Molecular Mechanisms Underlying Synaptic Connectivity in C. elegans

Alison M. Philbrook
University of Massachusetts Medical School
MOLECULAR MECHANISMS UNDERLYING SYNAPTIC CONNECTIVITY IN C. ELEGANS

A Dissertation Presented

By

Alison Philbrook

Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

MARCH 2nd, 2018

NEUROBIOLOGY
MOLECULAR MECHANISMS UNDERLYING SYNAPTIC CONNECTIVITY IN C. ELEGANS

A Dissertation Presented
By
Alison Philbrook

This work was undertaken in the Graduate School of Biomedical Sciences Program in Neuroscience

Michael Francis, Ph.D., Thesis Advisor

Vivian Budnik, Ph.D., Member of the Committee

Kensuke Futai, Ph.D., Member of the Committee

Andrew Tapper, Ph.D., Member of the Committee

Kenneth Norman, Ph.D., External Member of the Committee

Claire Bénard, Ph.D., Chair of Committee

Mary Ellen Lane, Ph.D.,
Dean of the Graduate School of Biomedical Sciences

March 2nd, 2018
ACKNOWLEDGEMENTS

First, I would like to thank my mentor, Mike, for his endless support during my graduate studies. His constant encouragement and enthusiasm has been a driving force for me. I am truly appreciative of all the time he spent sitting through practice talks, editing my writing, or meeting with me to discuss my work. He has provided me with so many opportunities, and I feel fortunate to have had such an exceptional mentor.

Next, I want to thank all members, past and present, of the Francis lab. It is inspiring to work in an environment where everyone is passionate about their research, and even more inspiring to work with such an amazingly supportive group of people. I am grateful for all of the pow-wows and coffee breaks, and our festive celebrations of birthdays and holidays. You all make it exciting to come into lab each day.

I would also like to thank my committee members past and present for all of their advice and helpful feedback about my project. I am extremely grateful to have had Claire Bénard as my Chair over the years, who has gone out of her way to provide me with guidance and advice. Claire has helped me to become more confident as a scientist and I can’t thank her enough for her continued support. I would also like to thank my committee members Vivian Budnik, Kenny Futai, and Andrew Tapper for encouraging me to pursue my goals and to not be afraid of presenting my science.

Thank you to the wonderful FABB group for creating an environment of scientific discussion that is lively and supportive, and to the entire Neurobiology department, for creating a fantastic place to work.

Last but certainly not least, thank you especially to my family and friends, who have always provided unconditional support. To my mom: thank you for your endless patience with me. You were always willing to listen to all of the ups and downs of grad school. To my dad, who possesses a tireless work ethic, and has inspired me to work hard and stay focused. To Jason, who has been by my side every step of the way and is always supportive of my goals, lifting my spirits whenever I have doubts or need an extra boost. And finally to my sister Lauren, who is my role model in all aspects of life. I am lucky to be surrounded by a loving group of people and I thank you all.
ABSTRACT

Proper synaptic connectivity is critical for communication between cells and information processing in the brain. Neurons are highly interconnected, forming synapses with multiple partners, and these connections are often refined during the course of development. While decades of research have elucidated many molecular players that regulate these processes, understanding their specific roles can be difficult due to the large number of synapses and complex circuitry in the brain. In this thesis, I investigate mechanisms that establish neural circuits in the simple organism C. elegans, allowing us to address this important problem with single cell resolution in vivo.

First, I investigate remodeling of excitatory synapses during development. I show that the immunoglobulin domain protein OIG-1 alters the timing of remodeling, demonstrating that OIG-1 stabilizes synapses in early development but is less critical for the formation of mature synapses. Second, I explore how presynaptic excitatory neurons instruct inhibitory synaptic connectivity. My work shows that disruption of cholinergic neurons alters the pattern of connectivity in partnering GABAergic neurons, and defines a time window during development in which cholinergic signaling appears critical. Lastly, I define novel postsynaptic specializations in GABAergic neurons that bear striking similarity to dendritic spines, and show that presynaptic nrx-1/neurexin is required for the development of spiny synapses. In contrast, cholinergic connectivity with their other postsynaptic partners, muscle cells, does not require nrx-1/neurexin. Thus, distinct molecular signals govern connectivity with these two cell types. Altogether, my
findings identify fundamental principles governing synapse development in both the developing and mature nervous system.
TABLE OF CONTENTS

Title Page ... i

Signature Page ... ii

Acknowledgements ... iii

Abstract .. iv

Table of contents ... vi

List of tables ... ix

List of figures .. x

List of copyrighted materials produced by the author .. xiii

List of symbols, abbreviations, or nomenclature ... xiv

Preface ... xvii

Chapter I: General Introduction .. 1

 Establishing synaptic connectivity: a multistep process .. 2

 Synapse assembly and circuit formation ... 2

 Synapse formation at the neuromuscular junction .. 3

 Developing excitatory synapses in the central nervous system 6

 The role of neuronal activity on inhibitory synapse formation 11

 Synaptic refinement .. 13

 Developmental synaptic remodeling .. 13

 Plasticity of mature synapses ... 19

 Synapse formation and refinement drive synaptic specificity .. 21

 C. elegans as a model system to study synaptic connectivity 22
List of tables

Table 3.1 C. elegans strains used in this work... 123

Table 4.1 Candidate-based genetic screen... 148

Table 4.2 C. elegans strains used in this work.. 193

Table 5.1 Extracellular binding partners for neurexins ... 233
List of figures

Figures in Chapter I

Figure 1.1 Schematic of DD remodeling in C. elegans .. 16
Figure 1.2 The C. elegans motor circuit ... 25
Figure 1.3 Overview of AChRs in the C. elegans motor circuit 28

Figures in Chapter II

Figure 2.1 Postsynaptic AChRs remodel in DD motor neurons independent of ablating the connecting commissure ... 37
Figure 2.2 OIG-1 inhibits postsynaptic remodeling of DD motor neurons 39
Figure 2.3 OIG-1 inhibits postsynaptic remodeling of VD motor neurons 43
Figure 2.4 irx-1 functions autonomously in GABAergic motor neurons to promote postsynaptic remodeling ... 44
Figure 2.5 A transcriptional cascade involving UNC-55/COUP-TF and IRX-1/Iroquois regulates oig-1 expression in GABA neurons 49
Figure 2.6 Cell-autonomous expression of OIG-1 blocks postsynaptic remodeling in GABA neurons .. 54
Figure 2.7 OIG-1 may stabilize AChRs through indirect interactions 56
Figure 2.8 OIG-1 inhibits presynaptic remodeling in GABA motor neurons 58

Figures in Chapter III

Figure 3.1 Cholinergic neuromuscular transmission is impaired in unc-3(e151) mutants ... 81
Figure 3.2 unc-3 mutation causes defects in GABAergic transmission and iAChR clustering in GABAergic neurons ... 85
Figure 3.3 Analysis of unc-3 expression and madd-4(ok2854) ... 86
Figure 3.4 Gross morphological development of GABA motor neurons and muscles does not require cholinergic innervation.

Figure 3.5 GABA neuron morphology is grossly normal in unc-3 mutants.

Figure 3.6 Impaired cholinergic innervation alters the distribution and size of GABA synapses.

Figure 3.7 GABA synapse distribution is altered with disruption of cholinergic neurons.

Figure 3.8 Expression of an unc-3 minigene construct rescues synapse and movement defects in unc-3(e151) mutants.

Figure 3.9 Vesicular release from cholinergic motor neurons shapes GABA synaptic outputs.

Figure 3.10 Cell specific expression of tetanus toxin in cholinergic neurons alters neuronal activity but not neuronal organization.

Figure 3.11 Reduced cholinergic transmission alters GABA synapse density and localization.

Figure 3.12 Neuronal development and locomotory behavior in cha-1(y226) mutant animals.

Figure 3.13 Acute reduction of cholinergic transmission during adulthood produces reversible decreases in GABA synapse size.

Figure 3.14 Reduced cholinergic neurotransmission during a period of GABAergic synaptogenesis alters GABAergic synaptic connectivity.

Figures in Chapter IV

Figure 4.1 Characterization of post-synaptic specializations in the DD1 neuron.

Figure 4.2 Spine-like protrusions are exclusively located on DD dendrites and increase developmentally in a correlated manner with ACR-12 receptor clusters.

Figure 4.3 Heteromeric ACR-12 receptors are localized at the cell surface opposite sites of release.
Figure 4.4 Mutations in specific AChR subunits and accessory proteins disrupt ACR-12 synaptic delivery and clustering ... 142

Figure 4.5 nrx-1/neurexin is required for AChR localization in GABAergic motor neurons, but not muscles .. 149

Figure 4.6 Loss of functional nrx-1 disrupts ACR-12 AChR localization, but nrx-1 is not required for AChR membrane insertion or synaptic remodeling .. 151

Figure 4.7 Neurexin is not essential for AMPAR localization or synaptic vesicle clusters in cholinergic motor neurons ... 153

Figure 4.8 Synaptic architecture is dependent on nrx-1/neurexin .. 156

Figure 4.9 NRX-1 is required for spine outgrowth, and NRX-1 function at synapses is dependent on its intracellular PDZ binding domain ... 157

Figure 4.10 Cell-specific expression of neurexin in cholinergic motor neurons restores ACR-12 localization to synapses ... 160

Figure 4.11 NRX-1 acts presynaptically to regulate spine outgrowth, and loss of nlg-1 or acr-12 does not affect NRX-1 localization to synapses ... 162

Figure 4.12 Transcriptional control of neurexin expression in ACh motor neurons by UNC-3 .. 166

Figure 4.13 nrx-1 mutants show functional defects in synaptic connectivity 172

Figure 4.14 nrx-1 mutants have defects in transmission onto GABAergic neurons and abnormalities in dorsoventral bending ... 174

Figure 4.15 Distinct molecular scaffolds direct partner-specific connectivity 176

Figures in Chapter V

Figure 5.1 Factors that regulate the timing of postsynaptic remodeling 205

Figure 5.2 Toolkit to study the incorporation of VD GABAergic neurons into the motor circuit ... 214
List of copyrighted materials produced by the author

A figure in Chapter I (General Introduction) has been previously published in a book chapter written by the author and is presented in accordance with copyright law.

Chapter II represents work previously published and is presented in accordance with copyright law.

*co-first authors

Chapter III represents work previously published and is presented in accordance with copyright law.

doi:10.1242/dev.141911
*co-first authors
List of symbols, abbreviations, or nomenclature

ACh: acetylcholine
AChR: acetylcholine receptor
ADAMTS: disintegrin and metalloprotease with thrombospondin repeats
ATR: all-trans-retinal
AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
BDNF: brain-derived neurotrophic factor
CaMKII: Ca\(^{2+}\)/calmodulin-dependent protein kinase II
CAS K: calcium/calmodulin-dependent serine protein kinase
ChAT: choline acetyltransferase
CNS: central nervous system
COE: Collifer/Olf/EBF
COUP-TF: chicken ovalbumin upstream promoter transcription factor
DEG/ENaC: degenerin/epithelial sodium channel
EBF: early B cell factor
EGF: epidermal growth factor
E/I balance: excitation/inhibition balance
EM: electron microscopy
FRAP: fluorescence recovery after photobleaching
GABA: γ-aminobutyric acid
GFP: green fluorescent protein
iAChR: ionotropic acetylcholine receptor
Ig: immunoglobulin
IgSF: immunoglobulin superfamily
L1-L4: first, second, third, and fourth larval stages
L-AChR: levamisole-sensitive acetylcholine receptor
LNS: laminin/neurexin/sex hormone-binding globulin
Lrp4: low-density lipoprotein receptor-related protein 4
LRRTM: leucine-rich repeat transmembrane
MB: mushroom body
mEPSC/IPSC: miniature excitatory/inhibitory postsynaptic current
Mint: Munc18 interacting protein
MuSK: muscle-specific kinase
nAChR: nicotinic acetylcholine receptor
NGM: nematode growth media
NMDA: N-methyl-D-aspartate
NMJ: neuromuscular junction
Npas4: Neuronal Per Arnt Sim domain protein 4
PDZ: postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (zo-1)
PSD: postsynaptic density
smFISH: single molecule fluorescent in situ hybridization
TetTx: tetanus toxin light chain
TGFβ: transforming growth factor beta
TM: transmembrane
TrkB: tropomyosin receptor kinase B
vAChT: vesicular acetylcholine transporter
Veli: vertebrate LIN-7 homolog
Preface

The work presented in Chapter II is previously published.

*co-first authors

The work presented in Chapter III is previously published.

*co-first authors

The work presented in Chapter IV represents unpublished work that is under review at eLIFE.

Contributions of the authors are addressed at the beginning of each chapter.
CHAPTER I

General Introduction
Establishing synaptic connectivity: a multistep process

Synapses are specialized junctions that serve as communication nodes between neurons in the brain. Information is transferred between connected neurons, ultimately forming neural circuits that are thought to underlie behavior. The correct wiring of appropriate synaptic partners is essential for nervous system function, and understanding the mechanisms that drive this process remains an important question in neurobiology.

The formation of synaptic connections requires a series of steps including neurogenesis, the guidance of axons to their target cells, and the assembly and organization of synaptic machinery. Following initial synapse establishment, connections can be further remodeled or refined. In this thesis, I examine how genetically encoded and activity-dependent processes shape the construction and refinement of neural circuits. Through the investigation of synaptic connectivity in *C. elegans*, this work advances our understanding of the processes governing neural circuit wiring in the brain.

Synapse assembly and circuit formation

Circuit formation involves a series of developmental events. My thesis work specifically examines the molecular mechanisms driving synaptic connectivity following neurogenesis and axon pathfinding, two processes that are critical for early nervous system development (Reviewed in (Chilton, 2006; Dickson, 2002; Gotz and Huttner, 2005; Martynoga et al., 2012; Raper and Mason, 2010; Robichaux and Cowan, 2014)). After spatiotemporal cues guide axons to their target areas, many molecular components
act to coordinate the formation of a synapse. Regulatory signals orchestrate the precise wiring of synaptic connections, enabling synapse specificity. Neuronal activity and transmitter release can also help shape the process of synapse formation. While studies of the vertebrate neuromuscular junction (NMJ) have identified an agrin/Lrp4/MuSK pathway that guides synapse development, the mechanisms governing central synapse formation are less well understood. In this thesis, I investigate how excitatory synapses onto neurons and muscle are differentially established in the model organism C. elegans. Additionally, I examine how neuronal activity shapes the formation of inhibitory synapses, a process that helps maintain excitatory/inhibitory balance in the brain. Together, this work aims to identify conserved mechanisms that shape the development of neural circuits.

Synapse formation at the neuromuscular junction

Studies at the vertebrate neuromuscular junction, a large chemical synapse that is experimentally easily accessible, have helped elucidate general principles of synaptogenesis. The NMJ is a synapse between motor neurons and skeletal muscle fibers, and uses the neurotransmitter acetylcholine (ACh) to mediate muscle contraction. During development, acetylcholine receptors (AChRs) initially prepattern in the muscle (Lin et al., 2001; Yang et al., 2001), and the arrival of the motor neurons induces the differentiation of the postsynaptic specialization (Mahan, 1990; Sanes and Lichtman, 2001). Specifically, motor neuron derived agrin acts to stabilize AChRs in muscle through the agrin/Lrp4/MuSK pathway. Agrin binds to Lrp4 (low-density lipoprotein
receptor-related protein 4), which forms a complex with the receptor tyrosine kinase MuSK (muscle-specific kinase) to stimulate neuromuscular synapse formation through the effector protein rapsyn (Apel et al., 1997; DeChiara et al., 1996; Gautam et al., 1995; Gillespie et al., 1996; Kim et al., 2008b). These events in turn trigger the assembly of the presynaptic terminal, including its alignment with the postsynaptic domain (DeChiara et al., 1996; Gautam et al., 1996). Glia-derived signals, such as transforming growth factor β (TGFβ) (Feng and Ko, 2008), and Wnt signaling (Kim et al., 2003; Messeant et al., 2017) also play critical roles in NMJ development.

Excitatory synapse development at the C. elegans NMJ similarly involves a well-characterized scaffold. C. elegans NMJs form en passant, where muscles send projections called muscle arms to form synapses with motor neuron axons (Sulston and Horvitz, 1977; White et al., 1986). Two types of AChRs, levamisole-sensitive acetylcholine receptors (L-AChRs) and homomeric ACR-16 receptors, mediate excitatory signaling onto muscle (Boulin et al., 2008; Francis et al., 2005; Richmond and Jorgensen, 1999; Touroutine et al., 2005).

The clustering of L-AChRs requires postsynaptic scaffolding proteins expressed in muscle and presynaptic secretion of a critical signaling component, similar to the expression of postsynaptic Lrp4/MuSK and motor neuron secretion of agrin in vertebrates. Specifically, the transmembrane protein LEV-10 localizes postsynaptically in C. elegans muscle (Gally et al., 2004), and this protein physically interacts with the muscle-secreted extracellular protein LEV-9 to regulate L-AChR clustering (Gendrel et al., 2009). The single immunoglobulin (Ig) domain protein OIG-4 is also secreted from
muscle cells and acts to stabilize the L-AChR/LEV-9/LEV-10 complex (Rapti et al., 2011). Interestingly, LEV-10 contains an LDLa (low-density lipoprotein receptor domain class A) domain, similar to LDLa domain repeats in the vertebrate agrin receptor Lrp4 (Gally et al., 2004; Zong et al., 2012). Following this work, a screen for abnormal L-AChR distribution identified the A D A M T S-like protein M A D D-4, the C. elegans ortholog of Punctin-1 and Punctin-2 (Pinan-Lucarre et al., 2014). M A D D-4 is secreted presynaptically from cholinergic motor neurons to localize AChRs at excitatory NMJs, and in the absence of madd-4, L-AChRs are localized in extrasynaptic regions of the muscle cells (Pinan-Lucarre et al., 2014). While agrin directly binds to postsynaptic Lrp4 in vertebrates (Kim et al., 2008b), the relationship between M A D D-4 and the LEV-9/LEV-10 complex is unclear. The extrasynaptic and remaining synaptic L-AChR clusters in madd-4 mutants still contain LEV-9 and LEV-10, arguing against a direct interaction (Pinan-Lucarre et al., 2014). Disruption of L-AChR clustering does not alter the distribution of presynaptic boutons, suggesting that pre- and post-synaptic development can be genetically uncoupled (Gally et al., 2004; Gendrel et al., 2009; Pinan-Lucarre et al., 2014; Rapti et al., 2011).

The clustering of A C R-16 homomeric receptors requires the R or receptor tyrosine kinase C A M-1 (Francis et al., 2005). C. elegans C A M-1 shares homology with M u S K (Forrester et al., 1999; Francis et al., 2005), a critical organizer at the vertebrate NMJ, suggesting that this protein may act to regulate synapse formation across systems. Cholinergic synaptic vesicle clustering is also disrupted in cam-1 mutants; however, it is unclear whether these alterations are secondary to disruptions in A C R-16 receptor
clustering or whether they result from CAM-1 requirements in pre- and post-synaptic development independently (Francis et al., 2005). Similar to the case in vertebrates, Wnt signaling plays critical roles at the Drosophila (Mathew et al., 2005; Packard et al., 2002) and C. elegans (Babu et al., 2011; Jensen et al., 2012; Klassen and Shen, 2007) NMJs. In C. elegans, photoconversion experiments demonstrated that Wnt signaling, mediated by CAM-1 (in a heteromeric complex with LIN-17/Frizzled), regulates the translocation of ACR-16 receptors to synapses (Jensen et al., 2012).

In the central nervous system (CNS), similar principles guide excitatory synapse formation, such as diffusible presynaptic signaling molecules and Wnt signaling. Additionally, cell-adhesion molecules play a predominant role in directing synapses, coordinating pre- and post-synaptic assembly. However, the mechanisms of central synapse formation are less well understood due to the complexity of synaptic connections and heterogeneity of cell types.

Developing excitatory synapses in the central nervous system

Most excitatory synapses in the brain are glutamatergic and they occur on the surface of membranous protrusions called dendritic spines. The first description of these structures emerged in 1888, when Santiago Ramón y Cajal examined the cerebellum of birds using Golgi staining and observed that the surfaces of Purkinje cells were covered with “espinas” (i.e. “thorns” or “spines”) (Cajal, 1888). Since then, an explosion of literature has supported the idea that spines are present on many neurons, including pyramidal neurons of the neocortex and hippocampus (Cajal, 1891; Harris and Stevens,
granule cells in the olfactory cortex (Woolf et al., 1991), and GABAergic neurons in the striatum (Smith and Bolam, 1990; Wilson et al., 1983).

Dendritic spines can be generally characterized as actin-filled structures (Matus et al., 1982) that anchor the postsynaptic density (PSD) opposite presynaptic inputs, allowing for rapid transmission from cell to cell (Gray, 1959). Both AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) type glutamate receptors are present in the PSD (Aoki et al., 1994; Martin et al., 1993). Spines are categorized based on their morphology, including mushroom-shaped, branched, thin, and stubby spines (Harris et al., 1992; Peters and Kaiserman-Abramof, 1970). Many, but not all, dendritic spines are formed after thin, transient structures called filopodia evolve into spines containing functional synapses (Ziv and Smith, 1996). In early development, dendritic spine density increases, followed by a period of pruning of inappropriate connections (Markus and Petit, 1987; Rakic et al., 1986; Zuo et al., 2005). A host of factors have been identified as regulators of spine development and stabilization, including proteins that bind to or modify the actin cytoskeleton such as spinophilin and small GTPases (Feng et al., 2000; Luo et al., 1996).

To form glutamatergic synapses on dendritic spines, extracellular molecules and their receptors help guide the navigation of axons to appropriate target regions. Many of these guidance-related cues also appear to play a secondary role in synapse formation, such as BDNF/TrkB signaling, which acts to increase synapse number in the hippocampus by increasing the probability of cell-cell interactions (Luikart et al., 2008). Developing glutamatergic synapses contain a large number of diverse proteins, and many
of these molecules must work in concert to build a synapse. Secreted proteins such as Wnts (Davis et al., 2008; Hall et al., 2000; Sahores et al., 2010) and glia-derived signals such as thrombospondins (Christopherson et al., 2005) help regulate synapse formation in multiple regions of the CNS. At the postsynapse, the widely-expressed proteins Homer and Shank act as scaffolding proteins for the PSD and play critical roles in spine morphogenesis (Hayashi et al., 2009; Sala et al., 2001). Additionally, several cell adhesion molecules have been implicated in synapse assembly and the coordinated development of both pre- and post-synaptic terminals. Examples include Ig superfamily members, cadherins, neurexin-neuroligin complexes, and proteoglycans. Many of these cell adhesion molecules also contribute to spine formation (Chih et al., 2005; Liu et al., 2016; Togashi et al., 2002), but defining their specific roles in vivo has remained difficult. The molecular diversity of these trans-synaptic complexes helps establish the specificity of synaptic connections in the nervous system.

One of the most well-characterized examples of trans-synaptic signaling in the CNS is the neurexin-neuroligin adhesion complex, which has been implicated in both excitatory and inhibitory synapse development (Chih et al., 2005; Graf et al., 2004; Ichtchenko et al., 1995). Neurexins and neuroligins are single pass transmembrane domain proteins and are thought to be primarily expressed pre- and post-synaptically, respectively (Hata et al., 1993; Song et al., 1999; Ushkaryov et al., 1992). Through PDZ binding domains, neurexins and neuroligins are also coupled to intracellular partners. At the postsynapse, neuroligin binds to PSD-95, a major component of the glutamatergic postsynaptic scaffold, and the coordinated actions of neuroligin and PSD-95 regulate
synapse development (Irie et al., 1997; Prange et al., 2004). Neurexins have been shown to interact with a complex of PDZ domain containing proteins including CASK (calcium/calmodulin-dependent serine protein kinase), Velis (vertebrate LIN-7 homolog), and Mint (M unc18 interacting protein) (Biederer and Sudhof, 2000; Butz et al., 1998; Hata et al., 1996). Previous studies in vertebrates have largely implicated a requirement for neurexin in Ca\(^{2+}\)-induced synaptic release, primarily through coupling Ca\(^{2+}\) channels to the presynaptic machinery (Dean et al., 2003; Missler et al., 2003), and have suggested that neurexin is not essential for synapse formation (Dudanova et al., 2007). However, more recent work has demonstrated that neurexins serve as context-dependent synaptic organizers, implicating a role for neurexin in both synapse formation and function depending on synapse type (Chen et al., 2017).

There are three neurexin genes in mammals and they are subject to extensive alternative splicing, resulting in thousands of isoforms (Ullrich et al., 1995). The two major neurexin isoforms (\(\alpha\) and \(\beta\)) are broadly expressed throughout the brain (Ullrich et al., 1995), while a short \(\gamma\) isoform originating from the \(Nrxn1\) gene has recently been shown to be highly expressed in the cerebellum (Sterky et al., 2017). Notably, in \(C.\) elegans there is one neurexin gene (\(nrx-1\)) that encodes both long and short isoforms, but loss of either isoform has not yet been associated with disrupted synapses in worms. \(C.\) elegans \(N RX-1/\)neurexin function has been characterized almost exclusively in the context of its partnership with NLG-1/neuroligin (Hart and Hobert, 2018; Hu et al., 2012; Maro et al., 2015; Tong et al., 2015; Tong et al., 2017), and \(N RX-1\) can directly bind NLG-1 (Hu et al., 2012).
Recent work has demonstrated that neurexins are also capable of binding many other extracellular ligands, including calsyntenins (Lu et al., 2014; Pettem et al., 2013; Um et al., 2014), neurexophilins (Beglopoulos et al., 2005; Missler et al., 1998; Missler and Sudhof, 1998; Petrenko et al., 1996), cerebellins (Joo et al., 2011; Matsuda and Yuzaki, 2011; Uemura et al., 2010), dystroglycans (Reissner et al., 2014; Sugita et al., 2001), latrophilins (Boucard et al., 2012), hevins (Singh et al., 2016), leucine-rich repeat transmembrane proteins (LRRTMs) (de Wit et al., 2009; Ko et al., 2009; Siddiqui et al., 2010; Um et al., 2016), and, in C. elegans, the synapse-organizing molecule MADD-4 (Maro et al., 2015). Many of these proteins have been shown to be important for promoting synapse formation, such as LRRTMs and calsyntenins (de Wit et al., 2009; Ko et al., 2009; Pettem et al., 2013; Um et al., 2014). Given the large number of ligands that can bind neurexins, an interesting possibility is that the organization of synapses can be specified by the interactions of neurexins with different partners.

In the central nervous system, ionotropic acetylcholine receptors (iAChRs) are primarily expressed presynaptically or extrasynaptically, and they perform mostly modulatory roles (Dani and Bertrand, 2007). However, like glutamate receptors, some cholinergic receptor subtypes can also localize to dendritic spines (Shoop et al., 1999; Yang et al., 2013). While protein complexes likely mediate the clustering of neuronal iAChRs, these synapses appear to require a distinct molecular scaffold from that at the NMJ (Feng et al., 1998). Recent work has provided evidence that PDZ domain-containing scaffolding proteins, which play a critical role in the clustering of brain glutamatergic receptors, may also cluster neuronal iAChRs, including PICK1 and PSD-
95 (Baer et al., 2007; Conroy et al., 2003; Neff et al., 2009). However, the mechanisms regulating iAChR localization in the brain have not been fully elucidated.

Notably, the major excitatory neurotransmitter in C. elegans is acetylcholine, and more than a third of all neurons release ACh (Rand, 2007). In Chapter IV, I present evidence demonstrating that cholinergic receptors are clustered at the tips of spine-like protrusions in C. elegans inhibitory neurons. Early electron microscopy studies reported the presence of spine-like processes on inhibitory neurons (White et al., 1976, 1986), but these features have remained uncharacterized. Spiny processes have also been observed in other invertebrates, such as Drosophila (Leiss et al., 2009), crickets (Frambach et al., 2004), and bees (Farris et al., 2001). This discovery in C. elegans allows us to investigate how spiny synapses are formed in vivo using the advantages of a genetic model organism. I demonstrate that the presynaptic organizer neurexin directs cholinergic receptor localization and spine outgrowth, acting independently of its typical binding partner neuroligin. This work addresses a critical need to understand neurexin’s multifaceted roles at synapses, as disruption of neurexin in the brain is associated with several neuropsychiatric and neurodevelopmental disorders (Kim et al., 2008a; Martinez-Mir et al., 2013; Reichelt et al., 2012; Rujescu et al., 2009).

The role of neuronal activity on inhibitory synapse formation

Inhibitory interneurons make up approximately 15-25% of cortical neurons in the brain (Hendry et al., 1987; Meinecke and Peters, 1987), and release of the principal inhibitory neurotransmitter γ-aminobutyric acid (GABA) is critical for nervous system
function, including the regulation of neuronal excitability (Lee and Maguire, 2013, 2014). Studies in mammals have demonstrated that inhibitory network development is regulated by sensory experience through activity-dependent pathways. In the visual cortex, for example, light deprivation disrupts the maturation of GABAergic circuits (Morales et al., 2002). In the developing hippocampus, neuronal activity regulates inhibitory synapse density through the expression of brain-derived neurotrophic factor (BDNF) (Marty et al., 2000). Further, activity-dependent transcriptional pathways play an important role in inhibitory network development. The expression of the transcription factor Npas4 is rapidly activated by excitatory activity, regulating the expression of target genes such as BDNF to control inhibitory synapse development (Bloodgood et al., 2013; Lin et al., 2008). 270 unique genes are differentially regulated by knockdown of Npas4 (Bloodgood et al., 2013), suggesting that a wide variety of genes may affect inhibitory synapses. Thus, the precise mechanisms underlying activity-dependent changes in inhibitory network development still remain inadequately understood.

In C. elegans, muscle fibers receive both excitatory and inhibitory inputs. Two classes of iA ChRs (discussed above) mediate cholinergic signaling, while GABAergic receptors mediate inhibitory neurotransmission onto muscle (Richmond and Jorgensen, 1999). As in mammals, inhibitory signaling is critical for neural circuit activity and behavior. Release of acetylcholine onto body wall muscles results in muscle contraction, while GABA release causes relaxation of the muscle. To generate the sinusoidal movement characteristic of C. elegans, the contraction and relaxation of body wall muscle must be out of phase. Using the genetic advantages afforded in the model
organism *C. elegans*, I investigate the role of neuronal activity on GABAergic synapse formation. This work suggests that similar processes may be important for establishing GABAergic connectivity across systems, and identifies a model to examine the mechanisms driving activity-dependent changes in connectivity.

Synaptic refinement

After initial synaptic connections are established, circuits can further refine or rewire their connectivity. For example, the pruning of synaptic connections is required for the maturation of the vertebrate neuromuscular junction and rearrangement of retinogeniculate synapses. Similarly, developmental remodeling shapes neural circuitry in *C. elegans* GABAergic DD motor neurons and mushroom body neurons in *D.rosophila*. Further, activity-dependent reorganization of pre-existing structures is thought to enable both learning and memory and the stability of the adult brain. These processes of refinement reflect an ongoing need to maintain appropriate synaptic connections in the nervous system.

Developmental synaptic remodeling

In vertebrates, development of both the neuromuscular junction (Brown et al., 1976; Sanes and Lichtman, 1999; Walsh and Lichtman, 2003) and visual cortex (Campbell and Shatz, 1992; Shatz and Kirkwood, 1984) have been extensively studied as examples of activity-dependent synapse elimination. Early in postnatal development at the vertebrate NMJ, multiple motor neurons send axons to the same muscle cell.
However, within a few weeks, all but one of the axonal inputs are eliminated. This establishes a one-to-one connection between the motor neuron and muscle cell in adulthood (Brown et al., 1976). Removal of excess connections is a competitive process, where the remaining axon takes over the space formerly occupied by its neighbor, and stronger inputs are favored (Buffelli et al., 2003; Walsh and Lichtman, 2003). Similarly, remodeling in the visual system involves the elimination of excess inputs onto geniculate neurons of the visual thalamus. Prior to eye opening, each geniculate neuron receives inputs from twenty or more retinal ganglion cells. Within about two weeks, approximately 1-3 inputs remain, and these connections are now significantly strengthened (Chen and Regehr, 2000). Refinement is dependent on neuronal activity, as microglia can engulf weaker presynaptic inputs (Schafer et al., 2012; Schafer and Stevens, 2015). These retinogeniculate rearrangements are thought to help with the fine tuning of cortical receptive fields (Tavazoie and Reid, 2000), illustrating the importance of eliminating excess connections during development.

In Drosophila, a clear example of neuronal rewiring during development is the remodeling of mushroom body (MB) neurons. MB neurons fall into 3 major classes, including α′β’, αβ and γ neurons (Lee et al., 1999), and they are essential for olfactory learning and memory in the fly (Heisenberg et al., 1985; McGuire et al., 2001). The γ neurons are born during embryonic and larval development, extending bifurcated axons. However, the lifestyle of the fly dramatically changes as the fly advances to the pupa and adult stages. To accommodate this, axons and dendrites in the γ neurons are pruned during the early stages of pupation and replaced by adult-specific processes (Lee et al.,
1999). Studies investigating the molecular mechanisms underlying pruning in MB γ neurons have since implicated a heterodimer consisting of ultraspiracle and the ecdysone receptor as a cell-autonomous regulator of this pruning process (Lee et al., 2000).

Similar to the rewiring of synaptic connections in vertebrates and Drosophila, remodeling also occurs within DD GABAergic neurons in the model organism C. elegans, suggesting that synaptic refinement is a conserved feature across organisms. Early electron microscopy studies indicated that the DD neurons reverse polarity during larval development in the late first larval (L1) stage, beginning approximately 12 hours after hatch at 22°C (White et al., 1978). In newly born larvae, DD motor neurons innervate ventral muscles and receive cholinergic input (DA/DB) on the dorsal side. At the end of the first larval stage, DD neurons reverse polarity to relocate output to dorsal muscles and receive ventral input from newly born cholinergic motor neurons (VA/VB) (White et al., 1978). However, DD remodeling in C. elegans does not require changes in neuronal morphology. Instead, DD neurons reverse their polarity by exchanging the locations of signaling components (Figure 1.1).

To monitor DD remodeling, prior studies have examined the relocation of pre-synaptic components. This work has demonstrated that the timing of DD remodeling during development is subject to transcriptional control. The heterochronic gene lin-14 was the first factor identified that regulates the timing of this reorganization, and loss-of-function mutants show precocious DD remodeling (Hallam and Jin, 1998). In contrast, the Iroquois homeodomain protein IRX-1 promotes remodeling, and irx-1 knockdown results in delayed remodeling (Petersen et al., 2011). This work demonstrated that the
Figure 1.1 Schematic of DD remodeling in C. elegans
In the embryo and L1 larval stage, DD motor neurons (purple) innervate ventral muscles and extend commissures to the dorsal side for cholinergic input (blue) from DA/DB motor neurons. After remodeling at the end of the L1 larval stage, postsynaptic receptors (green) switch locations to receive input ventrally from newly born VA/VB cholinergic motor neurons, while GABA outputs are relocated to innervate muscles dorsally.
PITX transcription factor UNC-30 promotes IRX-1 expression, facilitating the remodeling process (Petersen et al., 2011). The transcription factor hbl-1 also acts to promote DD remodeling, and expression of this heterochronic gene is activity-dependent (Thompson-Peer et al., 2012). Specifically, mutations that decrease circuit activity through defects in synaptic vesicle priming or docking (i.e. unc-13/M unc13 or unc-18/M unc18) decrease hbl-1 expression and consequently delay DD remodeling (Thompson-Peer et al., 2012), suggesting that the timing of DD plasticity is activity-dependent. Further, two ER-bound transcription factors, MYRF-1 and MYRF-2 (myelin-regulatory factor), were recently shown to be indispensable for synaptic rewiring; loss of myrf-1 and myrf-2 causes a complete failure in the relocation of presynaptic components (Meng et al., 2017). Thus, transcription factors act as key regulators of the remodeling program.

DD remodeling of presynaptic components appears to require the disassembly of synapses ventrally and trafficking of these components to the dorsal nerve cord (Park et al., 2011). This process is mediated by the actions of CYY-1, a cyclin box-containing protein that drives synapse removal, and CDK-5, a cyclin-dependent kinase that regulates the transport of synaptic vesicles to dorsal synapses (Park et al., 2011). Interestingly, Cdk5 also regulates synapse removal in Drosophila mushroom body remodeling, suggesting that conserved mechanisms may regulate developmental remodeling across systems (Smith-Trunova et al., 2015). Further, the Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein UNC-8 has also been shown to promote DD synapse disassembly in an activity-dependent pathway (Miller-Fleming et al., 2016).
Monitoring of postsynaptic remodeling, however, was previously unapproachable due to the lack of available markers labeling the postsynapse. Thus, it was unknown whether genes required for setting the timing of presynaptic remodeling (e.g. lin-14, irx-1, hbl-1) are also required for postsynaptic remodeling, or if the relocation of postsynaptic structures similarly requires the removal and trafficking of signaling components. Recent work from the Francis lab identified a postsynaptic receptor complex that regulates the activity of inhibitory motor neurons and localizes opposite cholinergic presynaptic inputs (Petrash et al., 2013). Expression of this tagged cholinergic receptor in DD neurons enabled the investigation of mechanisms that differentially drive pre- and post-synaptic remodeling, discussed in Chapter II and in other recent work (Howell et al., 2015) (Figure 1.1).

The GABAergic VD motor neurons, which are born post-embryonically, do not normally undergo remodeling due to expression of the COUP-TF nuclear hormone receptor UNC-55 (Walthall and Plunkett, 1995; White et al., 1986; Zhou and Walthall, 1998). In unc-55 mutants, the VD neurons ectopically remodel and synaptic outputs relocate to the dorsal side (Petersen et al., 2011; Shan et al., 2005). Cell-specific expression profiling has demonstrated that both irx-1 and hbl-1, two factors discussed above that promote DD remodeling, are transcriptional targets of unc-55 (Petersen et al., 2011; Thompson-Peer et al., 2012). UNC-55 blocks expression of HBL-1 and IRX-1 to inhibit VD remodeling (Petersen et al., 2011; Thompson-Peer et al., 2012). My work and others (Howell et al., 2015) have characterized a role for the single immunoglobulin
domain protein OIG-1 in the regulation of both wild type DD remodeling and ectopic VD remodeling, discussed further in Chapter II.

Initially, DD motor neurons innervate ventral muscle and GABAergic receptors are expressed exclusively on the ventral side (Gally and Bessereau, 2003). Following the birth of the VD motor neurons, GABAergic receptors in muscle appear both ventrally (to receive input from VD motor neurons) and dorsally (to receive input from remodeled DD motor neurons) (Gally and Bessereau, 2003). In Chapter III, I demonstrate that reduced presynaptic activity during the process of rewiring GABAergic outputs results in altered synapse patterning in the adult. This work illustrates how activity-dependent processes are critical for the wiring of mature synaptic connections.

Plasticity of mature synapses

Structural changes in the brain can occur throughout life, modifying pre-existing connections. In particular, the plasticity of dendritic spines has been extensively studied, as the shape, size, and/or number of spines can be modified by activity and experience. Enhanced glutamate release, for example, induces an enlargement of spines on the dendrites of hippocampal neurons in rat slice preparations (Matsuzaki et al., 2004). Additionally, inducing long-term depression in cultured rat neurons results in spine shrinkage (Henson et al., 2017; Zhou et al., 2004).

In vivo work has elucidated a connection between learning and memory and spine formation. Learning and novel sensory experiences, for example, lead to newly formed spines in the mouse cortex which persist for months after training (Yang et al., 2009a).
These stabilized connections are thought to represent long-term encoding of memory (Yang et al., 2009a). Further, disruption of newly formed spines after a learning task using an optical probe can “erase” the acquired skill (Hayashi-Takagi et al., 2015). Many neurological diseases are associated with the loss or disruption of spiny synapses, including autism spectrum disorders, schizophrenia, and Alzheimer’s disease (Glantz and Lewis, 2000; Hutsler and Zhang, 2010; Probst et al., 1983), emphasizing the importance of elucidating mechanisms involved in spine formation and stabilization. My work in Chapter IV establishes a dendritic spine model in *C. elegans*, enabling future investigation of plasticity in the nervous system.

Alterations in neuronal activity can also result in the up/down regulation of receptors at synapses. With tetanic stimulation of hippocampal slice neurons, GFP-tagged AMPARs are rapidly recruited to synaptic sites (Shi et al., 1999). This example illustrates the strengthening of synaptic connections in response to coincident pre- and post-synaptic activity, a principle first described by Donald Hebb in the 1940s (termed Hebbian plasticity) that is thought to provide the basis for learning and memory (Hebb, 1949). To keep nervous system function within a normal range, homeostatic mechanisms can compensate for alterations in circuit activity, a process first described in cultured cortical neurons (Turrigiano et al., 1998). Compensatory mechanisms are particularly important for establishing excitatory/inhibitory (E/I) balance in the brain. Following activity deprivation, GABA receptor redistribution may help regulate E/I imbalances. Activity blockade in cell culture scales up the strength of mEPSCs (O’Brien et al., 1998), while mIPSC amplitudes and the number of GABA receptors clustered at postsynaptic sites...
decrease (Kilman et al., 2002). Homeostatic regulation of inhibitory synapse number may involve the expression of CaMKII (Flores et al., 2015), which has also been implicated in excitatory synapse plasticity (Lisman et al., 2012). Importantly, E/I imbalance is associated with a number of neurological diseases, including schizophrenia and epilepsy (Fritschy, 2008; Wassef et al., 2003). Although the literature on homeostatic inhibitory plasticity has expanded in recent years, the molecular mechanisms underlying this negative feedback response are not well understood. In Chapter III, I describe a homeostatic process that may shape inhibitory synapses at the mature C. elegans NMJ, providing a potential model to explore compensatory mechanisms that shape synapses.

Synapse formation and refinement drive synaptic specificity

Neural circuits in the brain rely on the specificity of synaptic connections, and the precise wiring of synapses and further refinement of existing connections is central to this process. In Chapter II, I investigate the mechanisms underlying synaptic remodeling in C. elegans DD neurons, a process of refinement that is critical for the formation of mature connections in the nervous system. My work in Chapter III demonstrates that excitatory cholinergic neurons sculpt GABAergic connectivity, highlighting key roles for neuronal activity in circuit formation and maintenance. This work also suggests that a transcriptional target of the COE-type transcription factor unc-3 is required to establish synapses onto GABAergic neurons. Prior studies have shown that transcriptional regulation of signals involved in cell-cell interactions help shape synaptic connectivity. In mice, for example, loss of the transcription factor Pea3 deregulates motor neuron
expression of cadherins, which results in the mispositioning of neurons within the spinal cord (Livet et al., 2002). Additionally, the transcription factor senseless regulates expression of the cell adhesion molecule capricious in the Drosophila visual system, which acts to distinguish synaptic layers (Morey et al., 2008; Shinza-Kameda et al., 2006). In Chapter IV, I identify this transcriptional target of unc-3 as the cell adhesion molecule nrx-1/neurexin, and I explore how nrx-1 directs partner-specific connectivity, enabling precise connections in the C. elegans motor circuit.

C. elegans as a model system to study synaptic connectivity

C. elegans offers many advantages for studies of synapse development. First, the basic features of the worm make it an ideal system for genetic analysis. There are two sexes in C. elegans, self-fertilizing hermaphrodites which can produce homozygous progeny, and males, which allows for cross-fertilization. The life cycle of C. elegans is very short, and a worm will grow from an egg to fertile adult in about three days at 20°C. Between the embryonic stage and adulthood, the worm goes through four larval stages (L1-L4), marking the end of each stage with a molt. Importantly, strains carrying mutations in genes that are essential for viability in mammals are in many cases viable and easily propagated, allowing for studies of conserved gene function that would otherwise be unapproachable. The C. elegans genome is small, containing about 20,000 genes, and approximately 40% of the predicted protein products have mammalian homologs (Consortium, 1998).
The transparency of the worm cuticle allows one to easily visualize the subcellular distribution of proteins tagged with fluorescent markers and GCaMP signaling in live, intact animals. Further, a variety of cell-specific promoters are available for precise spatial control of transgene expression using microinjection techniques (Mello et al., 1991). With just 302 neurons, the connectivity of the nervous system has been well defined by serial electron microscopy (EM) (White et al., 1976), and powerful genetic experiments enable in vivo investigation of altered connectivity. Forward genetic screens have enabled the discovery of novel genes involved in synapse formation, many of which have been shown to play conserved roles at mammalian synapses (e.g. ric-3 and the maturation of AChRs (Halevi et al., 2002; Halevi et al., 2003)). Through pharmacological analysis (such as drug assays like aldicarb or levamisole), electrophysiological techniques, and calcium imaging, the functional consequences of altered connectivity can be examined. Additional approaches to study gene function, such as CRISPR knock-outs and RNAi, are also commonly used to address questions of synapse development in the worm.

The C. elegans motor circuit

113 of the 302 neurons in C. elegans are motor neurons (White et al., 1986). In the motor circuit, both cholinergic (excitatory) and GABAergic (inhibitory) motor neurons coordinate sinusoidal movement (Figure 1.2). Ventral body wall muscles are innervated by motor neurons with cell bodies and axons in the ventral cord (VA, VB, VC, VD). Dorsal muscles are innervated by motor neurons with cell bodies located ventrally
and axons dorsally (DA, DB, DD, AS) (Hall and Altun, 2008). Cholinergic neurons include A- and B-type motor neurons, in addition to AS and VC neurons, while the D-type motor neurons are inhibitory. Command interneurons innervate cholinergic neurons via en passant synapses along the length of the ventral nerve cord, while D-type inhibitory motor neurons do not receive input from interneurons. Cholinergic motor neurons form dyadic synapses onto both body wall muscles and GABAergic neurons at process swellings. GABAergic neurons in turn project to opposing body wall muscle, causing relaxation (Figure 1.2).

Motor neurons are developed during two distinct developmental periods. At hatch, the DA, DB, and DD motor neurons are present, while the VA, VB, VC, AS, and VD motor neurons are born towards the end of the first larval stage (Sulston, 1976; Sulston and Horvitz, 1977). As mentioned above, the GABAergic DD motor neurons reverse their synaptic polarity at the end of the first larval stage, when the VD motor neurons are born and incorporated into the motor circuit to receive input from DA/DB cholinergic neurons (White et al., 1978) (Figure 1.2). My thesis investigates the mechanisms underlying DD remodeling (Chapter II) and the integration of VD motor neurons (Chapter III) into the C. elegans motor circuit.
Figure 1.2 The C. elegans motor circuit
Schematic of C. elegans motor circuit. Purple coloring indicates GABAergic motor neurons (DD/VD), blue coloring indicates cholinergic motor neurons (VA/VB and DA/DB). Gray shading represents body wall muscles.
Motor neurons in *C. elegans* do not fire action potentials and instead produce graded signals, as they do not contain voltage gated sodium channels (Goodman et al., 1998). Body wall muscles, however, do fire action potentials (Gao and Zhen, 2011), and both excitatory cholinergic and inhibitory GABAergic postsynaptic receptors mediate neurotransmission onto muscle. At the *C. elegans* NMJ, muscle cells are arranged into four quadrants, with two dorsal and two ventral rows, and the cells extend projections called muscle arms to the nerve cord to form synapses with motor neuron axons (Sulston and Horvitz, 1977; White et al., 1986). GABA_A receptors that inhibit muscle activity through GABA-gated chloride channels are encoded by the *unc-49* gene that produces three subunits, two of which coassemble to form a heteromeric GABA receptor (UNC-49_B and UNC-49_C form the UNC-49 GABA_A receptor) (Bamber et al., 1999). Two types of cholinergic receptors, levamisole-sensitive L-AChRs and homomeric ACR-16 receptors, mediate excitatory signaling onto muscle (*Figure 1.3*). L-AChRs are composed of five distinct subunits, many of which also show expression in ventral nerve cord neurons (Boulin et al., 2008; Cinar et al., 2005; Culetto et al., 2004; Fleming et al., 1997; Fox et al., 2005; Lewis et al., 1980; Towers et al., 2005).

Neuronal cholinergic receptors

While the postsynaptic apparatus anchoring iAChRs at the *C. elegans* neuromuscular junction has been well characterized, less is known about iAChR clustering in neurons. Early expression profiling studies showed expression of many iAChR subunits in ventral cord motor neurons, highlighting their important roles in
mediating C. elegans locomotion (Cinar et al., 2005; Fox et al., 2005). Among these, the iAChR subunit acr-2 is exclusively expressed in cholinergic motor neurons (Hallam et al., 2000). Four partnering subunits (ACR-3, ACR-12, UNC-63, and UNC-38) coassemble with ACR-2 to form heteromeric receptor complexes (Barbagallo et al., 2010; Jospin et al., 2009), referred to as ACR-2 receptors (Figure 1.3). iAChRs containing the ACR-2 subunit are diffusely localized in dendrites, and loss of acr-2 function impairs neurotransmission from cholinergic motor neurons (Barbagallo et al., 2010; Jospin et al., 2009), suggesting that these complexes modulate cholinergic activity. Additionally, reconstitution of these receptors in Xenopus oocytes demonstrated that the ancillary proteins UNC-50, UNC-74, and RIC-3, which are involved in the assembly and trafficking of iAChR subtypes (Boulin et al., 2008; Eimer et al., 2007; Halevi et al., 2002; Haugstetter et al., 2005), are required for functional expression (Jospin et al., 2009).

A second population of ACR-12 containing AChRs is expressed in GABAergic motor neurons, and these complexes regulate inhibitory signaling (Petrash et al., 2013). Genetic ablation of acr-12 significantly reduces inhibitory postsynaptic currents at the NMJ, and these effects can be rescued with GABA-specific expression of acr-12 (Petrash et al., 2013). acr-12 mutants display subtle movement defects, including variability in the sinusoidal movement pattern (Petrash et al., 2013). Unlike ACR-2 receptors, ACR-12 receptor complexes in inhibitory neurons are localized at discrete puncta at synapses, opposite presynaptic inputs (Petrash et al., 2013). In my thesis work, I use this tagged cholinergic receptor (ACR-12::GFP) as a tool to investigate the remodeling of DD
Figure 1.3 Overview of AChRs in the C. elegans motor circuit

Top: ACh motor neurons synapse onto both body wall muscle, causing contraction, and onto inhibitory GABA motor neurons. GABA motor neurons in turn project to opposing muscle, causing relaxation. ACR-2 receptors (blue) are localized to the dendritic region of ACh motor neurons.

Bottom: ACR-12 receptors (green) localize postsynaptically at GABA motor neuron dendrites, and ACR-16 and L-AChRs (brown and gray, respectively) tile the NMJ. (Reproduced from (Philbrook and Francis, 2016))
GABAergic neurons (Chapter II) and the molecular mechanisms responsible for the formation of excitatory synapses (Chapters III and IV).

The molecular composition of these ACR-12-containing receptors has not yet been elucidated. Despite considerable progress in assigning functions to brain AChRs carrying specific subunits (Deneris et al., 1991; Gotti et al., 2009; Yang et al., 2009b), many questions remain about the in vivo subunit composition and functional significance of AChR subtypes. In Chapter IV, I assess subunit composition of this neuronal AChR using a genetic approach, allowing us to examine how individual subunits may contribute to receptor localization and function. Further, my work demonstrates that these heteromeric receptors are clustered at the tips of spine-like processes in inhibitory neurons, providing an in vivo model to study the development of spiny synapses.

Thesis overview

Together, my thesis work aims to address the molecular mechanisms that are used to establish, maintain, or remodel synaptic connectivity during development. Because synapses are so densely packed in the brain, defining the precise processes that drive synapse development and stabilization remains a challenge. The genetically tractable model organism *C. elegans* provides an ideal system to tackle this question.

In Chapter II, I first investigate the regulation of neuronal remodeling during development. Prior work characterizing DD GABAergic remodeling in *C. elegans* has identified genes required for remodeling of axonal components. Does remodeling of the postsynapse occur via a distinct mechanism? In mammals, rewiring of synaptic
connections is critical for mature nervous system function, such as the development of
the neuromuscular junction or retinogeniculate synapses. My studies of synaptic
remodeling in C. elegans aim to advance our understanding of this conserved process.

In Chapter III, I address how excitatory neurons sculpt inhibitory connectivity.
Specifically, I investigate how cholinergic signaling shapes GABAergic inputs (synapses
onto GABA neurons) and outputs (synapses onto muscle) through studies of
fluorescently-tagged synaptic markers. Is neuronal activity required for synapse
formation? Surprisingly, work using mammalian model systems suggests that
synaptogenesis may still occur in the absence of activity (Varoqueaux et al., 2002;
Verhage et al., 2000). My results here indicate that synaptic connections are differentially
sensitive to alterations in activity, supporting recent work highlighting cell-type specific
effects (Andreae and Burrone, 2014; Morgan et al., 2011). Additionally, my work
demonstrates that an identified transcriptional target of the COE-type transcription factor
unc-3 is required for synapses onto GABA neurons. What are the molecular components
required for synapses onto this cell type?

Chapter IV targets this important question. A challenge in the studies of
cholinergic synapses in the central nervous system is the relatively low expression level
of AChRs and the tightly packed organization of neuronal processes. In vivo genetic
analysis of receptor clustering in C. elegans allows for the study of synapse development
at the resolution of a single dendritic process, an approach that is unattainable in other
systems. Additionally, I find that excitatory receptors are clustered at the tips of spine-
like processes, allowing us to examine how spiny synapses may similarly develop in the
brain. Altogether, the studies presented in this dissertation aim to advance our understanding of how synaptic connectivity is established and maintained in the nervous system.
CHAPTER II

Transcriptional control of synaptic remodeling through regulated expression of an immunoglobulin superfamily protein

Siwei He1,5, Alison Philbrook3,5, Rebecca McWhirter2, Christopher V. Gabel4, Daniel G. Taub4, Maximilian H. Carter2, Isabella M. Hanna2, Michael M. Francis3, and David M. Miller III1,2

1Neuroscience Graduate Program, Vanderbilt International Scholar Program
2Department of Cell and Developmental Biology
Vanderbilt University, 465 21st Avenue South, Nashville, TN 37240
3Department of Neurobiology, University of Massachusetts Medical School,
364 Plantation Street, Worcester MA 01605
4Department of Physiology and Biophysics, Boston University Medical Campus,
700 Albany Street, Boston, MA 02118
5Co-first authors

Contribution Summary
S.H. generated transgenic lines, collected confocal images, and quantified results for oig-1, irx-1, and unc-55 mutant phenotypes. A.P. generated transgenic lines, collected confocal images, and quantified results for oig-1 mutant effects. R.M. collected and analyzed DD microarray data. A.P., C.V.G., and D.G.T. conducted laser ablation
experiments. M.H.C., I.M.H., and S.H. performed the swimming assays. M.M.F. and D.M.M. wrote the final document.
Abstract

Neural circuits are actively remodeled during brain development, but the molecular mechanisms that trigger circuit refinement are poorly understood. Here, we describe a transcriptional program in *C. elegans* that regulates expression of an Ig domain protein, OIG-1, to control the timing of synaptic remodeling. DD GABAergic neurons reverse polarity during larval development by exchanging the locations of pre- and post-synaptic components. In newly born larvae, DD neurons receive cholinergic inputs in the dorsal nerve cord. These inputs are switched to the ventral side by the end of the first larval (L1) stage. VD class GABAergic neurons are generated in the late L1 and are postsynaptic to cholinergic neurons in the dorsal nerve cord but do not remodel. We investigated remodeling of the postsynaptic apparatus in DD and VD neurons using targeted expression of the acetylcholine receptor (AChR) subunit, ACR-12::GFP. We determined that OIG-1 antagonizes the relocation of ACR-12 from the dorsal side in L1 DD neurons. During the L1/L2 transition, OIG-1 is downregulated in DD neurons by the transcription factor IRX-1/Iroquois, allowing the repositioning of synaptic inputs to the ventral side. In VD class neurons, which normally do not remodel, the transcription factor UNC-55/COUP-TF turns off IRX-1, thus maintaining high levels of OIG-1 to block the removal of dorsally located ACR-12 receptors. OIG-1 is secreted from GABA neurons, but its anti-plasticity function is cell autonomous and may not require secretion. Our study provides a novel mechanism by which synaptic remodeling is set in motion through regulated expression of an Ig domain protein.
Results and Discussion

GABAergic DD motor neurons remodel postsynaptic components during larval development

Motor neurons located in the ventral nerve cord drive locomotion in C. elegans. Sinusoidal waves are generated by cholinergic motor neurons that signal at dyadic synapses to excite contraction of ipsilateral body muscles while simultaneously stimulating GABA neurons to induce muscle relaxation on the contralateral side (Figure 2.1A) (White et al., 1986; Zhen and Samuel, 2015). We have previously shown that transgenic expression of a functional ionotropic acetylcholine receptor (iAChR) subunit ACR-12::GFP in GABAergic motor neurons marks these connections with punctate clusters that are closely apposed to cholinergic presynaptic regions labeled with mCherry::RAB-3 (Figure 2.1B and C) (Petrash et al., 2013). Reconstruction of the DD motor circuit by serial section electron microscopy indicated that cholinergic inputs to DD neurons are switched from dorsal to ventral locations late in the first larval (L1) stage (White et al., 1978). To confirm this observation, we used the flp-13 promoter to express both ACR-12::GFP and mCherry::RAB-3 in DD neurons. In this case, ACR-12::GFP clusters are confined to the dorsal side, whereas mCherry::RAB-3-labeled synaptic vesicles are limited to the ventral nerve cord in early L1 larvae (Figure 2.2A-C, top). By the adult stage, this configuration is reversed with ACR-12::GFP puncta on the ventral side and mCherry::RAB-3 restricted to presynaptic outputs to dorsal muscles (Figure 2.2A-C, bottom). The repositioning of ACR-12::GFP from dorsal to ventral locations was mimicked by another iAChR subunit, UNC-29::GFP, which shows robust expression
in GABA neurons (Figure 2.1D and E) (Spencer et al., 2011). These results confirm that DD remodeling involves a polarity reversal with presynaptic and postsynaptic components switching places at opposite ends of a morphologically intact GABAergic neuron.

In principle, remodeling of the postsynaptic domain could occur either by translocation of existing receptor complexes from the dorsal to the ventral side or by elimination of dorsal receptors and concomitant synthesis of new receptor subunits that assume a ventral position. To distinguish between these possibilities, we used laser microsurgery to sever the commissural process of the DD1 neuron in the early L1 when ACR-12-containing iAChRs are restricted to the dorsal side (Figure 2.1F). We then monitored the appearance of ACR-12::GFP in the ventral DD1 process and found that ventral ACR-12::GFP clusters were indistinguishable from those in mock-axotomized animals, suggesting that an intact commissural connection between the dorsal and ventral DD processes is not required for postsynaptic remodeling (Figure 2.1G). These results indicate that ACR-12 receptor translocation from the dorsal to the ventral side is not essential for remodeling and provide evidence that a primary contribution to the ventral receptor pool occurs through de novo ACR-12 synthesis.
Figure 2.1 Postsynaptic AChRs remodel in DD motor neurons independent of ablating the connecting commissure

(A) For all panels, anterior is to the left and ventral down. Diagram of the adult *C. elegans* motor circuit. Top, the cell bodies of inhibitory GABAergic (green) and excitatory cholinergic (red) motor neurons are located in the ventral nerve cord. GABA motor neurons innervate either dorsal (DD) or ventral (VD) muscles (green triangles). Cholinergic DA and DB motor neurons synapse with dorsal muscles, and VA and VB motor neurons innervate ventral muscles (red triangles) (middle). Cholinergic motor neurons also form synapses with GABA neurons (inset) to effect muscle relaxation on the contralateral side. Specific ionotropic acetylcholine receptors (iAChR) are localized to postsynaptic sites in muscle cells and in GABAergic motor neurons at cholinergic synapses (bottom). (B) Confocal image of the ventral nerve cord showing apposition (arrowheads) of ACR-12::GFP puncta (green) expressed in DD GABAergic motor neurons (Pflp-13::ACR-12::GFP, ufIs126) and mCherry::RAB-3 (red) expressed in ACh motor neurons (Pacr-2::mCherry::RAB-3, ufIs63) in a young adult animal. Motor neuron cell bodies are encircled with a dashed white line. Scale bar is 10 µm. (C) Representative line scan depicting co-localization of ACR-12::GFP and mCherry::RAB-3 in a 25 µm region of the ventral nerve cord. Pearson correlation coefficient = 0.93. (D) Confocal image of the ventral nerve cord showing the acetylcholine receptor subunit UNC-29 (Punc-29::UNC-29::GFP, green) expressed in GABAergic motor neurons (Punc-47::mCherry, red). Arrowheads denote GABA neuron cell bodies. Scale bar is 5 µm. (E) UNC-29::GFP puncta are dorsally localized in early L1 DD motor neurons but are strictly ventral by the L4 larval stage. Scale bars are 5 µm. (F) Laser surgery was performed on young L1 larvae (5-7 hr after hatching) to cut the DD1 commissure or for a mock laser ablation control. Confocal images were obtained at 50 hr post hatch. GABA neurons were marked with Pflp-13::ACR-12::GFP; Punc-47::mCherry. Inset in cut condition shows fragmented DD1 commissure. Scale bars are 5 µm. (G) Laser ablation of DD1 commissure does not prevent assembly of ventral ACR-12 AChR subunits in remodeling neurons. Top panel shows schematic depicting time line (hours) of DD synaptic remodeling and for laser ablation (red bar) and imaging (green bars). Bottom panel shows ACR-12::GFP (green) in dorsal (D) and ventral (V) nerve cords for mock control and for laser cut DD1 neurons immediately after surgery (9 hr) or in the adult (50 hr). Scale bars are 2 µm. The fluorescence intensity of ACR-12::GFP is not significantly different between mock and cut conditions at 50 hours post hatch (right panel), (n ≥ 6). Error bars represent SEM.
Figure 2.2 OIG-1 inhibits postsynaptic remodeling of DD motor neurons

(A) Embryonic DD motor neurons innervate ventral muscles and extend commissures to the dorsal side for input from cholinergic motor neurons. Toward the end of the L1 larval stage, presynaptic vesicles (red) and postsynaptic acetylcholine receptors (AChRs) (green) switch locations as DD neurons remodel. (B) In a newly hatched L1 larva, RAB-3::mCherry (red) marks DD synapses with ventral muscle, and ACR-12::GFP (green) labels postsynaptic DD regions in the dorsal nerve cord. In an L4 larva, presynaptic RAB-3::mCherry (red) labels DD inputs to dorsal muscles and ACR-12::GFP (green) is restricted to ventral DD postsynaptic locations. A sterisk denotes gut autofluorescence. Scale bars, 5 µm. (C) ACR-12::GFP AChR subunits are dorsally localized in early L1 DD motor neurons but are strictly ventral by the L4 larval stage. Scale bars, 5 µm. (D) The oig-1 gene includes three exons (black boxes) with a canonical N-terminal signal peptide (SP) sequence. Exons 2 and 3 are deleted in oig-1(ok1687). (E) The OIG-1 protein includes an N-terminal signal peptide (SP) and a single immunoglobulin (Ig) domain. (F) Postsynaptic remodeling is precocious in oig-1(ok1687). Wild-type DD neurons remodel 14–18 hr after hatching, whereas oig-1 mutant DD neurons remodel 8–16 hr post-hatching. Quantification and representative images of DD remodeling are shown at the bottom. The x axis denotes time since hatching (hr). L1 larvae were binned according to the distribution of Pflp-13::ACR-12::GFP puncta as dorsal only (white), ventral only (black), or dorsal and ventral (gray). **p<0.005, ***p<0.0005, versus wild-type (dorsal only versus dorsal + ventral and ventral only) (n = 20 for each time point), Fisher’s exact test. Scale bars, 2 µm. (G) In L1 larvae, Poig-1::GFP is highly expressed in all six DD neurons as shown by co-localization of Poig-1::GFP (green) and Punc-47::mCherry (red). Scale bars, 10 µm. (H) By the adult stage, Poig-1::GFP is not detected in DD motor neurons but is strongly expressed in VD motor neurons. Insets show representative examples of adjacent DD and VD neurons with differential Poig-1::GFP expression. Scale bars, 20 µm. (I) Schematic denoting periods of strong Poig-1::GFP expression (dark green) in developing DD and VD neurons.
An immunoglobulin superfamily protein, OIG-1, antagonizes postsynaptic remodeling of GABAergic motor neurons

We used cell-specific microarray analysis to detect strong expression of a transcript encoding a short single-immunoglobulin (Ig) domain protein, OIG-1, in early L1 DD motor neurons (see Materials and Methods; GEO:GSE71618) (Figure 2.2D and E). A canonical N-terminal signal peptide predicts that the mature OIG-1 protein (137 amino acids in length) is secreted (Aurelio et al., 2002). Because recent work established that a closely related paralog, OIG-4, stabilizes iAChR complexes in C. elegans body muscle cells (Rapti et al., 2011), we wondered whether OIG-1 might exert a similar role and thus potentially retard the dissociation of ACR-12 receptor complexes in remodeling GABA neurons. To address this question, we monitored Pflp-13::ACR-12::GFP localization in the null allele, oig-1(ok1687) (Figure 2.2D) and observed that DD postsynaptic remodeling was initiated significantly earlier than in the wild-type (8–16 hr versus 14–18 hr post-hatching) (Figure 2.2F, top) with the precocious removal of dorsal ACR-12::GFP puncta coinciding with their early appearance on the ventral side (Figure 2.2F, bottom). This result suggests that OIG-1 normally functions to antagonize the relocation of ACR-12 in L1 stage DD motor neurons (Figure 2.2F). This model also predicts, however, that OIG-1 expression should be downregulated by the late L1 stage to allow the normal onset of DD remodeling. To test this hypothesis, we used a GFP reporter gene that includes the oig-1 upstream region (Poig-1::GFP) to confirm expression in DD motor neurons in early L1 larvae (Figure 2.2G) (Aurelio et al., 2002; Cinar et al., 2005). As development proceeds, the Poig-1::GFP signal declines in DD motor neurons but shows
strong expression in VD motor neurons beginning soon after their birth at the end of the L1 stage (Figure 2.2H). This temporal pattern of expression (Figure 2.2I) prompted us to ask whether OIG-1 is also necessary to prevent the dorsal to ventral translocation of the ACR-12 receptor in VD neurons, which normally do not remodel. Indeed, oig-1 mutants showed fewer dorsal ACR-12::GFP puncta than wild-type in both L2 and L4 larval stages (Figure 2.3A–F) and a reciprocal relative increase in ventral ACR-12::GFP (Figure 2.4G). This result suggests that oig-1 mutant VD motor neurons undergo ectopic remodeling (e.g., removal of dorsal ACR-12::GFP puncta with reassembly on the ventral side). Notably, oig-1 mutant animals showed significantly less dorsal ACR-12::GFP than wild-type before remodeling (i.e., 4 hr post hatch), and an overall lower level of ACR-12::GFP in L4 larvae, suggesting that OIG-1 might have an additional role of stabilizing the initial clusters of ACR-12::GFP (Figure 2.3G and H; Figure 2.4F and G).
Figure 2.3 OIG-1 inhibits postsynaptic remodeling of VD motor neurons

(A and B) Representative images of Punc-47::ACR-12::GFP in L2 wild-type and oig-1(ok1687) larvae showing ACR-12::GFP puncta in both dorsal (D) and ventral (V) nerve cords. In oig-1 mutants, dorsal ACR-12::GFP is significantly reduced compared to wild-type by the L2 stage. Asterisk denotes gut autofluorescence. Scale bars, 20 μm. (C and D) Representative images of Punc-47::ACR-12::GFP puncta in L4 wild-type and oig-1(ok1687) larvae. Insets (bottom) show ACR-12::GFP puncta in dorsal (D) and ventral (V) nerve cords. Note depletion of dorsal ACR-12::GFP puncta in oig-1(ok1687). Scale bars, 20 μm. (E) Model depicting oig-1 expression in DD and VD motor neurons (L2 – adult) and negative regulation of postsynaptic remodeling. (F) Quantification of dorsal ACR-12::GFP fluorescence intensity comparing wild-type and oig-1(ok1687) L2 and L4 larvae. ***p<0.001, Student’s t test, n > 15 for each group. Error bars, SD. (G) Representative images of dorsal ACR-12::GFP in wild-type and oig-1 mutant L1 animals (4 hr post-hatch). Scale bar, 5 μm. (H) Quantification of ACR-12::GFP localization in the dorsal nerve cord detects a weaker signal in oig-1 mutants than in wild-type at 4 hr post-hatch. ****p<0.0001 versus wild-type. n = 10 for each group, Student’s t test. Error bars, SEM.
Figure 2.4 irx-1 functions autonomously in GABAergic motor neurons to promote postsynaptic remodeling

(A, B, C) irx-1 functions autonomously in GABAergic motor neurons to promote postsynaptic remodeling. Panels depict an unc-55 mutant adult with mosaic expression of the irx-1(csRNAi) transgene and co-selectable mCherry marker. In these experiments, a co-selectable mCherry marker identifies individual GABA neurons that carry the irx-1(csRNAi) transgenic array (See Materials and Methods). We exploited this mosaic pattern of transgene expression to distinguish between irx-1(csRNAi)-affected neurons and adjacent controls. For example, as shown in a representative image of an unc-55 mutant carrying the irx-1(csRNAi) transgene (**Figure 2.4A-C**), ACR-12::GFP puncta are restored to the dorsal side in mCherry-labeled VD9 but not in the adjacent VD10 motor neuron that does not express mCherry. We attribute the reduced intensity of the ACR-12::GFP signal in VD10 to an overall role of OIG-1 of stabilizing ACR-12::GFP. Dorsal regions of VD9 and VD10 are denoted with dashed boxes. The partial remodeling of DD5 which also expresses irx-1(csRNAi) in this animal is consistent with earlier findings that this treatment delays but does not completely block DD presynaptic remodeling (Petersen et al., 2011). Scale bar is 20 µm. (D) Quantification of irx-1(csRNAi) results. ACR-12::GFP fluorescence intensity was measured in the dorsal and ventral nerve cords within the anterior regions of each VD neuron that expresses the co-selectable mCherry marker and control VD neurons (See Materials and Methods). VD neurons expressing irx-1(csRNAi) show a higher ratio of dorsal vs ventral ACR-12::GFP puncta than controls. ***p<0.0001, n = 15, Student’s t-test. (E) Quantification of DD postsynaptic remodeling 10 hours post hatch in oig-1 mutant worms treated with irx-1 RNAi or control RNAi. n>30 for each group. Fisher’s exact test. (F) Quantification of overall fluorescence intensity (ventral and dorsal) of ACR-12::GFP in wild-type, unc-55, oig-1, and in unc-55; oig-1 mutant worms. Compared with wild type, the overall ACR-12::GFP fluorescence intensity is not decreased in unc-55 mutants but is reduced in oig-1 and in oig-1;unc-55 double mutants likely due to the ACR-12-stabilizing effect of OIG-1. (G) Quantification of ventral Punc-47::ACR-12::GFP in oig-1 and unc-55. The fraction of ventral ACR-12::GFP puncta in unc-55; oig-1 double mutants does not differ from that of oig-1 mutants and is slightly less severe than unc-55. These results suggest that oig-1 is the principal downstream effector in an unc-55-regulated pathway that antagonizes postsynaptic remodeling. For E and F, *p<0.05, **p<0.01, ***p<0.001. n>15 for each group, one-way ANOVA test followed by Turkey multiple comparison. Error bars represent SD. (H) A model for oig-1 temporal regulation and postsynaptic remodeling in GABAergic motor neurons. OIG-1 is highly expressed in early L1 DD motor neurons to prevent precocious remodeling of postsynaptic components. Postsynaptic remodeling ensues in late L1 larval DD neurons as IRX-1 levels rise to block OIG-1 expression. UNC-55 inhibits expression of IRX-1 in VD motor neurons to maintain high levels of OIG-1 which antagonizes the postsynaptic remodeling program.
A transcriptional switch regulates expression of OIG-1 to control postsynaptic remodeling in GABAergic neurons

The strong expression of OIG-1 in VD neurons resembles that of the COUP-TF family transcription factor, UNC-55, which has been previously shown to block presynaptic remodeling in VD neurons (Petersen et al., 2011; Shan et al., 2005; Walthall and Plunkett, 1995; Zhou and Walthall, 1998). We thus asked whether OIG-1 is a downstream target of UNC-55. The Poig-1::GFP signal is significantly weaker in unc-55 mutant VD motor neurons but is unaffected in other Poig-1::GFP-positive neurons in the head region (Figure 2.5A, B, and E). Because UNC-55 is likely to function as a transcriptional repressor (Petersen et al., 2011; Shan et al., 2005), we reasoned that this effect should depend on an intermediate target in the unc-55 pathway. An obvious candidate for this role is the Iroquois family homeodomain transcription factor irx-1, which is upregulated in unc-55 mutant VD motor neurons (Petersen et al., 2011). Consistent with this model, treatment of unc-55 mutant animals with irx-1 RNAi restores Poig-1::GFP expression to VD motor neurons (Figure 2.5C and E). irx-1 RNAi also results in ectopic expression of Poig-1::GFP in late larval and adult DD motor neurons (Figure 2.5D and E). These data point to related genetic pathways in which irx-1 antagonizes oig-1 expression in DD motor neurons, while unc-55 blocks irx-1 expression in VD motor neurons to prevent negative regulation of oig-1.

We confirmed the roles of these regulatory cascades in postsynaptic remodeling with additional genetic experiments. In wild-type adults, expression of ACR-12::GFP with the unc-47 GABA neuron promoter results in comparable levels of postsynaptic
ACR-12::GFP clusters on dorsal (VD) and ventral (DD) sides (Figure 2.5F, J, and M). At the L2 stage, unc-55 mutants show a similar distribution of ACR-12::GFP (Figure 2.5M). Later, in L4 larvae, however, ACR-12::GFP puncta are largely localized to the ventral side of unc-55 mutants (Figure 2.4F and G; Figure 2.5G, K, and M). This result suggests that unc-55 mutant VD neurons initially establish postsynaptic ACR-12 receptor domains in the dorsal nerve cord as in the wild-type, but then reposition these ACR-12::GFP puncta to the ventral side as predicted by our model (Figure 2.5G). This ectopic postsynaptic remodeling effect in VD neurons can be reversed by global RNAi knockdown of irx-1 (Figure 2.5I, L, and M). Moreover, the ACR-12::GFP remodeling phenotype of unc-55;oig-1 double mutants is not more severe than that of oig-1 and shows a slightly weaker phenotype than unc-55 (Figure 2.4G). We interpret these findings to indicate that oig-1 is the principal downstream effector of unc-55 in a pathway that blocks postsynaptic remodeling in VD neurons. To ask whether irx-1 is also required for postsynaptic remodeling in DD motor neurons, we used RNAi to downregulate irx-1 expression in wild-type animals expressing Pflp-13::ACR-12::GFP. More than half (66%) of control L1 larvae showed strictly ventral ACR-12::GFP puncta by 27 hr after egg-laying, whereas significantly fewer (39%) of irx-1 RNAi-treated animals completed postsynaptic remodeling (Figure 2.5N). The partial remodeling of DD neurons could result from either inefficient RNAi knockdown of irx-1 or the parallel function of another transcriptionally regulated pathway in the DD remodeling program (Thompson-Peer et al., 2012). In any case, the delay in DD remodeling in irx-1-RNAi-treated animals requires oig-1 activity (Figure 2.4E). Finally, we confirmed that irx-1 function is cell
autonomous in DD and VD neurons using cell-specific RNAi (Figure 2.4A–D). Taken together, our results demonstrate that postsynaptic remodeling in GABA neurons is modulated by the opposing roles of UNC-55 and IRX-1 in the regulation of OIG-1 expression (Figures 2.4H and 2.5H). These findings parallel earlier results showing that UNC-55 and IRX-1 also control presynaptic GABA neuron plasticity (Petersen et al., 2011; Thompson-Peer et al., 2012) and thus suggest that this genetic pathway orchestrates the overall remodeling program (see below).
Figure 2.5 A transcriptional cascade involving UNC-55/COUP-TF and IRX-1/Iroquois regulates oig-1 expression in GABA neurons

All panels depict adults; dorsal is up, and anterior is to left.

(A–C) Poig-1::GFP is highly expressed in wild-type VD motor neurons in the ventral nerve cord and in a subset of head neurons (arrow). In unc-55 mutants, Poig-1::GFP is decreased in VD neurons but is maintained in head neurons (arrow). irx-1 RNAi restores Poig-1::GFP expression to ventral cord motor neurons. Insets (bottom) feature enlarged and straightened segments of the ventral nerve cord. Dotted circles denote Poig-1::GFP-expressing ventral cord neurons. Scale bars, 20 \(\mu m \) for (A)–(C).

(D) RNAi knockdown of irx-1 restores Poig-1::GFP expression to DD neurons in wild-type adults; Poig-1::GFP is maintained in the VDs. Inserts (1, 2, 3) show adjacent DD and VD neurons expressing Poig-1::GFP. Punc-47::mCherry marks GABAergic motor neurons and was merged with Poig-1::GFP images to produce yellow overlays. Scale bars, 20 \(\mu m \).

(E) Quantification of Poig-1::GFP expression in adult ventral cord GABAergic motor neurons. Poig-1::GFP is expressed in all 13 VD motor neurons in the wild-type but is rarely detected in the ventral cord of unc-55 mutants. Poig-1::GFP expression is partially restored in irx-1 RNAi-treated unc-55 mutants and is ectopically expressed in adult DD neurons with irx-1 RNAi of wild-type animals. *** \(p < 0.001 \). One-way ANOVA followed by Tukey multiple comparison test, \(n > 30 \) for each group. Error bars, SD.

(F and G) In wild-type adults, DD postsynaptic AChRs (light blue) are located on the ventral side, whereas VD postsynaptic receptors (dark blue) are located dorsally. In unc-55 mutants, postsynaptic ACh receptors are ectopically relocated to the ventral side in VD motor neurons.

(H) Model: IRX-1 is expressed in DD motor neurons to promote postsynaptic remodeling by inhibiting OIG-1 expression. IRX-1 is repressed by UNC-55 in VD motor neurons to prevent ectopic remodeling of postsynaptic components to the ventral side. (I) irx-1 RNAi suppresses postsynaptic remodeling of both DD neurons and ectopically remodeled VD neurons in unc-55 mutants. (J–L) GABA::ACR-12::GFP (or Punc-47::ACR-12::GFP) puncta are detected in both dorsal and ventral nerve cords of wild-type L4 larval animals due to contributions of VD (dorsal) and DD (ventral) neurons (J). In unc-55 mutants, GABA::ACR-12::GFP puncta are largely ventral (K) but are relocated to the dorsal side in animals treated with irx-1 RNAi (L). Scale bars, 20 \(\mu m \) for (J)–(L).

(M) Quantification of dorsal and ventral GABA::ACR-12::GFP fluorescence intensity for wild-type (black), unc-55 (gray), and unc-55;irx-1 RNAi (white) at L2 and L4 stages. In L2 larvae, the distribution of ACR-12::GFP puncta in the dorsal nerve cord does not differ between unc-55 versus wild-type indicating that the initial assembly of the VD postsynaptic apparatus is not perturbed in unc-55 animals. In contrast, in L4 larvae, unc-55 mutant animals show significantly fewer dorsal ACR-12::GFP puncta than wild-type; this ectopic remodeling effect was blocked by irx-1 RNAi. *** \(p < 0.001 \), one-way ANOVA, \(n > 15 \) for each group. Error bars, SD.

(N) irx-1 RNAi knockdown delays DD postsynaptic remodeling. By 27 hr after egg laying (16 hr post-hatch), 66\% \(\pm \) 6\% of wild-type (WT) control larvae have completed DD remodeling (i.e., show ventral GABA::ACR-12::GFP only), whereas only 39\% \(\pm \) 3\% of irx-1 knockdown animals have completed DD remodeling. *** \(p < 0.001 \) (\(n = 113 \)), Fisher’s exact test. Error bars, SD.
OIG-1 functions in GABA neurons to block postsynaptic remodeling

Although OIG-1 is strongly expressed in DD and VD neurons, the OIG-1 protein is predicted to be secreted, and thus could potentially function as an extracellular antagonist of postsynaptic remodeling in a non-autonomous fashion. To test for this possibility, we used transgenic reporters in which mCherry was inserted immediately after the signal peptide (SP) to label the OIG-1 protein (Figure 2.6A). Expression of the mCherry::OIG-1 construct with the GABA-neuron specific unc-25 promoter (GABA::OIG-1) resulted in bright punctate mCherry signals along both ventral and dorsal nerve cords (Figure 2.6B, top). Similar results were obtained using the native promoter driving OIG-1 fused to superfolder GFP (Figure 2.7A and B). A robust mCherry signal in coelomocytes, macrophage-like cells in the body cavity, confirms that mCherry::OIG-1 is secreted (Figure 2.6B, top). mCherry::OIG-1 expression in the GABAergic neurons of oig-1 mutant animals restored dorsal Punc-47::ACR-12::GFP to a wild-type level, thus demonstrating that the mCherry::OIG-1 fusion protein is functional and that expression of OIG-1 in GABA neurons is sufficient to rescue the Oig-1 postsynaptic remodeling defect (Figure 2.6B, top, and 2.6C). Secretion of mCherry::OIG-1 from neighboring cholinergic neurons (ACh::OIG-1), however, did not rescue the Oig-1 phenotype (Figure 2.6B, middle, and 2.6C). This result indicates either that OIG-1 function is cell autonomous and requires expression in GABA neurons or that the secreted form of OIG-1 is not actively involved in postsynaptic remodeling.

To distinguish between these possibilities, we generated a mCherry::OIG-1 protein that excludes the N-terminal signal peptide, thus preventing secretion, and
expressed it in GABA neurons [GABA::OIG-1-SP] (see Materials and Methods).

Transgenic oig-1(ok1687) animals expressing GABA::OIG-1-SP showed strong mCherry puncta in GABA neuron processes in both the dorsal and ventral nerve cords (Figure 2.6B, bottom). As predicted for a non-secreted form of OIG-1, coelomocytes were not labeled with mCherry in this strain; however, ACR-12::GFP was restored to the dorsal nerve cord indicating strong rescue of the Oig-1 postsynaptic remodeling defect (Figure 2.6B, bottom, and 2.6C). We note that transgenic expression of OIG-1 and OIG-1-SP appears to elevate ACR-12::GFP levels in comparison to wild-type perhaps due to the overall role of OIG-1 in stabilizing ACR-12::GFP clusters (Figure 2.6C). We used a live animal antibody labeling method (Gottschalk and Schafer, 2006) to further investigate OIG-1 secretion in each situation. The external cell membranes of GABA neurons showed strong immunostaining in animals expressing full-length OIG-1, but no extracellular signal was detected in animals expressing OIG-1-SP (Figure 2.7C). While we cannot exclude the possibility OIG-1-SP may reach the extracellular environment at low levels that are below the threshold of detection in our experiments, our evidence points to an alternative model in which postsynaptic remodeling does not require the secreted form of OIG-1, but instead involves an intracellular OIG-1 function in GABA neurons. In an additional experiment to define a location for OIG-1 function, we used mosaic expression of a low-copy number GABA::mCherry::OIG-1 transgene to show that localization of mCherry::OIG-1 puncta to the dorsal nerve cord is correlated with the restoration of dorsal ACR-12::GFP puncta in an oig-1 mutant (Figure 2.7E and F). This result points to a local role for OIG-1 in antagonizing the removal of ACR-12 receptors
by the remodeling program. We note, however, that mCherry::OIG-1 and ACR-12::GFP do not overlap in the dorsal nerve cord but instead adopt a striking pattern of alternating mCherry and GFP puncta (Figure 2.7G). This finding argues against the idea that OIG-1 stabilizes ACR-12-containing iACh receptors by direct interaction at the synapse and favors an alternative model potentially involving additional components (Figure 2.8F). The proposed role for OIG-1 in postsynaptic remodeling is further reinforced by our findings that oig-1 and acr-12 mutants display similar locomotory defects that depend on GABA neuron dysfunction (Figure 2.6D).
A

GABA promoter

mCherry

Ig domain

ACh promoter

B

Merge

ACR-12::GFP

mCherry::OIG-1

B

GABA::OIG-1

ACR-12::GFP

mCherry::OIG-1

GABA::OIG-1-SP

GABA::OIG-1

ACh::OIG-1

GABA::OIG-1ACh::OIG-1

GABA::OIG-1

C

Dorsal ACR-12::GFP

Fluorescence Intensity

D

Fraction Paralyzed

ns

*
Figure 2.6 Cell-autonomous expression of OIG-1 blocks postsynaptic remodeling in GABA neurons

(A) Schematic of OIG-1 fusion protein. mCherry was inserted immediately after the OIG-1 signal peptide (SP) and fused to upstream promoters for expression in either GABA or ACh (cholinergic) motor neurons in the ventral nerve cord. (B) All panels show young adults; anterior is to left, and dorsal is up. Expression of mCherry::OIG-1 in GABA neurons with the unc-25 promoter (GABA::OIG-1) restores dorsal ACR-12::GFP puncta (arrowheads) to an oig-1 mutant. mCherry::OIG-1 is detected in both the ventral and dorsal nerve cords and is secreted as indicated by mCherry-labeled coelomocytes (dotted outline) in the body cavity. mCherry::OIG-1 expression in cholinergic motor neurons with the acr-2 promoter (ACh::OIG-1) does not result in significant restoration of ACR-12::GFP puncta to the dorsal nerve cord (arrowheads), although mCherry-labeled coelomocytes (dotted outline) are indicative of secretion. GABA neuron expression of a non-secreted version of mCherry::OIG-1 (GABA::OIG-1-SP) restores dorsal ACR-12::GFP (arrowheads), suggesting that secretion of the OIG-1 protein may not be required for its function in GABA neuron remodeling. Asterisk denotes gut autofluorescence. Scale bar, 20 µm. (C) Quantification of dorsal ACR-12::GFP fluorescence intensity in young adults. oig-1 mutants (black) show reduced dorsal ACR-12::GFP signal versus wild-type (blue). Expression of mCherry::OIG-1 in GABA neurons but not in cholinergic motor neurons restores dorsal ACR-12::GFP to wild-type levels. GABA neuron expression of OIG-1-SP, the non-secreted form of mCherry::OIG-1, also rescues oig-1. ***p<0.0001 versus oig-1, **p<0.001 versus wild-type, ns (p>0.33), one-way ANOVA followed by Tukey multiple comparison test, n > 15 for each experimental group. Error bars, SD. (D) acr-12(ok367) and oig-1(ok1687) mutants show locomotory defects that depend on GABA motor neuron function. The number of immobilized L4 larvae at the end of a 10-min swimming assay was determined by direct observation. oig-1(ok1687) and acr-12(ok367) mutants showed a higher fraction of immobilized animals than wild-type. The swimming defect of acr-12(ok367) and oig-1(ok1687) can be rescued by expression of ACR-12 (GABA::ACR-12) and OIG-1 (GABA::OIG-1) specifically in GABA neurons, respectively. *p<0.05 versus wild-type, ns, p>0.05, n > 60 for each experimental group. All comparisons by Fisher’s exact test.
Figure 2.7 OIG-1 may stabilize AChRs through indirect interactions

(A) The oig-1 genomic region including an upstream 2.5 kb promoter and oig-1 coding sequence was fused to Superfolder GFP to produce C-terminal tagged OIG-1::GFP. (B) OIG-1::GFP is detected in the cell soma of GABA neurons (dotted outlines) and as discrete puncta (arrowheads) in the dorsal (D) and ventral (V) nerve cords of L1 (top) and L4 (bottom) larvae. Scale bars are 2 µm. (C) An in vivo immunostaining assay detects extracellular 3XFLAG::mCherry::OIG-1. All panels show adults, anterior to left, dorsal is up. The anti-FLAG-488 signal co-localizes with the signal in GABA neurons. We interpret anti-FLAG-488 staining as corresponding to 3XFLAG::mCherry::OIG-1 on the surface of secreting GABA neurons (anti-FLAG-488 staining was also observed in the dorsal nerve cord in other injected animals, data not shown.) In contrast, removal of the OIG-1 signal peptide (SP) in the construct 3XFLAG::mCherry::OIG-1-SP does not result in detectable co-localization of anti-FLAG-488 staining with mCherry labeled GABA neurons (middle panel) but does show an anti-FLAG-488 signal in coelomocytes which is indicative of successful antibody injection into the pseudocoelom. 3xFLAG::mCherry::OIG-1-SP worms injected with buffer showed no anti-FLAG-488 signal (bottom panel). At least 20 injected animals for each group were examined. (D) Quantification of Ventral/Ventral+Dorsal ACR-12::GFP fluorescence intensity ratio (see Figure 2.6C). ACh and GABA rescue is in the oig-1(ok1687) mutant background. n>15 for each group. One way ANOVA test followed by Turkey multiple comparison. ***p<0.001 compared with oig-1 mutant, ns, not significant. Error bars represent SD. (E) Dorsal localization of mCherry::OIG-1 is required for rescuing ACR-12::GFP to the dorsal nerve cord in oig-1 mutants. Dorsal nerve cord of oig-1 mutant strains that either lack mCherry::OIG-1 (top panels) or that show mCherry::OIG-1 (bottom panels) with the corresponding rescue of dorsal ACR-12::GFP localization. (F) Dorsal mCherry::OIG-1 fluorescence intensity is positively correlated with dorsal ACR-12::GFP fluorescence intensity. Pearson correlation, r^2 = 0.588. (G) ACR-12::GFP and mCherry::OIG-1 occupy adjacent but non-overlapping domains as shown in a representative line scan of the dorsal nerve cord. (Pearson correlation, r^2 = 0.06).
Figure 2.8 OIG-1 inhibits presynaptic remodeling in GABA motor neurons

(A,B,C) Images of adults showing a presynaptic component of GABA neurons, SNB-1::GFP in wild-type (A) oig-1 (B) and unc-55 (C) mutants. SNB-1::GFP is evenly distributed to both dorsal and ventral nerve cords in the wild type but is relatively depleted from the ventral side in oig-1 and unc-55 mutants due to ectopic remodeling of VD motor neurons (bottom panels). Scale bars are 20 µm. (D) Quantification of ventral SNB-1::GFP puncta in wild-type and in oig-1 and unc-55 mutants. ***p<0.001, n > 30 for each group. One-way ANOVA followed by Tukey multiple comparison test. Error bars represent SD. (E) Model: unc-55 controls a negative regulatory pathway to block synaptic remodeling in GABAergic motor neurons. unc-55 represses irx-1 to relieve inhibition of oig-1. oig-1 antagonizes postsynaptic remodeling and may indirectly inhibit presynaptic remodeling. (F) A model summarizing transcriptional regulation of OIG-1 and its role in postsynaptic remodeling. The single Ig domain protein OIG-1 is highly expressed in embryonic and L1 larval DD neurons, possibly activated by the transcription factor unc-30 (Howell et al., 2015). During the L1 to L2 transition, irx-1 blocks OIG-1 expression to relieve the inhibition of postsynaptic remodeling in DD neurons. OIG-1 and postsynaptic iACh receptor components (ACR-12 and UNC-29) occupy discrete subcellular domains but interact through a pathway (double-headed arrow) that antagonizes remodeling. unc-55 blocks expression of irx-1 to maintain high levels of OIG-1 in VD motor neurons to prevent ectopic postsynaptic remodeling.
OIG-1 inhibits presynaptic remodeling in GABAergic motor neurons

Having shown that OIG-1 antagonizes postsynaptic remodeling, we next asked whether OIG-1 also regulates the location of presynaptic proteins in the remodeling program. In the wild-type, the presynaptic marker SNB-1::GFP switches from the ventral to the dorsal side in remodeling DD motor neurons, while VD motor neurons synapse with ventral muscles throughout life. These patterns of expression produce a mature GABAergic motor circuit with SNB-1::GFP puncta in both the dorsal (DD) and ventral (VD) nerve cords (Figure 2.8A). In unc-55 mutants, however, VD motor neurons undergo ectopic remodeling resulting in the net depletion of ventral SNB-1::GFP puncta (Figure 2.8C and D) (Hallam and Jin, 1998; Petersen et al., 2011; Walthall and Plunkett, 1995).

Ventral SNB-1::GFP puncta in the GABAergic circuit are also reduced in oig-1(ok1687) versus the wild-type (Figure 2.8B), suggesting that presynaptic components are ectopically remodeled in oig-1 mutant VD motor neurons. Our data are consistent with the observation that DD motor neurons show precocious presynaptic remodeling in oig-1 mutant L1 larvae and that this effect is rescued by cell autonomous OIG-1 function (Howell et al., 2015). It is notable, however, that oig-1 mutants retain a greater number of ventral SNB-1::GFP puncta than observed in unc-55, which suggests that ectopic presynaptic remodeling in oig-1 mutants is incomplete and substantially less severe (Figure 2.8D). This difference indicates that UNC-55 likely controls an additional parallel-acting pathway involving irx-1 that regulates presynaptic remodeling (Figure 2.8E) (Petersen et al., 2011).

Although synaptic refinement is crucial to the creation of a mature nervous
system, it may be equally important to maintain the architecture of established circuits by tightly controlling the activation of remodeling pathways. Our results show that the opposing roles of the conserved transcription factors IRX-1/Iroquois and UNC-55/COUP-TF orchestrate both the timing and location of synaptic remodeling in the C. elegans GABA motor neuron circuit (Figure 2.4H). irx-1 antagonizes oig-1 expression in late L1 stage DD neurons to permit the disassembly of the postsynaptic apparatus by the remodeling program. This inhibition of oig-1 is blocked in the VDs by unc-55, which turns off irx-1 and thus maintains high levels of OIG-1 to preserve dorsal clusters of iA ChRs (Figure 2.4H). This negative regulatory pathway appears to function in concert with the PITX homeodomain transcription factor UNC-30, which promotes oig-1 expression (Howell et al., 2015) (Figure 2.8F). However, the role of unc-30 is likely complex because it is also required for DD expression of irx-1 (Petersen et al., 2011).

Immunoglobulin superfamily (IgSF) proteins perform central roles in fundamental aspects of neuronal development, including cell migration, growth cone guidance, and synapse formation and function. IgSF proteins may act as cell adhesion molecules (CAMs), secreted ligands or auxiliary subunits that facilitate the function of specific receptors (Aurelio et al., 2002; Ding et al., 2007; Kolodkin and Tessier-Lavigne, 2011; Rougon and Hobert, 2003; Woo et al., 2013). In the case of OIG-1, our work suggests that OIG-1 protein inhibits the disassembly of the ACR-12 receptor complex in a mechanism that opposes remodeling of the postsynaptic region. Given our finding that a non-secreted form of OIG-1 (OIG-1-SP) is functional (Figure 2.6B and C), we suggest that OIG-1 might exert this effect before entering the secretory pathway (Ast et al., 2013).
such that OIG-1-SP could potentially interact with its normal physiological targets. Our results have established a key role for OIG-1 in a mechanism that regulates the relocation of a postsynaptic iAChR from the dorsal to ventral arms of remodeling GABAergic neurons. We also detected a relatively minor function for OIG-1 in the redistribution of a presynaptic component in the opposite direction (Figure 2.8A–D). The origin of this effect is unclear but could indicate that the removal of the postsynaptic apparatus facilitates assembly of presynaptic components in the same location. By comparison, unc-55 exerts a strong negative effect on the ectopic relocation of SNB-1 in VD neurons (Petersen et al., 2011), perhaps indicating that other effectors regulated by unc-55 serve parallel roles in presynaptic remodeling (Figure 2.8E). We have shown that the IgSF protein OIG-1 antagonizes developmental remodeling of postsynaptic iAChRs in the processes of GABAergic neurons. The molecular mechanism underlying this effect and the components of the remodeling program that OIG-1 opposes are important subjects for future studies.
Materials and Methods

Strains and Genetics

C. elegans strains were maintained under standard conditions at 15°C - 25°C. Some strains were obtained from the Caenorhabditis Genetics Center (CGC). Transgenic lines were generated by microinjection of plasmids or PCR products into the gonad of young hermaphrodites. Integrated lines were produced by X-ray irradiation as previously described (Schneider et al., 2012) and outcrossed to wild type. All strains are derivatives of the N2 Bristol strain (wild type). The following strains were used in this work:

Mutants

unc-55(e1170)
oig-1(ok1687)
acr-12(ok367)

Postsynaptic remodeling strains

IZ1458 ufls126[P flp-13::ACR-12::GFP]
IZ1557 ufls126; acr-12(ok367)
IZ1638 ufls126; ufls136[P flp-13::mCherry::Rab3]
IZ1410 ufls126; acr-12(ok367); oig-1(ok1687)
IZ1539 ufls126; ufls63[Pacr-2::mCherry::Rab3]; acr-12(ok367)
IZ1645 ufEx527[P flp-13::UNC-29::GFP]
IZ1490 ufls34[P unc-47::mCherry]; acr-12(ok367)
IZ1750 ufls34[Poig-1::OIG-1-superfolderGFP]
IZ1556 ufls92[P unc-47::ACR-12::GFP]; acr-12(ok367)
NC2814 ufls92; unc-55(e1170); acr-12(ok367)
NC2975 ufls92; unc-55(e1170); acr-12(ok367); wdEx959[P ttr-39::irc-1 cDNA; P ttr-39::irc-1 reverse; P ttr-39::mCherry]
NC2923 ufls92; oig-1(oks1687); acr-12(ok367)
NC3025 ufls92; unc-55(e1170); oig-1(oks1687)
CZ8332 ufls223[P ttr-39::mcherry; P ttx-3::GFP]
IZ1885 ufls7[P unc-29::UNC-29::GFP]; ufls34[P unc-47::mCherry]

OIG-1 reporter strains
OH3955 pha-1(e2123); otEx193[C09E7.3(oig-1)::GFP; pha-1+]
NC2941 pha-1(e2123); otEx193[C09E7.3(oig-1)::GFP; pha-1+]; wpIs36[P unc-47::mCherry]
NC2976 unc-55(e1170); pha-1(e2123); otEx193[C09E7.3(oig-1)::GFP+pha-1+]

oig-1 rescue strains
NC2954 ufls92; oig-1(oks1687); acr-12(ok367); wdsEx955[P acr-
2::3XFLAG::mCherry::OIG-1; Pstr-1::gfp]
NC2956 ufIs92; oig-1(ok1687); acr-12(ok367); wdEx956[Unc-25::3XFLAG::mCherry::OIG-1-SP; Pstr-1::gfp]
NC3014 ufIs126; oig-1(ok1687); acr-12(ok367); wdEx956[Unc-25::3XFLAG::mCherry::OIG-1-SP; str-1::gfp]
NC3012 ufIs126; oig-1(ok1687); acr-12(ok367); wdIs91[Unc-25::3XFLAG::mCherry::oig-1; str-1::gfp]

In-vivo immunostaining strains
NC3026 oig-1(ok1687); wdEx954[Unc-25::3XFLAG::mCherry::OIG-1; Pstr-1::gfp]
NC3027 oig-1(ok1687); wdEx956[Unc-25::3XFLAG::mCherry::OIG-1-SP; Pstr-1::gfp]

Presynaptic remodeling strains
CZ333 juIs1[Unc-25::SNB-1::GFP]
NC2981 juIs1; oig-1(ok1687)
NC1851 juIs1; unc-55(e1170)

Molecular Biology and Transgenics
To build DD-specific presynaptic and postsynaptic reporter plasmids, a flp-13 promoter fragment (-2296 bp relative to start) was cloned into pENTR-D-TOPO to generate a
Gateway entry vector as described previously (Bhattacharya et al., 2014). This entry vector was recombined with the Gateway destination vectors pDEST-38 (ACR-12::GFP), pDEST-15 (mCherry::Rab3), and pDEST-67 (UNC-29::GFP) to generate the expression plasmids pCL32 [P{fpl-13::ACR-12::GFP}], pAP43 [P{fpl-13::mCherry::Rab3}], and pAP65 [P{fpl-13::UNC-29::GFP}], respectively. pAP65 was injected into N2 to yield uflEx527. pCL32 and pAP43 were injected into N2 and stably integrated to produce the strains uflIs126 and uflIs136, respectively.

OIG-1 expression plasmids were constructed using a combination of conventional cloning with restriction enzymes and In-fusion cloning. Briefly, oig-1 genomic DNA was amplified by PCR and inserted into a TA cloning vector. The oig-1 signal sequence was predicted using an online tool (http://www.cbs.dtu.dk/services/SignalP/). A 3XFLAG::mCherry fragment was inserted immediately after the oig-1 signal sequence. The 3XFLAG::mCherry::OIG-1 fragment was then fused with either unc-25 or acr-2 promoter regions to create pSH24[P{unc-25::3XFLAG::mCherry::OIG-1}] and pSH25[P{acr-2::3XFLAG::mCherry::OIG-1}], respectively. To create a non-secreted version of OIG-1, the start codon of pSH24 was mutated from ATG to CTG(L) with the Q5 site-directed mutagenesis kit to generate pSH26[P{unc-25::3XFLAG::mCherry::OIG-1 no SP}] such that translation is initiated from the ATG start codon of the 3XFLAG::mCherry insert. All plasmids sequences were confirmed by sequencing. All OIG-1 expression constructs were injected into an NC2923 background with a P{str-1::GFP} co-selectable marker.
To examine native expression of OIG-1, the oig-1 promoter and gene (-3136bp relative to start) were PCR amplified and cloned into pENTR-D-TOPO to generate a Gateway entry vector. The entry vector was recombined with the Gateway destination vector pDest-72 (suppressor GFP) to generate the expression plasmid pAP75 [Poig-1::oig-1-superfolder GFP].

The UNC-29 expression construct (pDM 970) was generated by amplification of the unc-29 promoter region (-1484 bp relative to start) and subcloning into a plasmid containing full length unc-29 cDNA fused to GFP in the intracellular loop between transmembrane domains 3 and 4 (pDM 956) (Francis et al., 2005).

Microarray Profile of DD Neurons

DD neurons, labeled with Ptttr-39::mCherry marker, juIs223 (Jospin et al., 2009) were isolated by FACS from a synchronized population of L1 larvae as described (Spencer et al., 2014). Total RNA was extracted from FACS-isolated DD neurons and from a reference population of synchronized L1 larvae. 5 - 10 ng of RNA for each sample was amplified with WT-Ovation Pico RNA Amplification System (NuGEN Technologies) and 5 µg of labeled target cDNA was hybridized to Affymetrix C. elegans GeneChip arrays. Independent data sets were collected from four DD and three L1 reference samples. Probe intensities were normalized by Robust Multiarray Analysis (RMA). Transcripts showing ≥ 2-fold difference at < 5% false discovery rate (FDR) between DD
versus L1 reference data sets were identified with two-class unpaired analysis in significance analysis of microarray (SAM) (Irizarry et al., 2003).

RNAi feeding

irx-1 RNAi knockdown by feeding used bacterial clones from the C. elegans RNAi library (Kamath et al., 2001) with plates created as previously described (Earls et al., 2010). For each experimental test, five L4 hermaphrodites were grown on RNAi plates overnight. Adults were removed on the second day and progeny was scored either during larval development or as young adult. For irx-1 RNAi treatment of NC2814 [ufls92; unc-55(e1170); acr-12(ok367)], adult progeny showing improved backward locomotion was selected for scoring because efficient irx-1 RNAi knockdown suppresses the Unc-55 backward movement defect (Petersen et al., 2011). For each set of RNAi plates, unc-55; juIs1 animals were grown as positive controls since effective irx-1 RNAi knockdown restores ventral SNB-1::GFP puncta in this strain (Petersen et al., 2011). Hermaphrodites were also grown on the RNAi bacterial feeding strain with an empty vector (i.e., L4440 containing RNAi vector with no genomic insert) as negative controls. For irx-1 RNAi feeding experiments to assay the role of irx-1 in DD remodeling (Figure 2.5N), gravid LZ1557 adults were transferred to a fresh irx-1 RNAi plate and allowed to lay eggs for 1 hour. The mid-point of that hour was considered time = 0. The fraction of L1 larvae that had completed remodeling (ventral ACR-12::GFP puncta only) were scored after 27 hr at 25°C.
irx-1 cell-specific RNAi

To generate GABA neuron-specific irx-1 RNAi or irx-1(csRNAi), we used PCR to amplify irx-1 cDNA (1131bp) for TOPO TA cloning to produce pSA17. The irx-1 cDNA insert was subcloned into a Pttr-39 promoter backbone to generate expression vectors pSA26 and pSA46 with irx-1 inserts oriented in opposite directions. pSA26, pSA46, pMLH103 (Pttr-39::mCherry) and Pstr-1::GFP (Petersen et al., 2011) were injected into NC2814 at 25ng/µl each. The expression of irx-1 sense and antisense RNA was confirmed by improved backward movement and the expression of Pttr-39::mCherry in GABA neurons.

Staging and time course of DD remodeling

The timing of DD remodeling was analyzed in synchronized animals using IZ1557 as the wild-type reference strain. Briefly, embryos for each strain were picked to separate 60mm unseeded plates and allowed to hatch for 40 minutes. Newly hatched L1 larvae were then moved to freshly seeded plates, and the midpoint of the 40 minutes in which the embryos hatched was considered time = 0. Plates were incubated at 25°C. Animals were mounted on 2% agarose pads, anesthetized with 0.3M sodium azide, and imaged with a confocal microscope at the indicated time points after hatch. The extent of remodeling was assessed by examining the fluorescence signal (ACR-12::GFP) in the ventral and dorsal nerve cords. Images were categorized based on numbers of dorsal and ventral fluorescent puncta on a scale from 1 (solely dorsal) to 5 (solely ventral), with a score of 3 representing comparable levels of dorsal and ventral expression. These scores were then
binned (1,2 dorsal; 3 dorsal = ventral; 4,5 ventral) to depict the remodeling time course. At each time point post hatch, 20 images were analyzed (n=140 per genotype throughout the time course). Results were obtained from two independent experiments for each genotype.

Laser surgery and DD remodeling experiments

The mechanism of DD remodeling was analyzed in synchronized animals using IZ1490 [Pflp-13::ACR-12-GFP; Punc-47::mCherry; acr-12(ok367)]. Newly hatched L1 larvae were staged as described above.

Laser surgery was performed at 5-7 hours after hatch as previously described (Gabel et al., 2008). In brief, a Ti:sapphire laser system, Mantis PulseSwitch Laser (Coherent, Inc), generated a 10 kHz train of \(\sim 100 \) fs pulses in the near infrared (\(\sim 800 \) nm). The beam, focused to a diffraction limited spot (using a Nikon 40X, 1.3 NA microscope objective) resulted in vaporization and tissue disruption with pulse energies ranging from 5 to 15 nJ. Visual inspection of the targeted DD1 commissure immediately following brief laser exposure (\(\sim 100-500 \) ms) confirmed successful axotomy. In some cases, multiple laser exposures were necessary to generate a visual break in the nerve fiber. Animals were then rescued to seeded plates, allowed to recover, and then imaged at 48-50 hours after hatch using a 3i Everest spinning-disk confocal microscope. For quantification of DD1 ventral ACR-12::GFP fluorescence following laser surgery (Figure 2.1G), the anterior DD1 dendrite (anterior region to the soma) was analyzed in mock vs experimental animals. DD1 axons showing detectable regeneration (\(\sim 20\% \)) were excluded from analysis.
in vivo antibody-binding assay

The in vivo antibody-binding assay was performed as described (Gottschalk and Schafer, 2006). Briefly, animals expressing 3×FLAG::mCherry::OIG-1 or 3×FLAG::mCherry::OIG-1-SP were mounted on dry agarose pads under halocarbon oil. Antibody (anti-FLAG, coupled to Alexa488, Cell Signaling) was diluted 1:200 in injection buffer (20mM K₃PO₄, 3mM K citrate, 2% PEG 6000, pH 7.5) and injected into the pseudocoelom of each adult animal with enough volume to extrude a few embryos. Animals were then transferred to NGM plates seeded with OP50 for recovery for 8 hours. Animals that moved normally, fed and laid eggs were imaged for analysis (n > 20 for each group). Approximately half of the injected GABA::OIG-1 animals showed in vivo antibody staining but none of the 20 injected GABA::OIG-1-SP transgenics were immunopositive.

Swimming assay

5-10 well-fed L4 larvae were picked onto unseeded NGM plates to allow foraging for 10 minutes and then transferred to a single well, concave glass slide with 10µL of water. The number of paralyzed L4 larvae at the end of a 10-minute swimming assay was determined by direct observation (n > 60 for each group). Strains used for rescue experiments are NC3026 and IZ1556.

Confocal microscopy

Nematodes were immobilized with 15mM levamisole on a 2% agarose pad in M9 buffer.
Confocal images were acquired with a Nikon A1R+ confocal microscope using either 40X or 63X objectives. All images for ACR-12::GFP fluorescence intensity quantitation were taken with the same settings. For DD remodeling experiments, images were recorded with a 3i (Intelligent Imaging Innovations) Everest spinning-disk confocal microscope collected at 0.27µm/step with a 63x objective. Nematodes were immobilized with sodium azide (0.3M) on a 2% agarose pad.

Image analysis and quantification

Intensity analysis

ND2 files generated from Nikon software were imported into ImageJ for analysis. Maximum intensity projections were generated with ImageJ. For ACR-12::GFP intensity quantification, the ventral and dorsal nerve cords between VD8 and VD9 neurons of each individual animal were traced and intensity was measured using the analyze tool. The mean fluorescence intensity of each animal was used for statistical analysis. For the quantification of irx-1 csRNAi effect, a region on the anterior side of VD neurons was selected. Expression of irx-1 dsRNA in VD neurons was inferred from co-expression of P ttr-39::mCherry (Petersen et al., 2011). A region of the anterior dorsal nerve cord was selected for the quantification of ACR-12::GFP expression in 4-hour post hatch animals.

Co-localization analysis of GFP and mCherry labeled synaptic markers

The line-tracing tool was used to mark a region of interest in either ventral or dorsal nerve cords. The fluorescence intensities of both GFP and mCherry signals were analyzed with the ImageJ plugin. Intensity data were exported to Microsoft Excel and
normalized to the corresponding highest value. Pearson’s correlation efficiency was calculated for each set of images.

Scoring GABA neuron synapses

SNB-1::GFP puncta number was quantified as previously described (Petersen et al., 2011). Briefly, animals were mounted on 2% agarose pads and imaged with a Zeiss Axiovert microscope, using the micromanager software. Puncta in the ventral nerve cord between VD8 to VD9 were counted for each animal (Figure 2.8A-D).

Statistics

Student’s t test was used to compare between two groups. A one-way ANOVA test was used for comparisons among three or more groups followed by a Tukey multiple comparison test. Fisher’s Exact test was used in Figures 2.2F, 2.4E, and 2.5N.
Acknowledgements

We thank members of D.M.'s lab and V. Budnik for critical reading of the manuscript and helpful discussions, K. Howell, J. White, and O. Hobert for sharing information before publication, C. Lambert for technical assistance, Y. Jin for strain juls223, and E. Lundquist for Pstr-1::GFP. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). This work was supported by NIH grants to D.M. (R01NS081259), C.V.G. (R01NS077929), and M.M.F. (R01NS064263). S.H. is partially supported by the Vanderbilt International Scholar Program. A.P. is supported by an NIH predoctoral NRSA (F31DA038399). Experiments were performed in the VMC Flow Cytometry Shared Resource and by VANTAGE (supported by NIH grants, P30 CA 68485, DK 058404, P30 EY 08126, and G20 RR030956).
CHAPTER III

Excitatory neurons sculpt GABAergic neuronal connectivity in the C. elegans motor circuit

Belinda Barbagallo*, Alison Philbrook*, Denis Touroutine, Navonil Banerjee, Devyn Oliver, Christopher M. Lambert and Michael M. Francis

Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester M A 01605

*Co-first authors

Contribution Summary

B.B. generated transgenic lines, collected confocal images, and quantified results for inhibitory synapses at the NMJ and evaluation of the tetanus toxin constructs. A.P. generated transgenic lines, collected confocal images, and quantified results for ACR-16::GFP, UNC-29::GFP, ACR-12::GFP, muscle and GABA neuron morphologies, unc-3::GFP, and unc-3 rescue experiments and controls. D.T. conducted electrophysiology experiments, N.B. performed locomotory behavior assays, D.O. generated transgenic lines, and C.M.L. provided unc-3 rescue constructs. M.M.F. and B.B. wrote the original draft, and M.M.F. and A.P. reviewed and edited the final version.
Abstract
Establishing and maintaining the appropriate number of GABA synapses is key for balancing excitation and inhibition in the nervous system, though we have only a limited understanding of the mechanisms controlling GABA circuit connectivity. Here, we show that disrupting cholinergic innervation of GABAergic neurons in the C. elegans motor circuit alters GABAergic neuron synaptic connectivity. These changes are accompanied by reduced frequency and increased amplitude of GABAergic synaptic events. A cute genetic disruption in early development, during the integration of post-embryonic-born GABAergic neurons into the circuit, produces irreversible effects on GABAergic synaptic connectivity that mimic those produced by chronic manipulations. In contrast, acute genetic disruption of cholinergic signaling in the adult circuit does not reproduce these effects. Our findings reveal that GABAergic signaling is regulated by cholinergic neuronal activity, probably through distinct mechanisms in the developing and mature nervous system.
Introduction

Neurons in the brain are organized into circuits, and the activity of these circuits is regulated by the integration of excitatory and inhibitory synaptic inputs. Thus, appropriate numbers and proper positioning of excitatory and inhibitory synaptic connections are key factors governing circuit performance. Indeed, disruptions in the balance of excitatory and inhibitory synaptic activity are associated with debilitating brain diseases. For instance, impaired maturation of inhibitory signaling can produce circuit hyperexcitability and a predisposition to seizure activity that is thought to be important in epilepsy (Briggs and Galanopoulou, 2011; Cossart et al., 2001; Powell et al., 2003).

Though extensive studies of excitatory synapses have produced advances in our understanding of their development and regulation, far less is known about the processes that govern inhibitory synaptogenesis and patterning. Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the mature mammalian brain. GABAergic inhibition controls spatiotemporal patterns of activity throughout many brain areas, and robust local GABAergic innervation of excitatory neurons is central for this role. Recent work in mammals has suggested that inhibitory connectivity is shaped by sensory experience, and identified activity-dependent transcriptional pathways important for this process (Bloodgood et al., 2013; Chattopadhyaya et al., 2004; Jiao et al., 2006; Morales et al., 2002; Pieraut et al., 2014). Despite these important advances, many aspects of inhibitory network development remain inadequately understood.

Caenorhabditis elegans provides a useful model in which to study neural circuit
development and GABAergic function in vivo. As in mammals, inhibitory GABAergic signaling shapes C. elegans neural circuit activity and behavior. The identity, location and connectivity of all GABAergic neurons have been defined experimentally, and a wealth of genetic tools is available for manipulating GABAergic activity (Schuske et al., 2004). Informative genetic studies have previously identified genes involved in GABAergic synapse formation in C. elegans; however, the extent to which these genes identify mechanisms specific to GABAergic synapses versus more generalized roles remains unclear (Ackley et al., 2005; Dai et al., 2006; Grill et al., 2007; Hallam et al., 2002; Liao et al., 2004; Najarro et al., 2012; Schaefer et al., 2000; Zhen et al., 2000; Zhen and Jin, 1999). Here, we investigate the role of neuronal activity in the establishment and maintenance of inhibitory synaptic connections using the C. elegans motor circuit as a model. Prior work has provided evidence that activity-dependent processes regulate the timing of GABAergic developmental remodeling in C. elegans (Han et al., 2015; Thompson-Peer et al., 2012). Our studies here provide some of the first evidence that activity-dependent processes help to shape the mature pattern of synaptic connectivity in post-embryonic-born GABAergic neurons.
Results

UNC-3 transcriptional regulation coordinates cholinergic synaptic connectivity with body wall muscles

The adult pattern of synaptic connectivity in the motor circuit has been well defined (White et al., 1976). Body wall muscles receive synaptic inputs from both excitatory (acetylcholine, ACh) and inhibitory (GABA) motor neurons and these inputs shape muscle activity and sinusoidal movement (Figure 3.1A). Cholinergic motor neurons also provide excitatory synaptic drive onto inhibitory GABA motor neurons. GABA motor neurons then make inhibitory synaptic connections onto opposing musculature. The ventral D (VD) class GABAergic motor neurons that are the focus of our studies are integrated into the motor circuit post-embryonically following the first larval stage, and mediate inhibitory transmission onto ventral muscles in adults (Han et al., 2015; Sulston, 1976).

To address whether excitatory motor neurons are important for shaping functional connectivity in this circuit, we first examined unc-3 mutants. unc-3 encodes the sole C. elegans homolog of the COE family of transcription factors; in unc-3 mutants, most ventral cord motor neurons completely lack expression of the genes required for cholinergic function (e.g. cha-1 and unc-17) and exhibit additional defects in their organization (e.g. variable and/or disorganized process extension) (Kratsios et al., 2011; Prasad et al., 2008; Prasad et al., 1998). Thus, cholinergic transmission onto body wall muscles should be severely disrupted in these animals. To confirm this, we made whole-
cell patch clamp electrophysiology recordings of synaptic events from ventral body wall muscles of adult unc-3 mutants (1 mM Ca2+) and found significant defects in excitatory transmission (Figure 3.1B and C). Specifically, the frequency of endogenous excitatory postsynaptic currents (EPSCs) is significantly reduced compared with wild type (79±6% reduction, p<0.001). The remaining cholinergic transmission might reflect activity of cholinergic VC motor neurons, which do not require unc-3 for expression of cholinergic markers (Kratsios et al., 2011). Prior work identified a requirement for unc-3 in the clustering of postsynaptic ionotropic (nicotinic) acetylcholine receptors (iAChRs) in muscles (Kratsios et al., 2015). Confirming these observations, we find that the distribution of muscle iAChRs (visualized with ACR-16::GFP) is disrupted by mutation of unc-3 (Figure 3.1D and E). Although the total number of ACR-16::GFP clusters is only modestly reduced compared with wild type, large accumulations of receptor are often present in the shafts of muscle arms in unc-3 mutants, suggesting a re-distribution to non-synaptic locations. Thus, impaired terminal differentiation of cholinergic motor neurons leads to predicted defects in iAChR clustering and excitatory transmission at the cholinergic neuromuscular junction (NMJ).
Figure 3.1 Cholinergic neuromuscular transmission is impaired in unc-3(e151) mutants

(A) The C. elegans motor circuit. Excitatory cholinergic motor neurons (gray) synapse onto inhibitory GABAergic motor neurons (blue) and onto body wall muscles (brown).

(B) Representative recordings of endogenous EPSCs from body wall muscles of wild-type and unc-3(e151) mutant animals. Red traces are expanded views of time segments under the red bars in the upper traces. (C) The average frequency of endogenous EPSCs recorded from wild type and unc-3(e151) mutants. Each bar represents the mean±s.e.m., and numbers in bars indicate the n for each genotype in this figure and for all subsequent figures. ***p<0.0001; Student’s t-test. (D) Confocal images of one wild-type (top) and two unc-3(e151) (middle and bottom) animals expressing GFP-tagged A ChRs in body wall muscles (myo3p::ACR-16::GFP). Scale bar: 5 µm. (E) Normalized receptor cluster number per 75 µm of ventral nerve cord. *p<0.05; Student’s t-test.
Mutation of unc-3 impairs postsynaptic iAChR clustering in GABA neurons and reduces inhibitory transmission.

Given that cholinergic motor neurons also make extensive synaptic contacts with inhibitory motor neurons, we next sought to determine whether the disruption of cholinergic innervation associated with mutation of unc-3 affected inhibitory activity. Using conditions that isolated inhibitory transmission, we measured endogenous inhibitory postsynaptic currents (IPSCs) from unc-3 mutants. The rate of endogenous IPSCs (5 mM Ca\(^{2+}\)) is significantly lower in unc-3 mutants compared with wild type (63% reduction, \(p<0.0001\)) (Figure 3.2A and B). Interestingly, mutation of unc-3 also produces a shift towards larger amplitude endogenous IPSCs (Figure 3.2C), suggesting either altered muscle responsiveness to GABA release or increased GABA content in synaptic vesicles. Our analysis supports the notion that cholinergic neurons provide direct excitatory drive onto GABAergic motor neurons and perhaps also regulate functional attributes of GABA synaptic outputs onto muscles.

Given these findings, we next investigated whether unc-3 is required for establishing proper synaptic connectivity between cholinergic and GABAergic motor neurons. The nicotinic AChR subunit ACR-12 is a constituent of GABA neuron iAChRs. ACR-12::GFP clusters localize opposite ACh release sites and relocate appropriately during developmental remodeling, suggesting that these clusters report mature postsynaptic structures (He et al., 2015; Petrash et al., 2013). We examined the distribution of ACR-12::GFP in the dorsal nerve cord where the majority of chemical synaptic inputs to VD neurons occur (VD synaptic contacts with muscles are exclusively
ventral) (White et al., 1986). We found that receptor clustering is severely disrupted in two independent unc-3 mutant strains (n3435 and e151) (**Figure 3.2D and E**). A CR-12 clusters are unevenly distributed and significantly reduced in number compared with wild type [e.g. 51% decrease in unc-3(e151), \(p<0.001 \)]. These effects are rescued with expression of the wild-type unc-3 cDNA under control of a 1 kb unc-3 promoter, but not by either GABA or muscle-specific expression (**Figure 3.2D and E**). This unc-3 promoter region drives expression in cholinergic, but not GABAergic, motor neurons (**Figure 3.3A**). Together, these observations suggest that unc-3 expression in cholinergic neurons is required for proper ACR-12 clustering in postsynaptic GABAergic neurons.

madd-4, the *C. elegans* homolog of mammalian punctin-1 and punctin-2 (also known as Adamtsl1 and Adamtsl3, respectively), encodes a synapse-associated extracellular scaffolding protein (Pinan-Lucarre et al., 2014). Secretion of MADD-4 from cholinergic motor neurons is required for proper iAChR localization at neuromuscular synapses (Pinan-Lucarre et al., 2014). Prior work showed that UNC-3 transcriptional regulation of madd-4 is essential for this process (Kratsios et al., 2015). To test whether MADD-4 is similarly required at synaptic connections between cholinergic and GABAergic motor neurons, we examined ACR-12 clustering in GABAergic neurons of madd-4 mutants. The madd-4(ok2854) allele is a 962 bp deletion that eliminates the two largest madd-4 exons common to all madd-4 isoforms, has been previously reported to be a null allele (Maro et al., 2015; Seetharaman et al., 2011), and produces significant defects in muscle AChR clustering similar to those previously observed after deletion of the entire madd-4 locus (Pinan-Lucarre et al., 2014) (**Figure 3.3B and C**). Mutation of
madd-4 produces a slight decrease in the number of ACR-12 clusters in the dorsal nerve cord compared with wild type (18% decrease, p<0.05) (Figure 3.2D and E). Notably, this effect is much less severe than that observed for mutation of unc-3, indicating that the postsynaptic defects in GABAergic neurons of unc-3 mutants cannot be accounted for by decreased madd-4 expression. Taken together, our results indicate that UNC-3 transcriptional control of cholinergic neuron development is essential for proper iAChR clustering in GABAergic motor neurons, but MADD-4 has a comparatively minor role.
Figure 3.2 unc-3 mutation causes defects in GABAergic transmission and iAChR clustering in GABAergic neurons

(A) Representative recordings of endogenous IPSCs from body wall muscles of wild-type animals and unc-3(e151) mutants. Red traces are expanded views of time segments under the red bars in the upper traces. (B) The average frequency of endogenous IPSCs recorded from wild type and unc-3(e151) mutants. ***p<0.0001, Student’s t-test. (C) Cumulative distribution of amplitudes of endogenous IPSCs recorded from wild type and unc-3(e151) mutants. ***p<0.001; Kolmogorov–Smirnov test. (D) Confocal images showing the dorsal nerve cord of eight animals expressing ACR-12::GFP in GABA neurons for the genotypes indicated. Scale bars: 5 µm. (E) Quantification of the average number of receptor clusters per 85 µm of dorsal nerve cord for the genotypes indicated, normalized to wild type. *p<0.05, ****p<0.0001; ANOVA with Dunnett’s multiple comparisons test.
Figure 3.3 Analysis of unc-3 expression and madd-4(ok2854)

(A) Confocal images of the posterior ventral nerve cord in adult animals expressing a transcriptional reporter labeling cholinergic neurons (acr-2p::mCherry) and an unc-3 promoter construct fused with GFP (unc-3p::GFP). A sterisks indicate colocalization in cholinergic cell bodies. Scale bar, 5 µm. (B) Confocal images of UNC-29::GFP expressed specifically in body wall muscle (myo-3p::UNC-29::GFP) in wild type and madd-4(ok2854) mutant animals. A sterisks indicate UNC-29::GFP fluorescence in muscle arms. Scale bar, 5 µm. (C) Quantification of the average number of receptor clusters/80 µm of the ventral nerve cord for the genotypes indicated. Each bar represents the mean ± SEM. Numbers in bars indicate the n for each genotype. ****p<0.0001, student’s t test.
Morphological development of body wall muscles and GABA motor neurons is not dramatically affected in unc-3 mutants

To address whether the connectivity changes we observed might reflect alterations in the gross development or assembly of the motor circuit, we examined the cellular morphology of body wall muscles and GABA motor neurons. In wild-type animals, body wall muscles project membrane extensions, called muscle arms, to the nerve cords where muscle arm termini bifurcate and project lengthwise along the nerve cord, forming en passant synapses with motor neurons (Dixon and Roy, 2005). We visualized muscles by specific expression of membrane-bound mCD8::GFP (him-4p::mCD8::GFP) (Collins and Koelle, 2013; Dixon and Roy, 2005) (Figure 3.4A). Variable minor morphological defects (e.g. overgrowth, membrane blebbing) are apparent in the body wall muscles of unc-3 mutants (Figure 3.4B). However, consistent with a prior study (Kratsios et al., 2015), we found that overall muscle morphology is preserved – muscle arms extend normally to the nerve cord and the extent of muscle membrane contact with the nerve cord region is not appreciably altered (Figure 3.4D).

We visualized the morphology of GABA motor neurons using cell-specific expression of mCherry (unc-47p::mCherry) (Figure 3.4A’). Similar to the case for muscle cells, disruption of cholinergic innervation does not produce significant defects in GABA motor neuron number, positioning or gross morphology (Figure 3.4B’; Figure 3.5A-C). Although in some cases we noted regions of nerve cord defasciculation in unc-3 mutants (and sometimes one fewer commissure was visible), we did not observe disruptions in the continuity of the dorsal nerve cord processes. Thus, our findings
provide evidence that gross morphological development of body wall muscles and GABA motor neurons proceeds to completion when cholinergic development is disrupted, arguing that the iAChR clustering and GABA transmission defects we observed in unc-3 mutants are unlikely to arise secondary to impaired morphological development of these cell types.
Figure 3.4 Gross morphological development of GABA motor neurons and muscles does not require cholinergic innervation

(A–C′) Confocal images of the ventral nerve cord and body wall muscles posterior to the vulva of an adult wild-type (A,A′), unc-3(e151) mutant (B,B′) and acr-2(L/S) transgenic (C,C′) animals expressing a membrane-bound GFP in the distal row of body wall muscles (him4p::mCD8::GFP) (A–C) or mCherry in the GABA nervous system (unc-47p::mCherry) (A′–C′). Arrows indicate muscle arm shafts and arrowheads indicate muscle arm termini. Asterisks indicate GABA neuron commissures. Scale bars: 10 µm (A–C); 20 µm (A′–C′). (D) Quantification of the percentage of the ventral nerve cord region covered by muscle membrane. ns, not significant; ANOVA with Dunnett’s multiple comparisons test.
Figure 3.5 GABA neuron morphology is grossly normal in unc-3 mutants

(A) Confocal images of the posterior dorsal nerve cord in adult animals expressing a transcriptional reporter labeling GABAergic (unc-47p::mCherry) neurons in wild type and unc-3(e151) mutant animals. Scale bar, 10 µm. (B, C) Quantification of the average number of GABAergic cell bodies (B) and commissures (C) for the genotypes indicated. Each bar represents the mean ± SEM. Numbers in bars indicate the n for each genotype. ***p<0.001, student’s t test.
Cholinergic innervation refines GABA synaptic outputs

Our results described above support the idea that UNC-3 regulation of cholinergic neuron differentiation is important for the establishment of synaptic connectivity with GABAergic neurons. We next investigated whether cholinergic neurons might similarly contribute to the development of GABA synaptic outputs onto muscles. We examined GABA synapses in a transgenic strain expressing the synaptic vesicle marker mCherry::RAB-3 in GABA motor neurons together with the GFP-tagged GABA_A-like receptor UNC-49 in muscles (Bamber et al., 1999; Klassen and Shen, 2007) (Figure 3.6A). In wild-type animals, GABA synapses are evenly spaced along the ventral nerve cord, with presynaptic vesicles and postsynaptic GABA receptor clusters in close apposition (Figure 3.6B; Figure 3.7A and D). Mutation of unc-3 produces striking changes in GABA synapses (Figure 3.6C, D, G, and H), a phenotype consistent across independent unc-3 mutant strains (n3435 and e151). Specifically, the number of pre- and post-synaptic clusters is significantly decreased, and the average size of postsynaptic UNC-49::GFP puncta is increased [e.g. by 95% in unc-3(e151)]. Furthermore, we noted significant regions of the ventral nerve cord lacking GABA synaptic vesicle clusters in unc-3 mutants [e.g. 56±4% in unc-3 (e151), compared with 20±2% in the wild type, p<0.01]. A prior study reported diffusely distributed and enlarged clusters of the active zone marker SYD-2/α-liprin in GABA neurons of unc-3 mutants (Yeh et al., 2005), consistent with our findings.

The localization of other synaptic markers, including the synaptic vesicle marker SNB-1/synaptobrevin (Nonet, 1999) and the active zone marker UNC-10/RIM, are
similarly altered by mutation of unc-3 (Figure 3.6I-L). The size and distribution of SNB-1 clusters are both affected similarly to RAB-3. The number of UNC-10 clusters is decreased significantly but we do not observe a change in their average area, suggesting that synaptic vesicle clustering is more dramatically affected than the size of the active zone itself. Despite the altered distribution of synaptic markers, we did not observe obvious changes in the apposition of presynaptic mCherry::RAB-3 and postsynaptic UNC-49::GFP fluorescent signals (Figure 3.7D) [wild type: 88±3%; unc-3(e151): 82±4% in apposition], suggesting that trans-synaptic signaling important for establishing proper registration between pre- and post-synaptic specializations is maintained.

Most aspects of these GABA synapse defects are reversed with expression of the wild-type unc-3 cDNA in cholinergic neurons (Figure 3.6E, G, H). In particular, the decreased number of GABAergic presynaptic RAB-3 clusters and the increases in synapse size are each rescued with unc-3p::unc-3 expression, but not by GABA-specific expression. Although decreases in the number of GABA receptor clusters are not significantly rescued by unc-3p::unc-3 expression, GABA- or muscle-specific expression enhances the severity of this phenotype, arguing against a requirement for unc-3 expression in these cells. Finally, we noted that muscle-specific expression of unc-3 appears to partially reverse the increases in synapse size; however, decreases in synapse number are not rescued. Together, our transgenic rescue experiments provide additional support for the idea that unc-3 expression in cholinergic neurons is required for establishing proper GABAergic connectivity.

Surprisingly, unc-3p::unc-3 cDNA expression is not sufficient to restore
movement to unc-3 mutants. In contrast, expression of an unc-3 minigene containing the first three unc-3 introns under control of the same promoter improves movement and restores synaptic connectivity (Figure 3.8), suggesting that additional aspects of unc-3 regulation are important for motor function and that unc-3 intronic regions are crucial in this process.

To further test the idea that cholinergic innervation influences the number and positioning of GABAergic synapses, we ablated ACh motor neurons by expressing a putative gain-of-function variant of the ACh receptor subunit acr-2, acr-2(L/S), that produces cell-autonomous death of cholinergic motor neurons during late embryogenesis (Barbagallo et al., 2010). Similar to unc-3, we did not observe gross morphological changes in GABA neurons or reduced muscle membrane contact with the nerve cord (Barbagallo et al., 2010) (Figure 3.4C, C′, D). Nonetheless, genetic ablation of ACh motor neurons produces striking defects in inhibitory synapses, similar to those observed for unc-3 mutants, including a significant decrease in the number of both presynaptic mCherry::RAB-3 and postsynaptic UNC-49::GFP clusters, as well as significant increases in their size (Figure 3.6F-H; Figure 3.7C). Thus, impaired differentiation or genetic ablation of ACh motor neurons does not affect the gross morphology of GABA neurons but instead alters the density and size of GABA synaptic outputs. Our analysis of inhibitory synapses in unc-3 mutants and acr-2(L/S) transgenic animals supports the hypothesis that presynaptic cholinergic neurons play important roles in both clustering iAChRs in GABA neurons and in shaping GABA synaptic outputs.
Figure 3.6 Impaired cholinergic innervation alters the distribution and size of GABA synapses

(A) Diagram depicting the location of fluorescent reporters used to label GABA pre- (unc-47p::mCherry::RAB-3) and post-synaptic (UNC-49::GFP) structures. (B-F) Confocal images of the ventral nerve cord in adult wild type (B), unc-3(n3435) mutants (C), unc-3(e151) mutants (D), unc-3(e151) mutants expressing an unc-3 cDNA rescuing array (unc-3p::unc-3 cDNA) (E), and transgenic acr-2(L/S) animals (F) co-expressing unc-47p::mCherry::RAB-3 in GABA motor neurons with UNC-49::GFP in body wall muscles. Note areas devoid of synaptic clusters (brackets) and enlarged clusters in unc-3 mutants and acr-2(L/S) transgenic animals. Motor neuron cell bodies are outlined in this figure and all subsequent figures. Scale bars: 20 µm. (G) Average number of pre- and post-synaptic clusters per 50 µm, normalized to wild type. (H) Average size of pre- and post-synaptic clusters at GABA synapses. *p<0.05, **p<0.01, ****p<0.0001 compared with either control or unc-3 mutant as indicated; ANOVA with Dunnett’s multiple comparisons test. (I,J) Confocal images of the ventral cord in wild type or unc-3(e151) mutants expressing the GFP-tagged synaptic vesicle marker synaptobrevin (SNB-1::GFP) (I), or the Rim1 homolog (UNC-10::mCherry) (J). Scale bars: 20 µm. (K) Quantification of synaptic cluster number per 50 µm for each marker, normalized to wild type. (L) Quantification of presynaptic cluster area for genotypes indicated. **p<0.01, ***p<0.0001; Student’s t-test.
Figure 3.7 GABA synaptic distribution is altered with disruption of cholinergic neurons

(A-C) Confocal images showing the distribution of GABA synaptic markers (mCherry::RAB-3 and UNC-49::GFP) in extended regions of the ventral nerve cord of adult wild type, unc-3(e151), and transgenic acr-2(L/S) animals. Scale bar, 20 μm. (D) Representative line scans depicting colocalization of UNC-49::GFP and mCherry::Rab3 in a 40 μm region of the ventral nerve cord in wild type and unc-3(e151) mutant animals. Note larger puncta and gaps in fluorescence in unc-3 mutants.
Figure 3.8 Expression of an unc-3 minigene construct rescues synapse and movement defects in unc-3(e151) mutants

(A) Quantification of the average number of receptors clusters/85 μm of dorsal nerve cord for the genotypes indicated, normalized to wild type. Each bar represents the mean ± SEM. Numbers in bars indicate the n for each genotype. ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test. (B) Top: Average number of pre- and post-synaptic clusters/50 μm, normalized to wild type. Bottom: Average size of pre- and post-synaptic clusters at GABA synapses/50 μm. Each bar represents the mean ± SEM. Numbers in bars indicate the n for each genotype. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 for comparisons with either wild type or unc-3 mutant values as indicated, ANOVA with Dunnett’s multiple comparisons test. For A and B, values for wild type, unc-3 mutant and cDNA rescue were reproduced from Figures 3.2 and 3.6 respectively. (C) Average distance travelled in 30 s for the genotypes indicated. Each bar represents the mean ± SEM. Numbers in bars indicate the n for each genotype. ****p<0.0001, ***p<0.001, ANOVA with Dunnett’s multiple comparisons test.
Vesicular release from cholinergic neurons shapes GABA synapses

We next investigated whether vesicular release from cholinergic neurons is required to properly establish GABA neuron connectivity. We disrupted vesicular release by specific expression of tetanus toxin light chain (TetTx) (Figure 3.9; Figure 3.10). TetTx expression in cholinergic motor neurons does not affect morphology or outgrowth, but produces changes in sensitivity to the cholinesterase inhibitor aldicarb consistent with decreased transmission (Figure 3.10). Cholinergic expression of TetTx does not alter ACR-12 clustering in GABA neurons (Figure 3.9A, B). We did, however, observe significant abnormalities in GABA synaptic outputs (Figure 3.9C-F). These include enlargement of both presynaptic mCherry::RAB-3 and postsynaptic receptor clusters, as well as gaps in fluorescence that are similar to those observed for unc-3 mutants and acr-2(L/S) transgenic animals. Thus, synaptic structures between cholinergic and GABAergic neurons appear to be properly established when vesicular release from cholinergic motor neurons is impaired. Despite this, the distribution of GABAergic synaptic outputs is disrupted, implicating vesicular signals from ACh motor neurons in contributing to this process.

To investigate the possibility that ACh itself is an important signal, we examined GABA synapses in mutant strains with specific defects in cholinergic transmission. unc-17 mutants are defective in a vesicular transporter (vAChT) that loads ACh into synaptic vesicles (Brenner, 1974; Rand, 1989; Rand and Russell, 1984). The unc-17(e113) mutation disrupts the UNC-3 binding site in the unc-17 promoter, disrupting UNC-17 and CHA-1 expression in cholinergic motor neurons (J. Rand, personal communication), and
these mutants are presumably null for ACh release from cholinergic motor neurons.

A CR-12::GFP clustering in the dorsal nerve cord is not significantly altered in unc-17(e113) mutants or in madd-4;unc-17 double mutants (Figure 3.11A, B), consistent with the results described above for TetTx expression. In contrast, GABAergic pre- and post-synaptic clusters are significantly decreased in number in unc-17(e113) mutants (by 65% and 64% respectively, p<0.001) (Figure 3.11D, G). A second strongly hypomorphic unc-17 allele (e245) produced similar effects. The e245 mutation replaces a glycine with an arginine (G347R) in the ninth transmembrane domain of the vAChT protein (Alfonso et al., 1993) and decreases UNC-17 protein levels (Sandoval et al., 2006). A CR-12::GFP clustering is unchanged in unc-17(e245) compared with wild type (Figure 3.11B), but significant defects in GABA synaptic outputs are apparent. These include gaps in the distribution of synapses as well as enlarged pre- and post-synaptic clusters (Figure 3.11E, G, H). The increased size of GABAergic synapses in unc-17(e245) mutants, but not unc-17(e113) mutants, might indicate that partial loss of ACh release triggers changes in GABA synapse size. Alternatively, ACh release from cholinergic neurons in which unc-17 transcriptional regulation occurs independently of unc-3 (e.g. VC neurons) might influence GABA synapse size. Together, our analysis of unc-17 mutants provides evidence for the involvement of cholinergic transmission in directing the development of GABA synaptic outputs. Nonetheless, these effects are less pronounced than those observed after either TetTx expression or mutation of unc-3, suggesting participation of additional ACh-independent signals.

To address whether the effects of decreased ACh release reflect a requirement for
ACh signaling onto muscles, we examined GABA synapses in animals lacking functional
iAChRs at the NMJ (unc-29; acr-16 double mutants) (Francis et al., 2005). Eliminating
synaptic activation of muscles causes a slight reduction in the number of postsynaptic
GABA receptor clusters (Figure 3.11F-H) but does not alter the density or positioning of
presynaptic structures, suggesting that cholinergic activation of muscles is not essential
for shaping GABAergic neuromuscular connectivity.
Figure 3.9 Vesicular release from cholinergic motor neurons shapes GABA synaptic outputs

(A) Confocal images showing the dorsal nerve cord of eight animals coexpressing ACR-12::GFP in GABA neurons and tetanus toxin in cholinergic neurons. Scale bar: 5 µm. (B) Quantification of the average number of receptor clusters per 85 µm of dorsal nerve cord for the genotypes indicated, normalized to wild type. (C, D) Merged confocal images of unc-47p::mCherry:: RAB-3 and UNC-49::GFP labeling in the ventral nerve cord of adult wild-type (C) and transgenic animals with specific TetTx expression in cholinergic neurons (D). Brackets indicate areas devoid of synaptic clusters. Scale bars: 20 µm. (E) Average number of pre- and post-synaptic clusters per 50 µm for each genotype, normalized to wild type. (F) Average area of pre- and post-synaptic clusters at GABA synapses for each genotype as indicated. ***p<0.001, ****p<0.0001; Student’s t-test.
Figure 3.10 Cell specific expression of tetanus toxin in cholinergic neurons alters neuronal activity but not neuronal organization

(A) Schematic representation of the motor circuit showing connectivity of cholinergic (green) and GABAergic neurons (red). Sites of tetanus toxin action are denoted by X. (B) Time course of paralysis of adult animals on 1 mM aldicarb, an inhibitor of cholinesterase. The percentage of animals paralyzed was calculated every 15 minutes for two hours. Each data point represents the mean ± SEM of n=10 or n=8 assays for wild type or ACh::TetTx respectively. (C, D) Confocal images of the posterior ventral nerve cord in adult animals co-expressing transcriptional reporters labeling cholinergic (unc-17p::GFP) and GABAergic (unc-47p::mCherry) neurons in wild type or with cell-specific expression of TetTx as indicated. The identities of motor neurons based on cell body position are indicated (green, cholinergic neurons) (red, GABAergic neurons).
Figure 3.11 Reduced cholinergic transmission alters GABA synapse density and localization

(A) Confocal images showing the dorsal nerve cord of eight unc-17(e113) and madd-4(ok2854);unc-17(e113) animals expressing ACR-12::GFP in GABA neurons. Scale bars: 5 µm. (B) Quantification of the average number of receptor clusters per 85 µm of dorsal nerve cord for the genotypes indicated, normalized to wild type. (C-F) Merged confocal images of unc-47p::mCherry::RAB-3 and UNC-49::GFP labeling in the ventral nerve cord region of adult wild-type animals (C), unc-17(e113)/vA ChT mutants (D), unc-17(e245)/vA ChT mutants (E) or unc-29(x29);acr-16(ok789) double mutants, which lack functional muscle iAChRs (F). Scale bars: 20 µm. (G) Average number of GABA pre- and post-synaptic clusters per 50 µm for each genotype, normalized to wild type. (H) Average size of GABA pre- and post-synaptic clusters. *p<0.05, **p<0.01, ****p<0.0001; ANOVA with Dunnett’s multiple comparisons test.
Acute reductions in cholinergic activity in adults lead to decreased GABA synapse size. Our previous genetic analysis indicated that cholinergic transmission helps to shape the distribution of GABA synaptic outputs, but did not distinguish whether these effects occur in the mature or developing nervous system. To address this question, we used a temperature-sensitive allele (y226) of cha-1/choline acetyltransferase (ChAT) (Rand and Russell, 1984). When maintained at a permissive temperature (15°C), cha-1(y226) mutants develop similarly to wild type, generating the full complement of cholinergic motor neurons (Figure 3.12A). When switched to a restrictive temperature (25°C), cha-1(y226) mutants become uncoordinated within minutes, consistent with rapid impairment of cholinergic transmission, and these behavioral effects are reversible upon shifting back to the permissive temperature (Zhang et al., 2008) (Figure 3.12B).

We first investigated the effects of reduced cholinergic transmission in adult animals. We shifted cha-1(y226) mutants to 25°C for a 4 h period in early adulthood, and visualized GABA synapses immediately following this shift (Figure 3.13A). Interestingly, this transient reduction in cholinergic transmission does not produce appreciable changes in the distribution or number of GABA synapses. Instead, we noted a significant decrease in the size of both pre- and post-synaptic clusters (Figure 3.13B-G), whereas GABA synapses in wild-type animals remain unaffected. This temperature-shift paradigm also produces a significant decrease in movement velocity in cha-1(y226) mutants, and these effects are reversible within a 4 h recovery period at 15°C (Figure 3.12B). GABA synaptic clusters in cha-1 mutants are also restored to their normal size following a 4 h recovery period (Figure 3.13D-G). Increasing the duration of shifts to the
restrictive temperature (8h) produces further decreases in the size of GABA pre- and post-synaptic clusters. Our findings indicate that acute changes in cholinergic activity during adulthood are sufficient to alter the size of GABA synapses, without producing obvious effects on GABA synapse positioning or density. The reversible nature of the synaptic alterations in adults provides evidence for active mechanisms that regulate the size of GABA synapses in response to changing levels of cholinergic transmission.
Figure 3.12 Neuronal development and locomotory behavior in cha-1(y226) mutant animals

(A) The number of GABA motor neuron cell bodies (visualized by unc-47p::mCherry expression) present in wild type or cha-1(y226) animals grown at 15°C at the time points indicated. All time points are taken from the 21+ cell stage. Graph represents the average number of cell bodies for 10-15 animals per time point for each genotype. (B) Forward velocity of adult wild type and cha-1(y226) animals following the shifts indicated. See Figure 3.13A for details of time shift. **p<0.001, ***p<0.0001, ANOVA with Tukey’s multiple comparisons test. (C) Forward velocity of young adult wild type and cha-1(y226) animals after being shifted to a non-permissive temperature for eight hours spanning the L1/L2 transition. See Figure 3.14A for details of temperature shift. *p<0.05, student’s t-test.
Figure 3.13 Acute reduction of cholinergic transmission during adulthood produces reversible decreases in GABA synapse size

(A) Diagram indicating predicted timeline of wild-type C. elegans development at 15°C and temperature shifts employed. Approximate time of hatch is indicated. Temperature shifts to 25°C (red) and time of imaging (green) are indicated. E, embryo. (B,C) Merged confocal images of unc-47p::mCherry::RAB-3 and UNC-49::GFP labeling in the ventral nerve cord region of adult wild-type animals (B) or cha-1(y226) mutants (C) following a shift to 25°C for the durations indicated. Scale bar: 20 µm. (D,E) Average number of GABA presynaptic (D) and postsynaptic (E) clusters per 50 µm for wild type (black) and cha-1(y226) mutants (gray). (F,G) Average size of GABA presynaptic (F) and postsynaptic (G) clusters for wild type (black) and cha-1(y226) mutants (gray). *p<0.05, **p<0.01, ***p<0.0001; ANOVA with Dunnett’s multiple comparisons test.
Acetylcholine release is required during a highly synaptogenic period for proper GABA synapse localization.

We next investigated whether cholinergic activity during development might help to shape the density or distribution of GABA synapses. To address this question, we again used cha-1(y226) mutants, shifting animals to 25°C for 8 h periods during the first larval (L1) stage, then imaging GABA synapses later in adulthood (Figure 3.14A). We noted a time window beginning approximately 20 h after hatch (late L1 stage in wild type at 15°C) during which an 8 h shift to the restrictive temperature produces significant defects by adulthood. Specifically, we found the number of pre- and post-synaptic clusters is decreased by 40% and 27%, respectively, in cha-1 mutants subjected to temperature shift (Figure 3.14B-D). We also noted a significant increase in the size of presynaptic clusters (Figure 3.14E), although the size of postsynaptic clusters does not appear to be altered (Figure 3.14F). These effects do not occur in control animals exposed to the same shift in temperature, or in cha-1 mutants grown continuously at 15°C. This temperature shift paradigm also produces a modest decrease in movement velocity in cha-1(y226) adult animals, suggesting that transient reduction of cholinergic transmission during development might be sufficient to produce behavioral defects that extend into adulthood (Figure 3.12C). The timing of the 8 h temperature shift is predicted to overlap the L1/L2 transition for wild-type animals during which GABAergic VD neurons are initially integrated into the motor circuit, although the precise timing of these events can vary in mutant and transgenic strains. Thus, reduced cholinergic activity early in the development of GABAergic VD neurons affects their synaptic distribution, implicating
cholinergic signaling in defining the mature pattern of inhibitory connectivity.
Figure 3.14 Reduced cholinergic neurotransmission during a period of GABAergic synaptogenesis alters GABAergic synaptic connectivity

(A) Diagram indicating predicted timeline of wild-type C. elegans development at 15°C and temperature shifts employed. Approximate time of hatch is indicated. (B,C) Confocal images of the ventral nerve cord in adult wild-type (B) and cha-1(y226) (C) temperature-sensitive mutant animals co-expressing GABA pre- and post-synaptic markers (unc-47p::mCherry::RAB-3 and UNC-49::GFP) grown at the permissive temperature and after an 8 h shift to the non-permissive temperature during the first larval stage. Note that the representative image for the cha-1 no shift control group shown in C is the same as that displayed in Fig. 7C. Scale bar: 20 µm. (D) Average number of GABA presynaptic and postsynaptic clusters per 50 µm for wild type (black) and cha-1(y226) mutants (gray). (E,F) Average size of GABA presynaptic (E) and postsynaptic (F) clusters for wild type (black) and cha-1(y226) mutants (gray). *p<0.05, **p<0.01, ***p<0.0001; Student’s t-test.
Discussion

Establishing the appropriate pattern of GABAergic innervation is crucial for proper inhibitory regulation of mature neural circuits. In this study, we explored the role of cholinergic motor neurons in sculpting the synaptic connectivity of GABAergic neurons in the C. elegans motor circuit. Our results show that integration of post-embryonic-born GABAergic VD neurons into the motor circuit is extensively regulated by cholinergic motor neurons, complementing prior studies that provided evidence for activity-dependent synaptic remodeling of embryonic-born GABAergic DD neurons (Han et al., 2015; Thompson-Peer et al., 2012). First, mutation of the COE transcription factor unc-3, which is required for terminal differentiation of cholinergic motor neurons, disrupts postsynaptic development (iAChR clustering) in GABAergic neurons. These effects are not strongly dependent on either cholinergic vesicular release or expression of the synaptic organizer madd-4, suggesting involvement of a novel molecular pathway. Second, mutation of unc-3 produces defects in GABAergic VD neuron synaptic connectivity with muscles. Third, genetic ablation of cholinergic motor neurons or specific TetTx expression in cholinergic neurons similarly alters the size and distribution of GABA synaptic outputs to muscles. Mutation of the cholinergic vesicular transporter unc-17 produces similar effects on GABAergic connectivity with muscles. Finally, the density of GABAergic synaptic outputs is decreased by acute reduction of cholinergic transmission during a developmental period that corresponds with the time of initial integration of GABAergic VD neurons into the circuit in wild type. Our findings suggest a model in which vesicle-borne signals from cholinergic motor neurons, both ACh and
additional signals, are important for shaping GABAergic connectivity.

Cholinergic motor neurons innervate both GABAergic motor neurons and body wall muscles. Disruption of cholinergic innervation did not impair gross morphological development or outgrowth in either of these cell types, indicating that cell-intrinsic genetic programs are sufficient to guide normal morphological development. In contrast, additional activity-dependent processes appear to be required for establishing the mature pattern of GABAergic synaptic connectivity. These results could be indicative of a functional segregation between processes underlying activity-dependent regulation of synaptic connectivity and intrinsic genetic regulation of gross morphological features. Prior work showed that elimination of glutamatergic synaptic inputs has little effect on the morphological development of mouse hippocampal neurons (Lu et al., 2013), providing support for a similar segregation between these processes in mammals.

Mutation of unc-3 produced the most striking effects on synaptic connectivity in our experiments, both impairing postsynaptic ACR-12 iAChR clustering in VD neurons and decreasing their synaptic outputs. The requirement for UNC-3 in ACR-12 iAChR clustering is unlikely to indicate involvement of cholinergic activity-dependent regulation because neither TetTx expression nor mutation of unc-17 altered ACR-12 clustering. Similarly, mutation of the synaptic organizer madd-4 did not strongly affect ACR-12 iAChR clustering in VD neurons, either alone or in combination with mutation of unc-17, suggesting that a novel, as yet unidentified, transcriptional target of UNC-3 might be important for this process.

Our studies suggest that cholinergic activity might have a more prominent role in
directing the distribution of GABAergic synaptic outputs. Our electrophysiological analysis of unc-3 mutants showed that GABAergic VD motor neurons are capable of sustaining inhibitory transmission. Notably, however, the frequency of GABAergic synaptic events is dramatically reduced compared with wild type, and their average amplitude increased significantly, mirroring the changes we observed in GABAergic outputs using our synaptic markers. We noted similar structural changes in GABAergic synaptic outputs when cholinergic neurons were genetically ablated [acr-2(L/S)], and when cholinergic vesicular release was disrupted (ACh::TetTx). For all of these, presynaptic alterations were paralleled by similar effects on the clustering of postsynaptic GABA receptors, suggesting that these effects reflect a change in synapse patterning/maturation rather than direct impairment of synapse formation per se.

Although synapse dynamics continue throughout the life of an animal, there is often increased plasticity earlier in development (Hensch and Fagiolini, 2005). The effects of cholinergic activity we observed might reflect an ongoing requirement for cholinergic transmission or a more specific requirement during a developmental period of increased plasticity. Our analysis of temperature-sensitive cha-1 mutants provides support for the latter possibility. A temporally defined reduction in cholinergic transmission that overlaps with the predicted timing of the highly synaptogenic L1/L2 transition in wild type produced irreversible defects in the patterning and size of GABAergic synaptic outputs. At the L1/L2 transition, 13 GABAergic VD neurons are added to the motor circuit, forming synapses onto ventral muscles. Our findings suggest that cholinergic activity during this developmental period influences the patterning of
GABA synapses, and that deficits in transmission during this time period cannot be compensated for in later developmental stages. How might reduced cholinergic activity in early development alter GABAergic synaptic outputs in the adult? Synaptic inputs to the VDs primarily come from the dorsal A and B (DA/DB) classes of cholinergic motor neurons, which are present from hatch and are re-wired to innervate VD neurons after the L1 stage. One interesting possibility is that a reduction in cholinergic activity impairs re-wiring and DA/DB innervation of VD GABAergic neurons. According to this model, defects in GABA synapse patterning would then arise due to impaired DA/DB activation of GABAergic neurons. In contrast, acute reduction of cholinergic activity in the adult produces effects that are distinct from those during development, including changes in synapse size without decreases in synapse number, raising the possibility that homeostatic mechanisms are established after synapse patterning is completed. Similar scaling mechanisms have been reported at excitatory glutamatergic synapses in worms, flies and mammals (Davis, 2013; Grunwald et al., 2004; Turrigiano, 2008).

GABA release itself has been suggested to be key for proper inhibitory synapse maturation in mammals (Chattopadhyaya, 2011). Notably, disruption of GABA biosynthesis (unc-25/GAD mutants) does not impair GABA synapse formation in worms (Gally and Bessereau, 2003; Jin et al., 1999). Likewise, mutations that produce global reductions in neurotransmission (e.g. mutations in unc-13/Munc13 or unc-64/syntaxin) do not dramatically alter inhibitory synaptogenesis (Richmond et al., 1999; Saifee et al., 1998). For our studies, we used genetic tools that specifically affect cholinergic neurons. Under these conditions, inhibitory synapse formation appears to be properly initiated.
Presynaptic specializations and postsynaptic receptor clusters are in close apposition; however, the size and density of these synapses are altered, implicating vesicular signals from cholinergic neurons in the refinement or patterning of GABAergic synaptic outputs. Although the mechanism underlying this process remains to be determined, one possibility is that vesicular signals from cholinergic neurons may regulate expression of synapse-organizing molecules in GABA neurons. Several recent studies have identified genetic pathways important for GABA synapse development and regulation in worms (Maro et al., 2015; Tong et al., 2015; Tu et al., 2015). It will be interesting to investigate whether cholinergic neurons influence expression levels of these and other potential synaptic organizers. Notably, activity-dependent transcriptional cascades shape the development and placement of GABA synapses in mammals (Bloodgood et al., 2013; Lin et al., 2008). Our findings lead us to propose that similar processes might be important for integrating post-embryonic-born GABAergic VD neurons into the motor circuit and patterning their synaptic outputs.
Materials and Methods

Strains

C. elegans strains were grown at room temperature (22-24°C) on nematode growth media (NGM) plates seeded with the Escherichia coli strain OP50 unless otherwise noted. Wild type represents the N2 Bristol strain. Transgenic strains were obtained by microinjection to achieve germline transformation (Mello et al., 1991). Multiple independent lines were obtained for each transgenic strain, and data presented are from a single representative transgenic line. Transgenic strains were identified either by co-injection of lin-15(+) (pL15Ek) into lin-15(n765ts) mutants or by co-injection of either lgc-11p::GFP or lgc-11p::mCherry (restricted expression to the pharynx). As required, transgenes were integrated using x-ray bombardment and outcrossed to wild type. A complete list of strains is available in the Table 3.1.

Molecular biology

Plasmids were constructed using the two-slot Gateway Cloning system (Invitrogen) as described previously (Bhattacharya et al., 2014).

him-4p::mCD8::GFP

Entry vector: A him-4p promoter fragment (2156 bp) was amplified from pPRZ138.2 (a gift from Peter Roy, University of Toronto, ON, Canada) and cloned into pENTR-D-TOPO to create pENTR-3'-him4. Destination vector: mCD8::GFP (1566 bp) was
amplified from pKMC72 and ligated into pDEST-16 to create pDEST-20. pENTR-3'-him4 and pDEST-16 were recombined to generate pBB102 (him-4p::mCD8::GFP).

Tetanus toxin construct

Entry Vector: An acr-2 promoter fragment (3386 bp) was amplified from pBB67 and subcloned into pENTR-D-TOPO to create pENTR-5′-acr2. Destination Vector: Tetanus toxin light chain (1374 bp) was amplified from TetTx-pWD157 to create pDEST-34. pENTR-5′-acr2 and pDEST-34 were recombined to generate pBB112 (acr-2p::TetTx).

unc-3 reporter and rescue constructs

Transcriptional reporter: An unc-3 promoter fragment (−1068 bp relative to start) was amplified from genomic DNA and cloned into pENTR-D-TOPO to generate pENTR-17. pENTR-17 was recombined with pDEST-94 to generate unc-3p::GFP (pAP192). cDNA rescue: Wild-type unc-3 cDNA was RT-PCR amplified from total N2 RNA and inserted into a destination vector to create pDEST-140. pDEST-140 was recombined with pENTR-17 (unc-3 promoter), pENTR-3′-myo3 (muscle-specific promoter) and pENTR-3′-unc47 (GABA-specific promoter) to generate pAP194 (unc-3p::unc-3 cDNA), pAP172 (myo-3p::unc-3 cDNA) and pAP176 (unc-47p::unc-3 cDNA), respectively. Minigene rescue: A 3154bp fragment extending from the unc-3 start to exon 4 of the unc-3 genomic locus was amplified from N2 genomic DNA and ligated into pDEST-140 to create pDEST-142. pDEST-142 was recombined with pENTR-17 to create pAP196 (unc-3p::unc-3 minigene) containing the first three unc-3 introns [a 463 bp repetitive fragment...
within intron 1 (+2181 relative to start) was not included] and all of the unc-3 coding sequence.

Electrophysiology

Endogenous postsynaptic currents (PSCs) were recorded from body wall muscles as described previously (Petrash et al., 2013). The extracellular solution consisted of the following (in mM): 150 NaCl, 5 KCl, 4 M gCl₂, 1 or 5 CaCl₂ (as indicated), 15 HEPES and 10 glucose, pH 7.4, osmolarity adjusted with 20 sucrose. To facilitate analysis of unc-3 mutants that display very low rates of GABAergic activity, recordings of GABAergic currents were performed in 5 mM CaCl₂. The intracellular fluid consisted of the following (in mM): 115 potassium gluconate, 25 KCl, 0.1 CaCl₂, 50 HEPES, 5 M g-ATP, 0.5 Na-GTP, 0.5 cGMP, 0.5 cAMP and 1 BAPTA, pH 7.4, osmolarity adjusted with 10 sucrose. At least 60-90 s of continuous data were used in the analysis. Data analysis was performed using Igor Pro (Wavemetrics) and Mini Analysis (Synaptosoft) software.

Aldicarb assay

Aldicarb assays were performed on adult animals (24 h post L4) at room temperature (22-24°C) with the researcher blind to genotype. Staged animals (ten per plate) were transferred to NGM plates containing 1 mM Aldicarb (ChemService) and assessed for movement every 15 min for 2 h.
Microscopy and image analysis

For all imaging, nematodes were immobilized with sodium azide (0.3 M) on a 5% agarose pad. Each n represents analysis of the nerve cord from an independent animal. Confocal microscopy of GABA NMJ synapses was performed using an LSM Pascal 5 confocal microscope (Zeiss). Images were analyzed using ImageJ software (open source). Images were obtained using a 63× oil lens and aligned using Photoshop (Adobe) or ImageJ.

Synapse density was calculated in a 50 µm section of the ventral nerve cord directly posterior to the vulva. A minimum fluorescence threshold was set to identify synaptic peaks (1500 a.u. for cholinergic synapses and 500 a.u. for GABAergic synapses). Peaks were identified as two or more consecutive data points above threshold and spaces were defined as two or more data points below threshold. Synapse area was calculated by separating particles using the ImageJ analyze particles function. Particles ≤0.2 µm² were excluded as background.

To quantify orphan puncta at the GABAergic NMJ, the fluorescence intensities of both GFP and mCherry signals in an 85 µm region of the ventral nerve cord were analyzed. Intensity data were exported to Microsoft Excel and normalized to the corresponding highest value. Each peak of fluorescence was categorized as a colocalized puncta, presynaptic orphan puncta (mCherry signal without overlapping GFP signal) or postsynaptic orphan puncta (GFP signal without overlapping mCherry signal).

The extent of muscle membrane coverage of the ventral nerve cord region was calculated by measuring the length of the ventral midline of the posterior body wall muscles. The
length of muscle membrane along the ventral midline (visualized by him-4p::mCD8::GFP) was quantified and used to calculate a percentage of total nerve cord length.

ACR-12::GFP (ufIs92), ACR-16::GFP (ufIs8) and UNC-29::GFP (ufIs2) images were acquired using a 3i (Intelligent Imaging Innovations) Everest spinning-disk confocal microscope and collected at 0.27 µm/steps using a 63x objective.

Confocal montages of ACR-12::GFP were assembled by imaging the dorsal nerve cord posterior to the vulva in adult hermaphrodites. Identical image and laser settings were used for each genotype. Straightened dorsal cords were extracted from these images using the ‘straighten to line’ function.

For quantifying ACR-12::GFP, ACR-16::GFP and UNC-29::GFP puncta along the nerve cord, background fluorescence was first subtracted by calculating the average intensity of each image in a region devoid of puncta. Puncta were quantified across 80 µm of the nerve cord region with ImageJ ‘analyze particles’, using an intensity threshold specific for each marker. Particles ≤0.04 µm² were excluded as background.

unc-3 movement analysis

For locomotion assays, 1-day-old adults were allowed to acclimate for 1 min on NGM plates thinly seeded with a bacterial lawn. WormLab software (MBF Bioscience) was used to capture and analyze 30 s digital videos of individual worms.
cha-1 time course

Adult shifts and recovery

Wild-type and cha-1 animals were cultured at 15°C. Animals were synchronized at the L4 stage, and then placed at 15°C for an additional 24 h. Young adult animals were then shifted to 25°C for either 4 or 8 h and imaged immediately. A third group of animals were shifted to 25°C for 4 hours, then placed back at 15°C for 4 h (recovery) before imaging.

Developmental shift

Embryos were staged at the 21+ cell stage and allowed to develop at 15°C for 20 h. Animals were then shifted to 25°C for 8 h and returned to 15°C. Animals were synchronized at the L4 stage and allowed to grow for an additional 24 h at 15°C prior to imaging.

Behavior

Temperature shifts were performed as described above. For behavioral analysis, animals were transferred individually to plates without food for a period of 5 min. Movement was quantified using Wormlab software to track animals and measure their average forward velocity over a period of 5 min.
Table 3.1 *C. elegans* strains used in this work

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Strain Name</th>
<th>Transgene</th>
</tr>
</thead>
<tbody>
<tr>
<td>ufls34</td>
<td>IZ829</td>
<td>unc-47p::mCherry (pPRB5)</td>
</tr>
<tr>
<td>unc-3(e151);ufls34</td>
<td>IZ1265</td>
<td>unc-47p::mCherry (pPRB5)</td>
</tr>
<tr>
<td>ufls25;ufls34</td>
<td>IZ733</td>
<td>acr-2(L/S) (pBB9), unc-47p::mCherry (pPRB5)</td>
</tr>
<tr>
<td>acr-16(ok789);ufls8</td>
<td>IZ9</td>
<td>myo-3p::ACR-16::GFP (pDM 906)</td>
</tr>
<tr>
<td>unc-3(e151);acr-16(ok789);ufls8</td>
<td>IZ1219</td>
<td>myo-3p::ACR-16::GFP (pDM 906)</td>
</tr>
<tr>
<td>ufls58;oxls19</td>
<td>IZ930</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP</td>
</tr>
<tr>
<td>unc-3(e151);ufls58;oxls19;ufeX1056</td>
<td>IZ2774</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP, unc-47p::unc-3 cDNA (pAP176)</td>
</tr>
<tr>
<td>unc-3(e151);ufls58;oxls19;ufeX1052</td>
<td>IZ2768</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP, myo-3p::unc-3 cDNA (pAP172)</td>
</tr>
<tr>
<td>unc-3(e151);ufls58;oxls19;ufeX1074</td>
<td>IZ2795</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP, unc-3p::unc-3 cDNA (pAP194)</td>
</tr>
<tr>
<td>unc-3(e151);ufls58;oxls19;ufeX1065</td>
<td>IZ2786</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP, unc-3p::unc-3 minigene (pAP196)</td>
</tr>
<tr>
<td>unc-3(n3435);ufls58;oxls19</td>
<td>IZ2752</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP</td>
</tr>
<tr>
<td>unc-3(e151);ufls58;oxls19</td>
<td>IZ1256</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP</td>
</tr>
<tr>
<td>ufls25;ufls58;oxls19</td>
<td>IZ596</td>
<td>acr-2(L/S) (pBB9), unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP</td>
</tr>
<tr>
<td>vsIs48;ufls34</td>
<td>IZ759</td>
<td>unc-17p::GFP, unc-47p::mCherry (pPRB5)</td>
</tr>
<tr>
<td>vsIs48;ufls34;ufeX404</td>
<td>IZ1320</td>
<td>unc-17p::GFP, unc-47p::mCherry (pPRB5), acr-2p::TetTx (pBB112)</td>
</tr>
<tr>
<td>ufls58;oxls19;ufeX404</td>
<td>IZ1243</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP, acr-2p::TetTx (pBB112)</td>
</tr>
<tr>
<td>unc-29(x29);acr-16(ok789);ufls58;oxls19</td>
<td>IZ1286</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP</td>
</tr>
<tr>
<td>unc-17(e2455);ufls58;oxls19</td>
<td>IZ1839</td>
<td>unc-47p::mCherry::RAB-3 (pJRC1), UNC-49::GFP</td>
</tr>
<tr>
<td>Strain</td>
<td>Zygote</td>
<td>Marker</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>unc-17(e113);ufls58;oxIs19</td>
<td>IZ1748</td>
<td>unc-47p::mCherry::RAB-3 (pJR1C), UNC-49::GFP</td>
</tr>
<tr>
<td>ufls113</td>
<td>IZ1115</td>
<td>him-4p::mCD8::GFP (pBB102)</td>
</tr>
<tr>
<td>ufls25;ufEx322</td>
<td>IZ1113</td>
<td>him-4p::mCD8::GFP (pBB102)</td>
</tr>
<tr>
<td>unc-3(e151);ufls113</td>
<td>IZ1208</td>
<td>him-4p::mCD8::GFP (pBB102)</td>
</tr>
<tr>
<td>cha-1(y226);ufls58;oxIs19</td>
<td>IZ1916</td>
<td>unc-47p::mCherry::RAB-3 (pJR1C), UNC-49::GFP</td>
</tr>
<tr>
<td>juIs1</td>
<td>CZ333</td>
<td>unc-25p::SNB-1::GFP</td>
</tr>
<tr>
<td>unc-3(e151);juIs1</td>
<td>IZ1575</td>
<td>unc-25p::SNB-1::GFP</td>
</tr>
<tr>
<td>hplS88</td>
<td>ZM2246</td>
<td>unc-25p::UNC-10::mCherry</td>
</tr>
<tr>
<td>unc-3(e151);hplS88</td>
<td>IZ2822</td>
<td>unc-25p::UNC-10::mCherry</td>
</tr>
<tr>
<td>acr-12(ok367);ufls92</td>
<td>IZ1225</td>
<td>unc-47p::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>acr-12(ok367);unc-3(e151);ufls92</td>
<td>IZ2128</td>
<td>unc-47p::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>acr-12(ok367);unc-3(e151);ufls92;ufEx1038</td>
<td>IZ2726</td>
<td>unc-47p::ACR-12::GFP (pHP7), unc-47p::unc-3 cDNA (pAP176)</td>
</tr>
<tr>
<td>acr-12(ok367);unc-3(e151);ufls92;ufEx1044</td>
<td>IZ2744</td>
<td>unc-47p::ACR-12::GFP (pHP7), myo-3p::unc-3 cDNA (pAP172)</td>
</tr>
<tr>
<td>acr-12(ok367);unc-3(e151);ufls92;ufEx1067</td>
<td>IZ2788</td>
<td>unc-47p::ACR-12::GFP (pHP7), unc-3p::unc-3 cDNA (pAP194)</td>
</tr>
<tr>
<td>acr-12(ok367);unc-3(e151);ufls92;ufEx1077</td>
<td>IZ2798</td>
<td>unc-47p::ACR-12::GFP (pHP7), unc-3p::unc-3 minigene (pAP196)</td>
</tr>
<tr>
<td>acr-12(ok367);unc-3(n3435);ufls92</td>
<td>IZ2752</td>
<td>unc-47p::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>acr-12(ok367);unc-17(e113);ufls92</td>
<td>IZ2317</td>
<td>unc-47p::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>acr-12(ok367);unc-17(e245);ufls92</td>
<td>IZ2342</td>
<td>unc-47p::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>acr-12(ok367);madd-4(ok2854);ufls92</td>
<td>IZ2221</td>
<td>unc-47p::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>acr-12(ok367);madd-4(ok2854);unc-17(e113);ufls92</td>
<td>IZ2368</td>
<td>unc-47p::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>acr-12(ok367);ufls92;ufEx404</td>
<td>IZ2345</td>
<td>unc-47p::ACR-12::GFP (pHP7);acr-2p::TetTx (pBB112)</td>
</tr>
<tr>
<td>ufls43;ufEx1084</td>
<td>IZ2816</td>
<td>acr-2p::mCherry (pPRB6), unc-3p::GFP (pAP192)</td>
</tr>
<tr>
<td>ufls2</td>
<td>IZ1547</td>
<td>myo-3p::UNC-29::GFP (pDM956)</td>
</tr>
<tr>
<td>ufls2;madd-4(ok2854)</td>
<td>IZ2369</td>
<td>myo-3p::UNC-29::GFP (pDM956)</td>
</tr>
</tbody>
</table>
Acknowledgements

We would like to thank Claire Bénard and members of the Francis lab for critical reading of the manuscript, Will Joyce for technical assistance, Mei Zhen, Kevin Collins, Bruce Bamber and Peter Roy for sharing reagents. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). This work was funded by the National Institute of Neurological Disorders and Stroke (R01NS064263 to M.M.F. and F31NS076326 to B.B.) and the National Institute on Drug Abuse (F31DA038399 to A.P.).
CHAPTER IV

Neurexin directs partner-specific synaptic connectivity in C. elegans

Alison Philbrook, Shankar Ramachandran, Christopher M. Lambert, Devyn Oliver, Jeremy Florman, Mark J. Alkema, Michele Lemons1 and Michael M. Francis

Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester MA 01605

1Department of Natural Sciences, Assumption College, Worcester MA, 01609

Contribution Summary

A.P. generated transgenic lines, collected confocal images, and quantified results. S.R. performed all calcium imaging experiments, A.P and M.L. performed smFISH experiments, and J.F. collected behavioral data. A.P. and C.M.L. engineered constructs, D.O. provided several strains in the candidate genetic screen, and M.J.A. provided reagents. A.P. and M.M.F. designed and interpreted all experiments and wrote the final document.
Abstract

In neural circuits, individual neurons often make projections onto multiple postsynaptic partners. Here, we investigate molecular mechanisms by which these divergent connections are generated, using dyadic synapses in C. elegans as a model. We report that C. elegans nrx-1/neurexin directs divergent connectivity through differential actions at synapses with partnering neurons or muscles. We show that cholinergic outputs onto neurons are, unexpectedly, located at previously undefined spine-like protrusions from GABAergic dendrites. Both these spine-like features and cholinergic receptor clustering are strikingly disrupted in the absence of nrx-1. Excitatory transmission onto GABAergic neurons, but not neuromuscular transmission, is also disrupted. Our data indicate that NRX-1 located at presynaptic sites specifically directs postsynaptic maturation in GABAergic neurons. Our findings provide evidence that individual neurons can direct differential patterns of connectivity with their post-synaptic partners through partner-specific utilization of synaptic organizers, offering a novel view into molecular control of divergent connectivity.
Introduction

Neurons are typically wired into discrete circuits through stereotyped patterns of synaptic connections geared to perform specific functions. Individual neurons within circuits may receive convergent synaptic inputs from multiple classes of presynaptic partnering neurons, and likewise, make divergent synaptic outputs onto distinct postsynaptic targets. We have gained an understanding of some of the core mechanisms that sculpt convergent connectivity through studies of developmental processes such as activity-dependent synapse elimination (Brown et al., 1976; Campbell and Shatz, 1992; Okawa et al., 2014a; Sanes and Lichtman, 1999; Shatz and Kirkwood, 1984; Walsh and Lichtman, 2003). In contrast, the molecular processes controlling the establishment of divergent synaptic connections are not clearly defined (Okawa et al., 2014b). Neural circuit models often represent divergent connections as a means for enabling the same signal from an individual presynaptic neuron to reach many different postsynaptic target cells. However, the strength of connections with postsynaptic partners can vary widely, strongly suggesting that presynaptic neurons have the capacity to establish and regulate connections with each postsynaptic target independently. While molecular guidance cues directing axon outgrowth have been well-studied, an understanding of the molecular mechanisms responsible for directing target-specific connectivity has remained elusive.

A primary mechanism for establishing nascent synapses is through the actions of synaptic adhesion molecules, also known as synaptic organizers (de Wit and Ghosh, 2016; Missler et al., 2012). These organizers are often anchored to the pre- and postsynaptic membranes (e.g. neurexins, neuroligins, leucine-rich repeat transmembrane
proteins/LRRM s) and promote synapse formation through trans-synaptic adhesion and signaling. The importance of these processes in establishing proper neural circuit connectivity is highlighted by the links between mutations in genes encoding these synaptic adhesion/organizing molecules and neuropsychiatric and neurodevelopmental disorders, such as autism spectrum disorder and schizophrenia (Kim et al., 2008a; Reichelt et al., 2012; Rujescu et al., 2009). Intriguingly, synaptic organizers are capable of acting in a cell-specific manner to promote synapse formation (Chen et al., 2017; Siddiqui et al., 2013; Zhang et al., 2015). Thus, an exciting possibility is that individual neurons could encode connections with alternate synaptic partners through differential deployment of synaptic organizers.

We have investigated this possibility in the motor circuit of the nematode Caenorhabditis elegans where individual excitatory cholinergic motor neurons form synapses with both body wall muscles and GABAergic motor neurons. Through a screen for genes that govern the formation of these divergent synaptic connections, we demonstrate that the synaptic organizer nrx-1/neurexin directs the outgrowth of previously uncharacterized dendritic spine-like structures and the formation of synaptic connections with GABAergic neurons, but is not required for synaptic connectivity with muscles. Conversely, genes previously shown to be required for cholinergic connectivity with muscles (Francis et al., 2005; Gally et al., 2004; Pinan-Lucarre et al., 2014) are not required for the formation of synapses onto GABAergic neurons. Our findings demonstrate that cholinergic neurons utilize distinct molecular signals to establish synapses with GABAergic motor neurons versus body wall muscles, thus revealing that a
single presynaptic neuron establishes divergent connections by employing parallel molecular strategies for the formation of connections with each postsynaptic partner.
Results

Clusters of the GFP-tagged acetylcholine receptor subunit ACR-12 are localized to spine-like dendritic protrusions on the DD1 GABAergic neuron.

To establish a system to investigate mechanisms instructing synaptic connectivity, we labeled post-synaptic specializations on dorsally directed GABAergic DD neurons using cell-specific expression (flp-13 promoter) of the GFP-tagged acetylcholine receptor subunit ACR-12. Prior work showed that ACR-12 receptors in GABAergic motor neurons are clustered opposite cholinergic terminals and mediate excitatory input onto GABAergic motor neurons (Barbagallo et al., 2017; Petrash et al., 2013). These postsynaptic ACR-12 receptor clusters relocate appropriately during developmental synaptic remodeling of the DD neurons, suggesting these clusters faithfully report synaptic inputs (He et al., 2015; Howell et al., 2015).

The morphology of DD neurons is highly polarized, facilitating clear visualization of the axonal and dendritic neuronal compartments. In the present work, we focus much of our analysis on the spatially isolated neurites of the DD1 neuron (Figure 4.1A-C). In adults, the anterior DD1 process extends from the soma to enter the ventral nerve cord fascicle (the dendritic compartment), where prior EM studies show that approximately 26 synaptic inputs from cholinergic neurons are concentrated (the synaptic region, Figure 4.1C, D) (White et al., 1978; White et al., 1976). The process then crosses the longitudinal midline of the worm via a commissural connection and enters the dorsal nerve cord where it forms en passant synaptic outputs onto body wall muscles (the axonal compartment) (Figure 4.1A, B) (White et al., 1976). We find that ACR-12::GFP
receptor clusters in DD1 are confined to the synaptic region of the ventral dendritic process in the mature animal (Figure 4.1C). As C. elegans synapses are formed en passant, pre- and post-synaptic specializations typically appear, at the light level, to be localized along the main shafts of neuronal processes. Surprisingly, we noted that the majority of A CR-12::GFP clusters do not appear localized to the shaft of the primary DD1 dendritic process, instead appearing to protrude from the primary DD1 dendrite shaft (Figure 4.1C). To investigate this finding in more detail, we examined morphological features in the synaptic region of the DD1 dendrite (Figure 4.1D). Intriguingly, we noted finger-like structures (~0.3 – 1 µm in length) projecting outward from the DD1 dendrite in this region (Figure 4.1D, Figure 4.2A). In contrast, these structures are not present in the asynaptic region of the process immediately adjacent to the cell soma (Figure 4.1D), and similarly, are not apparent in a related class of post-embryonic born, ventrally directed GABAergic neurons (VD) (data not shown). These protrusions are obscured by the processes of other ventral cord neurons when using promoters that provide for more broad expression (i.e. unc-47), and are therefore most clearly identifiable with specific labeling of DD neurons (Figure 4.2B). The dendritic protrusions concentrate clusters of A CR-12 receptors at their tips (Figure 4.1E), and over 60% of A CR-12::GFP clusters appear localized to protrusions (Figure 4.1F). The dendritic protrusions increase in abundance through larval development, and this increase correlates well with a similar developmental increase in A CR-12::GFP receptor clusters (Figure 4.2C). Together, our results provide evidence that cholinergic receptors cluster at morphologically distinct finger-like structures present on the DD1 dendrite, raising the
interesting possibility that these structures serve similar roles to dendritic spines in the mammalian nervous system.
Figure 4.1 Characterization of post-synaptic specializations in the DD1 neuron

(A) Diagrams of C. elegans showing the six DD GABAergic neurons in the ventral nerve cord and expanded view of DD1. After the L1/L2 transition, the DD neurons exclusively make dorsal synaptic outputs onto muscles (axon), while receiving a majority of synaptic inputs on the ventral side (dendrite). (B) Morphology of the DD1 neuron, visualized by expression of the flp-13::mCherry transcriptional reporter. Pharyngeal fluorescence indicates expression of the lgc-11::mCherry co-injection marker. Arrow indicates DD1 cell body. For this and all subsequent figures, images of L4 animals are shown unless otherwise noted. (C) Cholinergic ACR-12 receptors (flp-13::ACR-12::GFP) are localized to a defined region of the DD1 dendritic compartment, labeled as the synaptic region (boxed). Arrow indicates DD1 cell body. (D) Top, confocal image of the DD1 dendritic region visualized by expression of flp-13::mCherry. Bottom, inverted image showing expanded view of the synaptic region and dendritic protrusions (indicated by arrowheads). (E) Confocal images of DD1 soma and synaptic region with coexpression of flp-13::ACR-12::GFP and flp-13::mCherry. Arrowheads indicate ACR-12 clusters located at the tips of dendritic protrusions. (F) Left, representative confocal image showing the distribution of ACR-12::GFP clusters. ACR-12::GFP receptor clusters associated with either protrusions (green) or the main dendritic shaft (blue) are indicated. Right, the percentage of clusters classified into each category (142 receptor clusters from 11 animals were analyzed). Scale bars, 5 µm (B-F).
Figure 4.2 Spine-like protrusions are exclusively located on DD dendrites and increase developmentally in a correlated manner with ACR-12 receptor clusters

(A) Distribution of dendritic protrusion lengths. 65 protrusions from 11 L4 animals expressing flp-13::mCherry are included in the analysis. (B) DD1 and surrounding ventral cord region in an animal coexpressing flp-13::mCherry with unc-47::GFP. Spine-like protrusions are only evident with DD-specific labeling (flp-13). VD and DD cell bodies are indicated in the merge image. Scale bar, 5 µm. (C) Quantification of the number of DD1 spine-like protrusions (red) or receptor clusters (green) at the indicated time points after hatch. Protrusions and receptor clusters from ≥10 animals were analyzed for each time point.
Heteromeric ACR-12-containing AChRs are located on the cell surface opposite cholinergic release sites.

To explore the above possibility further, we evaluated the spatial relationship between ACR-12 clusters located on these spine-like structures and cholinergic release sites. We found that dendritic protrusions and ACR-12 receptor clusters are both located opposite clusters of cholinergic synaptic vesicles (Figure 4.3A, B), indicating that these likely represent mature synapses. We therefore next investigated whether these clusters indicate post-synaptic receptors residing at the cell surface. To address this question, we inserted an HA epitope tag into the extracellular C-terminus of ACR-12::GFP (diagram in Figure 4.3C) (Gottschalk and Schafer, 2006). Injection of Alexa594 conjugated anti-HA antibody into live transgenic animals expressing this construct produces specific labeling in the DD1 synaptic region, and is also evident in coelomocytes (scavenger cells that take up excess antibody), confirming successful injection (Figure 4.3C). The anti-HA signal colocalizes with ACR-12::GFP clusters in the synaptic region of DD1, but is not evident in the cell soma. In contrast, the intracellular GFP moiety produces fluorescence that is evident in both the soma and the synaptic region of the dendrite, representing both synaptic and internal receptor pools (Figure 4.3C). Injection of anti-GFP antibody did not produce specific labeling, confirming that the intracellularly positioned GFP is not accessible to antibody (Figure 4.4A). Our analysis of ACR-12 localization in DD1 indicates that ACR-12 is incorporated into mature receptor complexes that are specifically targeted for transport to the synaptic region of the DD1 dendrite, and reside on the cell surface at post-synaptic sites in this region.
We next sought to gain an understanding of the subunit composition of ACR-12 receptors in GABAergic neurons. Most acetylcholine receptors are formed as heteromeric combinations of five subunits. Prior work has demonstrated that partially or improperly assembled acetylcholine receptor intermediates are not transported out of the ER and are instead targeted for degradation (Blount and Merlie, 1990; Merlie and Lindstrom, 1983). We therefore reasoned that genetic ablation of obligate ACR-12 partnering subunits, by interfering with assembly, transport, and synaptic targeting of ACR-12 receptor complexes, could provide an efficient strategy for identifying subunit partners. We found that single mutations in the acetylcholine receptor subunit genes unc-38, unc-63, lev-1 or unc-29 strongly decrease ACR-12::GFP clustering. In wild type, we observe approximately 15 receptor clusters within the DD1 synaptic region. These clusters are eliminated almost completely with mutation of these subunit genes (Figure 4.4B, C). In contrast, mutations in other nAChR subunit genes with previously reported neuronal expression, such as acr-9 and acr-14 (Cinar et al., 2005; Fox et al., 2005), do not disrupt synaptic ACR-12 clustering (Figure 4.4B). Mutations in genes important for AChR assembly and trafficking (unc-50, unc-74, and ric-3) (Boulin et al., 2008; Eimer et al., 2007; Halevi et al., 2002; Haugstetter et al., 2005) also abolish synaptic clusters of ACR-12::GFP (Figure 4.4B, C). GABA neuron-specific expression of wild type cDNAs encoding individual AChR subunits (UNC-63 or UNC-38) or accessory proteins in the respective mutants is sufficient to restore ACR-12 clustering to wild type levels, providing support that both gene classes act cell-autonomously in GABA neurons to promote receptor assembly, maturation and synaptic delivery (Figure 4.4B, C). Cell-
specific expression of either UNC-29::GFP or UNC-63::GFP in DD neurons produces punctate labeling in the DD1 synaptic region that closely resembles A CR-12::GFP clustering (Figure 4.3D). M utation of acr-12 in these transgenic animals significantly reduces UNC-29::GFP or UNC-63::GFP receptor clusters and fluorescence signal in the DD1 synaptic region (Figure 4.3D, Figure 4.4D-E), providing further evidence that they coassemble with A CR-12. T ogether, our results indicate UNC-38, UNC-63, LEV-1, UNC-29 and A CR-12 subunits coassemble into a pentameric acetylcholine receptor in GABAergic neurons.
Figure 4.3 Heteromeric ACR-12 receptors are localized at the cell surface opposite sites of release

(A) Confocal images of presynaptic (acr-2::SNB-1::GFP) and postsynaptic (flp-13::mCherry) domains in the DD1 synaptic region. Note violet/green coloring to more clearly depict presynaptic structures and protrusions (arrowheads). (B) Confocal images showing apposition of pre- and post-synaptic components with coexpression of the cholinergic synaptic vesicle marker acr-2::mCherry::RAB-3 (violet) and the AChR reporter ACR-12::GFP (green) in the DD1 synaptic region. (C) Top, confocal images showing ACR-12 receptor clusters as visualized by GFP fluorescence (green) or anti-HA antibody fluorescence (red) 6 hours following antibody injection. Note the extracellular location of the HA epitope tag (schematic below), enabling selective visualization of synaptic receptor clusters at the cell surface. Inset, anti-HA uptake by coelomocytes indicating successful injection. (D) Top, confocal images of UNC-29::GFP and UNC-63::GFP clusters in the DD1 dendrite (flp-13 promoter) in wild type or acr-12(ok367) mutants. Bottom, quantification of the average number of UNC-29::GFP and UNC-63::GFP clusters in the DD1 dendrite for wild type and acr-12(ok367) mutants. Each bar represents the mean ± SEM. For this and all subsequent figures, numbers in bars indicate the n for each genotype. **p<0.01, ***p<0.001, student’s t-test. Scale bars, 5 µm (A-D).
Figure 4.4 Mutations in specific AChR subunits and accessory proteins disrupt ACR-12 synaptic delivery and clustering

(A) Confocal images of the DD1 cell body and synaptic region for a wild type animal expressing flp-13::ACR-12::GFP::3xHA. Animals were injected with anti-GFP antibodies conjugated to Alexa594 fluorophore and imaged six hours later. Inset, anti-GFP uptake by coelomocytes indicating successful injection, but lack of synaptic ACR-12 labeling due to intracellular location of GFP moiety. Scale bar, 5 µm. (B) Quantification of the average number of ACR-12::GFP clusters in the DD1 synaptic region for the genotypes indicated. For B and C, rescue refers to specific expression of the wild type cDNAs indicated in GABAergic neurons (unc-47 promoter). Each bar represents the mean ± SEM. ****p<0.0001 compared to wild type, ####p<0.0001 compared to the indicated mutant genotype, ANOVA with Tukey’s multiple comparisons test. (C) Confocal images of ACR-12::GFP in the DD1 synaptic region for the genotypes indicated. Scale bar, 5 µm. (D-E) Quantification of the total UNC-29::GFP (D) or UNC-63::GFP (E) fluorescence in the DD1 synaptic region (flp-13 promoter) normalized to wild type control for the genotypes indicated. **p<0.01, student’s t-test.
Neurexin directs cholinergic connectivity with GABAergic neurons

To decipher molecular mechanisms by which these newly defined post-synaptic structures develop, we examined ACR-12::GFP labeling in DD neurons of 27 strains carrying mutations in 35 candidate genes. These candidates predominantly encode scaffold and cell-cell interaction proteins previously implicated in synapse formation, many of which have previously demonstrated expression in GABAergic neurons (Cinar et al., 2005) (Table 4.1). Mutations in most genes tested (77%) produce no significant disruption in ACR-12 receptor clustering (Figure 4.5A, light blue). A second group, comprising 7 of the 35 genes analyzed (Figure 4.5A, green), produces mild to moderate (28-39%) decreases in ACR-12 clustering. Many of the mutants in this second group identify genes that perform previously characterized functions in neuromuscular synapse development (e.g. lev-10, madd-4) (Gally et al., 2004; Pinan-Lucarre et al., 2014), but appear to play comparatively minor roles in establishing synaptic connectivity with GABAergic neurons.

One of the 35 mutations tested is clearly distinguishable by a striking decrease in ACR-12 clustering. Mutation of the nrx-1 gene (orange) produces a ~70% reduction in ACR-12 receptor clustering in GABAergic neurons (nrx-1(ok1649), p<0.0001) (Figure 4.5A, B). nrx-1 encodes the sole C. elegans ortholog of the synaptic organizer neurexin. Neurexin has been well documented to play roles in mammalian synapse formation and function (Chen et al., 2017; Dean et al., 2003; Graf et al., 2004; Missler et al., 2003). Roles for NRX-1 in C. elegans synapse formation remain, by comparison, less well defined. Moreover, roles for neurexin in establishing divergent connectivity have not
been previously addressed in any system. Importantly, we do not observe appreciable alterations in the clustering of muscle AChRs in \textit{nrx-1} mutants (\textbf{Figure 4.5C}), similar to previously reported findings (Hu et al., 2012). The profound alterations in ACR-12 localization described above, coupled with the lack of effect on muscle AChRs, therefore warranted an in-depth analysis of cholinergic synapses with GABAergic neurons in \textit{nrx-1} mutants.

We first sought to distinguish whether \textit{nrx-1} performs a specific role in synapse formation or serves more generalized functions in the developmental maturation of DD neurons. We studied the developmental remodeling of DD neurons, characterized by the dorsoventral repositioning of synaptic markers, which occurs at the L1/L2 transition in wild type animals (Jin and Qi, 2017; White et al., 1978). In particular, we examined the repositioning of pre- and post-synaptic markers expressed specifically in DD motor neurons (\textbf{Figure 4.6A}). Presynaptic remodeling, as measured using the synaptic vesicle marker mCherry::RAB-3, proceeds normally in \textit{nrx-1} mutants, indicating that this process does not require neurexin expression. The clustering of ACR-12 receptors, however, is impaired both prior to and following remodeling in \textit{nrx-1} mutants, suggesting that NRX-1 is required for receptor clustering in each of these developmental stages.

As is the case for mammals, the \textit{C. elegans} \textit{nrx-1} locus encodes both long (\textit{nrx-1}\textsubscript{L}) and short (\textit{nrx-1}\textsubscript{S}) neurexin isoforms (\textbf{Figure 4.6B}). The long isoform encodes a single pass transmembrane protein harboring intracellular PDZ binding and interleaved extracellular LNS (laminin-neurexin-sex hormone-binding globulin) and EGF-like domains (\textbf{Figure 4.5D}). The \textit{ok1649} allele generates an in-frame deletion, eliminating
861 bp predicted to encode an extracellular LNS domain, raising the possibility that partial NRX-1 function may still be present in this strain. We therefore expanded our analysis to include larger nrx-1 deletions, three of which (ds1, tm1961, and nu485) are predicted to primarily impact the long isoform, while another (wy778) removes the transmembrane and cytoplasmic domains shared by all NRX-1 isoforms (Calahorro and Ruiz-Rubio, 2013; Maro et al., 2015; Tong et al., 2015). All of the deletions tested disrupt ACR-12 receptor clustering in DD GABAergic neurons, with the most severe disruptions occurring in nrx-1(wy778) and nrx-1(nu485) mutants (Figure 4.5E). We also observe a disruption of ACR-12 receptor clustering in VD GABAergic neurons (Figure 4.5F, G), indicating a similar requirement for nrx-1 at synapses with both neuron classes.

In some instances (14 of 34 animals for nrx-1(wy778)), we noted that a few ACR-12 receptor clusters remain detectable. We investigated whether these residual ACR-12 receptors are localized to the cell surface by injecting Alexa594 conjugated anti-HA antibody into nrx-1 mutants expressing ACR-12::GFP::3xHA. Antibody fluorescent signal clearly colocalizes with ACR-12::GFP fluorescence, providing evidence that the few remaining receptor clusters in nrx-1 mutants are present at the cell surface (Figure 4.6C). We interpret this result to indicate that neurexin is not essential for membrane insertion, but rather plays a primary role in localizing or stabilizing receptor clusters at post-synaptic sites.

We next examined whether the localization of putative ACR-12 partnering subunits is also disrupted by mutation of nrx-1. As noted above, ACR-12 receptors are formed as heteromeric complexes in GABAergic neurons that likely incorporate the
UNC-29 and UNC-63 AChR subunits. Neurexin deletion (wy778) reduces UNC-29::GFP and UNC-63::GFP clusters in DD1 by 60%, consistent with a requirement for neurexin in the proper localization of mature, heteromeric receptor complexes (Figure 4.6D, E). In contrast to our findings for GABAergic neurons, nrx-1 deletion does not appreciably disrupt the clustering of AMPA-type glutamate receptors (Figure 4.7A), consistent with the idea that neurexin is not globally required for the establishment of synaptic connectivity in worms. Additionally, we do not observe an appreciable decrease in cholinergic synaptic vesicle clusters, although the reporter used for this analysis (acr-2::SNB-1::GFP) does not offer single neuron resolution (Figure 4.7B).

To elucidate potential mechanisms by which nrx-1 may instruct the formation of synapses between cholinergic and GABAergic motor neurons, we evaluated mutations in the nlg-1 gene. nlg-1 encodes the sole C. elegans ortholog of neuroligin, a well characterized binding partner of neurexin (Banerjee et al., 2017; Boucard et al., 2005; Hu et al., 2012; Ichtchenko et al., 1995; Ichtchenko et al., 1996). We find that mutation of nlg-1 produces no appreciable defects in ACR-12 receptor clustering (Figure 4.5A, B), indicating, surprisingly, that NRX-1 operates independently of NLG-1 to direct postsynaptic development in GABAergic neurons.
Table 4.1 Candidate-based genetic screen
Description of genes surveyed in Figure 4.5A and their relation to mammalian genes. Candidates predominantly encode scaffold and cell-cell interaction proteins previously implicated in synapse formation.

<table>
<thead>
<tr>
<th>C. elegans gene</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>unc-36</td>
<td>α2δ calcium channel auxiliary subunit</td>
<td>(Saheki and Bargmann, 2009; Tong et al., 2017)</td>
</tr>
<tr>
<td>lin-7</td>
<td>homologous to Velis, PDZ domain containing</td>
<td>(Butz et al., 1998; Simske et al., 1996)</td>
</tr>
<tr>
<td>lat-2</td>
<td>latrophilin-like</td>
<td>(Williamson et al., 2004)</td>
</tr>
<tr>
<td>sax-7</td>
<td>L1CAM</td>
<td>(Chen et al., 2001)</td>
</tr>
<tr>
<td>agr-1</td>
<td>agrin related</td>
<td>(Hrus et al., 2007)</td>
</tr>
<tr>
<td>dgn-2; dgn-3</td>
<td>dystroglycan related</td>
<td>(Johnson et al., 2006)</td>
</tr>
<tr>
<td>nab-1</td>
<td>neurabin/spinophilin related</td>
<td>(Hung et al., 2007)</td>
</tr>
<tr>
<td>stn-1, stn-2</td>
<td>syntrophins</td>
<td>(Grissoni et al., 2003; Zhou et al., 2008)</td>
</tr>
<tr>
<td>zig1-10</td>
<td>two Ig domain family</td>
<td>(Aurelio et al., 2002; Howell and Hobert, 2016)</td>
</tr>
<tr>
<td>lon-2</td>
<td>member of glypican family of heparan sulfate proteoglycans</td>
<td>(Gumienny et al., 2007)</td>
</tr>
<tr>
<td>casy-1</td>
<td>calsyntenin related</td>
<td>(Ikeda et al., 2008)</td>
</tr>
<tr>
<td>nlg-1</td>
<td>neuroligin</td>
<td>(Hunter et al., 2010)</td>
</tr>
<tr>
<td>oig-1</td>
<td>single Ig domain family</td>
<td>(He et al., 2015; Howell et al., 2015)</td>
</tr>
<tr>
<td>F38B6.6</td>
<td>transmembrane and TPR repeat containing</td>
<td>(Zhou et al., 2016)</td>
</tr>
<tr>
<td>unc-52</td>
<td>perlecain related</td>
<td>(Rogalski et al., 2001)</td>
</tr>
<tr>
<td>lin-2</td>
<td>membrane associated guanylate kinase (MAGUK) family, highly similar to CASK</td>
<td>(Cohen et al., 1998; Hoskins et al., 1996)</td>
</tr>
<tr>
<td>unc-40</td>
<td>DCC/netrin receptor</td>
<td>(Chan et al., 1996)</td>
</tr>
<tr>
<td>rig-3</td>
<td>two Ig domain family</td>
<td>(Schwarz et al., 2009)</td>
</tr>
<tr>
<td>cam-1</td>
<td>Ror receptor tyrosine kinase</td>
<td>(Forrester et al., 1999; Francis et al., 2005; Kim and Forrester, 2003)</td>
</tr>
<tr>
<td>madd-4</td>
<td>Punctin-like, ADAMTS-like family</td>
<td>(Pinan-Lucarre et al., 2014; Seetharaman et al., 2011)</td>
</tr>
<tr>
<td>syd-1</td>
<td>contains PDZ, C2, and rhoGAP-like domains</td>
<td>(Hallam et al., 2002)</td>
</tr>
<tr>
<td>rpy-1</td>
<td>rapsyn related</td>
<td>(Nam et al., 2009)</td>
</tr>
<tr>
<td>lev-10</td>
<td>CUB/LDL transmembrane containing</td>
<td>(Gally et al., 2004)</td>
</tr>
<tr>
<td>nrx-1</td>
<td>neurexin</td>
<td>(Haklai-Topper et al., 2011)</td>
</tr>
</tbody>
</table>
Figure 4.5 nrx-1/neurexin is required for AChR localization in GABAergic motor neurons, but not muscles

(A) Quantification of ACR-12::GFP clusters in the synaptic region of the DD1 dendrite for the genotypes indicated, normalized to wild type. Red line indicates 50% reduction in puncta number. Colored bars indicate wild type (blue), no effect (light blue), modest effect (green), and severe clustering defects (orange). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test.

(B) Representative confocal images showing ACR-12::GFP clusters in the synaptic region of the DD1 dendrite for wild type (WT), nrx-1(ok1649), and nlg-1(ok259) mutants. Scale bar, 5 µm.

(C) Left, representative confocal images of the dorsal nerve cord from five wild type and nrx-1(wy778) adult animals expressing myo-3::UNC-29::GFP. Scale bar, 5 µm. Right, quantification of UNC-29::GFP clusters in a 50 µm region of the posterior dorsal nerve cord.

(D) Domain structure of the NRX-1 long isoform (NRX-1L). Deletion regions are indicated (black line). N-terminal signal peptide (SP), extracellular LNS, EGF, transmembrane (TM), PDZ binding (PDZ) domains, and O-linked glycosylation site are shown.

(E) Quantification of ACR-12 receptor clusters (unc-47::ACR-12::GFP) in the ventral nerve cord for the genotypes indicated. *p<0.05, **p<0.01, ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test.

(F) Representative confocal images showing dorsal nerve cord ACR-12 receptor clusters for five wild type, nrx-1(ok1649), and nrx-1(wy778) animals expressing unc-47::ACR-12::GFP. Scale bar, 5 µm.

(G) Quantification of ACR-12 receptor clusters (unc-47::ACR-12::GFP) in the dorsal nerve cord for the genotypes indicated. *p<0.05, ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test.
Figure 4.6 Loss of functional \textit{nrx-1} disrupts \textit{ACR-12} AChR localization, but \textit{nrx-1} is not required for AChR membrane insertion or synaptic remodeling

(A) Top, schematic depicting pre-synaptic (red) and post-synaptic (green) remodeling of DD motor neurons during development. Bottom, confocal images of wildtype and \textit{nrx-1(ok1649)} mutants imaged before (<14 hr after hatch) and after (approximately 20 hr after hatch) the remodeling process. The presynapse is labeled with \textit{flp-13::mCherry::RAB-3} (red), while the postsynapse is labeled with \textit{flp-13::ACR-12::GFP} (green). D indicates dorsal, V indicates ventral. Scale bars, 5 µm. (B) Schematic representation of the \textit{nrx-1} locus, including long (\textit{nrx-1L}) and short (\textit{nrx-1S}) isoforms. Regions affected by available deletions are indicated (black lines). Exons (shaded boxes) are numbered and connected by lines representing introns. (C) Confocal images of the DD1 cell body and synaptic region for \textit{nrx-1(wy778)} mutants expressing \textit{flp-13::ACR-12::GFP::3xHA}. Animals were injected with anti-HA AlexaFluor594 antibodies (red) to label surface receptors and imaged six hours later. Scale bar, 5 µm. (D) Confocal images of \textit{UNC-29::GFP} (top) and \textit{UNC-63::GFP} (bottom) in the DD1 synaptic region (\textit{flp-13 promoter}) for the genotypes indicated. Scale bars, 5 µm. (E) Quantification of \textit{UNC-29::GFP} (left) and \textit{UNC-63::GFP} (right) clusters in the synaptic region of the DD1 dendrite in wild type and \textit{nrx-1} mutants. **p<0.01, ***p<0.001, ANOVA with Dunnett’s multiple comparisons test.
Figure 4.7 Neurexin is not essential for AMPAR localization or synaptic vesicle clusters in cholinergic motor neurons

(A) Representative confocal images of GLR-1::GFP in the anterior ventral nerve cord of adult animals. Scale bar, 5 µm. (B) Left, representative confocal images of the dorsal nerve cord from five wild type and nrx-1(wy778) adult animals expressing acr-2::SNB-1::GFP. Scale bar, 5 µm. Right, quantification of SNB-1::GFP clusters in a 50 µm region of the posterior dorsal nerve cord.
Post-synaptic morphological development requires NRX-1

We next investigated whether neurexin is required for development or maintenance of the spine-like processes we observe in the DD1 dendrite. Wild type animals (at the L4 stage) have an average of 7-8 of these spiny protrusions within the synaptic region of the anterior DD1 dendrite (Figure 4.8A, B). All of the nrx-1 mutants tested have strikingly reduced numbers of spiny protrusions. For example, only two spiny protrusions are visible on average in nrx-1(ok1649), and nrx-1(wy778) mutants show a near complete absence of spines (Figure 4.8A, B). nrx-1 deletion also significantly reduces spiny protrusions in L2 animals (the earliest stage at which they are visible) (Figure 4.9A), suggesting that neurexin is required for spine outgrowth rather than maintenance. To elucidate structural components of NRX-1 required for spine outgrowth and receptor localization, we used CRISPR to engineer specific mutations that disrupt the PDZ binding motif located at the intracellular NRX-1 C-terminus. Mutation of the NRX-1 PDZ binding domain produces a strong reduction in both receptor (Figure 4.9B) and spine number (Figure 4.8A, B), consistent with prior studies indicating the importance of this domain for interactions with intracellular partners, such as CASKs, VELIs, and Mints (Biederer and Sudhof, 2000; Butz et al., 1998; Hata et al., 1996). In accordance with our finding that nlg-1 is not required for ACR-12::GFP localization, mutation of nlg-1 does not alter spine number (Figure 4.8A, B), arguing against an essential role for neuroligin in the formation of cholinergic synapses with GABAergic neurons. Likewise, spine number is not appreciably altered in either acr-12 or unc-63 mutants (Figure 4.8A,
B), indicating that spine outgrowth proceeds normally in the absence of functional ACR-12 receptors.
Figure 4.8 Synaptic architecture is dependent on nrx-1/neurexin

(A) Fluorescent confocal images of spine-like protrusions in the synaptic region of the DD1 dendrite (flp-13::mCherry) for the genotypes indicated. Inverted images show expanded views of the synaptic regions (indicated by dashed boxes in fluorescent images). Scale bar, 5 µm. (B) Quantification of spine-like protrusions in the DD1 dendrite for the genotypes indicated. ****p<0.0001 compared to wild type control, ANOVA with Dunnett’s multiple comparisons test.
Figure 4.9 NRX-1 is required for spine outgrowth, and NRX-1 function at synapses is dependent on its intracellular PDZ binding domain

(A) Left, representative confocal images of the DD1 synaptic region in second larval stage wild type and nrx-1(wy778) mutants expressing flp-13::mCherry. Arrowheads indicate spine-like protrusions. Inverted images show expanded views of the synaptic regions (indicated by dashed boxes in fluorescent images). Scale bars, 5 µm. Right, quantification of DD1 spine-like protrusions in second larval stage animals for wild type and nrx-1(wy778) mutants. **p<0.01, student’s t test. (B) Left, representative confocal images of ACR-12::GFP clusters in the DD1 synaptic region for the genotypes indicated. Scale bar, 5 µm. Right, quantification of ACR-12::GFP clusters in the synaptic region of the DD1 dendrite for the genotypes indicated, normalized to control (ufEx441). ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test.
nrx-1 is expressed and functionally required in cholinergic motor neurons.

To understand how NRX-1 regulates the formation of cholinergic synapses with GABAergic neurons, we sought to define the requirements for nrx-1 expression. We first examined expression of a nrx-1L::GFP transcriptional reporter incorporating ~4.8 kb of sequence upstream of the nrx-1L start site, and found that this reporter is strongly expressed in cholinergic motor neurons (Figure 4.10A). We next asked whether specific nrx-1 expression in cholinergic neurons is sufficient to rescue the post-synaptic maturation defects of nrx-1 mutants. We found that expression of a nrx-1L rescuing construct in cholinergic neurons is sufficient to reverse the ACR-12 clustering defects of nrx-1(wy778) mutants, while expression in either GABAergic neurons or muscles fails to rescue (Figure 4.10B-D). Notably, cholinergic-specific expression of nrx-1L also restores spine-like protrusions in nrx-1 mutants (Figure 4.11A). Thus, our results suggest that presynaptic NRX-1 acts non-autonomously to direct post-synaptic assembly in GABAergic neurons.

To investigate this possibility in more detail, we examined the subcellular localization of NRX-1 by expressing GFP-tagged NRX-1L (NRX-1L::GFP) (Maro et al., 2015) in a subset of cholinergic neurons (DA/DB). Expression of unc-129::NRX-1L::GFP produces discrete puncta along the dorsal nerve cord where the synaptic outputs of DA/DB neurons are exclusively located (Figure 4.11B, left). NRX-1L::GFP clusters colocalize with clusters of mCherry::RAB-3 fluorescence, providing evidence that NRX-1L is preferentially localized to cholinergic presynaptic sites (Figure 4.10E, F). Loss of nlg-1 function does not affect NRX-1L::GFP (Figure 4.11B), arguing against a requirement for NLG-1 in NRX-1 localization to presynaptic sites. NRX-
1L::GFP localization is not appreciably altered by acr-12 deletion, suggesting that the positioning of NRX-1 at presynaptic terminals occurs independently of post-synaptic receptor clustering (Figure 4.11C). Our results indicate NRX-1 positioning at presynaptic sites occurs independently of post-synaptic receptor localization, and raise the intriguing possibility that NRX-1 localization to the presynaptic domain may serve as an initiation signal for developmental maturation of post-synaptic specializations in GABAergic neurons.
Figure 4.10 Cell-specific expression of neurexin in cholinergic motor neurons restores ACR-12 localization to synapses

(A) Confocal images of the ventral nerve cord in a transgenic strain expressing nrx-1L::GFP together with the cholinergic motor neuron marker acr-2::mCherry. Asterisks indicate coexpression. Scale bar, 5 µm. (B) Confocal images of the dorsal nerve cord (unc-47::ACR-12::GFP) for the genotypes indicated. For each, five representative images are shown. In B and C, rescue was evaluated by cholinergic (unc-17β promoter), GABAergic (unc-47 promoter), or muscle-specific (myo-3 promoter) expression of a NRX-1L minigene in nrx-1(wy778) mutants. Scale bar, 5 µm. (C) Quantification of ACR-12::GFP receptor clusters in the dorsal nerve cord for the genotypes indicated. ****p<0.0001, ANOVA with Tukey’s multiple comparisons test. Two transgenic lines are shown for each rescue construct. Inset, number of rescuing lines/total transgenic lines tested for each construct. (D) Left, confocal images of ACR-12::GFP clusters in the DD1 synaptic region for the genotypes indicated. Rescue refers to cholinergic-specific expression (ufEx1114, line #1 in Figure 4.10C) of NRX-1L in nrx-1(wy778) mutants. Scale bar, 5 µm. Right, quantification of ACR-12::GFP clusters in the DD1 synaptic region for the genotypes indicated, normalized to control (ufEx441). ****p<0.0001, ANOVA with Tukey’s multiple comparisons test. (E) Confocal images of the dorsal nerve cord in an adult animal expressing NRX-1L::GFP (unc-129 promoter) with mCherry::RAB-3 (acr-2 promoter). Colocalization is indicated by arrowheads. Scale bar, 5 µm. (F) Line scans showing relative fluorescent intensity of NRX-1L::GFP (green) and mCherry::RAB-3 (red) for a 30 µm region of the dorsal nerve cord.
Figure 4.11 NRX-1 acts presynaptically to regulate spine outgrowth, and loss of nlg-1 or acr-12 does not affect NRX-1 localization to synapses

(A) Left, inverted images of spine-like protrusions in the synaptic region of the DD1 dendrite (flp-13::mCherry) for the genotypes indicated. Rescue refers to cholinergic expression (ufEx1114) of NRX-1_L in nrx-1(ok1649) mutants. Scale bar, 5 µm. Right, quantification of spine-like protrusions in the DD1 dendrite for the genotypes indicated. ****p<0.0001, ANOVA with Tukey’s multiple comparisons test. (B) Confocal images of NRX-1_L::GFP in the dorsal nerve cord of wild type or nlg-1(ok259) mutant. Pharynx is outlined by white dashed line. Scale bar, 5 µm. (C) Confocal images of the dorsal nerve cord in adult animals expressing NRX-1_L::GFP (unc-129::NRX-1_L::GFP) with mCherry::RAB-3 (acr-2::mCherry::RAB-3) in wild type and acr-12(ok367) mutant. Colocalization is indicated by arrowheads. Scale bar, 5 µm.
The COE-type transcription factor unc-3 directly controls neurexin expression

We have previously demonstrated that mutation of the COE-type (Collier/Olf/Ebf) transcription factor unc-3 disrupts ACR-12 clustering in VD GABAergic neurons (Barbagallo et al., 2017). In light of our findings here that nrx-1 deletion similarly disrupts ACR-12 clustering and spine-like protrusion outgrowth in DD neurons (Figure 4.12A, B), we next investigated the role of UNC-3 transcriptional regulation in the development of cholinergic connectivity with GABAergic DD neurons. Prior work has shown that activity of UNC-3 is essential for the specification of cholinergic neurotransmitter identity (Kratsios et al., 2015; Kratsios et al., 2011). To investigate the requirement for unc-3 in ACR-12 clustering, we first evaluated whether cholinergic transmission itself is critical for the development of post-synaptic specializations on DD neurons. We found that mutations in the unc-17 cholinergic vesicular ACh transporter produced no appreciable changes in spine-like protrusion number or ACR-12 clusters (Figure 4.12B), arguing against a strong requirement for cholinergic transmission in the formation of these structures.

We next asked whether UNC-3 transcriptional regulation of nrx-1 expression is critical for the development of cholinergic connectivity with GABAergic neurons. To address this question, we tested whether unc-3 is required for expression of the nrx-1L::GFP transcriptional reporter described above. We found that mutation of unc-3 significantly reduces nrx-1L::GFP fluorescence in motor neuron cell bodies of the ventral nerve cord, as well as the majority of fluorescence in ventral cord processes (Figure 4.12C, D). The remaining ventral cord GFP fluorescence is associated with the processes
of head neurons that project into the nerve cord, which are presumably not subject to unc-3 regulation. We next used fluorescent in situ hybridization (FISH) to determine the effects of unc-3 mutation on nrx-1 mRNA abundance. Fluorescent signals indicating nrx-1 mRNA (primarily targeting the nrx-1L isoforms) are clearly associated with cholinergic motor neuron cell bodies (co-labeled with unc-17::GFP) in wild type animals (Figure 4.12E), consistent with our prior analysis using the nrx-1L::GFP transcriptional reporter. The smFISH signals are strongly diminished in nrx-1(nu485) deletion mutants (Figure 4.12E, F), confirming they accurately report nrx-1 mRNA abundance. The number of labeled nrx-1 mRNA signals in cholinergic motor neurons is strikingly reduced by mutation of unc-3, consistent with the possibility that nrx-1 is a transcriptional target of unc-3 (Figure 4.12E, F).

We noted that a second nrx-1L transcriptional reporter incorporating only ~2 kb of nrx-1 regulatory sequence did not produce strong fluorescence in ventral cord motor neurons (Figure 4.12C, D). We reasoned that regulatory elements required for nrx-1 expression in these neurons may be present in the sequence that differs across these two transcriptional reporters (2 kb versus 4.8 kb) (Figure 4.12C, D). As both mammalian COE transcription factors and UNC-3 bind a conserved COE binding motif (TCCCNNG/ANGG/G/AG) to regulate transcription of target genes (Kim et al., 2005; Kratsios et al., 2011; Wang et al., 2015; Wang et al., 1993), we searched for COE binding motifs within this region. We identified a potential COE motif (TCCCAAAGGG) located approximately 20 bp downstream from the 5' end of the 4.8 kb nrx-1L::GFP transcriptional reporter. Mutation of this site (TCCCAAAGGG >> TAAAAAAGGG)
within the 4.8 kb nrx-1L::GFP transcriptional reporter eliminates all fluorescence from ventral cord motor neurons, while fluorescence in the processes extending from head neurons remains visible (Figure 4.12C, D), offering evidence that UNC-3 directly regulates nrx-1 transcription in ventral cord neurons.

We reasoned that forced expression of nrx-1L in cholinergic neurons using a promoter not subject to unc-3 regulation may allow NRX-1 to coordinate synapse development independently of UNC-3 transcriptional regulation. We expressed the nrx-1L isoform using a regulatory region of the unc-3 gene that drives expression in ventral cord cholinergic neurons (Barbagallo et al., 2017). We found that cholinergic-specific expression of the nrx-1L isoform significantly restored receptor clusters in the dendritic region of unc-3 animals (Figure 4.12G), indicating that the lack of ACR-12 receptor clusters in unc-3 mutants is due to the absence of nrx-1 expression. Our findings define the gene regulatory mechanisms controlling neurexin expression in presynaptic neurons and illustrate their involvement in the establishment of synaptic connectivity.
Figure 4.12 Transcriptional control of neurexin expression in ACh motor neurons by UNC-3

(A) Confocal images of the DD1 synaptic region and cell soma in wild type and nrx-1(ok1649) and unc-3(e151) mutants expressing flp-13::mCherry (upper) or flp-13::ACR-12::GFP (lower). Note the absence of spine-like protrusions and ACR-12 receptor clusters in unc-3 and nrx-1 mutants. Although we also note variable defects in neurite extension in unc-3 mutants, reductions in spine-like protrusions and ACR-12 clusters are clearly evident when neurite extension appears unaffected. Notably, flp-13::mCherry fluorescence is not altered by mutation of unc-3, arguing against unc-3 regulation of the flp-13 promoter. (B) Left, quantification of spine-like protrusions in the DD1 dendrite for the genotypes indicated. ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test. Right, quantification of ACR-12::GFP clusters in the DD1 synaptic region for the genotypes indicated, normalized to control (uf1s126). ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test. (C) Mutational analysis of the regulatory region of the nrx-1L promoter. Upper, genomic organization of the nrx-1 locus. Black boxes, exons. Blue line, COE motif upstream of the nrx-1 start site. Lower, schematics of promoter regions fused with GFP (green) corresponding to the images in D. (+) indicates strong expression in ventral nerve cord or head neurons of fourth larval stage animals, (-) indicates lack of expression. Number of animals with GFP expression in either ventral nerve cord or head neurons is indicated in parentheses. (D) Confocal images of nrx-1L::GFP expression in the ventral nerve cord for the genotypes indicated. Note the decreased nrx-1L::GFP fluorescence in unc-3(e151) mutants, with expression from a truncated (2 kb) promoter (nrx-1L2kb), or with disruption of the COE motif (nrx-1LCOEΔ). The remaining fluorescent signal is associated with processes originating from head neurons. (E) Fluorescent in situ hybridization (FISH) signals indicating nrx-1 mRNA abundance in wild type, nrx-1(nu485), and unc-3(e151) mutant animals expressing unc-17::GFP or unc-47::GFP to visualize the ventral nerve cord. mRNA molecules are labeled by CAL Fluor® Red 590 Dye conjugated probes and appear as red dots. Insets, expanded views of mRNA labeling associated with cholinergic motor neuron cell bodies. (F) Quantification of nrx-1 mRNA molecules per 45 µm segment of the ventral nerve cord for the genotypes indicated. ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test. (G) Left, representative confocal images showing ACR-12::GFP clusters in the dorsal nerve cord for three wild type, unc-3(e151) or unc-3 rescue animals expressing unc-47::ACR-12::GFP. Rescue refers to cholinergic-specific (unc-3 promoter) expression of NRX-1L in unc-3(e151) mutants (ACH::nrx-1L). Right, scatterplot of ACR-12::GFP clusters in a 40 µm region of the dorsal nerve cord for the genotypes indicated, normalized to control. *p<0.05, ANOVA with Tukey’s multiple comparisons test. Scale bars, 5 µm (A, D-E, G).
nrx-1 deletion impairs cholinergic neurotransmission onto GABAergic neurons

To investigate how nrx-1 deletion impacts the spatial arrangement of pre- and post-synaptic specializations, we examined strains coexpressing ACR-12::GFP in GABAergic neurons with the synaptic vesicle marker mCherry::RAB-3 in cholinergic neurons. In the wild type, ACR-12 receptor clusters at the tips of spiny protrusions are submerged within the presynaptic domains of cholinergic axons, where synaptic contacts are presumably located (Figure 4.13A, left). In nrx-1 mutants, however, we noted a prominent gap between the neurites of the pre- and post-synaptic neurons (Figure 4.13A, right), suggesting that nrx-1 coordinates the extension of receptor-bearing spiny protrusions to presynaptic domains of cholinergic axons. These results, in combination with the lack of an appreciable effect on muscle synapses described above, predict that nrx-1 deletion would impair cholinergic synaptic activation of GABAergic neurons, while cholinergic transmission onto muscles would remain unaffected.

We recorded Ca²⁺ transients from either GABAergic motor neurons or muscles immediately following presynaptic cholinergic depolarization in order to address this question (Figure 4.14A). We used combined cell-specific expression of Chrimson for cholinergic depolarization (Klapoetke et al., 2014; Larsch et al., 2015), and GCaMP6s for monitoring [Ca²⁺] changes (Chen et al., 2013) in either post-synaptic GABAergic motor neurons or body wall muscles (Figure 4.13B, E). Strikingly, we found that nrx-1 deletion disrupts GABA neuron Ca²⁺ transients in response to cholinergic stimulation, but produces no appreciable effect on muscle Ca²⁺ transients, consistent with a specific
requirement for nrx-1 in the development of functional connectivity between cholinergic and GABAergic neuron, but not muscle, synaptic partners (Figure 4.13B-G).

Cholinergic depolarization (5 s) evokes robust stimulus-coupled Ca$^{2+}$ transients in both GABAergic neurons (67% responding during 5 second stimulation) and muscles (88% responding during 5 second stimulation) that occur within 250 ms of stimulus onset (average response latency: 0.22±0.06 s in motor neurons and 0.25±0.02 s in muscles). These transients are not observed in the absence of cholinergic Chrimson expression or in the absence of retinal (Figure 4.14B, C), consistent with a requirement for presynaptic Chrimson-mediated depolarization. In both cell types, evoked Ca$^{2+}$ transients rise rapidly following stimulation (t_{rise}: 0.48±0.08 s in GABA neurons; 0.74±0.06 s in muscles), and persist throughout the duration of stimuli before decaying to baseline. Motor neuron transients are typically shorter in duration (mean duration: 7.7±1 s in GABA neurons; 10.8±0.5 s in muscles) and decay more rapidly (t_{decay}: 1.1±0.4 s in GABA neurons; 4.6±0.6 s in muscles) compared with muscle transients, likely reflecting differences in both synaptic connectivity and physiology across the two cell types.

For both GABA neurons and muscles, evoked Ca$^{2+}$ responses are eliminated almost completely by mutations that impair post-synaptic AChR function in the respective cell types (acr-12 or unc-29;acr-16, respectively). Specifically, acr-12 deletion reduces the mean peak amplitude of GABA neuron calcium responses to cholinergic stimulation by 60% (Figure 4.13C-D, Figure 4.14D) and increases the failure rate (no response to stimulation) by 53% compared to wild type, consistent with prior electrophysiology studies (Petrash et al., 2013). Similarly, for muscles, the mean
peak amplitude of calcium responses to cholinergic stimulation is reduced by 95% in unc-29;acr-16 double mutants (Figure 4.13F-G, Figure 4.14E), and the failure rate is increased roughly 15-fold to 77%, consistent with prior electrophysiology studies of evoked synaptic responses in these double mutants (Francis et al., 2005).

nrx-1 deletion reduces the mean peak amplitude of GABA neuron calcium responses to cholinergic stimulation by roughly 71% (Figure 4.13C-D, Figure 4.14D), and increases the failure rate for GABA neuron recordings by 47%. By comparison, nrx-1 deletion does not produce a significant decrease in either mean peak fluorescence (Figure 4.13F-G, Figure 4.14E) or the failure rate in recordings of evoked muscle activity. Together, these findings support a specific requirement for nrx-1 in cholinergic transmission onto GABA neurons, while nrx-1 appears dispensable for transmission onto muscles under our recording conditions. Notably, both the failure rate and mean peak amplitude of evoked GABA neuron Ca^{2+} responses are restored to wild type levels with expression of a rescuing nrx-1L transgene in nrx-1 mutants using a cholinergic neuron-specific promoter (Figure 4.13C-D, Figure 4.14D).

Consistent with a requirement for NRX-1 in cholinergic synaptic connectivity with GABAergic motor neurons, automated worm track analysis showed that nrx-1 mutants display defects in the amplitude of dorsoventral bending, a feature of worm movement previously associated with GABAergic function (McIntire et al., 1993; Petrash et al., 2013). These effects are rescued with cell-specific expression of nrx-1L in cholinergic neurons (Figure 4.14F). Thus, presynaptic nrx-1 expression in cholinergic neurons is required for synaptic connectivity between cholinergic and GABAergic motor
neurons, and deficits in these connections alter motor performance. Together, our data indicate that NRX-1 located in presynaptic cholinergic neurons is required for establishing synaptic connectivity with partnering GABAergic neurons, but not muscle cells. NRX-1 signaling promotes both receptor clustering and the outgrowth of postsynaptic spine-like morphological features in GABAergic dendrites. Our findings support a model where distinct synaptic organizers, acting on specific post-synaptic targets, are coordinately regulated with neuronal identity, perhaps offering a mechanism for independent developmental regulation of synaptic outputs across alternate partners (Figure 4.15).
Figure 4.13 nrx-1 mutants show functional defects in synaptic connectivity

(A) Confocal images of pre-synaptic (acr-2::mCherry::RAB-3) and post-synaptic (flp-13::ACR-12::GFP) specializations in the DD1 synaptic region for the genotypes indicated. Arrowheads indicate receptor-bearing spiny protrusions extending into the presynaptic region of cholinergic axons in wild type. Note gap between the pre- and postsynaptic regions in nrx-1(ok1649) mutants. Scale bar, 5 µm. (B) Cartoon depicting specific expression of Chrimson (acr-2::Chrimson) in cholinergic neurons together with GCaMP (ttr-39::GCaMP6s::SL2::mCherry, green) in GABAergic neurons, applies to C-D. (C) Representative calcium transients in GABAergic motor neurons evoked by light stimulation (red shaded region) of cholinergic neurons for the genotypes indicated. Rescue refers to cholinergic-specific expression of NRX-1L in nrx-1(wy778) mutants (C-D). Red line indicates Gaussian fit to the wild type and rescue traces. (D) Quantification of the mean peak ΔF/F₀ upon Chrimson stimulation for the genotypes indicated, normalized to control (ufIs155; ufIs157). ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test. (E) Cartoon depicting specific expression of Chrimson (acr-2::Chrimson) in cholinergic neurons together with GCaMP (myo-3::NLSwCherry::SL2::GCaMP6s, green) in muscles, applies to F-G. (F) Representative calcium transients in muscle cells evoked by light stimulation (red shaded region) of cholinergic motor neurons for the genotypes indicated. (G) Quantification of the mean peak ΔF/F₀ upon Chrimson stimulation for the genotypes indicated, normalized to control (zfEx813; ufIs157). ****p<0.0001, ANOVA with Dunnett’s multiple comparisons test.
Figure 4.14 nrx-1 mutants have defects in transmission onto GABAergic neurons and abnormalities in dorsoventral bending

(A) Simplified schematic of experimental setup for calcium imaging studies. GCaM P6s fluorescence was recorded in GABAergic neurons or body wall muscle cells in a single focal plane over a 20 second recording (Figure 4.13). Chrimson stimulation was elicited using a 625 nm LED. GCaM P excitation (488 nm) and emission (525 nm) acquisition and Chrimson activation were achieved using a 556 nm short-pass dichroic beam splitter inserted into the light path. (B-C) Representative calcium transients in GABAergic neurons (B) or muscle cells (C) evoked by light stimulation (red shaded region) of cholinergic motor neurons (acr-2::Chrimson) for the genotypes indicated. ATR, all-trans retinal. Rescue refers to cholinergic expression of NRX-1L in nrx-1(wy778) mutants. (D-E) Scatterplots of peak evoked calcium responses (ΔF/F₀, closed circles) in GABAergic neurons (D) or muscle cells (E) for the genotypes indicated. ΔF/F₀ of 0 indicates a failure and is represented by open circles. Black bars indicate mean ± SEM. (F) Ratio of maximum dorsoventral bending amplitude measured using automated worm track analysis (see Materials and Methods) (Yemini et al., 2013). Rescue refers to cholinergic expression of NRX-1L in nrx-1(wy778) mutants. Each data point indicates an individual worm analyzed, and gray bars indicate mean ± SEM. n > 20 for each genotype.

****p<0.0001 compared to wild type control, ANOVA with Dunnett’s multiple comparisons test.
Figure 4.15 Distinct molecular scaffolds direct partner-specific connectivity
Distinct molecular scaffolds coordinate post-synaptic development in GABAergic neurons vs muscle. NRX-1/neurexin located at sites of presynaptic cholinergic release acts to coordinate ACR-12 receptor localization (green) and spine outgrowth in GABA neurons. A complex of proteins, including MADD-4, LEV-9, and LEV-10, direct receptor clustering (brown) at the neuromuscular junction (Gally et al., 2004; Gendrel et al., 2009; Pinan-Lucarre et al., 2014; Rapti et al., 2011). NRX-1 and MADD-4 (Kratsios et al., 2015) expression in cholinergic neurons is transcriptionally co-regulated with neurotransmitter identity by the COE transcription factor UNC-3.
Discussion

Neurons often make divergent synaptic connections onto multiple postsynaptic partners, and these connections are critical for proper neural circuit performance in the brain. In this study, we use dyadic *C. elegans* synapses between cholinergic motor neurons and their muscle and GABAergic motor neuron postsynaptic partners as a model to define novel molecular mechanisms controlling divergent connectivity. First, we identify spine-like dendritic specializations on GABAergic DD neurons. We find that heteromeric post-synaptic AChR complexes composed of the ACR-12, UNC-63, UNC-38, UNC-29 and LEV-1 subunits are localized to these structures. Second, we identify a novel neurexin signaling pathway required both for the formation of post-synaptic specializations and for AChR clustering. In contrast, *nrx-1/neurexin* is not required for the development of cholinergic synapses onto muscles, which instead require molecularly distinct pathways that have been described previously (Francis et al., 2005; Gally et al., 2004; Gendrel et al., 2009; Jensen et al., 2012; Pinan-Lucarre et al., 2014; Rapti et al., 2011). Third, we find that presynaptic *nrx-1* expression in cholinergic neurons is required for the establishment of synapses with GABAergic neurons, and transcriptional regulation of *nrx-1* is achieved through actions of the COE transcription factor unc-3. These findings suggest a model where cholinergic expression of *nrx-1* initiates synapse formation with GABAergic neurons via NRX-1 mediated trans-synaptic signaling. Finally, the ACh-GABA connectivity defects that we observe in *nrx-1* mutants are paralleled by significant impairment of evoked cholinergic transmission onto GABAergic neurons, and altered sinusoidal movement. In contrast, functional connectivity with
muscles is unaffected. Together, our findings provide evidence that distinct molecular signaling pathways act in parallel to establish divergent connections at dyadic synapses in the motor circuit, raising the interesting possibility that differential use of synaptic organizers may be similarly utilized in the brain to provide a molecular code directing divergent connectivity (Figure 4.15).

Heteromeric ACR-12 receptor complexes cluster in specialized post-synaptic domains of GABAergic DD dendrites. Using candidate deletion analysis and cell-specific rescue, we identified AChR subunits and accessory proteins required for the assembly and localization of ACR-12 receptors in GABAergic neurons, defining the subunit composition of this neuronal receptor. Our findings implicate four additional receptor subunits (UNC-38, UNC-63, UNC-29, LEV-1) that co-assemble with ACR-12 to form pentameric receptor complexes in GABAergic neurons, and demonstrate that three accessory proteins (UNC-74, UNC-50, RIC-3) with more generalized roles in AChR assembly and maturation are also required (Boulin et al., 2008; Halevi et al., 2002; Jospin et al., 2009). These findings provide evidence that ACR-12 receptors in GABA neurons are similar in subunit composition to muscle L-AChRs, differing only in the inclusion of the ACR-12 subunit in GABA neurons, whereas muscle L-AChRs incorporate the LEV-8 subunit (Boulin et al., 2008; Towers et al., 2005). Consistent with our analysis, a prior study showed that ACR-12 can be co-purified with the UNC-29 or LEV-1 subunits (Gottschalk et al., 2005). We have previously shown that unc-29 is expressed in GABAergic motor neurons, and UNC-29::GFP localizes similarly
to ACR-12::GFP in DD neurons, both in the mature animal and during developmental remodeling of these neurons (He et al., 2015).

We show that ACR-12 receptor complexes are concentrated at the tips of spine-like dendritic protrusions in GABAergic DD neurons. Spiny processes associated with D-type GABAergic neurons had been noted in prior electron microscopy studies (White et al., 1976), but to our knowledge, were not characterized further. We find that these AChR-containing dendritic protrusions are apposed by presynaptic clusters of cholinergic vesicles and increase in number during the course of larval development, perhaps representing new synaptic connections formed with post-embryonic born cholinergic neurons that are integrated into the circuit following the L1/L2 transition (White et al., 1978). While further investigation of these structures will undoubtedly reveal additional insights, the characteristics we define here raise the interesting possibility that these dendritic protrusions are structural specializations for housing neurotransmitter receptors and other proteins required for post-synaptic signaling, perhaps representing an evolutionary precursor to mammalian dendritic spines.

The synaptic organizer neurexin directs post-synaptic development in a partner-specific manner

nrx-1 deletion impairs both AChR localization and spiny outgrowths in DD neurons, creating a gap between the pre- and post-synaptic neurons. Similarly, in Drosophila, mutation of the single neurexin gene dnrx causes disorganization of synaptic structure at the neuromuscular junction (Li et al., 2007). Knockout of two out of the three mouse
alpha neurexins reduces dendrite length and total spine number in the cortex (Dudanova et al., 2007), though significant numbers of dendritic spines remain detectable. In our studies, we find that nrx-1 is required for ACR-12 receptor localization in GABAergic DD and VD neurons, although we observe spine-like protrusions only in DD neurons. These findings argue that NRX-1 is not solely involved in directing spine development, but serves an additional role in receptor clustering. Further, we show that dendritic protrusions form independently of a requirement for AChRs containing either ACR-12 or UNC-63, offering additional support that spine outgrowth and receptor clustering are independently regulated by NRX-1. Similarly, dendritic spines on mouse CA1 pyramidal neurons form normally in the absence of functional glutamate receptors (Lu et al., 2013).

Although GABA neuron ACR-12 AChRs and muscle L-AChRs share very similar subunit composition (Boulin et al., 2008; Lewis et al., 1980), we find that genes required for proper localization of muscle L-AChRs (e.g. madd-4, lev-10) play comparatively minor roles at synapses onto GABA neurons. Conversely, loss of nrx-1 function specifically affects GABAergic, but not muscle, AChR clustering and cholinergic transmission onto muscles appears largely unaffected. Our cell-specific rescue experiments indicate nrx-1 acts in cholinergic neurons to coordinate post-synaptic development in GABAergic neurons via trans-synaptic signaling.

Numerous studies support neuroligin as a primary trans-synaptic binding partner with neurexin (Boucard et al., 2005; Comoletti et al., 2006; Ichtchenko et al., 1995; Ichtchenko et al., 1996; Nguyen and Sudhof, 1997). Indeed, C. elegans NRX-1/neurexin function has been characterized almost exclusively in the context of its partnership with
NLG-1/neuroligin. A retrograde neurexin-neuroligin signaling pathway that regulates neurotransmitter release has been described, involving signaling through the Ca\(^{2+}\) channel auxiliary subunit UNC-36/α2δ (Hu et al., 2012; Tong et al., 2017). Consistent with this representing a distinct mechanism from that described in our work, mutation of unc-36 has no appreciable effect on synapse development in our experiments. Postsynaptic expression of NLG-1/neuroligin is required at GABAergic synapses. However, MADD-4/Punctin likely acts as a major presynaptic partner for NLG-1 in this case, with NRX-1 playing a comparatively minor role (Maro et al., 2015; Tong et al., 2015; Tu et al., 2015). Finally, recent work also implicates neurexin-neuroligin signaling in sexually dimorphic neurite plasticity (Hart and Hobert, 2018). In contrast to these studies, we find that NRX-1 operates independently of NLG-1 to direct the formation of cholinergic synapses with GABAergic neurons. How therefore might presynaptic neurexin direct postsynaptic maturation? Our analysis shows that presynaptic NRX-1 localizes properly in the absence of acr-12, arguing against a requirement for direct binding of neurexin to the postsynaptic receptor. Prior studies offer strong evidence for alternate neurexin binding partners that support trans-synaptic signaling (Boucard et al., 2012; de Wit et al., 2009; Ko et al., 2009; Missler et al., 1998; Petrenko et al., 1996; Pettem et al., 2013; Sugita et al., 2001; Uemura et al., 2010). For several of these gene families (e.g. neurexophilins, cerebellins), clear C. elegans orthologs are not present. Others are included in our candidate analysis (e.g. casy-1/calsyntenin, lat-2/latrophilin), but single gene mutations do not produce postsynaptic defects comparable to mutation of nrx-1, suggesting either the possibility of a novel post-synaptic nrx-1 binding partner or redundant post-synaptic mechanisms.
Additional genetic or proteomic studies will be required to distinguish between these possibilities and address this important question.

Transcriptional control of partner-specific synaptic connectivity

Transcriptional regulators of neurexin expression are only beginning to be elucidated (Runkel et al., 2013). Previously, we found that mutation of the COE-type transcription factor unc-3 disrupts A ChR clustering in GABAergic dendrites (Barbagallo et al., 2017). These disrupted clusters are unlikely to reflect a requirement for acetylcholine release in A ChR clustering, as neither tetanus toxin expression nor mutation of unc-17/vA ChT produces appreciable defects in ACR-12 clustering (Barbagallo et al., 2017) (this study). Here, we find that neurexin is a transcriptional target of UNC-3, and we propose that UNC-3 regulation of nrx-1 expression directs development of postsynaptic specializations in GABAergic neurons. Prior work indicates that UNC-3 transcriptional regulation of MADD-4/Punctin is essential for proper development of cholinergic synapses with muscles (Kratsios et al., 2015). However, madd-4 is dispensable for cholinergic synapse formation with neighboring GABAergic neurons (Barbagallo et al., 2017) (this study). Thus, cholinergic connectivity with distinct synaptic targets—muscles and GABAergic neurons—is coordinately regulated with cholinergic neuronal identity by unc-3 transcriptional control of alternate synaptic organizers.

Our work here defines a novel yet essential role for NRX-1 during synapse formation. Neurexin acts in a target-specific manner to coordinate postsynaptic development/maturation. Presynaptic neurexin instructs receptor localization and the
development of spine-like processes in postsynaptic GABAergic neurons, and nrx-1 expression is critical for cholinergic transmission onto GABAergic neurons, while not required for signaling onto neighboring muscle. Our work suggests synaptic target-specific utilization of organizers such as neurexin may specify divergent connectivity, and provide a molecular mechanism for target-specific regulation of synapse development.
Materials and Methods

Strains

C. elegans strains were maintained at room temperature (22-24°C) on nematode growth media plates (NGM) seeded with the Escherichia coli strain OP50. All strains are derivatives of the N2 Bristol strain (wild type). Transgenic strains were obtained by microinjection to achieve germline transformation (Mello et al., 1991) and identified with co-injection markers as previously (Barbagallo et al., 2017). Integrated lines were produced by X-ray irradiation and outcrossed to wild type. A complete list of all strains used in this work is included in Table 4.2.

Molecular Biology

Plasmids were constructed using the two-slot Gateway Cloning system (Invitrogen) as described previously (Bhattacharya et al., 2014) and confirmed by restriction digest and/or sequencing as appropriate.

Tagged receptor constructs: To generate flp-13::ACR-12::GFP::3xHA, ACR-12::GFP was amplified from pDEST-38, removing the original stop codon and adding a 3X HA tag. The product (3195 bp) was ligated into a destination vector to generate pDEST-113. pDEST-113 was recombined with pENTR-3’-flp-13 to create pAP138 (flp-13::ACR-12::GFP::3xHA). To generate flp-13::UNC-63::GFP, 5’ and 3’ fragments of unc-63 cDNA were PCR amplified from pDEST-57, ligated into pPD117.01 (mec-7::GFP), converted into the destination vector pDEST-79, and recombined with pENTR-5’-flp-13.
to create pAP84 (flp-13::UNC-63::GFP), where GFP is inserted into the intracellular loop of UNC-63.

AChR subunit and accessory rescue constructs: Wild type unc-38 (1536 bp), unc-63 (1509 bp), unc-74 (1344 bp), unc-50 (906 bp), and ric-3 (1137 bp) rescue constructs were PCR amplified and ligated into destination vectors to generate pDEST-51, pDEST-57, pDEST-58, pDEST-56, and pDEST-59, respectively. Each of these was recombined with pENTR-unc-47 to create pAP45 (unc-47::unc-38 cDNA), pAP59 (unc-47::unc-63 cDNA), pAP53 (unc-47::unc-74 cDNA), pAP57 (unc-47::unc-50 cDNA), and pAP55 (unc-47::ric-3 cDNA).

nrx-1 reporter and rescue constructs: To generate the 5 kb nrx-1L::GFP transcriptional reporter, the nrx-1L promoter was amplified from wild type genomic DNA (-4786 bp relative to start) and cloned into pENTR-D-TOPO to generate pENTR-5’-nrx-1L. pENTR-5’-nrx-1L was then recombined with pDEST-93 (GFP) to generate pAP156 (nrx-1L::GFP). The 2 kb nrx-1L promoter::GFP fusion construct (-2033 bp relative to start) was created using the same strategy, recombining pENTR-5’-nrx1L2kb with pDEST-93 to create pAP118 (nrx-1L2kb::GFP). nrx-1LCOEΔ::GFP (pAP178) was generated by PCR amplification using mutant primers that disrupt the COE motif (TCCCAAAGGG > TAAAAAAGGG).

Rescuing NRX-1L minigene constructs were generated by ligation of a 10,598 bp Nhel fragment of the nrx-1 genomic locus extending from the nrx-1L start to exon 21 (amplified from cosmid C29A12) with a 715 bp fragment of the nrx-1 cDNA (isoform A) amplified from a plasmid containing the nrx-1 coding sequence (GM 470, provided by...
Kang Shen (Maro et al., 2015)), and converted into the destination vector pDEST-143. For cell-specific rescue, pDEST-143 was recombined with pENTR-3’-unc17β, pENTR-3’-unc47, pENTR-3’-myo3, and pENTR-3’-unc3 to create minigene plasmids pAP204 (unc-17β::nrx-1L), pAP206 (unc-47::nrx-1L), pAP208 (myo-3::nrx-1L), and pAP202 (unc-3::nrx-1L), respectively.

unc-129::NRX-1L::GFP was generated by conversion of the NRX-1L::GFP plasmid GM 477 (provided by Kang Shen (Maro et al., 2015)) into the destination vector pDEST-99 and recombination with pENTR-3’-unc129 to create pAP120 (unc-129::NRX-1L::GFP).

Chrimson and GCaMP constructs: To generate acr-2::Chrimson, Chrimson coding sequence was amplified from odr-7::Chrimson (construct provided by Dirk Albrecht (Larsch et al., 2015)) and ligated into a destination vector to create pDEST-104. pDEST-104 was recombined with pENTR-5’-acr2 to create pRB2 (acr-2::Chrimson). To generate ttr-39::GCaMP6s::SL2::mCherry, GCaMP6s was amplified from pGP-CMV-GCaMP6s (Addgene) and ligated into a destination vector to create pDEST-95. pDEST-95 was recombined with pENTR-5’-ttr39 (promoter provided by David Miller (Petersen et al., 2011)) to create pAP130 (ttr-39::GCaMP6s::SL2::mCherry).

CRISPR/Cas9-mediated gene disruption of nrx-1 PDZ binding domain

gRNA plasmids were made as previously described (Arribere et al., 2014). Target sequences were selected on exons 26 and 27 of nrx-1L (or exons 6 and 7 of nrx-1S) for the PDZ binding domain mutants (uf181 and uf185). Cas9 plasmid (pDD162 (Dickinson et
al., 2013)) (50 ng/µL), gRNA plasmids (25 ng/µL each), gRNA plasmid pJA 58 (dpy-10 target) (50 ng/µL), and ssODN repair template for dpy-10 (dpy-10(cn64)) (20 ng/µL) were injected into N2 (wild type) worms. Mutant lines were identified based on Rol and/or Dpy phenotypes, F2 progeny were screened by PCR for indels disrupting the PDZ binding domain, and mutations were confirmed by sequencing. nrx-1(uf181) contains an 80 bp insertion (within exon 26) 258 bp upstream of the PDZ binding domain, resulting in a frameshift and early stop prior to this domain. nrx-1(uf185) contains a 67 bp deletion 51 bp upstream of the PDZ binding domain (within exon 27), deleting this domain, removing the stop codon, and creating a new stop within the 3’UTR.

Confocal microscopy

For all imaging, nematodes were immobilized with sodium azide (0.3 M) on a 2% or 5% agarose pad. Each n represents analysis of the nerve cord from an independent animal. Images were obtained using either a 3i (Intelligent Imaging Innovations) Everest spinning-disk confocal microscope or Olympus BX 51WI spinning disk confocal equipped with a 63x objective. All DD1 confocal images were obtained by imaging L4 hermaphrodites of similar size in the region near the pharynx using identical image and laser settings for each marker, and receptor clusters were quantified in a region from the DD1 cell body to connecting commissure (i.e. the synaptic region).

Analysis of synapse number/fluorescence intensity was conducted using either Volocity 6.3 or ImageJ software (open source) using defined intensity threshold values acquired from control experiments for each fluorescent marker. Specifically, the “find objects” function in Volocity was used, excluding objects >10 µm² and <0.2 µm².
Alternatively, the “analyze particles” function of ImageJ was used. For ImageJ analyses, background fluorescence was first subtracted by calculating the average intensity of each image in a region devoid of puncta. In some cases, fluorescence intensity within a region of interest was also measured and normalized to wild type control as indicated. Confocal montages of the nerve cord were assembled by using the “straighten to line” function in ImageJ. Only images where the DD1 neuron was clearly distinguishable from neighboring cells were included in analyses.

For measurements of dendritic morphology, post-synaptic protrusions in the ventral dendritic region anterior to the DD1 soma (i.e. the synaptic region) were quantified in L4 hermaphrodites. All protrusions \(\geq 0.3 \, \mu m \) were analyzed, measuring from the base of the main dendritic process to the tip of the protrusion.

For imaging and quantification of flp-13::ACR-12::GFP in Figures 4.5A and Figure 4.4B, strains IZ1458 (ufIs126) and IZ1557 (ufIs126; acr-12(ok367)) were included in the analysis as wild type control. There was no appreciable difference in the number of receptor clusters between the two strains (ufIs126; acr-12(ok367) 14.4 ± 0.6, n = 49; ufIs126 14.8 ± 0.6, n = 48).

Staging and timecourse of receptors/protrusion growth during development

Spine and receptor cluster number in the DD1 synaptic region were analyzed in synchronized animals using strains IZ1458 and IZ1464 as described previously (He et al., 2015). Briefly, embryos for each strain were picked to separate 60 mm unseeded plates and allowed to hatch for 40 minutes. Newly hatched L1 larvae were moved to freshly
seeded plates, and the midpoint of the 40 minutes in which the embryos hatched was considered t=0. Plates were incubated at 25°C for 28, 34, 46, and 52 hours. Developing protrusions ≥ 0.2 µm in the synaptic region were analyzed, and ACR-12 receptor clusters were quantified as above.

Single molecule RNA fluorescent in situ hybridization (FISH) and imaging

Custom Stellaris FISH probes against nrx-1 mRNA were obtained from Biosearch Technologies as a mix of 48 probes conjugated to CAL Fluor® Red 590 Dye. Experiments were performed using wild type, unc-3(e151) mutants, and nrx-1(nu485) mutants expressing either unc-47::GFP (oxls12), unc-4::GFP (wdls5), or unc-17::GFP (vsIs48) markers to label populations of GABA and ACh motor neurons. Synchronized populations of L3-L4 larval animals were fixed and hybridized as described previously (Ji and van Oudenaarden, 2012; Raj et al., 2008). Images were obtained using spinning disk microscopy as above. Z-projections were analyzed in ImageJ using the “analyze particles” function. Following background subtraction, the total number of nrx-1 mRNA molecules was calculated for a 45 µm x 5.5 µm straightened region of the anterior ventral nerve cord using a defined intensity threshold across all images.

Injection of fluorescent antibodies for in vivo labeling of nAChRs

For staining of ACR-12 receptors at the cell surface, mouse monoclonal α-HA antibodies (16B12) coupled to Alexa594 were diluted in injection buffer (20 mM K₃PO₄, 3 mM K citrate, 2% PEG 6000, pH 7.5). Antibody was injected into the pseudocoelom of
early L4 stage wild type or nrx-1(wy778) animals as described previously (Gottschalk and Schafer, 2006). Animals were allowed to recover for six hours on seeded NGM plates. Only animals in which fluorescence was observed in coelomocytes (indicating uptake of excess antibody and successful injection) were included in the analysis. Injections of anti-GFP Alexa594 antibody followed the same protocol.

nrx-1 behavioral assays

One-day old adults were placed on thinly seeded NGM plates and tracked for a period of 5 minutes using Single Worm Tracker 2.0 (WT2) (Yemini et al., 2011). Worm tracker software version 2.0.3.1, created by Eviatar Yemini and Tadas Jucikas (Schafer lab, MRC, Cambridge, UK), was used to analyze movement.

Calcium imaging

Transgenic animals expressing ttr-39::GCaM P6s::SL2::mCherry (GABA neurons) or myo-3::NLSwCherry::SL2::GCaMP 6s (muscle, from M. Alkema) along with acr-2::Chrimson (cholinergic neurons) were placed on plates seeded with OP50 containing 2.75 mM All-Trans Retinal (ATR) for 24 hours prior to experiments. Young adults were immobilized on 5% agarose pads in 2,3-Butanedione monoxime (BDM) (30 mg/ml). For all genotypes, control animals grown in the absence of ATR were imaged.

Imaging was carried out on a Yokogawa CSU-X 1-A 1N spinning disk confocal system equipped with EM -CCD camera (Hammamatsu, C9100-50) and 40X C-Apochromat 1.2 NA water immersion objective. Optogenetic stimulation experiments
employed a 625 nm (40 W) LED (Mightex Systems). Optical output through the objective was 0.3 mW/mm² at the focal plane of the specimen. Simultaneous GCaMP excitation (488 nm) and emission (525 nm) acquisition and Chrimson activation were achieved using a 556 nm edge BrightLine® single-edge short-pass dichroic beam splitter positioned in the light path (Semrock).

Data were acquired using Volocity software. Images were binned at 4x4 during acquisition and sampled at 10 Hz. GABA motor neuron and muscle ROIs in respective experiments were identified by mCherry fluorescence. Recordings from motor neuron cell bodies were obtained systematically, beginning at the anterior end of the ventral nerve cord and moving in a posterior direction. Each field typically contained 1-5 GABA motor neurons. Only recordings of neurons located anterior to the vulva were included in the analysis. Muscle recordings were obtained either directly anterior or posterior to the vulva.

Photobleaching correction was carried out by fitting an exponential function to the data (CorrectBleach plugin, ImageJ). A linear fit (Igor Pro, Wavemetrics) of the background fluorescence was subtracted from the cell body fluorescence across all time points. Pre-stimulus baseline fluorescence (F₀) was calculated as the average of the corrected background-subtracted data points in the first 4 seconds of the recording and the corrected fluorescence data was normalized to prestimulus baseline as ∆F/F₀, where ∆F = F - F₀. Peak ∆F/F₀ was determined by fitting a Gaussian function to the ∆F/F₀ time sequence using Multi peak 2.0 (Igor Pro, WaveMetrics). All data collected were analyzed, including failures (no response to stimulation). Peak ∆F/F₀ values were
calculated from recordings of >10 animals per genotype. Mean peaks ± SEM were calculated from all peak △F/F₀ data values and normalized to the wild type mean.

Latency was calculated as the time required from stimulus onset for fluorescence (△F/F₀) to reach two times the pre-stimulus baseline standard deviation (Larsch et al., 2015). Duration was measured as the time between the onset of the transient and the completion of the decay back to the baseline. Rise and decay time constants were determined from the time constant of exponential fits between the baseline and peak fluorescence as appropriate.
Table 4.2 *C. elegans* strains used in this work

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Strain Name</th>
<th>Transgene</th>
</tr>
</thead>
<tbody>
<tr>
<td>ufIs126</td>
<td>IZ1458</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufIs126; acr-12(ok367)</td>
<td>IZ1557</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufIs137</td>
<td>IZ1687</td>
<td>flip-13::mCherry::RAB-3 (pAP43)</td>
</tr>
<tr>
<td>ufIs137; nrx-1(ok1649); oxl22</td>
<td>IZ2030</td>
<td>flip-13::mCherry::RAB-3 (pAP43); unc-49::UNC-49::GFP</td>
</tr>
<tr>
<td>ufEx527</td>
<td>IZ1645</td>
<td>flip-13::UNC-29::GFP (pAP65)</td>
</tr>
<tr>
<td>ufEx527; nrx-1(ok1649)</td>
<td>IZ1822</td>
<td>flip-13::UNC-29::GFP (pAP65)</td>
</tr>
<tr>
<td>ufEx527; nrx-1(wy778)</td>
<td>IZ2507</td>
<td>flip-13::UNC-29::GFP (pAP65)</td>
</tr>
<tr>
<td>ufEx527; acr-12(ok367)</td>
<td>IZ1799</td>
<td>flip-13::UNC-29::GFP (pAP65)</td>
</tr>
<tr>
<td>ufEx577</td>
<td>IZ1815</td>
<td>flip-13::UNC-63::GFP (pAP84)</td>
</tr>
<tr>
<td>ufEx577; nrx-1(ok1649)</td>
<td>IZ1911</td>
<td>flip-13::UNC-63::GFP (pAP84)</td>
</tr>
<tr>
<td>ufEx577; nrx-1(wy778)</td>
<td>IZ2503</td>
<td>flip-13::UNC-63::GFP (pAP84)</td>
</tr>
<tr>
<td>ufEx577; acr-12(ok367)</td>
<td>IZ2441</td>
<td>flip-13::UNC-63::GFP (pAP84)</td>
</tr>
<tr>
<td>juls20; ufIs128</td>
<td>IZ1858</td>
<td>acr-2::SNB-1::GFP; flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>juls20; nrx-1(wy778)</td>
<td>IZ1743</td>
<td>glr-1::GLR-1::GFP</td>
</tr>
<tr>
<td>nuIs25; nrx-1(ok1649)</td>
<td>IZ2223</td>
<td>glr-1::GLR-1::GFP</td>
</tr>
<tr>
<td>ufls2; unc-29(x29)</td>
<td>IZ109</td>
<td>myo-3::UNC-29::GFP (pDM 956)</td>
</tr>
<tr>
<td>ufls2; unc-29(x29); nrx-1(wy778)</td>
<td>IZ2271</td>
<td>myo-3::UNC-29::GFP (pDM 956)</td>
</tr>
<tr>
<td>ufls126; ufls63; acr-12(ok367)</td>
<td>IZ1539</td>
<td>flip-13::ACR-12::GFP (pCL32); acr-2::mCherry::RAB-3 (pPRB47)</td>
</tr>
<tr>
<td>ufls126; ufls63; nrx-1(ok1649)</td>
<td>IZ1742</td>
<td>flip-13::ACR-12::GFP (pCL32); acr-2::mCherry::RAB-3 (pPRB47)</td>
</tr>
<tr>
<td>wdIs950; acr-12(ok367)</td>
<td>NC2920</td>
<td>unc-47::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>wdIs950; acr-12(ok367); nrx-1(ok1649)</td>
<td>IZ1693</td>
<td>unc-47::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>wdIs950; acr-12(ok367); nrx-1(tm1961)</td>
<td>IZ1867</td>
<td>unc-47::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>wdIs950; acr-12(ok367); nrx-1(ds1)</td>
<td>IZ1869</td>
<td>unc-47::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>wdIs950; acr-12(ok367); nrx-1(wy778)</td>
<td>IZ2098</td>
<td>unc-47::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>wdIs950; acr-12(ok367); nrx-1(nu485)</td>
<td>IZ2441</td>
<td>unc-47::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>wdIs950; acr-12(ok367); unc-3(e151)</td>
<td>IZ3044</td>
<td>unc-47::ACR-12::GFP (pHP7)</td>
</tr>
<tr>
<td>Strain Information</td>
<td>Plate ID</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>wdIs950; acr-12(ok367); unc-3(e151); ufEx1200</td>
<td>IZ3008</td>
<td>unc-47::ACR-12::GFP (pHP7); unc-3::nrx-1L cDNA (pAP202) at 10ng/µL</td>
</tr>
<tr>
<td>ufls126; ufEx523</td>
<td>IZ1599</td>
<td>flip-13::ACR-12::GFP (pCL32); flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; oxIs12</td>
<td>IZ2288</td>
<td>flip-13::mCherry (pAP31); unc-47::GFP</td>
</tr>
<tr>
<td>wdls950; acr-12(ok367); nrx-1(wy778); ufEx1114 and wdls950; acr-12(ok367); nrx-1(wy778); ufEx1137</td>
<td>IZ2869 and IZ2903</td>
<td>unc-47::ACR-12::GFP (pHP7); unc-17β::nrx-1L minigene at 10ng/µL (pAP204)</td>
</tr>
<tr>
<td>wdls950; acr-12(ok367); nrx-1(wy778); ufEx1128 and wdls950; acr-12(ok367); nrx-1(wy778); ufEx1129</td>
<td>IZ2891 and IZ2892</td>
<td>unc-47::ACR-12::GFP (pHP7); unc-47::nrx-1L minigene at 10ng/µL (pAP206)</td>
</tr>
<tr>
<td>wdls950; acr-12(ok367); nrx-1(wy778); ufEx1134 and wdls950; acr-12(ok367); nrx-1(wy778); ufEx1136</td>
<td>IZ2900 and IZ2902</td>
<td>unc-47::ACR-12::GFP (pHP7); myo-3::nrx-1L minigene at 10ng/µL (pAP208)</td>
</tr>
<tr>
<td>ufls128</td>
<td>IZ1464</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; acr-12(ok367)</td>
<td>IZ1802</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; unc-63(ok1075)</td>
<td>IZ2428</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; nlg-1(ok259)</td>
<td>IZ2078</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; nrx-1(ok1649)</td>
<td>IZ1712</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; nrx-1(wy778)</td>
<td>IZ2176</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; nrx-1(uf181)</td>
<td>IZ2755</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; nrx-1(uf185)</td>
<td>IZ2882</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; unc-17(e113)</td>
<td>IZ1717</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; unc-17(e245)</td>
<td>IZ1770</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; unc-3(e151)</td>
<td>IZ1499</td>
<td>flip-13::mCherry (pAP31)</td>
</tr>
<tr>
<td>ufls128; nrx-1(ok1649); ufEx1114</td>
<td>IZ2987</td>
<td>flip-13::mCherry (pAP31); unc-17β::nrx-1L minigene at 10ng/µL (pAP204)</td>
</tr>
<tr>
<td>ufls126; acr-14(ok1155); acr-12(ok367)</td>
<td>IZ1488</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; acr-9(ok933)</td>
<td>IZ1460</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; acr-9(ok933); acr-14(ok1155)</td>
<td>IZ1489</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; unc-38(e264); acr-12(ok367)</td>
<td>IZ1565</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>Insertion</td>
<td>Zygote</td>
<td>Flp-13::ACR-12::GFP (pCL32); unc-47::unc-38 cDNA (pAP45)</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>ufIs126; unc-38(e264); acr-12(ok367); ufEx1213</td>
<td>IZ3045</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-63(ok1075)</td>
<td>IZ1427</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-63(ok1075); ufEx514</td>
<td>IZ1582</td>
<td></td>
</tr>
<tr>
<td>ufIs126; lev-1(e211)</td>
<td>IZ1454</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-29(x29)</td>
<td>IZ1487</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-74(e883)</td>
<td>IZ1597</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-74(e883); ufEx1146</td>
<td>IZ2918</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-50(e306); acr-12(ok367)</td>
<td>IZ1566</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-50(e306); acr-12(ok367); ufEx1143</td>
<td>IZ2933</td>
<td></td>
</tr>
<tr>
<td>ufIs126; ric-3(hm9); acr-12(ok367)</td>
<td>IZ1425</td>
<td></td>
</tr>
<tr>
<td>ufIs126; ric-3(hm9); acr-12(ok367); ufEx537</td>
<td>IZ1679</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-36(e251)</td>
<td>IZ3187</td>
<td></td>
</tr>
<tr>
<td>ufIs126; lin-7(n106)</td>
<td>IZ2931</td>
<td></td>
</tr>
<tr>
<td>ufIs126; lat-2(ok301)</td>
<td>IZ2666</td>
<td></td>
</tr>
<tr>
<td>ufIs126; dgn-2(ok209); dgn-3(tm1092)</td>
<td>IZ3005</td>
<td></td>
</tr>
<tr>
<td>ufIs126; sax-7(nj48)</td>
<td>IZ2047</td>
<td></td>
</tr>
<tr>
<td>ufIs126; nab-1(ok943)</td>
<td>IZ2669</td>
<td></td>
</tr>
<tr>
<td>ufIs126; stn-2(ok2417)</td>
<td>IZ2907</td>
<td></td>
</tr>
<tr>
<td>ufIs126; agr-1(tm2051)</td>
<td>IZ2110</td>
<td></td>
</tr>
<tr>
<td>ufIs126; zig-10(tm6327)</td>
<td>IZ2989</td>
<td></td>
</tr>
<tr>
<td>ufIs126; lon-2(e678)</td>
<td>IZ2048</td>
<td></td>
</tr>
<tr>
<td>ufIs126; casy-1(tm718)</td>
<td>IZ1790</td>
<td></td>
</tr>
<tr>
<td>ufEx534; zig-1(ot81); zig-2(ok696); zig-3(tm924); zig-4(gk34); zig-5(ok1065); zig-6(ok273); zig-7(ok2329); zig-8(ok561)</td>
<td>IZ1672</td>
<td></td>
</tr>
<tr>
<td>ufIs126; stn-1(ok292)</td>
<td>IZ1697</td>
<td></td>
</tr>
<tr>
<td>ufIs126; nlg-1(ok259)</td>
<td>IZ1650</td>
<td></td>
</tr>
<tr>
<td>ufIs126; oig-1(ok1687); acr-12(ok367)</td>
<td>IZ1410</td>
<td></td>
</tr>
<tr>
<td>ufIs126; F 38B6.6(ok3009)</td>
<td>IZ1706</td>
<td></td>
</tr>
<tr>
<td>ufIs126; zig-9(tm5230)</td>
<td>IZ2017</td>
<td></td>
</tr>
<tr>
<td>ufIs126; unc-52(e444)</td>
<td>IZ1984</td>
<td></td>
</tr>
<tr>
<td>ufIs126; lin-2(n397)</td>
<td>IZ2979</td>
<td></td>
</tr>
<tr>
<td>ufls126; unc-40(e1430); dpy-5(e61)</td>
<td>IZ2898</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>ufls126; rig-3(ok2156)</td>
<td>IZ1709</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; cam-1(ak37)</td>
<td>IZ1670</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; F53B6.2(ok2854)</td>
<td>IZ1731</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; syd-1(ju82)</td>
<td>IZ2004</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; rpy-1(ok145); acr-12(oc367)</td>
<td>IZ1497</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; lev-10(oc2111)</td>
<td>IZ1604</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; nrx-1(oc1649)</td>
<td>IZ1696</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; unc-17(e113)</td>
<td>IZ1678</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; unc-17(e245)</td>
<td>IZ1570</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; unc-3(e151)</td>
<td>IZ1496</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; f17(ok2156)</td>
<td>IZ1709</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; F53B6.2(ok2854)</td>
<td>IZ1731</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; syd-1(ju82)</td>
<td>IZ2004</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls126; rpy-1(ok145); acr-12(oc367)</td>
<td>IZ1497</td>
<td>flip-13::ACR-12::GFP (pCL32)</td>
</tr>
<tr>
<td>ufls164</td>
<td>IZ2513</td>
<td>flip-13::ACR-12::GFP::3xHA (pAP138)</td>
</tr>
<tr>
<td>ufls164; nrx-1(oc2111)</td>
<td>IZ2628</td>
<td>flip-13::ACR-12::GFP::3xHA (pAP138)</td>
</tr>
<tr>
<td>oxis12</td>
<td>EGI306</td>
<td>unc-47::GFP</td>
</tr>
<tr>
<td>oxis12; unc-3(e151)</td>
<td>IZ2496</td>
<td>unc-47::GFP</td>
</tr>
<tr>
<td>oxis12; nrx-1(nu485)</td>
<td>IZ2660</td>
<td>unc-47::GFP</td>
</tr>
<tr>
<td>wds5; dpy-20(e1282)</td>
<td>NC2484</td>
<td>unc-4::GFP</td>
</tr>
<tr>
<td>vsis48; lin-15(n765ts)</td>
<td>LEX940</td>
<td>unc-47::GFP</td>
</tr>
<tr>
<td>ufls1766; lin-15(n765ts)</td>
<td>IZ2173</td>
<td>nrx-1L2kb::GFP (pAP118)</td>
</tr>
<tr>
<td>ufls96</td>
<td>IZ2626</td>
<td>nrx-1L::GFP (pAP156)</td>
</tr>
<tr>
<td>ufls96; unc-3(e151)</td>
<td>IZ2611</td>
<td>nrx-1L::GFP (pAP156)</td>
</tr>
<tr>
<td>ufls96; nrx-1L::GFP (pAP156); acr-2::mCherry (pPRB6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ufls1046; ufls1042; ufls1041; ufls1040</td>
<td>IZ2746, IZ2733, IZ2732, IZ2731</td>
<td>nrx-1L::GFP (pAP178)</td>
</tr>
<tr>
<td>ufls847</td>
<td>IZ2359</td>
<td>unc-129::NRX-1L::GFP (pAP120)</td>
</tr>
<tr>
<td>ufls847; ufls63</td>
<td>IZ2769</td>
<td>unc-129::NRX-1L::GFP (pAP120); acr-2::mCherry::RAB-3 (pPRB47)</td>
</tr>
<tr>
<td>ufls847; nlg-1(ok259)</td>
<td>IZ2766</td>
<td>unc-129::NRX-1L::GFP (pAP120)</td>
</tr>
<tr>
<td>ufls847; ufls63; acr-12(oc367)</td>
<td>IZ2857</td>
<td>unc-129::NRX-1L::GFP (pAP120); acr-2::mCherry::RAB-3 (pPRB47)</td>
</tr>
<tr>
<td>ufls155</td>
<td>IZ2670</td>
<td>ttr-39::GCaMP6s::SL2::mCherry</td>
</tr>
<tr>
<td>Genotype</td>
<td>Stock No</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>ufIs155; ufIs157</td>
<td>IZ2695</td>
<td>ttr-39::GCaM P6s::SL 2::mCherry (pAP130); acr-2::Chrimson (pRB2)</td>
</tr>
<tr>
<td>ufIs155; ufIs157; nrx-1(wy778)</td>
<td>IZ2840</td>
<td>ttr-39::GCaM P6s::SL 2::mCherry (pAP130); acr-2::Chrimson (pRB2)</td>
</tr>
<tr>
<td>ufIs155; ufIs157; acr-12(ok367)</td>
<td>IZ2865</td>
<td>ttr-39::GCaM P6s::SL 2::mCherry (pAP130); acr-2::Chrimson (pRB2)</td>
</tr>
<tr>
<td>ufEx1114; ufIs155; ufIs157; nrx-1(wy778)</td>
<td>IZ2985</td>
<td>unc-17β::nrx-1L minigene (pAP204); ttr-39::GCaM P6s::SL 2::mCherry (pAP130); acr-2::Chrimson (pRB2)</td>
</tr>
<tr>
<td>zfEx813; lin-15(n765ts)</td>
<td>QW 1646</td>
<td>myo-3::NLSwCherry::SL 2::GCaM P6s</td>
</tr>
<tr>
<td>zfEx813; ufIs157</td>
<td>IZ2838</td>
<td>myo-3::NLSwCherry::SL 2::GCaM P6s; acr-2::Chrimson (pRB2)</td>
</tr>
<tr>
<td>zfEx813; ufIs157; nrx-1(wy778)</td>
<td>IZ2880</td>
<td>myo-3::NLSwCherry::SL 2::GCaM P6s; acr-2::Chrimson (pRB2)</td>
</tr>
<tr>
<td>zfEx813; ufIs157; unc-29(x29); acr-16(ok789)</td>
<td>IZ2958</td>
<td>myo-3::NLSwCherry::SL 2::GCaM P6s; acr-2::Chrimson (pRB2)</td>
</tr>
<tr>
<td>ufEx1114; nrx-1(wy778)</td>
<td>IZ2924</td>
<td>unc-17β::nrx-1L minigene (pAP204)</td>
</tr>
</tbody>
</table>
Acknowledgements

We would like to thank Dori Schafer, Vivian Budnik, Alexandra Byrne and members of the Francis lab for critical reading of the manuscript, Claire Bénard, Kang Shen, and David Miller for sharing reagents, and Michael Gorczyca, Will Joyce, and the UMM Model Organism CRISPR Core for technical assistance. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). This research was supported by NIH NINDS R01 NS064263 (MMF), NIH NIDA F31 DA038399 (AP), and NIH NIGMS R01 GM084491 (MJA).
CHAPTER V

Discussion
Nervous system function is dependent upon the construction and refinement of neural circuits. The regulation of synaptic connectivity by synaptic organizers and neuronal activity is central to this process. My thesis work takes advantage of the simple, well-characterized nervous system of *C. elegans* to address the cellular and molecular mechanisms involved in developmental synaptic remodeling, activity-dependent shaping of neural circuits, and establishing partner-specific connectivity. In Chapter II, my work identifies the single Ig domain protein OIG-1 as an important regulator of developmental remodeling. Expression of OIG-1 regulates the timing of remodeling, likely through the stabilization of postsynaptic receptors, but is less critical for mature synapse formation. Additionally, I show that postsynaptic remodeling involves de novo synthesis of receptors, in contrast to the deconstruction and trafficking of presynaptic components that has been characterized previously (Park et al., 2011). In Chapter III, I characterize cell-type specific roles for neuronal activity in the development and stabilization of synaptic connections. Disruption of cholinergic signaling early in development alters GABAergic connectivity with muscle, while synapses onto GABAergic neurons do not require neurotransmission for their formation. Lastly, my work in Chapter IV describes an instructive role for neurexin in directing partner-specific connectivity. I show that nrx-1/neurexin is required for the development of postsynaptic spine-like processes as well as the localization of acetylcholine receptors in GABAergic dendrites. nrx-1 expression is required in presynaptic cholinergic neurons and this expression is subject to transcriptional regulation by the same pathway that determines cholinergic neurotransmitter identity. In contrast, cholinergic connectivity with their other
postsynaptic partners, muscle cells, is unaffected by nr{x}-1 deletion. Thus, distinct molecular signals govern the establishment of synaptic connectivity with these two cell types. This work also provides the first characterization of spiny protrusions in C. elegans inhibitory neurons that resemble mammalian dendritic spines, providing exciting avenues for future investigation of spine outgrowth and maintenance. Altogether, my thesis explores fundamental mechanisms governing neural circuit connectivity, shedding light onto how the enormous complexity of the brain is established.
Part I. Transcriptional regulation of the single immunoglobulin domain protein

OIG-1 controls synaptic remodeling

40 years ago, electron microscopy studies demonstrated the clear rewiring of synaptic connections in GABAergic DD neurons, indicated by the dorsoventral repositioning of active zones in DD neurites during the transition from the L1 to L2 stage of larval development (White et al., 1978). Numerous follow up studies have addressed genetic mechanisms controlling remodeling of presynaptic components in DD neurons using fluorescent markers to label synaptic vesicles and active zone components (Hallam and Jin, 1998; Park et al., 2011; Petersen et al., 2011; Thompson-Peer et al., 2012).

Investigation of the genetic pathways driving postsynaptic remodeling had remained a challenge, however, due to the lack of suitable postsynaptic markers for in vivo light microscopy studies. The recent development of GFP-tagged AChR subunits in the Francis laboratory to label the postsynaptic specializations of DD neurons, in particular the ACR-12 subunit, has substantially changed this situation (Petrash et al., 2013). Using this tool, I examined postsynaptic remodeling during development and identified the single immunoglobulin domain protein OIG-1 as a critical regulator of the remodeling program. In contrast, OIG-1 plays only a minor role in the redistribution of presynaptic components. This work highlights the importance of Ig domain proteins in circuit refinement, suggesting that IgSF proteins may similarly regulate postsynaptic plasticity in the brain.
OIG-1 is required for setting the timing of postsynaptic remodeling

I investigated the role of OIG-1 in synaptic remodeling after the discovery that oig-1 is highly expressed in early L1 DD motor neurons by cell-specific microarray analysis. In oig-1 mutants, DD postsynaptic remodeling is initiated much earlier than wild type, with precocious removal of dorsal ACR-12 receptors coinciding with their earlier appearance on the ventral side. This result suggests that OIG-1 normally acts to inhibit the remodeling program. The temporal pattern of oig-1 expression is consistent with this model. oig-1 expression in DD neurons is high in the L1, then drops after the L1/L2 transition when remodeling occurs. VD neurons, which do not normally remodel, maintain high levels of oig-1 expression throughout development, and loss of oig-1 results in ectopic remodeling of ACR-12 receptors to the ventral side. Together, this work indicates that OIG-1 antagonizes the remodeling program in GABAergic neurons. My work and others also demonstrate that OIG-1 inhibits presynaptic remodeling (Howell et al., 2015), although these effects are less prominent (discussed further below).

Transcriptional control of OIG-1 expression

Previous work has indicated that several transcription factors act to coordinate the remodeling of presynaptic components (Hallam and Jin, 1998; Petersen et al., 2011; Thompson-Peer et al., 2012). One transcription factor that blocks presynaptic remodeling specifically in VD neurons is the COUP-TF family transcription factor UNC-55 (Petersen et al., 2011). In unc-55 mutants, VD neurons (that do not normally undergo remodeling) remodel ectopically, and synaptic outputs relocate to the dorsal side (Petersen et al.,
One of the transcriptional targets of unc-55 is the Iroquois homeodomain-containing transcription factor irx-1. unc-55 inhibits irx-1 expression in VD neurons, which then inhibits remodeling. Thus, de-repression of irx-1 promotes VD remodeling (Petersen et al., 2011). While unc-55 is not detected in DD neurons (Shan et al., 2005), irx-1 is also required for remodeling of presynaptic components in this cell type (Petersen et al., 2011).

In Chapter II, I further elucidate the roles of the transcription factors unc-55 and irx-1 in synaptic remodeling, characterizing a genetic program that orchestrates remodeling through regulation of oig-1 expression. I find that oig-1 is a downstream transcriptional target of unc-55, and that irx-1 acts as an intermediate in this pathway. Specifically, UNC-55 blocks irx-1 expression in VD neurons, allowing OIG-1 inhibition of the remodeling program (Figure 5.1). In unc-55 mutants, the de-repression of irx-1 inhibits oig-1 expression, which results in VD ectopic remodeling. Further, irx-1 RNAi results in ectopic expression of oig-1 in DD neurons throughout development and delayed postsynaptic remodeling, indicating that irx-1 normally functions to inhibit oig-1 expression (Figure 5.1). In wild type DD neurons, IRX-1 levels rise during the L1/L2 transition to block OIG-1 expression, allowing DD postsynaptic remodeling to occur. UNC-55 expression in VD neurons inhibits expression of IRX-1 to maintain high levels of OIG-1 throughout development, which antagonizes remodeling.

Further work has revealed additional transcriptional regulators of oig-1 expression. The PITX homeodomain transcription factor unc-30 acts to promote oig-1 expression.
Figure 5.1 Factors that regulate the timing of postsynaptic remodeling

A transcriptional program modulates GABAergic DD and VD remodeling to regulate expression of factors that promote (green) and inhibit (red) remodeling (He et al., 2015; Howell et al., 2015; Kurup and Jin, 2016; Petersen et al., 2011).
expression (Cinar et al., 2005; Howell et al., 2015), however its role in synaptic remodeling is complex as it also regulates the expression of irx-1 (Petersen et al., 2011). In VD neurons, unc-30 acts together with unc-55 to prevent aberrant wiring by controlling the expression levels of oig-1. Alternatively, unc-30 acts with the transcription factor lin-14 in DD neurons to regulate oig-1 expression. Thus, intersectional transcriptional strategies control synapse rewiring (Figure 5.1) (Howell et al., 2015).

Proposed mechanism of OIG-1 action

The localization of mCherry::OIG-1 in coelomocytes clearly indicates that OIG-1 is secreted. Surprisingly, however, this secretion is not required for its function in controlling synaptic remodeling, and OIG-1 acts cell-autonomously in GABAergic neurons. Expression of secreted OIG-1 in neighboring cholinergic neurons, for example, did not rescue remodeling defects of oig-1 mutants, while GABAergic expression of mutated OIG-1 that is not predicted to be secreted is sufficient to restore ACR-12::GFP levels. Another C. elegans IgSF protein RIG-3 similarly does not require secretion for its function at synapses. At the NMJ, presynaptic RIG-3 regulates the clustering of ACR-16 receptors in muscle. Although RIG-3 can be secreted, membrane-associated RIG-3 primarily mediates its anti-plasticity function at synapses (Babu et al., 2011). One intriguing possibility is that the secreted version of OIG-1 may play additional roles in the nervous system. Loss of the two Ig domain protein ZIG-3, for example, results in the mispositioning of axonal tracts in the nerve cord, and rescue of these defects requires
secretion (Benard et al., 2009). Further characterization of nervous system function in oig-1 mutants could lend insight into this question, utilizing rescue approaches with secreted or non-secreted OIG-1 protein.

Early in development in young L1 animals, oig-1 mutants display dorsal ACR-12::GFP expression in DD neurons, but the intensity of fluorescence is significantly decreased compared to wild type. Could OIG-1 help stabilize nascent ACR-12 clusters? In support of this, overexpression of OIG-1 increases ACR-12::GFP fluorescence intensity. While OIG-1 expression in GABAergic neurons restores ACR-12 receptor clustering, ACR-12::GFP and mCherry::OIG-1 occupy non-overlapping domains. One possibility is that OIG-1 interacts with other unidentified scaffolding proteins to help stabilize ACR-12 receptors. Immunoprecipitation to pull down interacting proteins with OIG-1 or ACR-12 may help elucidate this complex.

At the *C. elegans* neuromuscular junction, the single Ig domain protein OIG-4 physically interacts with a postsynaptic scaffold that anchors L-AChRs in muscle (Rapti et al., 2011). A similar mechanism may act to stabilize ACR-12 AChRs in GABA neurons. This model would predict that ACR-12 receptors in the L1 animal may be more mobile in the absence of OIG-1. Fluorescence recovery after photobleaching (FRAP) in the L1 could help address this question. If OIG-1 acts to stabilize ACR-12 receptors in L1 animals, ACR-12::GFP fluorescence should recover more quickly in oig-1 mutants after photobleaching. However, while both OIG-1 and OIG-4 are secreted, OIG-1 acts cell-autonomously in GABAergic neurons to regulate ACR-12 receptor clusters, while OIG-4 is thought to interact with LEV-10/LEV-9/L-AChR complexes extracellularly (Rapti et
al., 2011). To further test this model described by the Bessereau lab (Rapti et al., 2011), it
would be interesting to determine if a non-secreted version of OIG-4 expressed in muscle
could potentially rescue the synaptic defects of oig-4 mutants. Additionally, can OIG-1
and OIG-4 act interchangeably? These questions warrant further study into the distinction
between OIG-1 and OIG-4’s functions at synapses.

OIG-1 also plays a minor role in the redistribution of presynaptic components.
Specific mechanisms that coordinate pre- and post-synaptic remodeling, and the role of
OIG-1 in this process, remain unclear. One possibility is that the removal of the
postsynaptic apparatus may facilitate presynaptic remodeling, where presynaptic
components occupy the same sites that were previously designated as postsynaptic.
Further work utilizing a transgenic strain that labels both pre- and post-synaptic
components (i.e. flp-13::mCherry::RAB-3 and flp-13::ACR-12::GFP for pre- and post-
synaptic labeling, respectively) could aid in addressing this question. Specifically, time-
lapse imaging during the remodeling process (approximately 14-18 hours after hatch)
would show the simultaneous repositioning of pre- and post-synaptic structures, although
currently the immobilization of young animals for long periods remains a technical
limitation. New techniques for the immobilization and high-resolution imaging of C.
elegans, such as microfluidic devices (Keil et al., 2017) or the use of nanoparticles (Kim
et al., 2013) will help overcome this obstacle.
Mechanism of postsynaptic DD remodeling

A blation of the DD1 commissure prior to rewiring uncouples the axonal and dendritic compartments, but does not disrupt adult expression of ACR-12 receptors later in development, suggesting de novo ventral synthesis of receptors. In contrast, remodeling of presynaptic components requires ventral disassembly and trafficking to the dorsal nerve cord (Park et al., 2011). My results suggest that pre- and post-synaptic remodeling occur via distinct mechanisms, but do not eliminate the possibility that the relocation of postsynaptic components along the DD commissure also contributes to postsynaptic remodeling. Tagging of the ACR-12 receptor with photoactivatable or photoconvertible fluorescent proteins will help evaluate this possibility. Additionally, it will be interesting to evaluate whether genes that coordinate the disassembly and trafficking of presynaptic components, including cyy-1 and cdk-5 (Park et al., 2011), also act to regulate remodeling of the postsynapse.

Alternatively, trafficking of ACR-12 receptors from the dorsal to the ventral side may not contribute to adult synapses. This could suggest that remodeling of postsynaptic components involves the concurrent degradation/removal of synapses dorsally with the new synthesis of receptors ventrally. Ongoing genetic experiments in the Francis lab provide additional support for this model. Several mutants with sustained ACR-12::GFP expression in the dorsal nerve cord in the adult have recently been retrieved from a forward genetic screen. These mutants may define genes required for the removal of dorsal ACR-12::GFP clusters. Importantly, the distribution of ventral ACR-12 receptors is unaffected in these mutants, suggesting that ventral expression of ACR-12 receptors
occurs independently of the dorsal removal of synapses. It will be interesting to
determine if the timing of ventral ACR-12::GFP expression is affected in these
conditions: i.e. does the removal of dorsal ACR-12::GFP receptor clusters trigger the
synthesis of cholinergic receptors ventrally? Identification of genes from the forward
genetic screen may help answer this question.

Notably, loss of oig-1 does not disrupt DD ACR-12 receptor clustering in the
adult. Thus, distinct machinery may be required for the stabilization of cholinergic
receptors in the developing vs mature animal. In Chapter IV, I identify nrx-1/neurexin as
a critical regulator of mature synapse formation, and I further discuss its mechanism of
action in Part III of the Discussion.

Additional questions to address

My work here offers insight into the mechanisms driving postsynaptic DD
remodeling and describes transcriptional regulation of a key molecule that shapes the
timing of this process. An important question that remains unaddressed, however, is what
role synaptic activity plays in postsynaptic remodeling. Prior work has shown that the
transcription factor hbl-1 acts to promote DD remodeling of presynaptic structures, and
expression of this gene is activity-dependent (Thompson-Peer et al., 2012). Mutations
that decrease circuit activity (i.e. unc-13 or unc-18) decrease hbl-1 expression, resulting
in delayed DD presynaptic remodeling (Thompson-Peer et al., 2012). While
transcriptional programs specify the timecourse of DD remodeling, this work
demonstrates that this process is not solely the result of genetically hard-wired
programming (Thompson-Peer et al., 2012). Rather, GABAergic DD remodeling is also subject to activity-dependent regulation. In preliminary work, I have found that disruption of unc-13 does not disrupt the localization of ACR-12::GFP receptor clusters before or after the remodeling process. To address whether the timing of postsynaptic remodeling is activity-dependent, a more detailed analysis of the remodeling timecourse in unc-13 and unc-18 mutants is required. Further, do specific alterations in cholinergic signaling (i.e. unc-17 or cha-1 mutants) also disrupt the timing of DD remodeling, or does this plasticity require global changes in activity? This work has the potential to elucidate key mechanisms that drive the activity-dependent refinement of neural circuits.

DD remodeling in C. elegans enables the correct wiring with newly born cholinergic VA/VB motor neurons. In oig-1 mutants, remodeling is initiated approximately six hours earlier than wild type, presumably before the birth of these neurons. A closer examination of these synapses in the adult is required to determine if they represent functional connections. Are pre- and post-synaptic structures closely apposed? Is cholinergic neurotransmission onto GABAergic DD neurons disrupted? Locomotory defects in oig-1 mutants in the adult are consistent with GABA neuron dysfunction, however, it is unclear whether this is the result of disrupted cholinergic receptor localization in VD and/or DD GABAergic neurons. It remains possible that the timing of DD remodeling is critical for establishing the correct synaptic contacts in the mature animal. Further investigation of these adult synapses in oig-1 mutants will help us better understand how the timing of nervous system refinement shapes mature connectivity.
The involvement of transcription factors in synaptic remodeling has been well documented (Boulanger et al., 2011; West and Greenberg, 2011). My work in combination with others (Figure 5.1) has shown that transcriptional programs act in GABAergic neurons in C. elegans by ultimately controlling the expression of the single immunoglobulin domain protein OIG-1. IgSF proteins have been implicated in several aspects of neuronal development, including cell migration and synapse formation (Aurelio et al., 2002; Ding et al., 2007; Rougon and Hobert, 2003). While there are many uncharacterized IgSF proteins expressed in the nervous system, work in both vertebrates and C. elegans indicates that IgSF members serve important and specific roles in nervous system function (Cherra and Jin, 2016; Howell and Hobert, 2016; Rapti et al., 2011; Usardi et al., 2017). My work here suggests that the single Ig domain protein OIG-1 antagonizes synaptic remodeling by potentially stabilizing AChRs. Many questions remain to be addressed about the mechanism of OIG-1 function at synapses, and these studies will contribute to our understanding of how IgSF proteins play such diverse roles in the brain.
Part II. Excitatory neurons shape GABAergic connectivity

Following the end of the first larval stage, a second population of ventrally directed VD GABAergic neurons are born. To integrate these neurons into the motor circuit, the DD neurons remodel as described above, where postsynaptic components are removed dorsally and new inputs are established onto the ventral dendrites. The newly born VD inhibitory neurons also contain spatially separated dendritic and axonal compartments, with dendrites located dorsally and axons ventrally. In the dorsal dendrite, VD neurons express iAChRs containing the AChR subunit ACR-12. The ventral axon sends projections onto ventral body wall muscle, acting via postsynaptic GABAergic UNC-49 receptors. Fluorescently tagged synaptic components (e.g. ACR-12::GFP, UNC-49::GFP) allow for clear visualization of GABA inputs and outputs in the nerve cord (Figure 5.2).

Chapter III focuses on how excitatory neurons shape GABAergic connectivity by examining the processes underlying the integration of these VD GABAergic neurons into the motor circuit. This study aims to address a fundamental question in neurobiology: what role does neuronal activity play in the development of neural circuits? While studies have demonstrated that neurotransmitter secretion may not be absolutely essential for initial synapse formation (Varoqueaux et al., 2002; Verhage et al., 2000), activity-dependent regulation of neural connectivity is well-established and understanding the mechanisms underlying this process is an area of intense interest. The wealth of tools available in C. elegans provides us with a useful model in which to study neural circuit
Figure 5.2 Toolkit to study the incorporation of VD GABAergic neurons into the motor circuit

Top: Schematic of C. elegans motor circuit. Blue coloring indicates GABAergic motor neurons (DD/VD), purple coloring indicates cholinergic motor neurons (VA/VB and DA/DB). Gray shading represents body wall muscles. Regions of excitatory inputs onto VD neurons (1) and VD inhibitory outputs onto muscle (2) are indicated in red dashed boxes.

Bottom: Expanded views of regions indicated by red boxes above. (1) GABAergic VD inputs are labeled by the tagged AChR ACR-12::GFP, localized opposite sites of ACh release. (2) GABAergic VD outputs are labeled by the fluorescent reporter mCherry::RAB-3. Inhibitory receptors in muscle are labeled by reporter UNC-49::GFP.
Cholinergic neurons play important roles in both clustering iAChRs in GABA neurons and in shaping GABA synaptic outputs.

To investigate how activity regulates GABAergic circuitry, I first examined a requirement for the COE-type transcription factor unc-3 in inhibitory signaling. unc-3 mutants lack expression of genes required for cholinergic neuron identity, including cha-1 and unc-17 (Prasad et al., 2008), and these mutants show expected disruptions in excitatory neurotransmission and postsynaptic excitatory receptor clustering, consistent with a prior report (Kratsios et al., 2015). Surprisingly, loss of unc-3 disrupts inhibitory neurotransmission, with reduced frequency and increased amplitude of GABAergic synaptic events. I hypothesized that this defect may be the result of altered synapses onto GABAergic neurons or onto muscle, so I therefore examined VD GABAergic inputs and outputs (Figure 5.2). My results demonstrate that mutation of unc-3 disrupts synapse development at both of these locations, although the mechanisms involved appear specific to each cell type. ACR-12 receptor clusters located in VD dendrites are severely disrupted in unc-3 mutants, showing abnormal distribution and fewer receptor number in the dorsal nerve cord. GABA synapses at the NMJ in unc-3 mutants are similarly disrupted, with gaps in synaptic vesicle clusters and fewer postsynaptic GABAergic receptor clusters. Ablation of cholinergic motor neurons using an acr-2(gf) transgene results in comparable alterations in synapse number at the NMJ. The changes observed both pre- and post-synaptically are not caused by alterations in the gross morphology of
GABAergic neurons or body wall muscles, as only minor morphological defects are observed in unc-3 or acr-2(gf) mutants (e.g. overgrowth in muscle and some ventral nerve cord defasciculation). I therefore dissected roles for unc-3 in the establishment of synapses onto both of these cell types.

Excitatory neurotransmission is not required for ACh – GABA connectivity

My work demonstrates that excitatory neurotransmission is severely disrupted in unc-3 mutants, and these animals show abnormal ACR-12 receptor clustering. However, the disruptions in ACR-12 receptors observed in unc-3 mutants does not appear to result from a loss of cholinergic transmission. I analyzed unc-17/vAChT mutants, which are null for ACh release from cholinergic motor neurons, and transgenic animals expressing tetanus toxin light chain specifically in cholinergic motor neurons. Using both of these approaches, I found that ACR-12 receptor clustering is unaltered. Thus, cholinergic neurotransmission is not required for the formation of cholinergic synapses onto GABAergic neurons.

These results do not eliminate the possibility, however, that neuronal activity can shape synaptic connections onto GABAergic neurons. The effects of activity on circuit refinement and maintenance have been well documented, particularly in the visual system and at the vertebrate neuromuscular junction (Katz and Shatz, 1996; Sanes and Lichtman, 1999). It would be interesting to test if synapses onto GABAergic neurons demonstrate plasticity in response to acute manipulations in activity. Optogenetic and chemical tools developed in C. elegans provide spatial and temporal precision in order to approach this
question. For example, cholinergic-specific expression of channelrhodopsin or histamine-gated chloride channels would aid in exciting or inhibiting this cell type, respectively. While synapses onto GABAergic neurons may not require cholinergic neurotransmission for their initial formation, alterations in activity may shape the strengthening or weakening of existing synaptic connections.

An unidentified transcriptional target of unc-3 shapes synapses onto GABA neurons

How does loss of unc-3 result in the altered distribution of cholinergic receptors in GABAergic neurons? unc-3 establishes a “cholinergic gene battery” in C. elegans, regulating the expression of cholinergic receptors (e.g. acr-5, acr-2) and cholinergic pathway genes (e.g. unc-17, cho-1) through the binding to COE motifs (Kratsios et al., 2011). Additionally, many other genes such as secreted signaling molecules, axon guidance genes, and other transcription factors are subject to unc-3 regulation (Kratsios et al., 2015; Kratsios et al., 2011). unc-3 transcriptional control of genes that control neurotransmitter identity cannot explain the disruptions in ACR-12 receptor clustering, as demonstrated by the tetanus toxin experiments and analysis of unc-17 mutants. These results point to the exciting possibility that an unidentified transcriptional target of unc-3 may regulate cholinergic receptor clustering in the postsynaptic cell, perhaps through trans-synaptic signaling.

The synapse-organizing molecule madd-4/Punctin appeared to be an excellent candidate. madd-4 is the C. elegans ortholog of mammalian Punctin-1 and Punctin-2, belonging to the ADAMTS-like family (Pinan-Lucarre et al., 2014). madd-4 is essential
for both excitatory and inhibitory synapse development at the NMJ, and both isoforms are expressed in cholinergic neurons (Pinan-Lucarre et al., 2014), which form synapses onto both GABAergic neurons and body wall muscle. Additionally, unc-3 directly controls the expression of madd-4 (Kratsios et al., 2015). However, madd-4 is not essential for synapses onto GABAergic neurons. Although mutation of madd-4 produces a slight decrease in ACR-12 receptor clusters, the effect is much less severe than the abnormal distribution of receptors seen in unc-3 mutants. Thus, the transcriptional target of unc-3 responsible for clustering ACR-12 receptors had yet to be identified. Through a candidate approach surveying 35 genes that predominantly encode scaffold and cell-cell interaction proteins previously implicated in synapse formation, I identified this gene to be nrx-1/neurexin (Chapter IV).

ACh release shapes GABA synapses at the NMJ

While ACh neurotransmitter release is dispensable for synapses onto GABAergic neurons, my work suggests that cholinergic signaling plays an important role in synapse development at the inhibitory neuromuscular junction. Expression of cholinergic-specific tetanus toxin or mutation of unc-17 results in reduced pre- and post-synaptic clusters (as measured by GABA::mCherry::RAB-3 and muscle::UNC-49::GFP, respectively), as well as gaps in fluorescence that are similar to unc-3 mutants and transgenic animals expressing acr-2(gf). Cholinergic activation of muscle is not essential for GABA synapse development, as animals lacking functional iAChRs at the NMJ (unc-29;acr-16 double
mutants) have only minor defects in receptor number, indicating that the disruptions in GABA synapses are not secondary to defects at the excitatory NMJ.

Notably, the defects observed in unc-17 mutants or in transgenic animals expressing cholinergic-specific tetanus toxin are less pronounced than loss of unc-3. Thus, additional acetylcholine-independent signals are likely required for inhibitory synapses at the NMJ. For example, cholinergic motor neurons express a short isoform of madd-4/Punctin which is transcriptionally regulated by unc-3, and specific disruption of this isoform results in altered expression of UNC-49 receptors in muscle (Kratsios et al., 2015; Pinan-Lucarre et al., 2014). Analysis of unc-17;madd-4 double mutants will help address this idea by examining whether defects in GABA synapses in these mutants phenocopy the disruptions seen with mutation of unc-3.

While loss of unc-3 disrupts synapse number and size at the GABAergic NMJ, the apposition of pre- and post-synaptic components is preserved. Similar phenotypes are observed in unc-17 mutants or with cholinergic-specific expression of tetanus toxin. Thus, GABA synapses still form in the absence of cholinergic activity, however, there are fewer overall connections. My work supports prior studies examining the loss of synaptic release and effects on overall synapse number (Bouwman et al., 2004; Brandon et al., 2003). Munc18 deficient mice, for example, lack synaptic release and display fewer synapses in the neocortex at multiple timepoints during development (Bouwman et al., 2004). To examine whether cholinergic signaling is specifically required for synapse formation rather than the maintenance of existing connections, it would be important to
also study GABAergic synapses of unc-17 mutants early in development, when the VD GABAergic motor neurons are born and first form synapses with ventral muscle.

Plasticity of mature GABA synapses at the NMJ

As noted above, the analysis of unc-17 mutants suggests that cholinergic transmission is critical for the patterning of GABA synapses, but does not distinguish whether this signal is required in the mature or developing animal. Disrupting cholinergic signaling in the adult animal (either for 4 or 8 hours using a temperature-sensitive cha-1 allele) reduces the size of pre- and post-synaptic clusters, without effecting synapse number, and these effects are reversible. These effects are distinct from chronic manipulation of cholinergic transmission; in unc-17 mutants, by comparison, the size of pre- and post-synaptic clusters increases, and there are fewer synapses in the nerve cord.

The reduction in synapse size following acute reduction of cholinergic transmission in adults may suggest that homeostatic mechanisms act to stabilize E/I signaling in the adult nervous system, and that cholinergic neuronal activity shapes GABAergic signaling through distinct mechanisms in the developing and mature animal. The balance of excitatory and inhibitory signaling onto C. elegans muscle is essential for proper sinusoidal movement: excess excitatory signaling, for example, can lead to convulsive behavior (Jospin et al., 2009), while the addition of the GABA agonist muscimol causes the worm to elongate (Han et al., 2015; Schaeffer and Bergstrom, 1988). The transient loss of excitatory signaling in the adult animal may result in compensatory decreases in GABA synapse size in an attempt to maintain this E/I balance.
How this effect is mediated is unclear, but this process could involve the internalization of surface GABA receptors. The majority of UNC-49::GFP fluorescence appears to represent cell surface receptors (Tong et al., 2015), and increased receptor internalization may represent a means to scale inhibitory signaling. Depolarization of cultured hippocampal neurons, for example, results in an increase in GABA receptor number and size through decreases in the internalization rate (Rannals and Kapur, 2011). Specific examination of cell surface UNC-49 receptors, potentially using a pH-sensitive GFP (pHluorin) tag, will help address this question. Additionally, improved imaging techniques may reveal an increase in the lateral diffusion of GABA receptors, which could also explain the observed decreases in synapse size.

As the homeostatic mechanisms driving receptor turnover at inhibitory synapses are not well defined, further work examining genes required for these activity-induced changes in synapse size will advance our understanding of this process. One gene that has been previously linked to the homeostatic regulation of inhibitory synapses in the hippocampus is the cell adhesion molecule dystroglycan (Pribiag et al., 2014). Prolonged neuronal activity upregulates dystroglycan expression, increasing dystroglycan localization to synapses and GABA receptor abundance (Pribiag et al., 2014). Although dystroglycan homologs are not thought to be expressed in C. elegans muscle (Johnson et al., 2006), it is possible that other genes may play similar roles in the scaling of GABAergic receptors at the neuromuscular junction.
A possible critical period for GABA synapse development at the NMJ

While acute loss of cholinergic activity in the mature animal decreases synapse size, disruptions of excitatory neurotransmission early in development, when the VD motor neurons are born and first integrated into the motor circuit, mimic the effects seen in unc-17 mutants. An eight-hour block in ACh neurotransmission at the end of the L1 stage results in fewer synapses and larger presynaptic clusters later in adulthood. Thus, loss of activity during this time period produces irreversible defects in synapse patterning. These results suggest that the wiring of VD neurons may be shaped by a critical or sensitive period, a concept first described in the visual system (Hubel and Wiesel, 1970), where neuronal circuits are more susceptible to enhanced plasticity in development.

GABA synapses are sensitive to loss of neuronal activity at the end of the L1 stage. One possibility is that reductions in ACh activity during this time period, when the DA/DB motor neurons are first forming synaptic connections with the newly born VD GABAergic neurons, impairs synapse rewiring. The defects in VD GABA synapses at the NMJ are likely not due to impaired release of inhibitory neurotransmitter, as disruption of GABA biosynthesis does not alter GABA synapses in worms (Gally and Bessereau, 2003; Jin et al., 1999). Vesicular signals from cholinergic neurons may control the expression of synaptogenic molecules, acting in GABAergic neurons to regulate their outputs onto muscle. For example, the transcription factor Npas4 is activated by excitatory activity, and in turn triggers the formation of inhibitory synapses in mouse hippocampal neurons (Bloodgood et al., 2013; Lin et al., 2008). Genes induced by
changes in neuronal activity help mediate plastic changes in synapse structure and function (Hayashi et al., 2012; West and Greenberg, 2011). Using microarray analysis to look for genes whose expression levels are altered in cha-1 temperature-shifted animals vs wild type controls, future work could identify genes involved in activity-dependent changes at the C. elegans inhibitory NMJ.

The role of activity in the development of neural circuits

My results here suggest that synaptic connections are differentially sensitive to alterations in activity, supporting recent work highlighting cell-type specific effects (Andreae and Burrone, 2014; Bleckert and Wong, 2011; Dunn et al., 2013; Morgan et al., 2011; Soto et al., 2012). For example, in the retina, neurotransmission differentially regulates glutamatergic synapses onto a single postsynaptic retinal ganglion cell (Morgan et al., 2011). The motor circuit in C. elegans provides an excellent model to address this idea due to its relative wiring simplicity and the availability of cell type-specific synaptic markers. In Chapter III, I find that cholinergic synapses onto GABAergic neurons develop normally in the absence of presynaptic activity, while ACh drive is critical for the distribution and density of inhibitory synapses at the NMJ. Based on this work in combination with others (Dunn et al., 2013; Morgan et al., 2011; Soto et al., 2012), it is unlikely that one mechanism (or mechanisms) drives activity-dependent changes in connectivity. Rather, different cell types may employ different strategies to regulate their circuitry in response to activity.
Future studies identifying genes responsible for activity-dependent changes at the inhibitory NMJ in *C. elegans* will help address this question. Based on my work examining the requirements of cholinergic signaling during different time periods in development, I expect that distinct processes may be involved in the developing vs mature animal. The regulation of inhibitory synapses is critical for establishing E/I balance in the brain, as deficits are associated with disorders such as epilepsy (Cossart et al., 2001; Powell et al., 2003). Studies aimed at identifying the processes underlying activity-dependent changes at synapses will shed light onto how E/I balance is established and maintained in the brain.
Part III. The synaptic organizer neurexin coordinates cholinergic synaptic connectivity with GABAergic motor neurons

The analysis of GABAergic connectivity in Chapter III suggested that a transcriptional target of unc-3 may be required for the development of cholinergic synapses onto GABAergic neurons. Cholinergic motor neurons in the C. elegans motor circuit form dyadic synapses onto both body wall muscle and inhibitory GABAergic neurons. Interestingly, unc-3 regulation of the synaptogenic molecule madd-4/Punctin is required for cholinergic synapses onto body wall muscle (Pinan-Lucarre et al., 2014), but is not essential for connectivity onto GABAergic neurons (Chapter III). What are the molecular mechanisms underlying these synapse-type specific differences?

To address this question, I searched for genes that specifically disrupt ACh – GABA connectivity. Through this work, I identified the cell adhesion molecule nrx-1/neurexin. My results characterize a novel role for neurexin in establishing divergent connectivity, advancing our understanding of how synaptic organizers may direct neuronal circuitry in the brain.

Heteromeric AChRs are localized to spiny processes on the DD1 GABAergic neuron

First, I established a model to examine cholinergic synapses with single neuron resolution in vivo. There are six DD GABAergic motor neurons along the length of the worm, and DD1 is spatially separated from the remaining DD neurons, offering clear visualization of neuronal processes. By examining the anterior DD1 dendritic process, I
was able to study cholinergic synapses onto a single dendrite, an approach that is unattainable in other systems.

Using this model, I found that the DD1 dendrite contains finger-like protrusions that contact presynaptic cholinergic motor neuron axons. Similar to mammalian dendritic spines, these structures harbor excitatory neurotransmitter receptors at their tips, increase in number during development, and display variation in their size and shape. Prior work using electron microscopy also noted the presence of spiny processes in D-type neurons (White et al., 1976, 1986), but these structures have not been characterized further. Thus, my finding introduces the exciting possibility that some synapses in C. elegans may occur on the surface of dendritic spines, similar to the majority of excitatory synapses in the mammalian brain. Additional ultrastructural studies will help categorize these processes by their morphology, as examination of spine shape in worms is difficult to determine at the light microscopy level.

Excitatory iAChRs containing the ACR-12 subunit concentrate at the tips of these protrusions, extending into the presynaptic domain. Using candidate deletion analysis and cell-specific rescue, I defined the subunit composition of this neuronal receptor. My studies indicate that four acetylcholine receptor subunits (LEV-1, UNC-29, UNC-63, and UNC-38) likely coassemble with ACR-12 to form a pentameric receptor. Genetic ablation of this receptor (i.e. mutation of acr-12 or unc-63) does not disrupt spine number or morphology, suggesting that spines can still form in the absence of iA ChRs. However, mutation of acr-12 does not completely eliminate inhibitory signaling (Petrash et al., 2013) or GABA neuron calcium responses to cholinergic stimulation (Chapter IV), which
may indicate that unidentified iAChRs also help mediate excitatory signaling onto GABAergic neurons. Genetic ablation of acr-12 in combination with iAChR subunit genes known to be expressed in GABAergic neurons (such as acr-9 or acr-14) may help to address this question. How AChR subtypes expressed within the same cell are localized to specific synapses is another potential area for further study.

Through a candidate-based genetic screen, I found that nrx-1/neurexin is required for the localization of ACR-12 containing receptors to spiny processes. The 35 genes surveyed predominantly encode scaffold and cell-cell interaction proteins previously implicated in synapse formation. Future work employing an unbiased forward genetic screen may reveal novel regulators of synapse development. Additionally, GABA-specific RNAi approaches may help target genes that are linked to lethality, such as pan-1, which encodes a predicted transmembrane protein with leucine-rich repeat domains (Gissendanner and Kelley, 2013) that may be important for protein-protein interactions at synapses.

Within the candidates surveyed, several genes that are required for muscle AChR clustering produce mild to moderate decreases (28-39%) in ACR-12 receptor clustering. L-AChRs are similar in subunit composition to ACR-12 receptors, differing by only one α subunit (ACR-12 in GABAergic neurons, LEV-8 in muscle) (Boulin et al., 2008; Towers et al., 2005). It would be interesting to test if genes essential for L-AChR clustering also act cell-autonomously in GABAergic neurons, playing a minor role in ACR-12 receptor clustering. Alternatively, disruption of L-AChRs at the NMJ may affect
ACR-12 clustering in neighboring GABAergic neurons. Examination of lev-8 mutants, to specifically disrupt L-AChRs, will help address this question.

A trans-synaptic role for neurexin in the development of the postsynapse

In mammals, neurexin plays important roles in both excitatory and inhibitory synapse development, acting via trans-synaptic partners to connect pre- and post-synaptic neurons at synapses. Neurexin’s most well-characterized extracellular binding partner is neuroligin (Boucard et al., 2005; Comoletti et al., 2006; Ichtchenko et al., 1995; Ichtchenko et al., 1996; Nguyen and Sudhof, 1997). While loss of nlg-1/neuroligin in C. elegans has been associated with the disruption of GABAergic synapses at the neuromuscular junction (Maro et al., 2015; Tu et al., 2015), single gene mutations in nrx-1/neurexin have not been previously demonstrated to alter synapse formation. In Chapter IV, I provide the first evidence for neurexin regulation of synapse development in worms. Specifically, I find that loss of nrx-1/neurexin disrupts the clustering of ACR-12 receptors in both DD and VD GABAergic neurons, with fewer receptor number and increased diffuse fluorescence in the dendritic processes. nrx-1 is also required for spine outgrowth, while the gross morphology of GABAergic neurons is unaffected. In contrast, mutation of nlg-1/neuroligin produces no appreciable defects in ACR-12 receptor clustering or spine outgrowth. My work demonstrates that nrx-1 acts independently of nlg-1 to regulate cholinergic synapses onto GABAergic neurons, suggesting the involvement of an alternative binding partner for neurexin.

Previous studies in vertebrates have shown that neurexins are highly concentrated
at presynaptic nerve terminals (Hata et al., 1993; Ushkaryov et al., 1992) and act to regulate synaptic release, primarily through coupling Ca^{2+} channels to the presynaptic machinery (Dean et al., 2003; Missler et al., 2003). Additionally, there is little evidence to suggest that neurexin is required for spine formation; while knockout of two out of the three mouse alpha neurexins reduces dendrite length and total spine number in the cortex, this is only a mild effect and synaptic ultrastructure remains unaffected (Dudanova et al., 2007). In my work, I find that neurexin is similarly expressed in presynaptic cholinergic motor neurons and localizes to axon terminals. However, loss of nrx-1/neurexin does not appear to affect presynaptic development or ACh signaling onto body wall muscle. Instead, I demonstrate a specific requirement for neurexin presynaptically to regulate the postsynaptic domain. My work reflects an emerging view for neurexins in the brain, where neurexins serve as context-dependent synaptic organizers (Chen et al., 2017). At the neuromuscular junction in *C. elegans*, for example, neurexins play a minor role in GABAergic synapse formation, acting in a complex with MADD-4/Punctin and NLG-1/neuroligin (Maro et al., 2015; Tu et al., 2015), while also mediating a retrograde signaling pathway to regulate the strength of cholinergic neurotransmitter release (Hu et al., 2012; Tong et al., 2017). Understanding neurexin’s role in the brain requires the dissection of neurexin function at each synapse type. This question is difficult to address in mammals, which express three neurexin genes and thousands of different isoforms, and triple knockout of all alpha neurexins results in lethality (Missler et al., 2003). In *C. elegans* there is just one neurexin homolog, and the simplicity of neural circuits has enabled the investigation of neurexin function. As mutations in neurexin have been
associated with neuropsychiatric and neurodevelopmental disorders, such as autism spectrum disorder and schizophrenia (Kim et al., 2008a; Reichelt et al., 2012; Rujescu et al., 2009), there is a critical need to examine the molecular mechanisms underlying neurexin’s differential roles at synapses.

Proposed mechanism of NRX-1 signaling

As is the case for mammals, the C. elegans nrx-1 locus encodes both long and short isoforms (nrx-1L and nrx-1S). Specific re-expression of nrx-1L in mutants that contain disruptions in both isoforms rescues receptor clustering and spine outgrowth, indicating that nrx-1L is required for postsynaptic development. To date, work investigating C. elegans nrx-1/neurexin has only implicated the long isoform (Hart and Hobert, 2018; Hu et al., 2012; Maro et al., 2015), and roles for nrx-1S are unknown. In the brain, both isoforms are capable of binding trans-synaptic partners, such as neuroligin (Boucard et al., 2005). Future work examining mutants with specific disruptions in nrx-1S may help unravel functions for this isoform in C. elegans nervous system development.

The long isoform of C. elegans neurexin encodes a single pass transmembrane protein containing intracellular PDZ binding and extracellular LNS and EGF-like domains, similar to mammalian neurexins. My work suggests that intracellular interactions are critical for neurexin’s function at synapses. Disruption of the PDZ binding domain reduces ACR-12 receptor clustering and spine outgrowth, and these effects are equally as severe as nrx-1 null mutants (wy778). Prior work has shown that neurexins can interact with a complex of PDZ domain containing proteins such as
CASKs, Velis, and Mints (Biederer and Sudhof, 2000; Butz et al., 1998; Hata et al., 1996). Interestingly, mutation of lin-2 or lin-7, C. elegans homologs of CASK and Velis, respectively, does not disrupt receptor clustering. However, binding of mammalian neurexins to these proteins is thought to be critical for the recruitment of Munc18 to the plasma membrane and subsequent neurotransmitter release (Biederer and Sudhof, 2000), and loss of C. elegans nrx-1 does not disrupt ACh release or synaptic vesicle clustering. One possibility is that NRX-1’s PDZ binding domain is important for its recruitment to axon terminals, and the mislocalization of NRX-1 disrupts its trans-synaptic function as a synaptic organizer. For example, in Drosophila, the presynaptic active zone protein Syd-1 recruits neurexin to active zones at the neuromuscular junction, and loss of either Syd-1 or dnrx-1 disrupts synapse formation (Owald et al., 2012). In the candidate-based genetic screen, I found that loss of C. elegans syd-1 significantly reduces cholinergic receptor clustering in GABAergic dendrites. Future work investigating the role of SYD-1 and additional PDZ domain containing proteins will help reveal intracellular NRX-1 binding partners and their functions at synapses.

My analysis of multiple nrx-1 deletion strains demonstrates that extracellular interactions are also critical for neurexin’s function as a synaptic organizer. The ok1649 allele, for example, generates an in-frame deletion, eliminating a region predicted to encode an extracellular LNS domain (LNS2), and these mutants demonstrate severe disruptions in both ACR-12 receptor localization and spine outgrowth. Multiple extracellular binding partners are capable of interacting with mammalian neurexins via this domain (Missler et al., 1998; Sugita et al., 2001), suggesting that its removal could
disrupt binding of C. elegans nrx-1 partners. Notably, NRX-1/neurexin acts trans-synaptically to regulate the postsynapse independently of its typical postsynaptic binding partner NLG-1/neuroligin. Although mammalian neurexins are capable of binding to several extracellular partners besides neuroligin, less is known about their roles in synapse formation and function. Additionally, work to date examining C. elegans nervous system development has described roles for neurexin solely in the context of its partnership with neuroligin (Hart and Hobert, 2018; Hu et al., 2012; Maro et al., 2015; Tong et al., 2015). Thus, my investigation of neurexin signaling at C. elegans neuronal synapses provides an opportunity to dissect novel roles for neurexins.

How does presynaptic NRX-1 coordinate postsynaptic development in GABAergic neurons? Mammalian neurexins are capable of directly binding to postsynaptic GABAergic receptors (Zhang et al., 2010), suggesting that C. elegans NRX-1 may bind directly to ACR-12 iAChRs. Mutation of acr-12 does not disrupt NRX-1 localization to synapses, arguing against this idea. Many of the described binding partners for mammalian neurexins, including neurexophilins (Beglopoulos et al., 2005; Missler et al., 1998; Missler and Sudhof, 1998; Petrenko et al., 1996), LRRTMs (de Wit et al., 2009; Ko et al., 2009; Siddiqui et al., 2010; Um et al., 2016), and cerebellins (Joo et al., 2011; Matsuda and Yuzaki, 2011; Uemura et al., 2010) have no clear C. elegans orthologs. I tested several other known neurexin binding partners in the candidate gene approach, such as casy-1/calsyntenin (Lu et al., 2014; Pettem et al., 2013; Um et al., 2014), dgn-2; dgn-3/dystroglycan (Reissner et al., 2014; Sugita et al., 2001), lat-2/latrophilin (Boucard et al., 2012), and madd-4/Punctin (Maro et al., 2015), but these
mutants did not produce the severe defects seen with mutation of \textit{nrx-1}. These results could implicate a novel postsynaptic binding partner for neurexin or possible redundancy between neurexin binding partners. An unbiased forward genetic screen may help address the first possibility, combined with surveying \textit{C. elegans} genes encoding protein-protein interaction domains. While there are no obvious orthologs for LRRTMs, for example, there are \textit{C. elegans} proteins with similar domain architectures (Dolan et al., 2007; Hobert, 2013), and many of these are expressed in neurons (Liu and Shen, 2011).

Alternatively, there may be redundancy between multiple postsynaptic binding partners. Multiple cell adhesion interactions, for example, specify the wiring of mating circuits in the \textit{C. elegans} adult male (Kim and Emmons, 2017). This possibility may reflect how complex circuitry is established, and would require the analysis of double or triple mutants to decipher neurexin partners.

<table>
<thead>
<tr>
<th>Known extracellular neurexin binding partner</th>
<th>\textit{C. elegans} ortholog(s)</th>
<th>Effect on ACR-12 iAChRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>neuroligins</td>
<td>nlg-1</td>
<td>no effect</td>
</tr>
<tr>
<td>dystroglycans</td>
<td>dgn-1, dgn-2, dgn-3</td>
<td>dgn-1 sterile; no effect in dgn-2; dgn-3</td>
</tr>
<tr>
<td>calsyntenins</td>
<td>casy-1</td>
<td>no effect</td>
</tr>
<tr>
<td>latrophilins</td>
<td>lat-1, lat-2</td>
<td>lat-1 L1 arrest; no effect in lat-2</td>
</tr>
<tr>
<td>neurexophilins</td>
<td>no clear ortholog (Hobert, 2013; Missler and Sudhof, 1998)</td>
<td>N/A</td>
</tr>
<tr>
<td>cerebellins</td>
<td>no clear ortholog (Hobert, 2013)</td>
<td>N/A</td>
</tr>
<tr>
<td>LRRTMs</td>
<td>no clear ortholog (Hobert, 2013)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

\textit{Table 5.1 Extracellular binding partners for neurexins}
In combination with these genetic approaches to identify trans-synaptic binding partners, biochemical analysis may provide additional insight. Immunoprecipitation to pull down interacting proteins with neurexin or postsynaptic AChRs could help elucidate this signaling pathway. It would also be interesting to test whether NRX-1 and OIG-1, which are both required for AChR localization in first larval stage animals, physically interact. However, Ig domain containing proteins most frequently bind to other Ig domains (Missler et al., 2012), and the defects in AChR clustering are distinct in nrx-1 and oig-1 mutants, perhaps suggesting separate pathways.

Future work characterizing postsynaptic binding partners will advance our understanding of how neurexins coordinate iAChR clustering and spine outgrowth. Studies investigating the role of cell surface molecules and spine development in vertebrates, for example, have suggested that trans-synaptic signaling may be linked to the organization of the actin cytoskeleton (Liu et al., 2016; Penzes et al., 2003). Further examination of F-actin organization in the spine-like processes of GABAergic dendrites will help test this idea, in both nrx-1 mutants and with mutation of their downstream partners.

Transcriptional control of nrx-1 expression

My analysis of ACR-12 clustering in Chapter III suggested that a transcriptional target of unc-3 controls receptor localization in GABAergic dendrites. In Chapter IV, I identify this target to be nrx-1/neurexin. My results suggest that unc-3 directly regulates nrx-1 expression through a COE binding motif located upstream of the nrx-1L start site.
Forced expression of nrx-1/neurexin in unc-3 mutants restores ACR-12 receptor clusters, indicating that the lack of receptors in unc-3 mutants is due to the absence of nrx-1. In mammals, neurexin isoforms demonstrate cell-type specific expression patterns, indicating that neurexin mRNA expression is tightly regulated (Fuccillo et al., 2015). In Chapter IV, I find that unc-3 controls the expression of nrx-1/neurexin in C. elegans motor neurons, while mRNA signal in head neurons is unaffected in unc-3 mutants. Thus, unc-3 regulates the cell-type specific expression pattern of neurexin in the nervous system. It will be interesting to determine if expression of nrx-1s, which utilizes an independent promoter, is also subject to unc-3 transcriptional regulation.

My findings support growing evidence that genetic programs can specify both synaptic connectivity and neurotransmitter identity. While unc-3 expression is required for ACh neurotransmitter release, it also directly controls the expression of two synaptogenic molecules, madd-4/Punctin (Kratsios et al., 2015) and nrx-1/neurexin. These features suggest that synapse formation can be genetically hardwired. In support of this, loss of ACh neurotransmission does not affect cholinergic receptor localization or spine outgrowth in the DD1 dendrite. In mouse hippocampal neurons, complete loss of glutamate release similarly does not disrupt dendritic morphology, highlighting the importance of neuron-intrinsic programs in synapse formation (Sando et al., 2017; Sigler et al., 2017). However, my work from Chapter III in combination with previous studies (Dunn et al., 2013; Morgan et al., 2011; Soto et al., 2012) reflect a model where synapses are differentially sensitive to alterations in activity. Further characterization of
cholinergic synapses in C. elegans in response to acute manipulations in activity may help address the potential plasticity of these connections.

COE (Collifer/Olf1/EBF)-type transcription factors play a variety of roles, including axonal pathfinding and neuronal specification, and they are expressed in the developing nervous system (Garel et al., 1997; Wang et al., 1997). Given the strong conservation of these genes across systems (Dubois and Vincent, 2001), my results suggest that COE-type transcription factors may similarly promote synapse formation in the brain. In support of this idea, the Drosophila COE-type transcriptional regulator Knot controls the formation of class IV dendritic arbors (Hattori et al., 2007) through the regulation of downstream target genes (Hattori et al., 2013). Further investigation of mammalian COE/EBF proteins and their regulation of target genes (Green and Vetter, 2011) in the developing nervous system may reveal conserved roles for these transcription factors in synapse establishment.

Partner-specific synaptic connectivity

unc-3 directly controls the expression of two synaptogenic molecules, MADD-4 and NRX-1. While loss of nrx-1 disrupts ACR-12 receptor clustering and spine outgrowth in GABAergic dendrites, nrx-1 is not required for AChR clustering in muscle, consistent with a previous report (Hu et al., 2012). Conversely, madd-4 is required for the development of the excitatory neuromuscular junction (Pinan-Lucarre et al., 2014), but is not essential for the formation of synapses onto GABAergic neurons. This work suggests that transcriptional control of distinct synaptic organizers may specify divergent
connectivity. In support of this, loss of nrx-1 specifically impairs evoked ACh transmission onto inhibitory neurons, but not muscles. Thus, a single presynaptic neuron coordinates synapse formation with its postsynaptic partners through the differential deployment of synaptic organizers. This work provides evidence for neurexin regulation of divergent connectivity, and suggests the exciting possibility that neurexins may play similar roles in the brain.
BIBLIOGRAPHY

acetylcholine receptor translocation and synaptic plasticity in the adult nervous system. Cell 149, 173-187.

Martinez-Mir, A., Gonzalez-Perez, A., Gayan, J., Antunez, C., Marin, J., Boada, M.,
Genetic study of neurexin and neuroligin genes in Alzheimer's disease. J
Alzheimers Dis 35, 403-412.

neurotrophic factor regulate the density of inhibitory synapses in organotypic slice
cultures of postnatal hippocampus. J Neurosci 20, 8087-8095.

Martynoga, B., Drechsel, D., and Guillemot, F. (2012). Molecular control of
neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb
Perspect Biol 4.

Wingless signaling at synapses is through cleavage and nuclear import of receptor
DFrzilled2. Science 310, 1344-1347.

regulating distinct neurexin signaling pathways in various brain regions. Eur J
Neurosci 33, 1447-1461.

concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad
Sci U S A 79, 7590-7594.

signaling in olfactory memory. Science 293, 1330-1333.

407-418.

transfer in C.elegans: extrachromosomal maintenance and integration of
transforming sequences. EMBO J 10, 3959-3970.

Meng, J., Ma, X., Tao, H., Jin, X., Witvliet, D., Mitchell, J., Zhu, M., Dong, M.Q., Zhen,
Synaptic Plasticity via Cleavage-Dependent Nuclear Translocation. Dev Cell 41,
180-194 e187.

receptor: identification of an alpha subunit species that may be an assembly
intermediate. Cell 34, 747-757.

Messeant, J., Ezan, J., Delers, P., Glebov, K., Marchiol, M., Lager, F., Renault, G., Tissir,
F., M ontcoquiol, M., Sans, N., et al. (2017). Wnt proteins contribute to
neuromuscular junction formation through distinct signaling pathways.
Development 144, 1712-1724.

