simulations. The data provide evidence that the 

impact of V510D and K564 have an additive effect on ΔF508-CFTR rescue, 

which also supports the requirement of K564 for V510D stabilization. Central also 

among validated predictions are the previously undescribed impact of ΔF508 on 

the stability of TMD2 helices, the contribution of helical unravelling to ΔF508-

CFTR dysfunction, and the existence of novel SSSMs within TM10 that partially 

counteract this aspect of the ΔF508 defect. The data demonstrate that the novel 
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SSSM P1050R acts by a mechanism distinct from those of R1070W, V510D or 

NBD1 stabilizing mutations. Indeed, P1050R’s synergy with interface and NBD1 

stabilizing SSSM underscores the potential therapeutic value of small molecule 

ΔF508-CFTR correctors that share its presumed mechanism of action, namely 

TM10 stabilization. 
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2.6 Materials and Methods 
 

Homology Modeling 
 

Homology models of full-length WT, ΔF508, ΔF508/V510D and 

ΔF508/R1070W CFTR were generated in Discovery Studio (BIOVIA, 2016) using 

the crystal structure of SAV1866 in the outward facing conformation (PDB code 

2HYD) as a template. We replaced the SAV1866 NBD1 domain with the hCFTR 

NBD1 crystal structure (PDB code 2PZE), and made the appropriate corrections 

for all missing side chains and residue substitutions. Likewise, the ΔF508-NBD1 

crystal structure (PDB code 2PZF) was incorporated for the ΔF508-CFTR variant 

models.  For modeling NBD2, crystal structure of NBD2 fused to maltose-binding 

protein (PDB code 3GD7) was used as the template. Relative positioning of 

NBD1 and NBD2 were based on Sav1866 and NBD1 homodimer structures.  

The R-domain, which ranges from approximately 641-849, was not included in 

our model, as no homologous template was available for this domain. To create 

the ΔF508 SSSM variants, stabilizing mutations V510D and R1070W were 

individually added to the ΔF508-CFTR model, and any resulting steric hindrances 

were relieved by local energy minimization. All models were further refined using 

Maestro Protein Preparation Wizard (2016).  

 

Molecular Dynamics Simulations 
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We used the Desmond System Builder (Bowers et al., 2006) to place a 

pre-defined lipid bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) using transmembrane boundaries reported in Uniprot for all homology 

models. Each system was solvated with a TIP3P (transferable intermolecular 

potential with 3 points) water model (Jorgensen 1983) and neutralized with 

chlorine counter ions. We also added Sodium Chloride at a concentration of 0.15 

M, leading to roughly 160K atom systems. After equilibration, all simulations were 

carried out using the Desmond (GPU) simulation package from Schrödinger at a 

constant-temperature, constant-pressure ensemble (NPT) of 300 K and 1.01 Bar 

respectively for a time of 1 µs and a frame-capture interval of 800 ps resulting in 

a total of 1,251 frames. Subsequent analyses were performed using Maestro 

(Maestro, 2016), Visual Molecular Dynamics (Humphrey et al., 1996), MOE™: 

Molecular Operating Environment (CCG), and several modules that were 

developed in-house using Python, SVL and Perl scripting languages.  

For each model, event analysis was completed to identify changes in 

secondary structure, residue surface area/volume/geometry, variation in 

residency time of chosen residues in select regions of the protein, and the 

presence or absence of salt bridges (Kabsch and Sander, 1983). Residues of 

interest for secondary structure analysis included neighboring regions S495-

E514 within NBD1 and Q1035-R1102 at ICL4. Solvent accessibility calculations 

were performed using the Euclidean Distance Transform surface calculation 

method. 
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Construct generation and expression of full-length hCFTR mutants 
 

CFTR plasmid mutagenesis 

QuikChange Single and Multi-Site Directed Mutagenesis system (Agilent 

Technologies) was used to modify select residues located in NBD1 and along 

helices 10 and 11 in TMD2. Within NBD1, K564A/S and R487A/S mutations were 

made, and along TM10 and TM11, charged residues were introduced at Q1042, 

P1050 and L1096 in full-length WT, ΔF508–hCFTR, and ΔF508/V510D-hCFTR 

expression constructs. A second round of constructs was made to include 

suppressor mutations F494N, Q637R and F429S or R1070W alongside P1050R 

+/- V510D in ΔF508-hCFTR. For some mutants, a duplicate set of mutated WT 

and ΔF508-CFTR plasmids that express an HRP tag on ECL4 (between S902 

and Y903) was created to evaluate trafficking (see Figure 2.9D.). All constructs 

contained a “self-cleaving” GFP transfection control, introduced by 2A-based 

bicistronic expression. In all cases, mutations were verified by Sanger 

sequencing. 

CFSMEo- cell culture 

CF patient-derived CFSMEo- cells (kindly provided by Dr. Dieter C. Gruenert, 

UCSF) were maintained at 37 °C in Minimum Essential Medium with Earle’s 

salts, supplemented with 10% (v/v) FBS, 2 mM L-glutamine and 1% (v/v) 

pen/strep on ECM-coated flasks (10 µg/mL human fibronectin, 30 µg/mL bovine 

collagen I, 0.1% BSA in LHC basal medium). For evaluation of CFTR trafficking, 
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cells were plated on collagen-coated plates (Corning BioCoat multiwall plates, 

Corning, Inc) and transiently transfected using FuGENE HD transfection reagent 

(Promega US, Madison, WI) according to the manufacturer’s instructions.   

Western blotting  

CFSMEo- cells were plated at 200,000 cells per well in a 6-well, collagen-coated 

plate and transfected with 3 µg plasmid DNA per well. After 48 hours, cells were 

washed twice with PBS and collected in cold lysis buffer (25 mM Tris-HCl pH 7.4, 

150 mM NaCl, 1 mM EDTA, 1% NP-40 and 5% glycerol) supplemented with 

protease inhibitors (Roche Complete EDTA-free). Protein concentrations were 

determined by bicinchoninic acid assay (BCA protein assay kit, Pierce Thermo 

Fisher Scientific). Whole cell lysates were separated on 7.5% Criterion TGX 

7.5% SDS-PAGE gels (Bio-Rad) and transferred to nitrocellulose membranes 

using a semi-dry transfer apparatus at 20 V for 10 minutes. Membranes were 

probed with anti-CFTR monoclonal antibody 570 (obtained from UNC Chapel 

Hill) at a 1:1000 dilution to determine CFTR protein expression and maturation of 

each mutant construct. Differences in trafficking were measured by comparing 

the ratio of “C” band to “B” band by densitometry. 

 

HRP-Trafficking  

CFSMEo- cells were plated at 8,000 cells per well in 96-well collagen-coated 

plates and transiently transfected as described.  After 48 hours, cell culture 
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media was removed, cells were washed with PBS, and Luminata Forte HRP 

substrate (EMD Millipore, Burlington, MA) was added to each well, and 

chemiluminescent signal of the HRP reporter on ECL4 was measured using an 

EnVISION plate reader.   

To ensure that samples were being properly compared for expressed hCFTR in 

the HRP-trafficking and immunoblotting experiments, samples were normalized 

by eGFP expression based on RFU values of each sample lysate. For this, 20 µL 

of lysate was added in triplicate to a 384-well white-walled plate (ProxiPlate-384 

Plus, shallow-well microplate, PerkinElmer, Waltham, MA) and read on an 

EnVision plate reader (PerkinElmer) using excitation/emission wavelengths of 

480/535 nm, and an anti-GFP antibody was used during immunoblotting. For the 

HRP trafficking assay, a semi-quantitative value (RLU) corresponding to the level 

of CFTR maturation was normalized to GFP expression. 

 

NBD1 Analysis 
 

Protein Production 

Human CFTR NBD1 variants (residues 387–678 less 405–436 for ΔRI or 405-

436/647-678 for ΔRI/ΔRE, with and without selected mutations) were expressed 

in BL21 E.coli cells as N-terminal His10–Smt3 fusion proteins (Mossessova and 

Lima, 2000) using a pET24a-derived expression vector. Cultures were grown, 
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harvested and processed as previously described (Lewis 2005), and the protein 

was purified from the cell lysate using a nickel ion affinity column and a HiLoad 

26/600 Superdex 200 column. The His10–Smt3 affinity tag was removed and the 

sample was again passed through a nickel ion affinity column and gel filtration 

column for further purification. The protein was concentrated and stored at -80 °C 

in buffer containing 50 mM Tris, 150 mM NaCl, 5 mM MgCl2, 12.5% w/v glycerol, 

2 mM DTT, 2 mM ATP, pH 7.6. Final purity and concentration were determined 

by SDS-PAGE. 

 

Differential Static Light Scattering (DSLS) 

Purified recombinant NBD1 was produced at Sanofi using previously described 

methods (Amaral and Kunzelmann, 2011; Schmidt et al., 2011). Thermal stability 

of various NBD1 isoforms was evaluated by DSLS using the Harbinger 

Stargazer-384 instrument (Epiphyte Three, Toronto, Canada). NBD1 protein was 

diluted to 0.2 mg/ml in S200 buffer (50 mM Tris-HCl, 150 mM NaCl, 5 mM MgCl2, 

2 mM ATP, 2 mM DTT, pH 7.6) containing 1% glycerol, and 10 µL of protein 

solution was aliquoted into wells of a 384-well low-volume optical plate (Corning 

Inc., Corning, New York), and 10 µL of mineral oil was then overlaid onto the 

protein solution. Once in the Stargazer instrument, the plate was heated from 25 

°C to 70 °C at a rate of 1 °C/min to facilitate protein unfolding and aggregation. 

Throughout the experiment, visible light was shone on the protein from below, 

and images of the light diffraction pattern for each well were captured from above 
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the plate every 30 seconds. A linear regression curve was generated for each 

well, representing the increase in light scattering over time. By integrating the 

pixel intensity curve of each well, and plotting the total scattered light value 

against temperature, an inflection point representing the temperature of 

aggregation (Tagg) was calculated for each sample. 

 

Differential scanning fluorimetry (DSF)  

Nano differential scanning fluorimetry (nanoDSF) was performed to evaluate 

NBD1 thermal stability by measuring intrinsic tryptophan (and to a lesser extent, 

tyrosine) fluorescence as a measure of protein denaturation. Experiments were 

performed using the Prometheus NT.48 nanoDSF (NanoTemper Technologies, 

Germany). For this work, protein was diluted to 1 mg/mL in S200 buffer 

containing 1% glycerol. Approximately 10 µL of each diluted sample was loaded 

into nanoDSF grade high-sensitivity capillaries (NanoTemper) in triplicate, and 

placed on the instrument’s capillary loading tray. The instrument temperature 

gradient was set to increase from 20 °C to 95 °C at a rate of 0.5 °C/minute.  

Protein denaturation was detected at emission wavelengths of 330 and 350 nm, 

and a ratio of 350/330 was created for each time point collected. This ratio was 

then plotted against temperature, representing the transition from properly folded 

to fully denatured protein. The first derivative of the resulting sigmoidal curve was 

again plotted against temperature, with the extreme of the derivative curve 

displaying the melting temperature (Tm) for each sample. 
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Crystal structure 

Crystallization: CFTR NBD1 V510D in buffer A was crystallized by mixing equal 

amounts of protein at 6 mg/mL with 0.1 M Tris pH 7.6, 28 % (w/v) polyethylene 

glycol 10,000. Crystallization reagents were from Hampton Research, Aliso Viejo, 

CA. Crystallization was induced by streak-seeding using crystals grown in 0.1 M 

HEPES, pH 7.5, 25% (w/v) polyethylene glycol 550 monomethylether, and plates 

incubated at 4 °C. Crystals grew over several days and were frozen by quick dip 

in reservoir solution supplemented with 25 % (w/v) ethylene glycol.  

Data collection, processing, structure determination and refinement: Data were 

collected at the Advanced Photon Source (APS Argonne, IL) and processed 

using HKL2000 (Otwinowski and Minor, 1997). Molecular replacement was 

carried out using Phaser (McCoy et al., 2007) of the CCP4 suite (Winn et al., 

2011). The structures were refined using Phenix (Adams et al., 2010), followed 

by manual corrections in COOT (Emsley et al., 2010).  The structure was 

inspected and analyzed in COOT and PyMOL (2015).  

Electrophysiology 

Transfected fisher rat thyroid (FRT) cells grown to confluence on transwell inserts 

were mounted in Ussing Chambers (Physiologic Instruments), bathed in 

symmetrical physiological saline (140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM 

MgCl2, 10 mM HEPES, 10 mM Glucose, pH 7.4) and aerated.   Benzamil (10 

µM), forskolin (5 µM), ATP (10 µM), and CFTRinh-172 (20 µM) were added to 

either the apical and/or basolateral chambers. Transepithelial current (Isc), 
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conductance (Gt), and voltage were measured using a multichannel 

voltage/current clamp VCCM8 system (Physiological Instruments) and recorded 

using the Acquire and Analyze 2.0 software (Physiological Instruments). 
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CHAPTER III: STYRENE-MALEIC ACID COPOLYMER 
EXTRACTION: A BREAKTHROUGH IN CFTR LIPID PARTICLE 

PURIFICATION AND STABILIZATION 

 

3.1 Preface 
Chapter III encompasses a collaborative effort toward CFTR-SMALP 
characterization and structural determination.  A manuscript is being drafted that 
is focused on the characterization of the native lipid environment surrounding 
CFTR, and will include the characterization of CFTR-SMALPs. 

Additional work pertaining to detergent purification and qualification of the SMA 
purification protocol were included for the purposes of context and completion. 

 Simon K, Pollock N, Zhang B, Gordon E, He T, Maderia M, Dafforn T, and 
Hurlbut G, Identification of the native lipid environment surrounding CFTR 
using SMALP solubilization 
 

I devised the concept of this project and have collected all data except that 
pertaining to the proteomics and lipidomics analysis, for which I did prepare the 
samples. I developed the protocol for SMA purification of CFTR with input from 
Naomi Pollock and Annuradha Jain with support from Greg Hurlbut.  I performed 
the CFTR protein expression and purification with all polymers tested. Detergent 
purification was performed by Annuradha Jain, Bi Deng and me. I prepared all 
samples for proteomic and lipidomics evaluation, which were performed by Scott 
Shaffer and Bailin Zhang/Timothy He, respectively. I performed all TEM grid 
preparation and assay development with continued input and guidance from 
Gregory Hendricks and Lara Strittmatter. The Dafforn Lab and the Knowles Lab 
(University of Birmingham, UK) provided hydrolyzed SMA and SMI polymer for 
use in this work. Ashley Souza generated the cartoon schematic of CFTR-
SMALPs seen in figure 3.5. 
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3.2 Abstract 
 

Cystic fibrosis is the most common fatal genetic disease of people with 

European heritage. The disease is caused by mutations of the Cystic 

Fibrosis Transmembrane Conductance Regulator (CFTR) such as the 

destabilizing ΔF508 mutation, which leads to a near-total loss of CFTR channel 

function in 70% of CF cases worldwide. The development of methods to isolate 

and characterize full-length ΔF508-CFTR would greatly aid in the discovery of 

drugs that restore the activity of this complex membrane protein (MP). 

Unfortunately, existing methods of MP production and purification typically yield 

only small amounts of unstable CFTR protein in detergent micelles. This has 

limited our ability to characterize CFTR biophysical and structural properties and 

interactions with potential therapeutic ligands. Recently, a new approach to 

membrane protein extraction using styrene-maleic acid (SMA) copolymer has 

emerged.  Using SMA lipid particle (SMALP) technology, I have developed a 

method for solubilizing CFTR from cell membranes into monodisperse lipid disks 

without the use of detergents. The resulting CFTR-SMALPs contain a single 

molecule of stable, full-length CFTR and its surrounding native lipid bilayer. For 

this effort, I purified full-length wild-type human CFTR from HEK cell membranes, 

and analyzed the resulting material using native and SDS-PAGE, CFTR 

immunoblotting, and transmission electron microscopy (TEM) to ensure sample 

quality. Moreover, using mass spectrometry for protein and lipid analysis, I 
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characterized the CFTR-associated native lipid content of the CFTR-SMALPs 

from both the HEK expression cell line and the CF lung submucosal epithelial cell 

line, CFSMEo-.  This method and the preliminary applications outlined in this 

chapter lay the groundwork for full characterization of CFTR in its native state 

within the lipid bilayer, and may provide a path toward structural determination of 

full-length ΔF508-CFTR.  
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3.3 Introduction 
 

Cystic Fibrosis (CF) is a common, fatal genetic disease that currently 

impacts over 30,000 people in the United States, (70,000 worldwide) and is 

characterized by chronic pulmonary infections, pancreatic insufficiency and 

abnormally high sweat chloride levels. With a median predicted survival age of 

47.7 years for patients born in 2016 (up from 41.2 in 2015), therapeutic 

improvements and a greater availability to lung transplantation have offered new 

hope to CF patients (CFF.org, 2018). Nonetheless, given the prevalence of 

comorbidities such as diabetes, liver failure, anxiety disorders and depression, 

CF remains an area of high unmet medical need (CFF.org, 2017). CF is caused 

by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator 

(CFTR) gene, which encodes an epithelial chloride channel. Similar to other 

members of the ABC transporter family, CFTR comprises two transmembrane 

domains (TMD1 and TMD2) of 6 α-helices each and two cytoplasmic nucleotide 

binding domains (NBD1 and NBD2).  Unlike other transporters, however, CFTR 

also contains a mostly unstructured regulatory (R) domain of about 200 amino 

acids that is thought to regulate channel activity through phosphorylation (Liu et 

al., 2017; Zhang et al., 2018b).   

The most prevalent CF-causing mutation is a deletion of phenylalanine 

508 (ΔF508-CFTR), a residue within NBD1 that is thought to mediate the 

interaction between NBD1 and the fourth intracellular loop (ICL4) of TMD2.  
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Interruption of the NBD1:ICL4 interaction subsequently impacts CFTR tertiary 

structure, stability, and function (Lewis et al., 2010; Rich et al., 1990). This 

defect, which affects about 70% of CF patients worldwide, leads to a near-total 

loss of CFTR maturation and trafficking to the cell surface (Lukacs and Verkman, 

2012; Thibodeau et al., 2010). With the recent FDA approval of CFTR 

modulators designed to either increase chloride conductance (potentiators) or 

repair and stabilize misfolded CFTR (correctors), therapies for CF are now 

available to patients that target the root cause of the disease, rather than treat its 

symptoms (CFF.org, 2019b; Southern et al., 2018). However the impact of such 

therapies has been relatively modest for many patients (Southern et al., 2018), 

indicating that while these treatment options represents great progress, there is 

much work to be done. 

To aid the discovery of drugs that restore the stability and activity of 

defective CFTR, better methods are needed to isolate and characterize full-

length CFTR.  Currently, the standard approaches for purifying membrane 

proteins (MPs) utilize detergents, such as n-Dodecyl β-D-maltoside (DDM), to 

solubilize the protein from cell membranes creating micelles around the 

hydrophobic regions of the protein (Chiaw et al., 2011; Rosenberg et al., 2004; 

Zhang et al., 2018b).  Although the resulting micelles stabilize the protein to 

some extent, they can often disrupt the protein’s native structure and interfere 

with important molecular interactions with the lipid bilayer (Calabrese et al., 

2015). In fact, the reliance of detergent purification may be a significant barrier to 
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effective MP research, chiefly with regard to retaining the protein’s stability and 

function during solubilization and reconstitution (Seddon et al., 2004). This is 

particularly problematic for CFTR. Given its size and limited expression levels in 

cells, reconstitution with detergents will often yield only small amounts of 

unstable protein in the closed, dephosphorylated state. This limits the biophysical 

and structural characterization that can be undertaken, and hinders the study of 

interactions between full-length CFTR and potential therapeutic ligands.  

One solution to the instability of purified human CFTR has been to study 

orthologues of the protein from different species (Aleksandrov et al., 2010; 

Pollock et al., 2015; Yang et al., 2018). This has led to the identification of 

several key residues - often prolines - that appear in the sequence of orthologous 

CFTR from various animals, differ from the human sequence, and increase the 

thermal stability of the protein (Aleksandrov et al., 2012). Inclusion of these 

residues in the human CFTR context has likewise enhanced the thermal stability 

of the human protein, and has allowed for the creation of stabilized versions of 

the protein that are more amenable to biochemical and biophysical 

characterization. In a similar way, hyper-stabilized versions of the NBDs of CFTR 

have been created in order to determine their structures at high resolution (Lewis 

et al., 2010). Though these studies have provided vital information about the 

structure and function of human CFTR, a dilemma must also be acknowledged: 

until we know more about the subtleties of CFTR structure and function, we 

cannot discount the possibility that these mutations have structural and functional 
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consequences beyond our understanding. However, without making these 

changes it has been challenging to study the protein at all. 

An alternative to artificially stabilizing membrane proteins is to provide 

them with a membrane mimetic that is more appropriate than conventional head-

and-tail detergents. After all, membrane proteins do not function as isolated 

entities; rather, they rely on their surrounding lipid environment to provide stability 

and support (Bayburt and Sligar, 2010; Niesen et al., 2017). There is evidence to 

suggest that membrane proteins and their endogenous lipid environment evolve 

to assume energetically-favorable conformations that support the protein’s 

requisite function (Haines, 2001; Mulkidjanian et al., 2009; Wilson and Lin, 1980). 

Altering this will directly impact the MPs structure, function, and energy state 

(Calabrese et al., 2015), a consideration that must be taken into account when 

studying large MPs like CFTR in detergent micelles. 

In an effort to address this limitation, much work has been done to develop 

effective methods that isolate MPs in small bilayer patches, i.e. in stable 

lipoprotein nanodiscs.  One such approach involves replacing detergent micelles 

with exogenously added lipids to form self-assembling lipid disks of uniform size 

which are held in place by an amphipathic helical membrane scaffolding protein 

(MSP) (Bayburt and Sligar, 2010; Ritchie et al., 2009). This method has been 

used to successfully stabilize maltose transporter MalFGK2, an ABC transporter 

similar to CFTR, but has not successfully been used to purify CFTR itself 
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(Alverez et al., 2010). While this method does offer a more stable option for the 

suspension of MPs, it still relies on the initial detergent purification of the protein. 

Using MSPs places the protein in a lipid environment, but without information 

about the lipid preferences of specific proteins, this environment is artificial and 

will not truly replicate the plasma membrane as experienced by the protein in 

question. Furthermore, this method does not circumvent the issue of an initial 

period of detergent destabilization of the target protein. Regardless, the best 

environment for a purified membrane protein is the endogenous lipid bilayer it is 

normally found in.   

To that end, a number of publications have tried to reconstitute CFTR in 

exogenous lipids from a bottom up approach to determine the composition of 

lipids that provide the most stabilizing effect on the protein and may provide 

some insight into the native bilayer (Hildebrandt et al., 2017).  They are 

addressing a significant gap in the understanding of the overall structure and 

function of CFTR.  Based on this previous analysis, we have initiated an 

evaluation of the lipid composition of the native bilayer surrounding CFTR. 

In the last decade, a new approach to the extraction of IMPs has been 

described using styrene-maleic acid (SMA) copolymer (Knowles et al., 2009; Lee 

et al., 2016; Postis et al., 2015). This method was developed to overcome the 

issues associated with detergent micelle purification of large proteins like GPCRs 

and ABC transporters.  In lieu of separating out such a protein from its 
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surrounding lipid bilayer using detergents, this approach takes advantage of the 

amphipathic properties of SMA to nonspecifically solubilize MPs directly from the 

cell membrane thereby preserving the native lipid environment that supports the 

function of the protein (Knowles et al., 2009). A recent publication on SMA 

purification showed that by combining the SMALP method with quantitative mass 

spectrometry, the lipid preferences of membrane proteins could be accurately 

determined. 

With this technology, I have been able to purify monodisperse lipid disks 

containing a single molecule of full-length CFTR in its native environment, 

allowing the protein to stay in contact with its natural lipid support-system as well 

as any potential interactome proteins (Pankow et al., 2015). For this effort, full-

length human CFTR was isolated from Expi293 HEK cell membranes to ensure a 

native, fully glycosylated form of CFTR.  Purified CFTR SMALPs were analyzed 

by SDS-PAGE silver stain, western blot, Native PAGE, mass spectrometry, 

transmission electron microscopy (TEM) and ultimately cryo-EM. Silver stain, 

western blot and mass spectrometry sample analysis confirm the isolation of 

high-purity CFTR. Negative stain EM of CFTR SMALPs shows monodisperse 

~10 nm diameter particles resembling SMALPs containing Sav1866, a 

homologous bacterial transporter (Figure 3.5).  With TEM analysis, I have also 

shown that CFTR-SMALPs can be stored at 4 °C for several days with minimal 

loss in sample quality, and that freeze/thaw cycles appear to have no impact on 

particle monodispersity.  Moreover, because SMA purification does not 
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dissociate the surrounding native lipids surrounding MPs, I was able to solubilize 

CFTR-SMALPs from cystic fibrosis submucosal epithelial (CFSME) cells and 

determine the lipid composition that surrounds the protein, a finding not 

previously reported. 

3.4 Results 
 

My work on full-length hCFTR purification was first performed using 

detergent solubilization.  Initial evaluation of different detergent purification 

protocols for CFTR involved solubilization with either 2% n-dodecyl-β-D-

maltopyranoside (DDM) with storage in 0.1% DDM, 1% decyl maltose neopentyl 

glycol (MNG-10) with storage in 0.03% 3α-hydroxy-7α,12α-di-((O-ß-D-maltosyl)-

2-hydroxyethoxy)-cholane (FA-3), or 1% MNG-10 and 0.1% cholesteryl 

hemisuccinate (CHS) with storage in 0.05% FA-3 and 0.005% CHS. However, 

several attempts to characterize the stability and purity of both DDM- and MNG-

10-solubilized CFTR, such as transmission electron microscopy of negatively 

stained particles (Figure 3.1) indicated that detergent-purified CFTR aggregated 

easily and did not respond well to freeze-thaws.  In an effort to identify a more 

stable and robust way of purifying wild-type, and eventually mutant hCFTR in its 

native, mature form, I explored the utility and feasibility of styrene-maleic acid 

purification. 
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Figure 3.1 TEM analysis of detergent-purified hCFTR at lower and higher 
magnifications.  hCFTR was solubilized from insect cells using either DDM 
(left), MNG-10 (middle) or MNG-10 + CHS. Negative stain TEM analysis showed 
high levels of aggregation in all cases. 
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3.4.1 Expression of CFTR 
 

Initial work toward developing this protocol was focused on determining 

the optimal cell type from which to solubilize full-length, wild-type human CFTR 

(WT-hCFTR) in order to obtain a fully native form of CFTR containing the two N-

linked oligosaccharides present on ECL4.  CFTR production was compared in 

Sf21 insect cells and Expi293 HEK cells. An equal number of cells were collected 

from each culture and analyzed for CFTR expression via immunoblotting with 

antibodies targeting the 10x-His or 3x-FLAG tags.  Results for each western blot 

(seen in Figure 3.2) show stronger CFTR expression when Expi293 cells are 

transfected at 1 µg/mL of DNA using ExpiFectamine transfection reagent 

compared to baculoviral infection of Sf21 cells across a range of five viral 

dilutions.     
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Figure 3.2 Comparison of hCFTR expression levels in Sf21 insect cells 
and Expi293 HEK cells.  hCFTR expression is detected by immunoblotting with 
α-His (top panel) or α-FLAG Abs. Results indicate that expression of wild-type 
hCFTR is greater in cultured Expi293 HEK cells transfected at 1 µg/mL of 
plasmid DNA after 24 or 48 hours compared to Sf21 insect cells that have been 
baculovirus-infected at viral dilutions ranging from 1:50 to 1:1,000 for 48 or 72 
hours.   
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3.4.2 Encapsulation and purification of CFTR using Styrene Maleic 
Acid Co-Polymer (SMA) 
 

In order to compare the effectiveness of SMA in encapsulation of CFTR 

from Expi293 and Sf21 cells, and its subsequent purification via an affinity tag, a 

preparation of crude membrane from each cell line was divided in half. CFTR 

was solubilised using SMA and purified using either the 3x-flag or 10x-his 

purification tags.  Preliminary purification using SMA was performed in alignment 

with the existing detergent purification protocols; however, in all cases, CFTR 

was solubilized for two hours at 4 °C with a final concentration of 2.5% SMA in 

lieu of detergent. Additional changes included a reduction in Mg2+/ATP 

concentration to 1 mM, and HisTrap affinity column elution performed by step 

gradient at 100 mM, 250 mM and 500 mM imidazole.  Additionally, as with the 

reduction in Mg2+ divalent cation concentration, the pH of all buffers was raised to 

7.8 to prevent aggregation of the SMA copolymer. 

 
Figure 3.3 Experimental parameters to evaluate CFTR production in 
Expi293 HEK cells and Sf21insect cells 
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Expi293 and Sf21 cells were then collected and each cell type sample was 

divided in half to be purified using either the 3x-flag or 10x-his purification tags.  

Preliminary purification using SMA was performed in alignment with the existing 

detergent purification protocols; however, in all cases, CFTR was solubilized for 

two hours at 4 °C with a final concentration of 2.5% SMA in lieu of detergent.  

Additional changes included a reduction in Mg2+/ATP concentration to 1 mM, and 

HisTrap affinity column elution performed by step gradient at 100 mM, 250 mM 

and 500 mM imidazole.  Additionally, as with the reduction in Mg2+ divalent cation 

concentration, the pH of all buffers was raised to 7.8 to prevent aggregation of 

the SMA copolymer.  When all preps were compared, the CFTR purification from 

Expi293 cells using the 10x-His tag returned the best recovery and purity (Figure 

3.4, panel A). CFTR appeared to be the majority species in several fractions 

when analyzed via silver stain SDS-PAGE analysis. When analyzed with TEM 

negative stain, micrographs showed monodisperse particles resembling SMA-

purified homologous bacterial protein, Sav1866 (Figure 3.5). 
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Figure 3.4 SDS-PAGE silver stain analysis of size exclusion 
chromatography column elution fractions to evaluate HEK cell (A and B) 
and Sf21 cell (C and D) CFTR solubilization using SMA. A comparison of 
conditions identified HEK cell purification using a His-10x tag as the optimal 
combination for purification of hCFTR. Red boxes outline CFTR bands. 

 

Figure 3.5 TEM micrographs of CFTR and Sav1866 SMALPs.  Particles of 
the two homologous proteins display similar morphology when negatively stained 
with 1% uranyl acetate staining solution and evaluated on a Tecnai Spirit 12 at 
120 kV. 
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After this initial evaluation, parameters for hCFTR solubilization and 

purification from Expi293 HEK cells were established.  A cartoon model of a 

single CFTR-SMALP is seen in Figure 3.6 and a schematic of the protocol is 

seen in Figure 3.7. 

 

Figure 3.6 Cartoon schematic of full-length hCFTR in a SMALP. ABC 
transporter CFTR can remain in its lipid bilayer while being held in place by an 
SMA copolymer (blue coil). Homology model of hCFTR was generated by Partha 
Manavalan; SMALP illustration produced by Ashley Souza. 
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Figure 3.7  Schematic overview of the protocol for SMA purification of 
CFTR from mammalian cell membranes.    

 
 

Representative traces and SDS-PAGE gels of nickel affinity column 

elution fractions and size-exclusion column fractions are seen in Figures 3.8 and 

3.9, respectively.   
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Figure 3.8 SDS-PAGE Silver stain and western blot of eluted hCFTR. 
Fractions 13-30 show full-length hCFTR eluting with 100 and 250 mM imidazole 
concentrations.  Western blot was probed with a monoclonal anti-hCFTR 
antibody targeting the C-terminus (AA 1370-1380). Each fraction is 2 mLs. 
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Figure 3.9  SDS-PAGE Silver stain (top) and western blot (bottom) of SEC 
purified hCFTR. Fractions 20-27 contain full-length hCFTR, confirmed by 
western blotting.  The low MW species (~10 kD) seen on the silver stain is the 
result of SMA that has separated from the hCFTR-SMALPs once separated on 
SDS-PAGE. 
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Comparison of CFTR-SMALPs vs CFTR in detergent micelles 

Once a working protocol for SMA purification of CFTR had been 

established, I performed a side-by-side comparison of the detergent-purified 

CFTR and CFTR-SMALPs to evaluate differences in particle homogeneity and 

stability.  To prepare the purified CFTR, I solubilized hCFTR from transfected 

Expi293 cells with either 2% DDM or 2.5% SMA, and followed parallel affinity 

column and SEC gel filtration column procedures for each.  The SEC purification 

chromatogram and corresponding silver stain of eluted SEC fractions for CFTR in 

DDM is seen below in Figure 3.10.  A representative example of SMA purified 

CFTR fractions can be seen in Figure 3.9 on the previous page.  

 

Figure 3.10  SEC purification of detergent-purified CFTR.  Each eluted 
fraction is 0.5 mLs.  Fractions B7-C1 were pooled for analysis; fraction B9 was 
used for TEM analysis.  
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Following SEC purification of both CFTR preps, a portion of each sample 

was snap-frozen and stored at -80°C for freeze/thaw evaluation using negative 

stain TEM analysis.   Grids of both the fresh and frozen material were prepared 

with 1% uranyl acetate stain and grids were evaluated on an FEI Tecnai Spirit 12 

for evidence of particle aggregation (Figure 3.11).  CFTR-SMALPs appeared 

monodisperse and no aggregation was evident before or after freeze-thaw.  The 

detergent preparation did appear to have some level of aggregates even when 

analyzed fresh, and was affected by the freeze-thaw cycle, however, as an 

increase in aggregation was seen in this sample.  
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Figure 3.11 EM Negative staining of purified CFTR in SMALPs or detergent 
micelles. Full-length CFTR was purified from cell membranes using either 2.5% 
SMA copolyer or  2% n-dodecyl-β-D-maltopyranoside (DDM).  Negative stain 
TEM was performed on freshly-prepared material, as well as on material that had 
been snap-frozen and stored at -80 °C for 24 hours.  Lower (top row) and higher 
(bottom row) magnifications are taken for each sample on the same grid. 
Samples analyzed using the FEI Tecnai Spirit 12 (120 keV). Negative staining: 
1% Uranyl Acetate staining  Carbon coated 400 mesh grids. 
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One observation that was surprising was the greater amount of lower 

molecular weight bands seen with SEC-purified CFTR-SMALPs compared to the 

detergent purified material immediately following column purification (Figures 3.9 

and 3.10). I hypothesized that the bands visible with the CFTR-SMALP material 

when separated out on SDS-PAGE may be due to the inclusion of binding 

partners that were being purified out along with CFTR; interactions that would 

normally be interrupted by detergent purification.  To evaluate sample purity and 

confirm the identity of the lower species seen with SDS-PAGE separation, I ran 

the CFTR-SMALP sample on a Native PAGE gel, which makes use of the 

negatively-charged maleic acid moietiy that encircles the particles to migrate 

through a native Tris/Gly gradient gel.  The gel was run in duplicate and one was 

transferred to a nitrocellulose blot for CFTR immunoblotting. The resulting 

banding pattern with both coomassie staining and anti-CFTR immunoblotting 

both showed a single major band (NativeMark MWM is an approximation and 

may not be reliable as a comparison of particle size), as well as a thinner band of 

a higher molecular weight, which may have been either aggregates of the CFTR-

SMALPs or potentially two individual molecules that were co-purified in one long 

SMA polymer (See Figure 3.12).    
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Figure 3.12 Native PAGE analysis of CFTR-SMALPs detected by coomassie 
staining (left) and anti-CFTR immunoblotting show migration of one major CFTR 
band and a slightly higher band which may be SMALPs that contain two 
molecules of CFTR co-purified into one lipid particle.   

  

Samples were also prepared for proteomic analysis by separating the 

sample on a “short gel.”  This separated the protein just far enough to distinguish 

three separate bands (seen in Figure 3.13).  These bands were cut out of the gel 

and labeled as 1A, 1B and 1C, and were then sent for proteomic analysis.  I 

compared the number of unique CFTR peptides detected to the total spectra 

collected for each gel fragment and determined that CFTR comprised 99.61% of 

the detected protein in band 1A, 94.77% in 1B and  67.36% in 1C.  The 

remaining protein detected in 1C, which normally migrates to approximaly 70 

kDa, was folding chaperone HSP70, polyubiquitin and actin filaments, all of 

which are expected to bind to CFTR during the protein’s normal life cycle.  

Collectively, these data indicate that along with the CFTR, SMA co-extracts 
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associated proteins, which likely account for the smaller bands seen on SDS-

PAGE.  The band labeled 1B, which was 94.77% CFTR, is likely a small 

population of CFTR that has broken in half at the R-domain and migrated to abou 

the 80-100kDa position on the gel.  Both the N- and C-terminus were identified in 

the CFTR spectral pattern for that band. 

 

 

 

Figure 3.13 Mass spectral analysis of SEC-purified CFTR-SMALPs shows 
high-purity CFTR protein.  On left, SEC fractions were pooled and separated 
out on a reducing 4-12% Bis-Tris “short gel” to separate out 3 sets of bands (1A, 
1B and 1C) that correlated with bands of size 100kDa and higher (1A), 60-
100kDa (1B) and 40-60kDa (1C).  On right, percentage of total unique peptides 
identified as CFTR for each sample fraction.  Keratin contaminants (common 
trace occurrences) and chymotrypsin peptides were removed from calculation. 
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3.4.3 Evaluation of alternative polymers for CFTR purification 
 

Due to certain properties of SMA, particularly its sensitivity to divalent 

cations and the strong UV absorption of styrene, it can be challenging to perform 

certain quantitative assays on SMALPs such as ATPase activity and spectral 

analysis.  In an effort to address these issues, alternative polymers have been 

developed that do not share the same incompatibilities.  In the course of my 

work, I tested two of these polymers for their ability to solubilize CFTR from 

HEK293 membranes.     

Diisobutylene Maleic Acid (DIBMA) 

The first polymer tested, Diisobutylene/Maleic Acid Copolymer, or DIBMA, 

has replaced the styrene ring with diisobutylene, making it compatible with UV-

based spectroscopy methods and, despite the presence of the maleic acid 

moiety, impervious to higher concentrations of MgCl2.  I purified CFTR on three 

occasions with DIBMA, which require an overnight incubation of the polymer with 

purified membranes when used at 4 °C.  Each time I was able to obtain a 

reasonable amount of relatively pure material from the nickel column.   

One issue inherent in the properties of DIBMA, however, is the reduction 

in particle stability that comes with removing the styrene head group, which is 

believed to intercalate stably into the lipid bilayer during traditional SMA 

purification.  As a result, CFTR purified using DIBMA began to degrade after the 



171 
 

first 24 hours of the purification, and gel filtration had little impact on the overall 

purity of the prep.  

Because I was unfamiliar with the solubilizing effect of DIBMA on Expi293 

cell membranes, I prepared two separate solubilizing reactions.  The initial 3 hour 

incubation with DIBMA returned very little CFTR in the imidazole elution 

fractions; however, after the 18 hour incubation with DIBMA at 4 °C, affinity 

column purification (seen below in Figure 3.14 top panel) showed a robust 

amount of CFTR eluting.  Fractions containing CFTR were pooled and run over a 

gel filtration column for further purification; however, the resulting fractions 

returned sample that appeared less pure than that which was injected. The 

material was again concentrated and run over a clean SEC column a second 

time, and again purity did not improve, suggesting that the process of 

concentrating and gel filtration was unfavorable for the CFTR-DIBMALPs.  
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Figure 3.14 Initial analysis of CFTR solubilization using DIBMA.  Silver stain 
analysis of imidazole-eluted affinity column fractions (top, imidazole 
concetrations indicated above each lane) collected after either 3- or 18-hour 
membrane incubation with DIBMA, and SEC gel filtration column fractions 
(bottom) from two SEC purification steps run concurrently.  Because DIBMA 
lacks the styrene head group of SMA, it may require a longer incubation time for 
complete CFTR solubilization, and may be slightly more unstable as those made 
with SMA. Silver stain analysis of SEC fractions suggest that protein degradation 
may occur at significant levels when CFTR is purified using DIBMA.  Fractions 
outlined in the red boxes are those containing CFTR purified with DIBMA that 
were collected as fractions of interest for further analysis. 

 

In an attempt to stabilize the CFTR-DIBMALPs, I incorporated PKA 

phosphorylation and ATP-γ-S to the preparation protocol, as I had done with 
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CFTR-SMALPs. Initial elution from the affinity purification column returned 

relatively pure material of good concentration (Figure 3.15).  

 

Figure 3.15 Imidazole elution fractions for CFTR-DIBMALPs prior to 
phosphorylation treatment with PKA.  Silver stain (top) and immunoblotting 
evaluation of imidazole elution fractions for CFTR-DIBMALPs shows a robust 
amount of CFTR of a reasonable purity after solubilization using DIBMA.   

 

Following imidazole elution, the material was pooled, gently concentrated 

and added to a phosphorylation reaction. Because the material had been purified 
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with DIBMA, which is presumed to be insensitive to divalent cations, I used the 

recommended amount of 10 mM MgCl2 to facilitate the reaction, and followed the 

protocol that I had applied to CFTR-SMALPs. The reaction appeared to proceed 

normally, and no aggregation was apparent in the solution; however, results from 

the gel filtration SEC column suggested that no CFTR protein had successfully 

been passed through the column, and the only protein that did appear to elute 

was the remaining 43 kDa PKA that was used in the reaction prior to injection on 

the column.  

 

Figure 3.16 Fractional analysis of size-exclusion chromatography of PKA-
treated CFTR-DIBMALPs shows a total loss of CFTR after exposure to 10 mM 
MgCl2 during phosphorylation step. 

 

When I inverted the column on the AKTA and flowed sodium hydroxide 

over it, the absorption trace revealed a significant amount of protein had been 

trapped at the start of the column. This was likely the result of a breakdown of the 

DIBMALP, perhaps due to the presence of magnesium, and the subsequent 
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CFTR unfolding and aggregation after disintegration of the nanodisc that held it 

in place.  

Styrene co-maleimide (SMI)  

The second polymer evaluated was poly(styrene-co-maleimide) (SMI), a 

copolymer comprised of alternating styrene and dimethylaminopropylamine 

maleimide, which provides a solution to the challenges that the maleic acid 

moiety presents for users of SMA.  Given the loss of the negatively charged 

maleic acid, which is thought to play a role in engaging the lipid head groups 

while hydrophobic styrene inserts into the lipid acyl tails, I incubated the 

membranes overnight with SMI to ensure good solubilization and cycled the 

solubilized CFTR-SMILPs over a 5 mL nickel column continuously overnight 

using an AKTA Pure and eluted the protein from the column the next morning.  It 

was clear the column contained a significant amount of material, given the bright 

yellow color it accumulated.  A higher than normal imidazole concentration of 500 

mM  was required to fully elute protein from the affinity column, as CFTR 

immunoblotting of the initial set of eluted fractions showed that 250 mM imidazole 

did not sufficiently remove CFTR from the nickel resin.  Coomassie and silver 

stain analysis were performed on the full panel of eluted fractions which, 

unfortunately, suggested that the CFTR was a minor component of the elution.  

Given the challenges and inefficiency seen with purifying lipid particle samples 

using gel filtration columns, I decided not to pursue the SMI purification method 

any further. 
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3.4.4 Lipid evaluation of CFTR-SMALPs  
 

 As discussed previously, there is great utility in understanding the native 

lipid environment of a membrane protein. Not only does this information provide 

important structural information regarding the surrounding charge and lateral 

pressure on the molecule, it also offers valuable information that can be 

incorporated into purification protocols for functional analysis.  As was mentioned 

earlier, the limitations inherent in SMA purification impede many types of 

structural analysis; a design flaw that could easily be circumvented by employing 

a more structurally benign polymer.  At the same time, a significant advantage of 

SMA is its strong solubilizing capabilities and its compatibility with a number of 

different cell types.  Ideally, we could harness the extensive solubilizing capability 

of SMA initially, and then replace this polymer with one that is better suited for 

the downstream analysis intended; however, this approach relies on a precisely-

timed approach and a supporting network that won’t allow CFTR to unfold and 

aggregate in the process, preferably without the use of detergent.  So if we know 

which lipids endogenously surround CFTR, we can parlay this information into an 

exogenously-added lipid bilayer for CFTR lipid particle stabilization.  

 For lipidomics evaluation of CFTR-SMALPs, I first created a CFTR-

SMALP sample from Expi293 expression cells as a proof-of-concept, and then 

solubilized CFTR from the more physiologically-relevant CFSMEo- cells. Both 
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samples were analyzed for lipid content of SMALPS as well as total membrane 

fraction, and proteomics.  

CFTR lipid composition in Expi293 expression cells as proof-of-concept 

For initial attempts, and to create a set of control samples, I first 

transfected Expi293 cells with hCFTR plasmid and solubilized CFTR with SMA. 

This provided an abundant sample that could be used to validate the 

experimental approach and ensure differences in lipid composition could be 

detected between total membrane and SMALPed CFTR. Sample set and 

rationale for each is outlined below. 

 hCFTR-SMALPs solubilized from the Expi293 human expression cell line.  

This cell line is used as a means of producing a large amount of protein for 

solubilization and purification, but is not reflective of the native environment of 

hCFTR. For CFTR expression in this cell line, a cationic lipid-based 

transfection reagent was used. This may impact the overall lipid content. 

CFTR-SMALPs were purified using a nickel column and size exclusion 

chromatography 

 Expi293-SMALPs solubilized from a NON-TRANSFECTED batch of Expi293 

cell membranes. This sample represents a total population of purified 

membrane proteins and lipids from the Expi293 cells solubilized using SMA. 

To create this sample, Expi293 cell membranes were incubated with SMA for 

two hours at 4 °C per the standard protocol, at which point the solubilized 
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suspension was spun down at 100,000 xg for 1 hr to remove large membrane 

fragments. The resulting supernatant contained nonspecifically-purified 

SMALPs.  Because the final ultracentrifugation step would not pellet individual 

lipid molecules that would be detected in the lipidomics analysis, I ran both 

the hCFTR-SMALPs and Expi293-SMALPs on a Native PAGE gel. This 

allowed for PAGE purification of the Expi293-SMALPs which had not 

undergone column purification. When run on the Native PAGE gel, the 

Expi293-SMALPs separated into 3 distinct bands, which were cut out of the 

gel. The sample containing CFTR-SMALPs was also run on the Native PAGE 

gel and resolved to one band, which was also cut out of the gel and provided 

for both proteomics and lipidomics analysis. In addition to gel fragments, all 

samples were sent for analysis in SEC buffer. Each sample was analyzed by 

MS/MS with gating set to isolate members of different lipid classes.  We 

compared profiles from 4 lipid classes in particular, shown in the table below. 

Table 3.1 Summary of the four classes of lipids analyzed in detail from 
Expi-293-generated samples, as well as the MS/MS transition that was used to 
gate for each class of lipids. 

Abbreviation Lipid Class MS/MS Transition 

PC Phosphatidylcholine Precursor ion scanning (PIS) of 184.1 

PE Phosphatidylethanolamine Neutral loss of 141 

PS Phosphatidylserine Neutral loss of 185 

PA Phosphatidic Acid Neutral loss of 115, NH4+ Adducts 

PI Phosphatidylinositol Neutral loss of 277, NH4+ Adducts 

PG Phosphatidylglycerol Neutral loss of 189, NH4+ Adducts 

CER Ceramide PIS of 284.4, , NH4+ Adducts 

CE Cholesteryl Ester PIS of 369.1, NH4+ Adducts 
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We first compared the lipid profiles for total Expi293 membrane and 

Expi293-SMALPs and found no significant differences in detection patterns 

apparent between them.  This suggests that no solubilization bias for certain lipid 

classes exists for this human HEK-cell derived cell type.  We then looked for 

differences between CFTR-SMALPs, Expi293 SMALPs and total Expi293 

membrane. Results suggest that no significant differences in the prevalence of 

lipid classes exist between the Expi293-SMALPs and total Expi293 membrane 

sample, which are primarily made up of phosphatidylcholine (PC) and to a lesser 

degree, phosphatidylethanolamine (PE), with smaller fractions of each of the 

remaining classes detected.  The lipid content breakdown for CFTR-SMALPS 

indicates that while PC also makes up the majority of lipids in the CFTR-SMALP 

particles, it only represents 50%, as opposed to the roughly 75% seen with the 

other two samples.  Further, levels of phosphatidylserine (PS, mainly subclass 

PS-28:0) and Phosphatidylethanolamine (PE) (mainly PE - 32:1, 32:2, 34:2) 

lipids detected did increase significantly with the CFTR-SMALP nanodiscs. A 

breakdown of lipid content for Expi293-based samples can be seen in Figure 

3.17.   

With this data, we feel confident concluding that there is a distinct 

preference demonstrated for CFTR lipidic association when compared to general 

association profiles of SMALPs and total Expi293 membrane fraction. This work 

in Expi293 expression cells served as proof-of-concept. 
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Figure 3.17 Lipid profiles comparing the content of Expi293-SMALPs, 
Expi293 membranes and CFTR-SMALPs are displayed as the percent of each 
class that was detected for a given sample.  Data suggest no significant 
differences in the prevalence of lipid classes exist between the Expi293-
SMALPs and total Expi293 membrane sample, which is roughly 76% 
phosphatidylcholine (PC), 12% phosphatidylethanolamine (PE), and smaller 
fractions of each of the 6 remaining classes queried. This result indicates that no 
lipid bias exists upon SMA insertion and solubilization of Expi293 cells. The lipid 
content breakdown for CFTR-SMALPS again highlight the major components as 
PC and PE, although PC only represents 50%, as opposed to the roughly 75% 
seen with the other two samples.    
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 To ensure that we could draw conclusions about the particle content of 

each sample, proteomic analysis was performed on each sample tested.  For all 

non-CFTR SMALP samples, no detectable CFTR was measured. In samples that 

contained CFTR-SMALPs, either in solution or in Native PAGE gel fragments, 

CFTR was the most abundant species.  Of note, a series of peptides that was 

detected was for the microtubule-associated protein, kinectin (KTN1), which is 

normally found anchored to the endoplasmic reticulum, and could indicate that a 

subset of our CFTR-SMALP population is being isolated from ER membranes.   

 

 

 

 

 

 

 

 

 

 



182 
 

CFTR lipid composition in physiologically-relevant CFSMEO- cells 

Once the Expi293 samples were analyzed to determine assay parameters, 

the hCFTR-SMALPs in the cystic fibrosis cell line, CF submucosal gland 

epithelial cells (CFSME0-), were analyzed. 

 hCFTR-SMALPs solubilized from human CFSMEO- cells.  This cell line 

represents a human lung tissue that normally contains trace amounts of 

CFTR.  Cells were transiently transfected with the hCFTR plasmid via 

electroporation, and were seeded on collagen-coated plates for 48 hours 

post-transfection. 

 GFP-SMALPs (Sham control) This sample represent SMALPs isolated 

from cells that were electroporated with a plasmid for soluble eGFP 

expression.  This treatment group was used as a control for CFSME O- cell 

membrane SMALP solubilization after electroporation.   

 CFSMEO- total membrane (untreated negative control) – This sample 

is the untransfected CFSMEO- membrane fraction, and was included to 

determine whether SMA preferentially targets certain lipids. 

 CFTR-transfected CFSMEo- total membrane – This sample will be 

analyzed to determine whether the expression of hCFTR alters the total 

cell lipid composition overall. 
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Figure 3.18 Lipid profiles comparing the content of GFP-transfected 
CFSMEO- SMALPs (A),  CFSMEO-total membrane (B), CFTR-SMALPs (C) and 
CFTR-containing CFSMEO- membranes.  Results are given as % of each class 
that was detected for a given sample.  The data show some minor differences in 
the prevalence of lipid classes exist between the CFSMEO-SMALPs, total 
CFSMEO-membrane sample and CFTR-CFSMEo- membrane sample, which is 
between 55-75% phosphatidylcholine (PC), 12 -25% phosphatidylethanolamine 
(PE), and 5-10% PS. The lipid content breakdown for CFSMEo- CFTR-SMALPS 
contains a significantly larger component of PS lipids and a reduced level of PC 
lipids.  Of note, the amount of PE lipids was also much lower in the CFTR-
SMALP sample.   
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Preliminary data from CFSMEo- lipid analysis suggests that similar to 

Expi293 samples, the major components of the two non-CFTR containing 

samples were PE and PC lipids.  The sample of CFTR-transfected, whole-

membrane prep also had majority fractions of PE and PC lipids; however, there 

was significantly less PC, and a greater quantity of PE. When CFTR-transfected 

CFSMEO- membrane were SMALPed and the sample was enriched for CFTR 

using affinity purification, the level of PC lipids detected in the CFTR-SMALP 

samples diminished greatly, and there was a significant increase seen in levels of 

PS (mainly PS-28:0) for the sample. Overall, it appears that CFTR may have a 

preference for phosphatidylserine, with the main contributor to this differential 

across samples being PS subclass (14:0/14:0)·H, which occurs in much higher 

prevalence in CFTR-SMALPs from both cell lines as compared to other 

subclasses of PS as well as other lipid classes overall. This may not be 

surprising, however, when we consider the main subclasses that contribute to PE 

prevalence in Expi293 CFTR-SMALPs. They, too, have at least one fully 

saturated lipid chain - PE (16:0/16:1)-H and PE (16:0/18:1)-H, for example. In 

addition to the lipid classes quantified above, significant enrichment of 

cholesterol esters was detected in CFTR/SMALP samples.  

To confirm CFTR specificity of the lipid classes found in the CFTR-

SMALPs, it would be important to evaluate the content of SMALPs containing 

other purified MPs of different classes (transporter, channel and pore, for 

example) that containing different numbers of TMs. A correlation may exist 
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between size of the protein (i.e., number of TMs) and the relative percentage of 

unsaturated lipid classes that tend to pack more tightly around proteins in the 

lipid bilayer. While this data represents a very solid first trial, the experiment will 

be repeated to confirm the results.  A side-by-side comparison of the Expi-293 

and CFSMEo- data is seen in Figure 3.19. 

 

Figure 3.19 Comparison of lipidomics data for two cell lines, CFSMEo- 
lung cells (top row) and Expi293 expression cells (bottom row). For 
comparison purposes in this discussion, this Figure displays a different alignment 
and consolidation of data that appears in Figures 3.17 and 3.18. Sample type (L 
to R: CFTR-containing total membrane, CFTR-SMALPs, total membrane 
SMALPs and total untreated cell membrane) is separated by column to allow for 
comparison between the two cell types. The data suggests a strong prevalence 
for CFTR to reside in an environment that is enriched with phosphatidylserine, 
which contains long, saturated acyl chains and may provide a more static 
environment for CFTR. 
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3.5 DISCUSSION 
 

The expression and purification of human CFTR has been an active area 

of research since the gene was first sequenced in 1989 (Riordan et al., 1989a). 

Developing a detailed understanding of the structure and function of CFTR has 

been, and will continue to be, a critical undertaking in the pursuit of novel and 

effective therapies to mitigate and to prevent the devastating effects of the loss-

of-function mutations that cause cystic fibrosis. Recent years have brought 

important developments in this area. Novel small-molecule drugs that directly 

target mutant CFTR (Birket et al., 2016; Mijnders et al., 2017; Ren et al., 2013) 

are now available. More recently high-resolution structures of several CFTR 

molecules have been published giving new insight into its function (Liu et al., 

2017; Zhang and Chen, 2016; Zhang et al., 2018b). However many gaps remain 

in our understanding of this protein and how it can be targeted to develop more 

effective therapies. 

One major challenge that remains is producing adequate amounts of 

human CFTR to enable functional and structural studies. Significant effort has 

been expended to generate stabilized versions of human CFTR that incorporate 

polymorphisms from other species and allow stable purified protein to be 

generated (Hildebrandt et al., 2014; Lewis et al., 2004; Lewis et al., 2010; Rabeh 

et al., 2012a; Sharma et al., 1990; Wang et al., 2007). Similar efforts have been 

used to thermally stabilize G-protein coupled receptors (GPCRs), which has 
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been a pre-requisite to the generation of high-resolution structures (Heydenreich 

et al., 2015; Vaidehi et al., 2016).  

Detergent purification of a large transmembrane protein like CFTR is also 

challenging from a stability perspective. After initial work was done to purify 

CFTR in several combinations of detergents for solubilization and storage, I 

considered lipoprotein nanodisc technology (Bayburt and Sligar, 2010; Ritchie et 

al., 2009) to isolate and stabilize individual molecules of CFTR.  In its most basic 

form, a nanodisc comprises a single phospholipid or a mixture of two 

phospholipids that combine to form the nanodisc bilayer. Recombinant human 

apolipoprotein A-1 acts as the Membrane Scaffold Protein (MSP) that holds the 

raft together, securing the lipids in place. The length of the scaffold protein 

dictates the nanodisc size, which can be increased or decreased to 

accommodate the protein that is being stabilized. However, this protocol requires 

initial purification of the MP into detergent micelles, which is then replaced with 

exogenous lipids, thus introducing the primary limitations associated with 

detergent purification of CFTR. Success of this protocol relies on a robust sample 

of detergent-purified starting material which is stable enough to withstand lipid 

exchange, preferably into a mixture of the MPs endogenous lipid environment. 

However, given the challenges associated with detergent purification of CFTR, 

starting material would be relatively unstable and of low abundance, and 

selecting the appropriate lipid mixture for creating the nanodisc would require 
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extensive qualification, as the endogenous lipid composition had not yet been 

determined.  

In this study we show that true wild-type CFTR can be expressed at 

sufficient levels in suspension HEK cells to allow for robust purification; and that, 

when solubilized using styrene-maleic acid copolymers, this protein is stable for a 

variety of structural and functional characterizations. By encapsulating CFTR in 

an SMA-lipid particle (SMALP), which incorporates lipids from the bilayer, we 

have provided the first direct evidence of the lipid preferences of CFTR. This 

lipidomics data from HEK-cell expressed CFTR indicates that negatively charged 

phosphatidylserine (PS) associates with CFTR at levels beyond its abundance in 

the HEK cell membranes (Figure 3.17). Our data supports previous findings in 

which supplementation of detergent-purified CFTR with different lipids was 

evaluated for changes in ATPase activity. The addition of PS to the purified 

protein improved its functional stability and ATPase activity levels by six-fold 

(Hildebrandt et al., 2017). 

 Another publication evaluated the impact of CFTR depletion on the 

overall fatty acid composition of intestinal Caco 2/15 cells (Mailhot et al., 2010). 

This work provided evidence that CFTR is involved in overall FA homeostasis, 

and that CFTR knock-down results in a statistically-significant increase in levels 

of myristic (14:0) and palmitic (16:0) FA, which are both saturated, long-chain 

lipids with a single carbon backbone. This data simultaneously displayed a 
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significant downregulation of longer acyl-chain saturated FAs  (P<0.05) (Mailhot 

et al., 2010). Additionally, when de novo synthesis of lipids was evaluated for a 

period of 12 days in the presence of [14C]-acetate for 24 h, and lipids were 

extracted from the cells and cell culture medium and evaluated for lipid content, 

the levels of triglycerides (TG), phospholipids (PL) and cholesteryl ester (CE) 

saw only a slight reduction in-total when total cells were probed.  However, the 

levels of TG, PL and CE detected in the spent medium of CFTR knockdown cells 

was significantly higher compared to mock-treated cells, including a nearly four-

fold increase in the levels of cholesteryl esters and a 5 to 7-fold increase in the 

larger, more robust triglycerides (Mailhot et al., 2010).  This collection of 

published data, coupled with our data showing remarkably similar lipid profiles for 

CFTR-SMALPs from CF-patient derived CFSME cells and HEK expression cells, 

nicely supports our hypothesis that CFTR likely regulates its local lipid 

environment for selected stabilization.   

Moreover, our studies showed that CFTR-SMALPs were enriched with 

cholesterol compared to the average bilayer composition. The importance of 

cholesterol for the function of human ABC proteins, and specifically of CFTR, has 

been demonstrated in many publications (Abu-Arish et al., 2015; Fang et al., 

2010; Hirayama et al., 2013; Modok et al., 2004; Rothnie et al., 2001). These 

studies highlight the role of cholesterol in CFTR-expressing cells such as function 

and translocation (Lu et al., 2019) and CFTR spatial confinement (Abu-Arish et 

al., 2015), and draws correlations between the level of cholesterol and CFTR 
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gene expression in CF lung cells (Fang et al., 2010; White et al., 2007). Further, 

cholesterol may help prevent permeability of sodium ions across the membrane 

local to CFTR, an important factor for effective chloride transport through CFTR 

(Haines, 2001). 

The importance of determining the local lipid environment for CFTR could 

be wide-reaching and help provide insight on function and structure, but also best 

practices for purification of CFTR. Several recent publications pertaining to the 

purification and characterization of CFTR have utilized the non-ionic detergent, 

digitonin (Liu et al., 2017; Zhang and Chen, 2016; Zhang et al., 2018b), which 

selectively permeabilizes the plasma membrane (as opposed to organelle 

membranes), likely due to its affinity for cholesterol (Zhong et al., 2010). This 

approach likely disrupts the normal lateral positioning of the protein and will 

certainly impact function, and should be carefully considered when deciding 

experimental approach.  

A preference for residence within a Liquid-Ordered Phase (Io), which is 

characterized by highly ordered acyl chain packing, tends to be favorable for 

larger membrane proteins like CFTR, particularly one that requires measured 

control of its orientation and channel gating. The prevalence of long, saturated 

acyl chains and glycosphingolipids provide a higher order of structure to the lipid 

bilayer and offer more stability to the protein within them. Indeed, it may be a 

requirement of CFTR to reside within an area of reduced lateral motion and a 
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certain lateral pressure profile (Ω(z)), a value that describes the lateral force or 

pressure exerted by the lipid bilayer on the protein residing in it (Battle et al., 

2015; Cantor, 1999). In this case, the lipid classes and specific subclasses that 

are seen to be enriched in CFTR lipid particles, primarily phosphatidylserines, 

support the need for CFTR to have an ordered and more compact environment. 

 As alluded to in the results section, there are limitation to working with 

SMA that are due to the ring shape of the styrene head group.  While this moiety 

provides stability by intercalating into the lipid chains, it also interferes with 

absorption studies, emits a fluorescent signal, and may lead to a hyper-stabilized 

particle that is unable to be analyzed in assays such as nanoDSF thermal 

unfolding and aggregation assays with any meaningful interpretation of the 

output. Additionally, attachment of CFTR-SMALPs to a chip for surface plasmon 

resonance (SPR) was not detected, likely owing to the negatively-charged maleic 

acid moietiy that encircles the particles that may create repulsion with the 

negatively charged chip surface.  

With all of this considered, the application of styrene-maleic acid 

purification to the study of CFTR offers a new and exciting opportunity to capture 

this important and challenging protein in its native state, and opens the door to 

more complete and relevant approach to CF drug discovery.  
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3.6 Materials and Methods  
 

Protein expression and purification 

Expi293 hCFTR transfection 

Expi293F cells (cGMP banked, Cat# 100044202) were seeded in 1 liter 

Erlenmeyer vented cap flasks at a density of 2e6 viable cells (vc) per mL with a 

final seeding volume of 250 mL in Expi293 Expression Medium (Gibco Cat# 

A1435101). Cells were then transfected using the ExpiFectamine 293 

Transfection Kit (Cat# A14524) as follows.  A total of 200 µg of hCFTR 

expression plasmid DNA were added to 5 mL of OptiMEM medium (Cat# 

31985070) and 540 µL of ExpiFectamine to a second 5 mL volume of OptiMEM.  

The two solutions were mixed and cells placed in a 37 °C incubator.  

Approximately 16-18 hours post-transfection, enhancers 1 and 2 were added 

from the ExpiFectamine reagent kit.  Cell viability and density were checked 48 

hours post-transfection and cells below 95%, viability were collected.  Otherwise, 

cells were collected 72 hours post-transfection by centrifugation at 1850 xg for 10 

minutes, washed with cold PBS + protease inhibitors, then pelleted again.  

Pellets were then weighed and flash-frozen. 
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Styrene maleic acid solubilization of hCFTR from Expi293F cells 

This protocol is scaled for purification of hCFTR-His10 from a 6 L culture of 

transfected Expi293F HEK cells.  All steps were performed in a 4 °C cold room or 

on ice.  

Lysis 

Fresh lysis solution was prepared by adding EDTA-free protease inhibitor tablets 

to 200 mL of lysis buffer (50 mM Tris, 500 mM NaCl, 1 mM ATP, 1 mM MgCl2, 

pH 7.8; for Cryo-EM use ATP-γS).  Cells were harvested from culture by 

centrifugation at 2620 xg for 10 minutes or frozen cell pellets were thawed on ice. 

In both cases the weight of cell pellet were measured and the cell pellets were 

resuspended in 4 mL of lysis buffer per gram of cell weight.  Resuspended cells 

were lysed using a C3 cell press by passing cells twice at a pressure of 10,000 

psi. Lysed cells were pelleted (2,000 xg, 30 min).  Supernatants were decanted 

into new tubes and ultracentrifuged for one hour at 100,000 xg to pellet 

membranes. After the final centrifugation membrane pellets were retained and 

weighed, and the supernatant was discarded. 

Solubilization 

SMA2000P (Cray Valley) was prepared according to the protocol reported by Lee 

et al (2016). To prepare a solubilisation buffer SMA was dissolved in 

Solubilization buffer (20 mM Tris, 500 mM NaCl, 1 mM MgCl2, 10% glycerol, 1 

mM ATP, pH 7.8) to a final concentration of 5 % (w/v), and a total of 12.5 mL per 
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1 g of membrane pellet. Membranes were resuspended using 4 mL of lysis buffer 

per 1 g of initial cell weight[PN1] . Membranes were fully resuspended using a 15 

mL glass Dounce homogenizer (10 cycles per 15 mL volume).  Homogenized 

membranes were transferred to a chilled 50 mL conical tube and an equal 

volume of the 5 % SMA solution was added to give a final SMA concentration of 

2.5 % (w/v).  The samples was incubated for 2 h with gentle rocking in a cold 

room then transferred into chilled 50 mL ultracentrifuge tubes and 

ultracentrifuged (100,000 xg, 1 h, 4 °C).  The supernatant containing SMA-

solubilized membranes was collected and the pellet was discarded.  

 

SMA2000P (Cray Valley) was prepared according to the protocol reported by Lee 

et al (2016). To prepare a solubilization buffer SMA was dissolved in 

solubilization buffer (20 mM Tris, 500 mM NaCl, 1 mM MgCl2, 10% glycerol, 1 

mM ATP, pH 7.8) to a final concentration of 5% (w/v), and a total of 12.5 mL per 

1 g of membrane pellet. Membranes were fully resuspended using a 15 mL glass 

Dounce homogenizer (10 cycles per 15 mL volume). Homogenized membranes 

were transferred to a chilled 50 mL conical tube and an equal volume of the 5 % 

SMA solution was added to give a final SMA concentration of 2.5 % (w/v). The 

samples was incubated for 2 h with gentle rocking in a cold room then transferred 

into chilled 50 mL ultracentrifuge tubes and ultracentrifuged (100,000 xg, 1 h, 4 

°C).  The supernatant containing SMA-solubilized membranes was collected and 

the pellet was discarded.  
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Purification 

SMA-solubilized material was filtered through a 70 µm nylon cell strainer (Falcon, 

Cat# 21008-952) into a 125 mL flask.  A 5 mL Ni·Sepharose His-Trap HP or FF 

column (GE Healthcare, Cat# 17-5247-01) was attached to a peristaltic pump in 

the cold room.  The column was washed with 2 column volumes (CV) water 

followed by 2 CV of buffer S at a flow rate of 1 mL/min.  The SMALP-containing 

supernatant was circulated across the column at 1 mL/min for 16 h. The His-Trap 

column was attached to an AKTA input line washed with 15 CV of solubilization 

buffer.  Protein was eluted from the column using step-wise imidazole gradient 

over a total volume of 50 CVs (20 CVs 0 mM, 20 CVs 10 mM, 10 CVs 50 mM, 16 

CVs 100 mM, 10 CVs 250 mM) in a base of buffer S. Fractions of 2 mL were 

collected throughout. Samples were prepared from each fraction to run a silver 

stained gel to determine which fractions contain hCFTR SMALPs and pool them.  

Pooled fractions containing CFTR were dialyzed overnight in 4L of fresh buffer S 

using a 30 kDa MWCO dialysis membrane in an effort to remove imidazole. The 

dialyzed sample was concentrated to a final volume of 350 µL for SEC 

purification (30 kDa MWCO Amicon Ultra-15 centrifugal filtration cartridges, 

Millipore). 

Size Exclusion Chromatography (SEC) 

Concentrated CFTR was further purified by SEC using a Superdex 200 10/300 

column in SEC buffer (20 mM Tris, 150 mM NaCl, 1 mM MgCl2, and 1 mM ATP, 
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pH 7.8) at a flow rate of 0.5 mL/min. Protein was collected in 0.5 mL fractions for 

silver stain and western blot analysis. 

Insect Cell (Sf9 / Sf21) Transfection 

Cells were maintained in Sf900 IITM SFM (Gibco Cat# 10902-088) at >95 % 

viable and at a passage number below 25 for use in transfection.  Two 1 L 

cultures were seeded at 1e6 vc/mL in 3 L vented shake flasks.  Each culture was 

infected with an appropriate dilution of WT hCFTR 3xFlag/10xHis viral stock.  

Viral stock dilutions depend on viral titer, and were determined by western blot 

analysis for each stock (1:5000, 1:1000, 1:500, 1:100, 1:20 dilutions typically 

tested in small-scale 50ml Sf9 cultures).  Following infection, cultures were 

placed in a 27 °C incubator, shaking at 120 rpm for 72 hours. 

Detergent solubilization of hCFTR from Sf9/Sf21 cells 

Lysis 

Fresh lysis solution was prepared by adding protease inhibitor stocks (1000x) to  

to 50 mM Tris, 500 mM NaCl, 2 mM ATP pH 7.5).  Cells were harvested by 

centrifuging at 2,620 xg for ten minutes.  Supernatants were decanted into new 

tubes and the cell pellet was resuspended in lysis buffer at a ratio of 4mL buffer 

per gram cell weight. Cells were lysed using a Branson Digital Sonifier at 30% 

intensity, running at alternating on/off intervals of 1 second for a total of one 

minute ‘on’ time.  Lysates were transferred to 70 mL ultracentrifuge tubes and 

centrifuged at 12,000 xg for 30 minutes.  Supernatants were transferred to new 
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tubes and ultracentrifuged for one hour at 100,000 xg to pellet membranes. After 

the final centrifugation membrane pellets were retained and weighed, and the 

supernatant was discarded. 

Solubilization 

Pelleted cell membranes were resuspended in solubilization buffer (20 mM Tris, 

500 mM NaCl, 2 mM MgCl2, 2% n-dodecyl-beta-D-maltopyranoside (DDM), 20% 

glycerol, 2 mM ATP, pH 7.4) at 4 mL per gram initial cell weight and 

homogenized using a 15 mL glass Dounce homogenizer.  The homogenized 

sample was then transferred to ultracentrifuge tubes and centrifuge at 100,000 

xg for 1 hour.  Supernatant containing detergent-solubilized CFTR was collected 

and the remaining membrane pellet was discarded. 

Purification 

A 4 mL resin bed (anti-FLAG M2 affinity resin, Sigma Cat# A2220) was poured in 

a BioRad Econo-Pac column (Cat# 732-1010EDU) and rinsed with 3 CV Flag 

buffer (20 mM Tris, 150 mM NaCl, 2 mM MgCl2, 0.1% DDM, 20% glycerol, 2 mM 

ATP, pH 7.4) to remove excess resin solution, and was washed with 3 CV Flag 

clean buffer (100 mM glycine HCl, pH 3.5).  The resin was equilibrated with 5 CV 

Flag buffer, subsequently added to the bottle of detergent-solubilized 

hCFTR/3xFLAG/10xHis membranes, and incubated for 1 hour with rotation.  

After incubation, the solubilized sample was centrifuged at 300 xg for 5 minutes, 

the supernatant was poured offand the resin was loadedback onto the column 
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and wash with 20 CV Flag buffer.  The column was capped to prevent solvent 

flow and 5 CV of Flag elution buffer (20 mM Tris, 150 mM NaCl, 2 mM MgCl2, 

0.1% DDM, 20% glycerol, 2 mM ATP, pH 7.4, 750 µg/mL 3xFLAG peptide)was 

added. Remove The resin/buffer slurry was removed and placed into a 250 mL 

roller bottle and incubate overnight with rotation.  Following incubation, elution 

slurry was loaded into a fresh column and the CFTR-containing eluate was 

collected, concentrated and buffer-exchanged into Flag buffer using a 100,000 

MWCO Amicon Ultra-15 centrifugal filtration cartridge (Millipore Cat# 

UFC910024) to a final volume of 0.5-1 mL.  Protein was snap frozen and stored 

at -80°C for future use.  

Polymer preparation 

Diisobutylene Maleic Acid (DIBMA) polymer 

To prepare DIBMA polymer for use, 3 mL of DIBMA (Sokalan CP9 in alkaline 

solution) was dialyzed in a 5 mL microdialysis capsule using a 3.5 MWCO 

dialysis membrane for 16 hours against 1 L target buffer (e.g. 50 mM Tris, 200 

mM NaCl, pH 7.4).  After four hours, buffer was changed and material was 

dialyzed again overnight. Dialyzed DIBMA stock was filtered through a 0.22 µm 

syringe filter.  DIBMA concentration was determined by refractometry using a 

refractive index increment of dn/dc = 1.346 M-1, where c is the DIBMA 

concentration based on the number average molecular weight (Mn) of DIBMA. 
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CFTR Expression Cell Lines 

CFSMEo- 

CF patient-derived CFSMEo- cells (obtained from Dr. Dieter C. Gruenert, UCSF) 

were maintained at 37°C in Minimum Essential Medium with Earle’s salts, 

supplemented with 10% (v/v) FBS, 2mM L-glutamine and 1% (v/v) pen/strep on 

ECM-coated flasks (10ug/mL human fibronectin, 30ug/mL bovine collagen I, 

0.1% BSA in LHC basal medium). 

Expi293F™ suspension cell line: 

Expi293F Cells are derived from the human 293 cell line, and are intended for 

use with the Expi293 Expression System. Cells were grown in suspension culture 

at an average density of 0.5-2x106c/mL, however they can be cultured at up to 

1x107c/mL with impact on viability. They were maintained in Expi293 Expression 

Medium. Transient CFTR expression was facilitated with the cationic lipid-based 

ExpiFectamine™ 293 transfection reagent. 

Electroporation 

CFSMEo- cells were lifted from culture dishes by adding 7mLs of PET™: Cell 

Dissociation Formula (Athena Enzyme Systems, Baltimore, MD) and incubating 

the flask at 37 °C for 5 minutes or until cells had lifted off the dish.  Cells were 

then resuspended in an equal volume of MEM complete medium and centrifuged 

at 1000 rpm for 5 minutes rinsed in 5 mL MaxCyte Electroporation buffer and 

repellet by centrifuging at 1000 rpm for 5 minutes.  The pellet was then 
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resuspended in electroporation buffer at a concentration of 2.5e7 viable cells per 

mL.  To this cell suspension, an appropriate amount of plasmid DNA was added 

for a final concentration of 100 µg/mL. The cell/DNA mixture was then loaded into 

an appropriately-sized electroporation cuvette.  OC100 cuvettes hold 100 µL and 

OC400 cuvettes hold 200- 400 µL. The cuvette was then inserted into the 

MaxCyte STX machine and electroporated with MaxCyte CFBE system protocol.  

Following electroporation, the cells were collected from the cartridge and 1/10 

volume of DNase (2000 Kunitz units/mL) was added to the transfected cells, 

which were subsequently transferred  to a 6-well plate and  incubated at 37 °C 

for 20 minutes to allow cells to recover.  Following this, 5 mL media was added to 

each well and cells were collected in a 15 mL conical tube and spun down at 

1000 rpm for 5 minutes.  Cells were resuspended in 5 mL of media, counted, and 

plated as needed. 

SMALP SDS-PAGE Protocol 

Imidazole-eluted or SEC column-eluted fractions containing CFTR-SMALPs were 

separated on NuPAGE™ 4-12% Bis-Tris Protein gels (ThermoFisher) and 

transferred to nitrocellulose membranes using an iBlot™ semi-dry transfer 

apparatus at 20 V for 10 minutes. Membranes were probed with anti-CFTR 

monoclonal antibody 570 (obtained from UNC Chapel Hill) at a 1:1000 dilution to 

determine CFTR protein expression in each eluted fraction.  For SDS-PAGE: 

NuPAGE LDS sample buffer (Invitrogen), Molecular weight markers: 

MagicMark™ XP Western Protein Standard 20-220 kDa (Invitrogen Cat# 
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LC5602) and Precision Plus Protein™ Kaleidoscope™ Prestained Protein 

Standard 10-250 kDa (BioRad Cat# 1610375) were used. 

Calf intestinal alkaline phosphatase (CIP) treatment 

Purified CFTR was added to 200 µL reaction buffer (100 mM NaCl, 50 mM Tris-

HCl, 1 mM MgCl2, 1 mM dithiothreitol (DTT), pH to 7.9) and CIP (20 units) was 

added. The mixture was incubated for 1 hr at 20 °C to allow the reaction to 

proceed. 

 

Electron Microscopy  

Negative stain TEM 

Carbon-coated 400 mesh grids (Electron Microscopy Sciences, Hatfield, PA), 

were glow discharged for 45 seconds at 0.2 mBar and 20 mA using a PELCO 

easiGlow™ Glow Discharge Cleaning System (Ted Pella, Inc, Redding, CA). A 

single 8 µL drop of protein was added to the grid and left on for 30 seconds, then 

wicked away with filter paper, leaving behind bound particles. In cases where 

sample concentration was low, the sample was fixed with a 2% glutaraldehyde 

solution prior to staining with a 1% (w/v) uranyl acetate solution. 
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CHAPTER IV: CAPTURING THE PHYSIOLOGICAL COMPLEXES 
OF GLUT1 FROM RBCS: SMALP SOLUBILIZATION 

4.1 Preface  
Chapter IV is a collaboration that I devised with Andrew Simon in an effort to use 
my thesis work to answer questions that arose with his. A portion of the study 
design was based on experiments proposed by our thesis mentor, Anthony 
Carruthers.   

 Simon KS, Pollock NL, Simon AH, Maderia M, Hurlbut GD, Carruthers A.  
Capturing the physiological complexes of GLUT1 from RBCs: SMALP 
solubilization. Manuscript in preparation 

 

During the course of this study, work was also performed that contributed to a 
manuscript on the development and use of Native PAGE separation of SMALPs.  
This manuscript is currently in press.  

 Pollock NL, Rai M, Parmar M, Simon KS, et al (in press). SMA-PAGE: A new 
method to examine complexes of membrane proteins using SMALP nano-
encapsulation and native gel electrophoresis.  BBA Biomembranes 

 

Experimental design for this manuscript was completed by Andrew Simon and 
me, with input from Naomi Pollock and Anthony Carruthers. The protocol for 
GLUT1 purification was modified from the CFTR purification protocol, with input 
from AS and Naomi Pollock. I performed the GLUT1 protein expression and 
purification in HEK cells, and performed the downstream analysis with support 
from NP.  AS provided and executed the protocol for RBC ghost generation used 
in erythrocyte SMALP experiments. NP and I prepared all samples for proteomic 
evaluation, which was performed by Scott Shaffer. I performed all TEM grid 
preparation and microscopy on the FEI Tecnai Spirit TEM. AS and Lara 
Strittmatter obtained SEM images of erythrocyte ghosts. The Dafforn Lab and the 
Knowles Lab (University of Birmingham, UK) provided hydrolyzed SMA polymer 
for use in this work. Ashley Souza generated the cartoon schematic of GLUT1-
SMALPs seen in Figure 4.3. I have analyzed the data with input from AS, NP and 
TC, and have written the text and prepared all Figures for this manuscript. 
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4.2 Abstract 
 

GLUT1, expressed in high abundance on the surface of erythrocytes, and 

at lower levels in many other cell types, is implicated in several diseases 

including GLUT1 deficiency syndrome, cancer and diabetes.  However, much is 

still unknown about the oligomeric structure and kinetic function of the protein.  

Published crystal structures of detergent-purified GLUT1 display a monomer 

comprising 12-transmembrane helices in the closed conformation. Biochemical 

studies, on the other hand, demonstrate that GLUT1 exists as a multimer in both 

erythrocytes and transfected cell lines. This oligomerization may explain 

cooperative interactions between exofacial and endofacial glucose binding sites 

in cells. The recent development of styrene/maleic acid lipid particles (SMALPs) 

as an alternative to detergent purification of integral membrane proteins (IMPs) 

offers a valuable tool for structural and functional analysis of, as well as drug 

discovery efforts focused on, proteins like GPCRs and ABC transporters. In lieu 

of separating out such a protein from its surrounding lipid bilayer and associated 

proteins using detergents, this method takes advantage of the amphipathic 

properties of SMA to extract IMPs directly from the membrane. The result is a 

monodisperse solution of stable protein surrounded by its native lipids, held in 

place by an SMA copolymer band.  We have recently applied this method to the 

purification of the facilitated glucose transporter GLUT1 (SLC2A1) in an effort to 

better characterize its structure, function, and potential ligand interactions. By 
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utilizing SMA, it is possible to extract the protein in its native, multimeric state, 

allowing for a better understanding of the endogenous structure of GLUT1, both 

in erythrocytes and HEK cells, as well as of potential mechanisms that may 

regulate oligomerization and kinetic activity. 

For this effort, full-length human GLUT1 was isolated from Expi293 HEK 

cell membranes, and GLUT1/SMALPs were purified using a sepharose affinity 

column and SEC separation.  Purified GLUT1/SMALPs were analyzed by SDS-

PAGE silver stain, western blot, and transmission electron microscopy (TEM). 

MPs from RBCs were also solubilized using SMA, resulting in a heterogeneous 

solution of GLUT1, Band 3 (SLC4A1), equilibrative nucleotide transporter-1 

(ENT1), monocarboxylate and several other associated proteins from the ankyrin 

and actin junctional complexes.  This work was able to show a clear dilineation 

between monomeric, dimeric, and tetrameric GLUT1 oligomers, each extracted 

directly from the RBC membrane.  Additionally, this marks the first use of SMA to 

successfully isolate membrane proteins and their associated complexes from the 

membranes of a primary cell, highlighting the great potential for studying intact 

membrane complexes from their native environments. 

 

 

 

 

 



205 
 

4.3 Introduction 
 

 Glucose is the preferred metabolic substrate of most cells in the human 

body and a central component of energy homeostasis across all its tissues.  In 

fact, an adult body might utilize as much as 300 g of glucose per day with the 

majority of this being consumed by the brain (Richter, 2010).  Supporting this rate 

of consumption requires blood glucose concentrations to stay high, between 4-12 

mM (Wright, 2009).  This state is maintained through the combination of diet and 

internally regulated storage and mobilization by tissues such as liver and skeletal 

muscle (Wasserman, 2009).  The importance of glucose in the human physiology 

is paralleled in countless other species, a phenomenon underscored by the 

highly conserved natures of glycolytic enzymes found in organisms across taxa, 

both modern and ancient (Romano and Conway, 1996).  Considering this 

breadth of utility across the evolutionary landscape, it is not surprising to find 

glucose at the nexus of multiple anabolic and catabolic pathways. This 

dependence on glucose highlights the importance of connecting its supply with 

its demand.  On its own, glucose is largely incapable of crossing the plasma 

membrane that partitions the cell from its surroundings (Wood and Morgan, 

1969). Specialized transmembrane enzymes are needed to facilitate the 

transport of glucose from one side to the other.  There are several families of 

proteins that can catalyze this action (Pao et al., 1998), but of highest 
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prevalence, and of particular relevance to this work, are the glucose transporters 

(GLUTs) (Jones et al., 2000a; Stein, 1986). 

 In humans, the first member of the glucose transporter family, GLUT1, is 

expressed nearly ubiquitously throughout the body, though not always as the 

predominant sugar transporter in every cell type. It is the most prevalent 

transporter in blood-tissue barriers, certain cell types in the brain (such as 

astrocytes), cardiac smooth muscle, and red blood cells (RBCs) (Harik et al., 

1990; Mann et al., 2003; Takata et al., 1990). The study of GLUT1 function is the 

central historical strand of research into facilitated diffusion, both as a basic 

physiological phenomenon and enzymatic modality. Further, this research was 

greatly aided by the use of the erythrocyte as a model environment for 

investigation of glucose transport phenomena. A century ago, the first evidence 

of enzymatic catalysis playing a role in permeability of the human red blood cell 

to glucose was unknowingly being characterized as rates of translocation were 

found to be proportional to extracellular glucose concentrations (Ege, 1919).  

This trend in permeability was later characterized in greater detail (Bang and 

Orskov, 1937), though the possibility of simple diffusion wasn’t ruled out until 

glucose exchange was shown to be inhibited by treatment with mercuric cyanide 

(Wilbrandt et al., 1947).  The use of the term “carrier” was later suggested 

(LeFevre, 1948) and the mechanism was theorized in specific detail several 

years after (Widdas, 1952).  The high content of GLUT1 in human erythrocyte 

membranes facilitated the isolation and resuspension of the transporter in 
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liposomes, a feat which marked a great step forward in the isolated study of 

secondary active transporters (Hinkle et al., 1976; Kasahara and Hinkle, 1977). 

The following decades saw great advances in the understanding of GLUT1 and 

the methodologies used to study it (Baldwin, 1992, 1993; Baldwin et al., 1995; 

Cura and Carruthers, 2012; Mueckler and Thorens, 2013; Thorens and Mueckler, 

2010). The use of erythrocytes as a prototype for studying solute transport laid 

the groundwork for their continued use to study the mechanisms and kinetics of 

glucose transport to this day. Revelations about the complexities of GLUT1 

function and regulation have been linked to combinations of substrate binding as 

well as intra- and intermolecular interactions within and between enzyme 

subunits.  Understanding these phenomena in greater detail will require further 

characterization of the structural basis for GLUT1 behavior and dynamics. 

 Recent crystalographic characterization of human GLUT family members 

has provided valuable insights into the structural conformations of the monomeric 

transporter. These studies have successfully isolated and characterized hGLUT1 

and hGLUT3 in various conformations with and without bound substrates and 

inhibitors (Deng et al., 2015; Deng et al., 2014; Kapoor et al., 2016) (PDB 5C65).  

When considered on its own, in isolation from other salient evidence, the data 

collected from these works allowed for the construction of a theoretical 

mechanism of the GLUT1 transport cycle.  The culmination of this analysis is the 

proposal that GLUT1 functions as a monomer and facilitates transport as an 

alternating access carrier (Yan, 2017). The aforementioned model is founded on 
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one proposed previously to describe, in general, the action of carriers in the MFS 

superfamily whereby conformational changes reorient transmembrane helical 

bundles to allow for diffusion between an interior volume of the carrier and the 

intra- or extracellular solvent (Jardetzky, 1966). There is compelling evidence 

within the crystallographic work that the fundamental mechanisms of the GLUT1, 

GLUT3, and GLUT5 transporters are congruent with this model.  The structural 

evidence reveals distinct molecular conformations progressing from unbound 

outward-open (Nomura et al., 2015a) to substrate-bound outward-open (Deng et 

al., 2015) to substrate-bound outward-occluded (Deng et al., 2015) to substrate-

bound inward-open (Deng et al., 2014; Kapoor et al., 2016) to unbound inward-

open (Nomura et al., 2015b). While these observations confirm the fundamental 

structural dynamics which facilitate the substrate translocating activity of the 

GLUTs, and GLUT1 in particular, they do not provide comprehensive elucidation 

of their catalytic landscape. In fact, there is overwhelming documentation of 

highly nuanced coordination and regulation of GLUT1 as both a monomer and a 

multimer.  There is a wealth of biochemical and kinetic data which is incompatible 

with a simple alternating access carrier model and instead, strongly 

demonstrates that GLUT1 exists as a monomer, dimer, or tetramer.  These 

statements are not intended to discredit the conclusions derived from the 

structural analysis of the enzyme, but rather to emphasize that they merely 

provide the foundation for further elaboration of the structural basis for the 

complex behaviors already being characterized by other methodologies. 
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 Biochemical characterization of GLUT1 quarternary structure suggests 

that it can be found in one of three oligomeric states: monomeric, dimeric, or 

tetrameric. Size exclusion chromatography experiments using detergent-

solublized, purified GLUT1 have been used to show the enzyme as a monomer 

(Lundahl et al., 1991) as well as dimer or tetramer (Hebert and Carruthers, 1991; 

Hebert and Carruthers, 1992). The higher order oligomers have been shown to 

be sensitive to reducing agents such as dithiothreitol (DTT). Detergent 

solubilization of GLUT1 in the presence or absence of DTT shows the dimer or 

tetramer to be the predominant form, respectively. This has been demonstrated 

by size exclusion chromatography (Hebert and Carruthers, 1992; Zottola et al., 

1995), freeze-fracture electron microscopy (Graybill et al., 2006; Hinkle et al., 

1976), and dynamic light scattering (Graybill et al., 2006).  Transmembrane (TM) 

domain swapping between GLUT1 and GLUT3 to create chimeric proteins has 

revealed the sequence-specificity of tetramerization in GLUT1. GLUT3 exists 

primarily as a dimer while GLUT1 presents as a mixture of dimers and tetramers.  

However, the GLUT1 chimera with the TM9 from GLUT3 shifts to presenting as a 

dimer while GLUT3 containing GLUT1 TM9 shows evidence of tetramerization 

(De Zutter et al., 2013). 

 Studies of the ligand and inhibitor-binding capacities of endogenously 

expressed, exogenously expressed, and purified GLUT1 protein have generated 

evidence supporting the theories of its conformational function and quaternary 

structure.  Early analysis of purified GLUT1 showed that binding of exofacial and 
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endofacial inhibitors was mutually exclusive, lending credence to the idea that 

GLUT1 alternately, and exclusively, presents intra- and extracellular ligand 

binding sites (Baker and Naftalin, 1979; Gorga and Lienhard, 1981). The GLUT1 

inhibitor cytochalasin B (CCB) binds to the intracellular face of the enzyme where 

it competes with substrate for access to the binding site (Basketter and Widdas, 

1978).  Incubation of purified tetrameric and dimeric GLUT1 with saturating 

concentrations of CCB show binding stoichiometries of 0.5 and 1.0 mol of CCB 

per mol GLUT1, respectively (Hebert and Carruthers, 1992).  This supported the 

idea that GLUT1 tetramers present equimolar inward-facing and outward-facing 

binding sites in obligate anti-parallel conformations while subunits of the GLUT1 

dimer do not restrain each other in this manner (Hebert and Carruthers, 1991).  

There is also significant kinetic data supporting the oligomerization of GLUT1 

subunits and suggests complex allosteric regulations imposed by these 

interactions. Both cis- and trans-allostery can be demonstrated using exo- and 

endofacial inhibitors at concentrations far below their respective Ki’s. The 

phenomenon of cis-allostery is observed when non-substrate binding affects the 

kinetics of substrate-enzyme interactions on the same side as its binding, while 

trans-allostery is observed when non-substrate binding effects substrate binding 

on the opposite side of the enzyme. Exofacial cis-allostery is observed when 

maltose, a non-transportable disaccharide which competes with glucose for 

binding to the outward-open conformation, is used at very low concentration. 

Under these conditions, the uptake rate of glucose by GLUT1 is accelerated 
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rather than inhibited (Hamill et al., 1999). Endofacial cis-allostery is observed in a 

similar manner using CCB or forskolin (Cloherty et al., 2001; Robichaud et al., 

2011).  Trans-allostery can be observed when an intracellular inhibitor (e.g., CCB 

or forskolin) enhances the uptake of extracellular sugars (Cloherty et al., 2001). 

More recently, analysis of both the GLUT1 crystal structure and homology 

modeling revealed glutamine 282 to be an important residue in the binding of 

transporter substrates.  By combining this mutation with the substitution of TM9 

from GLUT3, kinetic analysis of cis- and trans-allostery showed that cis-allostery 

depends on glutamine 282 while trans-allostery depends on TM9.  This means 

that cis-allostery is a function of intramolecular interactions while trans-allostery 

is dependent on oligomeric structure (Lloyd et al., 2017). Together, these studies 

demonstrate that the structural and conformational basis for GLUT1 function is 

homologous with the simple alternating access model. That is, each GLUT1 

monomeric subunit acts as a functional alternating access carrier. However, 

GLUT1 oligomerization gives rise to more complex allosteric behaviors.  

Another notable observation pertaining to the GLUT1 structure/function 

relationship is the difference in glucose transport that exists between ATP- and 

AMP-containing RBC ghosts. The overall topology of RBC ghosts is impacted by 

the presence or absence of ATP upon resealing, resulting in either a traditional 

diskocyte form (+ATP) or a spiky, more spherical shape known as an echinocyte 

(-ATP) (Figure 4.1). There is biochemical evidence that glucose transport 

regulation may involve ATP-dependent conformational changes (Blodgett et al., 
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2007), as evidenced by GLUT1’s protection against tryptic digest across multiple 

domains when ATP is present. This finding, coupled with measured differences 

in glucose transport kinetics for the two RBC ghost morphologies, suggests that 

ATP may play a regulatory role in GLUT1 allostery and enzyme kinetics. 

 

Figure 4.1 The morphology of resealed red blood cell ghosts is impacted 
by the presence or absence of ATP.  When RBC ghosts are resealed to 
contain ATP, they take on a diskocyte shape (left), however if ATP is excluded or 
ADP/AMP is added, the cells reform into echinocytes when resealed (right). 
Magnification is 34,982x (left) and 5000x (right). 

 

 

There is considerable value in understanding how GLUT1 conformational 

changes may occur in the presence of ATP, and how GLUT1 interacts with (and 

may rely on) other erythrocyte MPs for oligomerization and transport. Of course, 

as is true for many transmembrane channels and carriers, there would be a clear 
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advantage to studying a more physiologically-relevant structural model than one 

whose environment is disrupted by the use of detergents for solubilization, as 

with the current high resolution structure of GLUT1.  

 The recent development of styrene/maleic acid lipid particles (SMALPs) as 

an alternative to detergent purification of integral membrane proteins (IMPs) 

offers a valuable tool for structural and functional analysis of, as well as drug 

discovery efforts focused on, proteins like GPCRs and ABC transporters.  In lieu 

of separating out such a protein from its surrounding lipid bilayer and associated 

proteins using detergents, this method takes advantage of the amphipathic 

properties of SMA to extract IMPs directly from the membrane.  The result is a 

monodisperse solution of stable protein surrounded by its native lipids, held in 

place by an SMA copolymer band.  We have recently applied this method to the 

purification of GLUT1 in an effort to better characterize its structure, function, and 

potential ligand interactions. By utilizing SMA, it is possible to extract the protein 

in its native, multimeric state, allowing for a better understanding of the 

endogenous structure of GLUT1, both in erythrocytes and HEK cells, as well as 

of potential mechanisms that may regulate oligomerization and kinetic activity. 

 For this effort, full-length human GLUT1 was isolated from Expi293 HEK 

cell membranes, and GLUT1/SMALPs were purified using a sepharose affinity 

column and SEC separation.  Purified GLUT1/SMALPs were analyzed by SDS-

PAGE silver stain, western blot, and transmission electron microscopy (TEM). 
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MPs from RBCs were also solubilized using SMA, resulting in a heterogeneous 

solution of complexes containing GLUT1, Band 3 (SLC4A1), Equilibrative 

Nucleotide Transporter-1 (ENT1) and Monocarboxylate Transporter 1 (MCT1), 

among other erythrocyte MPs.  These experiments were able to confirm several 

hypotheses about basic GLUT1 quaternary structures that had been, until now, 

never directly observed.  These results clearly demonstrated that GLUT1 

oligomersexists naturally in the RBC membrane as monomers, dimers, and 

tetramers.  This is important to the study of GLUT1 transport mechanism as 

several kinetic theories rely on the existence of these multimers in order to 

explain some of the more complicated transport phenomena previously 

observed. 
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4.4 Results 
 

4.4.1 SMA solubilization and purification of GLUT1 oligomers from 
Expi293F™ expression cells 
  

 Initial GLUT1 solubilization and purification was performed using the 

Expi293 cells as a proof-of-concept.  I based the starting protocol on my work 

purifying CFTR-SMALPs, with little modification made. A schematic of the 

protocol is seen in Figure 4.2.  The result of this treatment should be the isolation 

of GLUT1, GLUT1 oligomers, and their associated proteins as integral proteins 

within SMA-solubilized membrane discs.  An example of one such disc is shown 

in Figure 4.3. 

 

Figure 4.2  Overview of the protocol for SMA purification of hGLUT1 from 
Expi293 cell membranes 
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Figure 4.3 Cartoon schematic of full-length, monomeric GLUT1 in a 
SMALP. Glucose transporter GLUT1 can remain in its lipid bilayer while being 
held in place by an SMA copolymer (blue coil). Crystal structure of monomeric 
GLUT1 was generated by Deng, et al. (Deng et al., 2014). SMALP illustration 
was produced by Ashley Souza.   

 

As outlined previously for CFTR, Expi293 cells are grown at 2.0x106 vc/mL 

under the following conditions: 37 °C, 8% CO2, 80% humidity in a rotating 

platform incubator set to 125 rpm. Cells are transfected with 1 µg/mL of 10x-His-

tagged hGLUT1 plasmid DNA and grown for ~48 hours or until viability drops to 

90%, at which point the cells are collected using traditional centrifugation 

methods.  Cell pellets are washed with cold PBS containing protease inhibitors, 

pelleted, and snap-frozen for future use. To prepare the membrane fraction for 

hGLUT1 solubilization, cells are lysed using a C3 cell press for two passes at 

10,000 PSI. The resulting cell lysate is then spun down at 12,000 xg for 30 mins 
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to remove large cell debris, and the supernatant containing the membrane 

fraction is spun at 100,000 xg for 1 hour. Membranes are then resuspended into 

solubilization buffer using a Dounce homogenizer, and an equal volume of 5% 

SMA polymer resuspended in the same buffer is added to the suspension for a 

final polymer concentration of 2.5% w/v. SMA solubilization is carried for 2 hours 

at 4 °C with end-over-end rotation of the solution. After two hours, the 

suspension is again spun at 100,000 xg for an hour, and the supernatant 

containing C-terminal 10xHis tagged GLUT1-SMALPs is collected and captured 

on a Ni-Sepharose HP column by continuous flow over the column for about 18 

hours. The following day the column undergoes extensive washing, and GLUT1-

SMALPs are eluted with increasing amounts of imidazole. Fractions that are 

eluted with 100 and 250 mM imidazole are pooled and concentrated to facilitate 

injection into a size-exclusion column for further purification. At both the 

imidazole elution and SEC column elution steps, fractions are collected and 

analyzed via SDS-PAGE silver stain and western blotting for hGLUT1 (Figure 

4.4). 
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Figure 4.4 SEC chromatogram of hGLUT1-SMALP purification and 
fractionation (A), SDS-PAGE Silver stain gel (B) and western blot (C) of 
SEC purified hGLUT1. Fractions 10-14 contain full-length GLUT1, confirmed by 
western blotting.  For immunoblotting of GLUT1, EMD-Millipore anti-GLUT1 
rabbit polyclonal antibody was used at 1:1000. 
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4.4.2 GLUT1 oligomerization detection using Native PAGE 
 

 After fractions were separated on the reducing SDS-PAGE gel, they were 

separated out using the Native PAGE protocol suitable for separation of 

SMALPs.  When GLUT1-SMALPs were loaded onto the gel intact, material in 

fractions 11-14 separated into three distinct sizes.  It appears that the material in 

fraction 10 and some of fraction 11 may have been aggregated and did not run 

properly through the gel, as evidenced by the lack of signal in those lanes on the 

western blot.  Additionally, there is a higher molecular weight species above the 

tetramer bands.  While it is possible this indicates an even higher oligomeric 

state for GLUT1, it would have to be associated in such a way as to completely 

mask the epitope for the antibody used in the Western blot.  Additionally, the 

band has much sharper boundaries than usually observed in GLUT1 blots due to 

the highly variable glycosylation patterns that often cause GLUT1 to run in a 

more diffuse manner. 
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Figure 4.5 Native PAGE Silver stain (top) and western blot (bottom) of 
SEC purified GLUT1 fractions. Protein from SEC fractions 10-14 appear to 
separate on a Native PAGE gel into 3 potential oligomerization states. This 
protein is confirmed as GLUT1 through immunoblotting. 

 
 
 
Negative stain TEM analysis of each fraction was performed, and showed 

monodisperse lipid discs of somewhat variable size.  The diameters range from 

~10 nm to ~14 nm when measured.  A micrograph of fraction 13 can be seen in 

Figure 4.6.  
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Figure 4.6 TEM analysis of hGLUT1-SMALPs, fraction 13. Samples were 
stained with 1% uranyl acetate and analyzed using an FEI Tecnai Spirit 12 
(120kV).  The enlargement is included to show the slight variation in particle 
diameter. 
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Proteomic analysis of fractions 10-14 via mass spectrometry definitively 

shows GLUT1 (SLC2A1) in all samples and high levels of Hsp70 (HSPA1B) in 

each fraction.   

 

Figure 4.7 Quantitative comparison of the top ten most prevalent proteins 
in GLUT1-SMALP fractions (the top 10 protein represent 50% (10), 68.8% (11), 
81.3% (12), 93.75% (13) and 92.5% (14) of each fraction. In all except fraction 
11, GLUT1 comprises the majority of detected proteins with Hsp70 in high 
abundance as well.   
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The hGLUT1-SMALP purification from Expi293 cells has been repeated 

several times, and in all cases, the same three-tiered separation is seen when 

fractions are separated out under Native PAGE conditions (Figure 4.8).  

 

Figure 4.8 Native PAGE Silver stain (top) and western blot (bottom) of 
SEC purified GLUT1 fractions.   The purified GLUT1 protein fractions display 
three distinct native sizes when separated out under non-denaturing conditions.  
The majority of the protein appears to elute in later fractions B11-C1, most of 
which migrates as monomeric GLUT1. Fractions B9 and B10 appear to consist 
mostly of dimeric GLUT1, and B8 and B9 contain tetrameric GLUT1.  B7 is likely 
aggregated protein that did not migrate properly through the gel.  
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4.4.3 SMA solubilization and purification of untagged GLUT1 
oligomers from erythrocyte membranes  

 
Once GLUT1 purification from Expi293 cells using SMA had been 

characterized, we applied this method to erythrocyte membranes.  When 

purifying GLUT1 from RBC membranes, a non-specific collection of membrane 

proteins and associated binding partners was collected due to lack of an affinity 

tag.  However this provided the opportunity to look for associations with GLUT1 

and understand its native state with regard to erythrocyte complexes. 

For this work, red blood cells were collected fresh and membranes were 

thoroughly washed to remove all traces of iron (a divalent cation) which could 

potentially interfere with SMA solubilization.  Similar to the Expi293 protocol, SMA 

was added to the membrane prep at a final concentration of 2.5%. One 

observation that I noted was the significantly different rates of solubilization 

between RBC ghosts (images of pellets) and Expi293 HEK cell membranes.  

While the HEK cell membranes require a minimum of two hours to solubilize, the 

solution containing RBC membranes clarified within 120 seconds of SMA 

addition, symbolizing near complete solubilization of the membranes.  The 

resulting pellet after ultracentrifugation was perfectly clear, suggesting that all 

that remained was the cytoskeleton (Figure 4.9 and Figure 4.10). 
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Figure 4.9 RBC membrane pellets before and after SMA solubilization. 
Prior to solubilization (left), RBC membrane pellets appear opaque.  Pellets are 
resuspended in 2.5% SMA and within 60 seconds the solution has completely 
clarified, indicating membrane solubilization.  After a 1 hour ultracentrifugation, 
the remaining pellets appear glassy, and are likely comprised of the cytoskeletal 
remains that are visible in SEM micrographs after RBC treatment with SMA. 

 

In the hopes of visualizing this process, we performed scanning electron 

microscopy (SEM) on both unsealed and sealed RBC ghosts to determine 

whether the solubilization rate was dependent upon access to both sides of the 

membrane (i.e., whether it was a reflection of the different compositions of the 

erythrocyte phospholipid bilayer). The outer membrane leaflet of an erythrocyte 

contains uncharged, choline containing lipids while the inner leaflet primarily 
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consists of charged phospholipids. What we observed is that whole cell 

membranes and membrane fractions (or in this case, unsealed ghosts) both 

appear to solubilize with the same rapid pace, leaving behind the cytoskeletal 

infrastructure of the cell (Figure 4.10). This was observed in RBC ghosts 

resealed with either AMP (Figure 4.11) or ATP (Figure 4.12) with extensive 

membrane solubilization seen within 30 seconds in both cases.  Additionally, we 

observed differences in the physical changes to RBC ghost membranes during 

solubilization done using SMA versus those done using Triton.  When SMA is the 

solubilizing agent, membranes in the process of transitioning into the soluble 

fraction appear textured in a granular pattern while those in the presence of 

Triton show twisting invaginations of the membrane (Figure 4.12).  Neither the 

cause nor consequence of this difference is characterized further in this work, but 

does suggest a fundamental difference in the processes employed by each 

chemical. 
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Figure 4.10 Unsealed RBC ghosts untreated (left) and treated with 2.5% 
SMA solution for 30 seconds (right).  A magnified view of the right panel can 
be seen at 10,000x magnification. After membranes are incubated with SMA, 
only cytoskeleton remains, highlighting the rapid nature of SMA solubilization of 
erythrocyte membranes.  Samples are fixed with 2.5% glutaraldehyde solution 
before evaluation using SEM.  
 
 

 

Figure 4.11 AMP-containing resealed RBC ghosts in the echinocyte 
morphology, untreated (left) and treated with 2.5% SMA solution for 30 
seconds (right).  NO differences are seen between solubilization of diskocyte 
and echinocyte solubilization rates when SMA is added at 2.5% w/v. Samples 
are fixed with 2.5% glutaraldehyde solution before evaluation using SEM. 
Magnification is 5000x in both panels. 
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Figure 4.12 Resealed RBC ghost + ATP treated with 1% SMA for 30 second 
(left) and treated with 1% Triton-X for 30 seconds (right).  To ensure the 
pattern of membrane solubilization was the result of SMA addition, control 
samples were evaluated after treatment with 1% Triton-X for 30 seconds. 
Samples are fixed with 2.5% glutaraldehyde solution before evaluation using 
SEM. 

 

Once the kinetics of erythrocyte solubilization had been determined, we 

performed an experiment to determine whether SMA solubilization could be used 

as a means for detecting differences in GLUT1 and Band3 oligomerization in 

RBCs as a reflection of cytoskeletal dynamics using known actin modulators.  

Extensive cross-linking data has shown that in erythrocytes, GLUT1 

associates with other transmembrane glycoproteins such as anion exchanger 

Band 3, glycophorin-C, structural maintenance protein 4.1, (Rungaldier et al., 

2013; Takakuwa, 2000; Takakuwa and Manno, 1996) and aquaporin, to name 

only a few.  These proteins are largely reliant on erythrocyte cytoskeletal and 
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support proteins such as stomatin and actin to maintain such heteromultimeric 

complexes. By modulating actin filament formation and degradation, we hoped to 

utilize the native solubilizing properties of SMA to capture changes in protein 

associations as a function of actin remodeling.  To effect this change, the 

following compounds were used: 

i. Latrunculin-A – destabilizes and depolymerizes dynamic  actin 

filaments by binding to and sequestering monomers  

ii. Jasplakinolinde – stabilizes dynamic actin filaments 

 

Cells were incubated at 37 °C for four hours with Latrunculin A (5 µM), 

Jasplakinolinde (2.5 µM) or ATP + DMSO as a control, after which time the cells 

were spun down, lysed, and washed extensively to remove all hemoglobin so as 

to avoid disruption of SMA solubilization with the presence of Fe2+, a divalent 

cation.  Of note, it was more challenging to lyse the red blood cells that had been 

treated with Jasplakinolinde, and more extensive washing was required before 

the membrane pellet appeared sufficiently clear to begin solubilization. 

 Membrane fractions were treated with 2.5% SMA w/v and incubated at RT 

for about 30 minutes (complete clarity of the solution again occurred within 

minutes), and the suspension was ultra-centrifuged for one hour to remove 

excess membrane fraction and cytoskeleton. Each sample was then 

concentrated and spun down at 10,000 xg for 10 minutes to remove any 

aggregation that formed during concentration.  The supernatant was then 
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separated over a size exclusion column and fractions were collected for analysis 

(Figure 4.13). 

 
 

 
Figure 4.13 SEC traces show potential differences in elution profile of RBC 
SMALPS after treatment with actin modulators. Whole RBCs were incubated 
with actin modulators Latrunculin A or Jasplakinolide, or with ATP.  Membranes 
were then subject to solubilization with 2.5% SMA and the resulting solubilized 
proteins were separated out on size exclusion chromatography. The profile for 
the control group (green line) shows a major elution peak at about 9.5 mLs. 
When cells are treated with actin stabilizer Jasplakinolide (red line), which is 
expected to increase protein complex size at the membrane, the elution of higher 
MW species occurs earlier, and a slightly larger peak is seen at 9 mLs. When 
cells are treated with actin destabilizer, Latrunculin A (blue line) the membrane 
protein complexes elute slightly later, suggesting the presence of smaller, 
potentially destabilized protein complexes.  
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To evaluate changes in membrane protein complex oligomerization due to 

actin remodeling, elution patterns of GLUT1 and Band 3/Anion exchanger 1 

(SLC4A1) were evaluated by immunoblotting after Native PAGE separation.   

Changes in BAND3 and GLUT1 immunoblotting profile suggest that an 

impact was made on membrane protein complex oligomerization due to 

treatment with actin remodeling agents (Figure 4.14). When Native PAGE gels of 

each sample were run and immunoblotting was performed for GLUT1 and 

Band3, earlier fractions showed more substantial levels of Band3 expression, 

whereas GLUT1 appeared to elute in the second half of the fractions, and 

banding pattern was distributed between two tiers of separation.  However, after 

Latrunculin-A treatment, both Band3 and GLUT1 bands appear to elute both 

earlier and later than the untreated sample.  Additionally, they migrate lower on 

the Native PAGE gel, suggesting that some level of dissociation had occurred in 

the associated complex.  In contrast, the addition of actin hyper-stabilizing agent, 

Jasplakinolide, appeared to cause an increase in the size of banding patterns 

associated with GLUT1 and Band3, potentially causing an increase in the level of 

heteromultimeric complexes that were solubilized with SMA. Aquaporin and 

Equilibrative Nucleoside Transporter-1 (ENT1) were also detected in these 

samples; however, no major changes were seen to their relative location on the 

blot (data not shown). Interestingly, when these samples are run on a reducing 

SDS-PAGE gel, the three sizes of GLUT1 as well as distinctions between 

banding patterns in each treatment group are no longer observed.  This is likely 
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because the SDS treatment disrupts protein-protein interactions and dissociates 

the SMALP structures so that differences in quaternary structure, both normal 

and pharmacologically-induced, are homogenized and no longer resolvable. 
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Figure 4.14 SMA extraction of RBC membrane proteins after four-hour 
whole-cell treatment with Latrunculin A (5 µM) and Jasplakinolide (2.5 µM) was 
performed.  Thoroughly washed membranes underwent SMA solubilization, and 
the material was purified on a Superdex 200 increase 10/300 SEC column.  The 
resulting fractions were evaluated using SDS-PAGE (data not shown) and Native 
PAGE.  Differences in GLUT1 and Band3 oligomerization could be seen with 
silver stain and western blotting; however, no differences were seen between 
treatment groups when the fractions were run on a reducing SDS-PAGE gel and 
oligomers were dissociated prior to separation. 
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4.5 Discussion 
 

Using SMA, we have developed a method for isolating highly enriched, 

monodisperse and stable GLUT1 from mammalian cells, both cultured and 

primary. By first developing the protocol for GLUT1 purification from a human 

expression cell line, I was able to demonstrate the ability to isolate the protein in 

different oligomeric states and separate out the three distinct forms (monomer, 

dimer and tetramer) using Native PAGE separation.  We believe this is the first 

evidence of oligomeric GLUT1 that has successfully been separated out using 

PAGE.  Purified GLUT1 from HEK cells provided great utility as a first-pass 

proof-of-concept for GLUT1 oligomeric solubilization, and may provide 

opportunities to evaluate small molecule ligand binding to the protein in its 

different oligomeric states.  

I then adapted the protocol for GLUT1 isolation and purification to red 

blood cell membranes for the total solubilization of RBC membrane proteins.  

Our initial observation was that the lipid content of RBCs makes them 

particularly amenable to SMA solubilization, as complete disintegration of the 

lipid bilayer occurs within 30 to 60 seconds (as seen in SEM images) after 

resuspension in a 2.5% w/v SMA solution.  Because the proteins being 

solubilized are not expressed with an affinity tag, it was necessary to separate 

out the different elements using gel filtration over a Superdex 200 increase 

10/300 SEC column.  By collecting each eluting fraction and analyzing on a 
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Native PAGE gel, it was possible to identify the presence of several MPs that 

co-eluted with GLUT1, including several members of both the Ankyrin complex 

and the Actin Junctional complex (Lux, 2016).   

In addition to confirming information about GLUT1 and its associated 

proteins in erythrocyte membranes, this approach offers a means of obtaining 

large amounts of MPs for use in drug discovery studies such as the 

aforementioned ligand binding studies.  Because proteins like GLUT1 and Band 

3 exist in very high quantities within the lipid bilayer of erythrocytes, there is an 

opportunity to purify much more protein with much less expense of both time 

and money.  Of course, this protein would lack affinity tags so the preparation 

step of gel filtration SEC would require some level of qualification before you 

would arrive at a sample you could characterize reliably.   

Lastly, the work outlined in this chapter represents the great potential for 

SMALPing more complex primary human tissue. This provides a means of 

obtaining mutant proteins expressed in low abundance, a resource that could 

prove very valuable to rare disease drug discovery efforts.   

 

 

 

 



236 
 

4.6 Materials and Methods 
 

Protein expression and purification 
Cloning of GLUT1 expression cassette 

To develop the human GLUT1 expression plasmid for transiently transfecting 

Expi293 cells, we used the WT-hCFTR plasmid containing FLAG, 10xHis and 

Avi-purification tags as a parent construct.  Because no restriction sites were 

available to remove the CFTR peptide sequence from the C-terminal series of 

tags, two silent mutations were added to create cut sites upstream of FLAG and 

Avi.  Silent addition of AgeI site (agcggt → accggt).  Silent addition of BspEI Site 

(tctgga → tccggt).  Because the overhanging ends of BspEI and AgeI are 

compatible, either site can be used to clone in the GLUT1 peptide from PCR 

primers with added EcoRV and BspEI sequences. 
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Expi293 hGLUT1 transfection 

Expi293F cells (cGMP banked, Cat# 100044202) were seeded in 1 liter 

Erlenmeyer vented cap flasks at a density of 2e6 viable cells (vc) per mL with a 

final seeding volume of 250 mL in Expi293 Expression Medium (Gibco Cat# 

A1435101).  Cells were then transfected using the ExpiFectamine 293 

Transfection Kit (Cat# A14524) as follows.  A total of 200 µg of hGLUT1 

expression plasmid DNA was added to 5 mL of OptiMEM medium (Cat# 

31985070) and 540 µL of ExpiFectamine to a second 5 mL volume of OptiMEM.  

The two solutions were mixed and cells placed in a 37 °C incubator.  

Approximately 16-18 hours post-transfection, enhancers 1 and 2 were added 

from the ExpiFectamine reagent kit.  Viability and density of cells were checked 

48 hours post-transfection and cells that had fallen below 95%, viability were 

collected.  Otherwise, cells were collected 72 hours post-transfectionby 

centrifugation at 1850 xg for 10 minutes, washed with cold PBS + protease 

inhibitors, then pelleted again.  Pellets were then weighed and flash-frozen. 

Styrene maleic acid solubilization of hGLUT1 from Expi293F cells 

This protocol was scaled for purification of hGLUT1-His10 from a 6L culture of 

transfected Expi293F HEK cells.  All steps were performed in a 4 °C cold room or 

on ice.  
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Lysis 

Fresh lysis solution was prepared by adding EDTA-free protease inhibitor tablets 

to 200 mL of resuspension buffer (50 mM Tris, 500 mM NaCl, pH 7.8).  Cells 

were harvested from culture by centrifugation at 2620 xg for 10 minutes or frozen 

cell pellets were thawed on ice. In both cases the weight of cell pellets were 

measured and the cell pellets were resuspended in 4 mL of lysis buffer per gram 

of cell weight.  Resuspended cells were lysed using a C3 cell press by passing 

cells twice at a pressure of 10,000 psi. Lysed cells were centrifuged (12,000 xg, 

30 min). Supernatants were decanted into new tubes and ultracentrifuged for one 

hour at 100,000 xg to pellet membranes. After the final centrifugation, hGLUT1-

containing membrane pellets were retained and weighed, and the supernatant 

was discarded. 

Solubilization 

SMA2000P (Cray Valley) was prepared according to the protocol reported by Lee 

et al (2016). To prepare a solubilization solution,  SMA was dissolved in buffer 

(20 mM Tris, 500 mM NaCl, 1 mM MgCl2, 10% glycerol, 1 mM ATP, pH 7.8) to a 

final concentration of 5% (w/v), and a total of 12.5 mL per 1 g of membrane 

pellet.  Membranes were fully resuspended using a 15 mL glass Dounce 

homogenizer (10 cycles per 15 mL volume).  Homogenized membranes were 

transferred to a chilled 50 mL conical tube and an equal volume of the 5% SMA 

solution was added to give a final SMA concentration of 2.5 % (w/v).  
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Resuspended membranes were incubated for 2 h with gentle rocking in a cold 

room then transferred into chilled 50 mL ultracentrifuge tubes and 

ultracentrifuged (100,000 xg,1 h, 4 °C).  The supernatant containing SMA-

solubilized membranes was collected and the pellet was discarded.  

Purification 

SMA-solubilized material was filtered through a 70 µm nylon cell strainer (Falcon, 

Cat# 21008-952) into a 125 mL flask.  A 5 mL Ni·Sepharose His-Trap HP or FF 

column (GE Healthcare, Cat# 17-5247-01) was attached to a peristaltic pump in 

the cold room. The column was washed with 2 column volumes (CV) water 

followed by 2 CV of solubilization buffer at a flow rate of 1 mL/min.  The SMALP-

containing supernatant was circulated across the column at 1 mL/min for 16h 

using a recirculating loop of tubing on an ÄKTA pure chromatography system 

(GE Healthcare Life Sciences). The column was washed with 15 CV of 

solubilization buffer. Protein was eluted from the column using step-wise 

imidazole gradient over a total volume of 50 CVs (20 CVs 0 mM, 20 CVs 10 mM, 

10 CVs 50 mM, 16 CVs 100 mM, 10 CVs 250 mM) in a base of solubilization 

buffer. Fractions of 2 mL were collected throughout.  Fractions were analyzed on 

SDS-PAGE silver stain gel and anti-GLUT1 western blot and those containing 

hGLUT1-SMALPs were pooled and dialyzed to remove imidazole. The dialyzed 

sample was concentrated to a final volume of 350 µL for SEC purification (30kDa 

MWCO Amicon Ultra-15 centrifugal filtration cartridges, Millipore). 
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Size Exclusion Chromatography (SEC) 

Concentrated hGLUT1 was further purified by SEC using a Superdex 200 10/300 

column in SEC buffer (20 mM Tris, 150 mM NaCl, 1mM TCEP, 1 mM MgCl2, 1 

mM ATP, pH 7.8) at a flow rate of 0.5 mL/min. Protein was collected in 0.5 mL 

fractions for silver stain and western blot analysis. 

 

Erythrocyte membrane complex purification 
 

Whole blood was obtained from healthy human donors (Biological Specialty 

Corp, Cat# 100-17).  All steps were performed on ice or at 4 °C unless otherwise 

specified.   

To thoroughly wash the erythrocytes, one unit of blood (~500 mL) was combined 

with three volumes of ice-cold kaline (150 mM KCl, 5 mM HEPES, 0.5 mM 

EDTA, pH 7.4).  Cells were centrifuged for 10 minutes at 3000 xg and 4 °C.  

Supernatant was carefully removed and the pellet was resuspended in 10 mL of 

ice-cold kaline buffer and the sample was divided in half.   

Fresh lysis solution was prepared by adding EDTA-free protease inhibitor tablets 

into 200 mL 10 mM Tris, 150 mM NaCl, 1 mM MgCl2, 1 mM ATP, pH 8.0.  Cells 

were centrifuged for 10 minutes at 3000 xg and 4 °C.  Supernatant was carefully 

decanted and the pellet was resuspended in 4 mL of  lysis buffer per gram of cell 

pellet weight.  Resuspended cells were incubated on ice for 60 minutes.  Lysates 
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were then transferred to 40 mL Oak Ridge ultracentrifuge tubes (Thermo 

Scientific, Cat# 3138-0050) and centrifuged at 12,000 xg for 30 minutes.  The 

supernatant containing erythrocyte membranes were transferred into new tubes 

and centrifuged at 100,000 xg for 60 minutes to pellet membranes.  Supernatants 

were discarded. A 5% w/v SMA solution was freshly prepared in solubilization 

buffer (20 mM Tris, 500 mM NaCl, 1 mM MgCl2, 1 mM ATP, 10% glycerol, pH 

7.8). The pelleted cell membranes were resuspended in 4 mL solubilization 

buffer per gram of original cell pellet, and membranes were homogenizedusing a 

15 mL glass Dounce homogenizer.  The homogenized membrane preparation 

was transferred to a clean, pre-chilled 50 mL conical tube and an equal volume 

of 5% SMA solution was added for a final suspension of 2.5% SMA.   Erythrocyte 

membranes were incubated in the SMA solution for approximately 10 minutes, 

after which time the solution was ultracentrifuged   at 100,000 xg for 60 minutes.  

Supernatant containing SMA-solubilized GLUT1 SMALPs was collected and the 

pellet was discarded.  Solubilized GLUT1 SMALPs were filtered through a 70 µm 

nylon cell strainer (Falcon, Cat# 21008-952).  The filtered sample was dialyzed 

overnight using  a Slide-a-lyzer™ dialysis cartridge with a 30 kD MWCO 

overnight against dialysis buffer (20 mM Tris, 500 mM NaCl, 1 mM MgCl2, 1 mM 

ATP, 10% glycerol, pH 7.8).  Samples were removed from the dialysis cartridges 

and concentrate using 10,000 MWCO Amicon Ultra-15 centrifuge cartridges 

(Millipore, Cat# UFC910024) to a final volume of 350 µL for size exclusion 

chromatography.  Size exclusion chromatography was conducted using a 
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Superdex 200 10/300 SEC column on an AKTA device with a flow rate of 0.5 mL 

per minute, delta pressure of 3 MPa, and pre-column pressure of 5 MPa.  Eluted 

1.0 mL fractions were collected for silver stain and western blot analysis. 

SMALP SDS-PAGE protocol 

Imidazole-eluted or SEC column-eluted fractions containing GLUT1-SMALPs 

were separated on NuPAGE™ 4-12% Bis-Tris Protein gels (ThermoFisher) and 

transferred to nitrocellulose membranes using an iBlot™ semi-dry transfer 

apparatus at 20 V for 10 minutes. Membranes were probed with anti-GLUT1 

monoclonal antibody (Millipore) at a 1:1000 dilution to determine GLUT1 protein 

expression in each eluted fraction. For SDS-PAGE: NuPAGE LDS sample buffer 

(Invitrogen); Molecular weight markers: MagicMark™ XP Western Protein 

Standard 20-220 kDa (Invitrogen Cat# LC5602) and Precision Plus Protein™ 

Kaleidoscope™ Prestained Protein Standard 10-250 kDa (BioRad Cat# 

1610375) were used. 

Mass Spectrometry for proteomic analysis 

In-gel Digestion and LC-MS/MS Analysis 

The purified sample was run under either reducing conditions on an SDS-PAGE 

gel for 5 min or native conditions on a Tris-Glycine gel for 1 hour (wherein 

SMALP particles travel through the gel intact) to separate proteins from lower 

molecular weight contaminants. After which time, the entire protein region of the 

gel was excised and subjected to in-gel trypsin digestion after reduction with 
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dithiothreitol and alkylation with iodoacetamide. Peptides eluted from the gel 

were lyophilized and re-suspended in 25 µL of 5% acetonitrile (0.1% (v/v) TFA). 

A 1-2 µL injection was loaded by a Waters NanoAcquity UPLC in 5% acetonitrile 

(0.1% formic acid) at 4.0 µL/min for 4.0 min onto a 100 µm I.D. fused-silica pre-

column packed with 2 cm of 5 µm (200 Å) Magic C18AQ (Bruker-Michrom). 

Peptides were eluted at 300 nL/min from a 75 µm I.D. gravity-pulled analytical 

column packed with 25 cm of 3 µm (100 Å) Magic C18AQ particles using a linear 

gradient from 5-35% of mobile phase B (acetonitrile + 0.1% formic acid) in mobile 

phase A (water + 0.1% formic acid) over 45-60 minutes. Ions were introduced by 

positive electrospray ionization via liquid junction at 1.4 kV into a Thermo 

Scientific Q Exactive hybrid mass spectrometer. Mass spectra were acquired 

over m/z 300-1750 at 70,000 resolution (m/z 200) with an AGC target of 1e6, and 

data-dependent acquisition selected the top 10 most abundant precursor ions for 

tandem mass spectrometry by HCD fragmentation using an isolation width of 1.6 

Da, max fill time of 110ms, and AGC target of 1e5. Peptides were fragmented by 

a normalized collisional energy of 27, and fragment spectra acquired at a 

resolution of 17,500 (m/z 200).  

Data Analysis  

Raw data files were peak processed with Proteome Discoverer (version 2.1, 

Thermo) followed by identification using Mascot Server (version 2.1, Matrix 

Science) against the Human (Swissprot) FASTA file (downloaded 10/2016 and 
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04/2017). Search parameters included a fixed modification of carbamidomethyl 

cysteine, and variable modifications of oxidized methionine, pyroglutamic acid for 

Q, and N-terminal acetylation. Assignments were made using a 10 ppm mass 

tolerance for the precursor and 0.05 Da mass tolerance for the fragments. All 

non-filtered search results were processed by Scaffold (version 4.8.2, Proteome 

Software, Inc.) utilizing the Trans-Proteomic Pipeline (Institute for Systems 

Biology) with threshold values set at 80% for peptides (2.4% false-discovery rate) 

and 90% for proteins (2 peptide minimum, 0.2% false-discovery rate), and 

quantitative comparisons made using the iBAQ quantitation method with all 

samples normalized by total ion current for the run. 

Microscopy 

Negative stain TEM 

For negative staining, a single 8µL drop of protein is added to the grid (carbon-

coated 400 mesh grids), and left on for 30 seconds, then wicked away with filter 

paper, leaving behind bound particles. In cases where sample concentration was 

low, the sample was fixed with a 2% glutaraldehyde solution prior to staining with 

a 1% uranyl acetate solution. 

Scanning Electron Microscopy 

RBC ghosts treated with 2.5% SMA solution for 30 seconds, and fixed with 2.5% 

glutaraldehyde solution before evaluation using SEM. 
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Cytoskeleton dynamics 
 

Whole blood was incubated with latrunculin A (5 µM) or jasplakinolide (2.5 µM) at 

37 °C for 4 hours.  Following incubation, SMA extraction of RBC membrane 

proteins was performed.  Thoroughly washed membranes underwent SMA 

solubilization and the material was purified on a Superdex 200 increase 10/300 

SEC column.  The resulting fractions were evaluated using SDS-PAGE (data not 

shown) and Native PAGE.  Differences in GLUT1 and Band3 oligomerization 

could be seen with silver stain and western blotting, 
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CHAPTER V: DISCUSSION 

 

 

The body of work presented in this thesis represents a multi-pronged 

approach to the characterization of membrane protein structure and function.  

What began as a biochemical project focused on studying second-site 

suppressor mutations of CFTR quickly grew and evolved into a body of work far 

more rooted in structural biology and biophysics than I had anticipated.  While 

the CFTR suppressor mutation aim of my proposal continued with success, I was 

unexpectedly drawn to the challenge of studying membrane proteins at large. 

Fortunately, I was permitted to follow the work where it led, even when it perhaps 

didn’t necessarily stray, but ran a parallel track alongside the one we had 

originally laid. This slight change in course led me not only to some valuable 

science and a global network of welcoming academics who were excited to share 

their science, it also led to some wonderful collaborations and lifelong 

friendships, which ultimately became more valuable to me than the structure we 

were seeking.    

My goals for this work were wide-ranging. The initial project that I 

embarked on had two main focuses. The first was to gain a better understanding 

of second-site suppression of the CF-causing ΔF508 CFTR mutation. The 

second was to validate the molecular modeling and dynamics work that served 
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as the basis for our approach. When this work began, there was not yet a full-

length structure of CFTR to refer to, so the basis for all hypotheses required a 

solid starting model.  Based on what was gleaned from the model, we were able 

to answer some questions regarding suppressor mutation V510D, as well as ask 

others about novel suppressor mutations that were uncovered in this work, 

namely P1050R and Q1042K. There are still many unanswered questions 

surrounding the concept of helical unraveling in ΔF508-CFTR; for example, 

whether the inclusion of those charged residues does act to stabilize them based 

on the formation of salt bridges, or if a separate mechanism is involved which 

effectively acts as a chaperone. If this hypothesis is true, it would provide greater 

insight into the repair and improved stabilization of ΔF508-CFTR with small 

molecule ligands that target TMs 10 and 11. A thorough understanding of the 

impact of Q1042K will require evaluation of this mutation in the same 

combinations as were tested for P1050R.  Another valuable component of this 

work would be the implementation of a double-mutant cycle for a more 

quantitative understanding of the impact that each mutation is having on ΔF508-

CFTR correction, and whether combining two or more stabilizing mutations 

results in an additive effect (Ibarra-Molero et al., 2004). For this analysis to be 

done effectively, it should involve a quantitative output of each mutation.  

To facilitate this, and to determine whether the P1050R mutation is 

functional, it is my intent to evaluate the P1050R constructs in the 

electrophysiology assay to evaluate whether the helical stabilization hinders 
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activity, and will rerun the panel of mutations to obtain quantitative data that can 

be used for the double-mutant analysis. I will also incorporate the HRP-trafficking 

assay data to determine whether that data set provides similar conclusions, and 

whether a correlation between trafficking and function can be made with this 

work. As such, repeat of the electrophysiology data and Q1042K mutational 

analysis comprise next steps for this work. 

Working with the members of the Hurlbut lab and with our colleagues on 

the Integrated Drug Discovery team, I was able to learn and apply a wide range 

of methods to show how V510D interacted with other residues within NBD1 as 

well as on ICL4 to support second-site suppression of ΔF508. We definitively 

demonstrated the presence of a K564-V510D salt bridge using several different 

approaches including crystallography to generate a structure of ΔF508/V510D-

NBD1. With this, as well as several full-length CFTR studies, were able to better 

characterize the dual interaction V510D has with both NBD1 and ICL4.  Our work 

with TMD2 stabilization successfully validated the hypothesis that helical 

unraveling of TMs 10 and 11, which together form ICL4, may be a significant 

aspect of the thermal instability and dysfunction characteristic of the ΔF508-

CFTR molecular pathology. Through our TMD2 helical stabilization work, we 

have identified a new set of second-site suppressor mutations, and by combining 

these with NBD1 and ICL4 stabilizers, we made a solid case for the requirement 

of NBD1 stabilization in ΔF508 rescue.   
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Perhaps equally as important, however, was the step-wise validation of 

the molecular dynamics simulation upon which these hypotheses were built. 

When this work began, the highest resolution structure was a 9Å model obtained 

through electron crystallography that relied on homologous protein Sav1866 for 

context. This modeling and MD simulation work was initiated in the hope of not 

only learning about ΔF508-CFTR molecular pathology, but also as a potential 

tool for drug discovery in the absence of a full-length atomic resolution structure 

of ΔF508-CFTR, which has yet to be published. That this body of work so 

conclusively supports the predictions made about ΔF508-CFTR as well as its 

counterparts ΔF508/V510D- and ΔF508/R1070W-CFTR suggests that computer 

modeling may serve as a tangible asset to drug discovery. 

 

Of course, the work on second-site suppression represents only one 

aspect of my thesis.  My initial goal with regard to CFTR purification (which at the 

time was rooted in detergent solubilization) was to obtain a fully wild-type, native, 

glycosylated form that I could use for biophysical characterization. Early in the 

project, our team had been focused on crystallizing the protein, which meant 

producing sufficient quantities to facilitate concentrating the protein - without 

aggregating it – in anticipation of a crystal screen. This required stabilizing 

mutations, detergent screens, production of homologous CFTR (namely the more 
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stabilized chicken isoform), and removing the (presumably) unstructured R-

domain.  

In the course of my rotation with the Biologics Discovery group, which was 

focused on the aforementioned CFTR protein purification, I became curious 

about the approach we were taking and the utility of what was being produced, 

specifically the protein’s stability and structural accuracy. TEM analysis of the 

protein was somewhat difficult to interpret, and aggregation appeared to be a 

serious concern. This led me to investigate alternative methods for the 

purification of CFTR.  After some time researching Sligar’s protocol for lipid 

nanodiscs - a method much better suited for robust and easily-produced bacterial 

proteins – I came across a paper published by Alice Rothnie’s lab at Aston 

University in Birmingham, UK (Gulati et al., 2014). In this publication, she outlines 

the detergent-free purification of a series of ABC transports; of which, CFTR was 

one.  Her approach involved purifying CFTR from S.cerevisiae microsomes using 

styrene-maleic acid, or SMA.  While the result was modest, it represented the 

first publication of a completely detergent-free approach to CFTR purification.   

 At that point, the focus of my work shifted to SMA purification of CFTR, 

and included attempting to obtain a high-resolution structure of human CFTR in 

its native form – a milestone that had not yet been reached when this work 

began.  However despite our dedicated effort, that goal was not fully realized. 

This is perhaps in part due to the drought of precedent surrounding high-
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resolution cryo-EM analysis of an SMA-purified protein, especially one as 

structurally sensitive as CFTR.  What this work did represent, however, was the 

opportunity to contribute to a new and growing aspect of membrane protein 

purification involving SMA and its companion polymers.  By attending several 

SMALP conferences over the last three years, I have both learned a great deal 

about biophysics and MP structural biology and offered up my own insights 

based on my successes and failures of adapting SMA-purified proteins for cryo-

EM analysis. This has included a thorough evaluation of optimal grid prep 

methods such as graphene oxide coating and single-sided blotting from the 

‘back’ of the grid to draw the protein to the GO surface and avoid harmful 

exposure of the protein to the air-liquid interface.  I have had the opportunity to 

share my experience and thoughts surrounding all of this work with members of 

the UMass cryo-EM community as well as my collaborators in the SMALP 

network; and have in-turn learned a great deal from them.      

 While several factors may have impeded my ability to obtain a high-

resolution CFTR-SMALP structure to date, it remains a goal that I am committed 

to. Perhaps my best chance for success relies upon my ability to utilize not just 

my own successes and failures, but also those of others in pursuit of a similar 

goal. Although my personal body of work involves SMA purification, it cannot be 

ignored that success has been met through the use of detergent purification. In 

the last three years, the Chen lab at Rockefeller University has published human 

and zebrafish CFTR structures in both open and closed conformations (Zhang 
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and Chen, 2016; Zhang et al., 2017; Zhang et al., 2018b). While their protocol 

involved several familiar aspects (DDM solubilization, baculovirus transduction, 

LMNG resuspension), it also included steps I had not considered previously 

myself, but may have been the key to their success (for example GFP nanobody 

purification and the addition of fluorinated detergent to increase variability in 

particle orientation).  In one of my most recent attempts at CFTR-SMALP cryo-

EM analysis, I adapted the Chen lab’s grid preparation protocol for my own use, 

specifically the technique of adding fluorinated Fos-Choline-8 at 3mM (roughly 40 

x’s lower than its CMC of ~114mM). While this initial attempt proved only 

modestly successful (it does bear repeating), it highlights the importance of 

considering multiple approaches. As we develop our toolbox of methods suitable 

for working with lipid nanoparticles, we must be mindful of the fact that similar to 

detergent purification, there likely will not be one set path to success.  The best 

we can do is be open-minded to where success may come from and learn from 

those opportunities.  

My CFTR-SMALP work has also represented an exhaustive exercise in 

learning to identify where certain limitations may exist for both a protein and the 

polymer being used to solubilize it.  For example, despite several publications 

suggesting that Diisobutylene Maleic Acid co-polymer (DIBMA) is impervious to 

divalent cations (despite no true protein-based evidence to support this) my 

personal experience with the polymer suggests this is not the case. While this 

body of work did not afford for that particular line of exploration, it is something 
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that I feel warrants investigating.  Another avenue of investigation I look forward 

to pursuing is the functionalization of polymers to make them more compatible 

with specific downstream analysis.  This would allow for the use of SMA-purified 

proteins with methods like surface plasmon resonance (SPR) to evaluate ligand 

binding and fluorescently-tagged particles for FRET-based studies of protein 

interaction. 

The emphasis of my SMA purification work on CFTR was primarily 

focused on cryo-EM structural analysis and lipidomics analysis of CFTR-

SMALPs. However the application of this method to the purification of GLUT1 

highlighted its utility as a way to discern structural components without the need 

for microscopy.  By utilizing SMA for the purification of GLUT1 expressed in 

Expi293 cells, I was able to detect a repeatable banding pattern of three distinct 

GLUT1 bands, as visible by Native PAGE separation and GLUT1 western 

blotting analysis.  This data represents the first compelling native gel 

electrophoresis data demonstrating GLUT1 oligomeric forms.  Moreover, this 

result was repeatable in human primary erythrocytes. By applying this approach 

to red blood cells that had been treated with latrunculin A and jasplakinolinde, I 

was also able to provide supporting evidence for the theory of actin-dependence 

of GLUT1/Band3 higher-order complex formation.   

This work has the potential to be expanded to a number of tissue types 

and primary cells in search of information on physiologically relevant interactions 
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that may not be reproducible through the use of recombinant expression. In 

instances where information cannot be duplicated in an artificial system or it is 

unclear what all the components of an interaction are, SMA solubilization may 

provide a path to characterization through proteomic and lipidomic evaluation.  
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APPENDIX I 

6.1 Appendix I 
 

Appendix I encompasses a collaborative effort toward CFTR-SMALP 

characterization and structural determination. Within this appendix is data 

collected on CFTR-SMALP characterization and structure, including cryo-EM grid 

preparation and microscopy. For this work, I performed all TEM and cryo-EM grid 

preparation and assay development with continued input and guidance from 

Chen Xu, who also acquired cryo-EM data on the Titan Krios. Kangkang Song 

provided assistance with grid screening on the Talos Arctica. Gregory Hendricks 

and Lara Strittmatter provided training and continued technical support (as 

needed) with all TEM work performed. Joe Batchelor oversaw the CFTR-SMALP 

cryo-EM data analysis. 

 

6.2 CFTR Cryo-EM  
 

 Once the basic assay parameters had been determined for SMA 

solubilization and purification of CFTR, modifications were made to the protocol 

to increase purity and homogeneity of the particles, and to ensure sample 

compatibility with cryo-EM analysis. This included removal of glycerol from the 

solubilization and purification step (Figure 6.1), dialyzing out excess SMA prior to 
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affinity column binding and dialyzing excess imidazole after elution from the 

affinity column prior to gel filtration.  No changes to purity or stabiltiy were seen 

when glycerol was removed from the protocol (Figure 6.1), and removal of 

excess SMA allowed for tighter binding to the affinity column, and cleaner elution. 

 

Figure 6.1 Evaluation of the impact of glycerol removal on CFTR-SMALPs 
using negative stain TEM analysis and SDS-PAGE silver staining. A side-by-
side comparison of hCFTR-SMALPS in buffer with and without glycerol shows no 
differences in particle integrity.  Because it interferes with the formation of 
vitreous ice during the cryo grid preparation process, it was necessary to remove 
glycerol from the sample buffer. For TEM, sample was added to carbon-coated 
400 mesh grids and stained with 1% uranyl acetate staining. 
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 One of the major challenges inherent in working with SMA-purified 

particles was obtaining sufficient particle count on the grids. It was unclear 

whether the SMA was interfering with the ability of the particles to reside in the 

vitreous ice, or whether they prefer to stay localized to the grid due to their 

charge. To combat this issue, I incorporated a graphene oxide grid-coating step 

into my grid preparation protocol. While this did improve particle count, initial 2D 

class averages pointed to a potential issue with particle heterogeneity in my 

sample, which may have been preventing better refinement of the class 

averages. 

 

6.2.1 Reduction of particle heterogeneity with stabilizing 
modifications  

The evaluation of non-hydrolyzable nucleotides  

Because HEK-293 cells partially phosphorylate CFTR, particles were 

purified in both the “closed” (de-phosphorylated) and “open” (phosphorylated with 

NBDs in contact) conformations.  To minimize ATP hydrolysis, which triggers a 

closure of the CFTR channel, I added AMP-PNP as a non-hydrolyzable ATP 

analog in an effort to stabilize open CFTR.  However, I also examined the effects 

of ATP-γ-S, as AMP-PNP may bind to CFTR at a much slower rate.  Working 

with David Stepp at Sanofi, I compared the affinity of NBD1 for ATP, ADP, AMP-

PNP and ATP-γ-S surface plasmon resonance. Our results suggest that NBD1 

binds ATP-γ-S, ATP and ADP with similar affinities (Table 6.1), and despite not 
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being impervious to hydrolysis; ATP-γ-S is hydrolyzed at a rate approximately ten 

times slower than ATP. The protocol was therefore adjusted to include 1 mM 

ATP-γ-S to the SEC/storage buffer in place of AMP-PNP. 

 

Figure 6.2 Comparison of affinity binding of ATP, ADP and ATP-γ-S to 
NBD1 using surface plasmon resonance. Results indicate that ATP-γ-S, a 
slowly hydrolyzing nucleotide, has a binding affinity to WT-NBD1 of 11.86 µM, 
which is comparable to that of ATP (7.416 µM) and ADP (7.588 µM), making it 
suitable as a stabilizing ligand for structural studies of purified CFTR. 

 

Table 6.1 Binding affinities (Kd) of ADP, ATP and ATP-γ-S to WT-NBD1 
ADP ATP ATP-γ-S 

7.588 µM 7.416 µM 11.86 µM 
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Phosphorylation of CFTR using PKA 

To further alleviate some of the heterogeneity, a phosphorylation step 

using the catalytic subunit of protein kinase A (PKA) was added prior to SEC.  A 

protocol was adapted from a recent publication by the Chen lab (Zhang et al., 

2018b), involving detergent-purified CFTR, as well as communication with New 

England Biolabs. Initial evaluation involved adding PKA to either the purified 

membrane preparation prior to the addition of SMA (to circumvent the limitation 

on MgCl2 added to the reaction) or the “SMALPed” protein prior to SEC 

purification. Owing to the abundance of other proteins likely found in the 

membrane prep, it was difficult to discern whether any meaningful changes in the 

level of CFTR phosphorylation were occurring, whereas visible differences were 

seen via western blotting between phosphorylation of CIP treated and PKA 

treated CFTR when the isolated protein was treated at RT (21°C) for one hour. 

A side-by-side comparison was also performed to determine the 

appropriate combination of nucleotides to add to ensure efficient 

phosphorylation.  We observed that adding ATP and ATP-γ-S at 1 mM each, and 

MgCl2 at 2 mM was most effective. 

a. Combination of nucleotides to add to the reaction 

i. ATP 

ii. ATP + ATP-γ-S 

iii. ATP-γ-S 



260 
 

 

Figure 6.3 Phosphorylation of CFTR-SMALPs with PKA catalytic subunit 
CFTR-SMALP samples were treated with the catalytic subunit of PKA with either 
2mM ATP (lane 1), 1mM ATP + 1mM ATP-γ-S (lane 2), 1mM ATP-γ-S (lane 3), 
or no additional nucleotide (lane 4, residual ATP may still exist in the culture). A 
20 µL reaction volume was set up for each condition, as well as a 20 µL CIP 
dephosphorylation treatment. The remaining 1 mL of purified CFTR-SMALPs 
were treated with the combination of ATP (1 mM) and ATP-γ-S (1 mM).     
Following treatment with PKA to induce phosphorylation under different 
nucleotide conditions, CFTR-SMALP samples were subject to immunoblotting to 
evaluate levels of phosphorylated CFTR using a rabbit polyclonal antibody 
targeting Ser767. Results suggest that PKA treatment with ATP present results in 
the highest level of phosphorylation and that dephosphorylation using calf 
intestinal alkaline phosphatase treatment is effective at complete removal of 
phosphorylation at Ser767.  Despite very modest levels of phosphorylation seen 
when ATP-γ-S is the primary exogenously added nucleotide (which may be due 
to residual ATP in the sample), the combination of ATP + ATP-γ-S when the full 
1mL prep was treated with equal parts of each nucleotide and PKA was heavily 
phosphorylated when evaluated via anti-phosCFTR western blotting. 
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6.2.2 Optimization of cryo-EM grid preparation for CFTR-SMALP 
structural analysis 

As mentioned earlier in this chapter, a major limitation to the development 

of the grid preparation method for CFTR-SMALPs was the issue of limited 

particle count seen on the CFTR cryo grids.  Several rounds of grid optimization 

were done to establish the ideal blotting conditions, which have improved ice 

formation, particle count and overall distribution of the particles across the grid.  

In the process of trouble-shooting this issue, several parameters were evaluated.  

They included cryo-EM grid type and preparation, blotting parameters, and 

protein stabilization. The following grid types were evaluated for their impact on 

ice formation and particle distribution: 

 C-flat Holey Carbon  

 QuantiFoil R 1.2/1.3  (Copper grid with Holey Carbon film) 

 QuantiFoil R 1.2/1.3 and R 2/1 (Gold grid with Holey Carbon film) 

 UltrAuFoil R 1.2/1.3 (Gold grid with Holey Gold Films 500Å thick) 

Grid screening suggested that the UltrAuFoil grids provided the most consistent 

ice formation and particle distribution for SMALPs. 
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Blotting conditions and filter paper considerations 

A recent publication by Postis et al. (2018) describing the first sub-nanometer 

cryo-EM structure of a protein-SMALP mentions that blotting grids with ash-free 

filter paper that is low in divalent metal ion content is critical to avoid destabilizing 

the SMALPs.  To address this, two additional types of filter paper that are low-

ash and known to contain low levels of divalent cations were tested with the 

VitroBot during grid prep and analyzed for ice formation. 

 Filter paper on VitroBot 

o Standard blotting paper - Whatman Ø55/20mm, Grade 595 

o Whatman grade 41 quantitative filter paper, ash-less 

o Whatman grade 50 quantitative filter paper, hardened low-ash 

The Whatman grade 50 hardened, low-ash filter paper did not blot as efficiently 

as the grade 41, which was more absorbent; grade 41 was used going forward. 

 

Graphene Oxide coating procedure to increase particle dispersity 

 
Perhaps the most significant change to the grid preparation procedure 

was the inclusion of a graphene oxide coating on the grids.  In 2017, a 

manuscript was published outlining work done at Rockefeller University’s New 

York Structural Biology Center (NYSBC) that suggests that approximately 90% of 

particles added to a cryo-EM grid are adsorbed to the air-water interface, 

rendering them structurally compromised (Noble et al., 2017). This finding, 
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coupled with the challenges I experienced with limited particle count, led me to 

investigate the addition of a graphene oxide (GO) surface coating to my grids.   

Martin lab protocol 

Working with Dr. Chen Xu, I first tried a protocol adapted from Pantelic et 

al., with slight modifications made to the glow discharging step (both sides are 

glow discharged for 45 seconds at 20 mA) and washing step (1 wash, rather than 

3) (Pantelic et al., 2010). This protocol appeared to work well, and greatly 

increased particle number on the grids in some areas. There were, however, 

large areas of the grid that didn’t appear sufficiently coated, and thus had little to 

no particles in the ice, and variability in GO grid coating and particle distribution 

were a concern.     
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Figure 6.4 Inconsistencies in graphene oxide grid coating led to variation 
in particle distribution.  Grids were coated with GO per the Martin Lab protocol 
and prepared with CFTR-SMALPs before evaluation on the Titan Krios (CFTR 
preparation was previously frozen; prepared August 2017).  Particles tended to 
reside on the outer edge of holes in the gold film (A), overlaps in GO sheets 
caused areas of darker background (B), breaks in particle distribution can be 
seen where sheets of graphene oxide did not coat the grid (C) and overall 
particle dispersal was patch in places. 
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Agard/Cheng protocol 

To avoid the variability in GO coating seen using this protocol, I 

researched other methods and found a protocol developed in the labs of David 

Agard and Yifan Cheng at UCSF (Palovcak et al., 2018). This method uses an 

80% methanol solution as a dispersant to dissolve the GO suspension, which is 

dispersed into a thin layer across a water subphase. The water is subsequently 

pumped out of the petri dish it is contained in, effectively lowering the GO layer 

onto grids that are submerged in the subphase (Figure 6.5). After several 

attempts using this protocol - with changes made to grid type, GO quantity 

added, methanol content, and timing of preparation - and after approximately 36 

grids had been prepared and screened using both TEM and cryo-EM - it was 

determined that this method was not an improvement over the original method 

provided by Dr. Xu.   

One issue that arose while using the Agard/Cheng protocol was the 

disruption of ice formation.  While the GO did appear to coat the grids, I was 

unable to obtain the consistent formation of vitreous ice I had seen previously, as 

several holes were empty.  After discussing this with our project consultant, I re-

introduced glycerol to my buffer at approximately 2% (a component I had 

previously removed).  Unfortunately, this protocol modification led to the 

formation of non-vitreous ice that appeared wavy and uneven, and no particles 

were visible on the grids. I have since returned to the Martin lab protocol, 

increased the number of additions of GO to the grids (from 1 to 3), and 
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preferentially solubilize only larger GO flakes when preparing my 0.2 mg/mL 

solution in an effort to reduce variability of the coating. Evaluation of the 

Agard/Cheng protocol involved testing concentrations of graphene oxide from 50-

80 µgs, comparing Quantifoil and UltrAuFoil grids, day-of prep compared to 24 

hours prior to use, and the percent methanol content used as a dispersant (80%, 

50%, 0%). A schematic can be seen in Figure 6.5. 

 
 

 

Figure 6.5  Agard/Cheng graphene oxide coating protocol. Dosing of GO 
was tested at solution (50 – 80 µgs). Grid type used (Quantifoil vs UltrAuFoil). 
Prepped 24 hours prior vs. fresh (1 hr prior to use). Change in methanol % used 
as dispersant (80%, 50% and 0%). Panel A of this figure originally appeared in 
Palovcak et al, 2018, A simple and robust procedure for preparing graphene-
oxide cryo-EM grids (Palovcak et al., 2018).  
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6.2.3 Current 2D and 3D cryo-EM models of hCFTR-SMALPs show 
both open and closed conformations of the protein 
 
 Despite extensive grid preparation work and several rounds of cryo-EM 

with CFTR-SMALPs, we had limited success obtaining an ab initio 3D model of 

our protein.  One data set looked very promising early on, and gave reasonable 

2D class averages of what appeared to be CFTR in two conformations.  This 

collection of particles was only able to get to an estimated 15 Å of resolution 

(Figures 6.6 and 6.7). 

 
 

 
 
Figure 6.6 Cryo-EM micrograph images of hCFTR-SMALPs captured 
using the Talos Arctica (200 kVa) by Chen Xu and KangKang Song.  Grids 
prepared using UltrAuFoil® Holey Gold Films (500 Å thick, R 1.2/1.3). 
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Figure 6.7  2D class averaging of CFTR-SMALP cryo-EM particles and the 
resulting 3D model.  3D  classification and refinenment was performed and the 
subsequent model (panel at right, blue mesh overlay at approximately 15 Å) was 
created. This model was derived by using zebrafish hCFTR cryoEM structure 
(PDB 5UAR, (Zhang and Chen, 2016))  as a reference model.     
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2D class averaging of negative stain TEM micrographs  

 In order to determine whether the protein was too heterogeneous for 

successful 3D modeling with cryo-EM, or whether the particles might be subject 

to damage during the process of image capture, thus preventing effective 

averaging, I performed two rounds of negative-stained particle 2D class-

averaging on transmission electron micrographs. The first set of images was 

collected from grids that had been prepared with previously frozen CFTR-

SMALPs (Figure 6.8).   

 
Figure 6.8  2D class averages of CFTR-SMALPs from ~3,000 negatively 
stained TEM particles.  Protein was previously frozen (February 2018 prep) and 
had undergone 2 freeze/thaw cycles prior to grid prep. Several of the classes 



270 
 

resemble previously published negatively stained CFTR micrographs (Alzahrani 
et al., 2015). 
 

The second round of images collected came from grids of freshly-

prepared CFTR-SMALPs that had a stabilizing ligand added just prior to being 

added to the grid.  In both cases, only 50 images were used to collect particles 

(roughly 3,000 in total).  The averages appear to resemble an ABC transporter 

although no structural detail is evident. Qualitative assessment of the images 

indicated that the sample with a ligand present had a slight advantage over the 

non-ligand bound, as did the use of a fresh prep (Figure 6.9).    

 

 
Figure 6.9 2D Class Averages from negatively stained TEM particles of 
CFTR-SMALPs with stabilizing ligand bound. Material was prepared fresh 
prior to analysis, and a stabilizing ligand was added immediately prior to grid 
prep. 
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The final attempt at obtaining cryoEM images of CFTR-SMALPs was with 

freshly-prepared protein. UltrAuFoil grids were coated with graphene oxide and 

used same-day. Grids had good particle distribution, which led to three days of 

imaging on the Krios. During the first day of image acquisition, 931 images were 

collected (roughly 16 hours of data collection).  This series covered about half of 

the selected mesh areas that were chosen during screening. The grid was saved 

for future analysis, and was revisited about two weeks later. We realigned the 

grid in an attempt to cover regions not previously covered during the first session.  

At that point, an additional 616 images were obtained. Results from the second 

session were not as good as the first.  During grid preparation I made a couple of 

grids for each condition to serve as back-ups in the event conditions were 

favorable.  The set of grids had been loaded into the grid holder and unloaded on 

the two prior occasions.  So on a third day of data collection, images were taken 

from a second grid that looked satisfactory during screening. Particles were 

analyzed using cisTEM software. A combination of all three data sets led to a 

~20 Å structure.  There were clear issues with degradation of the grid by the third 

set, so particles from the second and third round of imaging, where the grids had 

already been exposed to the beam and loaded/unloaded twice, were removed 

from analysis. By focusing on only the first set, we were able to get to ~11 Å at 

best (based on cisTEM’s prediction), although our ab initio model does not 

resemble CFTR. However, when Jue Chen’s open and closed zebrafish CFTR 

models (PDB IDs: 5W81 and 5UAR respectively (Zhang and Chen, 2016; Zhang 
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et al., 2017)) are used as a starting point, we do obtain structures that resemble 

the protein in both conformations (Figure 6.10).   

 

 
 

Figure 6.10  Cryo-EM class-averaging of CFTR-SMALP particles in the open 
and closed conformations visible to 11 Å.  The mesh structure represents our 
progress when the Chen lab structures were introduced as a starting point. 
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6.3 Discussion 
 

The ultimate aim of this chapter was to obtain a high-resolution structure 

of CFTR-SMALPs by cryo-EM. As might be expected, sample and cryo-EM grid 

preparation are paramount. CFTR-SMALP grid preparation remains somewhat 

variable, likely owing to the properties that SMA introduces to the process such 

as the negatively charged, outward-facing maleic acid moieties on SMA and the 

sensitivity to divalent cations. Currently, my parameters include using UltrAuFoil 

grids coated with graphene oxide, 3.5 μL sample addition, a force of 5, wait of 0 

or 1 second (both appear to work), and a 4.5 second blotting time using 

Whatman grade 41 low-ash filter paper. Ice formation appears consistent and 

particle count is largely driven by the presence of GO, which appears necessary 

for particles to reside on the grid surface and away from the damaging air-liquid 

interface.   

This body of work represents a collection of 8 cryo-EM data sets, primarily 

using the Titan Krios. Using a template based on predicted structure, refinements 

on 70k particles picked from our best data collection resolve to ~15 Å. If we 

utilize a starting model, it is further refined to ~11 Å. However this is not sufficient 

to identify structural components past general channel shape, which may be due 

to particle heterogeneity. Further, the use of a starting model has the potential to 

bias the data, thus it is always preferable to derive structural models ab initio.  

 Interestingly, both open- and closed-conformation structures were 
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obtained during class averaging of a dataset collected in February on the Talos 

Arctica.  This occurred prior to implementation of the phosphorylation step as it 

currently stands, which was added to reduce such heterogeneity.  Considering 

the limited particle count used to generate the 2D-class averages and 3D model, 

considerable gains in resolution should be made simply through a greater volume 

of data collection, indicating that this system shows promise for obtaining a high 

resolution structure.  
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