
USE OF CLINICALTRIALS.GOV REGISTRY IN SYSTEMATIC REVIEWS 

AND META-ANALYSES: A MASTER’S THESIS 

 

A Master’s Thesis Presented 

By 

RICHEEK PRADHAN 

Submitted to the Faculty of the 

University of Massachusetts Graduate School of Biomedical Sciences, Worcester 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

(November 30th 2017) 

Biomedical Sciences 

 

 

 

 



	   i	  

USE OF CLINICALTRIALS.GOV REGISTRY IN SYSTEMATIC REVIEW AND 

META-ANALYSES: A MASTER’S THESIS 

A Masters Thesis Presented 

By 

RICHEEK PRADHAN 

The signatures of the Master’s Thesis Committee signify completion and approval 
as to style and content of the Thesis 

 

Dr. Jerry Gurwitz, M.D., Chair of Committee 

 

Dr. Bruce Barton, Ph.D., Member of Committee 

 

Dr. Mara Epstein, Ph.D., Member of Committee 

 

Dr. Mary Ellen Lane, Ph.D., Member of Committee 

The signature of the Dean of the Graduate School of Biomedical Sciences signifies 
that the student has met all master’s degree graduation requirements of the school. 

 

Dr. Anthony Carruthers, Ph.D., 

Dean of the Graduate School of Biomedical Sciences 

Interdisciplinary graduate program 

(November 30th 2017)  



	  ii	  

Acknowledgments and dedication 

I would like to acknowledge my Thesis Mentor, Dr. Hong Yu for her guidance 
throughout my time at UMass Medical School. Her open-minded and enthusiastic 
approach to research will always be an inspiration for me. I also would like to thank Dr. 
Robert Goldberg, my co-mentor, whose support and guidance has helped me navigate 
many scientific hurdles in this time. 

Working on his dissertation let me work with three professors who I consider myself 
lucky to have been associated with: Dr. David Hoaglin, whose emphasis on 
methodological accuracy and rigor I hope to carry with me to future projects, Dr. Arlene 
Ash, whose elegant approach to statistics and writing I have had the chance to learn from, 
and Dr. Sonal Singh, whose kind and prescient mentorship I have benefitted from greatly. 

Heartfelt thanks to the members of my lab, Victoria, Weisong, Matt, and Feifan who I 
have learnt from everyday. Also thanks to Kyle and Bikramjit who helped me collect data 
for what constitutes Chapter 2 in the dissertation. 

I also would like to thank Dr. Bill Jesdale, conversations with whom have molded my 
thoughts on social medicine, Drs. Jennifer Tjia, Stavroula Chrysanthopoulou, and 
Catherine Dube whose courses on observational research have strengthened my concepts, 
and Dr. David Chiriboga, whose views on global health have been both eye opening and 
inspiring. Thanks to Drs. Mitali Chatterjee, Suparna Chatterjee, and Avijit Hazra, my 
teachers during my residency at IPGMER, India, who helped me build a solid foundation 
for clinical research. 

On a personal front, I want to thank Sambuddha, Isaac, Ribhu, Aditya, Pritikanta, Harsh, 
and Elaine whose friendships have made living on unaccustomed shores easier, happier, 
and more worthwhile. Thanks to Rena and Aveek for being ever ready to provide lengthy 
counseling-sessions over Whatsapp. 

Hugs for my parents, for keeping relatively healthy, and for being just as present in my 
life as they were back home. Hugs also for Mimmi, Puntuli, Chhoto mimmi, Anup mama, 
Shikha mimmi, Jhumjhumi didi, Sadhona mashi, and Monu mashi. 

And finally, this work is dedicated to my grandma, who, through her wit, humor, 
resilience, and her ability to embrace darkness, taught me why life is worth enduring. 

 

  



	  iii	  

Abstract 

Ensuring the objectivity of systematic reviews and meta-analyses (SRMA) begins with 

comprehensive searches into diverse resources mining primary studies. Guidelines for 

systematic reviews recommend authors to routinely search of trial registries to identify 

unpublished studies. In this dissertation, I investigated the utilization of 

ClinicalTrials.gov (CTG), the world’s largest clinical trial registry that contains data from 

clinical trials of products that are subject to United States Food and Drug Administration 

(FDA) regulation, as an information resource in SRMAs. First, I examined the use of 

various information resources including CTG in SRMAs published from 2005-2016, and 

identified the factors associated with their use. Thereafter, to determine the accuracy of 

trial safety data reported at CTG, I compared the data at CTG with that in corresponding 

journal articles and FDA drug reviews. I found that trial safety data at both CTG and 

articles differed frequently from FDA drug reviews, but the differences were modest in 

magnitude. Finally, I repeated published meta-analysis (conducted using data from 

primary study articles) with data at CTG to find that most meta-analysis results were 

reproduced using CTG data. Taken together, this work suggests that CTG should not only 

be searched more often to find primary research for systematic reviews, but that data at 

CTG can also be used to conduct quantitative data synthesis.   
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CHAPTER 1 

Introduction 

Publications of systematic reviews and meta-analyses (SRMAs) have tripled over the last 

decade, without comparable improvement in methodological rigor or reporting 

standards.[1] Meanwhile, studies linking favorable meta-analysis outcomes with financial 

conflicts of interest of authors have highlighted the susceptibility of SRMAs to 

manipulation.[2–4] Amidst these findings, while some have questioned the position of 

SRMAs as the highest level of evidence, [5]others have called for ensuring greater 

objectivity and reproducibility in producing them.[6] A way to ensure the objectivity of 

SRMA results is to perform comprehensive searches into resources mining primary 

literature.[7] However, what constitutes a comprehensive search remains open to 

interpretation,[8] and potential manipulation. 

The purpose of a SRMA is to summarize all scientifically generated evidence on a topic 

of interest. A systematic search for data from a diverse body of evidence is fundamental 

to serve that purpose. In addition to extracting data from published studies, it is important 

to search unpublished studies (also known as grey literature) as research shows that the 

latter have smaller treatment effects than published studies,[9,10] and that inclusion of 

unpublished results can change conclusions of meta-analyses.[11,12] Conversely, failure 

to include unpublished data biases the results towards a positive treatment effect (also 

known as publication bias).[13,14] Research into the evolving use and relative 
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importance of information resources mining published and unpublished research can 

improve the scientific rigor of evidence synthesis. 

Although including both published and unpublished data is important for validity, in 

practice, neither is searching for the unpublished data easy,[15–17] nor are guidelines 

suggesting resources to be searched for unpublished data consistent among each 

other.[18] Most popular biomedical search engines mine only published studies, and little 

consensus exists regarding which resources to look into for unpublished data.[8,19] 

Among the sources of unpublished studies, trial registries established to mine data from 

clinical studies have emerged as a rich source of information over the last decade. 

Registries store information from studies regardless of the success of their outcomes, 

making them an important source for unpublished research.[7] Clinical trials of drugs, 

biologics, and devices must be registered in study registries including ClinicalTrial.gov 

(CTG).[20] CTG, launched in 2000, is currently the world’s largest clinical study registry 

and contains information from clinical trials of products that are subject to Food and 

Drug Administration (FDA) regulation.[21] While studies have documented the underuse 

of registries,[1,22–25] factors that may lead to more widespread inclusion of such 

resources in search strategies have not been studied.  

Querying the registry is important for meta-analysis research as almost half of large trials 

reported in CTG remain unpublished in journals.[26] However, since trialists are also 

required to report data on trial results in CTG, apart from being just a source of 

information on unpublished trials, CTG also acts as a publicly available source of trial 

data. CTG is particularly important in safety data, as recent research has shown that CTG 
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covers a greater number of and a wider range of adverse events (AEs) than published 

articles on primary studies, the traditionally used source of data for quantitative data 

synthesis in secondary research.[27]  

On the other hand, works showing inconsistencies in efficacy[28] and safety[29] results 

published in articles and those reported in registries have questioned the quality of the 

data in registries. Since peer reviewers reviewing articles typically do not have access to 

patient-level data, the reviewers are unable to assess the provenance of the study results. 

Raw data from trials submitted for drug licensing, however, are routinely reviewed by the 

US-FDA, and these medical reviews are made public at Drugs@FDA.com.[29,30] Since 

trialists are legally mandated to submit accurate data to the FDA,[31,32] the FDA 

medical reviews can serve as reference standards to validate the data at CTG and articles. 

A recent study focusing on primary outcome comparison between the medical reviews 

conducted by the FDA, [30] and CTG results found that most primary efficacy reports are 

concordant between the two sources.[33] However, they did not compare the FDA 

reviews and CTG reports with the corresponding published articles. Thus, the need to 

evaluate the concordance between FDA review (the gold standard) and the two test 

resources (CTG and articles) on adverse events remains unaddressed. This is an 

important lacuna, preventing the use of CTG data in meta-analysis research. 

A final question that needs answering before data at CTG can be used to perform 

secondary analysis instead is whether differences in data between two sources cause 

meta-analyses of data at CTG to differ qualitatively from meta-analyses using original-

article data. No consensus exists on the use of the trial data reported at CTG for 
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quantitative data synthesis in meta-analyses.[34] Use of data at CTG, however, might 

provide certain logistic benefits over use of data from published articles. For example, a 

SRMA is a labor-intensive and time-consuming endeavor; one of its most protracted and 

error-prone steps involves extraction of data from reports on primary trials.[35–37] Given 

that the median time between publication of protocols of Cochrane SRs and their final 

publication is 2.4 years,[38,39] and that errors in extracting numerical data pose are 

common,[40] an automated methods of data extraction for meta-analysis research can be 

of benefit. Although recent attempts have automated extraction of qualitative and design-

related variables from published articles,[41] few have automated extraction of numerical 

results, possibly because of heterogeneous publishing formats and reporting standards. 

CTG forms an alternative source that is more amenable to automatic extraction because 

of its uniform reporting format. However, if data at CTG, given its differences from 

article data, qualitatively alters meta-analysis conclusions, its utility in meta-analysis 

research will be limited. Thus, the validation of use of CTG data in meta-analysis 

research is necessary before tools to automatically extract data from CTG can be 

routinely used. 

In chapter 1 of this dissertation, I conduct a situational analysis into the use of CTG and 

other information resources searched to find primary studies for evidence synthesis in 

SRMAs. For this, I track the self-reported use of various information resources in 

SRMAs published between 2005-2016, and identify the resources that are associated with 

low publication bias. 
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In chapter 2, using FDA drug reviews, I examine the discrepancies between published 

article and CTG data, specifically in context of safety endpoints. I examine the frequency 

and magnitude of differences in safety data from clinical trials reported across three 

sources: CTG and journal published articles as index sources and corresponding FDA 

medical reviews as the reference. 

In chapter 3, I repeat meta-analyses from published SRMAs using CTG data instead of 

data from primary articles to investigate whether the use of CTG data materially alters 

conclusions of the SRMAs.  
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CHAPTER 2 

Patterns in use of information resources for evidence synthesis in systematic reviews 

and meta-analyses: 2005-2016 

Introduction 

Commercial publishers are likely to be interested in publishing studies that have positive 

results in alignment with the hypothesis, and thus are “news worthy”. Similarly, industry-

based or academic researchers are likely to be interested in publishing positive results to 

more efficiently use their time in talking about successful products or research, 

respectively. In fact, not only are negative studies published on an average two years later 

than their positive counterparts, they are also are less likely to be published at all.[42] 

Although ignored during publication, however, negative studies assume just as much 

importance as published ones when the aim is to summarize evidence on a topic of 

interest. Importantly, inclusion of results from unpublished studies has been shown to 

alter the results of meta-analysis.[11,12] Thus, searching unpublished studies is important 

for valid meta-analyses. Study registries like ClinicalTrials.gov (CTG) store data from 

both published and unpublished research. For example, Riveros et al. 2013 found that up 

to 50% of trials posted in CTG remained unpublished in peer reviewed journals.[26] 

Registries should thus constitute an important resource for unpublished literature. 

Accordingly, 2012 Cochrane guidelines mandate inclusion of study registries and grey 

sources in SRMA search strategies. CTG contains information from clinical trials of 

products that are subject to Food and Drug Administration (FDA) regulation.[21] Other 
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trial registries can be accessed through the World Health Organization (WHO) 

International Clinical Trials Registry Platform (ICTRP), a portal to 16 trial registries 

managed by various national regulatory bodies.[43] Additional repositories of trial 

reports can include regulatory body reports (FDA databases), grant databases, and 

manufacturer websites.[7] Sources of grey literature that are not clinical trials include 

conference abstracts, dissertations, book chapters, policy documents, and specialized grey 

literature databases, among others.[17] In order to avoid skewing meta-analysis results 

towards positive outcomes, a systematic search for both published and unpublished 

studies are necessary. However, systematic evidence on the resources searched, and what 

constitutes a comprehensive search, is lacking. 

In this chapter, I examined the use of various information resources by randomly 

sampling SRMAs published in each year from 2005-2016, and identified the factors 

associated with their use. Using network analysis, I explored which resources were 

simultaneously searched in each year. I used interrupted time series to look for changes in 

the use of various information resources following the promulgation of a guideline (in 

late 2012) urging the use of diverse resources in SRMAs. Using logistic regression, I 

sought to identify information sources associated with a reduced likelihood of publication 

bias.  
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Methods 

Searching and eligibility 

I searched PubMed for SRMAs published from 2005 through 2016. I chose the year 2005 

to start search in order to specifically evaluate CTG usage in SRMAs after International 

Committee of Medical Journal Editors (ICMJE) publication rules (2005) which caused 

substantial increase in the trial registration in CTG, an converted CTG into a repository 

of clinical trials with worth looking into before evidence synthesis.  Using search terms 

aimed at finding systematic reviews with quantitative meta-analyses I extracted all 

articles indexed in each calendar year. To focus on articles likely to search CTG for 

unpublished studies, I restricted the search to include articles with human subjects and 

those authored by US-based investigators. The complete search term was: 

“systematic[sb] AND USA[ad] AND (Meta-Analysis[ptyp] AND ("respective 

year/01/01"[PDAT]: "respective year/12/31"[PDAT]) AND "humans"[MeSH Terms])”. 

From those, I randomly selected 100 articles for each year to review manually. I excluded 

articles if they (1) did not find full-texts, (2) did not have a defined and documented 

search strategy, (3) did not perform quantitative data synthesis and meta-analysis, (4) did 

not involve humans, (5) specifically excluded the USA population, (6) used a single case 

experiment design, or (7) had duplicates in another year. Exclusion criteria 1, 2 and 3 

were deemed necessary to allow for imperfect indexing in PubMed. The study flow 

diagram is represented in Fig 1.    
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Data extraction 

Each eligible SRMA article was manually reviewed to extract the data regarding 

publication characteristics and search resources by one of three investigators (me/Kyle 

/Bikramjit: please see preface). Three investigators independently extracted data from a 

set of 10 SRMAs to help achieve uniform extraction. For all reviewed SRMAs, after one 

investigator extracted the data, a second investigator validated the extraction, and 

disagreements were resolved by mutual discussion. 

I collected the information on all online databases and other information resources 

utilized by authors of each SRMA to search for primary studies, as mentioned in the 

search strategy of the SRMAs. Whether or not SRMA authors searched from the 

information resources was noted as a binary variable. I identified 30 information 

resources and retrospectively classified them into four categories: 1. Study registries 

[CTG, ICTRP, regulatory databases (eg, FDA, EMEA), manufacturer database, grant 

websites for funded studies (eg, NIH, Wellcome trust), others (ISTRN, HTA, HSRProj, 

C2-SPECTR, PROSPERO)];2. Resources mining general published literature without 

special focus [Medline, EMBASE, others (Scielo, JSTOR, etc)]; 3 Resources mining 

specialized published literature [Cochrane library, psycINFO, CINAHL, POPLINE, 

regional/language specific database, review collections (eg, EBMR, ACP journal club), 

SportDiscus, HealthStar, International pharmaceutical abstracts, PILOTS]; 4. Resources 

other than registries that include unpublished literature [Conference proceedings, 

dissertations, Scopus, Web of Science, Search engines (eg, Google Scholar), ProQuest, 

BIOSIS, ERIC, Clinical query applications, designated grey literature databases 
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(OpenGrey, Sigle, NTIS), and others (MedScape, manufacturers package inserts, etc)]. 

Salient features of each information resource are described in Appendix 1. 

Information was also collected on each SRMA regarding the nature of primary studies 

(interventional or observational), whether the study involved a pharmacological 

treatment, and the outcomes studied (efficacy outcomes, safety outcomes, others). In 

order to determine the nature of the primary studies, the search criteria in each SRMA 

were looked into: when the specific nature of the primary studies searched was not 

mentioned, primary studies directly were directly examined. In cases where the specific 

nature of the primary studies was not mentioned in the search criteria, and yet only one 

type of primary study (say, interventional) was included in the SRMA, the SRMA was 

classifies to have interventional studies only. The logic for this was that the SRMA 

authors would have anticipated the nature of their primary studies, and searched 

resources accordingly. The nature of the journal in which the SRMA was published were 

noted [general med/surgery journals (general medical journals), journals specializing in 

epidemiology/public health/research methods (methods journals), psychiatry and 

psychology journals (psychiatry journals), specialized journals on sub-disciplines within 

medicine/surgery (specialized medical journals)] along with their impact factors each 

year. A separate class for psychiatry journals was formed because of the fairly distinct 

information resources accessed by this medical discipline. A complete list of all journals 

classified into each of the four groups is provided in Appendix 2. Additionally, it was 

noted if publication bias was statistically assessed, and, if assessed, whether the authors 

deemed publication bias to be present or not.  
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Analysis 

I summarized the characteristics of the SRMAs over the years using percentages of total 

for the year for categorical parameters or mean and standard deviations for numerical 

parameters. Differences in parameters between years were examined using chi-square 

statistics for categorical variables and ANOVA for numerical variables. I tracked the use 

of all 30 information resources over 12 years using bar diagrams. To identify the factors 

predicting study registries, and CTG in particular, I used a logistic regression model with 

their characteristics as independent variables. To identify concurrent use of similar types 

of information resources, I constructed the network geometry of articles and the 

information resources in each year. Each information resource formed one node in each 

network, and each node was connected to another by a line if at least one article searched 

both information resources. The thickness of the connecting lines denotes the number of 

articles searching the two resources. Distance between two nodes is given by their 

Euclidian distance, which represents how frequently they are co-searched. To detect the 

presence of homophily (tendency of resources to be associated and, in our scenario, 

searched concomitantly), I used the ANOVA density model.[44] The network densities 

for a year (number of actual ties between nodes/number of all possible ties between all 

nodes with theoretical extremes between zero and one) were calculated. I also used 

interrupted time series analysis to see if there was a change in the use of registries after 

December 2012, when Cochrane guidelines [Methodological Expectations of Cochrane 

Intervention Reviews (MECIR)][34] first mandated using registries as an information 

resource in SRMAs. Assuming a time lag of one year between promulgation of MECIR 
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and publication of SRMAs that might have followed the guideline, I selected 2014 as the 

year from which I could expect the promulgation guideline to show results. Last, I used 

logistic regression adjusted for SRMA characteristics and other resources to identify the 

information resources negatively associated with publication bias. Data were analyzed 

using STATA version 14[45] and UCINET version 6.[46] 

Results 

Characteristics of SRMAs and information sources used 

I retrieved a total of 11,868 PubMed entries using the search terms, and randomly 

selected 100 entries each for each year (1200 entries between 2005-2016). A total of 817 

SRMA articles with an average of 68 SRMAs per year (range: 59-79) were included in 

the final analyses (Fig 1). Table 1 describes the included SRMAs. Of the journals 

publishing the SRMAs, about two-thirds (65.2%) were specialized medical journals, 

while the rest were approximately similar proportions of general medical journals (9.2%), 

psychiatry journals (14.7%), and methods journals (10.9%). The mean impact factor of 

these journals was 4.7 (standard deviation: 4.5). The primary research analyzed by the 

SRMAs included interventional studies in 61.0% cases and observational studies in 

62.9% cases. Almost one third of the SRMAs had a safety parameter as an endpoint 

(32.4%), and one third of the SRMAs examined a pharmacological agent (33.6%). 

Publication bias was statistically assessed in about 45.9% of the SRMAs, of which a third 

(33.1%) found statistical evidence of such bias. Fig 2 represents a comparative picture of 

information resource use in 2005 and 2016. The most common sources used overall were 
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Medline/PubMed, EMBASE, and the Cochrane databases in both years. Use of registries 

and Scopus increased substantially from 2005 to 2016. Trends in utilization of registries, 

general and specialized published literature databases, and grey literature sources are 

provided in Appendix 3. 

!
!
Table!1.!Characteristics!of!systematic!reviews!and!meta8analyses!(SRMA)!included!
in!the!study!
!

!
!
Footnote:!None!of!the!variables!were!significantly!different!between!the!years!
except!*!frequencies!of!SRMAs!with!an!efficacy!endpoint!(Χ2,!P=0.002)!and!
**frequencies!of!SRMAs!where!publication!bias!was!assessed!statistically!(Χ2,!
P=0.030).!
!
!
!
!

Year% 2005% 2006% 2007% 2008% 2009% 2010% 2011% 2012% 2013% 2014% 2015% 2016%

Number%of%SRMAs%included%
(n)%

66% 59% 65% 74% 71% 69% 65% 64% 62% 68% 75% 79%

General%medical%journals%(%%
of%n)%

15.2% 6.8% 15.4% 10.8% 7.0% 10.1% 12.3% 4.7% 8.1% 5.9% 5.3% 8.9%

Methods%journals%(%%of%n)% 10.6% 10.2% 9.2% 9.5% 12.7% 14.5% 9.2% 6.3% 14.5% 5.9% 17.3% 10.1%
Psychiatry%journals%(%%of%n)% 19.7% 20.3% 18.5% 17.6% 16.9% 13.0% 4.6% 17.2% 16.1% 13.2% 9.3% 11.4%
Specialized%journals%(%%of%n)% 54.6% 62.7% 56.9% 62.2% 63.4% 62.3% 73.9% 71.9% 61.3% 75.0% 68.0% 69.6%

Mean%(SD)%impact%factors%of%
journals%

4.8%
(4.7)%

5.0%
(5.0)%

5.6%%
(7.3)%

5.3%%
(6.0)%

4.6%
(2.9)%

5.1%
(5.6)%

4.8%
(3.9)%

5.2%
(4.0)%

4.8%
(3.5)%

3.3%
(2.0)%

4.7%
(3.9)%

3.9%
(2.9)%

Efficacy%endpoints%%
(%%of%n)*%

42.4% 28.8% 35.4% 37.8% 40.9% 53.6% 53.9% 42.2% 30.7% 48.5% 54.7% 27.9%

Safety%endpoints%
(%%of%n)%

37.9% 30.5% 35.4% 33.8% 38.0% 37.7% 30.8% 26.6% 32.3% 32.4% 32.0% 22.8%

Others%endpoints%%
(%%of%n)%

54.6% 59.3% 55.4% 52.7% 42.3% 47.8% 53.9% 53.1% 67.7% 42.7% 42.7% 51.9%

Pharmacological%agent%
studied%(%%of%n)%

40.9% 27.1% 33.9% 35.1% 42.3% 34.8% 38.5% 15.6% 30.7% 30.9% 37.3% 34.2%

Primary%studies:%
Interventional%(%%of%n)%

65.2% 54.2% 58.5% 60.8% 60.6% 59.4% 56.9% 65.6% 59.7% 63.2% 66.7% 60.8%

Primary%studies:%
Observational%(%%of%n)%

56.1% 61.0% 53.9% 60.8% 67.6% 63.8% 63.1% 68.8% 64.5% 67.7% 60.0% 67.1%

Publication%bias%assessed%(%%
of%n)*%

39.4% 37.3% 30.8% 48.7% 47.9% 40.6% 56.9% 54.7% 45.2% 39.7% 58.7% 48.1%

Publication%bias%identified%%
(%%of%n)%

12.1% 11.8% 6.1% 20.3% 15.5% 17.4% 21.5% 12.5% 11.3% 11.7% 22.6% 20.2%
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Figure 1. Study flow diagram. 

[Footnote 

* 2005 - 2016 n’s: 550, 694, 720, 778, 810, 963, 1107, 1301, 1198, 1071, 1507, 1169 

** 2005 - 2016 n’s: 66, 59, 65, 74, 71, 69, 65, 64, 62, 68, 75, 79] 
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Figure 2. Percentage of SRMAs using each information resource type in the years 2005 and 
2016: Grey bars represent percentage of SRMAs using a resource in 2005 (n=66) and black bars, 
2016 (n=79). Within each class (registries/general literature database/specialized literature 
database/grey literature resource), resources are arranged in decreasing order of usage frequency 
in 2016. Percentages of SRMAs using each information resource are shown in Appendix 3. 
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Predictors of use of different information resources 

I examined factors predictive of searching various types of information resources (Fig 3). 

Appendix 4 describes the factors predictive of searching individual databases. Methods 

journals were strongly associated with the use of registries, grey resources, and 

specialized literature resources. SRMAs used registries more often if a pharmacological 

agent was being studies. There overall use of registries or grey sources did not increase 

over the years. Use of specialized literature databases was more prominent in psychiatry 

journals. Perhaps encouragingly, there was no correlation of journal impact factor and 

greater use. Interestingly, general medical journals showed a correlation with lower use 

of general literature databases. Upon examining the 34 SRMAs that did not use any 

generalized literature database, I found that three were in specialized medical journals, 26 

in psychiatry journals and five in general medical journals. For the five in general 

medical journals, the following resources were used: Cochrane library, Web of Science, 

regulatory and manufacturer websites, sponsoring website, and specialized resources. All 

the five SRMAs were published on or before 2012. 
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Figure 3. Factors associated with use of various information resources: Using a bivariate 
logistic regression model, we derived adjusted odds ratios (boxes) and their 95% confidence 
limits for association of various SRMA characteristics and use of A. registries, B. general 
literature databases, C. specialized literature resources, D. grey literature resources. SRMA 
characteristics are color coded to represent year (dark navy), journal type (blue) with specialized 
medical journals as reference, impact factor (green), primary study type (turquoise), endpoint 
examined in SRMA (grey), and whether pharmacological agents were examined in SRMA 
(purple). Factors associated with each individual data source are shown in Appendix 4. 

* Methods journal always searched general literature databases, causing the odds ratio to be much 
greater than 20, the x-axis scale limit. 
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Networks of information resources 

The motivation behind searching multiple resources for SRMAs is to cast a wider net for 

finding relevant studies. Search strategies are thus most successful when multiple, 

distinctive resources are searched, and searching many resources is not particularly 

helpful unless they have substantial non-overlap. I performed network analysis to 

ascertain the degree of clustering of the different resources searched by the SRMAs over 

the years. Figs 4A and 4B show representative resource networks formed by the SRMAs 

in the years 2005 and 2016, respectively. Each node represents an information resource 

that has been used by an SRMA. A line joins two nodes if any SRMA has used the two 

information resources concurrently, while the thickness of the line denotes the number of 

SRMAs that have searched both resources. The closeness of any two nodes in the 

network depends upon the number of SRMAs that have searched both resources.  

In both networks, the three published literature databases Medline, EMBASE, and 

Cochrane databases form the central resources and are closest to each other, denoting the 

highest degree of co-occurrence in SRMA searches. The network connections increase 

substantially from 2005 through to 2016. However, the presence of published literature 

resources (combining generalized and specialized literature databases, both denoted by 

purple squares) clustered towards the center and registries (denoted by cyan circles) and 

other grey literature resources (denoted by grey triangles) towards the network periphery 

indicates significant amount of co-searching of published literature resources by the same 

SRMAs.  
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ANOVA density models constructed to detect homophily (tendency of resources to be 

associated and, in our scenario, searched concomitantly) confirms that while querying 

multiple databases authors mostly just search analogous resources likely to have high 

degree of overlap. The standardized regression coefficient of co-searching of published 

resources is highest among the possible permutations (0.22, P=0.04). The ranking of 

information resource type co-searches is as follows:1.two published literature databases 

(Coefficient: 0.22, P=0.04); 2. A published literature database and a grey literature 

database (Coefficient: 0.01, P=0.06); 3. A published literature database and a registry 

(Coefficient: - 0.01, P=0.59); 4. Two registries (Coefficient: - 0.007, P=0.43); 5. A grey 

literature database and a registry (Coefficient: - 0.04, P=0.43) (reference combination: 

two grey literature databases).  
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Figure 4. Network of data sources in 2005 and 2016. 
Nodes denoted by cyan circles (     ) for registries, purple squares (   ) for general or 
specialized literature resources, grey triangles (    ) for grey literature resources. Each 
information resource forms one node in each network, and each node was connected to 
another by a line if at least one article searched both information resources. The thickness 
of the connecting lines denotes the number of articles searching the two resources. 
[Nonstandard abbreviations: CTG=ClinicalTrials.gov, other_spec_lit= other specialized 
literature database, other_gen_lit=other general literature database, DesignatedGL= 
designated grey literature database, RegionalDB= regional/language specific database, 
MAcollections= Collections of EBM reviews/ACP journal clubs] 
 
 

 

 

 

2005$ 2016$
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Effect of registry search guidelines on CTG usage in SRMAs 

In 2012, the Cochrane guideline for systematic review and meta-analyses methodology 

first mandated searching from study registries like CTG and ICTRP as well as grey 

resources over and above Cochrane databases. I conducted an interrupted time series 

analysis to see whether or not there was any increase in registry usage after the 

implementation of the guideline (2014-2016) as compared to before its implementation 

(2005-2013). I did not find a significant effect of the guideline on the usage of either use 

of general literature databases, registry, or grey sources (Fig 5A, B, D). The use of 

specialized literature databases (Fig 5C) and the yearly network densities (number of 

actual ties between nodes/number of all possible ties between all nodes with theoretical 

extremes between zero and one) increased from 2014 onwards (Fig 5E). Increasing 

network density denotes an increase in diversity in the usage of information resources in 

SRMAs. Results for individual resources are in Appendix 5. 
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Figure 5. Interrupted time series analysis showing changes in data-resources before and 
after 2014: Analysis for A. registries, B. general literature databases, C. specialized literature 
resources, D. grey literature resources, and E. network densities. For analysis, we used a Praise 
Weinstein autocorrelation model with lag of one year. Black dots represent the actual percentage 
of SRMAs using the resource, while the connecting solid line is the model prediction. P values 
represent the significance of change in resource use after 2014. In each graph the two lines are fit 
to the first 9 data points (black) and again to the last 3 (blue). Results of interrupted time series 
analysis for each individual data source are shown in Appendix 5. 

 

Relative importance of information resources in avoiding publication bias 

363 SRMAs out of the 375/817 SRMAs that statistically examined publication bias 

searched Medline. To understand the additional benefit of resources when searched 

alongside Medline, I identified the resources that were negatively associated with 

publication bias using a logistic regression model (n=363). Table 2 lists the resources 

negatively associated with publication bias (adjusted odds ratio <1) in all SRMAs 

significant at P=0.20, stratified by endpoint type. Appendix 6 provides a list of all 

resources and their associated adjusted odds ratios. 

Of the information resources, Scopus was significantly associated with low publication 

bias, while CTG exhibited a strong trend towards low publication bias. On repeating the 

procedure for SRMAs looking at only safety outcomes, low publication bias was 

associated with CTG.  
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Discussion 

Searching from a large and diverse body of studies is key to valid evidence generation in 

systematic reviews and meta-analyses (SRMA). However, little evidence-based guidance 

exists on which resources to search, resulting in haphazard searches of cherry-picked 

resources. I conducted a systematic review of the information resources searched by 

SRMAs published from 2005 to 2016. The best predictor of use of alternate resources is 

the type of journal publishing the SRMA. Although search guidelines have not directly 

contributed to the increase in registries or grey resources, the diversity of searches after 

!
!

Table 2. Information sources that, when searched alongside Medline, are negatively associated with publication bias. 
 
 
Resource( Adjusted(odds(ratio((95%(confidence(limits)( P(value(
For(all(endpoints((n=363)(
Scopus! 0.32((0.12D(0.88)( 0.03(
ClinicalTrials.gov! 0.33((0.09D1.20)( 0.09(
Conference(proceedings! 0.56((0.27D1.15)( 0.12(
Other(specialized(literature(database! 0.37((0.10D1.40)( 0.14(
For(safety(endpoints((n=120)(
ClinicalTrials.gov! 0.02((0.00D0.56)( 0.02(
Scopus! 0.17((0.02D1.72)( 0.13(
For(other(endpoints((n=188)(
Conference(proceedings! 0.14((0.01D1.28)( 0.08(
Scopus! 0.25((0.05D1.25)( 0.09(
SportDiscus! 0.10((0.01D1.52)( 0.10(
 
 
Using a bivariate logistic regression model, adjusted for SRMA characteristics and use of other resources, we derived odds ratios (OR) 
for association of information resources and the finding of publication bias in the SRMAs that already searched Medline. We list the 
information resources negatively associated with publication bias, significant at P=0.2, for SRMAs examining any endpoint (n=363), 
SRMAs examining safety endpoints (n=120), and SRMAs examining other endpoints (n=188). No resource was significantly 
negatively associated with publication bias at P=0.2 for only efficacy endpoints (n=148). Odds ratios for all resources are shown in 
Appendix 6. 
!
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propounding of 2012 guidelines has increased. However, overall, there is still 

considerable sequestration in use of published literature databases. Among the resources, 

searching CTG and Scopus were significantly associated with low publication bias. 

Although many studies have shown that registries are underutilized in SRMAs, factors 

associated with greater use have not been studied. I found that, adjusted for other 

covariates, methods journals are most likely to use trial registries. The methods journals 

were also associated with increased use of other resources including conference 

proceedings, dissertations and all grey literature resources combined. This implied that 

the policies implemented by editors of such journals significantly affect SRMA search 

strategies. At the same time, SRMAs in both general and specialized medical/surgical 

journals rarely searched trial registries and other grey literature resources. This is 

concerning because such journals not only form the majority of journals publishing 

SRMAs and the likeliest to be read by clinicians who might practice healthcare based on 

the results of SRMAs. Encouragingly, I did find an increasing trend in the use 

specifically of CTG over time.  

Although several guidelines exist directing the use of information resources in 

conducting SRMAs, advice regarding use of resources storing unpublished data is mostly 

ambiguous.[18] In their review examining the clarity of SRMA guidelines, Boden et al. 

find that only three provide procedural guidance on using databases such as registries to 

identify unpublished trials: the Cochrane MECIR guideline (2012),[34] the Centre for 

Reviews Dissemination (CRD) guideline (2009)[47], and the Preferred Reporting Items 

for Systematic Reviews and Meta-analyses (PRISMA-P) guideline (2015).[48] Of the 
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three, although CRD was the earliest to suggest use of registries to find unpublished 

studies, the Cochrane MECIR guideline published in December, 2012 were the first to 

“mandate” searching CTG, ICTRP and other grey literature resources. Hence, to examine 

whether the guidelines had influenced the practice of CTG search in SRMAs I tried 

identifying differences in trends of database usage before and after 2014 (having a one 

year lag after promulgation of Cochrane MECIR guideline in December 2012). I found 

that in spite of a general increase from 2005 to 2016, there was no significant effect of the 

guidelines on the absolute rate of CTG search 2014 onwards. This suggests that mere 

guideline recommendations are insufficient to ensure a wider use of registries as 

information resources in SRMAs. While a survey by Tetzlaff et al., 2006 finds a majority 

of meta-analysts and editors agree that unpublished data should be searched, such 

practice is not implemented routinely.[49] All journal editors, mirroring the practices in 

methods journals, should insist upon searching registries. However, search guidelines did 

seem to increase the use of diverse resources as evidenced by a progressively higher 

network density after 2014. This can explain Kicinski and colleagues’ finding of a 

decrease in publication bias evidenced in relatively recent SRMAs.[50]  

The purpose of searching multiple resources for SRMAs is to avoid missing relevant 

research that may not have been indexed in one particular database. Little is gained by 

searching multiple databases if there is significant overlap in content covered by them. 

Efficient search strategies should aim to retrieve the maximum number of studies using 

only the most essential information resources: not only because several data resources 

require paid subscriptions, but also searching each resource requires substantial time, 
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skilled manpower, and eventual elimination of duplicate studies. Therefore, searching 

data resources diverse in their study coverage should be the aim of the review strategy. 

However, I found evidence of sequestration of similar resources in the SRMA searches. 

For example, the most common two resources to co-occur in searches were Medline and 

EMBASE. Medline, EMBASE, and the Cochrane libraries form the most used triad. 

Similar sequestration was noted among all databases focusing on published literature. 

Conversely, co-searching diverse resources such as databases mining published literature 

and registries or databases mining published literature and grey literature sources were 

relatively rare. Such practice is questionable because there is considerable overlap 

between published literature resources like Medline and EMBASE, and studies suggest 

searching EMBASE in addition to Medline provides little incremental benefit.[19] On the 

other hand, Cochrane CENTRAL databases mainly mine data from Medline and 

EMBASE (only 0.02% of studies deposited in CENTRAL were not from either Medline 

or EMBASE).[51] Such sequestration of search resources seems reflective of blindly 

following prevalent practice, rather than well thought-out strategies. In such scenarios, 

instead of investing time searching studies from similar types of resources, researchers 

should diversify the nature of their information resources based on the type of studies 

covered (published/unpublished). 

Finally, of the resources used in SRMAs, searching Scopus and CTG were associated 

with statistical findings of no publication bias. The benefit of Scopus may be explained 

by the fact that it has 100% coverage of multiple resources including Medline, EMBASE, 

Compendex, World textile index, Fluidex, Giobase, and Biobase. Additionally, it has 
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approximately 20% more citation coverage than Web of Science, and covers patents and 

web literature as sources of grey literature.[52] CTG usage showed a trend towards low 

publication bias in general, while this link was stronger in studies with safety endpoints. 

The benefit of CTG can be explained by its coverage of unpublished trial reports as 

evidenced in previous research.[26] The fact that CTG provides a wider coverage of 

safety data than published articles may explain its benefit in SRMAs with safety studies. 

[27,29] 

This study has several limitations. First, I look at use of information resources in search 

strategy and link this to publication bias. This is, however, an indirect linkage, as mere 

searching of a certain resource may not lead to finding additional studies in individual 

cases. Moreover, I use statistically measured publication bias results as end points in the 

above analysis. However, many studies do not report statistical tests to identify 

publication bias, simply because determination of publication bias by most statistical tests 

is imperfect. However, due to our relatively large sample size, I aimed to find an 

association between finding publication bias and information resources. Also, an ideal 

scenario for an interrupted time series analysis is to have more endpoints both before and 

after the intervention than I did. However, since the Cochrane guideline was a recent 

implementation, meaningful distal time points were unavailable. 

In conclusion, this study provides evidence that registries and other forms of grey 

literature in SRMA are mostly used in methods journals only, and recommendations in 

best practice guidelines may not be sufficient for widespread use of such resources. I 

additionally found that even SRMAs that search multiple sources tend to search similar 
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resources, rather than databases with diverse coverage. This study provides supports 

using Scopus and CTG in addition to Medline search to reduce publication bias.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
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CHAPTER 3 

Concordance of data on serious adverse events and death between 

ClinicalTrials.gov, journal articles and FDA medical reviews 

Introduction 

The issue of discrepancy of data between CTG and articles reach beyond concerns about 

lack of research reproducibility: it also prevents building confidence regarding the 

usability of such data in secondary research. Journal articles have limited publishing 

space, and do not report all safety data.[53,54] Since secondary researchers 

systematically review published articles, the unpublished safety data often remain 

ignored in meta-analysis research, resulting in a falsely skewed impression favoring drug 

efficacy that may ignore existing (yet under-published) safety issues. Increased use of 

wider safety data reported in registries may pose a solution, provided such data is correct. 

Importantly, previous works reporting discrepancy between CTG and published articles 

implicitly assume the veracity of article data, just because they are peer reviewed.[29] 

However, the peer reviewers do not get access to the patient level data, and do not 

perform re-analysis of the data.[55] Thus, the peer review process cannot guarantee 

correctness of article data. On the other hand, the FDA reviews patient level data, and 

makes these reviews publicly available.[30] Moreover, while the consequences of data 

manipulation in articles can mostly be academic or ethical, manipulated data presented to 

the FDA will have legal implications.[31,32] Thus, FDA reviews are more appropriate 

gold standards to judge to data accuracy in registries.  
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In this chapter, I compared the concordance of safety data among the three resources: 

FDA medical reviews (the reference standard), CTG and journal articles, (the test 

resources), in a random sample of new molecular entities (NMEs) approved by the FDA 

between 2013-2015.  

Methods 

Searching and eligibility 

Of the new molecular entities (NMEs) approved from 2013 to 2015, I randomly sampled 

30% of the medications, stratified by their year of approval. Thereafter, I extracted safety 

information from trials considered “pivotal” for the FDA approval of the respective 

drugs. I excluded a drug from the final analysis if 1. Relevant trial reports were available 

within all three resources, 2. Cohort sizes of the trials described in all three resources 

were comparable, and 3. Data from two or more pivotal trials were pooled to evaluate 

safety in the FDA reports (since pooled data would increase uncertainty about the 

inconsistency within the sources).  

Data sources and extraction 

I manually extracted data from the three resources:  the FDA, the CTG, and the published 

articles. Data from the FDA was extracted from the website Drugs@FDA, from the 

medical reviews enlisted within the drug approval notices. The pivotal trials used to 

assess safety by the FDA reviewer were identified and relevant data were extracted. All 

safety information was taken from the most recent NME submission cycle, or if enough 

detail wasn’t provided in that, the last cycle report where safety details were provided.  
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Thereafter, CTG was searched for the corresponding trial reports using the drug names 

and trial acronyms. Published articles were identified from the Medline indexed articles 

that are automatically linked to the relevant CTG report. That the reports extracted from 

the three resources described the same trial was confirmed by comparing the cohort sizes 

in the three reports. 

Outcomes of interest 

For all drugs, I noted the numbers of deaths (from all causes), and number of serious 

adverse events (SAE) noted in each pivotal trial reports from the three resources. These 

were the primary outcomes of interest since these safety endpoints have uniform 

definitions across the resources. From each resource, I noted the outcome denominators, 

i.e., the total number of individuals exposed to each treatment group (receiving 

NME/control), and the numerators, i.e., the number (or proportion) of patients with at 

least one outcome. If the numerators were reported as percentages in any report, those 

percentages were converted to full numbers and rounded up. I calculated outcome rates 

by determining the percentage of patients exposed to treatment who had outcomes.  

Additionally, I noted the total period of observation for which each endpoint within each 

report was recorded. I calculated the observation period as the time difference between 

the trial initiations till the cut-off date for database closure for the analysis, as noted in 

each of the three resources. 

To look at reporting concordance among the resources for more granulated safety 

endpoints, I selected a subgroup of cancer NMEs. This is because the secondary safety 
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endpoints are better described across resources for cancer medications. For this 

evaluation, I selected all medications included in our final analysis that were L 

(anticancer and immunomodulatory) drugs according to the Anatomic Therapeutic 

Chemical drug classification.[56] I selected the safety endpoints mentioned in the 

“Adverse reactions” section described the product label associated with the NME. My 

rationale was that: 1. Since the risk-benefit assessments of the NMEs of these 

medications of concern, the safety endpoints of these drugs are likelier to be subject of 

quantitative meta-analysis in future assimilations, and should thus be reported 

consistently across the trial reports, and 2. These safety endpoints are described using 

“Preferred terms” from the MedDRA vocabulary across the resources, thus making the 

case definitions uniform across the data sources. I compared the reported numbers for 

these safety events of all severities; for CTG, I added the numbers reported as “Serious 

AEs” and “Other AEs” to arrive at the total numbers for “all grade AEs”. 

Analysis 

I assessed discordance between the point estimates of the extracted numerators, 

denominators, and calculated AE rates as reported within the three resources. I estimated 

any mismatch between the index and reference resources on numerators, denominators, 

outcome rates, and observation time as a percentage change from the value in the 

reference standard:  

(ValueFDA- Valuetest_resource)  X 100 
ValueFDA 

 

I considered mismatches over ±30%1 of the FDA value as being significant.  
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I then measured if there was any consistent pattern in over/under reporting of endpoints 

in either CTG or articles as compared to the FDA reviews. To explain differences in 

reporting, I compared the cut-off time frames used for reporting of the safety endpoints. 

Numerical data were summarized as medians and interquartile ranges while categorical 

data were presented as frequencies. To compare between groups of numerical data I used 

Mann-Whitney test, whereas to compare between categorical data, chi-squared analysis 

was used. I calculated linear correlations between numerical data using Spearman’s Rho. 

I considered a P value lower than 0.05 to be statistically significant. All statistical 

analyses were performed using Stata version 14.[45] 

Results 

Out of a total of 113 NMEs approved between 2013-2015, I selected a 30% random 

sample of 38 NMEs stratified over approval year. Of these, 13 NMEs met our eligibility 

criteria. The sampling process and reasons for exclusion are described in Figure 1, the 

most common cause of exclusion being the pooling of safety data across trials in the FDA 

medical reviews. Four medications were approved in 2013 (Riociguat, Conjugated 

estrogens/Bazedoxifene, Afatinib, Trametinib), four in 2014 (Ceftolozane/Tazobactam, 

Ramucirumab, Peginterferon beta-1a, Siltuximab), and five in 2015 (Edoxaban, 

Ivabradine, Sacubitril/Valsartan, Ixazomib, Aripiprazole lauroxil). Six out of the 13 

medications were ATC class L (anticancer and immunomodulatory drugs), three were 

class C (cardiovascular drug), and one each of classes B (drug for blood and blood 

forming organs), G (sex hormone), J (anti-infective), and N (drug for nervous system). 

Eleven of the 13 drugs contributed one trial each, while two had two trials each. Of the   
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Figure 1. Selection trials of new molecular entities (NMEs) approved by the United 
States Food and Drug Administration (FDA). [Abbreviations: ATC= Anatomic 
Therapeutic Chemical; CTG= ClinicalTrials.gov; Drug classes: A: Alimentary 
tract and metabolism; B: Blood and blood forming organs; C: Cardiovascular system; D: 
Dermatologicals; G: Genito-urinary system and sex hormones; H: 
Systemic hormonal preparations, excluding sex hormones and insulins; J: 
Antiinfectives for systemic use; L: Antineoplastic and immunomodulating agents; M: 
Musculo-skeletal system; N: Nervous system; R: Respiratory system; V: Various]  

113#NME#approved#by#the#FDA#from#201392015##
(27#in#2013,#41#in#2014,#45#in#2015)#

ATC#classificaHon:#A#(15.9%),#B#(3.5%),#C#(7.1%),#D#(3.5%),#
#G#(2.7%),#H#(0.9%),#J#(12.4%),#L#(33.6%),#M#(0.9%),#N#(7.1%),##

R#(4.4%),#V#(8.0%)#

#
30%#random#sample#straHfied#by#year:#resulHng#in#

38#NMEs#(9#in#2013,#14#in#2014,#15#in#2015)#
ATC#classificaHon:#A#(15.8%),#B#(2.6%),#C#(10.5%),#D#(2.6%),#

#G#(5.3%),#J#(10.5%),#L#(28.9%),#M#(2.6%),#N#(2.6%),##
R#(5.3%),#V#(13.2%),#(No#difference#from#populaHon#P=0.9)#

!

#
13#NMEs#[4#in#2013(Riociguat,#Conjugated#

estrogens/Bazedoxifene,#AfaHnib,#TrameHnib),#4#in#
2014#(Ce`olozane/Tazobactam,#Ramucirumab,#
Peginterferon#beta91a,#Siltuximab),#and#5#in#

2015(Edoxaban,#Ivabradine,#Sacubitril/Valsartan,#
Ixazomib,#Aripiprazole#lauroxil)]#

ATC#classificaHon:#B#(7.7%),#C#(23.1%),#G#(7.7%),#J#(7.7%),#L#
(46.1%),#N#(7.7%)##

#

#
#
#
Excluded#NMEs#
17:#had#data#from#pivotal#trial#pooled#with#other#studies#
7:#did#not#have#data#in#either#arHcles#or#CTG#
1:#cohort#sizes#did#not#match#between#the#three#resources#
#
#
#

#
15#trials#selected#(11#of#the#13#drugs#contributed#

one#trial#each,#while#2#had#2#trials#each.#)#
#
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15 trials, four trials had three arms each [two test arms (with a different dose of test drug 

each) and a control arm], while the rest 11 two arms each (one test and one control arm). 

For the ease of analysis, in trials that had three arms, I converted the two active drug arms 

into one by adding across the numerators and denominators. A total of 60 point-estimates 

(30 numerators and 30 denominators) were to be compared across three resources per 

endpoint. 

There were frequent mismatches between the index and reference sources in data (either 

numerators or denominators) in NME arms for both death (72% for ClinicalTrials.gov, 

53% for articles) and SAEs (30% for ClinicalTrials.gov, 30% for articles). A similar 

pattern of frequent but minor deviations in mismatch for death and SAE was also seen for 

control arms as shown in Table 1. However, mismatches of >30% from FDA values were 

infrequent for outcome rates in in both resources [for death rates, 18% cases in 

ClinicalTrials.gov and 6% cases in articles; for SAE rates, never in either resource]. 

When CTG and articles were compared with FDA reviews, I did not find any systematic 

tendency towards over- or underreporting in the endpoints death or SAE [median change 

in risk ratio of death rate from FDA vs CTG as opposed to that in FDA vs article= 0% vs 

0%, P= 0.87; median change in risk ratio of SAE rate from FDA vs CTG as opposed to 

that in FDA vs article= 0% vs 0%, P= 0. 0.51].  
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Table 2 shows the mismatches in data on safety endpoints mentioned in product labels of 

the six anticancer/immunomodulatory drugs in our sample. Mirroring the pattern in death 

and SAE, frequent but minor deviations were seen for “Adverse reactions” for the 

selected anticancer drugs. Frequencies of any mismatches for adverse reactions were 

similar in ClinicalTrials.gov and articles for NME arms (80% in ClinicalTrials.gov, 62% 

in articles, P=.11) as well as controls (64% in ClinicalTrials.gov, 44% in articles, P=.13).  

I explored whether discrepancies between the data sources can be explained by 

differences in time frames of cohort observation. In general, such data was poorly 

reported in the articles (unclear in 4/15 articles). The time frames were available from all 

three resources in 10/15 trials. In those ten trials, the percentage change in observation 

period from FDA reviews and CTG or articles were comparable (median percentage 

change from FDA in CTG 2.2% vs that in articles 1 %, P= 0.47). While the time frames 

were rarely exactly same between FDA and either of the test sources, there were no 

significant correlations between the changes in time frame with respect to FDA review 

and changes in event rates (correlation coefficient between percentage difference in time 

frame vs percentage difference in event rates active arms: FDA vs CTG for death Rho= -

0.20, P= 0.58; FDA vs articles for death Rho= 0.006, P= 0.98; FDA vs CTG for SAE, 

Rho= 0.08, P=  0.77; FDA vs article for SAE Rho= -0.20, P=  0.65). This makes 

differences in time frames of cohort observation unlikely to be the chief source of the 

discordances in event rates. 
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Table 2. Mismatches in reporting of safety outcomes mentioned in “Adverse Reaction” section of product labels for anticancer drugs 
between FDA reviews, ClinicalTrials.gov, and published articles. 

 

aNME= new molecular entity 

New molecular entity 
(Approval year) 

Adverse reaction  
(in MedDRA preferred term) 

Percentage mismatch in outcome rate at 
ClinicalTrials.gov compared to FDA 

Percentage mismatch in outcome rate in articles 
compared to FDA 

NMEa arm Control arm NME arm Control arm 
Trametinib 
(2013) 
 

Rash 0.0 0.0 0.0 0.0 
Diarrhea 0.0 0.0 0.0 0.0 
Lymphedema -9.1 0.0 Not reported Not reported 

Afatinib 
(2013) 
 
 
 
 
 

Diarrhea -129.2 -8.7 -127.1 26.1 
Rash/Dermatitis acneiform -60.0 0.0 -126.7 36.4 
Stomatitis -22.5 26.7 -132.4 -13.3 
Paronychia -124.1 0.0 -124.1 0.0 
Dry skin -122.6 0.0 -116.1 0.0 
Decreased appetite -127.6 0.0 -62.1 0.0 
Pruritus -119.0 0.0 -104.8 0.0 

Siltuximab 
(2014) 
 
 
 

Pruritus 4.3 0.0 4.3 0.0 
Increased weight 0.0 0.0 0.0 0.0 
Rash -17.4 -33.3 21.7 0.0 
Hyperuricemia 0.0 100.0 0.0 100.0 
Upper respiratory tract infection 26.9 20.0 26.9 20.0 

Ramuciruab (2014) 
 

Hypertension 10.3 -22.2 2.6 0.0 
Diarrhea 0.0 10.0 Not reported Not reported 

PEGylated-Interferon 
Beta-1a (2014) 
 
 
 
 
 

Injection site erythema 0.1 -0.2 0.0 0.0 
Influenza-like illness 0.3 -0.2 0.0 0.0 
Pyrexia 0.3 1.1 0.0 0.0 
Myalgia -0.9 60.4 0.0 60.5 
Chills 0.1 -0.2 0.0 0.0 
Injection site pain -0.6 -0.2 0.0 0.0 
Injection site pruritus -1.5 -0.2 0.0 0.0 

Ixazomib (2015) 
 
 
 
 
 
 

Diarrhea 95.4 97.7 -8.3 -7.2 
Constipation 99.2 98.9 -3.0 -4.7 
Thrombocytopenia 94.5 86.1 -53.0 -58.8 
Peripheral neuropathy 0.0 0.0 -161.4 -169.7 
Nausea 97.8 100.0 -12.7 -7.1 
Peripheral edema 98.9 98.5 -10.7 -10.9 
Vomiting 97.5 100.0 -6.0 -8.0 

Median (interquartile ranges) of percentage mismatches 0.0 (-17.4 to 10.2) 0.0 (-0.2 to 60.4) 0.0 (-62.1 to 0.0) 0.0 (-4.7 to 0.0) 
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Discussion 

Built with an original aim to enhance research transparency, trial registries that mandate 

reporting of trial results also lend themselves as sources of publicly available trial 

data.[57] However, accuracy of such data has been called into suspicion upon findings 

that they do not always match corresponding reports in published articles, thus 

questioning the usability of registry data for secondary research.[28,29] I compared 

safety data in CTG and articles with FDA reviews to find that the discrepancies in both 

test resources, while equally prevalent, usually are of modest magnitude.  

This work has implications for the use of use of publicly available safety data in registries 

for secondary research. First, since the differences are small, and not due to biased over 

or under-reporting, safety data from registries can be considered as an alternative to 

published article data. There are several reasons to encourage such practice: since 

accessing articles often require paid subscriptions to journals, performing secondary 

research becomes a monopoly of resource-rich settings, a present-day reality that ignores 

scientific perspective of the underprivileged.[58] Since data in registries are publicly 

available, such inequitable situations would be challenged. Moreover, since a significant 

proportion of large trials remain unpublished in journals while being reported in 

registries, increased use of registries in secondary research may help avoid publication 

bias, particularly in safety data.[26,27] 

This work has several limitations. First, to use FDA reviews as gold standards, I limit our 

sample to only NMEs. Since any report on NMEs are under considerable scrutiny from 
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regulators, researchers, clinicians and the public, the slightness of differences between 

FDA reports and CTG/articles in case of NMEs may not extrapolate to trials performed in 

later stages of a drugs life cycle. Second, the observation periods I attempted to extract 

from all three resources are only rough estimates, and may not be accurate. Given that the 

event rates change with time frames, all resources should precisely identify the 

observation periods for reporting safety data to ensure greater transparency. Third, the 

sample is small. However, the randomized sampling procedure may ensure external 

validity of this research. 

In conclusion, thisresearch shows that differences in data between FDA reviews, CTG, 

and articles are prevalent but small. If FDA reviews are considered gold standards, 

neither CTG nor articles systematically over- or underreport rates of safety events. Future 

work needs to identify whether the small differences in safety data between the resources 

qualitatively or quantitatively affect results of meta-analyses. 
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CHAPTER 4 

Examining reproducibility of published meta-analyses using data at 

ClinicalTrials.gov downloaded by an automatic extraction tool 

Introduction 

The finding of frequent, minor, yet equally prevalent differences in data between CTG 

and FDA reviews as opposed to journal articles and FDA reviews raises the question that 

whether it would make a difference if data at CTG is used instead of article data to 

conduct of met-analysis research. If such interchangeability is established, it can 

potentially make meta-analysis research faster and more accurate, since the uniformly 

reported data at CTG can be automatically downloaded in analysis-ready formats, 

eliminating the necessity of the error-prone and time consuming process of manual data 

extraction from articles. 

In this chapter, I describe whether the data at CTG can reproduce the results in the 

published meta-analysis articles. As a part of this work, I led the development of web-

based interactive tool (EXACT, Extracting Accurate efficacy and safety information 

from ClinicalTrials.gov: http://bio-nlp.org/EXACT/) that allows automated extraction of 

trial data by end-users.  
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Methods 

Selection of published meta-analysis articles for reproduction 

Because mandatory reporting of trial results at CTG is relatively recent,[59] I searched 

for meta-analyses of drugs recently approved by FDA.[60] I listed the new molecular 

entities (NMEs) approved by FDA in the year 2013, and randomly selected three (10% 

sample) of those NMEs. I then searched PubMed for meta-analyses involving those 

drugs. As a proof of concept, I selected one meta-analysis article per drug. I excluded 

meta-analyses that 1. Used Bayesian or other model-based methods, 2. Did not include 

both efficacy and safety endpoints, 3. Did not have trial reports available in both 

published articles and CTG results, or 4. Had ambiguous endpoints. When more than one 

paper for a drug satisfied all these criteria, I selected the one that had the largest number 

of endpoints.  

Ensuring validity of our meta-analysis methods  

To ensure I was using the same methods as the published meta-analyses, I repeated the 

meta-analyses of endpoints in the published articles using data manually extracted from 

the primary study articles. I considered a published meta-analysis to have been 

reproduced by us using data from primary study articles if 1. The relative risk (RR) was 

within +/-20% of the RR in the published SR, and 2. The P-value remained on the same 

side of 0.05 as in the published SR. This validated I were using the same methods as the 

published meta-analyses. Having established that I was using identical methods as the 
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published meta-analyses for the reproduced endpoints, I repeated the meta-analyses for 

those endpoints using data extracted from CTG. 

Extracting data from CTG automatically using EXACT, a web-based tool 

To automatically extract data from CTG, I led the development of a web-based tool 

called EXACT, (Extracting Accurate efficacy and safety information from 

ClinicalTrials.gov: http://bio-nlp.org/EXACT/) with Matthew Cornell, our software 

developer (Please see preface for credits).  The EXACT implementation is a Python 

program[61] comprising a library to parse records expressed in the CTG XML format, a 

Flask web application[62] that allows the user to customize which data are desired, and 

library routines to extract those data in a structured format. The XML parsing library 

contains 30 functions in categories corresponding to general information in the CTG 

website (trial title, study type, conditions, interventions, and design) and routines to 

extract data from the sections on baseline, outcome, participant flow, and reported events. 

The library consists of about 1800 lines of code, about one-third for internal tests to 

ensure proper functioning.  

On the server side, the application requires two databases: A MySQL[63] database that 

contains the extracted numerical data, and an Apache Solr[64] instance that indexes the 

fields to be searched for by one of the application’s two search features (indication and/or 

intervention search, and trial body search). The trial body search covers the fields 

‘arm_group’, ‘brief_summary’, ‘brief_title’, ‘condition’, ‘intervention’, and 
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‘official_title’. Information on the intervention or the indication is automatically 

downloaded for the user. Figure 1 describes the steps involved in developing the tool.  

 

Figure 1. Diagram showing development of EXACT 
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Sources of data for EXACT 

CTG allows users to download data either via the “Clinical Trials Transformation 

Initiative Aggregate Analysis of ClincalTrials.gov” (CTTI AACT) database[65] or as 

XML files from a search result.[66] we found it difficult to process the CTTI database 

(which is updated infrequently), so we chose to program from the search list. We used 

our Python library[61] to process the XML files and populate a MySQL database with the 

extracted trial information and data.  

Internal validation of the tool 

The program was developed using Extreme Programming’s Test Driven Development 

methodology,[67] which resulted in extensive coverage of all library functions via 25 

tests to ensure proper functioning (about 600 lines of code). Test inputs were an arbitrary 

selection of eight actual CTG XML files chosen to represent a range of trials, along with 

hand-collected expected outputs for them, obtained from each trial’s CTG results page.  

With the resulting application, a user of EXACT can initiate a search with the unique 

CTG identifier for a particular trial. Thereafter, assuming the trial results have been 

reported at CTG, the user can download all trial data, or can select any of 1. reporting 

groups, 2. period (main trial period/follow-up period) and participant flow, 3.  outcome 

measures, 4. serious adverse events, and 5. other adverse events. Figure 2 shows the user 

interface and Appendix 7 is a manual to use EXACT. 
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Figure 2. EXACT’s user interface: A. Screenshot of trial result reported at 
ClinicalTrials.gov; B. Screenshot of six steps through which the user specifies the items 
to be downloaded (Appendix describes a user manual); C. Screenshot of data extracted in 
excel format. 
 

Use of the CTG data for meta-analysis 

To validate the use of CTG data thus extracted, I re-conducted meta-analyses published 

in three peer-reviewed articles with data extracted from CTG. I considered a meta-

analysis to have been reproduced if 1. The relative risk (RR) was within +/-20% of the 

RR in the published SR, and 2. The p-value remained on the same side of 0.05 as in the 

published SR. All analyses used Stata version 14 and used the same random-effects or 

fixed-effect model as in the published SR. 

Results 

From the 27 NMEs approved by the FDA in 2013, I randomly selected three: Simeprevir, 

Trametinib, and Vortioxetine. Figure 3 describes the article selection, Table 1 describes 

the articles selected, and Appendix 8 describes the reasons for excluding other SR 

articles.  

The three SR articles contained meta-analyses of a total of 28 endpoints. From manually 

extracted data I were able to reproduce results for 25 endpoints (details of the other three 

endpoints are in Appendix 9). Then I sought to reproduce the meta-analysis results for 

these 25 endpoints using the CTG data extracted by EXACT. The 25 outcomes required 

extraction of 498 pairs of data elements from original articles and from CTG via EXACT. 

[Besides 480 data points for 23 endpoints (4 from Qu et al., 2015, 7 from   
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Figure 3. Flowchart for selection of meta-analyses reproduced using data manually 

extracted from Original articles and data extracted by EXACT from 

ClinicalTrials.gov  
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Abdel-Rahman et al., 2016, and 12 from Li et al., 2016), 18 data elements (hazard ratio 

and its two 95% confidence limits from each of six trials (four for progression-free 

survival and two for overall survival) used in Abdel-Rahman et al., 2016)]. 87% of the 

extracted numbers matched between the two sources (details in Appendix 10). An equal 

amount of trial data was available from original articles and CTG for 20 of the 25 

outcomes. More trial data were available from original articles for one efficacy outcome 

(hazard ratio for overall survival in Trametinib), and CTG provided more data for four 

safety outcomes (hypertension and acneiform dermatitis for Trametinib; hyperhidrosis 

and somnolence for Vortioxetine).  

Table 1. Selected systematic reviews. 

Systematic review Comparison Number of 
RCTs pooled 

Endpoints selected for meta-analysis 

Qu et al., 2015 Comparison of Simpeprevir + 
Peginterferon + Ribavirin versus 
Peginterferon + Ribavirin in HCV 
infection 

6 Sustained virological response at 12 
weeks, Rapid virological response, Serious 
adverse events, Discontinuation 

Abdel-Rahman et 
al., 2016 

Comparison of BRAF inhibitors 
+Trametinib versus BRAF 
inhibitors in BRAF-mutated 
melanoma 

4 Hazard ratio for progression-free survival, 
Hazard ratio for overall survival, Overall 
response rate, Diarrhea, Hypertension, 
Decreased ejection fraction, Acneiform 
dermatitis, Pyrexia, Squamous cell 
carcinoma 

Li et al., 2016 Vortioxetine versus Duloxetine in 
major depressive disorder  

5 Response rate, Remission rate*, 
Nausea, Constipation, Hyperhydrosis, 
Diarrhea , Dizziness , Dry mouth, 
Fatigue, Insomnia, Somnolence, 
Nasopharyngitis*, Decreased appetite*, 
Headache, Vomiting 

RCT= randomized controlled trial, HCV= Hepatitis C virus, BRAF= a gene encoding B-
Raf protein. 
* Endpoint that could not be reproduced 
!
!
!
!
!
!
!
!
!
!
!
!
!
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Using the data extracted from CTG, I was able to reproduce results for 22 endpoints 

(88%). The median difference in the risk ratio between published meta-analysis and 

reproduction using CTG data was 0.005 (Interquartile range: minus 0.0015 to 0.0175) for 

the efficacy endpoints, and 0.01 (Interquartile range: 0 to 0.02) for the safety endpoints. 

The results are shown in Table 2. [I was unable to reproduce meta-analyses for weighted 

mean differences in Li et al. 2016 because the primary articles for this SR did not 

consistently report measures of dispersion, Appendix 11. Replication using data at CTG, 

where standard deviations were reported, is presented in Appendix 12.] 

Approximately 10 hours were spent collecting data from published articles, and 

approximately 4 hours were spent using EXACT. Thus, EXACT reduced the time of data 

extraction by 60%.  
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Table 2. Results of meta-analyses from published systematic review and meta-analyses (SRMA) 
using data manually extracted from original articles and from ClinicalTrials.gov using EXACT.!

Outcomes marked with * could not be reproduced. 
NA= Not available 

 
 
 
Outcomes 

 
 

 
Type of outcome 

Relative risk (95% confidence limits) P values I2 statistic 

Published 
SRMA 

Data from 
original 
article 

Data from 
CTG via 
EXACT 

Published 
SRMA 

Data from 
original 
article 

Data from 
CTG via 
EXACT 

Published 
SRMA 

Data from 
original 
article 

Data from 
CTG via 
EXACT 

Qu et al.2015, Simeprevir 
Sustained 
Virological 

Response at 12 
weeks 

Efficacy 1.69 
(1.37-2.08) 

1.692 
(1.37-2.08) 

1.692 
(1.37-2.08) 

<0.001 <0.001 <0.001 0.824 0.824 0.824 

Rapid Virological 
Response 

Efficacy 9.57 
(5.82-15.73) 

9.57 
(5.82-15.73) 

9.68 
(5.88-15.95) 

< 0.001 <0.001 <0.001 0.636 0.636 0.639 

Serious Adverse 
Events 

Safety 0.67 
(0.47-0.94) 

0.67 
(0.47-0.94) 

0.65 
(0.46-0.92) 

0.023 0.024 0.017 0 0 0 

Discontinuation 
 

Safety 
 

1.26 
(0.58-2.74) 

1.033 
(0.65- 1.73) 

0.98 
(0.44-2.19) 

0.566 0.899 0.970 0 0 0 

Abdel-Rahman et al., 2016, Trametinib 
Hazard ratio for 

Progression-Free 
Survival 

Efficacy 0.56 
(0.49-0.64) 

0.54 
(0.47-0.62) 

0.54 
(0.47-0.62) 

< 0.00001 <0.001 <0.001 NA 0.548 0.548 

Hazard ratio for 
Overall Survival  

Efficacy 0.7 
(0.58-0.84) 

0.57 
(0.46-0.68) 

0.67 
(0.52-0.83) 

0.00001 <0.001 <0.001 NA 0.486 0 

Overall Response 
Rate 

Efficacy 1.35 
(1.16-1.58) 

1.34 
(1.23-1.45) 

1.34 
(1.23-1.45) 

0.0002 <0.001 <0.001 NA 0.13 0.13 

Diarrhea Safety 1.3 
(1.3-1.49) 

1.3 
(1.13-1.48) 

1.29 
(1.13-1.47) 

0.0002 <0.001 <0.001 NA 0.909 0.895 

Hypertension* Safety 1.22 
(0.99-1.52) 

1.22 
(0.98-1.51) 

1.32 
(1.08-1.62) 

0.07 0.068 0.005 NA 0.247 0.458 

Decreased 
ejection fraction* 

Safety 4.63 
(2.56-8.37) 

4.63 
(2.56-8.36) 

3.35 
(2.02-5.55) 

<0.00001 <0.001 <0.001 NA 0.629 0.642 

Acneiform 
dermatitis 

Safety 1.61 
(1.03-2.53) 

1.61 
(1.02-2.53) 

1.58  
(1.12-2.21) 

0.04 0.038 0.008 NA 0.436 0.15 

Pyrexia Safety 1.98 
(1.72-2.27) 

1.97 
(1.71-2.27) 

2.18 
(1.91-2.49) 

<0.00001 <0.001 <0.001 NA 0.822 0.87 

Squamous cell 
carcinoma* 

Safety 0.16 
(0.1-0.25) 

0.16 
(0.1-0.25) 

0.2 
(0.11-0.36) 

<0.00001 <0.001 <0.001 NA 0.382 0.224 

Li et al., 2016, Vortioxetine 
Response rate Efficacy 0.83 

(0.77-0.89) 
0.83 

(0.78-0.89) 
0.83 

(0.77-0.89) 
<0.001 <0.001 <0.001 0 0 0 

Nausea Safety 0.7 
(0.56-0.87) 

0.75 
(0.61-0.94) 

0.7 
(0.61-0.81) 

0.001 0.01 <0.001 NA 0.854 0.754 

Constipation Safety 0.47 
(0.34-0.64) 

0.45 
(0.32-0.65) 

0.45 
(0.32-0.65) 

<0.001 <0.001 <0.001 NA 0 0 

Hyperhydrosis Safety 0.35 
(0.23-0.55) 

0.31 
(0.19-0.5) 

0.29 
(0.18-0.45) 

<0.001 <0.001 <0.001 NA 0 0 

Diarrhea Safety 0.74 
(0.57-0.97) 

0.72 
(0.53-0.97) 

0.72 
(0.53-0.97) 

0.03 0.03 0.03 NA 0 0 

Dizziness Safety 0.51 
(0.37-0.69) 

0.51 
(0.33-0.8) 

0.51 
(0.33-0.8) 

<0.001 0.004 0.004 NA 0.624 0.624 

Dry mouth Safety 0.5 
(0.39-0.63) 

0.48 
(0.35-0.65) 

0.52 
(0.31-0.85) 

<0.001 <0.001 0.01 NA 0.295 0.79 

Fatigue Safety 0.45 
(0.32-0.64) 

0.44 
(0.29-0.67) 

0.44 
(0.29-0.67) 

<0.001 <0.001 <0.001 NA 0.163 0.163 

Insomnia Safety 0.65 
(0.46-0.92) 

0.64 
(0.42-0.96) 

0.64 
(0.42-0.96) 

0.016 0.033 0.033 NA 0 0 

Somnolence Safety 0.33 
(0.21-0.52) 

0.31 
(0.19-0.5) 

0.33 
(0.21-0.5) 

<0.001 <0.001 <0.001 NA 0 0 

Headache Safety 0.93 
(0.77-1.13) 

0.93  
(0.74-1.16) 

0.93 
(0.74-1.16) 

0.468 0.523 0.523 NA 0 0 

       Vomiting  
Safety 

0.7 
(0.45-1.09) 

0.72 
(0.45-1.16) 

0.72 
(0.45-1.16) 

0.110 0.176 0.176 NA 0 0 
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Discussion 

This research suggests that, although mismatches occur between data published in 

original articles and data at CTG, they seldom qualitatively alter the results of meta-

analyses. This aligns with studies showing that most mismatches in data at CTG are 

minor.[68] The strength of our results lies in the random selection of the SR articles and 

the wide range of endpoints, encompassing both efficacy and safety outcomes. 

Additionally, we developed a web-based tool to automatically extract data from CTG.  

Although previous reports have emphasized the necessity of searching CTG alongside 

original articles as a source of additional data,[12,69] our study suggests that data from 

CTG, when used as the primary source, reproduce similar meta-analysis results. Thus, 

this work recommends use of CTG data particularly for safety results, which are often 

reported in greater detail at CTG.[27]  

Our web-based tool also provides a way to accelerate the process of data extraction for 

meta-analyses research. Currently users have no publicly available method to extract the 

vast amounts of trial data available at CTG without advanced programming. Cepeda et 

al., constructed such an implementation, but it is proprietary.[70] EXACT fills this gap 

and reduces the time required for primary data extraction. Our tool can enhance the use of 

CTG by making data extraction from it substantially less laborious. Because EXACT 

makes no extraction errors, compared with many in manual extraction of data from 

published articles, it should also reduce errors in primary data extraction.[37] As a 

verification tool, EXACT could also be useful to journal reviewers and regulatory 
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authorities who might want to check the CTG site for the validity of data entered,[71] and 

tally CTG reports with the articles published and regulatory submissions corresponding 

to these studies. This capability will add to research transparency and reproducibility, 

areas of specific concern at present.[72] 

Data from CTG reproduced the results most meta-analyses of data from original articles. 

EXACT fills a current gap in medical informatics tools, helping meta-analysis research 

by providing an application that automatically extracts results data from CTG. 
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CHAPTER 5 

Conclusions 

In conclusion, the work described in this dissertation looks into the current scenario of 

use of information resources in SRMAs to find that registries, although is an 

underutilized resource, is associated with the finding of low publication bias in SRMAs 

with safety endpoints. I verify the accuracy of the safety data at CTG by examining its 

differences with FDA drug reviews. Finally, I repeat meta-analysis using CTG data to 

show that most meta-analysis results are reproduces using CTG data. This work supports 

the use of CTG data in meta-analyses of safety endpoints. 
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