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Abstract 

Due to their underlying genetic complexity, chromosomal disorders such as 

Down syndrome (DS), which is caused by trisomy 21, have long been understudied and 

continue to lack effective treatments. With over 200 genes on the extra chromosome, 

even the specific cell pathologies and pathways impacted in DS are not known, and it 

has not been considered a viable target for the burgeoning field of gene therapy. 

Recently, our lab demonstrated that the natural mechanism of dosage compensation 

can be harnessed to silence the trisomic chromosome in pluripotent cells. Using an 

inducible XIST transgene allows us to study the effects of trisomy in a tightly controlled 

system by comparing the same cells with either two or three active copies of 

chromosome 21. In addition, it raises the prospect that insertion of a single gene into a 

trisomic chromosome could potentially be developed in the future for “chromosome 

therapy”.  

 This thesis aims to utilize this inducible system for dosage compensation to study 

the neurodevelopmental effects of trisomy 21 in vitro, and to answer basic epigenetic 

questions critical to the viability of chromosome silencing as a therapeutic approach. 

Foremost, for XIST to have any prospect as a therapeutic, and to strengthen its 

experimental utility, it must be able to initiate chromosome silencing beyond its natural 

context of pluripotency. Here I demonstrate that, contrary to the current literature, XIST 

is capable of initiating chromosome silencing in differentiated cells and producing fully 

dosage compensated DS neurons. Additionally, I show that silencing of the trisomic 

chromosome in neural stem cells enhances their terminal differentiation to neurons, and 

transcriptome analysis provides evidence of a specific pathway involved. Separate 
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experiments utilize novel three-dimensional organoid technology and transcriptome 

analysis to model DS neurodevelopment in relation to isogenic euploid cells. Overall, 

this work demonstrates that dosage compensation provides a powerful experimental 

tool to examine early DS neurodevelopment, and establishes that XIST function does 

not require pluripotency, thereby overcoming a perceived obstacle to the potential of 

XIST as a therapeutic strategy for trisomy. 
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CHAPTER I : Introduction 

Unlike many genetic conditions for which a causative mutation in one gene can 

be identified, Down syndrome (DS) is caused by the presence of an extra copy of an 

entire chromosome, chromosome 21 (chr21). This means that individuals with DS have 

an extra copy of ~250 protein-coding genes (including 16 transcription factors), at least 

5 functional microRNAs, and hundreds of potential non-coding RNAs. This presents a 

significant challenge to understanding the precise genetic causes underlying each of the 

myriad physiological abnormalities present in individuals with DS. An incomplete 

understanding of the causative genes in DS, as well as normal variation between 

individuals, has hindered progress in our understanding of the molecular and cellular 

basis for disease. Because of this, there are currently no effective treatments for the 

most prevalent finding in individuals with DS, cognitive disability. 

 Recently, our lab has introduced a novel approach to studying DS pathogenesis, 

which also has the potential to one day serve as the basis for a comprehensive therapy 

for DS. This “trisomy silencing” system utilizes a natural mechanism of chromosome 

silencing using the gene XIST, in this case inserted into one copy of chr21 in a DS 

patient-derived induced pluripotent stem cell (iPSC) line. In this thesis, I utilize this 

powerful system to study the effects that trisomy has on early neurodevelopment and to 

investigate whether XIST-mediated trisomy silencing can correct these deficits. I will 

investigate whether XIST is capable of functioning outside of its natural developmental 

context of pluripotency, contrary to the current literature. Additionally, I utilize newly-

developed three-dimensional cell culture techniques to further investigate the 
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neurodevelopmental effects of trisomy 21. This introduction will provide the necessary 

background on the subjects covered in this thesis, including dosage sensitivity, XIST 

biology, normal human neurodevelopment, DS neurobiology and its modelling in vitro, 

and the use of XIST to advance translational research in DS. 

The importance of dosage balance 

‘Sola dosis facit venenum’ 

(Latin: only the dose makes a thing not a poison) 

-Paracelsus (1493–1541) 

It has been appreciated for hundreds if not thousands of years that the toxicity of 

a substance depends entirely on its dosage. This idea also applies to gene dosage. In 

fact, it has been hypothesized that the major phenotypic differences between humans 

and our closest living relatives, chimpanzees, depends largely on regulatory differences 

that influence expression levels rather than differences in protein composition (King and 

Wilson, 1975). Thus, it could be the collective dosages of the building blocks of life, 

rather than the structure of the blocks themselves, that makes us human. 

Recent work has identified hominid-specific NOTCH2 paralogs as potentially 

dosage-sensitive regulators of the Notch pathway, which will be described in more detail 

in a later section, that may be partially responsible for the evolution of larger brains in 

humans (Fiddes et al., 2018). Strikingly, duplications of these paralogs have been linked 

to macrocephaly, and deletions have been associated with microcephaly. In the case of 

these paralogs, the building blocks are present only in hominids, yet they serve to tweak 

the degree of Notch pathway signaling, leading to our uniquely powerful cognitive 

capacities. 
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In addition to potentially shaping our species, gene dosage also plays an 

important role in health and disease, yet this is an area of genome biology that is not 

well understood. In fact, it is not well-known what fraction of genes in the genome are 

dosage sensitive. While many genetic disorders are caused by mutations in genes that 

render them nonfunctional or toxic, there are genes for which the presence of an extra 

non-mutant copy is known to be pathogenic. Perhaps the most well-known and striking 

example also happens to be located on chr21. As will be discussed in more detail in a 

later section, the amyloid precursor protein (APP) gene is the only gene on chr21 that 

has been strongly linked to a specific phenotype in DS: the near-universal development 

of Alzheimer’s disease (AD) (Olson and Shaw, 1969). The mapping of the APP gene to 

chromosome 21, in concert with the findings of prevalent AD in DS patients, led to the 

development of the amyloid hypothesis, the dominant theory in the pathogenesis of AD 

(Hardy and Selkoe, 2002). Further supporting that the dosage of this single gene can be 

sufficient for AD pathogenesis, euploid individuals with a duplication of the APP gene 

develop early-onset autosomal dominant AD (Rovelet-Lecrux et al., 2006). 

It is important to note that many, if not most, genes are not dosage sensitive, as 

evidenced by the prevalence of copy number variations (CNV) covering 12% of the 

human genome (Redon et al., 2006). Additionally, there are genes for which an 

increased copy number can be advantageous in certain scenarios, as exemplified by 

the gene encoding amylase, which is present in higher copy numbers in cultures that 

consume a high-starch diet (Perry et al., 2007), and presumably gives a competitive 

advantage to individuals who can more thoroughly digest starches.  
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While there are individual genes which are not dosage sensitive, the presence or 

absence of an entire autosomal chromosome is nearly always incompatible with life. 

Recent estimates suggest that up to 80% of spontaneous abortions are caused by 

chromosomal abnormalities (Hardy et al., 2016). A plurality of these cases is caused by 

trisomy, a trend that has been exacerbated recently by increasing average maternal 

age. The few trisomies that are compatible with life tend to be on the smaller 

chromosomes, which contain fewer genes, such as chromosome 21. Notable 

exceptions to these trends involve the large X chromosome; monosomy and trisomy X 

are both compatible with life and cause mild phenotypes compared to other 

chromosomal abnormalities. This is largely due to the unique process of dosage 

compensation. 

Concomitant with the evolution of heterogametic sex chromosomes came 

systems for dosage compensation, which ensure gene dosage balance between the 

sexes (Charlesworth, 1996). In drosophila, males (XY) upregulate expression from one 

X chromosome by the redundant action of two non-coding RNAs, roX1 and roX2, in 

order to equilibrate X chromosome expression between males and females (Franke and 

Baker, 1999). In contrast, female (XX) mammals downregulate expression from one X 

chromosome. This phenomenon is orchestrated by another non-coding RNA, the X-

inactive specific transcript (XIST). XIST RNA normally coats one X chromosome, 

eventually leading to its transcriptional silencing. In females with trisomy X, XIST is 

expressed from two copies of the X chromosome, ensuring the presence of just one 

transcriptionally active X chromosome and explaining viability of these trisomies. The 

mild phenotypes that are seen in trisomy X, and become more severe in the rare cases 
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of tetrasomy X, are thought to be caused by overexpression a subset of genes that 

escape silencing by XIST (Tartaglia et al., 2010). However, as will become evident 

throughout this thesis and is the case with most trisomies, the specific genes that lead 

to any potential phenotypes in cases of trisomy X have not been identified. One notable 

exception to this is the SHOX gene, which escapes X inactivation and has been linked 

to the short stature of women with Turner’s syndrome (XO) and the tall stature of both 

men and women with supernumerary copies of the X chromosome (Ottesen et al., 

2010). 

Case studies of specific dosage-sensitive genes, the high prevalence of 

chromosomal abnormalities in spontaneous abortions, and the potential role of gene 

expression changes in the evolution of our species make a clear case for the 

importance of gene dosage throughout biology. The natural phenomenon of X 

chromosome inactivation (XCI) provides an important window into understanding how 

perturbation of transcriptional gene dosage affects development, and the ability to 

harness this unique phenomenon to model and potentially treat disorders of dosage 

imbalance opens a new path for these previously untreatable diseases. 

XIST and X chromosome inactivation  

The discovery of X chromosome inactivation and XIST  

 Mary Lyon first put forward a comprehensive theory of X inactivation that has 

survived decades of scientific inquiry (Lyon, 1961). Her theory built on the then-recent 

discovery that the “sex chromatin” in female cells previously identified by Barr and 

Bertram (1949) was in fact one X chromosome (Ohno and Hauschka, 1960), and that 

monosomy X was compatible with a healthy and fertile female phenotype in mice 
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(Welshons and Russell, 1959). Additionally, work in mouse genetics had identified an 

interesting finding where heterozygous mutations in X-linked coat color genes led to the 

patchy appearance of female mice, suggestive of a mosaic phenotype (Fraser et al., 

1953). In this scenario, one X chromosome is randomly inactivated in the early female 

embryo. If the chromosome containing the nonmutant coat color allele is inactivated, 

then pigmented cells arising from this early progenitor will not produce pigment. On the 

other hand, cells derived from the progenitor that silences the other X chromosome will 

produce pigment, ultimately leading to the mottled phenotype seen in female animals of 

certain mouse mutants as well as in the common house cat. Putting these pieces 

together, Lyon’s hypothesis stated that the heteropyknotic (condensed) X chromosome 

can be either maternal or paternal in origin in different cells of the same animal, that this 

chromosome is genetically inactivated, and that this inactivation occurs early in 

development (Lyon, 1961).  

 Soon after proposing this theory, evidence from X;autosome translocations 

indicated that a certain portion of the X chromosome was required for chromosomal 

silencing to take place (Russell, 1963). This led to the idea that there exists a portion of 

the X chromosome called the X inactivation center (XIC) from which the inactivation of 

the X chromosome spreads (Cattanach, 1975). It was not until 30 years after Mary Lyon 

proposed the theory of X inactivation that the gene located in the XIC and associated 

with aberrant XCI was discovered (Brown et al., 1991a, 1991b). XIST was unique in that 

it was the only gene known to be expressed exclusively from the inactive X 

chromosome. Prior genes had been discovered that were expressed only from the 

active X (silenced genes) and genes expressed from both copies of X (genes that 
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escape silencing). Importantly, Brown et al. (1991a) also found that XIST expression 

increased with the number of inactive X chromosomes present, indicating that XIST is 

capable of effectively silencing multiple X chromosomes and rescuing these individuals 

from trisomy, as mentioned in the previous section, which is an important finding for any 

potential therapeutic applications of this unique gene. Soon after, once the entire 17kb 

sequence of XIST was determined (Brown et al., 1992), it became clear that this gene 

does not encode a protein, but instead is transcribed into a long RNA that is retained in 

the nucleus and spatially overlaps nearly perfectly with the inactive X chromosome 

territory, or Barr body (Clemson et al., 1996). In fact, XIST RNA established the 

precedent for a large non-coding RNA (lncRNA) which functions in chromatin. XIST was 

also determined to contain several well-conserved repeat elements known as repeats 

A-F (Brown et al., 1992). At about the same time, mouse mutant studies found that Xist 

was indeed required for X chromosome silencing. These studies showed that in mice 

with one mutant allele of Xist, the silenced chromosome in every cell was always the 

one containing the intact allele (Penny et al., 1996), indicating lethality of cells which 

attempted XCI using a non-functional mutant allele of Xist. 

Mechanisms of XIST-mediated chromosome silencing 

 In the nearly 30 years since the discovery of the XIST gene, numerous 

researchers have tried to understand how this RNA mediates transcriptional silencing of 

an entire chromosome. While there is much that remains unknown about this process, 

significant progress has been made in understanding the underlying mechanisms. It has 

long been understood that XIST recruits many factors in order to effectively and 

redundantly render the X chromosome transcriptionally silenced (Migeon, 1994), and 
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some of the mechanisms employed to this end, which have largely been discovered in 

the mouse, will be reviewed here and are summarized in Figure I-1. 

XIST RNA functions by triggering multiple repressive chromatin modifications 

that contribute to the silent state, such as polycomb protein repressive complexes PRC1 

and PRC2, which induce the canonical heterochromatin hallmarks: monoubiquitination 

of lysine 117 on histone 2A (H2AK119ub1) and trimethylation of lysine 27 on histone 3 

(H3K27me3), respectively (Cao et al., 2002; Fang et al., 2004; de Napoles et al., 2004; 

Plath et al., 2003). Initial experiments suggested that Xist RNA directly recruited PRC2 

to the X chromosome via the A-repeat segment of the RNA (Zhao et al., 2008). In this 

model, PCR2 would first lay down the H3K27me3 heterochromatin mark, which would 

then be bound by the CBX component of PCR1, allowing for H2AK119ub1 enrichment 

(Brockdorff, 2017). Subsequent studies, however, have come to the conclusion that it is 

in fact a non-canonical version of PRC1 that is first recruited to the X chromosome 

(Tavares et al., 2012), and that PRC2 recruitment depends on prior deposition of 

H2AK119ub1 (Almeida et al., 2017). 

The polycomb complexes and their respective histone modifications have long 

been associated with the inactive X chromosome, yet their role in transcriptional 

silencing of the chromosome has been debated. While there is evidence in the mouse 

of some extraembryonic cells requiring polycomb for maintenance of XCI (Wang et al., 

2001), one study found that these complexes did not seem to be required for initiation of  
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Figure I-1: Summary of XIST mechanisms for heterochromatin recruitment. 

XIST RNA (red lines and circles) has a complicated 3D structure including several 
hairpins. Genomic DNA (black lines) is wrapped in nucleosomes (blue circles) 
containing histones which can undergo modifications that make the DNA more or less 
accessible to transcriptional machinery. The A-repeat is known to directly interact with 
SPEN, which recruits HDAC3 through intermediate partners. The A-repeat may also act 
via other mechanisms to enact gene silencing. Other elements of XIST recruit PRC1, 
which lays down H2AK119ub1. This subsequently leads to the recruitment of PRC2, 
which lays down H3K27me3. HDAC3 may also affect PRC2 recruitment. Figure partially 
adapted from Brockdorff (2017). 
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XCI in the embryo itself (Kalantry and Magnuson, 2006). There is also early evidence 

for XIST mutants that do not recruit PRC1/2 to undergo effective silencing, although the  

extent of silencing or the requirement of these complexes for the maintenance of the 

silenced state could not be assessed (Bousard et al., 2018). However, other studies 

have shown that the embryonic lethality in PRC1 knockout mice may not be totally 

attributable to the failure of extraembryonic cells to complete XCI, and that PRC1 

mutant mouse embryonic stem cells (ESC) show impaired XCI (Almeida et al., 2017). 

Ultimately, further experiments, particularly in human cells, are required to determine to 

what extent the polycomb complexes are required for the initiation and maintenance of 

XCI. 

 The A-repeat sequence of XIST has been most tightly linked to the silencing 

function of this RNA. An Xist mutant in this portion of the gene leads to total abrogation 

of its silencing capability (Wutz et al., 2002), with no effect on the ability to recruit 

polycomb complexes and related heterochromatin modifications (Plath et al., 2003). The 

human A-repeat sequence alone was shown to be capable of silencing a reporter gene 

in the same transgenic construct (Minks et al., 2013), and may also be capable of 

silencing endogenous genes, potentially megabases away (Valledor et al., in 

preparation). Due to its importance in the role of silencing and its apparent uncoupling 

from the deposition of heterochromatin marks, there has been a concerted effort to 

determine how the A-repeat sequence induces transcriptional silencing. Through these 

efforts it was discovered that the RNA binding protein Spen was required for Xist-

mediated silencing (Moindrot et al., 2015; Monfort et al., 2015). Further, novel 

techniques for identifying RNA binding proteins, such as comprehensive identification of 
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RNA binding proteins by mass spectrometry (ChIRP-MS), revealed that Spen interacts 

directly with the A-repeat of Xist RNA (Chu et al., 2015). Spen was also shown to 

activate histone deacetylase 3 (HDAC3) which is required for both exclusion of RNA 

polymerase II from the inactive X chromosome and recruitment of PRC2 (McHugh et al., 

2015; Żylicz et al., 2019). Interestingly, while the A-repeat mutant studies demonstrate 

decoupling of this sequence from PRC2 recruitment, it has been shown to be required 

for Spen binding, which in turn is necessary for recruitment of PRC2 to the X 

chromosome. This suggests a complex interaction between the XIST RNA, RNA 

binding proteins, and polycomb complexes that is still poorly understood. 

 In addition to polycomb-mediated heterochromatin marks and Spen-mediated 

histone deacetylation, a number of other chromatin modifications have been linked to 

XCI. For example, H3K9me was one of the earliest reported chromatin changes 

associated with XCI (Heard et al., 2001), and the histone variant macroH2A is highly 

enriched on the inactive X, but its functional significance for XCI is questionable 

(Pehrson et al., 2014). Recent work has identified adenosine methylation of XIST RNA 

as a requirement for transcriptional repression (Patil et al., 2016), yet the mechanism 

behind its action is not yet understood. DNA methylation is one of the final steps in the 

XCI process that is thought to be required for maintenance of the inactive state, for 

which XIST is dispensable (Brown and Willard, 1994). Another factor, SMCHD1, has 

been shown to be enriched on the XCI and to play a role in DNA hypermethylation on 

the inactive X chromosome (Blewitt et al., 2008). While the focus of most studies have 

been on histone modifications and DNA methylation, XIST RNA also interacts with 

architectural proteins, such as SAF-A, and may act directly at the level of chromatin 
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architecture (Creamer and Lawrence, 2017). Overall, the plethora of heterochromatin 

modifications and mechanisms involved in the induction and maintenance of the 

inactive X chromosome state highlight the complementary and redundant nature of XCI. 

Many of the factors involved have been shown to be insufficient for gene silencing on 

their own, but knockout of multiple factors can lead to erosion of the silenced state 

(Csankovszki et al., 2001). 

Once XCI has taken place, it is thought to be stable throughout the rest of 

development. Indeed, XIST RNA is largely dispensable for maintenance of XCI after it 

has been initiated (Brown and Willard, 1994). However, there is evidence that deletion 

of XIST in hematopoietic cells leads to inevitable hematological malignancy in mice 

(Yildirim et al., 2013), suggesting a possible role of XIST in fully maintaining long-term 

silencing. The importance of some factors for the induction of XCI, but not the long-term 

maintenance of silencing and vice-versa further complicates the identification of 

mechanisms involved, and it remains unclear what directly silences transcription as a 

result of XIST expression. Novel strategies to identify proteins that directly interact with 

XIST RNA have identified several pathways that may be crucial for gene silencing and 

bring us ever closer to a complete picture of the X inactivation process. 

Induction of chromosome silencing in development 

 Very soon after the discovery of the Barr body, the temporal dynamics of its 

formation in development began to be studied. It was quickly realized that this body was 

not present in human or macaque zygotes, but appeared several days later in both cells 

of the embryo and extraembryonic tissues (Park, 1957). Since these early studies, 

much progress has been made in understanding the onset of XCI in both mouse and 
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human development. Additionally, the ability of XIST to induce chromosome silencing 

outside its normal developmental window has been an important area of research and 

will be a major area of study in this thesis. 

 The differences in mouse and human XCI are most significant in the 

preimplantation embryo. Beginning in the four-cell embryo in mice, Xist expression is 

initiated from the paternally inherited X chromosome (Marahrens et al., 1997), a process 

known as imprinted XCI. In extraembryonic tissues this pattern of XCI continues 

throughout pregnancy, with exclusive silencing of the paternally-derived X chromosome 

being vital for extraembryonic tissue survival in female animals (Mugford et al., 2012). In 

contrast, the inner cell mass (from which the embryo is derived) reactivates the 

paternally derived X chromosome in late stage blastocysts before random XCI takes 

place (Mak et al., 2004). 

The XCI process in early human preimplantation embryos is just beginning to be 

explored, yet it is clear that imprinted XCI does not occur. Instead, beginning in the 

morula, XIST is expressed from both copies of the X chromosome (Okamoto et al., 

2011; Petropoulos et al., 2016a). Recent evidence indicates that at the same time, X 

chromosome gene expression is biallelically repressed in a process called X 

chromosome dampening (XCD) that has also been observed in naïve iPSCs (Sahakyan 

et al., 2017). The mechanism behind XIST-mediated XCD is not completely understood, 

but a recently discovered X-linked lncRNA called XACT (Vallot et al., 2013), which is 

also transcribed from both X chromosomes in the early human embryo (Vallot et al., 

2017), may play a role in attenuating the silencing action of XIST. 
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Post-implantation XCI in humans mimics that of embryonic mouse cells, where 

one X chromosome is randomly inactivated in each cell by XIST. The exact 

developmental timeline of the transition from XCD to random XCI in the human embryo 

is not well defined. This transition likely occurs in the blastocyst, where evidence of a 

single XIST paint and heterochromatin markers indicating XCI has been seen (van den 

Berg et al., 2009).  

Because XCI occurs very early in development, it is perhaps logical that this 

developmental context is ideal for the silencing initiation function of XIST. In fact, it was 

reported that inducing Xist expression in mouse ES cells that were differentiated for 48-

hours no longer leads to the induction of chromosome silencing (Wutz and Jaenisch, 

2000). Since then, it has largely been accepted that XIST is only capable of inducing 

silencing in the pluripotent state (or in the hours immediately following). This has led to 

research in search of factors present in the pluripotent state that allow for XIST-

mediated silencing. While one such factor, Satb1, was proposed as a “silencing factor” 

that allows for XCI outside of the normal developmental context (Agrelo et al., 2009), 

this finding has been challenged by a study that found Satb1 and Satb2 knockout 

animals to successfully undergo XCI (Nechanitzky et al., 2012). Other studies have 

demonstrated effective induction of XCI in neoplastic somatic cell lines (Chow et al., 

2007; Hall et al., 2002a), but the human fibrosarcoma cell lines used in these studies 

likely possess a particularly malleable epigenetic state that is common in cancers 

(Jones et al., 2016). Other work has shown that certain hematopoietic precursor cells 

are also capable of initiating XCI (Savarese et al., 2006), which the authors interpreted 

as a “transient re-establishment” of competence to initiate the XCI process. The authors 
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noted, however, that the ROSA26 locus, which contained the transactivator transgene 

required for Xist transgene expression, was known to be expressed in hematopoietic 

cells. Given that transgene silencing is a common occurrence, it is possible that other 

cell types did not express Xist in this transgenic system, and thus the potential of these 

cells to initiate chromosome silencing could not be fully assessed. 

There certainly could be factors that are present at high levels in pluripotent cells 

that allow for rapid and effective XCI. However, it is possible that these factors are also 

present at lower levels in differentiated cells which may support XCI, potentially at a 

slower rate. Certain cell types may lack key players, rendering them incapable of 

initiating XCI, but proper expression and localization of XIST must be assessed before 

such conclusions can be reached (Clemson et al., 1998). Currently, the ability of normal 

differentiated human cells to initiate XCI has not been evaluated. Work in this thesis will 

directly test this key question which has relevance for basic epigenetics and 

developmental biology but is also important for the potential therapeutic applications of 

XIST or derived sequences. 

Early human brain development and in vitro modeling  

 The human brain is the most complicated and least understood organ in the 

body. The transformation of a small group of embryonic stem cells to the cognitive 

powerhouse within our skulls is an immensely complex developmental process that is 

only beginning to be unraveled. Due to the potential breadth of this topic, I will limit 

discussions here to those areas most relevant to the goals and results of the present 

thesis work. This will include discussion of the early induction of neural lineage cells in 

the embryo and the onset of neurogenesis, major differences between human and 
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mouse brain development, selected signaling pathways involved in cell fate 

specification and differentiation, postnatal brain development, and attempts at in vitro 

modeling of neurodevelopment. 

Neural lineage commitment and neurogenesis 

 Cells committed to the neural lineage in human embryos arise following 

gastrulation, when the embryo transforms from a single-layer blastula to the gastrula 

containing three germ layers: ectoderm, mesoderm, and endoderm. Ectoderm gives rise 

to both the epidermal ectoderm (i.e. skin) and neuroectoderm which gives rise to 

neurons and macroglia (astrocytes and oligodendrocytes). Derivation of neuroectoderm 

(also known as neuroepithelium) is thought to be the “default” cell fate in the absence of 

other signals, such as bone morphogenetic proteins (BMP) (Khokha et al., 2005; Stern, 

2005; Zimmerman et al., 1996). Starting at about three weeks of human development, 

neuroepithelial cells at the neural plate begin folding to form the neural tube. The hollow 

cavity inside the tube will eventually become the ventricular system of the brain, and the 

progenitors surrounding this tube form a region known as the ventricular zone (VZ) and 

will give rise to the majority of cells in the brain. By embryonic day 28, there is clear 

separation of the neural tube into three primary vesicles: the prosencephalon, 

mesencephalon, and rhombencephalon, which will give rise to the forebrain, midbrain, 

and hindbrain, respectively. 

 The neuroepithelial cells of the neural tube form a single layer of pseudostratified 

epithelium and exhibit interkinetic nuclear migration, a process whereby the cell nuclei 

undergo mitosis at the apical surface of the VZ and then migrate basally during S phase 

(Huttner and Brand, 1997). Once the neural tube is closed, neuroepithelial cells switch 
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from symmetric proliferation, which expands the neuroepithelial cell pool, to asymmetric 

divisions, which mark the start of neurogenesis. At this point, the cell cycle of the 

neuroepithelial cells is lengthened, due to a four-fold lengthening of G1 phase 

(Takahashi et al., 1995), a change that is believed to be able to trigger neurogenesis in 

and of itself (Calegari and Huttner, 2003). These neurogenic asymmetric divisions form 

two classes of cells, epithelial and non-epithelial. The non-epithelial cells, which have 

lost their attachment to the apical surface of the ventricle, can be further divided into 

non-dividing cells (i.e. neurons and glia) and dividing cells (i.e. intermediate progenitors) 

which can divide symmetrically to produce two neurons (Englund et al., 2005; Huttner 

and Brand, 1997). The epithelial cells, which retain their apical attachment site, are 

known as a specialized type of neuroepithelial cell called radial glial cells (RGCs). 

Radial glia have long been known to serve a structural function in the developing brain, 

whereby their apical processes form a scaffold to guide newly born neurons to migrate 

apically to their final destination in the cortical plate (Rakic, 1971, 1972). Additionally, 

RGCs are now known to serve a vital function as neuronal progenitors through 

successive rounds of asymmetric divisions and as astrocyte progenitors after 

neurogenesis is complete (Malatesta et al., 2000; Noctor et al., 2001). In fact, direct or 

indirect progeny of RGCs make up the majority of neurons in the brain (Anthony et al., 

2004). A summary of early cortical neurogenesis is provided in Figure I-2. 

Human-specific neocortical development 

 A longstanding question in developmental neurobiology has been the cellular 

mechanism of the greatly expanded human neocortex. Mouse studies have shown that  
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most neurons are directly born through symmetric divisions of intermediate progenitors, 

which reside in a region just basal to the VZ known as the subventricular zone (SVZ)  

(Kowalczyk et al., 2009). The SVZ region is greatly expanded in the primate cortex 

(Lukaszewicz et al., 2005), which, unlike in the mouse, can be subdivided into an inner 

and outer SVZ and, in addition to containing non-epithelial intermediate progenitors like 

the mouse SVZ, also contains radially organized epithelial-like cells (Fish et al., 2008; 

Smart et al., 2002). These cells were recently shown to be another class of RGCs 

whose numbers are greatly increased in the outer SVZ, known as outer radial glia 

(oRG) (Hansen et al., 2010). These cells have the ability to divide asymmetrically into 

another oRG cell and an intermediate progenitor (IP), in contrast to mouse RGCs which 

generally only divide symmetrically to produce two neurons (Noctor et al., 2008). This 

ability to self-renew and enlarge the progenitor pool allows for a much larger number of 

progenitors that leads to the greatly increased neuron cell number in the primate brain. 

Additionally, many of these transit-amplifying cells retain pial contacts that allow for 

proper migration of the increased number of neurons. 

 The neurogenic events covered above are best described for the birth of 

excitatory neurons in the cortex. Inhibitory neurons in the mouse are known to originate 

from the ventral portion of the telencephalon (known as the ganglionic eminences) and 

migrate dorsally to integrate with excitatory neurons born from the VZ and SVZ of the 

dorsal telencephalon in order to form functional neuronal networks (Anderson et al., 

1997). The origin of human and primate cortical interneurons has been contentiously 

debated. Ever since it was suggested that a majority of human cortical interneurons 

originate in the dorsal telencephalon, based on classical markers of interneuron  
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Figure I-2: Summary of early cortical neurogenesis 

A) Schematic of a coronal section of one anterior telencephalic hemisphere during early 
human development. Ctx, cortex; LV, lateral ventricle; LGE, lateral ganglionic eminence; 
MGE, medial ganglionic eminence. B) Schematic of cellular composition of developing 
cortex, enhancement of dashed box from (A). Radial glia form apical-basal scaffold for 
radially migrating excitatory neurons. Interneurons from the ganglionic eminences enter 
the cortex tangentially and then switch to radial migration within the dorsal cortex. CP, 
cortical plate; oSVZ, outer subventricular zone; iSVZ, inner subventricular zone; VZ, 
ventricular zone; GE, ganglionic eminences. Figure adapted from Buchsbaum and 
Cappello (2019). 
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progenitors like DLX1/2 and Mash1 (Letinic et al., 2002), numerous studies have 

supported these findings (Petanjek et al., 2009; Yu and Zecevic, 2011; Zecevic et al., 

2011). However, more recent studies using embryonic human tissues have found that 

the purported dorsal interneuron progenitors did not incorporate BrdU, suggesting that 

they are not proliferative (Hansen et al., 2013), and that interneuron-specific 

transcription factor expression patterns in the human telencephalon could be more 

similar to mice than previously appreciated (Ma et al., 2013). These studies did suggest 

that the SVZ of the ventral telencephalon, as well as the caudal ganglionic eminence in 

humans, is greatly expanded compared to mice. Together with another study which 

found that human interneuron neurogenesis takes place over a much longer period 

extending into the third trimester of gestation (Arshad et al., 2016) this provides a 

potential explanation for the greatly increased number and diversity of interneurons in 

the human brain. The growing evidence implicating interneuron function in a range of 

psychiatric and neurodevelopmental disorders due to their vital modulatory role in 

cortical neural networks (Chattopadhyaya and Cristo, 2012; Marín, 2012) necessitates 

further study into the developmental origins of interneurons in humans. 

Notch signaling in neurodevelopment 

 Notch is one of several signaling pathways that are necessary for proper brain 

development and plays a key role in several aspects of neurodevelopment. Here, I 

provide an overview of this pathway in particular detail due to our findings in chapter II 

that unexpectedly revealed a possible role for Notch in DS neurogenesis. 

Notch is vital for maintaining a proper balance between progenitors and 

differentiated neurons and also plays a role in a number of other key steps during 
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Figure A-2: Introducing exogenous rtTA in postmitotic neurons to initiate XIST 
expression 
 
A) RNA FISH for XIST in d35 monolayer neurons treated with compound E on day 21 
for 7 days. pLV-rtTA was transduced in cells where indicated. Dox was added on the 
day indicated. B) Quantification of the fraction of XIST-expressing cells in each 
condition of (A). 123-305 cells were counted for each condition (median=176). C-D) 
qPCR for rtTA (C) and XIST (D) normalized to GAPDH for cells in each condition of (A). 
AU, arbitrary units. E) Schematic of hypothesized methylation status of rtTA and XIST 
loci in transgenic cells. EF-1a promoter is likely progressively silenced over time in 
neurons, but not completely at this stage. TRE upstream of XIST is suspected to be 
robustly silenced in dox naïve neurons. 
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measured by qPCR (Figure A-2C), which led to an expected increase in both the 

fraction of XIST+ cells (Figure A-2B) and XIST expression (Figure A-2D) in the d0 dox 

condition. 

Together, these results suggest that in d0 dox cells, rtTA is the limiting factor for 

XIST expression, while in dox-naïve neurons something other than rtTA is limiting. It is 

most likely that the TRE upstream of the XIST transgene is silenced by DNA 

methylation (Figure A-2E), as has been reported in the literature for tetracycline 

inducible systems (Gödecke et al., 2017). 

Discussion 

  The experiments described above outline my attempts to counteract the finding 

of a decreased proportion of XIST expression cells in long-term iPSC culture and in 

differentiated cells, especially neurons. There are several important lessons to be taken 

away from these findings that can be applied to any studies using the tetracycline 

inducible system as well as for general design of expression cassettes. 

Foremost, in this study the major cause of progressive loss of inducible 

transgene expression with differentiation was loss of rtTA expression. This happened 

both stochastically in iPSCs and due to silencing of a developmentally regulated 

promoter with differentiation. Transgene expression could be rescued with re-

introduction of rtTA. It seems that rtTA may protect the TRE from methylation, which is 

why this rescue was possible only in cells that had previously been exposed to dox and 

may mean that rescue is limited by the starting proportion of XIST expressing cells. In 

dox naïve cells, the TRE was not protected from methylation, likely leading to the 

inability for XIST to be initiated even with adequate rtTA expression. The fact that  
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NSCs, but not neurons, are capable of initiating XIST expression suggests that there 

could be developmentally regulated methylation of the TRE in the final transition from 

NSCs to neurons.  

Additionally, back-to-back transgene cassettes in this case led to joint expression 

profiles, which can be advantageous in that it allows for selection of continued 

transgene expression. It could also lead to silencing of a ubiquitous promoter when 

paired with a developmentally regulated promoter. The fact that C5A did not 

demonstrate an increase in XIST expressing cells could have several root causes. 

Perhaps most likely is that the spatial separation, and therefore uncoupled expression, 

of promoters driving antibiotic selection and rtTA expression means that selection for 

G418 only guarantees that the rtTA cassette is inserted in the AAVS1 locus, not that it is 

expressed. A low starting level of CAG driven rtTA expression would prevent robust 

expression of XIST in differentiated cells.  

 Because transgene expression is such a widespread phenomenon in biology, 

several common strategies for maintained expression have improved biological 

research. One recent paper examined a similar phenomenon to that described in this 

appendix, where tetracycline inducible expression was silenced with differentiation 

(Gödecke et al., 2017). In order to reverse the DNA methylation detected at the TRE 

locus, the researchers fused rtTA to the demethylase Ten-eleven translocation 

methylcytosine dioxygenase 1 (TET1). This led to demethylation of the TRE locus and 

allowed for transgene expression, albeit with relatively low efficiency. 

Excitingly, we have preliminary evidence that the rtTA-TET1 fusion may reverse 

transgene silencing in our system, allowing for the induction of XIST expression in 
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differentiated neurons. This prospect would allow the study of XIST-mediated silencing 

in a postmitotic cell type for the first time. From a disease modeling perspective, if 

neurons are capable of initiating silencing this would greatly increase the experimental 

utility of dosage compensation for studying DS neurobiology. The ability to transition a 

neuron from a trisomic to disomic state would provide a unique opportunity to the 

examine whether trisomic neurons have ongoing functional deficits that could be 

reversed with dosage compensation. This could also have exciting translational 

ramifications for the potential of XIST as a therapeutic strategy for DS. 

 Materials and Methods 

iPSC maintenance and differentiation 

iPSCs were grown and maintained as described in chapter II. Organoids were 

generated using the Paşca (2015) protocol with the modifications described in chapter 

III. Monolayer neurons were generated with the protocol described in chapter II and 

were treated with 200µM CE at day 21 for 7 days. Dox was used at a concentration of 

500ng/ml. Puromycin was used at a concentration of 3µg/ml. G418 was used at a 

concentration of 40µg/ml. 

Generation of iPSC line with CAG-driven rtTA 

First, transgenic iPSC clones (Jiang et al., 2013) were screened for heterozygous 

insertion of EF-1a-driven rtTA using genomic PCR. These clones were then transfected 

with a CAG-driven rtTA plasmid with AAVS1 homology arms (CAG-rtTA) which was a 

gift from Paul Gadue (Addgene plasmid #60431) and a sgRNA/Cas9 plasmid directed at 

AAVS1 which was a gift from Masato Kanemaki (Addgene plasmid #72833) using 
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PBAE nanoparticles (Eltoukhy et al., 2012; Zugates et al., 2007) at a 30:1 dilution. After 

3 hours, media was changed to E8 with 10µM of the ROCK inhibitor Y-27632. A total of 

5µg DNA were transfected. After 48 hours, selection with 40µg/ml G418 was started 

and continued for 2 weeks. Insertion of the transgene was confirmed with genomic 

PCR. 

Lentiviral production and transduction 

 293FT cells (ThermoFisher) were used to generate lentiviral particles. 293FT 

cells were passaged 1:2 into a T75 flask the day before transfection. On the day of 

transfection, 9µg of transfer plasmid, 3µg of envelope plasmid, and 5.5µg of packaging 

plasmid were transfected using Lipofectamine 2000 (ThermoFisher) per the 

manufacturer’s instructions into one T75 flask containing 293FT cells at ~80% 

confluence. The pLV-rtTA plasmid is also known as pSLIK3 and was created by Melvys 

Valledor (Valledor et al., 2018). The envelope (PMD2.G, addgene plasmid #12259) and 

packaging (PsPax2, addgene plasmid #12260) plasmids were a gift from Didier Trono. 

The day after transfection, the media was changed to either neuron media (for 

monolayer culture, as described in chapter II) or organoid media. Two days after 

transfection, the conditioned media was filtered through a 0.45µm low binding filter 

(ThermoFisher) and added directly to the neurons (d28 of differentiation) or organoids 

(d83 of differentiation). The next day, the media was replaced with fresh unconditioned 

media. About 3 days after transduction and dox treatment, cells began to fluoresce in 

the red channel with close to 100% efficiency in monolayer neurons and at a much 

lower efficiency with patchy distribution in organoids. 
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Cell fixation, immunofluorescence, and RNA FISH 

 These steps were performed as described in chapter II for both iPSCs, 

monolayer neurons, and organoids. The Stellaris XIST probe was used for RNA FISH.  

RNA extraction, reverse transcription, and qPCR 

 These steps were performed as described in chapter III. 50-100ng of RNA was 

reverse transcribed and cDNA was used at a 1:10 dilution for qPCR. The primers used 

for qPCR are listed in Table A.1. GAPDH was used for normalization and quantification 

was performed using the DDCt method (Livak and Schmittgen, 2001) with normalization 

performed separately for each clone. 
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Table A-1: qPCR primers used in appendix 

Gene Primer Sequence 

rtTA F 5’-AAA-TCA-GCT-CGC-GTT-CCT-GT-3’ 

R 5’-TGT-TCC-AAT-ACG-CAG-CC-3’ 

XIST F 5’-GCA-GGT-CCA-AGA-AAT-TTG-AAC-AC-3’ 

R 5’-AGA-GTG-CCA-GGC-ATG-TTG-ATC-3’ 

GAPDH F 5’-TGC-ACC-ACC-AAC-TGC-TTA-GC-3’ 

R 5’-GGC-ATG-GAC-TGT-GGT-CAT-GAG-3’ 

F = forward; R = reverse 
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