6-1-1993

The thyroid gland is a major source of circulating T3 in the rat

Jean-Pierre Chanoine

Lewis E. Braverman

Alan P. Farwell

University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: http://escholarship.umassmed.edu/oapubs

Part of the Endocrinology, Diabetes, and Metabolism Commons, and the Medical Physiology Commons

Repository Citation

Chanoine, Jean-Pierre; Braverman, Lewis E.; Farwell, Alan P.; Safran, Marjorie; Alex, Sharon; Dubord-Tomasetti, Susan A.; and Leonard, Jack L., "The thyroid gland is a major source of circulating T3 in the rat" (1993). Open Access Articles. 1003.

http://escholarship.umassmed.edu/oapubs/1003

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
The thyroid gland is a major source of circulating T3 in the rat

Authors
Jean-Pierre Chanoine, Lewis E. Braverman, Alan P. Farwell, Marjorie Safran, Sharon Alex, Susan A. Dubord-Tomasetti, and Jack L. Leonard

This article is available at eScholarship@UMMS: http://escholarship.umassmed.edu/oapubs/1003
The Thyroid Gland Is a Major Source of Circulating T₃ in the Rat

Jean-Pierre Chanoine, Lewis E. Braverman, Alan P. Farwell, Marjorie Safran, Sharon Alex, Susan Dubord, and Jack L. Leonard

Departments of Nuclear Medicine, Physiology, and Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts 01655

Abstract

In rats, the respective contribution of the thyroid and peripheral tissues to the pool of T₃ remains unclear. Most, if not all, of the circulating T₃ produced by extrathyroidal sources is generated by 5'-deiodination of T₂, catalyzed by the selenoenzyme, type I iodothyronine 5'-deiodinase (5'D-I). 5'D-I in the liver and kidney is almost completely lost in selenium deficiency, resulting in a marked decrease in T₄ deiodination and an increase in circulating T₃ levels. Surprisingly, circulating T₃ levels are only marginally decreased by selenium deficiency. In this study, we used selenium deficiency and thyroidectomy to determine the relative contribution of thyroidal and extrathyroidal sources to the total body pool of T₃. Despite maintaining normal serum T₄ concentrations in thyroidectomized rats by T₄ replacement, serum T₃ concentrations remained 55% lower than those seen in intact rats. In intact rats, restricting selenium intake had no effect on circulating T₃ concentrations. Decreasing 5'D-I activity in the liver and kidney by > 90% by restricting selenium intake resulted in a further 20% decrease in serum T₃ concentrations in the thyroidectomized, T₄ replaced rats, suggesting that peripheral T₄ to T₃ conversion in these tissues generates approximately 20% of the circulating T₃ concentrations. While dietary selenium restriction markedly decreased intrahepatic selenium content (> 95%), thyroidal selenium content decreased by only 27%. Further, thyroid 5'D-I activity actually increased 25% in the selenium deficient rats, suggesting the continued synthesis of this selenoenzyme over selenoproteins in other tissues in selenium deficiency. These data demonstrate that the thyroid is the major source of T₃ in the rat and suggest that intrathyroidal T₄ to T₃ conversion may account for most of the T₃ released by the thyroid. (J. Clin. Invest. 1993. 91:2709–2713.) Key words: deiodination • selenium • thyroid • hormone metabolism • T₄ to T₃ conversion

Introduction

In mammals, the relative contribution of thyroidal and extrathyroidal sources to the total body pool of the metabolically active iodothyronine, 3,5,3'-triiodothyronine (T₃), is unclear. T₃ can be derived from conversion of the prohormone thyroxine (T₄) by outer ring (5'-) deiodination in the peripheral tissues, by T₄ to T₃ conversion within the thyroid gland, and by direct secretion of de novo synthesized thyroidal T₃. Estimates of the contribution of extrathyroidal T₄ to T₃ conversion to the total T₃ pool vary from 20% to 100% in the rat (1–3) and the thyroid accounts for the remainder of the T₃ produced daily. Lauber used in situ thyroid perfusion to directly examine the contribution of the thyroid to the T₃ pool and reported that intrathyroidal T₄ to T₃ conversion accounted for a considerable portion of the T₃ secreted from the dog thyroid (4, 5). Thus, both extrathyroidal and intrathyroidal T₄ to T₃ conversion appear to participate in the daily production of T₃. T₄ to T₃ conversion is catalyzed by the enzyme, iodothyronine 5'-deiodinase. Two isozymes of iodothyronine 5'-deiodinase have been identified. The most abundant form, type I iodothyronine 5'-deiodinase (5'D-I), is found in liver, kidney, and thyroid (6) and contains the rare amino acid selenocysteine (7–9). Tissue content of 5'D-I in the liver and kidney is proportional to selenium intake (10). The other isozyme, type II iodothyronine 5'deiodinase (5'D-II), is abundant in the brain, pituitary, and brown adipose tissue and does not contain selenium (11, 12). T₃ generated by 5'D-I is released into the general circulation, while the majority of the T₃ produced by 5'D-II remains with the cell. The ability to manipulate 5'D-I levels by altering the dietary intake of selenium provides means to examine the contribution of 5'D-I to total T₃ production. Selenium deficiency leads to an almost complete loss of 5'D-I in the liver and kidney and a 40–50% increase in the serum T₄ concentration (10, 12–14). This increment in circulating T₄ is completely accounted for by the prolonged metabolic half-life of the iodothyronine due to the loss of 5'D-I (14). Paradoxically, serum T₃ concentrations are not reciprocally affected and decrease by no more than 20%, if at all (12–14). While serum T₃ concentrations are marginally depressed by selenium deficiency, circulating T₃ sulfate concentrations increase nearly twofold (12, 14). Serum TSH levels remain near normal despite the elevated circulating T₄ in the selenium-deficient animal (12–14). Thus, despite the marked decrease in hepatic and renal T₄ to T₃ conversion in the absence of selenium, other sources of T₃ appear to be made available in animals lacking 5'D-I.

There are several possibilities to account for the discordance between the near complete loss of 5'D-I and the marginal fall in circulating T₃ observed in selenium deficiency. They include (a) diminished T₃ clearance, (b) increased thyroid T₃ secretion, and/or (c) enhanced recovery of T₃ from sulfo-conjugates released into the gut in the enterohepatic cycle. Previous work has shown that T₃ clearance is only marginally decreased by selenium deficiency and that the 20–25% increase in the metabolic half-life of this iodothyronine is insuffi-
cient to maintain the steady-state levels of T₃ observed in serum (14). The contribution of the thyroid to the T₃ pool in the selenium-deficient rat remains to be determined. Likewise, the contribution of enterohepatic recycling of T₃ or its conjugates to the circulating T₃ pool is unclear.

In this study, we determined the source(s) of circulating T₃ in selenium-deficient rats. The data show that the thyroid gland serves as a major source of circulating T₃ in the rat and suggest that intrathyroidal T₄ to T₃ conversion accounts for much of the T₃ secreted by the thyroid.

Methods

Animals and reagents. Weaning male Sprague-Dawley rats (40-50 g) supplied by Charles River Laboratories (Wilmington, MA) were used in all experiments. The study was approved by the Animal Research Committee and complies with the institutional assurance certificate of the University of Massachusetts Medical Center. Rats were fed a torula yeast based semisynthetic diet (Teklad Premier Laboratory Diets, Madison, WI) for 5 wk. The selenium-deficient diet (TD 82698) contains less than 16 μg/kg selenium and the selenium-replete diet (TD 91259) is the same base diet supplemented with 200 μg/kg selenium as Na₂SeO₃. Rats were housed in stainless steel cages, and distilled water was available ad lib. Body weight (BW)¹ was monitored biweekly.

Analytical procedures and hormone assays. In all experiments, animals were killed by decapitation and exsanguinated, except where noted. Liver was homogenized in 4 vol (wt/vol) of 20 mM potassium phosphate buffer (pH 7.4), 150 mM NaCl, and in 4 vol (wt/vol) of 250 mM sucrose, 20 mM Heps buffer (pH 7.0), 1 mM EDTA, and 1 mM DTT and stored at −20°C for determination of glutathione peroxidase activity (GPx) and 5'DI activity, respectively. Thyroid glands were weighed and homogenized in 800 μl of 250 mM sucrose, 20 mM Heps buffer (pH 7.0), 1 mM EDTA, and 1 mM DTT for determination of 5'DI activity.

The degree of selenium deficiency in the rats was determined by the decrease in hepatic GPx activity. GPx activity was determined from the oxidation of NADPH in the presence of 0.35 mM l-butyl hydroperoxide monitored spectrophotometrically at 340 nm (15). Samples were run in duplicate and results were expressed as nmol NADPH oxidized/min per mg protein. Hepatic GPx activities in intact, selenium-repleted and thyroidectomized, T₄ replaced, selenium-replete rats were 59.5±5.8 nmol NADPH oxidized/min per mg protein (n = 9) and 90.8±3.3 nmol NADPH oxidized/min per mg protein (n = 12), respectively.

Type 1 iodothyronine 5'-deiodinase activity was determined by the release of radioiodide from 10 μM [³²I]T₃ in the presence of 20 mM DTT (5'DI) (16). Samples were run in duplicate and results were expressed as units/mg protein; 1 unit of 5'DI enzyme activity represents the release of 1 pmol radioiodine/min per mg protein at 37°C. Hepatic type 1 iodothyronine 5'-deiodinase activities in intact, selenium-replete and thyroidectomized, T₄ replaced, selenium-replete rats were 224±15 U/mg protein (n = 12) and 114±8 U/mg protein (n = 9), respectively.

Serum TSH was measured in duplicate by RIA using materials obtained from the National Pituitary Agency, National Institutes of Health (Bethesda, MD). Serum T₄ and T₃ concentrations were determined in duplicate by species-adapted specific RIAa.

Selenium was quantified by measuring the 162 KeV gamma ray produced during the decay of radioactive ⁷⁷Se after irradiation of the sample at a neutron flux. The sensitivity was 0.05 ppm (Research Reactor Facility, University of Missouri–Columbia, Columbia, MO) (17).

Protein was measured by the method of Bradford (18).

¹ Abbreviations used in this paper: BW, body weight; GPx, glutathione peroxidase activity.

Experimental procedures

Effect of altered selenium intake on serum T₄, T₃, and TSH concentrations in T₄ replaced, thyroidectomized rats. 35 rats (22 selenium supplemented and 13 selenium deficient) were used in this experiment. 3 wk before being killed, 12 selenium-supplemented and 6 selenium-deficient rats were anesthetized using 7 mg ketamine and 0.6 mg xylazine/100 g BW and the thyroid glands removed. T₄ replacement was begun one day after thyroidectomy by daily intraperitoneal injections of T₄ (1.1 μg/100 g BW) for 2 wk. For the final 7 d of the experiment, serum T₄ concentrations were maintained at euthyroid levels by the use of an osmotic minipump (Alzet 2001; Alza Corp., Palo Alto, CA) calculated to deliver T₄ at a rate of 1.1 μg/100 g BW per day. T₄ (Sigma Chemical Co., St. Louis, MO) used for hormone replacement was > 99.7% pure as measured by HPLC.

Effect of selenium deficiency on the selenium content and 5'DI activity in the thyroid gland. 15 rats (8 selenium supplemented, and 7 selenium deficient) were anesthetized as described above and perfused through the aorta with 40 ml of ice-cold saline. The exsanguinated thyroid gland and liver were removed and frozen at −70°C for subsequent determination of selenium content by neutron activation analysis. In a parallel experiment, thyroidal and liver 5'DI activities were determined in 10 selenium-supplemented and 10 selenium-deficient rats.

Effects of selenium deficiency on intrathyroidal metabolism of ¹³¹I. Intrathyroidal metabolism of ¹³¹I was determined in groups of 5 rats (5 selenium supplemented and 5 selenium deficient). Animals were killed 2 h after the intraperitoneal injection of 10 μC Na¹³¹I (16.2 Ci/μg). Thyroid glands were then dissected free of connective tissue and homogenized in 500 μl of sodium barbital buffer (pH 8.6) containing 20 mM methimazole and 4 mM KI. The percent uptake of radioiodide and the distribution of the ¹³¹I between MIT, DIT, T₃, and T₄ was determined by descending paper chromatography after pronase digestion of thyroid homogenates according to Vagenakis et al. (19).

Statistics

The results are presented as mean±SE. Statistical significance (P < 0.05) was determined using the Student's t-test for unpaired values.

Results

Effects of selenium status on serum T₄, T₃, and TSH concentrations in T₄ replaced, thyroidectomized rats. During the 5-wk experimental period, body weights increased from 55 to 330 g in the euthyroid rats (intact) (n = 17) and from 55 to 289 g in the thyroidectomized rats replaced with T₄ (T₄ replaced) (n = 18), indicating that hormone replacement was almost complete in the thyroidectomized animals. No differences in growth were observed between the selenium-deficient and selenium-supplemented rats. Selenium deficiency resulted in a 97% decrease in hepatic GPx activity and a parallel 93% decrease in hepatic 5'DI activity in both the intact and T₄ replaced rats indicating that the animals were selenium deficient. As shown in Fig. 1, in selenium-supplemented rats, serum T₄ concentrations were similar in the intact and T₄ replaced groups (A). Selenium deficiency resulted in the expected increase in the serum T₄ concentrations in both the intact and T₄ replaced groups (P < 0.05, A vs. B).

Although the serum T₄ concentrations were identical in the selenium-supplemented intact and T₄ replaced rats, serum T₃ concentrations were not normalized and T₃ concentrations in the T₄ replaced rats remained 55% lower than those in the intact group (Fig. 1 C). Selenium deficiency did not significantly affect serum T₃ values in the intact rats (1.23 nM±0.14 vs. 1.11±0.10, selenium-supplemented vs. selenium-deficient.
rats, respectively) but decreased the serum \(T3 \) concentrations by 20% in the \(T4 \) replaced group (C and D) (0.55±0.03 nM vs. 0.44±0.02 nM, \(P < 0.05 \) selenium-supplemented vs. selenium-deficient rats, respectively).

In both selenium-supplemented and selenium-deficient thyroidecomized rats, \(T4 \) replacement did not normalize the serum TSH concentrations, and they remained 2 to 3 times higher than those observed in the intact rats (Fig. 1, E and F). Selenium deficiency did not affect serum TSH concentrations in the intact rats.

Effect of selenium deficiency on serum content and 5'-D-I activity in the thyroid. The failure of \(T4 \) replacement to normalize serum \(T3 \) concentrations in the selenium-supplemented rats, despite the availability of normal \(T4 \) levels to the 5'-D-I containing tissues, suggested that the thyroid gland may contribute up to 55% of the \(T3 \) found in the circulation. Similarly, the thyroid appeared to contribute as much as 60% of the circulating \(T3 \) in the selenium-deficient rats, animals that lack the selenoprotein 5'-D-I in the liver and kidney. Since earlier work suggested that intrathyroidal \(T4 \) to \(T3 \) conversion was a major contributor to the \(T3 \) found in the dog thyroid effluent (4, 5), and thyroidal 5'-D-I appears to be a selenoprotein (7), the near normal serum \(T3 \) concentrations found in intact, selenium-deficient animals raised the possibility that thyroidal 5'-D-I was unaffected by selenium deficiency. Thus, we determined the effects of selenium deficiency on thyroidal selenium content (Fig. 2) and on 5'-D-I activity in the thyroid (Fig. 3). Rats fed the selenium-deficient diet had a >97% fall in selenium content in the liver and a corresponding >93% decrease in liver 5'-D-I activity. However, in the thyroid, the selenium-deficient diet resulted in only a modest 27% decrease in selenium content, and paradoxically, the 5'-D-I activity was increased by 25% (\(P < 0.05 \)).

Effects of selenium deficiency on intrathyroidal metabolism of \(^{131}\)I. To evaluate the influence of altered selenium intake on intrathyroidal iodine metabolism, we determined the effects of selenium deficiency on the thyroid gland's ability to concentrate and organify iodine. Thyroid uptake of \(^{131}\)I was unaffected by selenium intake, and there were no differences in the synthesis of the \(^{131}\)I-labeled iodotyrosines (MIT and DIT) or iodothyronines (\(T4 \) and \(T3 \)) between selenium-deficient and selenium-supplemented rats (Table 1).

Discussion

Controversy surrounds the contribution of the various tissues to \(T3 \) production in the rat. DiStefano (1) estimated that 47% of \(T3 \) originates from both thyroidal secretion and extrathyroidal \(T4 \) to \(T3 \) conversion in liver and kidney, while the remain-

Figure 2. Effect of selenium deficiency on the selenium content in the thyroid and liver. Rats were fed a selenium-supplemented (Se+) or selenium-deficient (Se-) diet for 5 wk then were killed. Selenium content was determined as described in Experimental procedures. *\(P < 0.05 \).

Figure 3. Effect of selenium deficiency on 5'-D-I activity in the thyroid and liver. Rats were fed a selenium-supplemented (Se+) or selenium-deficient (Se-) diet for 5 wk then were killed. 5'-D-I activity was assayed as described in Experimental procedures. *\(P < 0.05 \).
Table I. Effect of Selenium on Intrathyroidal 131I Metabolism

<table>
<thead>
<tr>
<th></th>
<th>Se+</th>
<th>Se-</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Uptake</td>
<td>9.4±1.3</td>
<td>12.7±3.2</td>
</tr>
<tr>
<td>% MIT</td>
<td>27.4±0.6</td>
<td>27.0±2.2</td>
</tr>
<tr>
<td>% DIT</td>
<td>41.4±1.6</td>
<td>36.9±1.5</td>
</tr>
<tr>
<td>MIT/DIT</td>
<td>0.74±0.08</td>
<td>0.67±0.03</td>
</tr>
<tr>
<td>% T3</td>
<td>1.0±0.3</td>
<td>1.1±0.2</td>
</tr>
<tr>
<td>% T4</td>
<td>4.1±0.5</td>
<td>3.1±0.3</td>
</tr>
<tr>
<td>T3/T4</td>
<td>0.33±0.06</td>
<td>0.25±0.06</td>
</tr>
</tbody>
</table>

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

ing 53% comes from T4 to T3 conversion in the slowly equilibrating pools, such as brain, skin, and muscle. Kinlaw et al. (3) revised their earlier estimate that only 20% of T3 is produced by extrathyroidal T4 to T3 conversion in the rat (2) and suggested that essentially all T3 is produced by T4 to T3 conversion. They also speculated that there is little or no direct secretion of T3 by the thyroid.

The current data demonstrate that at least 55% of circulating T3 comes from the thyroid gland in the intact, selenium-supplemented rat. Since liver and kidney 5'D-I still contribute to the pool of circulating T3 in these rats, it is difficult to estimate the relative contribution of the thyroid to total body T3 concentrations. Moreover, the failure of T4 to T3 conversion to normalize serum T3 concentrations in thyroidectomized rats, resulting in reduced liver 5'D-I activity, further complicates the analysis of the sources of circulating T3. However, in the selenium-deficient rat, liver and kidney 5'D-I are virtually absent (12), and the contribution of the thyroid to the serum T3 pool can be approximated. The contribution of thyroidal T3 derived from thyroglobulin and that from thyroidal T4 to T3 conversion to the circulating T3 pool in these animals, as estimated from the data presented in Fig. 1 panel D, is approximately 65% and the residual serum T3 concentrations present in these rats lacking both the thyroid and extrathyroidal 5'D-I is in excellent agreement with previously measured values (12). The source of the residual T3 in the serum of thyroidectomized rats with essentially undetectable serum T3 concentrations and no hepatic and renal 5'D-I remains unclear. Taken together, extrathyroidal T4 to T3 conversion contributes 20–25%, and thyroidal T4 to T3 conversion and T3 derived from thyroglobulin contributes 55–65% of the total body pool of T3. Thus, nearly all the circulating T3 derived from T4 appears to be produced by the selenoenzyme, 5'D-I.

Thyroidectomy resulted in a marked increase in serum TSH concentrations in both selenium-supplemented and selenium-deficient rats despite the maintenance of serum T4 concentrations identical to those observed in the respective intact groups. The presence of increased serum TSH concentrations, decreased serum T3 concentrations, and normal or elevated serum T4 concentrations indicates that circulating T3 plays an important role in regulating TSH secretion (12, 20, 21). Previously, we found a modest increase in serum TSH concentrations (12) in selenium-deficient rats that was proportional to the fall in circulating T3, suggesting that TSH levels may actually be slightly elevated for some period during dietary restriction of selenium.

Table I. Effect of Selenium on Intrathyroidal 131I Metabolism

<table>
<thead>
<tr>
<th></th>
<th>Se+</th>
<th>Se-</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Uptake</td>
<td>9.4±1.3</td>
<td>12.7±3.2</td>
</tr>
<tr>
<td>% MIT</td>
<td>27.4±0.6</td>
<td>27.0±2.2</td>
</tr>
<tr>
<td>% DIT</td>
<td>41.4±1.6</td>
<td>36.9±1.5</td>
</tr>
<tr>
<td>MIT/DIT</td>
<td>0.74±0.08</td>
<td>0.67±0.03</td>
</tr>
<tr>
<td>% T3</td>
<td>1.0±0.3</td>
<td>1.1±0.2</td>
</tr>
<tr>
<td>% T4</td>
<td>4.1±0.5</td>
<td>3.1±0.3</td>
</tr>
<tr>
<td>T3/T4</td>
<td>0.33±0.06</td>
<td>0.25±0.06</td>
</tr>
</tbody>
</table>

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.

Intrathyroidal metabolism of 131I was determined in 5 selenium-supplemented (Se+) and 5 selenium-deficient (Se-) rats as described in Experimental procedures. Results are expressed as mean±SE.
tion of intrathyroidal T4 to T3 conversion to T3 homeostasis appears to be important, but the exact contribution remains to be determined.

Acknowledgments

We thank J. S. Morris, V. L. Spate, and C. L. Reams from the University of Missouri Research Reactor, University of Missouri–Columbia, Columbia, MO, for determination of tissue selenium content.

J.-P. Chanoine is the recipient of a Public Health Service Fogarty International Research Fellowship (1 F05 TW04373-01) and Aspirant at the Fonds National de la Recherche Scientifique, Belgium. This work was supported by grants DK-38772, DK-18919, and DK-02005 from National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, and by a grant from North Atlantic Treaty Organization.

References