Maelstrom Represses Canonical RNA Polymerase II Transcription in Drosophila Dual-Strand piRNA Clusters

Timothy H. Chang
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss

Part of the Cell Biology Commons, and the Molecular Biology Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Morningside Graduate School of Biomedical Sciences Dissertations and Theses by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
MAELSTROM REPRESSES CANONICAL RNA POLYMERASE II TRANSCRIPTION IN *DROSOPHILA* DUAL-STRAND piRNA CLUSTERS

A Dissertation Presented

By

TIMOTHY HAN CHANG

Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester In partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

April 20, 2018

M.D./Ph.D. Program in Biomedical Sciences
MAELSTROM REPRESSES CANONICAL RNA POLYMERASE II TRANSCRIPTION IN
DROSOPHILA DUAL-STRAND piRNA CLUSTERS

A Dissertation Presented

By

TIMOTHY HAN CHANG

This work was undertaken in the Graduate School of Biomedical Sciences
M.D./Ph.D. Program in Biomedical Sciences

Under the mentorship of

Phillip D. Zamore, Ph.D., Thesis Advisor

Craig L. Peterson, Ph.D., Member of Committee

Oliver J. Rando, M.D./Ph.D., Member of Committee

Zhiping Weng, Ph.D., Member of Committee

Katalin Fejes Tóth, M.D./Ph.D., External Member of Committee

William E. Theurkauf, Ph.D., Chair of Committee

April, 20 2018
DEDICATION

I dedicate this thesis to my loving parents;
 David and Judy
my always hungry brothers;
 Paul and Samuel
my inspiring grandparents;
 Gong Gong, Qing Niang, Wai Gong, and Wai Po
and last but not least, my wonderful wife and son;
 Jess and Kai
ACKNOWLEDGEMENTS

Since I was a child, my parents have encouraged me to pursue my interest in observing the natural world. I still clearly remember my mom biking me, bottle in hand, to the nearby park to catch bugs—which I only later realized she found gross. It turns out this was only the least of her sacrifices. Although I have only been a parent for less than a year, I cannot begin to comprehend all that my parents have given up for me and my brothers. For example, during every family vacation my dad would spend time in the hotel room to work or every day my mom would sit in rush hour traffic to try to get home early to take me and my brothers to various lessons and activities. I am finally starting to realize that despite my protests growing up, all of my parents’ advice and admonitions are turning out to be true. While I never would have thought this, the phrase “I am turning into my parents” is both the highest compliment I can imagine and something I truly hope that is happening to me.

While I cannot thank my parents enough, even my parents will readily admit that they are also the products of their own parents’ love and hard work. There is no way I would be where I am today without my grandparents. Today’s world can seem frightening and unstable, but I cannot imagine the world my grandparents lived through: first fleeing their homes during war and again due to a hostile government, they left everything behind. Starting from nothing, they raised and provided for their families and eventually emigrated to the United States when they realized that coming here would offer the best opportunities for their families. Since I was a child, whether it was teaching me to ride a bike, telling me stories and jokes, and even helping to provide for my education, my grandparents have always supported me.

People often say that being a middle child is tough, but in my case, I don’t think I would have it any other way. My brothers have always been my best friends and I look up to them in every aspect. There aren’t many people that are more genuinely curious
about anything and everything than my older brother, Paul. As a kid, this was very annoying: you could never get his attention when he was reading and when he wasn’t reading, he would constantly bug you with questions. Furthermore, he would strike up conversations with everyone. I vividly remember burying my face in shame when he started asking a taxi driver about where he was born. Somehow Paul knew all about the political nuances in this taxi-driver’s home country and ten minutes into the ride they were chatting like old friends. My younger brother, Samuel, is the hardest worker and quite possibly the smartest person I know. Sam felt like he had to live up to both his older brothers’ reputations in high school (as small as they may be) and rather than just pick one or two things Paul and I did, he did everything we did but did them better. Not only was Sam editor-in-chief of the school newspaper, he was also captain of the swim and water polo teams, and valedictorian too. Way to make us look bad, Sam. Through every major and minor step in my life, my brothers have always been there to support me and provide me with advice and perspective.

Throughout graduate school, Phil has been an amazing mentor and role model. Thinking back to the start of graduate school and how I was as an early scientist, I am deeply appreciative that Phil accepted me into his lab and took on the challenge to shape me into the scientist I am today. While I still have a ways to go, there are many things that I will forever take with me, among them: “ticks inside,” the importance of good controls, and “if it doesn’t have numbers, it’s not science.” This thesis would also not be possible without the guidance of my TRAC: Bill, Zhiping, Ollie, and Craig. Moreover, Tiff and our lab mom, Gwen, are responsible for the smooth day-to-day operations of the lab. Without Gwen, no experiments would ever get done and without Tiff, nothing would ever get scheduled.

I would also like to thank all the other members of the Zamore Lab for being wonderful friends and fostering a great scientific community. They made coming to lab everyday fun and exciting. In particular, there is no way I could be where am I without
my other mentor and brilliant scientist, Chengjian. He first took me on as a rotation student and eventually became like a big brother; teaching me to become a scientist and also looking after me at the same time. Without Cindy and Alicia maintaining the fly room much of this work would not be possible. Cindy also helped with fly dissections and our wonderful conversations in the fly room always made fly work enjoyable. Jen has also been a mentor since the beginning with Chengjian. The list of techniques she has taught me is too much to list, but it’s the things outside of lab that I will forever remember and treasure like the long talks, Halloween parties, and breakfasts. If you ever need a scientific question answered or a recommendation for a good book or restaurant, Amena is your person. The breadth of her knowledge in all fields is quite amazing. As a fellow MD/PhD student, Sam has been someone I commiserated with but he has also been a valuable resource when it came to biochemistry, politics, or parenting. Ildar and Cansu, AKA Candar, have been my office buddies for the past few months. They have been an incredible help for discussing my problems, hypotheses, and models. Ildar is a patient teacher and willing to instruct anyone in bioinformatics, small RNA biology, or film theory. Cansu has the ability to brighten anyone’s day both literally with her love of pink and figuratively with her bubbly personality. This thesis also would not be possible without the work of Eugenio, who is responsible for most of the bioinformatics analyses. It has been great to get a more computational perspective on my project and I had a lot of fun discussing my project with him. I am also thankful that Eugenio is very good and patient at explaining complex bioinformatics techniques into simple terms that I could understand.

Finally, I have to give a special thank you to my wife, Jess. It’s true, that opposites attract and I am scared to imagine where I might be without her organizational skills, patience, and kindness. I am deeply appreciative for her unwavering support and her willingness to sacrifice so many things to help me. While Worcester has treated me very well, I will forever be indebted to my wife for moving
Jess truly holds our family together, and both Kai and I are truly lucky to have her in our lives. Before I end, I also wanted to say a quick thank you to Kai, for helping me put everything into perspective and giving me hope for the future.

–Tim

April, 2018
ABSTRACT

Transposons constitute much of the animal genome. While many transposons are ancient and inactivated, numerous others are intact and must be actively repressed. Uncontrolled transposons can cause genomic instability through DNA damage or mutations and must be carefully silenced in the germline or risk sterility or mutations that are passed on to offspring.

In *Drosophila melanogaster*, 23–30 nt long piRNAs direct transposon silencing by serving as guides for Aubergine, Argonaute3, and Piwi, the three fly PIWI proteins. piRNAs derive from piRNA clusters—large heterochromatic DNA loci comprising transposons and transposon fragments. piRNAs are loaded into PIWI proteins via the ping-pong cycle which serves to amplify guide piRNAs. Loaded Piwi then enters the nucleus to transcriptionally repress transposons by establishing heterochromatin. Therefore, to silence transposons, transposon sequences must also be expressed. To bypass this paradox, the HP1 homolog Rhino (Rhi) allows non-canonical, promoter-independent, transcription of transposons embedded in heterochromatin. Transposon RNAs produced in this manner are “incoherent” and have little risk of being translated into transposon-encoded proteins required for transposition.

This thesis focuses on understanding how piRNA clusters permit non-canonical transcription yet restrict canonical transcription. We found that although Rhi promotes non-canonical transcription in piRNA clusters, it also creates a transcriptionally permissive environment that is amenable to canonical transcription. In addition, we discovered that the conserved protein, Maelstrom, is required to repress promoter-driven transcription of individual, potentially active, transposons within piRNA clusters and allows Rhi to transcribe such transposon sequences into incoherent piRNA precursors.
TABLE OF CONTENTS

DEDICATION ... iii

ACKNOWLEDGEMENTS... iv

ABSTRACT .. viii

TABLE OF CONTENTS ... ix

LIST OF FIGURES .. xii

LIST OF TABLES ... xiv

COPYRIGHT INFORMATION .. xv

LIST OF ABBREVIATIONS .. xvi

CHAPTER I: INTRODUCTION .. 1

HISTORY OF HETEROCHROMATIN ... 2

Christening of Heterochromatin ... 2

Heterochromatin and Gene Expression: Position Effect Variegation ... 2

Molecular Properties of Heterochromatin ... 6

HP1a is Essential to Heterochromatin Function .. 6

Transposons Nucleate Heterochromatin ... 10

Heterochromatin Prevents Transposon-Induced Genome Instability ... 10

HISTORY OF SMALL RNAs .. 12

Discovery of Small RNAs .. 12
Mael Represses Transcription of Heterochromatin in the Ovary Somatic Follicle Cells........104

mael is a Suppressor of Position Effect Variegation..110

EXPERIMENTAL PROCEDURES ...116

ACKNOWLEDGEMENTS..127

CHAPTER III: DISCUSSION ..128

Mael Keeps Rhi in Check..129

Mael is Required for Dual-Strand piRNAs ...134

Mael Also Represses Transcription in the Soma ...136

A Conserved Role for Mael ..137

Conclusions: “There is Nothing New Under the Sun” ...139

CHAPTER IV: BIBLIOGRAPHY ..141
LIST OF FIGURES

Figure 1.1	Positon effect rearrangement for \(w^{m4} \)	5
Figure 1.2	HP1a maintains heterochromatin	9
Figure 1.3	Argonaute proteins use sRNAs to find their targets	14
Figure 1.4	Maternal effect phenotypes determined by mother	20
Figure 1.5	piRNAs map to discrete loci	26
Figure 1.6	Transcription of dual-strand piRNA clusters	33
Figure 1.7	piRNA biogenesis in the fly ovarian germline	37
Figure 2.1	Many transposons are overexpressed without Mael	51
Figure 2.2	Two \(gypsy12 \) LTRs in dual-strand piRNA clusters are active in \(mael^{M391/r20} \) ovaries	53
Figure 2.3	Increased transcription of \(cluster38C1 \) in \(mael^{M391/r20} \) ovaries	56
Figure 2.4	Mael represses the canonical transcription of \(P\{GSV6\}42A18 \)	59
Figure 2.5	Active transposon promoters are canonically transcribed in \(mael^{M391/r20} \) ovaries	62
Figure 2.6	Potential cryptic promoters in transposons are active in \(mael^{M391/r20} \) mutant ovaries	65
Figure 2.7	Mael is not required to establish heterochromatin at piRNA clusters or transposons	68
Figure 2.8	Minor changes in heterochromatin at \(gypsy12^{42A14} \) and \(gypsy12^{40F7} \) in \(mael^{M391/r20} \) ovaries	71
Figure 2.9	Minor changes in heterochromatin at \(cluster38C1 \) and \(P\{GSV6\}42A18 \) without Mael	73
Figure 2.10	Fewer piRNAs in \(mael^{M391/r20} \) mutants	76
Figure 2.11	Fewer piRNAs produced by ping-pong without Mael	78
Figure 2.12	Transposons in \(ago3 \) introns are active in \(mael^{M391/r20} \) ovaries	84
Figure 2.13: Phasing is functional without Mael...87
Figure 2.14: More piRNA cluster transcripts in armi$^{72.1/G728E}$ and piwi$^{2/Nt}$ mutants than control ovaries ..90
Figure 2.15: gypsy12 LTRs and cluster38C1 are derepressed in armi$^{72.1/G728E}$ and piwi$^{2/Nt}$ ovaries..92
Figure 2.16: P{GSV6}42A18 is active in armi$^{72.1/G728E}$ and piwi$^{2/Nt}$ ovaries95
Figure 2.17: Transcription can initiate at gypsy12 and cluster38C1 without Rhi...........98
Figure 2.18: Rhi is not required to repress transcription of P{GSV6}42A18...............100
Figure 2.19: Rhi promotes expression of P{GSV6}42A18 ...103
Figure 2.20: Mael represses heterochromatic sequences in somatic follicle cells107
Figure 2.21: mael is a suppressor of PEV...113
Figure 3.1: A model for Mael-dependent repression of canonical transcription in dual-strand piRNA clusters ..132
LIST OF TABLES

Table 2.1: Expression of ping-pong related genes in mael, piwi, armi, and rhi mutants 82
Table 2.2: Mael is required in both germline and somatic follicle cells for fertility 109
Table 2.3: mael is a strong suppressor of PEV 115
COPYRIGHT INFORMATION

The following publication appears in whole or in part in the thesis:

LIST OF ABBREVIATIONS

α-Tub: α-Tubulin

A. thaliana: Arabidopsis thaliana (thale cress)

Ago: Argonaute

Armi: Armitage

Arx: Asterix

Aub: Aubergine

C. elegans: Caenorhabditis elegans (round worm)

ChIP: chromatin immunoprecipitation

Cuff: Cutoff

D. melanogaster: Drosophila melanogaster (fruit fly)

D. virilis: Drosophila virilis (fruit fly)

Del: Deadlock

dsRNA: double-strand RNA

endo-siRNA: endogenous siRNAs

flam: flamenco

H3K4: histone H3 lysine 4

H3K9: histone H3 lysine 9

H3K9me: methylated histone H3 lysine 9

HMT: histone methyltransferase

HP1: Heterochromatin Protein 1

kbp: kilobase pairs

LINE: long interspersed nuclear element

LTR: long terminal repeat

Mael: Maelstrom

miRNA: microRNA
mRNA: messenger RNA
Moon: Moonshiner
nts: nucleotides
OSC: ovarian somatic cell
Panx: Panoramix
PEV: Position effect variegation
PIC: pre-initiation complex
piRNA: Piwi-interacting RNA
Pol II: RNA polymerase II
poly(A): polyadenylation
RDC: Rhino-Deadlock-Cutoff
RDRC: RNA-dependent RNA polymerase complex
RdRP: RNA-dependent RNA-polymerase
RITS: RNA-induced transcriptional gene silencing
Rhi: Rhino
RNAi: RNA interference
S. pombe: Schizosaccharomyces pombe (fission yeast)
S. cerevisiae: Saccharomyces cerevisiae (budding yeast)
SINE: short interspersed nuclear element
sRNA: small RNA (includes miRNAs, siRNAs, and piRNAs)
siRNA: small interfering RNA
ssRNA: single-strand RNA
Su(var): Suppressor of variegation
T. ni: Trichoplusia ni (cabbage looper)
TBP: TATA box-binding protein
TFIIA: basal transcription factor IIA
TIR: terminal inverted repeat
TREX: transcription/export
TRF1: TATA box-binding protein-related factor 1
TSS: transcription start site
TTS: transcription termination site
UTR: untranslated region

\textit{w}^m: \textit{white mottled}

Zuc: Zucchini
CHAPTER I: INTRODUCTION
HISTORY OF HETEROCHROMATIN

Christening of Heterochromatin

In 1928, Emil Heitz found that chromosomes from different mosses had regions that were more condensed, which he termed “heterochromatin,” and less condensed, which he termed “euchromatin.” Heitz also noted that the amount of heterochromatin varies among chromosomes. In particular, sex chromosomes were consistently enriched with heterochromatin. Moreover, among different cells, certain regions of chromosomes were consistently condensed while other regions tended to vary. These regions would later become known as constitutive and facultative heterochromatin, respectively (Reviewed in (Passarge, 1979)).

Heterochromatin and Gene Expression: Position Effect Variegation

Contemporaneous with Heitz, H. J. Muller discovered that exposing Drosophila melanogaster (D. melanogaster; fruit fly) to radiation could cause mutations that did not behave like traditional spontaneous lesions (Muller, 1930). Previous work had demonstrated that D. melanogaster with an inherited mutation in the white gene have a white-eye phenotype, which contrasts their red-eyed wild-type counterparts. Interestingly, after radiation exposure, Muller’s five mutant fly strains did not have a consistent white-eye phenotype, but rather had variegated expression of the white gene in the fly compound eye, producing a white-mottled phenotype (w^{m1}–w^{m5}). The lesion that caused the mottled white expression was eventually traced to an inversion of the X chromosome at a point near the white gene. Moreover, w^{m1} flies displayed an association between the degree of white repression and Notch expression—flies with eyes that were more mottled also had notched wings, while flies with little mottling had normal wings. Because Notch and white are physically close to one another on the chromosome (~340 kbp), Muller concluded that gene expression is dependent on its
position on the chromosome, or “chromatin context” (Muller, 1930). This phenomenon was therefore referred to as position effect variegation (PEV; Figure 1.1).

During the next few years, different factors that modified the white variegation pattern were discovered, bringing additional insight into PEV. Heterochromatin was identified as one such factor. Researchers observed that the addition of an extra heterochromatic Y chromosome suppressed variegation, while the removal of the Y chromosome enhanced variegation (Gowen and Gay, 1934). In 1936, lesions that caused variegating phenotypes were mapped to heterochromatin (Schultz, 1936), linking the variable inactivation of genes to heterochromatin. However, it was not until 1967, that the first Suppressor of variegation gene (Su(var)) was precisely mapped—showing that a single euchromatic gene could affect PEV in trans (Spofford, 1967).
Figure 1.1
Figure 1.1: Position effect rearrangement for w^{m4}

In w^{m4}, the $white$ gene is repositioned next to heterochromatin on the X chromosome which causes the variegated expression. Schematic of the wild-type (top) and w^{m4} X chromosome is displayed with representative images of wild-type and w^{m4} eyes. Breakpoints of the chromosomal inversion are shown with black arrows and transcription of $white$ is depicted as a red arrow. Euchromatin and heterochromatin are shown on the X chromosome as white and black, respectively. Adapted from (Schotta et al., 2003).
Molecular Properties of Heterochromatin

Many characteristics we now associate with heterochromatin formation and silencing were first discovered using PEV. The mechanistic details behind heterochromatin remained a mystery, however, until advances in molecular biology were made. Today, we know that both heterochromatin and euchromatin are composed of the same fundamental unit, the nucleosome, which is made up of an octamer of four conserved histones wrapped around 147 bp of DNA (Luger et al., 1997). The N-terminal tails of histones are thought to be flexible and largely unstructured, allowing for post-translational modifications, such as methylation and acetylation (Luger et al., 1997; Zheng and Hayes, 2003). Post-translational modifications to histone tails are essential for many biological processes ranging from transcription to DNA repair (Harr et al., 2016). Different covalent modifications can change the chemical properties of the histone tail and can act as binding sites for other proteins. Together, multiple modified histone tails may constitute a “histone code” that expands upon the genetic code (Strahl and Allis, 2000; Jenuwein and Allis, 2001; Rando, 2012). Histone methyltransferases (HMTs) are responsible for three common histone tail modifications found in heterochromatin: mono- (H3K9me1), di- (H3K9me2), and tri-methylated (H3K9me3) lysine 9 of histone H3 (H3K9) (Rea et al., 2000; Barski et al., 2007). Thus, modifications making up less than 0.5% of the molecular weight of a histone could potentially determine whether a gene is on or off.

HP1a is Essential to Heterochromatin Function

Perhaps the best-known non-histone chromosomal protein is Heterochromatin Protein 1a (HP1a), which binds to methylated H3K9 (Bannister et al., 2001; Lachner et al., 2001; Nakayama et al., 2001). In flies, HP1a is encoded by Su(var)2-5, which as the name suggests, is a suppressor of PEV (Eissenberg et al., 1990). HP1a has three
domains (Figure 1.2; Vermaak and Malik, 2009). The conserved N-terminal chromodomain binds H3K9me2 and gives HP1a its specificity (Paro and Hogness, 1991; Bannister et al., 2001; Lachner et al., 2001; Nakayama et al., 2001; Jacobs and Khorasanizadeh, 2002). The C-terminal chromo shadow domain is also conserved and mediates homodimerization and interactions with other proteins (Aasland and Stewart, 1995; Smothers and Henikoff, 2000). One protein that interacts with the HP1a shadow domain is Su(var)3-9, the HMT responsible for making H3K9me2 (Schotta et al., 2002). The final domain for HP1a is the hinge domain and links the chromo and chromo shadow domains. The hinge domain is the least conserved and is thought to help with HP1a localization by binding to DNA and RNA (Smothers and Henikoff, 2001; Jinek and Doudna, 2008; Meehan et al., 2003).

The chromo shadow domain allows HP1a to dimerize and tether two nucleosomes with H3K9me via the chromodomain. In this manner, HP1a can potentially crosslink many methylated nucleosomes to form a condensed, ordered array that is less accessible to transcription than euchromatin. Moreover, the chromo shadow domain interacts with Su(var)3-9 to methylate nearby H3K9, further spreading the H3K9me2 mark (Dorer and Henikoff, 1994; Fanti et al., 1998; Eissenberg and Elgin, 2000; Hall et al., 2002; Grewal and Elgin, 2002; Cheutin et al., 2003). Thus, HP1a can be thought of like a scaffold protein, acting like a base for which other proteins can interact and localize to heterochromatin (Figure 1.2). In this model, not only does HP1 propagate heterochromatin but is also responsible for repressing gene expression.
Figure 1.2

A

HP1a (Su(var)2-5)

Chromo Hinge Shadow

H3K9me binding DNA binding Protein-protein interactions

RNA binding

B

Su(var)3-9
Figure 1.2: HP1a maintains heterochromatin

(A) A schematic of HP1a showing its three domains and their activities. (B) A model of how HP1a maintains and propagates heterochromatin through its chromo and chromo shadow domains. Su(var)3-9 is depicted, but other proteins have been identified that interact with the chromo shadow domain. Nucleosomes are depicted as wrapped white circles and methylated H3K9 is depicted as a red circle. Adapted from (Vermaak and Malik, 2009).
Transposons Nucleate Heterochromatin

In 1950, Barbara McClintock noticed that the mutable genes she was studying in maize behaved similarly to PEV in flies and suggested that the two phenomena were related (McCLINTOCK, 1950; McCLINTOCK, 1951). She observed that mutable loci, or “controlling elements” could translocate and give a variegated phenotype and concluded that heterochromatin was likely the controlling factor in this process (McCLINTOCK, 1950). These mutable loci would later be identified as transposons.

In 1984, the connection between PEV, heterochromatin, and transposons came full circle when researchers discovered that the breakpoints for three variegating white mutants were transposons. They also observed that when white and the surrounding genomic region were reinverted back into euchromatin, the transposon sequences remained heterochromatic. This finding suggests that heterochromatin was actively formed at these transposon sequences and not just propagated from the centromere (Tartof et al., 1984). Further evidence that transposons could act as nucleation sites for heterochromatin was shown when transgenes containing white converted from a variegated white-eye phenotype to a red-eye phenotype when a nearby transposon was removed (Sun et al., 2004). Collectively, these early studies suggested that transposons were not only capable of affecting gene expression by altering chromosome structure but could also affect the local expression of genes by spreading heterochromatin.

Heterochromatin Prevents Transposon-Induced Genome Instability

Although McClintock’s discovery of mutable genes occurred in 1950, transposon-induced changes in gene expression had already been observed in Drosophila virilis (D. virilis; fruit fly) as early as 1926 (Demerec, 1926a; Demerec, 1926b). While these early observations gave obvious phenotypes, they did not appear to greatly harm the organism and were thought of as nothing more than genetic oddities. It was only
decades later that transposons began to be considered “selfish” and parasitic (Doolittle and Sapienza, 1980; Orgel and Crick, 1980). For example, flies that cannot repress the P-element transposon are sterile (Bingham et al., 1982; Rubin et al., 1982).

Transposons can be classified as Type I or Type II (Slotkin and Martienssen, 2007). Type I elements, or retrotransposons, require a reverse transcription step to transpose, making them similar to retroviruses. Type I elements can be further classified as: long terminal repeats (LTRs), long-interspersed nuclear elements (LINEs), and short-interspersed nuclear elements (SINEs). Type II elements, or DNA elements, do not require a reverse transcription step, but do depend on terminal inverted repeats (TIRs) for transposing. Finally, all transposons can be classified as autonomous and non-autonomous. Autonomous transposons can transpose on their own, but non-autonomous transposons lack essential enzymes and rely on other transposons for mobilization.

The interactions between organisms and transposons are clearly evident in the genome. In eukaryotes, transposons account for ~1% (in the filamentous fungus) to ~85% (in maize) of the genome (Cuomo et al., 2007; Tenaillon et al., 2011). In D. melanogaster about 20% of the genome is transposons (Adams et al., 2000; Kaminker et al., 2002). How do organisms cope with such a large number of transposons? One danger with having repetitive sequences in the genome is misalignment during homologous recombination. To prevent this, repetitive sequences are enriched with heterochromatin, which is thought to be recombinationally silent (Peng and Karpen, 2008). One line of evidence that supports this theory is that from plants to insects to mammals, transposons are enriched at pericentromeric heterochromatin (Adams et al., 2000; Arabidopsis, 2000; Gendrel et al., 2002; Kaminker et al., 2002; Martens et al., 2005; Schueler and Sullivan, 2006). Furthermore, transposons enriched with heterochromatin are also transcriptionally repressed. Thus, heterochromatin is essential for maintaining genome stability.
HISTORY OF SMALL RNAs

Discovery of Small RNAs

Like PEV and transposons, the sRNA field also began with a genetic oddity. In 1990, two research groups attempted to increase pigment expression in petunias by adding additional copies of chalcone synthase (CHS), a gene required for pigment production. Rather than the expected darker flowers, they observed the opposite effect: not only did some petals lose pigmentation, but CHS mRNA levels also decreased (Napoli et al., 1990; van der Krol et al., 1990). The phenomenon of silencing a gene when adding additional exogenous copies, or co-suppression, was also found in fungus (Romano and Macino, 1992) and flies (Pal-Bhadra et al., 1997). The mechanism behind co-suppression remained elusive until Andrew Fire and Craig Mello discovered that gene silencing was triggered by double-stranded (dsRNA) (Schrider et al., 2011). Additional insight into post-transcriptional gene silencing came soon after, when the Baulcombe lab determined that small interfering RNAs (siRNAs) could silence genes (Hamilton and Baulcombe, 1999).

siRNAs are loaded into Argonaute (AGO) proteins, which are the effectors of siRNA-mediated silencing or RNA interference (RNAi) (Hutvagner and Simard, 2008; Cenik and Zamore, 2011). The PAZ domain of AGO, a single-stranded-RNA- (ssRNA)-binding module, binds siRNA (typically ~21 nts long), while the PIWI domain possesses the ribonuclease activity required for RNAi (Cerutti et al., 2000). Together, the loaded siRNA specifically guides AGO to its targets through Watson-Crick base pairing for regulation (Figure 1.3; Wee et al., 2012). Both the PAZ and PIWI domains will be covered in greater detail at a later point.
Figure 1.3

5' - pUGAGGUAGUA—GGUUGUAUAGU - 3'
3' ... CCAACUCCAUCAUCAU - CCAACAUAUCACUU ... 5'
Figure 1.3: Argonaute proteins use sRNAs to find their targets

Schematic of an AGO protein loaded with a guide (red) bound to a target (black) through base pair complementarity. Given sufficient complementarity, AGO proteins can cleave their targets between the 10th and 11th nt of the guide strand (depicted as red scissors).
siRNAs Repress Transposons

The previous examples of co-suppression in flowers, fungi, and flies all demonstrated that exogenous sources of dsRNA, whether injected or produced from a transgene, could direct RNAi. However, hints that RNAi may also have a physiological role came before its discovery when scientists noticed that expression of viral RNA from a transgene appeared to inhibit viral replication (Covey et al., 1997). A few years after the discovery of siRNAs, several labs found that siRNAs in Arabidopsis thaliana (A. thaliana; thale cress) mapped to endogenous transposons (Hamilton et al., 2002; Llave et al., 2002; Mette et al., 2002; Xie et al., 2004). In Caenorhabditis elegans (C. elegans; round worm), endogenous transposon-mapping dsRNAs were also detected and mutants resistant to RNAi overexpressed transposons and exhibited transposon mobilization (Ketting et al., 1999; Tabara et al., 1999; Sijen and Plasterk, 2003).

The first reported mammalian endo-siRNAs were found in cultured human cells and mapped to L1 retrotransposons (Yang and Kazazian, 2006). With the advent of deep-sequencing, small RNAs from mouse oocytes were later identified and endo-siRNAs mapping to transposons were also detected. Repression of these transposons was also dependent on siRNAs (Tam et al., 2008; Watanabe et al., 2008). Deep sequencing also allowed detection of transposon-mapping endo-siRNAs in germline and somatic tissues of D. melanogaster (Czech et al., 2008; Chung et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008; Okamura et al., 2008). Therefore, one conserved function for RNAi is silencing endogenous transposons.

siRNAs Produced from Heterochromatin Assemble Heterochromatin

S. pombe centromeres, like other eukaryotic centromeres, are heterochromatic and repetitive (Clarke and Baum, 1990). When a transgene was inserted within the centromere, individual colonies had a distinct, variegated pattern resembling PEV
While *S. pombe* does not appear to have siRNAs that map to transposons, RNAi mutants have modest transposon overexpression (Hansen et al., 2005). Most siRNAs correspond to centromeric repeats, and loss of RNAi led to the loss of repression of centromeric transcripts and transgenes (Provost et al., 2002; Reinhart and Bartel, 2002; Volpe et al., 2002; Cam et al., 2005; Djupedal et al., 2009). Analysis of nascent transcripts revealed that centromeric repeats were normally transcribed from both strands but only detected in RNAi mutants, suggesting they were rapidly processed into siRNAs and loaded into Ago1 (Volpe et al., 2002). Interestingly, loss of Ago1 or siRNAs led to a large reduction in H3K9 methylation at centromeric repeats (Volpe et al., 2002). Ago1 was later discovered to be part of the RNA-induced transcriptional silencing (RITS) complex, which is required for heterochromatin assembly (Verdel et al., 2004). Therefore, transcription of centromeric repeats by RNA polymerase II (Pol II) is required for heterochromatin assembly at centromeric repeats (Kato et al., 2005; Djupedal et al., 2005). This seemingly paradoxical concept begs the question: *how does an organism silence a sequence when the transcription of the sequence is required for silencing?*

To bypass this conundrum, *S. pombe* transcribes centromeric repeats during early S-phase, when heterochromatin is more accessible (Smith et al., 1995; Kim et al., 2003; Chen et al., 2008; Kloc et al., 2008). During transcription, double-stranded siRNA precursors (Bernstein et al., 2001; Knight and Bass, 2001; Ketting et al., 2001) are produced by the RNA-dependent RNA polymerase complex (RDRC) (Motamedi et al., 2004). Interestingly, the RDRC and RITS complexes physically interact (Motamedi et al., 2004) and can be targeted to nascent transcripts by siRNAs in the RITS complex (Verdel et al., 2004; Petrie et al., 2005; Bühler et al., 2006). Thus, both RITS/RDRC complexes localize at nascent transcripts to produce more siRNAs that can further promote heterochromatin formation in *cis*. This model suggests a self-reinforcing positive amplification loop that explains the maintenance and potential spread of
centromeric heterochromatin in *S. pombe* (Noma et al., 2004; Sugiyama et al., 2005; Irvine et al., 2006).

Like *S. pombe*, *A. thaliana* employs a similar siRNA-dependent feed-forward loop to promote heterochromatin formation. Unlike *S. pombe*, *A. thaliana* bypass heterochromatin silencing using two plant-specific nuclear RNA polymerases, Pol IV and Pol V. Pol IV localizes to heterochromatin because of its interaction with SHH1, which binds methylated H3K9 (Kowalczykowski et al., 1980; Zhang et al., 2013), and initiates siRNA biogenesis in association with an RdRP (Herr et al., 2005; Onodera et al., 2005; Blevins et al., 2015; Zhai et al., 2015). Pol V transcripts act as scaffolds and are targeted by siRNAs loaded into AGO4 (Wierzbicki et al., 2009) which can form a complex with a *de novo* methyltransferase (Zhong et al., 2014). Methylated DNA is then recognized by a chromatin-remodeling complex that includes two Su(var)3-9 H3K9 HMT homologs (Liu et al., 2014). Completing the cycle, methylated H3K9 allows Pol IV to transcribe siRNAs that are complementary to Pol V transcripts. In summary, both fission yeast and plants have evolved mechanisms to safely transcribe potentially dangerous transposons by coupling transcription to siRNA production, thus destroying the transcript. Furthermore, in both species, siRNA creation is coupled to heterochromatin formation to ensure that transcription of harmful sequences is repressed except under carefully regulated circumstances.

A similar phenomenon appears to occur in flies, where RNAi components were found to be required for transcriptional silencing and were also suppressors of PEV (Pal-Bhadra et al., 2002; Pal-Bhadra et al., 2004). Loss of these components caused the loss of H3K9me and delocalization of HP1a (Pal-Bhadra et al., 2004). Therefore, like *S. pombe* and *A. thaliana*, RNAi also appeared to assemble heterochromatin in *D. melanogaster*. Two genes involved in heterochromatin formation, *piwi* and *aubergine*, would soon become central to a new class of sRNAs: piRNAs.
THE piRNA PATHWAY

Discovery of piRNA Genes

D. melanogaster has long been used as a model organism to study developmental embryo patterning. Mutations that affect either the anterior-posterior or dorsal-ventral axes can be easily screened for patterning defects using a microscope (Schupbach and Wieschaus, 1986). Using this method, many “maternal effect” genes that were required for axis specification were discovered (Schüpbach and Wieschaus, 1989; Schüpbach and Wieschaus, 1991). Maternal effect genes often encode mRNA or protein that the mother deposits in the oocyte. Because the early embryo is transcriptionally inactive in many organisms, the maternal supply is especially important and mutations to maternal genes affect the offspring (Figure 1.4; Schier, 2007). Many of the candidate genes found in these initial studies would later be found to be in the piRNA pathway, including: aubergine, cutoff, deadlock, vasa, and zucchini (Schüpbach and Wieschaus, 1989; Schüpbach and Wieschaus, 1991).
Figure 1.4
Figure 1.4: Maternal effect phenotypes determined by mother

Genetic crosses involving a maternal effect recessive mutation (\(m\)). For maternal effect genes, the phenotype of the offspring is determined by the genotype of its mother. Thus, offspring of the same genotype may have different phenotypes. For many piRNA pathway genes, maternal effect phenotypes can be observed during oogenesis.
piRNAs, A New Class of sRNAs

In 2001, a class of longer siRNAs (25–30 nt), called repeat-associated small interfering RNAs (rasiRNAs), was discovered in *D. melanogaster* testes (Aravin et al., 2001). Similar to siRNAs from other organisms, rasiRNAs were found to map to transposons and repetitive regions, and their loss led to elevated transposon expression (Aravin et al., 2001; Aravin et al., 2003; Aravin et al., 2004; Sarot et al., 2004). After discovering that rasiRNA biogenesis was distinct from siRNAs, researchers realized these RNAs were not actually siRNAs at all, and thus, were renamed Piwi-interacting RNAs (piRNAs) (Girard et al., 2006). Rather than dsRNA precursors, piRNAs derive from ssRNA precursors and are Dicer-independent (Pelisson et al., 2007; Saito et al., 2006; Vagin et al., 2006). A conserved feature of piRNAs is that they are 2′-O-methylated at their 3′ termini by Hen1. In flies, siRNAs are also 2′-O-methylated but not miRNAs (Vagin et al., 2006; Horwich et al., 2007; Lagarrigue et al., 2013; Pelisson et al., 2007; Saito et al., 2007).

piRNAs are found in diverse animals from the simple *Amphimedon queenslandica* (sea sponge) to humans (Aravin et al., 2006; Girard et al., 2006; Lau et al., 2006; Grimson et al., 2008). Thus, piRNAs emerged before the divergence of bilaterian animals. Like flies, sea sponge and mammals all have piRNAs that map to transposons, although in mammals piRNAs that map to genes and intergenic regions were much more abundant (Grivna et al., 2006a; Aravin et al., 2007; Girard et al., 2006; Grimson et al., 2008). Finally, as opposed to miRNAs and siRNAs, piRNA sequences are extremely diverse. While piRNAs often map to multiple genomic loci, many piRNA species are only sequenced once (Brennecke et al., 2007).
PIWI Proteins

AGO and PIWI proteins are the two sub-families of the Argonaute family proteins. The two sub-families share three key conserved domains: PIWI, MID, and PAZ (Cenik and Zamore, 2011). The PIWI domain resembles the RNase H nuclease and can cleave the phosphodiester bond of the target RNA between the 10th and 11th nt of guide RNA (Liu et al., 2004; Song et al., 2004). The MID domain anchors the 5’ monophosphate of the bound sRNA by forming a binding pocket and helps the sRNA pair with target RNA (Ma et al., 2005; Wang et al., 2008; Boland et al., 2011). Finally, the PAZ domain anchors the 3’ end of the bound sRNA and is different between AGO and PIWI proteins depending on the 3’ modification of the sRNA (2’ hydroxyl for miRNAs and 2’-O-methyl for piRNAs and fly siRNAs) (Ma et al., 2004; Lingel et al., 2004; Kawaoka et al., 2011; Tian et al., 2011).

As the differences in the PAZ domain suggest, AGO proteins are loaded with miRNAs and siRNAs while PIWI proteins are loaded with piRNAs. AGO and PIWI proteins are further distinguished from each other by their localization. AGO proteins are found in all cells while PIWI proteins tend to be enriched in the gonads of many animals, including *D. melanogaster*. Recently, somatic piRNAs have also been found in many arthropod species including *D. virilis*, which suggests that *D. melanogaster* and closely related species of the melanogaster group may actually be the exception to the rule among insects (Lewis et al., 2018).

D. melanogaster have three PIWI proteins Piwi, Aubergine (Aub), and Argonaute3 (Ago3). All three PIWI proteins are non-redundant and are required for fertility and germline transposon repression (Cox et al., 1998; Wilson et al., 1996; Vagin et al., 2006; Saito et al., 2006; Brennecke et al., 2007; Gunawardane et al., 2007; Li et al., 2009a; Malone et al., 2009). In fact, the axis specification defects observed in mutations of piRNA pathway genes are caused by the loss of transposon repression.
Active transposons can cause double-strand breaks that activate the DNA damage signaling pathway and lead to patterning defects (Klattenhoff et al., 2007).

Aub and Ago3 are found in germ cell cytoplasm and enriched at the perinuclear structure called the nuage (French for "cloud; Eddy, 1974. In flies, using an electron microscope, the nuage appears as nebulous, electron-dense bodies surrounding the nucleus. Many other proteins required for piRNA production also localize to the nuage including Vasa, Armitage (Armi), Zucchini (Zuc), Krimper, and Qin (Hay et al., 1988; Cook et al., 2004; Lim and Kai, 2007; Pane et al., 2007; Zhang et al., 2011). The localization of these proteins to nuage all depend on Vasa, as vasa mutants appear to lose nuage and therefore all the other components of nuage are also lost (Liang et al., 1994; Lim and Kai, 2007).

In contrast, Piwi, the only nuclear PIWI protein, acts in both the germline and adjacent somatic follicle cells and represses transposon transcription rather than cleaving their transcripts (Cox et al., 2000; Brennecke et al., 2007; Malone et al., 2009; Klenov et al., 2011). Interestingly, while the catalytic function of Piwi is conserved, it is not required for transposon repression (Saito et al., 2009; Sienski et al., 2012; Ronsseray et al., 1984). In somatic follicle cells, Piwi is loaded with piRNAs produced from flamenco (flam), a 180 kbp heterochromatic pericentromeric locus, and silences gypsy retrotransposons, which can infect and integrate into neighboring germ cell DNA to be passed on to the next generation (Pelisson et al., 1994; Prud'homme et al., 1995; Song et al., 1997; Chalvet et al., 1999; Robert et al., 2001; Sarot et al., 2004; Mevel-Ninio et al., 2007; Pelisson et al., 2007)

Identification of *D. melanogaster* piRNA Clusters

Analysis of *D. melanogaster* transposon insertions predicted the existence of a "co-suppression network that may act as a global surveillance system" against transposons
(Bergman et al., 2006). Furthermore, deep-sequencing technology allowed identification of many new species of piRNAs that mapped to distinct genomic loci called “piRNA clusters” (Aravin et al., 2006; Girard et al., 2006; Lau et al., 2006; Brennecke et al., 2007). In *D. melanogaster*, ~140 piRNA clusters produce 81% of all piRNAs that uniquely map to the genome yet comprise only 3.5% of the genome (Brennecke et al., 2007). piRNA clusters are also enriched near pericentromeric and telomeric heterochromatin and are made up of transposon sequences that are inactivated by mutations or because they are fragmented by insertions of other transposons (Figure 1.5).
Figure 1.5

Chromosome 2
1 unassembled centromeric heterochromatin
2 assembled pericentromeric heterochromatin
3 euchromatin
4 telomeric heterochromatin

pRNAs (ppm)
Figure 1.5: piRNAs map to discrete loci

D. melanogaster piRNAs map to discrete loci called “piRNA clusters” which comprise transposons and transposon fragments. Schematic of wild-type piRNAs overlaid onto chromosome 2. Major chromosome domains are labeled 1–4. RepeatMasker annotations for 42AB are shown in higher resolution below. Adapted from (Brennecke et al., 2007).
Transcription of piRNA Clusters

In flies, some piRNA clusters are transcribed from one genomic strand and are called uni-strand clusters (Brennecke et al., 2007). These clusters include cluster2 and the somatic cluster, flam. Although flam is large, heterochromatic, and composed of transposons, it is transcribed by conventional, promoter-initiated, Pol II transcription that generates spliced, polyadenylated, precursor piRNAs (Robert et al., 2001; Mevel-Ninio et al., 2007; Goriaux et al., 2014). Furthermore, flam is unusual among clusters in that transposon fragments are arranged in the genome predominantly in one orientation and transcribed in the antisense orientation. This ensures that flam transcripts are non-coding transposon sequences and that the piRNAs produced from flam are complementary to active somatic transposons.

On the other hand, dual-strand piRNA clusters are transcribed from both genomic strands and are the source for most of the piRNAs in the germline. The largest dual-strand cluster, 42AB, produces about 30% of all germline piRNAs (Brennecke et al., 2007). Unlike uni-strand clusters, dual-strand clusters generally lack conserved promoters and chromatin immunoprecipitation (ChIP-) seq did not reveal H3K4me2 or Pol II enrichment in dual-strand clusters—both markers of promoter-initiated transcription (Mohn et al., 2014). Furthermore, dual-strand cluster transcription initiation does not appear to depend on read-through transcription from flanking genes (Chen et al., 2016; Andersen et al., 2017). Instead, Cap-sequencing, which specifically sequences RNAs with 5’ 7-methylguanylate caps, revealed many potential transcription start sites (TSSs) on both genomic strands in dual-strand piRNA clusters (Andersen et al., 2017). This suggests that Pol II initiates within piRNA clusters.

Rather than typical promoter-initiated transcription, fly dual-strand clusters require Rhino (Rhi), an HP1 homolog, to facilitate transcription of dual-strand clusters (Cogoni and Macino, 1999; Le Thomas et al., 2014; Mohn et al., 2014). Consistent with
non-canonical transcription at dual-strand clusters, Rhi suppresses splicing and allows transcription to continue past transcription termination sites (TTSs) (Mohn et al., 2014; Zhang et al., 2014). Furthermore, very few dual-strand transcripts are polyadenylated (Le Thomas et al., 2014). Because rhi mutants lose dual-strand transcripts, they cannot make piRNAs to repress transposons and are sterile (Klattenhoff et al., 2009; Le Thomas et al., 2014; Mohn et al., 2014; Zhang et al., 2014). Like other HP1 proteins, the Rhi chromodomain preferentially binds H3K9me3 (Le Thomas et al., 2014; Mohn et al., 2014; Yu et al., 2015a). This is consistent with the report that piRNA production requires trimethylation of H3K9 by dSETDB1 (Rangan et al., 2011). dSETDB1 functions in germline-stem cells and as germline cysts differentiate, methylation is gradually taken over by Su(var)3-9 (Yoon et al., 2008). Interestingly, ovaries without dSETDB1 are sterile while Su(var)3-9 is dispensable for fertility (Tschiersch et al., 1994; Yao et al., 2012). This suggests that piRNA cluster formation and transcription is required early in oogenesis.

In addition, like HP1a, Rhi acts like a scaffold, likely mediated by its chromo shadow domain, to tether other heterochromatic dual-strand clusters (Mohn et al., 2014). Two proteins that colocalize with Rhi are Cutoff (Cuff) and Deadlock (Del), which together form the RDC complex (Pane et al., 2011; Le Thomas et al., 2014; Mohn et al., 2014). Like Rhi, both Cuff and Del are also required for dual-strand transcription and piRNAs, and loss of either results in transposon expression and sterility (Wehr et al., 2006; Chen et al., 2007; Pane et al., 2011; Czech et al., 2013; Le Thomas et al., 2014; Mohn et al., 2014; Zhang et al., 2014; Chen et al., 2016). Rhi, Cuff, and Del are also interdependent: loss of Rhi, Cuff, or Del leads to the delocalization of the other two proteins (Mohn et al., 2014).

Del does not have any conserved domains but interacts with the Rhi chromodomain and is thought to act as a flexible linker (Mohn et al., 2014). One protein that co-immunoprecipitates (co-IPs) with Del and colocalizes with the RDC is
Moonshiner (Moon; (Andersen et al., 2017). Moon is a paralog of a basal transcription factor IIA (TFIIA) subunit. In eukaryotes, transcription initiation is a conserved stepwise process in which general transcription factors help assemble and stabilize Pol II at promoter DNA (Buratowski et al., 1989; Sainsbury et al., 2015). First, TATA box-binding protein (TBP), a subunit of TFIID, binds to the TATA box, which is located ~20-30 bp upstream of the TSS in flies. While about 40% of D. melanogaster promoters have canonical TATA boxes, TBP binding and interaction is not specific to TATA boxes but likely requires additional factors (Kutach and Kadonaga, 2000; Blair et al., 2012; Rhee and Pugh, 2012). Next, TFIIA stabilizes the TBP-DNA complex to form a committed pre-initiation complex (PIC; Imbalzano et al., 1994; Lieberman and Berk, 1994; Papai et al., 2010). TFIIB is also required for Pol II assembly at the promoter and facilitates and stabilizes TBP binding to DNA (Ha et al., 1991; Zhao and Herr, 2002).

Like TFIIA, Moon is required for transcription initiation. Rather than TBP, Moon interacts with a short isoform of TBP-related factor 2 (TRF2), an animal TBP paralog that is expressed during embryogenesis and required for fertility, and TFIIA-S to form an alternative TFIIA complex at dual-strand clusters. (Dantonel et al., 2000; Kaltenbach et al., 2000; Veenstra et al., 2000; Martianov et al., 2001; Zhang et al., 2001; Kopytova et al., 2006; Andersen et al., 2017). Therefore, instead of canonical promoter-dependent transcription initiation, dual-strand clusters require the RDC complex to guide chromatin-dependent transcription. Because Moon does not require a promoter to function, transcription can initiate from either genomic strand, giving dual-strand clusters their defining characteristic.

Although cluster38C1 is a dual-strand cluster, it does not require Moon for transcription initiation because it also has encoded flanking promoters (Mohn et al., 2014; Chen et al., 2016; Andersen et al., 2017). Furthermore, in moon mutants, piRNAs can be detected over 10 kbp downstream of the promoter in the same orientation.
This suggests that dual-strand cluster transcripts can be over 10 kb in length.

Cuff, the other member of the RDC complex, is related to the Rai1/DXO/Dom3Z decapping enzyme (Baulcombe, 1999; Chang et al., 2012; Jiao et al., 2013). In S. cerevisiae, Rai1 enhances Rat1 5′-3′ exoribonuclease activity, which is important for Pol II termination by degrading the nascent RNA downstream of the poly(A) cleavage site (Xue et al., 2000; Kim et al., 2004). Under the “torpedo model” of transcription termination, Pol II transcription termination involves two steps. First, when transcription reaches the poly(A) sequence, the cleavage and polyadenylation specificity factor (CPSF) complex cleaves the pre-mRNA while Pol II continues transcription. Second, the uncapped residual RNA is then degraded by the 5′-3′ exoribonuclease Rat1/XRN2 until it overtakes knocks off Pol II.

Cuff promotes dual-strand piRNA cluster transcription by suppressing Pol II termination and protecting uncapped dual-strand cluster transcripts from nuclear degradation and evidence suggests that Cuff prevents CPSF from binding and cleaving the nascent dual-strand transcripts at poly(A) sequences (Chen et al., 2016). Therefore, Cuff allows transcription to continue past TTSs and may partially explain how cluster38C1 produces transcripts over 10 kbp long in moon mutant ovaries (Andersen et al., 2017). However, even with Cuff, a significant fraction of cluster transcripts is still cleaved (Chen et al., 2016). Read-through transcripts created by CPSF cleavage have 5′ monophosphates and are targets for Rat1/XRN2 exonuclease activity. Cuff prevents their degradation by stabilizing uncapped transcripts (Chen et al., 2016). Finally, Rhi-dependent splicing suppression is mediated by Cuff (Zhang et al., 2014; Chen et al., 2016). Because uncapped RNAs cannot bind the nuclear cap-binding complex, which promotes splicing (Patzelt et al., 1987; Izaurralde et al., 1994; Lewis et al., 1996), the authors suggest that Cuff may suppress splicing indirectly by stabilizing uncapped transcripts that are less likely to be spliced (Chen et al., 2016). Altogether, Rhi localizes
Cuff to dual-strand clusters where Cuff is able to promote read-through transcription and protect abnormal dual-strand transcripts from degradation. A model for the transcription of dual-strand piRNA clusters is presented in Figure 1.6.

Export of Dual-Strand piRNA Cluster Transcripts

Different steps in pre-mRNA processing are coupled, including the export of the mRNA (Hirose and Manley, 2000; Bentley, 2002; Bentley, 2005). Moreover, many proteins involved with pre-mRNA processing are also conserved between yeast and metazoans, including the TREX (transcription/export) complex which includes UAP56 and the THO complex (Reed and Cheng, 2005). UAP56 is a ubiquitously expressed DEAD box RNA helicase that regulates splicing and mRNA nuclear export (Shen, 2009). In metazoans, loading of the multi-subunit THO complex to nascent transcripts is dependent on pre-mRNA splicing (Masuda et al., 2005). Interestingly, UAP56, Thoc5, and other members of the TREX complex interact with dual-strand cluster transcripts, which are not spliced, and are required for dual-strand piRNA production (Zhang et al., 2012; Hur et al., 2016; Zhang et al., 2014). In germline nurse cells, this is accomplished through Cuff, which interacts with Thoc5 and is required for localization of both Thoc5 and UAP56 to nuclear foci (Hur et al., 2016). In this model, Cuff, which is responsible for suppressing splicing, loads TREX onto nascent dual-strand cluster transcripts (Figure 1.6). Then UAP56, which also colocalizes with Rhi, associates with nascent dual-strand cluster transcripts helps to export the piRNA precursor through the nuclear pore to Vasa, which is in the nuage, to be processed into piRNAs (Zhang et al., 2012; Hur et al., 2016; Zhang et al., 2014).
Figure 1.6
Figure 1.6: Transcription of dual-strand piRNA clusters

In flies, non-canonical transcription of dual-strand clusters is mediated by Rhi and initiated by Moon independent of promoters. Moon interacts with the Rhi-Del-Cuff (RDC) complex through Del, and is thought to form an alternative TFIIA complex with TRF2 and TFIIA-S. The RDC complex also suppresses splicing, stabilizes uncapped transcripts, and prevents transcription termination. Transcription of dual-strand clusters is also coupled to export and the RDC is required for loading the TREX complex with piRNA precursors. Adapted from (Huang et al., 2017).
piRNA Precursors are Processed into Mature piRNAs in the Cytoplasm

After a piRNA precursor enters the nuage, the 5′ end of the piRNA is produced by slicer-mediated cleavage by Aub or Ago3. Aub-loaded piRNAs correspond mostly to antisense transposon sequences and therefore Aub cleaves sense transposon sequences to generate a 5′ monophosphorylated RNA. This RNA is then loaded into Ago3 to produce a new sense transposon-mapping piRNA that can cleave a complementary antisense transposon sequence to be loaded into Aub. This feed forward amplification loop of RNA slicing and piRNA production is called the “ping-pong cycle.” piRNAs produced by ping-pong can be detected by their characteristic 10 bp overlap between the 5′ ends of sense and antisense piRNA pairs (Brennecke et al., 2007; Gunawardane et al., 2007).

While many of the proteins required for ping-pong are found in the nuage, several proteins that are also required for piRNA processing are found near the outer membrane of the mitochondria. Armı, an RNA helicase, is found in both the nuage and mitochondria while Zuc, an endonuclease, is localized to mitochondria. Both are required for phased piRNA production (Cook et al., 2004; Pane et al., 2007; Malone et al., 2009; Handler et al., 2011; Czech et al., 2013; Han et al., 2015; Mohn et al., 2015; Pandey et al., 2017; Rogers et al., 2017). In the germline, phased piRNAs are initiated by Aub or Ago3 cleavage of a piRNA precursor, generating the 5′ end (Han et al., 2015; Mohn et al., 2015; Wang et al., 2015). Zuc generates the 3′ end of piRNAs produced by ping-pong and can continue downstream in 5′ to 3′ direction generating the 3′ end of the upstream and the 5′ end of the downstream piRNA that is mainly loaded into Piwi (Han et al., 2015; Mohn et al., 2015).

In the ping-pong cycle, sense piRNAs loaded into Ago3 generate antisense piRNAs that can post-transcriptionally silence active transposons. However, for most germline transposons, Piwi plays a larger role in repression than Aub or Ago3 (Wang et
Ago3 is particularly important for loading Piwi because cleavage of antisense transposon sequences initiates the production and defines the identities of phased Piwi-bound piRNAs (Senti et al., 2015; Wang et al., 2015). To ensure that Piwi is enriched with antisense piRNAs, Qin prevents products of Aub cleavage (usually sense transposon sequences) from being loaded into Piwi (Zhang et al., 2011; Wang et al., 2015). Moreover, loss of Aub and Ago3 results in the loss of Piwi-bound piRNAs and the inability of Piwi to enter the nucleus where it represses transposons (Figure 1.7; Wang et al., 2015).

Though less efficient, piRNA 3′ ends can also be created by Aub or Ago3 cleavage and require trimming by the 3′ to 5′ exoribonuclease, Nibbler (Hayashi et al., 2016). The final step of piRNA maturation is methylation of the 2′ hydroxyl group of the 3′ terminus by Hen1 (Horwich et al., 2007; Saito et al., 2007; Wang et al., 2016).
Figure 1.7

Aub

3' 5'

primary antisense piRNA

Aub

3' 5'

Ping-pong cycle

Ago3

5' 3'

Zuc

Aub

5' 3'

Phasing

Piwi

3' P 5'

Zuc

Piwi

5' P 5'

Zuc

Piwi
Figure 1.7: piRNA biogenesis in the fly ovarian germline

Primary antisense (red) piRNAs that are maternally deposited or produced de novo enter the ping-pong cycle by slicing (black scissors) transposon mRNAs to generate the 5’ end of a secondary sense (blue) piRNAs which are loaded into Ago3. Zuc (green scissors) cleaves downstream and defines the 3’ end of the upstream piRNA and the 5’ end of the downstream piRNA. Qin prevents Aub from getting loaded with sense piRNAs and reinforces heterotypic ping-pong. Ago3, loaded with a sense piRNA, can then cleave an antisense cluster transcript and generate the 5’ end of a new piRNA that can be loaded into Aub or Piwi. Afterwards, Zuc can processively cut the transcript every ~27 nt to generate phased piRNAs. Adapted from (Wang et al., 2015).
Piwi-Mediated Transcriptional Silencing

Rather than cleaving, Piwi is thought to transcriptionally repress transposons by binding to nascent transposon mRNA through its piRNA guide (Aravin et al., 2008; Saito et al., 2009; Shpiz et al., 2011; Sienski et al., 2012; Ronsseray et al., 1984; Le Thomas et al., 2013; Post et al., 2014). Therefore, Piwi must enter the nucleus to function but not before it is loaded with a piRNA (Klenov et al., 2011; Le Thomas et al., 2013). In the nucleus, Piwi, with the help of other proteins, assembles heterochromatin (Sienski et al., 2012; Donertas et al., 2013; Le Thomas et al., 2013; Muerdter et al., 2013; Ohtani et al., 2013; Rozhkov et al., 2013; Klenov et al., 2014; Sienski et al., 2015; Yu et al., 2015b). One of these proteins is the zinc finger protein, Asterix (Arx, also known as Gtsf1). While its mechanism is still unknown, Arx is not required for piRNAs but directly interacts with Piwi to establish H3K9me3 at transposons (Donertas et al., 2013; Muerdter et al., 2013; Ohtani et al., 2013). Another protein that functions downstream of Piwi is Panoramix (Panx, also known as Silencio). Panx associates with Piwi that is bound to transposons and induces heterochromatin formation through its interaction with dSETDB1, which methylates H3K9 (Sienski et al., 2015; Yu et al., 2015b). Because HP1a is integral in heterochromatin formation and maintenance, germline transposons repressed by HP1a are similar those repressed by Piwi (Wang and Elgin, 2011).

Most H3K9me3 peaks do not overlap Rhi peaks (Le Thomas et al., 2014; Mohn et al., 2014; Zhang et al., 2014). Interestingly, Piwi is not only able to repress euchromatic transposons through H3K9me3 formation but is also required for localizing Rhi to some of these transposons, turning them into piRNA source loci (Mohn et al., 2014). These two functions are likely closely linked because incoherent Rhi-dependent transcription effectively silences the transposon (Andersen et al., 2017; Zamore, 2017). Furthermore, because dual-strand clusters transcribe both sense and antisense transposon sequences, Piwi-bound piRNAs should be able to bind nascent cluster
transcripts as well. Despite Piwi functioning upstream of dSETDB1, which is required for cluster transcription, loss of nuclear Piwi does not affect the heterochromatin organization at dual-strand clusters (Klenov et al., 2014; Rangan et al., 2011; Sienski et al., 2015; Yu et al., 2015b). This is likely because clusters are established early in development by maternally deposited piRNAs (Brennecke et al., 2008; Khurana et al., 2011; de Vanssay et al., 2012; Le Thomas et al., 2014; Akkouche et al., 2017).

Altogether, similar to siRNA-mediated transcriptional gene silencing in yeast and plants, in flies, Piwi proteins bound with piRNAs transcriptionally repress their targets through heterochromatin assembly.

While Piwi is required for establishing heterochromatin at many transposons, in piwi mutants, some transposons are expressed despite little change in H3K9 methylation or HP1a enrichment (Klenov et al., 2011; Sienski et al., 2012; Klenov et al., 2014). This suggests that Piwi can repress transposon transcription independent of heterochromatin formation (Klenov et al., 2014). Furthermore, heterochromatin assembly and transcriptional repression may be parallel pathways. One protein that is required for transposon repression but is not required for heterochromatin formation is the enigmatic Maelstrom (Mael) (Lim and Kai, 2007; Sienski et al., 2012; Muerdter et al., 2013).

Maelstrom is a Mysterious Protein Required for Transposon Repression

mael is a conserved gene that is found in diverse organisms from unicellular protists to humans (Zhang et al., 2008a). The most conserved region, the MAEL domain, includes the six residues: Glu-His-His-Cys-His-Cys (EHHCHC) and has distant similarity to the DnaQ-H 3′ - 5′/DEDD exonuclease family with the RNase H fold (Zhang et al., 2008a). The protist MAEL domain contains the catalytic residues required for nuclease activity and the purified MAEL domain from *Entamoeba histolytica* is able to degrade ssRNA (Zhang et al., 2008a; Chen et al., 2015). In more complex eukaryotes, while the MAEL
domain no longer contains the catalytic residues required for nuclease activity, the
EHHCHC residues are still conserved and are thought to confer RNA-binding ability
(Zhang et al., 2008a). Consistent with the binding RNA, the MAEL domains of D.
melanogaster, Bombyx mori (silkworm), and Mus musculus (mouse) all interact with
ssRNA in vitro (Chen et al., 2015; Matsumoto et al., 2015). In addition to the MAEL
domain, the fly Mael protein has a partial potential HMG domain while the mouse MAEL
protein contains a more intact HMG-domain (Findley, 2003; Zhang et al., 2008a). HMG
proteins are a diverse group of proteins that reversibly bind DNA and are involved with
many cellular functions (Travers, 2000; Bianchi and Agresti, 2005). Thus, Mael is an
ingtriguing protein that could potentially interact with both RNA and DNA.

The initial hint that Mael was involved with the piRNA pathway was its
localization to the nuage (Findley, 2003). Furthermore, localization of Mael to the nuage
was dependent on piRNA pathway genes like aub and vasa (Findley, 2003; Lim and
Kai, 2007). Although Mael is enriched at the perinuclear nuage, Mael is also found
dispersed in the cytoplasm and in the nucleus as well (Findley, 2003; Sienski et al.,
2012). Interestingly, Mael transits between the nucleus and the cytoplasm (Findley,
2003). A point mutation to the MAEL domain prevents Mael from accumulating in the
nucleus and the nuage while the loss of the partial HMG domain leads to a mild
increase in Mael in the nucleus (Sienski et al., 2012). Therefore, while Mael is found in
many cellular compartments, its localization is dependent on its intact domains.

mael was discovered in a similar manner to many other piRNA pathway genes
and was named for the distinct pattern in which the mutant oocytes rapidly mix their
cytoplasmic contents, called “cytoplasmic streaming” (Theurkauf et al., 1992; Clegg et
al., 1997; Quinlan, 2016). Furthermore, female mael mutant flies were sterile and their
oocytes had posterior patterning defects and mislocalized microtubule-organizing
centers (MTOCs; Clegg et al., 1997; Clegg et al., 2001; Findley, 2003; Cook et al.,
2004; Sato et al., 2011). One explanation for the sterility and the patterning defects
seen in *mael* mutants is the loss of transposon repression (Lim and Kai, 2007; Sienski et al., 2012; Czech et al., 2013; Muerdter et al., 2013). Moreover, transposon repression and fertility require intact MAEL and HMG domains (Sienski et al., 2012).

Although it is still unknown how Mael represses transposons, it is thought to function downstream of Piwi because Mael does not appear to be required for heterochromatin formation or piRNA production (Sienski et al., 2012; Muerdter et al., 2013). Much of what we know about Mael was discovered in ovarian somatic cells (OSCs), a cell line that resembles somatic follicle cells (McCarty et al., 2009; Lau et al., 2009; Saito et al., 2009). OSCs express many of the same piRNA pathway proteins also expressed in somatic follicle cells such as Piwi and Mael (Saito et al., 2009; Sienski et al., 2012). Furthermore, like in the ovaries, both Piwi and Mael are required to repress transposons in OSCs (Sienski et al., 2012; Muerdter et al., 2013). In OSCs, Piwi is required for depositing H3K9me3 at euchromatic insertions while depletion of Mael led to a minor decrease but slight spread of H3K9me3 at the same euchromatic transposon insertions (Sienski et al., 2012). Moreover, neither tethering Mael to a reporter transcript or upstream of the TSS of another reporter resulted in silencing (Sienski et al., 2015). While these experiments suggest that merely the presence of Mael alone is not sufficient to repress transcription, more work is needed to understand the mechanism of Mael-mediated transcription repression. Finally, the loss of Mael did not appear to have a major effect on piRNAs in OSCs or ovaries (Sienski et al., 2012; Muerdter et al., 2013). Taken together, evidence suggests that Mael is a downstream effector of Piwi that represses transposons independent of heterochromatin formation.

In *mael* mutant ovaries, both the increase in transposon expression and defects in pattern specification are consistent with activation of the DNA damage signaling pathway. However, mutation of an essential DNA damage signaling gene, *mnk*, did not rescue the patterning defect in *mael* mutant oocytes (Klattenhoff et al., 2007; Sato et al., 2011). Therefore, Mael likely has functions outside the piRNA pathway and may be
directly involved with axis specification through its interactions with the microtubule-organizing center (Sato et al., 2011). Furthermore, Mael may also play a role in promoting oocyte determination and preventing stem cell differentiation (Pek et al., 2009; Pek et al., 2012). While Mael is not required for establishing heterochromatin at transposons, Mael may prevent stem cell differentiation by transcriptionally repressing miR-7 by accumulating H3K9me3 and HP1a (Pek et al., 2009).

In mice, MAEL is also required for fertility and repressing transposons in the germline (Costa et al., 2006; Soper et al., 2008; Aravin et al., 2009; Castaneda et al., 2014). Furthermore, in both flies and mice, Mael is expressed in all stages of germ cell development (Costa et al., 2006; Soper et al., 2008; Aravin et al., 2009; Dufourt et al., 2013), however, mouse MAEL expression is also regulated by the transcription factor A-MYB, which is required for initiating production of pachytene piRNAs and transcription of many other piRNA pathway genes (Li et al., 2013). Although MAEL is also localized to the perinuclear nuage in mouse testes, in fetal gonocytes MAEL is found in a subset of germinal granules called “piP-bodies” (Soper et al., 2008; Aravin et al., 2009). Along with MAEL, piP-bodies contain MIWI2 and TDRD9 from the piRNA pathway as well as typical components of P-bodies like GW182, DCP1a, DDX6/p54, and XRN1 (Aravin et al., 2009). In mice, MIWI2 is the only PIWI protein that localizes to the nucleus and is required for DNA methylation of transposons (Carmell et al., 2007; Aravin et al., 2008; Kuramochi-Miyagawa et al., 2008). However, in both flies and mice, Mael does not appear to play a major role in heterochromatin formation at transposons (Aravin et al., 2009; Sienski et al., 2012).

Since its discovery, many people have been pulled into studying the mysterious protein Maelstrom and its role in the piRNA pathway. The pleiotropic phenotypes observed in mael mutants have only muddied the waters, but through these studies, Mael has been implicated in diverse cellular functions from cytoskeleton organization to heterochromatin formation. Recent studies have provided insight into how Mael
functions, but many questions still remain. My work encompasses experiments ranging from relatively simple genetic screens using one of Muller’s original PEV fly lines to measuring nascent transcription using deep sequencing technology and computational analyses. This thesis hopes to clarify how Mael fits into the piRNA pathway to repress transposons.
CHAPTER II: Maelstrom Represses Canonical RNA Polymerase II Transcription in Dual-Strand piRNA Clusters

DISCLAIMER

This work was the joint effort among the authors: Timothy H. Chang (THC), Eugenio Mattei (EM) and Phillip D. Zamore (PDZ). THC conducted genetic experiments and constructed the sequencing libraries. EM performed computational analyses of sequencing data. PDZ supervised the project. All authors provided critical review of the data and manuscript.
SUMMARY

In *Drosophila*, 23–30 nt long PIWI-interacting RNAs (piRNAs) direct the protein Piwi to silence germline transposons. Most germline piRNAs derive from heterochromatic transposon graveyards that are transcribed from both genomic strands: dual-strand piRNA clusters. These piRNA sources are marked by the Heterochromatin Protein 1 homolog, Rhino (Rhi), which facilitates their promoter-independent transcription, suppresses splicing, and inhibits transcription termination. Here, we report that DEDD family nuclease-like protein Maelstrom (Mael), represses canonical, promoter-dependent transcription in dual-strand clusters, allowing Rhi to initiate piRNA precursor transcription. In addition to Mael, the piRNA biogenesis factor, Armitage (Armi), and Piwi, but not Rhi are also required to repress canonical transcription in dual-strand clusters. We propose that Armi, Piwi, and Mael work in a pathway to repress transcription of individual transposons within clusters, while Rhi allows non-canonical transcription of the clusters into piRNA precursors.
In *Drosophila melanogaster*, 23–30 nt long PIWI-interacting RNAs (piRNAs) direct transposon silencing by serving as guides for Argonaute3 (Ago3), Aubergine (Aub), and Piwi, the three fly PIWI proteins (Aravin et al., 2001; Girard et al., 2006; Aravin et al., 2006; Grivna et al., 2006b; Lau et al., 2006; Vagin et al., 2006). In the germ cell cytoplasm, Aub and Ago3 increase the abundance their guide piRNAs via the ping-pong cycle, a feed-forward amplification loop in which cycles of piRNA-directed cleavage of sense and antisense transposon-derived long RNAs generate new copies of the original piRNAs—secondary piRNAs—in response to transposon transcription (Brennecke et al., 2007; Gunawardane et al., 2007). In addition to amplifying piRNAs, the ping-pong pathway also produces long 5′ monophosphorylated RNA that enter the primary piRNA pathway, which uses the long RNA to generate head-to-tail strings of piRNAs bound to Piwi, and to a lesser extent, Aub (Han et al., 2015; Mohn et al., 2015; Senti et al., 2015; Wang et al., 2015). Unlike Ago3 and Aub, Piwi acts in both the germline and the adjacent somatic follicle cells and represses transposon transcription rather than cleaving their transcripts (Cox et al., 2000; Brennecke et al., 2007; Malone et al., 2009; Klenov et al., 2011). Nuclear Piwi is believed to bind nascent RNA transcripts, and, by binding the protein Panoramix, tethers the histone methyltransferase SETDB1 to transposon-containing loci. SETDB1 trimethylates histone H3 on lysine 9 (H3K9me3), a histone modification required to create repressive constitutive heterochromatin (H3K9; Rangan et al., 2011; Sienski et al., 2012; Donertas et al., 2013; Le Thomas et al., 2013; Muerdter et al., 2013; Ohtani et al., 2013; Rozhkov et al., 2013; Klenov et al., 2014; Sienski et al., 2015; Yu et al., 2015b; Aravin et al., 2008; Shpiz et al., 2011; Post et al., 2014).

piRNA precursor RNAs are transcribed from heterochromatic loci called piRNA clusters. piRNA clusters can span >100 kbp and comprise transposons and transposon
fragments that record a species’ evolutionary history of transposon invasion (Brennecke et al., 2007; Lagarrigue et al., 2013; Aravin et al., 2008; Fu et al., 2018b). *D. melanogaster* piRNA clusters can be uni-strand, transcribed from one genomic strand, or dual-strand, transcribed from both genomic strands. Uni-strand clusters, such as the ~180 kbp *flamenco* (*flam*) locus, silence transposons in somatic follicle cells (Pelisson et al., 1994; Prud'homme et al., 1995; Robert et al., 2001; Sarot et al., 2004; Mevel-Ninio et al., 2007; Pelisson et al., 2007), while dual-strand clusters, such as the ~250 kbp 42AB locus, predominate in the germline (Malone et al., 2009). Some uni-strand clusters, e.g., *cluster2*, are active in both tissues.

Standard promoter-initiated, Pol II transcription generates spliced, polyadenylated precursor piRNAs from *flam* (Robert et al., 2001; Mevel-Ninio et al., 2007; Goriaux et al., 2014). In contrast, dual-strand clusters generally lack conserved promoters. Instead, the Heterochromatin Protein 1 homolog Rhino (Rhi) binds to the H3K9me3 present on the piRNA clusters, to which it can tether additional proteins (Lachner et al., 2001; Cogoni and Macino, 1999; Klattenhoff et al., 2009; Zhang et al., 2012; Le Thomas et al., 2014; Mohn et al., 2014; Zhang et al., 2014; Yu et al., 2015a). One Rhi-associated protein, Moonshiner (Moon), is a germline-specific TFIIA-L paralog that allows Pol II to initiate transcription without the TATA-box binding protein, allowing every bound Rhi to be a site of potential transcription initiation (Andersen et al., 2017). Another Rhi-binding protein, Cutoff (Cuff), suppresses splicing and transcription termination (Pane et al., 2011; Mohn et al., 2014; Zhang et al., 2014; Chen et al., 2016). Thus, Rhi promotes “incoherent” transcription, initiating at many sites throughout both strands of a dual-strand cluster, in contrast to the “coherent,” promoter-dependent transcription of *flam* and conventional protein-coding genes.

Maelstrom (Mael), a protein with HMG- (Findley, 2003) and MAEL- (Zhang et al., 2008a) domains, has been suggested to play multiple roles in *D. melanogaster* oogenesis and mouse spermatogenesis, including transposon silencing,
heterochromatin formation, and piRNA production. Here, we report that Mael suppresses coherent transcription within dual-strand piRNA clusters. In mael mutant ovaries, piRNA clusters produce more transcripts yet heterochromatin organization is largely unaltered. However, without Mael, Piwi or Armitage (Armi), a core piRNA biogenesis protein, transcription initiates from canonical Pol II promoters within dual-strand clusters such as 42AB. Although Rhi and Cuff are required for incoherent transcription of dual-strand piRNA clusters, they are dispensable for repression of canonical transcription in the clusters. We propose that Mael, Armi, Piwi, and piRNAs collaborate to repress canonical dual-strand cluster transcription, while Rhi serves both to create a transcriptionally permissive chromatin environment and to support incoherent transcription of both DNA strands of dual-strand clusters. Thus, Mael represses promoter-driven transcription of individual, potentially active, transposons embedded within dual strand-clusters, allowing Rhi to transcribe such transposon sequences into piRNA precursors with little potential to be translated into transposon-encoded proteins required for transposition.
RESULTS

Mael Represses Canonical Transcription in Dual-Strand piRNA Clusters

Without Mael, both somatic and germline transposons produce long RNA transcripts (Sienski et al., 2012; Muerdter et al., 2013; Pek et al., 2009; Figure 2.1A). While transposons from many different families increased, overall, transcripts from most protein-coding genes did not change significantly between maelM391/r20 and control ovaries (Figure 2.1B). In the germline of maelM391/r20 ovaries, uniquely mapping steady-state RNA abundance from the gypsy12 long terminal repeat (LTR) transposon increases >20 times (p = 6.5 × 10^{-5}, n = 3). Intriguingly, the gypsy12 RNA derives from the long terminal repeat (LTR) of two gypsy12 elements, one in the dual-strand piRNA cluster 42AB (gypsy12^{42A14}) and one in cluster62 (gypsy12^{40F7}; Figure 2.2A). The same two gypsy12 elements are also desilenced in rhi and cuff mutant ovaries (Zhang et al., 2014). As in rhi and cuff mutants, RNA from the two gypsy12 LTRs were spliced and gypsy12^{42A14} terminated at a canonical poly(A) site while gypsy12^{40F7} initiated at a canonical TATAA sequence in maelM391/r20 mutants. The increase in steady-state gypsy12 RNA in maelM391/r20 mutants reflects an increase in nascent transcription: Global run-on sequencing (GRO-seq; Core et al., 2008) revealed >7.5-fold increase in maelM391/r20 mutants (p = 3.0 × 10^{-4}, n = 3; Figure 2.2B). Moreover, lysine 4 trimethylatation of histone H3 (H3K4me3), a chromatin mark associated with active, promoter-driven transcription (Bernstein et al., 2002; Santos-Rosa et al., 2002; Schneider et al., 2004), is ≥3 times higher across the two desilenced gypsy12 sequences in maelM391/r20 ovaries (n = 2; Figure 2.2C). These data suggest that in the absence of Mael, Pol II initiates transcription from a promoter residing within the gypsy12 LTR.
Figure 2.1

A

transposon

sense transcripts (ppm)

10^{-2} 10^{-1} 10^0 10^1 10^2

control

B

protein-coding

sense transcripts (ppm)

10^{-1} 10^0 10^1 10^2 10^3

control
Figure 2.1: Many transposons are overexpressed without Mael

(A) Scatter plots comparing sense RNA-seq reads from $mael^{M391/r20}$ and control ovaries that uniquely map to germline (red), intermediate (green), somatic (blue), or unknown (black) transposons. (B) Scatter plots comparing sense RNA-seq reads from $mael^{M391/r20}$ and control ovaries that uniquely map to protein-coding genes. Transcripts that map to $mael$ are depicted with a red circle. The hashed grey line signifies a \geq2-fold change. Data are the mean of three biological replicates.
Figure 2.2
Figure 2.2: Two gypsy12 LTRs in dual-strand piRNA clusters are active in maelM391/r20 ovaries

(A) RNA-seq profiles for 42AB (left) and cluster62 (right). A higher resolution expansion of the two gypsy12 LTRs, gypsy1242A14 and gypsy1240F7, located in 42AB and cluster62, respectively, is shown below displaying (A) RNA-, (B) GRO-, and (C) H3K4me3 ChIP-seq profiles. TSSs and TTSs are shown with green and red triangles, respectively. Reads from maelM391/r20 mutants are shown in red while wild-type controls are shown in black. All signals are uniquely mapping and displayed as ppm (parts per million genome mappers).
Loss of Mael also led to increased use of the canonical Pol II promoters flanking the unusual dual-strand *cluster38C1*. Unlike typical piRNA clusters, *cluster38C1* can sustain piRNA precursor production in mutants that disrupt Rhi-dependent incoherent transcription (Mohn et al., 2014; Chen et al., 2016; Andersen et al., 2017). In *mael*^{M391/r20} ovaries, transcription initiated at canonical TATA-box sequences flanking the cluster but did not terminate at canonical poly(A) signal sequences ~400 bp downstream of either flanking promoter (Figure 2.3A). Furthermore, steady-state abundance of uniquely mapping *cluster38C1* RNA >150 nt long increased ~15-fold in *mael*^{M391/r20} ovaries (*p* = 3.1 × 10⁻⁴). Like *gypsy12*^{42A14} and *gypsy12*^{40F7}, we detected an increase in nascent transcription from both the plus (*mael/control* = 3 ± 1-fold; *p* = 0.046) and minus (*mael/control* = 5 ± 2; *p* = 0.014) genomic strands (Figure 2.3B). Unlike the two *gypsy12* LTRs, however, we did not detect a change in the active chromatin mark H3K4me3 at *cluster38C1* in *mael*^{M391/r20} ovaries (Figure 2.3C). A combination of canonical and Rhi-dependent incoherent transcription produces piRNA precursors from *cluster38C1*. We speculate that because the wild-type level of H3K4me3 at *cluster38C1* already suffices to initiate transcription at the flanking promoters, no further increase occurs in *mael*^{M391/r20} mutants.
Figure 2.3

A
RNA-seq (ppm)
control, mael{CG3100}

B
GRO-seq (ppm)

C
H3K4me3
ChIP-seq (ppm)
Figure 2.3: Increased transcription of cluster38C1 in mael^{M391/r20} ovaries

(A) RNA-, (B) GRO-, and (C) H3K4me3 ChIP-seq profiles for cluster38C1. Flanking promoters with canonical TATA sequences (green triangle) initiate transcription of cluster38C1 in both mael^{M391/r20} (red) and control ovaries (black). Canonical poly(A) sequences are shown and marked by a red triangle.
A Reporter for Transcription in Dual-Strand piRNA Clusters

piRNA clusters are highly repetitive, complicating bioinformatics analysis. The \(P\{GSV6\}42A18 \) fly strain inserts an inducible \textit{UAS\textasciitilde-GFP} gene with an intron in the 3’ untranslated region (UTR) into \(42AB \), allowing this transgene to be used as a proxy for canonical euchromatic transcription within piRNA clusters (Chendrimada et al., 2005). Like \(42AB \) itself, \(P\{GSV6\}42A18 \) requires Rhi, Armi, and Piwi to produce sense and antisense piRNAs (Han et al., 2015). The \(P\{GSV6\}42A18 \) transgene resembles the piRNA cluster in which it resides, with a high density of H3K9me3, HP1a, and Rhi across its sequence, and expression of both \textit{gfp} mRNA and protein was essentially undetectable even when the strong transcriptional activator GAL4-VP16 was co-expressed from the germline-specific \textit{nanos} promoter (Figures 2.4A, 2.4B, and 2.4D).

In \textit{mael}^{M391/r20} ovaries, the \(P\{GSV6\}42A18 \) transgene, driven by GAL4-VP16, produced correctly spliced \textit{gfp} mRNA that terminated at a canonical polyadenylation signal sequence (Figure 2.4A); the appearance of \textit{gfp} mRNA was accompanied by increased transcription (Figure 2.4B) and H3K4me3 across the \textit{gfp} transgene (Figure 2.4C). Moreover, the \textit{gfp} mRNA in \textit{mael}^{M391/r20} mutants was translated into full-length GFP protein (Figure 2.4D). A transgene encoding FLAG-Mael restored repression of GFP in \textit{mael}^{M391/r20} ovaries demonstrating loss of Mael, and not a secondary mutation, caused inappropriate GFP expression from the transgene inserted into \(42AB \) (Figure 2.4D). Interestingly, germline knockdown of Mael, which depletes Mael in adult ovaries but does not affect maternally deposited Mael, did not cause the derepression of \textit{gfp} (Figure 2.4A). This suggests that Mael is required in early embryo development to silence transcription. Together, our data suggest that Mael represses canonical, promoter driven Pol II transcription in dual-strand piRNA clusters.
Figure 2.4

A

100 bp

control

control + nos-gal4

mae^{M391/00}

mae^{M391/00} + nos-gal4

Mael germline KD + nos-gal4

B

RNA-seq (ppm)

control

control + nos-gal4

mae^{M391/00}

mae^{M391/00} + nos-gal4

C

GRO-seq (ppm)

control

control + nos-gal4

mae^{M391/00}

mae^{M391/00} + nos-gal4

D

ChIP-seq (ppm)

control

control + nos-gal4

mae^{M391/00}

mae^{M391/00} + nos-gal4

GFP

Western signal

p-value

<table>
<thead>
<tr>
<th>mutation</th>
<th>gal4 driver</th>
<th>GFP signal</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>none</td>
<td>3 ± 2</td>
<td>0.097</td>
</tr>
<tr>
<td>none</td>
<td>nos</td>
<td>9 ± 4</td>
<td>0.057</td>
</tr>
<tr>
<td>mae^{M391/00}</td>
<td>none</td>
<td>19 ± 6</td>
<td>0.085</td>
</tr>
<tr>
<td>mae^{M391/00}</td>
<td>nos</td>
<td>400 ± 100</td>
<td>0.014</td>
</tr>
<tr>
<td>mae^{M391/00}, Mael Rescue</td>
<td>nos</td>
<td>40 ± 20</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Figure 2.4: Mael represses the canonical transcription of \(P\{GSV6\}42A18 \)

(A) A schematic showing \(P\{GSV6\}42A18 \), a transgene inserted into 42AB. \(P\{GSV6\}42A18 \) contains an inducible \(UAS_GFP \) gene with an intron and canonical poly(A) sites in the 3’ UTR. RNA-seq profiles for \(P\{GSV6\}42A18 \) from \(mael^{M391/20} \) and control ovaries, with or without \(nanos_gal4 \), and Mael germline knockdown with \(nanos_gal4 \). (B) GRO-seq profiles from \(mael^{M391/20} \) and control ovaries with or without \(nanos_gal4 \). (C) H3K4me3 ChIP-seq profiles displaying \(mael^{M391/20} \) (red) and control (black) ovaries expressing \(nanos_gal4 \). (D) Western blots for GFP, Mael, or \(\alpha\)-Tubulin (\(\alpha\)-Tub) from ovaries with the genotype given below. GFP Western signal is the average of three biological replicates normalized to \(\alpha\)-Tub and is given in arbitrary units. \(p \)-values were measured using an unpaired, two-tailed t-test compared to \(w^{1118}; P\{GSV6\}42A18/+; +. \)
Many Pol II Promoters are Activated in *mael* Mutant Ovaries

Without Mael, RNA accumulates from both individual euchromatic transposons outside of clusters (Sienski et al., 2012; Muerdter et al., 2013) and heterochromatic transposon sequences within clusters (Figure 2.5A). To further test the idea that Mael represses canonical transcription at sites of Rhi-driven incoherent transcription, we examined in more detail those transposons whose steady-state RNA abundance increased in *mael* \(^{M391/r20} \) ovaries. Overall, uniquely mapping steady-state RNA from 1485 individual transposon loci (410 in and 1075 out clusters) increased ≥2-fold (FDR ≤ 0.05; \(n = 6 \)) in *mael* \(^{M391/r20} \) ovaries (Figure 2.5B). Among these derepressed transposons, 182 transposon loci overlapped with H3K4me3 peaks that more than doubled in *mael* mutant ovaries compared to control (70 in and 112 out clusters; Figure 2.5C). Moreover, spliced transcripts—measured by the abundance of unambiguously mapping exon-exon junction RNA-seq reads—more than doubled for 29 (13 in and 16 out clusters) of these 182 transposon loci in *mael* \(^{M391/r20} \) ovaries (Figure 2.5D).
Figure 2.5

Within cluster

Outside cluster

control

RNA-seq sense reads mapping to transposon loci (ppm)

A

All

B

Differentially expressed

C

Differentially expressed with overlapping H3K4me3 peak

D

Spliced differentially expressed with overlapping H3K4me3 peak
Figure 2.5: Active transposon promoters are canonically transcribed in \textit{mae}l^{M391/r20} ovaries

(A) Scatter plots comparing sense RNA-seq reads from \textit{mae}l^{M391/r20} and control ovaries \((n = 6)\) that uniquely mapped to 11,810 individual transposon loci inside and outside piRNA clusters. (B) RNA-seq reads that were differentially expressed \((\geq 2\text{-fold increase}; \text{FDR} \leq 0.05)\) between \textit{mae}l^{M391/r20} and control ovaries were kept (1485 total transposons; 410 within and 1075 outside clusters). (C) Using a set of consensus H3K4me3 peaks from \textit{mae}l^{M391/r20} and control ovaries, 182 transposon loci (70 within and 112 outside clusters) also had overlapping H3K4me3 peaks that had more signal in \textit{mae}l^{M391/r20} mutants \((\geq 2\text{-fold increase})\). (D) Scatter plots comparing differentially expressed spliced transcripts \((\geq 2\text{-fold increase}; \text{FDR} \leq 0.05)\) from \textit{mae}l^{M391/r20} and control ovaries that also had overlapping H3K4me3 peaks (13 within and 16 outside clusters). \textit{gypsy12^{42A14}} and \textit{gypsy12^{40F7}} are shown in red.
In flies, most promoters are uni-directional, therefore antisense reads are unlikely to be products of canonical promoter-dependent transcription (Nechaev et al., 2010). Using the previous strategy of analysis on antisense rather than sense transcripts (Figure 2.6A), in mael^{M391/r20} mutants, antisense transposon transcripts within and without piRNA clusters also increased (153 within and 274 outside clusters; Figure 2.6B), had overlapping H3K4me3 peaks (19 within and 20 outside clusters; Figure 2.6C), and were spliced (6 within and 7 outside clusters; Figure 2.6D). Although sense transposon transcripts were expressed ~10-fold higher than antisense, the more than 2-fold increase in spliced antisense transcripts with overlapping H3K4me3 peaks suggests that cryptic antisense promoters may be active in mael^{M391/r20} ovaries. We conclude that loss of Mael increases canonical Pol II transcription from both euchromatic transposons outside piRNA clusters and from heterochromatic transposons inside piRNA clusters.
Figure 2.6

Within cluster

Outside cluster

RNA-seq anti-sense reads mapping to transposon loci (ppm)

control

Differentially expressed

Differentially expressed with overlapping H3K4me3 peak

Spliced differentially expressed with overlapping H3K4me3 peak

A

B

C

D

HeT-A

Invader4_I

inv

Chouto_I

Invader4

inv

gypsy2_I

Invader LTR

TAHRE

HeT-A

HeT-A

HeT-A

HeT-A

TAHRE

HeT-A

HeT-A

HeT-A

HeT-A
Figure 2.6: Potential cryptic promoters in transposons are active in maelM391/r20 mutant ovaries

(A) The same analyses used for sense RNA-seq reads in Figure 2.4 was also used for antisense reads. Scatter plots comparing antisense RNA-seq reads from maelM391/r20 and control ovaries (n = 6) that uniquely mapped to 10,745 individual transposon loci inside and outside piRNA clusters. (B) Out of these individual loci, 427 transposons (153 within and 274 outside clusters) had differentially expressed antisense transcripts (≥2-fold increase; FDR ≤ 0.05) in maelM391/r20 ovaries. (C) Without Mael, 39 transposon loci (19 within and 20 outside clusters) also had overlapping H3K4me3 peaks that had a ≥2-fold increase. (D) 6 individual transposon loci within and 7 outside piRNA clusters fit all the previous criteria and also produced more spliced antisense transcripts (≥2-fold increase; FDR ≤ 0.05).
Heterochromatin is Intact in mael Mutant Ovaries

Does loss of heterochromatin at transposons inside and outside piRNA clusters explain the increase in their transcription in mael^{M391/r20} ovaries? To test this idea, we used chromatin immunoprecipitation sequencing (ChIP-seq) to examine H3K9me3, HP1a, and Rhi in wild-type control and mael^{M391/r20} mutant ovaries. HP1a binds H3K9me3, compacts chromatin, and, like Rhi, decorates piRNA clusters (Bannister et al., 2001; Jacobs and Khorasanizadeh, 2002; Nielsen et al., 2002; Vermaak and Malik, 2009; Klenov et al., 2014). Using reads that uniquely mapped to the genome, ovaries with or without Mael had very little change in heterochromatin across piRNA clusters and transposons (Figures 2.7A and 2.7B). One exception, however, were the telomeric transposons, HeT-A, TAHRE, and TART, which had >3-fold decrease in H3K9me3 signal in mael^{M391/r20} compared to control ovaries (Figure 2.7B).

We note that one cluster, the sub-telomeric cluster136, had a large increase in H3K9me3 and HP1a in mael^{M391/r20} mutants (Figure 2.7A). Cluster136 predominantly consists of one somatic transposon, gypsy6. While gypsy6 is not active in mael^{M391/r20} mutant or control ovaries, one possibility for the increase in H3K9me3 and HP1a signal could be a difference in the copy number of gypsy6 or changes in cluster136 between the genotypes. Furthermore, while both mael^{M391} and mael^{r20} strains were outcrossed for five generations, cluster136 and mael are on the same chromosome arm about 4.5 Mb apart.
Figure 2.7

A

Cluster ChIP-seq reads (ppm)

10^1

10^4

H3K9me3

HP1a

Rhi

telomeric cluster

42AB

flam

38C1

control

1

10^1

10^4

B

Transposon ChIP-seq reads (ppm)

10^1

10^4

H3K9me3

HP1a

Rhi

germline

intermediate

somatic

unknown

-HeT-A

TART

TART_B1

control

1

10^1

10^4
Figure 2.7: Mael is not required to establish heterochromatin at piRNA clusters or transposons

(A) Scatter plots on a common y-axis comparing H3K9me3, HP1a, and Rhi ChIP-seq reads that uniquely mapped to piRNA clusters from mael^{M391/r20} (y-axis) and control (x-axis) ovaries. Labeled clusters are uni- (blue) or dual-strand (red). Telomeric clusters are displayed as orange circles and the solitary cluster with more H3K9me3 and HP1a in mael^{M391/r20} mutants is cluster136 (see text). (B) Scatter plots on a common y-axis comparing H3K9me3, HP1a, and Rhi ChIP-seq reads that uniquely mapped to transposons from mael^{M391/r20} and control ovaries. Transposons are classified as germline-specific (red), soma-specific (blue), intermediate (green), or unknown (black) according to their expression in germline and somatic piRNA pathway mutants (Wang et al., 2015). The hashed grey line signifies a ≥2-fold change. Data are the mean of two biological replicates.
In the two gypsy12 LTRs found in 42AB and cluster62, gypsy1242A14 and gypsy1240F7, respectively, we observed small changes in H3K9me3, HP1a, and Rhi. There was a slight decrease in Rhi and HP1a in maelM391/r20 mutants, gypsy1240F7, showed a loss of H3K9me3 and HP1a but not Rhi (Figure 2.8). Despite these minor changes in heterochromatin, both gypsy12 elements also had more H3K4me3 and were still expressed in maelM391/r20 ovaries (Figure 2.2C). This is consistent with transposon LTRs acting as promoters. In addition, the presence of active and repressive chromatin markers can be found at active genes in heterochromatin, including transposons (Riddle et al., 2011).

Like gypsy12 in 42AB and cluster62, over the entire cluster38C1, we only saw a few minor changes in heterochromatin (Figure 2.9A). Overall, in maelM391/r20 ovaries, we observed a subtle loss of H3K9me3 and HP1a, while Rhi appeared to increase slightly over the TSS. Finally, despite the canonical transcription of P\{GSV6\}42A18, we did not see any large changes in heterochromatin at this transgene in maelM391/r20 ovaries (Figure 2.9B). We conclude that the changes in cluster transcription and the loss transposon silencing are unlikely to be due to changes in heterochromatin.
Figure 2.8

![Image of the figure showing genomic locations and ChIP-seq data for various markers and clusters.](image-url)
Figure 2.8: Minor changes in heterochromatin at *gypsy12^{42A14}* and *gypsy12^{40F7}* in *mael^M391/r20* ovaries

H3K9me3, Rhi, and HP1a ChIP-seq profiles for *gypsy12^{42A14}* (left) and *gypsy12^{40F7}* (right) in *mael^M391/r20* (red) and control (black) ovaries.
Figure 2.9
Figure 2.9: Minor changes in heterochromatin at \textit{cluster38C1} and \textit{P(GSV6)42A18} without Mael

(A) H3K9me3, Rhi, and HP1a ChIP-seq profiles for \textit{cluster38C1} and (B) \textit{P(GSV6)42A18} in \textit{mael}^{M391/r20} (red) and control (black) ovaries.
mael Mutants Produce Fewer piRNAs

Both nascent transcripts and RNA steady-state transcripts from piRNA clusters increase in **mael**\(^{M391/r20}\) mutants, yet these long RNAs produce fewer piRNAs than control ovaries (all piRNAs, **mael**/control = 0.39 ± 0.03, \(p = 6.8 \times 10^{-6}\); uniquely mapping piRNAs, **mael**/control = 0.28 ± 0.02, \(p = 9.4 \times 10^{-7}\); Figure 2.10A). The abundance of piRNAs from *gypsy12* LTRs (**mael**/control = 0.045 ± 0.003, \(p = 5.8 \times 10^{-8}\); Figure 2.10B), dual-strand cluster *cluster38C1* (**mael**/control = 0.10 ± 0.01, \(p = 5.9 \times 10^{-7}\)), as well as from *P(GSV6)42A18* (**mael**/control = 0.09 ± 0.01, \(p = 3.6 \times 10^{-7}\)) were all lower in **mael**\(^{M391/r20}\) ovaries (Figure 2.10C). While uni-strand clusters produced less piRNAs in **mael**\(^{M391/r20}\) mutants, dual-strand clusters were more affected. For example, piRNA abundance declined 3–5-fold for the uni-strand clusters *cluster2* (**mael**/control = 0.21 ± 0.02; \(p = 8.4 \times 10^{-6}\)) and *flam* (**mael**/control = 0.33 ± 0.03; \(p = 1.8 \times 10^{-5}\)), whereas piRNAs fell 7.6–32-fold for the dual-strand clusters *42AB* (**mael**/control = 0.053 ± 0.005; \(p = 9.7 \times 10^{-10}\)), *80F* (**mael**/control = 0.13 ± 0.01; \(p = 4.6 \times 10^{-7}\)), and the telomeric clusters (**mael**/control = 0.031 ± 0.001; \(p = 1.0 \times 10^{-8}\); Figure 2.10C)
Figure 2.10

A

Normalized oxidized small RNAs ($\times 10^5$ ppm)

Length (nt)

B

Transposon piRNAs (ppm)

C

Cluster piRNAs (ppm)
Figure 2.10: Fewer piRNAs in \(mael^{M391/r20} \) mutants

(A) A length distribution of normalized oxidized sRNA libraries \((n = 3)\) expressed in wild-type control (gray) and \(mael^{M391/r20} \) ovaries (red) that uniquely mapped to the genome. Standard deviations are displayed as error bars. (B) Scatter plot comparing unique piRNAs that mapped to germline (red), soma (blue), intermediate (green), or unknown (black) transposons. piRNAs mapping to \(gypsy12 \) LTRs are labeled shown as a solid red circle. (C) Scatter plot comparing piRNAs that unambiguously mapped to piRNA clusters. Labeled clusters are uni- (blue) or dual-strand (red). Telomeric piRNA clusters are displayed as orange circles. The hashed grey line signifies a \(\geq 2 \)-fold change.
The decreased abundance of piRNAs from dual-strand clusters in \textit{mael}^{M391/r20} mutants was accompanied by a marked loss of piRNA amplification by the ping-pong cycle (Figures 2.11A and 2.11B). Despite the loss of piRNAs produced by ping-pong in ovaries without Mael, significant ping-pong was detected among total piRNAs (mael, $Z_{10} = 59$; control, $Z_{10} = 67$; Figure 2.11A). In \textit{mael}^{M391/r20} ovaries, however, significant ping-pong was not detected among piRNAs mapping unambiguously to clusters (mael, $Z_{10} = 0.58$; control, $Z_{10} = 23$; excluding uni-strand clusters), whereas piRNAs mapping outside of clusters continued to be amplified (mael, $Z_{10} = 8.1$; control, $Z_{10} = 19$; Figure 2.11B). In \textit{mael}^{M391/r20} ovaries, outside of clusters, ping-pong can be attributed to piRNAs that uniquely mapped to \textit{R1} LTR retrotransposons, which produced >2-fold more piRNAs than control ovaries.
Figure 2.11

A

Fraction of piRNA pairs

- Total (all)
 - control: $Z_{10} = 67$
 - maelM391/r20: $Z_{10} = 59$

- Total (unique)
 - control: $Z_{10} = 23$
 - maelM391/r20: $Z_{10} = 1.3$

B

5′-5′ Overlap (nt)

- In cluster (unique)
 - control: $Z_{10} = 23$
 - maelM391/r20: $Z_{10} = 0.58$

- Out cluster (unique)
 - control: $Z_{10} = 19$
 - maelM391/r20: $Z_{10} = 8.1$
Figure 2.11: Fewer piRNAs produced by ping-pong without Mael

(A) Ping-pong analysis for all or uniquely mapping total piRNAs and (B) piRNAs that uniquely mapped in or out of dual-strand piRNA clusters. The left y-axis displays the fraction of piRNAs that overlapped on opposite genomic strands at each 5’ to 5’ distance. The right y-axis displays the number of ping-pong pairs detected. The value for the 10-nt overlap is shown as a solid bar. All data are the mean of three biological replicates from oxidized piRNAs from *mael^{M391/r20}* (red) or wild-type control (gray) ovaries. Standard deviations are displayed as error bars.
While ping-pong remained significant in maelM391/r20 ovaries fewer piRNAs were produced by ping-pong compared to wild-type control. This suggests that either the ping-pong machinery is normal and that piRNA precursors are not available for processing or that ping-pong has become inefficient. Because maelM391/r20 ovaries appear to have abundant potential piRNA precursors (Figures 2.5 and 2.6), we looked at the expression of piRNA pathway genes that most affect ping-pong (Han et al., 2015). Although several genes had small but significant changes in transcript abundance in maelM391/r20 mutant ovaries, ago3 transcripts decreased 11 ± 2-fold ($p = 0.001$; Table 2.1). The decrease in ago3 was not unique to maelM391/r20 mutants. ago3 transcripts decreased 7 ± 2-fold ($p = 0.001$) in piwi2/Nt mutants, 2 ± 1-fold ($p = 0.006$) in armi72.1/G728E mutants, and 4 ± 1-fold ($p = 0.003$) in rhi2/KG mutants. Because ago3 is a heterochromatic gene with large transposon-filled introns, it is possible that ago3 transcription could be disrupted when transposons are derepressed. Consistent with this hypothesis, several transposons in ago3 introns in maelM391/r20 ovaries had increased transcripts (Figure 2.12A), nascent transcription (Figure 2.12B), and more H3K4me3 signal (Figure 2.12C).
Table 2.1

<table>
<thead>
<tr>
<th>gene</th>
<th>$\text{mael}^{M391/r20}$</th>
<th>$\text{piwi}^{2/Nt}$</th>
<th>$\text{armi}^{7.1/G728E}$</th>
<th>$\text{rhi}^{2/KG}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FC (mael/control)</td>
<td>p-value</td>
<td>FC</td>
<td>p-value</td>
</tr>
<tr>
<td>ago3</td>
<td>0.09 ± 0.02</td>
<td>1.2×10^{-3}</td>
<td>0.14 ± 0.03</td>
<td>1.4×10^{-3}</td>
</tr>
<tr>
<td>aub</td>
<td>1.12 ± 0.08</td>
<td>0.038</td>
<td>1.10 ± 0.10</td>
<td>0.093</td>
</tr>
<tr>
<td>cuff</td>
<td>1.56 ± 0.09</td>
<td>1.2×10^{-4}</td>
<td>1.80 ± 0.20</td>
<td>2.0×10^{-3}</td>
</tr>
<tr>
<td>krimp</td>
<td>0.60 ± 0.10</td>
<td>0.022</td>
<td>0.70 ± 0.10</td>
<td>0.021</td>
</tr>
<tr>
<td>qin</td>
<td>1.10 ± 0.20</td>
<td>0.25</td>
<td>1.20 ± 0.20</td>
<td>0.070</td>
</tr>
<tr>
<td>rhi</td>
<td>0.60 ± 0.10</td>
<td>0.014</td>
<td>0.80 ± 0.10</td>
<td>0.055</td>
</tr>
<tr>
<td>spn-E</td>
<td>1.00 ± 0.20</td>
<td>0.69</td>
<td>1.10 ± 0.20</td>
<td>0.51</td>
</tr>
<tr>
<td>vas</td>
<td>1.10 ± 0.30</td>
<td>0.75</td>
<td>1.40 ± 0.20</td>
<td>0.018</td>
</tr>
<tr>
<td>vret</td>
<td>0.90 ± 0.10</td>
<td>0.087</td>
<td>0.85 ± 0.08</td>
<td>0.046</td>
</tr>
</tbody>
</table>
Table 2.1: Expression of ping-pong related genes in *mael, piwi, armi, and rhi* mutants

Table displaying the fold change (mutant/control) of RNA-seq reads mapping to genes involved with ping-pong (Han et al., 2015). *p*-values were calculated from three biological replicates using an unpaired, two-tailed t-test.
Figure 2.12
Figure 2.12: Transposons in ago3 introns are active in maelM391/r20 ovaries

(A) RNA-seq, (B) GRO-seq, and (C) H3K9me3 and H3K4me3 ChIP-seq profiles for the ago3 genomic region from maelM391/r20 (red) and control (black) ovaries. Genes and their isoforms are displayed in blue while RepeatMasker sequences are displayed below.
Like piRNA production by the ping-pong cycle, the machinery required to produce phased piRNAs appears unaltered in *mael*^{M391/r20} mutants. Despite the reduced abundance of total, uniquely mapping, phased piRNAs in *mael*^{M391/r20} ovaries (Figure 2.13A), significant tail-to-head piRNA phasing remains (total piRNAs: *mael*, \(Z_1 = 11 \) versus control, \(Z_1 = 14 \); Figure 2.13B). While ping-pong was not detected among cluster-mapping piRNAs, phasing remained significant among piRNAs that uniquely mapped both inside and outside piRNA clusters (in cluster: *mael*, \(Z_1 = 9.0 \) versus control, \(Z_1 = 12 \); out cluster: *mael*, \(Z_1 = 14 \) versus control, \(Z_1 = 16 \); Figure 2.13B). We conclude that the primary piRNA biogenesis machinery is functional in the absence of Mael.
Figure 2.13

A

Uniquely mapping piRNA pairs ($\times 10^6$ ppm)

Total

B

Fraction of uniquely mapping piRNA pairs

In cluster

Out cluster

3’-to-5’ distance on same genomic strand (nt)

control, 300,000

$Z_0 = 14$

$Z_0 = 11$

$Z_0 = 12$

$Z_0 = 9.0$

$Z_0 = 16$

$Z_0 = 14$
Figure 2.13: Phasing is functional without Mael

(A) Total number of piRNA pairs that are found at each distance from the 3’ ends of upstream piRNAs to the 5’ ends of downstream piRNAs on the same genomic strand.

(B) Frequency of distances from the 3’ ends to the 5’ ends of piRNAs found in or out of piRNA clusters on the same genomic strand. All data are the mean of three biological replicates from uniquely mapping oxidized piRNAs from mael^M391/r20 (red) or wild-type control (black) ovaries.
Armi and Piwi also Repress Transcription in Dual-Strand Clusters

The current model for piRNA biogenesis in flies places Armi upstream and Mael downstream of Piwi (Malone et al., 2009; Haase et al., 2010; Saito et al., 2010; Sienski et al., 2012; Czech et al., 2013; Pandey et al., 2017; Rogers et al., 2017). Throughout this study, we used the transheterozygous \textit{piwi} mutant, \textit{piwi}^{2/Nt}, which has one copy of Piwi that can still be loaded with a piRNA but cannot enter the nucleus for transcription repression (Klenov et al., 2011). Consistent with this model, loss of either Armi or nuclear Piwi phenocopies the loss of Mael. For example, cluster-mapping transcripts expression increased to similar levels in \textit{armi}^{72.1/G728E}, \textit{piwi}^{2/Nt}, \textit{mael}^{M391/r20} ovaries compared to control (Figure 2.14A). Like \textit{mael}^{M391/r20} mutants, \textit{gypsy12} LTRs increase >13-fold ($p = 2.5 \times 10^{-4}$) and >9-fold ($p = 9.3 \times 10^{-5}$) in \textit{armi}^{72.1/G728E} and \textit{piwi}^{2/Nt} ovaries, respectively (Figure 2.15A). Furthermore, in \textit{armi}^{72.1/G728E} and \textit{piwi}^{2/Nt} ovaries, \textit{cluster38C1} transcripts were >20-fold ($p = 1.6 \times 10^{-4}$) and >13-fold ($p = 6.4 \times 10^{-6}$) more abundant than control ovaries, respectively (Figure 2.15B). While Armi was required for \textit{cluster38C1} piRNAs (110 ± 60-fold decrease compared to control, $p = 0.002$), \textit{piwi}^{2/Nt} ovaries had normal levels of \textit{cluster38C1} piRNAs ($p = 0.53$; Figure 2.14B). This is consistent with the possibility that the increase in \textit{cluster38C1} transcripts in \textit{piwi}^{2/Nt} ovaries was not due to the loss of downstream piRNA processing and that Piwi may also be required to repress transcription of \textit{cluster38C1}.
Figure 2.14

A

Cluster transcripts (ppm)

B

Cluster piRNAs (ppm)
Figure 2.14: More piRNA cluster transcripts in \textit{armi}^{72.1/G728E} and \textit{piwi}^{2/Nt} mutants than control ovaries

(A) Scatter plot comparing transcripts and (B) piRNAs that uniquely mapped to piRNA clusters from \textit{mael}^{M391/r20} or control to \textit{armi}^{72.1/G728E} or \textit{piwi}^{2/Nt} mutant ovaries. Labeled clusters are uni- (blue) or dual-strand (red). Telomeric piRNA clusters are displayed as orange circles. The hashed grey line signifies a \geq2-fold change.
Figure 2.15

A

Gypsy1242A14 LTR

100 bp

 Chr2L: 6,298,123-6,298,919

control

armi72.1/G728E

control

piwi2/Nt

B

CG13970

cluster38C1

1 kb

 Chr2L: 20,103,660-20,119,503

control, armi72.1/G728E

control, piwi2/Nt
Figure 2.15: *gypsy12* LTRs and *cluster38C1* are derepressed in *armi*72.1/G728E and *piwi*2/Ni ovaries

(A) RNA-seq profiles for *gypsy12*42A14 (left), *gypsy12*40F7 (right), and (B) *cluster38C1* from *armi*72.1/G728E (purple), *piwi*2/Ni (cyan), and control (black) ovaries. TSSs and TTSs are marked with green and red triangles, respectively.
Like cluster38C1, P(GSV6)42A18 also uses canonical Pol II promoters and loss of either Armi or nuclear Piwi allowed transcription of a spliced gfp mRNA that could be translated (Figures 2.16A and 2.16C). Finally, consistent with our previous results, armi72.1/G728E, piwi2/Nt, and maelM391/r20 mutant ovaries all had fewer piRNAs than control (Figure 2.16B). Our results are consistent with Armi, Piwi, and Mael all functioning in the same pathway to repress canonical transcription in dual-strand piRNA clusters.
Figure 2.16

A

B

C

GAL4 driver: none nos nos nos

mutation: piwi armi

GFP Western signal

p-value

none nos 19 ± 6 0.002

piwi nos 370 ± 90 0.002

armi nos 60 ± 10

P{GSV6}42A18

GAL4 driver: no armi

mutation: noc nos nos

GFP Western signal

p-value

none nos 19 ± 6

armi nos 6 ± 10

P{GSV6}42A18

GAL4 driver: no armi

mutation: noc nos nos

GFP Western signal

p-value

none nos 19 ± 6

armi nos 6 ± 10

P{GSV6}42A18

GAL4 driver: no armi

mutation: noc nos nos

GFP Western signal

p-value

none nos 19 ± 6

armi nos 6 ± 10

P{GSV6}42A18

GAL4 driver: no armi

mutation: noc nos nos

GFP Western signal

p-value

none nos 19 ± 6

armi nos 6 ± 10
Figure 2.16: \textit{P\{GSV6\}42A18} is active in \textit{armi}^{72.1/G728E} and \textit{piwi}^{2/Nt} ovaries

(A) RNA-seq and (B) piRNA profiles for \textit{P\{GSV6\}42A18} from \textit{armi}^{72.1/G728E} (purple) and \textit{piwi}^{2/Nt} (cyan) mutant ovaries also expressing germline GAL4-VP16. (C) Western blots and quantification for GFP normalized to \textit{\alpha}-Tub from \textit{armi}^{72.1/G728E}, \textit{piwi}^{2/Nt}, and control ovaries. \textit{p}-values were measured using an unpaired, two-tailed t-test compared to \textit{w}^{1118}; \textit{P\{GSV6\}42A18/nos-gal4}; +.
Rhi is Not Required to Repress Transcription in Dual-Strand Clusters

While Armi, Piwi, and Mael are required to repress canonical Pol II transcription in dual-strand clusters, Rhi is required for non-canonical transcription of dual-strand clusters (Klattenhoff et al., 2009; Le Thomas et al., 2014; Mohn et al., 2014; Zhang et al., 2014; Andersen et al., 2017). However, without Rhi, it is possible that dual-strand cluster transcription may be canonically initiated and terminated. Consistent with this possibility, in $\text{rhi}^{2/\text{KG}}$ ovaries, gypsy12 LTRs increase >45-fold ($p = 2.6 \times 10^{-4}$) yet transcription terminates ~400 bps downstream with or without an AATAAA cleavage and poly(A) consensus sequence, similar to $\text{mael}^{M391/M20}$ mutants (Figure 2.17A). Moreover, like the two gypsy12 LTRs, without Rhi, transcription of cluster38C1 was able to initiate at the flanking promoters, but also terminated ~400 bps downstream near poly(A) cleavage sites (Figure 2.17B). While transcription can initiate without Rhi at promoters at gypsy12^{42A14}, gypsy12^{40F7}, and cluster38C1, we did not detect gfp transcripts or GFP protein in $\text{rhi}^{2/\text{KG}}$ ovaries (Figures 2.18A and 2.18B). Transcription was unable to continue past poly(A) cleavage sites in $\text{rhi}^{2/\text{KG}}$ mutant ovaries likely due to the loss of Cuff localization (Mohn et al., 2014; Chen et al., 2016). Consistent with this possibility, germline depletion of Cuff phenocopied $\text{rhi}^{2/\text{KG}}$ mutants (Figures 2.17A, 2.17B, 2.18A, and 2.18B). Thus, the UAS enhancer appeared to remain effectively silenced by heterochromatin without Rhi. In summary, both the flanking cluster38C1 promoters and the gypsy12 LTR can function in heterochromatin without Rhi. In wildtype germline nurse cells, however, Rhi ensures that gypsy12^{42A14}, gypsy12^{40F7}, and cluster38C1 are transcribed non-canonically via Moon and Cuff subsequently processed into piRNAs. We conclude that Rhi is not required for repression of canonical transcription dual-strand piRNA clusters.
Figure 2.17

A

```
gypsy1242A14 LTR
100 bp
Chr2R: 6,298,123-6,298,919

\( \triangle 3'\text{-AAATAA}-5' \)
\( \triangle 3'\text{-AATAT-5'} \)

control, \( rh^{bkg}\), \( mae^{bkg} \)

control, Cuff germline KD
```

B

```
CG13970
cluster38C1

\( \triangle 5'\text{-TATAAA}-3' \)
\( \triangle 3'\text{-AAATAE}-5' \)

control, \( rh^{bkg}\), \( mae^{bkg} \)

control, Cuff germline KD
```
Figure 2.17: Transcription can initiate at \textit{gypsy12} and \textit{cluster38C1} without Rhi

(A) RNA-seq profiles for \textit{gypsy12}^{42A14} (left) \textit{gypsy12}^{40F7} (right) and (B) \textit{cluster38C1} from \textit{rhi}^{2/\text{KG}}, \textit{mael}^{M391/20}, \textit{rhi}^{2/\text{KG}}; \textit{mael}^{M391/20} double mutant, Cuff germline knockdown, and control ovaries. TSSs and TTSs are marked with green and red triangles, respectively.
Figure 2.18

(A) Schematic diagram showing the 5′-AAATAA-5′ motif and UAS-UAS target site. RNA-seq data are plotted above the graph.

(B) Western signal analysis of GFP expression under different conditions. The table summarizes the GFP signal intensity and P-values for each condition.

<table>
<thead>
<tr>
<th>Mutation</th>
<th>GAL4 driver</th>
<th>GFP Western signal</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>nos</td>
<td>19 ± 6</td>
<td>0.01</td>
</tr>
<tr>
<td>mael</td>
<td>nos</td>
<td>400 ± 100</td>
<td>0.04</td>
</tr>
<tr>
<td>rh2⁵ᵗʰ</td>
<td>nos</td>
<td>30 ± 20</td>
<td>0.03</td>
</tr>
<tr>
<td>rh2⁵ᵗʰ; mael₃₉¹/r₂₀</td>
<td>nos</td>
<td>60 ± 20</td>
<td>0.6</td>
</tr>
<tr>
<td>none</td>
<td>MTĐ</td>
<td>20 ± 10</td>
<td></td>
</tr>
<tr>
<td>Cuff-KD</td>
<td>MTĐ</td>
<td>20 ± 10</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.18: Rhi is not required to repress transcription of \(P\{GSV6\}42A18 \)

A) RNA-seq profiles for \(P\{GSV6\}42A18 \) from \(rhi^{2/KG}, mael^{M391/r20}, rhi^{2/KG}; mael^{M391/r20} \) double mutant, Cuff germline knockdown, and control ovaries also expressing germline GAL4-VP16. (B) Western blots and quantification for GFP normalized to \(\alpha\)-Tub. \(p \)-values for genetic mutants were measured using an unpaired, two-tailed t-test compared to \(w^{1118}, P\{GSV6\}42A18/nos-gal4; + \) or to MTD-GAL4 control for Cuff germline knockdown.
One explanation for the absence of canonical transcription of *gfp* in
P{GSV6}42A18 in *rhi*\(^2/KG\) ovaries is that Rhi is required to create a transcriptionally
permissive environment in dual-strand piRNA clusters. To test this hypothesis, we used
RNAi to reduce, but not eliminate Rhi in the germline (Figure 2.19A). Compared to wild-
type control ovaries, both *rhi*\(^2/KG\) mutants and Rhi germline knockdown had a ~10-fold
loss of *rhi* transcript. In Rhi-depleted ovaries, however, low levels of RNA-seq reads
were detected across the entire *rhi* coding sequence whereas in *rhi*\(^2/KG\) mutants, RNA-
seq reads sharply fell ~200 bp after the *rhi* TSS. Furthermore, while germline depletion
of Rhi led to the loss of nuclear foci, diffuse nuclear Rhi was still detected (Figure
2.19B). In contrast, *rhi*\(^2/KG\) ovaries only had background levels of nuclear signal.
Consistent with this hypothesis, we detected spliced *gfp* mRNA in Rhi germline
knockdown flies, unlike *rhi*\(^2/KG\) genetic null mutants (Figure 2.19C).
Figure 2.19

A

RNA-seq (ppm)

CG10936

rhi

chr2R:17,628,321-17,633,713

500 bp

B

Rhi

DAPI

control

rhi heterozygote

Rhi germline KD

Rhi knockdown

C

RNA-seq (ppm)

+ GAL4: control, Rhi germline KD

100 bp

UAS

gfp

3′-AAATAA-5′
Figure 2.19: Rhi promotes expression of \(P\{GSV6\}42A18 \)

(A) RNA-seq profiles for the \(rhi \) genomic region from control, \(rhi^{2/\text{KG}} \) mutant, and Rhi germline knockdown ovaries. Genes are displayed above in blue. (B) Immuno-detection of Rhi protein (left, red) in wild-type, \(rhi \) heterozygote, \(rhi^{2/\text{KG}} \) mutant, and Rhi-depleted \(~\text{stage 4 egg chambers. Gray scale bars are 10 } \mu\text{m. DAPI, } 4',6\text{-diamidino-2-phenylindole (left, blue). (C) RNA-seq profiles for } P\{GSV6\}42A18 \text{ from Rhi-depleted and control ovaries expressing germline GAL4-VP16.} \)
Because Rhi promotes transcription while Mael represses transcription, loss of Rhi should rescue transcription repression in dual-strand piRNA clusters in maelM391/r20 mutants. Expectedly, because the gypsy12 LTRs in 42AB and cluster62 are active in both rh2/KG and maelM391/r20 ovaries, gypsy1242A14 and gypsy1240F7 expression did not change in rh2/KG; maelM391/r20 double mutants (Figure 2.17A). In cluster38C1, however, further loss of Rhi in maelM391/r20 ovaries led to a >3-fold decrease in cluster38C1 transcripts compared to maelM391/r20 single mutants (Figure 2.17B). In addition, similar to rh2/KG single mutants, cluster38C1 transcripts in rh2/KG; maelM391/r20 double mutants also terminated at poly(A) cleavage sites. Finally, rh2/KG; maelM391/r20 ovaries produced 3 ± 1-fold fewer (p = 0.044) gfp transcripts and 6 ± 3-fold fewer (p = 0.021) GFP protein than maelM391/r20 single mutants (Figures 2.18A and 2.18B). Our data suggest that independent of Rhi, canonical Pol II transcription is repressed by Mael. Altogether, Rhi and Mael function in oppositional roles: Rhi promotes transcription—both canonical and non-canonical—while Mael, guided by Piwi, represses canonical transcription in dual-strand piRNA clusters.

Mael Represses Transcription of Heterochromatin in the Ovary Somatic Follicle Cells

Outside of germ cells, Mael is also required to repress transposons in the somatic follicle cells, which support embryo development (Sienski et al., 2012; Muerdter et al., 2013; Figure 2.20A). Similar to germline piRNA clusters, maelM391/r20 ovaries also had fewer piRNAs mapping to somatic piRNA-producing loci flam (mael/control = 0.33 ± 0.03; p = 1.8 × 10-5) and traffic jam (mael/control = 0.53 ± 0.08; p = 0.0010; Figures 2.10A and 2.10B). Consistent with a somatic role for Mael, infertility in maelM391/r20 mutants was rescued only when a FLAG-Mael transgene was simultaneously expressed in both the germline and somatic follicle cells (Table 2.2).
The piRNA pathway has long been associated with repressing genes and transposons using heterochromatin (Pal-Bhadra et al., 2004; Moshkovich and Lei, 2010; Todeschini et al., 2010; Sienski et al., 2012; Donertas et al., 2013; Gu and Elgin, 2013; Le Thomas et al., 2013; Le Thomas et al., 2014; Sienski et al., 2015; Yu et al., 2015b). Mael has also been linked to heterochromatin and silencing in the soma: Mael-depleted OSCs show minor changes in H3K9me3 but cannot repress somatic transposons (Sienski et al., 2012). Using the traffic jam-gal4 driver to express P{GSV6}42A18 in somatic follicle cells, more GFP was detected in maelM391/r20 mutants (mael/control = 3.3 ± 0.9, p = 0.0043; Figure 2.20B). Therefore, as in the germline, in somatic follicle cells, Mael repressed transcription of a euchromatic transgene inserted into 42AB.
Figure 2.20

A. Sense somatic transposon transcripts (ppm) vs. Sense somatic transposon GRO-seq reads (ppm)

B. Western signal p-values

<table>
<thead>
<tr>
<th>mutation</th>
<th>GAL4 driver</th>
<th>GFP Western signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>tj</td>
<td>0.0046 ± 0.0008</td>
</tr>
<tr>
<td>mael</td>
<td>tj</td>
<td>0.015 ± 0.003</td>
</tr>
</tbody>
</table>

gal4 driver: tj tj
mation: = mael
Figure 2.20: Mael represses heterochromatic sequences in somatic follicle cells

(A) Scatter plots comparing sense RNA-seq (left) and GRO-seq (right) that unambiguously mapped to somatic transposons from maelM391/r20 and control ovaries.

(B) Western blots for GFP, Mael, and α-Tub from maelM391/r20 and control ovaries expressing the somatic-follicle-cell-specific driver, tj-gal4. Quantification for GFP was normalized to α-Tub.
Table 2.2

<table>
<thead>
<tr>
<th>Mutation</th>
<th>FLAG-Mael rescue</th>
<th>Dorsal appendages</th>
<th>Eggs per female per day</th>
<th>Hatch rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>Wild-type (%)</td>
<td></td>
</tr>
<tr>
<td>mael^{+/−}</td>
<td>none</td>
<td>9976</td>
<td>96.6</td>
<td>50.18</td>
</tr>
<tr>
<td>mael^{M391/r20}</td>
<td>none</td>
<td>7</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td>mael^{M391/r20}</td>
<td>tj-gal4</td>
<td>1394</td>
<td>2.0</td>
<td>3.63</td>
</tr>
<tr>
<td>mael^{M391/r20}</td>
<td>nos-gal4</td>
<td>1240</td>
<td>15.1</td>
<td>3.23</td>
</tr>
<tr>
<td>mael^{M391/r20}</td>
<td>tj- + nos-gal4</td>
<td>11,177</td>
<td>92.9</td>
<td>38.38</td>
</tr>
<tr>
<td>mael^{M391/r20}</td>
<td>actin5C-gal4</td>
<td>11,900</td>
<td>97.6</td>
<td>30.99</td>
</tr>
</tbody>
</table>
Table 2.2: Mael is required in both germline and somatic follicle cells for fertility

Table displaying the results of female fertility assays. Rescue using nos (germline), tj (somatic follicle cell), tj + nos (germline + somatic follicle cell), or actin5C (ubiquitous) drivers was assessed by wild-type dorsal appendage rate, eggs laid per female per day, and hatch rate. mael^{+/−} are a mix of mael^{M391/TM3.Sb} and mael^{l20/TM3.Sb} females.
mael is a Suppressor of Position Effect Variegation

Position effect variegation (PEV) is the phenomenon in which gene expression is dependent on chromatin context. In the classic PEV example, \(w^{m4} \), the euchromatic \textit{white} gene, which is required for red pigment expression in the eyes, is silenced when it is moved near the centromere by a chromosomal inversion (Muller, 1930). Subsequent screens would reveal “suppressors of PEV,” or mutations that would suppress the silencing of \textit{white}. Suppressors of PEV were often heterochromatin related genes, such as \textit{Suppressor of variegation 205} (\textit{Su(var)2-5}), which encodes HP1a (Eissenberg et al., 1992). Thus, the loss of GFP silencing in \textit{mael}\(^{M391/r20}\) mutants is reminiscent of the mutation of a suppressor of PEV. In fact, \(P\{GSV6\}42A18 \) contains a \textit{mini-white} marker and was derepressed in \textit{mael}\(^{M391/r20}\) eyes compared to control as measured by red eye pigment (\(\textit{mael}/\text{control} = 1.7 \pm 0.4, p = 0.02; \text{Figure 2.21} \)).

Previously, the Lei lab used several \textit{mini-white} transgene reporters inserted into heterochromatic regions near piRNA clusters as PEV reporters. While eye pigmentation was suppressed by mutating \textit{Su(var)2-5} or \textit{Su(var)3-9}, the reporter was not sensitive to \textit{piwi} or \textit{aub} mutations (Moshkovich and Lei, 2010). Using \(P\{EPgy2\}DIP16^{EY02625} \), which is inserted upstream of \textit{flam}, \textit{mael}\(^{M391/r20}\) flies also expressed more red pigment in the eyes (\(\textit{mael}/\text{control} = 2.8 \pm 0.7, p = 2.6 \times 10^{-4}; \text{Figure 2.21} \)). Furthermore, using \(P\{EPgy2\}EY08366 \), which is insertion near the proximal edge of 42AB, loss of Mael caused a 9 ± 8-fold increase in red pigment expression (\(p = 5.2 \times 10^{-4}; \text{Figure 2.21} \)).

Finally, using the original \(w^{m4} \) mutation revealed that like \textit{Su(var)2-5} and \textit{Su(var)3-9}, loss of one copy of \textit{mael} also suppressed the silencing of \textit{white} (\(\textit{mael}\(^{M391/}\text{control} = 100 \pm 50, p = 7.5 \times 10^{-6}; \textit{mael}^{20}/\text{control} = 80 \pm 40, p = 1.4 \times 10^{-4}; \text{Table 2.3} \)). Furthermore, in the eyes, Mael appears to repress \textit{white} in a concentration-dependent manner: \textit{mael}\(^{M391/r20}\) mutants had ~2-fold more red pigment than \textit{mael}\(^{M391/+}\) or \textit{mael}\(^{20/+}\) heterozygotes (\(p = 1.1 \times 10^{-3} \) and \(7.7 \times 10^{-4} \), respectively). Therefore, \textit{mael}
is a suppressor of PEV in somatic tissue outside the ovaries and is required to repress
the transcription of typically euchromatic genes silenced by heterochromatin.
Figure 2.21

<table>
<thead>
<tr>
<th>white source</th>
<th>Mael?</th>
<th>OD480</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>w<sup>Ind</sup></td>
<td>Yes</td>
<td>0.005 ± 0.002</td>
<td>2.9 × 10<sup>-6</sup></td>
</tr>
<tr>
<td>w<sup>Ind</sup></td>
<td>No</td>
<td>0.70 ± 0.03</td>
<td>2.6 × 10<sup>-4</sup></td>
</tr>
<tr>
<td>P{EPgy2}DIP16<sup>EY0625</sup></td>
<td>Yes</td>
<td>0.007 ± 0.002</td>
<td>5.2 × 10<sup>-4</sup></td>
</tr>
<tr>
<td>P{EPgy2}DIP16<sup>EY0625</sup></td>
<td>No</td>
<td>0.018 ± 0.001</td>
<td>1.6 × 10<sup>-3</sup></td>
</tr>
<tr>
<td>P{EPgy2}EY08366</td>
<td>Yes</td>
<td>0.001 ± 0.001</td>
<td></td>
</tr>
<tr>
<td>P{EPgy2}EY08366</td>
<td>No</td>
<td>0.011 ± 0.001</td>
<td></td>
</tr>
<tr>
<td>P{GSV6}42A18</td>
<td>Yes</td>
<td>0.008 ± 0.001</td>
<td></td>
</tr>
<tr>
<td>P{GSV6}42A18</td>
<td>No</td>
<td>0.014 ± 0.002</td>
<td></td>
</tr>
</tbody>
</table>

The table shows the OD480 values and p-values for different white sources and Mael? conditions. The images illustrate wild-type and *mael^{1031/100}* controls under various white sources.
Figure 2.21: mael is a suppressor of PEV

Representative images of fly eyes from \(\textit{mael}^{M391/r20} \) and wild-type control flies from different variegating strains. The source of \(\textit{white} \) is shown above the image. In \(\textit{wm}^{m4} \), \(\textit{white} \) is near pericentromeric heterochromatin. \(P\{\text{EPgy2}\}DIP16^{EY02625} \), \(P\{\text{EPgy2}\}EY08366 \), and \(P\{\text{GSV6}\}42A18 \) all contain \textit{mini-white}. \(P\{\text{EPgy2}\}DIP16^{EY02625} \) and \(P\{\text{EPgy2}\}EY08366 \) are inserted near the \(\textit{flam} \) and \(42AB \), respectively. \(P\{\text{GSV6}\}42A18 \) is inserted in \(42AB \). Below the images are the quantification of red pigment from the different strains by measuring the optical density at 480 nm (OD480). \(p \)-values compare pigment from \(\textit{mael}^{M391/r20} \) and control eyes with the same \(\textit{white} \) source.
Table 2.3

<table>
<thead>
<tr>
<th>Genotype</th>
<th>OD480</th>
<th>p-value vs control</th>
</tr>
</thead>
<tbody>
<tr>
<td>wm4; +; +</td>
<td>5×10⁻³ ± 2×10⁻³</td>
<td>control</td>
</tr>
<tr>
<td>wm4; +; mael<sup>M391/+</sup></td>
<td>0.49 ± 0.03</td>
<td>7.5×10⁻⁶</td>
</tr>
<tr>
<td>wm4; +; mael<sup>r20/+</sup></td>
<td>0.39 ± 0.05</td>
<td>1.5×10⁻⁴</td>
</tr>
<tr>
<td>wm4; +; mael<sup>M391/r20</sup></td>
<td>0.70 ± 0.03</td>
<td>2.9×10⁻⁶</td>
</tr>
<tr>
<td>wm4; *Su(var)*2-5<sup>5/+</sup>; +</td>
<td>0.60 ± 0.03</td>
<td>3.6×10⁻⁶</td>
</tr>
<tr>
<td>wm4; +; *Su(var)*3-9<sup>2/+</sup></td>
<td>0.74 ± 0.02</td>
<td>2.2×10⁻⁷</td>
</tr>
</tbody>
</table>
Table 2.3: *mael* is a strong suppressor of PEV

Table displaying the results of eye pigment assays measuring the OD480 from w^{m4} flies with different mutations. p-values for each genotype were calculated against the control, $w^{m4}; +; +$.

EXPERIMENTAL PROCEDURES

Dosophila Stocks

Mutant alleles, shRNA lines, GAL4-VP16 driver transgenes, and PEV lines have been described previously: mael^{M391}/r²⁰ (Clegg et al., 1997), rhi^{Q2066} (rhi²) and rhi^{KG00910} (rhi^{KG}) (Cogoni and Macino, 1999), piwi² (Cox et al., 1998), piwi^{Nt} (Klenov et al., 2011), arm^{72.1} (Cook et al., 2004), arm^{G728E} (Ozcan et al., 2015); shRNA lines targeting rhi (Bloomington #35171) and cuff (Bloomington #35182; Ni et al., 2011); nanos-GAL4 (Bloomington #4442), tj-GAL4 (DGRC #104055), and MTD-GAL4 (Bloomington #31777); w^{m4} (Bloomington #807; Muller, 1930), P{EPgy2}DIP16^{EY02625} (Bloomington #15577), and P{EPgy2}EY08366 (Bloomington #19874). The P{GSV6}42A18 transgene derives from P{GSV6}^{GSt3456} (Chendrimada et al., 2005) and is located at Chr2R: 6,460,398-6,460,415. The FLAG-Mael rescue strain was a gift from Toshie Kai (Pek et al., 2009). Unless otherwise noted, all flies were in the w¹¹¹⁸ background except w⁺; rhi^{KG} strains. Both the mael^{M391} and mael^{r20} alleles were outcrossed for five generations.

General Methods

Stocks and crosses were grown at 25°C. Before dissection, flies were isolated 0–3 days after eclosion and given yeast paste for two days. Fly ovaries were then dissected and collected in 1× phosphate-buffered saline (1×PBS) [pH 7.4] (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄) cooled on ice. Ovaries were then washed once with ice-cold 1×PBS. Total RNA was purified using mirVana (Life Technologies, #AM1561).

Unless otherwise stated, throughout this thesis, “wild-type control” samples matched the genotype of the mutant except for the mutant alleles. For example, the control for w¹¹¹⁸; P{GSV6}42A18/nos-gal4; mael^{M391}/r²⁰ was w¹¹¹⁸; P{GSV6}42A18/nos-gal4; + not w¹¹¹⁸; P{GSV6}42A18/++; +.
Western Blotting

Ovary lysate was prepared essentially as described in (Tomari et al., 2004). After 1×PBS was removed, the ovaries were homogenized with a plastic pestle (Fisher Scientific, #12141364) in ice-cold lysis buffer (for each 100 mg ovaries, 100 µl of 100 mM potassium acetate, 30 mM HEPES-KOH [pH 7.4], 2 mM magnesium acetate, 1 mM dithiothreitol (DTT)) containing 1 mM AEBSF (4-(2-aminoethyl)benzenesulfon fluoride hydrochloride; EMD Millipore, #101500), 0.3 µM Aprotinin (Bio Basic Inc, #AD0153), 20 µM Bestatin (Sigma Aldrich, #B8385), 10 µM E-64 ((1S,2S)-2-(((S)-1-((4-Guanidinobutyl)amino)-4-methyl-1-oxopentan-2-yl)carbamoyl)cyclopropanecarboxylic acid; VWR, #97063), and 10 µM Leupeptin (Fisher Scientific, #108975). Lysate was centrifuged at 13,000 × g for 30 min at 4°C and an equal volume of 2× loading dye (100 mM Tris-HCl [pH 6.8], 4% (w/v) SDS, 0.2% (w/v) bromophenol blue, 20% (v/v) glycerol, and 200 mM DTT) was added to the supernatant and heated to 95°C for 5 min.

The lysate was resolved through a 4–20% gradient polyacrylamide/SDS gel electrophoresis (Bio-Rad Laboratories, #5671085). After electrophoresis, proteins were transferred to a 0.45 µm pore polyvinylidene difluoride membrane (Millipore, #IPVH00010), the membrane blocked in Blocking Buffer (Rockland Immunochemicals, #MB-070) at room temperature for 1 h and then incubated overnight at 4°C in 1:1 Blocking Buffer:1×TBST [pH 7.5] (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.1% Tween 20 (v/v)) containing primary antibody (anti-GFP, Santa Cruz Biotechnology, #SC-9996, 1:2500 dilution; anti-α-Tubulin, DSHB, #12G10, 1:50,000 dilution, anti-Mael, gift from Julius Brennecke, 1:2500 dilution). The membrane was washed 3×5 min with 1×TBST [pH 7.5] at 25°C, incubated in 1:1 Blocking Buffer:1×TBST [pH 7.5] containing secondary antibody (donkey anti-mouse IRDye 680RD, LICOR Biosciences, #926-68072, 1:10,000 dilution; goat anti-mouse IRDye 800CW, LICOR Biosciences, #926-32210, 1:10,000 dilution) for 1 h at 25°C in the dark, and washed 5×10 min with
1×TBST [pH 7.5] at 25°C in the dark. The signal was detected using Odyssey Infrared Imaging System. Data were obtained from three independent biological replicates. Quantification was performed using Image Studio v4.0.21 (LI-COR). Mean values and standard deviation were compared between matching mael$^{M391/r20}$ and control flies. p-values were measured using an unpaired, two-tailed t-test.

General Overview of Computational Analyses

The analyses for sRNA-, RNA-, ChIP-, and GRO-seq libraries were performed using piPipes (v1.4; Han et al., 2014). All the libraries were mapped to the *D. Melanogaster* genome (dm6) obtained from the UCSC along with all the necessary annotations (http://hgdownload.cse.ucsc.edu/goldenPath/dm6/bigZips). Unique molecular identifiers (UMIs) were used as described in (Fu et al., 2018a). H3K4me3 ChIP-seq analysis used the psychENCODE pipeline (https://github.com/weng-lab/psychip_snakemake). Sequencing data are available from the NCBI BioProject Archive using accession number PRJNA448445.

Statistical Analysis

Statistical significance was computed using the R implementation (v3.4.0) of the student’s t-test. The `p.adjust` function was used to correct the p-values for multiple testing using false discovery rate method.

Small RNA-seq Library Preparation and Analysis

Small RNA libraries were constructed as described {Han et al., 2015, #29200}. Briefly, total RNA (50 µg) was purified by 15% urea polyacrylamide gel electrophoresis (PAGE), selecting for 18–30 nt small RNAs. Half of the purified sRNAs were oxidized with NaIO₄ was used to deplete miRNAs and enrich for siRNAs and piRNAs (Li et al., 2009a). To reduce ligation bias, a 3’ adaptor with three random nucleotides at its 5’ end was used.
(5′-rApp NNN TGG AAT TCT CGG GTG CCA AGG /ddC/-3′). 3′ adaptor was ligated using truncated, K227Q mutant T4 RNA Ligase 2 (made in lab) at 25°C for ≥16 h, sRNAs precipitated, and size selected as described in (Li et al., 2009a). To exclude 2S rRNA from sequencing libraries, 10 pmol 2S blocker oligo was added before 5′ adaptor ligation (Wickersheim and Blumenstiel, 2013). 5′ adaptor was added using T4 RNA ligase (Life Technologies, #AM2141) at 25°C for 2.5 h, followed by reverse-transcription using AMV reverse transcriptase (New England Biolabs, #M0277L) and PCR using AccuPrime Pfx DNA Polymerase (Invitrogen, #12344-024). Small RNA-seq libraries for three independent biological replicates were sequenced using a NextSeq500 (Illumina) to obtain 75 nt single-end reads.

Barcodes were sorted allowing one mismatch, and the 3′ adaptors, including the three random nucleotides, were identified and removed using the first ten nucleotides, allowing one mismatch. After adaptor removal, reads containing one or more nucleotides with Phred score <5 were discarded. sRNAs were first aligned to rRNA or miRNA hairpin sequences using Bowtie2 (v2.2.0; Langmead and Salzberg, 2012). Unaligned reads were mapped to the genome and 23–29 nt RNAs (fly piRNAs) were kept for analyses. The number of piRNAs overlapping each genomic feature (genes, transposons, and piRNA producing loci) were apportioned by the number of times they aligned to the genome.

Oxidized sRNA libraries are enriched with piRNAs. Therefore, to compare piRNA abundances across different oxidized libraries, we calibrated oxidized to unoxidized libraries. Because paired oxidized and unoxidized sRNA libraries were created from the same source, the subset of piRNA species should remain constant between the two libraries. First, unoxidized libraries were normalized to sequencing depth (ppm; parts per million). Next, we identified all the uniquely mapping piRNA species (piRNAs that shared the exact nucleotide sequences) that were shared between at least two of the three replicates of paired oxidized and unoxidized libraries. Finally, the calibration factor
was computed using the ratio between the sums of the normalized abundance in the unoxidized libraries and the abundances in the oxidized libraries:

\[
calibration_factor = \frac{\sum_{c} ppm_{c,\text{unox}}}{\sum_{c} counts_{c,\text{ox}}}
\]

Where \(c \) is the number of common piRNA species between oxidized and unoxidized libraries. To avoid potential bias caused by outliers, we did not include the piRNAs in the top 10\(^{th}\) percentile in the calculation. The number of copies for each piRNA in the oxidized library was finally calculated by multiplying by the calibration factor.

RNA-seq Library Preparation and Analysis

RNA-seq libraries were constructed as described in (Zhang et al., 2012) with a few modifications (Wu, Fu, and Zamore, manuscript in preparation). For ribosomal RNA depletion, RNA was hybridized in 10 µl with a pool of 186 rRNA antisense oligos (0.05µM/each; Morlan et al., 2012; Adiconis et al., 2013) with 10 mM Tris-HCl [pH 7.4] and 20 mM NaCl and heated to 95°C, then cooled at -0.1°C/sec to 22°C, and finally incubated at 22°C for 5 min. Ten units of RNase H (Lucigen, #H39500) were added and incubated at 45°C for 30 min in 20 µl containing 50 mM Tris-HCl [pH 7.4], 100 mM NaCl, and 20 mM MgCl\(_2\). RNA was then treated with 4 units DNase (Thermo Fisher, #AM2238) in 50 µl at 37°C for 20 min. After DNase treatment, RNA was purified using RNA Clean & Concentrator-5 (Zymo Research, #R1016). RNA-seq libraries were sequenced using a NextSeq500 (Illumina) to obtain 75 + 75 nt, paired-end reads.

Barcodes were sorted allowing one mismatch, and the 3’ adaptors, including the three random nucleotides, were identified and removed using the first ten nucleotides, allowing one mismatch. RNA-seq analysis was performed with piPipes (v1.4; Han et al., 2014). Briefly, RNAs were first aligned to rRNA sequences using Bowtie2 (v2.2.0; Langmead and Salzberg, 2012). Unaligned reads were then mapped using STAR to the fly genome (v2.3.1; Dobin et al., 2013). Counts were produced using the “strict” option on HTseq (v0.6.1; Anders et al., 2015).
ChIP-seq Library Preparation

ChIP-seq libraries were constructed as described in (Zhang et al., 2014) with a few modifications. Briefly, ~100 µl ovaries per library were first crosslinked with 2% formaldehyde for 10 min rotating at 25°C in Robb’s medium (100 mM HEPES [pH 7.4], 55 mM sodium acetate, 40 mM potassium acetate, 100 mM sucrose, 10 mM glucose, 1.2 mM MgCl₂, 1 mM CaCl₂, 1mM DTT, 1 mM AEBSF, 0.3 µM Aprotinin, 20 µM Bestatin, 10 µM E-64, and 10 µM Leupeptin). Crosslinking was quenched by adding Glycine to a final concentration of 120 mM and for 5 min rotating at 25°C. The ovaries were then washed twice with TBS (50 mM Tris-HCl [pH 7.5], 150 mM NaCl), and twice with ChIP lysis buffer (50 mM Hepes/KOH [pH 7.5], 140 mM NaCl, 1% [v/v] Triton X-100, 0.1% [w/v] Na-Deoxycholate, 0.1% [w/v] SDS).

Ovaries were then sonicated in sonication buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl [pH 8.0], 1mM DTT, 1 mM AEBSF, 0.3 µM Aprotinin, 20 µM Bestatin, 10 µM E-64, and 10 µM Leupeptin) using an E220 Evolution Focused-ultrasonicator (Covaris). The following sonication parameters were used:

- Duty cycle: 5%
- Intensity: 140 watts
- Cycles per burst: 200
- Temperature: <10°C
- Time: 20 min

The sonicated lysate was centrifuged at 13,000 × g for 15 min at 4°C. Supernatant was diluted 7-fold with dilution buffer (20 mM Tris-HCl [pH 7.5], 167 mM NaCl, 1.2 mM EDTA, 0.01% [w/v] SDS, 1% [v/v] Triton X-100, 1mM DTT, 1 mM AEBSF, 0.3 µM Aprotinin, 20 µM Bestatin, 10 µM E-64, and 10 µM Leupeptin) and incubated overnight rotating at 4°C with antibody (anti-Rhi or Pre-Immune Serum, gift from William Theurkauf, 20 µl; anti-HP1a, DSHB, #C1A9, 5 µg; normal mouse IgG, Abcam,
#ab188776, 5 µg; anti-H3K9me3, Abcam, #ab8898, 10.5 µg; anti-H3K4me3, Abcam, #ab8580, 10.5 µg; anti-Histone H3, Abcam #ab18521, 10.55 µg) conjugated to 100 µl of Dynabeads Protein A/G (Life Technologies, #10002D/#10004D).

The beads were then washed 2×5 min each with 500 µl of the following buffers: Wash buffer A (20 mM Tris-HCl [pH 8.0], 2 mM EDTA, 0.1% [w/v] SDS, 1%[v/v] Triton X-100, 150 mM NaCl), Wash buffer B (20 mM Tris-HCl [pH 8.0], 2 mM EDTA, 0.1% [w/v] SDS, 1%[v/v] Triton X-100, 500 mM NaCl), Wash buffer C (10 mM Tris-HCl [pH 8.0], 1 mM EDTA, 1% [v/v] NP-40, 1% [w/v] Na-deoxycolate, 0.25 M LiCl) and Wash buffer D (10 mM Tris-HCl [pH 8.0], 1 mM EDTA). All wash buffers also contained 1mM DTT, 1 mM AEBSF, 0.3 µM Aprotinin, 20 µM Bestatin, 10 µM E-64, and 10 µM Leupeptin. Beads were then treated with 20 µg/ml RNase A (Fisher Scientific, #FEREN0531) To reverse crosslink and remove protein, beads were incubated overnight at 65°C with 200 µg/ml Proteinase K (Life Technologies, #25530015) in 2×Proteinase K Buffer (200 mM Tris-HCl [pH 7.5], 2 mM EDTA [pH 8.0], and 1% SDS (w/v). Finally, DNA was purified using phenol:chloroform [pH 8.0] and the library was prepared by sequentially performing end-repair, A-tailing, Y-shaped adaptor ligation, and PCR amplification as described in in (Zhang et al., 2012).

Analysis of H3K9me3, HP1a, and Rhi ChIP-seq Libraries

Barcodes were sorted allowing one mismatch, and the 3’ adaptors, including the three random nucleotides, were identified and removed using the first ten nucleotides, allowing one mismatch. Reads were mapped on the genome using Bowtie2 (v2.2.0; Langmead and Salzberg, 2012). Unmapped reads were removed using SAMtools (v0.1.19; Li et al., 2009b; Li, 2011) and a mapping q-score of 10 was used to identify uniquely mapping reads. We used a 1 kbp sliding window with a 500 bp step over the genome to compute a signal for each chromosome. For each chromosome, the counts
for each bin were normalized using the total number of reads mapping to the chromosome.

Unique reads were also mapped to genomic features (genes, transposons, and piRNA producing loci) using STAR (v2.3.1; Dobin et al., 2013) and counts were produced using the “strict” option on HTseq (v0.6.1; Anders et al., 2015). Reads were normalized to sequencing depth.

Analysis of H3K4me3 ChIP-seq Libraries

psychENCODE pipeline was used to analyze H3K4me3 ChIP-seq libraries. Briefly, reads were mapped to the genome using BWA (Li and Durbin, 2009). SAMtools (v0.1.19; Li et al., 2009b; Li, 2011) and Picard Toolkit (http://broadinstitute.github.io/picard/Ioannidis, 2005) were used to remove improperly paired reads and PCR duplicates. MACS2 (Zhang et al., 2008b) was used to called peaks. We used BEDtools (v2.26.0; Quinlan and Hall, 2010) to merge peaks from all replicates for each genotype to create a consensus set of peaks. The number of reads overlapping each peak was computed using BEDtools and reads were normalized to sequencing depth.

GRO-seq Library Preparation and Analysis

GRO-seq was performed as described in (Wang et al., 2015) with a few modifications. Briefly, 0–2-day-old female flies were given yeast for 2 days before their ovaries were dissected. One hundred pairs of ovaries were homogenized in 350 µl HB35 buffer (15 mM HEPES KOH [pH 7.5], 10 mM KCl, 2.5 mM MgCl2, 0.1 mM EDTA, 0.5 mM EGTA, 0.05% [v/v] NP 40, 0.35 M sucrose, 1 mM DTT, 1 mM AEBSF, 0.3 µM Aprotinin, 20 µM Bestatin, 10 µM E-64, and 10 µM Leupeptin) with a Dounce homogenizer using pestle B (Sigma Aldrich, #D8938). Nuclei were purified by passing twice through sucrose cushions that contain 800 µL HB80 buffer (15 mM HEPES KOH [pH 7.5], 10 mM KCl, 2.5 mM MgCl2, 0.1 mM EDTA, 0.5 mM EGTA, 0.05% [v/v] NP 40, 0.80 M sucrose, 1
mM DTT, 1 mM AEBSF, 0.3 µM Aprotinin, 20 µM Bestatin, 10 µM E-64, and 10 µM Leupeptin) on the bottom phase and 350 µl HB35 buffer on the top. Nuclei were washed once with 500 µl freezing buffer (50 mM Tris-HCl, pH 8.0, 40% [v/v] glycerol, 5 mM MgCl₂, 0.1 mM EDTA, 1 mM dithiothreitol, 1 mM AEBSF, 0.3 µM Aprotinin, 20 µM Bestatin, 10 µM E-64, and 10 µM Leupeptin) and frozen in liquid nitrogen with 100 µL freezing buffer. To carry out nuclear run on assay, 100 µL freshly prepared reaction buffer (10 mM Tris-HCl, pH 8.0, 5 mM MgCl₂, 300 mM KCl, 1% [w/v] sarkosyl, 500 µM ATP, 500 µM GTP, 500 µM Br UTP, 2.3 µM CTP, 1 mM dithiothreitol, 20 U RNasin Plus RNase Inhibitor (Promega, #N2615) was added to nuclei and incubated at 30°C for 5 min. RNA was extracted using Trizol (Invitrogen, #15596). Nascent RNAs with Br UTP incorporated were enriched by immunoprecipitation using anti 5 bromo 2′ deoxyuridine antibody (Fisher Scientific, #50175223) as described (Shpiz and Kalmykova, 2014), followed by rRNA depletion using RNase H, fragmentation, and library construction as in RNA-seq library preparation (Zhang et al., 2012). Analysis was carried out using the RNA seq pipeline in piPipes.

Ping-pong Analysis

Ping-pong analysis was conducted as in (Zhang et al., 2011). In summary, for two piRNAs that were sufficiently complementary to each other at a particular 5′-to-5′ distance, a Z score was defined as the product of their abundances. The Ping-Pong Z_{10} score was then the difference of the score at the 5′-to-5′ distance of 10 nt and the mean scores of background distances, divided by the standard deviation of the scores of background distances, defined as distances of 0–9 and 11–20 nt. Two piRNAs were sufficiently complementary to each other when the nucleotides 2–10 of the first piRNA were perfectly paired with the second piRNA and there was at most one mismatch among positions 1 and 11–16 of the first piRNA. Genomic sequence adjacent to the second piRNA was used to determine complementarity when the 5′-to-5′ distance was
less than 16 nt. For analyses including multi-mappers, reads were apportioned by the number of times they aligned to the genome.

Phasing Analysis

Phasing analysis was done as in (Han et al., 2015). Briefly, sRNA reads were mapped to genome and rRNAs, tRNAs, and snoRNAs were removed. The Z_x score for a distance x between the 3′ end of one piRNA to the 5′ end of a downstream piRNA on the same genomic strand was calculated by the difference of the score at the distance x and the mean scores of background distances, divided by the standard deviation of the scores of background distances. When $x = 1$, the 5′ end is immediately downstream of the 3′ end (phasing). For analyses including multi-mappers, reads were apportioned by the number of times they aligned to the genome. To calculate Z_1, overlapping nts at position 2-20 were used as background to calculate Z scores.

Immunohistochemistry and Microscopy

Immunohistochemistry and microscopy was performed as described in (Wang et al., 2015). Anti-Rhi (1:100 dilution) was a gift from William Theurkauf (Zhang et al., 2014). Images presented in the same figure were acquired at the same settings.

Female Fertility Assay

Female fertility was tested as described in (Li et al., 2009a) with a few changes: Eight female virgins were mated to four Oregon R virgin males in a small cage with a 60 mm diameter grape juice agar plate dabbed with yeast paste at 25°C. At collection, all flies were collected <1-day post-eclosion. After two days, the first plate was discarded and replaced with a fresh plate. Plates were then changed and scored every subsequent day. The number of total eggs, eggs per female per day, and the dorsal appendage phenotype of embryos were scored every 24 h and the number of eggs that hatched
were scored 48 h after the plate was changed. Fertility was recorded for 12 days and at least two independent biological replicates were conducted for each genotype.

Eye Pigment Assay

Ethanol-based pigment extraction and quantification was performed as described in (Sun et al., 2004) with a few changes. Briefly, 10 females, 3–5 days post-eclosion, were collected and their heads photographed and/or dissected. Heads were homogenized with a plastic pestle (Fisher Scientific, #12141364) in 0.5 ml of 0.01 M HCl in ethanol. The homogenate was incubated at 4°C rotating overnight, warmed to 50°C for 5 min, and centrifuged at 13,000 × g for 10 min at 25°C. The supernatant was collected and the optical density at 480 nm (OD480) was measured. To accurately measure only the eye pigment, the OD480 for 10 female *w^1118* heads was subtracted from each measurement. Three independent biological replicates were collected for each genotype. Mean values and standard deviation were compared between matching *mael^M391/r20* and control flies. *p*-values were measured using an unpaired, two-tailed t-test.
ACKNOWLEDGEMENTS

We thank William Theurkauf for the Ago3 antibody; Julius Brennecke for the Mael antibody; Toshie Kai for the FLAG-Mael rescue fly; Cindy Tipping and Alicia Boucher for fly husbandry, and members of the Weng and Zamore laboratories for help, advice, discussions, and comments on the manuscript. This work was supported in part by National Institutes of Health grants P01HD078253 to Z.W. and P.D.Z. and GM65236 to P.D.Z.
CHAPTER III: Discussion
Mael Keeps Rhi in Check

Heterochromatin has long been considered repressive and inert. Therefore, it is not a surprise that *D. melanogaster* piRNA clusters—which are composed of transposons—are heterochromatic: transposon sequences are dangerous and need to be silenced. H3K9me3 and HP1a alone, however, are not sufficient to repress all transposons, as some transposons are active in the absence of Mael or Piwi despite little change in heterochromatin (Sienski et al., 2012; Klenov et al., 2014; Figures 2.5 and 2.7B). Furthermore, recent studies revealed that in the fly germline, dual-strand piRNA clusters are heterochromatic not just to repress coherent, promoter-initiated transcription, but to allow incoherent transcription mediated by Rhi (Le Thomas et al., 2014; Mohn et al., 2014; Zhang et al., 2014; Andersen et al., 2017). Like other HP1 proteins, Rhi acts like a scaffold protein and mediates the interaction of diverse proteins to couple non-canonical transcription of dual-strand piRNA clusters and the export of piRNA precursor transcripts to the cytoplasm to be processed into mature piRNAs (Zhang et al., 2012; Le Thomas et al., 2014; Mohn et al., 2014; Zhang et al., 2014; Chen et al., 2016; Hur et al., 2016; Andersen et al., 2017). Thus, Rhi allows flies to bypass the paradoxical problem that transposon sequences must be transcribed to create piRNAs that are then used to silence the same sequences from which they were created.

If Rhi is required for sequence-independent transcription initiation, then how does it also promote canonical transcription in dual-strand clusters? One possibility is that transcription, whether canonical or non-canonical, changes chromatin organization and allows promoters usually hidden by heterochromatin to be accessible to transcription factors (Mavrich et al., 2008; Parnell et al., 2008; Schones et al., 2008; Vermaak and Malik, 2009). Thus, Mael is required to prevent coherent, promoter-driven, transcription in dual-strand clusters that is enhanced by Rhi. Indeed, more H3K4me3 peaks were detected throughout piRNA clusters in *mael* mutant ovaries. While H3K4me3 is not an
activating signal per se, it is highly correlated with transcription start sites of canonically transcribed genes (Howe et al., 2017). Furthermore, the loss of Rhi suppressed canonical transcription improperly activated in dual-strand clusters of *mael* mutant ovaries (Figure 2.18). Therefore, our data are consistent with a model that Rhi is required to maintain a permissive transcriptional environment in dual-strand piRNA clusters that is amenable to both canonical and non-canonical transcription. Previously, the Brennecke lab proposed that Mael functions downstream of Piwi and H3K9me3 to transcriptionally repress transposons (Sienski et al., 2012). We would like to update this model and propose that Mael, guided by Piwi, is required to repress coherent, promoter-dependent transcription that is incidentally activated by Rhi (Figure 3.1).
In *D. melanogaster* germ cells, dual-strand piRNA cluster transcription is dependent on Rhi and associated proteins, which allow Pol II to initiate independent of promoters. One Rhi-associated protein, Cuff, stabilizes uncapped transcripts and suppresses splicing. While “incoherent,” Rhi-mediated transcription may expose promoters that would otherwise be hidden by heterochromatin. Piwi, guided by piRNAs, binds to nascent transcripts and targets different proteins to genomic loci to repress transcription. One of these proteins is Mael, which blocks promoter-driven transcription. Without Mael, canonical transcripts are produced from dual-strand clusters which can be translated into protein.
Mael-mediated transcription repression appears to only affect canonical transcription. Considering that wild-type ovaries do not show consistent Pol II ChIP-seq signal from dual-strand clusters (Mohn et al., 2014), and have few RNA- or GRO-seq reads from $P\{\text{GSV6}\}42A18$ with or without GAL4-VP16 (Figure 2.4), it seems likely that Mael represses transcription at an early step, such as formation of the pre-initiation complex (PIC). Because Moon forms an alternative TFIIA-TBP complex in ovaries consisting of TFIIA-S and TRF2 (Andersen et al., 2017), Mael might prevent formation of the PIC by inhibiting the binding of transcription factors and/or general transcription factors, such as TFIID/TBP, from binding to promoters. Our attempts to test the access of transcription factors to the $P\{\text{GSV6}\}42A18$ promoter by immunoprecipitating GAL4-VP16 have been unsuccessful. Looking into the interaction of general transcription factors and dual-strand clusters could reveal how non-canonical transcription is permitted yet canonical transcription is inhibited.

According to our model, a potential paradox exists when we compare $rhi^{2/\text{KG}}$ single mutants to $rhi^{2/\text{KG}}, \text{mael}^{M391/20}$ double mutant ovaries (Figures 2.17 and 2.18): if Mael is guided to its targets by Piwi-loaded piRNAs, then how does Mael repress canonical transcription in dual-strand piRNA clusters in $rhi^{2/\text{KG}}$ ovaries? Because embryonic Piwi is required to license dual-strand clusters (Akkouche et al., 2017), it is possible that maternally deposited Piwi also guides Mael to its targets early in development. Consistent with this hypothesis, germline knockdown of Mael, which depletes Mael in adult ovaries but does not affect maternally deposited Mael, did not cause the derepression of gfp (Figure 2.4A). These results suggest that Mael is only required in the early embryo to repress canonical transcription and therefore must leave a persistent signal at dual-strand clusters. The simplest explanation would be that Mael helps modify chromatin that is maintained throughout development. While Mael does not influence H3K9me3, HP1a, or Rhi, there are other possible chromatin modifications that could be altered in mael mutants. One caveat with knockdown experiments is that
low levels of Mael may be sufficient to repress canonical transcription. Furthermore, Mael germline depletion still led to transposon derepression and sterility (Czech et al., 2013). Therefore, Mael may have multiple roles at different developmental stages. We will explore this possibility in greater depth in the next section.

In summary, it appears that while Rhi allows flies to transcribe heterochromatic transposon sequences in dual-strand clusters, it is not without its hazards. Therefore, Mael is required to prevent incidental canonical, promoter-dependent transcription made possible by Rhi.

Mael is Required for Dual-Strand piRNAs

Although Mael is downstream of Piwi, mael\(^{M391/r20}\) ovaries have fewer piRNAs than control (Figure 2.10). In particular, piRNAs mapping to dual-strand clusters, including P\(\{GSV6\}\)42A18, were most affected. While the Brennecke lab also noted the loss of 42AB piRNAs in mael\(^{M391/Df1}\) mutant ovaries the loss of piRNAs was less severe than what we detected in mael\(^{M391/r20}\) mutant ovaries (Sienski et al., 2012). One possible explanation for this discrepancy could be differences in the fly strains used. While both studies used the mael\(^{M391}\) allele, the previous study used mael\(^{Df1}\), a deficiency which removes ~400 kbp from chromosome 3L. Other than mael, no known piRNA pathway genes are found in this region, although there are a few miRNAs, unannotated genes, and IncRNAs that are lost in mael\(^{Df1}\). Furthermore, both mael\(^{M391}\) and mael\(^{r20}\) were outcrossed for five generations for this study and therefore mael\(^{M391/r20}\) and mael\(^{M391/Df1}\) mutant flies may have different background mutations and transposon copy numbers. Finally, we made paired oxidized and unoxidized sRNA libraries from six independent mael\(^{M391/r20}\) mutant replicates with different transgene insertions. While there are some differences across replicates, overall, mael\(^{M391/r20}\) ovaries have fewer piRNAs than control.
At first glance, the cause of the loss of piRNAs in mael mutants was not obvious: both ping-pong and phasing appeared functional yet both processes occurred less in maelM391/r20 ovaries (Figures 2.11 and 2.13). The decrease in ping-pong pairs was likely partially caused by the loss of ago3 transcripts in maelM391/r20 mutant ovaries (Figure 2.12). The loss of Ago3 is unlikely to be the sole cause of the decrease in piRNAs, however, because piwi2/Nt ovaries express similar levels of ago3 mRNA yet have normal levels of cluster piRNAs (Table 2.1 and Figure 2.14B).

Another possibility for the loss of piRNAs in maelM391/r20 mutants is that Rhimediated transcription initiation and export of cluster transcripts become decoupled by canonical transcription. Although canonical and non-canonical transcription are mutually exclusive at a specific locus, both are likely occurring at separate loci across dual-strand clusters in maelM391/r20 mutant ovaries. This is supported by our findings that while there were fewer piRNAs and ping-pong is rarer, both were not completely lost without Mael. Furthermore, because canonical transcripts are capped, spliced, and polyadenylated, Cuff, which is thought to recognize the 5′ ends of piRNA precursors (Mohn et al., 2014; Zhang et al., 2014; Chen et al., 2016), may not be able to interact with canonical, coherent transcripts produced in maelM391/r20 ovaries. Without Cuff, two proteins required for export of piRNA precursors to the nuage, UAP56 and Thoc5, are not loaded and are no longer localized to the nucleus (Zhang et al., 2012; Hur et al., 2016; Zhang et al., 2014). Thus, rather than getting processed into piRNAs, coherent transcripts are translated into protein (Figure 2.4).

Finally, Mael may help transport dual-strand cluster transcripts to the nuage to be processed into mature piRNAs. According to this model, fewer piRNA precursors are available in the nuage to be processed into piRNAs in maelM391/r20 ovaries; explaining why we detected less ping-pong, phasing, and piRNAs. While maelM391/r20 mutants had more potential piRNA precursors (Figures 2.4, 2.5, and 2.6), to test this hypothesis, more experiments are needed to determine whether piRNA precursors are trapped in
the nucleus of \textit{mael}^{M391/r20} germ cells. Furthermore, consistent with this model, Mael was previously shown to be able to shuttle between the nucleus and the cytoplasm (Findley, 2003). In addition, the MAEL domain is predicted to be an RNA-binding domain (Zhang et al., 2008a) and interacted with ssRNA in vitro (Chen et al., 2015; Matsumoto et al., 2015). Interestingly, although Mael lacks classical nuclear localization or export signals, point mutations to the MAEL domain caused Mael to lose both nuclear and nuage localization and were unable to rescue transposon repression or fertility (Sienski et al., 2012). Finally, mouse MAEL immunoprecipitated with piRNA precursors and was also required for normal piRNA production (Castaneda et al., 2014). While our attempts at immunoprecipitating Mael and sequencing RNAs associated with it (RNA-IP) were unsuccessful, we cannot rule out the possibility that Mael participates in RNA transport or early in piRNA processing.

Although our data support Mael repressing transcription downstream of Piwi, due to the cyclical nature of the piRNA pathway, it can be difficult to discern the exact role and hierarchy for different factors through genetics. Therefore, it is possible that because \textit{mael}^{M391/r20} mutant ovaries have fewer piRNAs, Piwi cannot effectively repress transposons in the nuclei.

Mael Also Represses Transcription in the Soma

Our data are consistent with previous reports that Mael functions downstream of H3K9me3 to repress transposons in OSCs (Sienski et al., 2012). Similar to germ cells, in somatic follicle cells, Mael repressed canonical transcription in 42AB (Figure 2.20B). Furthermore, we found that Mael was strong suppressor of PEV (Figure 2.21 and Table 2.3). While Mael or Piwi is not readily detectable outside the ovaries, depleting Piwi in early embryos suppressed the variegation of a somatic reporter in adult flies (Gu and Elgin, 2013). Therefore, in early embryos, Piwi was required for establishing dual-strand clusters in the germline and heterochromatin in the soma (Gu and Elgin, 2013;
Akkouche et al., 2017). Similar to the germline, Piwi may also guide Mael to somatic targets early in development. Moreover, because Armi, Piwi, and Mael are all expressed in somatic follicle cells, Piwi may actively guide Mael to repress transcription of heterochromatic sequences in these cells.

In \(w^{m4} \) flies, the breakpoints that caused the chromosomal inversion of \(\text{white} \) are transposons. Furthermore, in \(w^{m4} \) revertant lines, in which \(\text{white} \) and nearby transposon sequences were reinverted back into euchromatin, the transposon sequences were still heterochromatic (Tartof et al., 1984). This suggests that heterochromatin was actively deposited at these transposon sequences and did not just propagate from the centromere. Therefore, in \(w^{m4}; \text{mael}^{M391/20} \) mutant eyes, it is possible that the derepression of transposons near \(\text{white} \) also caused an increase in \(\text{white} \) expression, thereby suppressing PEV. Historically, suppressors of PEV were often involved with the silencing properties of heterochromatin. Our data suggest that in flies, Mael represses transcription of heterochromatic sequences inside and outside the gonads.

A Conserved Role for Mael

A role for Mael outside the adult gonads that may or may not be piRNA-dependent is not surprising because the MAEL domain is conserved in protists, which have neither gonads nor piRNAs (Zhang et al., 2008a). In protists, the MAEL domain is an active nuclease and it is interesting to speculate that Mael might have a conserved role repressing unwanted transcripts (Chen et al., 2015). In mice, while the MAEL domain has lost its catalytic residues, it associates with modified P-bodies, distinct cytoplasmic loci consisting of many enzymes involved in mRNA turnover, and thus may also be involved with post-transcriptional regulation (Zhang et al., 2008a; Aravin et al., 2009; Kulkarni et al., 2010).

Although *D. melanogaster* does not have somatic piRNAs, most arthropods spanning Chelicerata (*Parasteatoda tepidariorum*; common house spider), Myriapoda
(Strigamia maritima; coastal European centipede), and Insecta (including Drosophila virillis, fruit fly; Aedes aegypti, yellow fever mosquito; and Trichoplusia ni [T. ni], cabbage looper) have both somatic piRNAs and Mael homologs (Zhang et al., 2008a; Fu et al., 2018b; Lewis et al., 2018). If these arthropods also express somatic Mael, PIWI proteins may actively guide Mael to repress transposons outside the gonads.

Although T. ni express somatic piRNAs, it is an especially attractive model organism to study germline piRNAs because the Hi5 cell line, derived from T. ni ovarian germ cells, expresses two PIWI proteins and produces piRNAs that show significant ping-pong signatures (Granados et al., 1986; Fu et al., 2018b). Furthermore, because cabbage loopers do not have Rhi, Del, or Cuff orthologs, all of which are poorly conserved, T. ni may provide a more universal insect model for piRNA cluster transcription (Fu et al., 2018b). Finally, the dipteran, D. melanogaster, and the lepidopteran, T. ni, diverged over 300 million years ago (Reuter et al., 2009). Therefore, Hi5 cells would make an ideal system to test whether transcription repression by Mael is conserved in other insects.

In addition to the loss of piRNAs, mael mutant mice, like flies, are also sterile and cannot repress germline transposons (Costa et al., 2006; Soper et al., 2008; Aravin et al., 2009; Castaneda et al., 2014). Furthermore, in both flies and mice, Mael does not play a major role in heterochromatin formation, as the loss of mouse MAEL did not affect DNA methylation of L1 elements (Aravin et al., 2009). Despite these similarities, there are some differences as well. While fly Mael does not appear to interact with other piRNA pathway factors (Sato et al., 2011), mouse MAEL colocalizes and associates with several RNA metabolism factors and piRNA pathway components in the cytoplasm including piRNA cluster transcripts and transposons (Aravin et al., 2009; Castaneda et al., 2014). Furthermore, mouse MAEL has yet to be linked to transcriptional repression and current evidence from mouse suggests that MAEL is involved with the processing of piRNA precursors (Soper et al., 2008; Aravin et al., 2009; Castaneda et al., 2014).
Although a cytoplasmic role for Mael in the piRNA pathway has yet to be defined in flies, in both organisms, Mael prevents transposon sequences normally repressed by heterochromatin from becoming expressed.

Conclusions: “There is Nothing New Under the Sun”

Life on Earth is astonishingly diverse, yet all organisms still face a common set of problems. While evolution may take different paths to reach a solution, we see similar motifs used over and over. One such theme is how species maintain their genomes and protect themselves from dangerous and mutagenic elements. In this thesis, I hoped to have expanded the knowledge of how *D. melanogaster* represses transposons using a variation of the common trope: transcriptional repression through sRNAs. While sRNAs are extremely flexible, they must be made from sequences that are similar to those that must be silenced. Thus, another common problem many organisms face is how to silence a sequence when the transcription of the sequence is required for silencing?

Like *A. thaliana* and *S. pombe*, *D. melanogaster* uses heterochromatin to transcriptionally repress potentially harmful DNA sequences. To bypass heterochromatic silencing, *A. thaliana* uses special polymerases, *S. pombe* transcribes these sequences at specific times in the cell cycle, and *D. melanogaster* can initiate transcription independent of promoters. Because transcripts from these sequences are potentially dangerous, they are turned into dsRNA in *A. thaliana* and *S. pombe* and are incoherent in *D. melanogaster*. As an additional safeguard, all three organisms couple transcription of these sequences to sRNA processing. Finally, a common theme in sRNA-mediated transcriptional repression is that it is a self-reinforcing loop with the ability to spread to neighboring DNA. After sRNAs find their targets, they can initiate heterochromatin formation which then brings additional components to produce more sRNAs. Thus, despite the differences between these three organisms spanning across three kingdoms of life, they have all evolved parallel methods to repress transcription.
While the end results may be similar, “the devil is in the detail,” and evolution has taken fascinating paths in each of these individual mechanisms. In *D. melanogaster*, one such “detail” is the enigmatic protein, Maelstrom. In this dissertation, we showed that Mael is required to repress canonical transcription in dual-strand piRNA clusters. Without Mael, promoters inside dual-strand clusters become activated and potentially dangerous transposons are transcribed. We also expand upon the finding that heterochromatin is not always silent and provide additional details into how transcription in heterochromatin is regulated.

Furthermore, we found that Mael is required to produce dual-strand piRNAs. Despite the increase in cluster transcription, without Mael, canonical transcripts are not processed into piRNAs, hinting at a possible selective mechanism by which germ cells differentiate piRNA precursors from endogenous mRNAs.

Finally, using fly strains from Muller’s original PEV lines and newer tools to manipulate the genome, we showed that Mael also represses canonical transcription outside the germline and provided new insight into how heterochromatic domains are silenced in somatic tissue.

While the destructive potential of transposons must be contained, transposons also play a uniquely generative role in genome evolution as well. Perhaps epigenetic mechanisms, such as the piRNA pathway, may not have evolved to repress transposons, but rather to allow the accumulation of transposons (Fedoroff, 2012). The fingerprints of transposons can be seen throughout the eukaryotic genome, ranging from co-opted genes to the expansion of the eukaryotic genome. Thus, Maelstrom may actually be a guiding force in the evolution of our genome.

Chen, K. M., Campbell, E., Pandey, R. R., Yang, Z., McCarthy, A. A., and Pillai, R. S. (2015). Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists. RNA

Dufourt, J., Dennis, C., Boivin, A., Gueguen, N., Theron, E., Goriaux, C., Pouchin, P.,
element piRNA-mediated silencing during Drosophila oogenesis. Nucleic Acids Res
cells of the rat. Anat Rec 178, 731-757.
Eissenberg, J. C., James, T. C., Foster-Hartnett, D. M., Hartnett, T., Ngan, V., and Elgin, S. C.
(1990). Mutation in a heterochromatin-specific chromosomal protein is associated with
suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A
87, 9923-9927.
associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on
protein 1 binds transgene arrays. Chromosoma 107, 286-292.
colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130, 859-
871.
in RNA-seq and small RNA-seq using unique molecular identifiers.
(2018b). The genome of the Hi5 germ cell line from. Elife 7,

silencing and spreading. Science 313, 1134-1137.

(1994). A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657-
668.

end capping quality control mechanism and an unexpected link of capping to pre-mRNA
processing. Mol Cell 50, 104-115.

Jinek, M., and Doudna, J. A. (2008). A three-dimensional view of the molecular machinery of

CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis.
Mol Cell 6, 705-713.

Kaminker, J. S., Bergman, C. M., Kronmiller, B., Carlson, J., Svirskas, R., Patel, S., Frise, E.,
transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective.
Genome Biol 3, RESEARCH0084.

RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309,
467-469.

Kawamura, Y., Saito, K., Kin, T., Ono, Y., Asai, K., Sunohara, T., Okada, T. N., Siomi, M. C.,
453, 793-797.

Meehan, R. R., Kao, C. F., and Pennings, S. (2003). HP1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. EMBO J 22, 3164-3174.

