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Abstract 

Interferon-inducible PYHIN protein family includes the DNA-binding proteins, 

AIM2 and IFI16, which form ASC-caspase 1 dependent inflammasomes, important in immunity 

against cytosolic bacteria, DNA viruses and HIV. The role of other members of this family in 

the recognition of DNA and/or regulation of immune responses is unclear. We identified an 

immune regulatory function of p205, another member of the PYHIN family, in the 

transcriptional control of immune genes. Knockdown of p205 in macrophages revealed that 

inflammasome activation due to dsDNA and ligands that engage the NLRP3 inflammasome 

were severely compromised. Detailed mechanistic analysis showed that loss of p205 was 

associated with a decrease in Asc mRNA and protein levels. p205 knockdown resulted in 

reduced RNA Polymerase II-mediated endogenous Asc gene transcription and mRNA 

processing, suggesting a co-transcriptional control of Asc gene expression. Ectopically 

expressed p205 induced expression of an Asc gene-luciferase reporter and collaborated with 

other transcription factors, such as c/EBPβ, p65/RelA, to further enhance expression. p205 

knockdown also affected the expression of the immune genes Cd86, Cox2, Cxcl2, Il1α, Il10, 

Il12α, Il6 and Ifnα in LPS-stimulated macrophages. Together these findings suggest that p205 

regulates inflammation through control of Asc gene expression, and other immune genes. 

Fungal infections activate both caspase 1-dependent and -independent 

inflammasomes.  In an independent study, we show that Paracoccidioides brasiliensis fungal 

infection also induces caspase 8-dependent non-canonical inflammasome. Caspase 8-dependent 

IL-1β processing required dectin-1, Syk and Asc. Rip3-/- Casp8-/- mice infected with P. 

brasiliensis displayed increased fungal load and showed worse disease progression compared to 

wild type and Rip3-/- mice. These results revealed the importance of caspase 8 in activating and 

regulating inflammasome responses during fungal infection in vivo. 
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1.1 What is Innate Immunity? 

 The innate immune system consists of genetically coded receptors that 

present an impressive ‘first line of defense’ to threats from outside or within the host 

system. These receptors known as the pattern recognition receptors (PRR) recognize 

foreign particles that are associated with pathogens such as bacteria, virus, fungus or 

protozoa called Pathogen-associated Molecular Patterns (PAMP) as well as self-derived 

molecules that may pose dangerous and harmful to the host called Danger-associated 

Molecular Patterns (DAMP) (1). Upon recognition and engagement by these molecules 

resulting from pathogenic infection or cellular damage, the receptors initiate a rapid 

immune response that triggers the production of cytokines and chemokines to contain and 

eliminate the threats, before the slower adaptive immune system kicks in to eradicate 

them and form a long-term memory response. These cytokines and chemokines also act 

as a herald that informs the system of imminent intrinsic or extrinsic danger, which is 

initiated within the infected cells to attract immune cells, also turns to protect the 

surrounding cells from being infected. Cells like macrophages, dendritic cells, fibroblasts, 

mast cells, monocytes, neutrophils and natural killer (NK) cells express these PRR and 

are the sentinels for the host immune system, while the adaptive immune system that is 

engaged by the innate immune system, consists primarily of B-cells and T-cells.  

 The innate immune system is evolutionarily the original host defense 

system, which is the dominant immune system in plants, fungi, insects and primitive 

multicellular organisms. The primary functions of the innate immunity include immune 

cells recruitment to sites of infection and cellular damage, activation of the complement 

cascade to identify pathogens and clear antibody complexes or dead cells, identification 
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and removal of foreign particles present in organs, tissues, blood and lymph, activating 

the adaptive immune system by antigen presenting cells (APC) and acting as a physical 

and chemical barrier to infectious agents. 
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Figure 1.1: Pattern Recognition Receptors and Innate Immune 
pathways. Innate immunity consists of genetically coded receptors called 
Pattern Recognition Receptors (PRR) such as Toll-like receptors (TLR), RIG-I 
like receptors (RLR), NOD-like receptor (NLR) proteins, AIM2-like receptors 
(ALR) and cGAS. Upon binding their cognate pathogen-derived or danger-
associated molecules, the PRRs activates multiple immune pathways through 
adapter proteins and transcription factors leading to immune responses including 
NF-κB, Interferons and Inflammasome pathways.  
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1.2 Pattern Recognition Receptors and Their Ligands 

The Pattern Recognition Receptors or PRRs are classified into different 

families principally according to their structures as well as by ligand-specificity and the 

signaling pathways that they activate upon stimulation.  

 

1.2.1 Toll-like receptors (TLR) 

 Toll-like receptors or TLR are the most comprehensively studied innate 

immune receptors that recognize a wide range of PAMP and DAMP. Initially, Toll was 

described in Drosophila melanogaster as a protein involved in embryonic development. 

It was later discovered to function in fungal pathogen detection and response (2). TLRs 

are type-I transmembrane (TM) proteins, found in the cell membrane or in the 

endosomes, primarily composed of multiple extracellular N-terminal leucine-rich repeats 

(LRR), followed by a cysteine-rich region, a TM domain and an intracellular Toll/IL-1 R 

(TIR) motif (3, 4). The LRR domain is responsible for ligand binding and detecting 

foreign particles while signal transduction occurs through the TIR domain that is capable 

of protein-protein interactions. Bacterial cell wall components in the extracellular 

compartment are detected by TLR present in the plasma membrane. TLR2 forms 

heterodimers with TLR1, TLR6 and possibly human TLR10 to detect triacylated or 

diacylated lipopeptides, peptidoglycans, lipoglycans, lipoteichoic acid (LTA) present in 

the cell walls of both Gram-positive and Gram-negative bacteria, while TLR5 recognizes 

the bacterial flagellin. Human TLR8 and mouse TLR13 respond to viral and bacterial 

RNA. TLR11 and TLR12, found only in mouse, recognize profilin from Toxoplasma 

gondii. TLR4, with the help of MD2 and CD14, shuttle between the plasma membrane 
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and the endosome, and recognizes lipoglycans like lipopolysaccharide (LPS) derived 

from Gram-negative bacteria (5). In contrast, the endosomal TLRs sense bacterial or viral 

nucleic acids within the cytosol – TLR3 senses double-stranded (ds) RNA (6), TLR7/8 

sense single-stranded (ss) RNA (7) and TLR9 recognizes unmethylated CpG DNA (8). 

Upon activation, the TLR dimerize and stimulate MAPK, IFN or NF-κB pathways by 

recruiting the adapters myeloid differentiation primary response protein 88 (MyD88) or 

TIR-domain containing adapter inducing IFN (TRIF; also known as TICAM1) to induce 

proinflammatory cytokine production (9, 10). The downstream signaling proceeds 

through distinct pathways, and deletion of both MyD88 and TRIF completely blocks 

TLR signaling. 

 

1.2.2 RIG-I like receptors (RLR) 

  RIG-I or retinoic acid inducible gene-1 encoded by the gene DDX58 was 

the first DExD/H box RNA helicase to be identified as an intracellular receptor for RNA 

(11). The other members of this RIG-I like receptors or RLR superfamily include 

melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and 

physiology 2 (LGP-2) (12). These proteins contain a DExD/H box RNA helicase domain 

(DEAD domain) with ATPase activity and a C-terminal repressor domain (CTD). RIG-I 

and MDA5 also contain two tandem N-terminal caspase activation and recruitment 

domains (CARDs) that are absent in LGP-2. Although RIG-I and MDA-5 share similar 

domain structure, they recognize distinct RNA ligands in a sequence-independent, length-

dependent manner as established by their crystal structures. RIG-I detects smaller 5’ 

triphosphate RNA molecules and ssRNA. MDA5 preferentially binds to the 
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phosphodiester backbone of longer dsRNA and oligomerizes to form filamentous 

structures on the RNA. RIG-I is involved in sensing Sendai Virus (SeV), Influenza A 

(IAV) and B (IBV) Virus, Hepatitis C Virus (HCV), Vesicular Stomatitis Virus (VSV) 

and Respiratory Syncytial Virus (RSV) (11). MDA-5 recognizes encephalomyocarditis 

virus (EMCV), coxsackie B virus (CBV) and Polio as well as the transfected synthetic 

viral RNA-mimic, polyinosinic:polycytidylic (poly I:C) (13). Upon detection of viral 

RNA particles, RIG-I and MDA5 oligomerize and activate type-I interferon (IFN) 

production via adapter protein mitochondrial antiviral signaling (MAVS) protein and 

transcription factors, Interferon Regulatory Factor (IRF) 3 and 7 (Pathway described in 

more detail in Section 1.3.1). Since 5’-triphosphate modified RNA are predominantly 

found in certain viral genomes, and not in mammalian system, a highly specific and 

strong immune response is initiated upon RIG-I and/or MDA5 induction upon RNA virus 

infection. The other member of the RLR family, LPG-2 was initially shown to negatively 

regulate RLR activity (14) as the LGP-2 overexpression decreased the capacity of RNA 

virus to induce type I IFNs. However, later Satoh et al. showed that LGP-2 deficient mice 

had increased interferon signaling upon infection contrary to its suggested function as a 

negative regulator (15). The RNA-binding PRRs are described in more detail in Section 

1.5. 

 

1.2.3 NOD-like receptors (NLR) 

  Multiple PAMP (e.g. Salmonella sp. type-III secretion, bacterial toxins, 

bacteria-derived RNA:DNA Hybrids etc) system as well as DAMP (e.g. mitochondrial 

damage, β-amyloids, K+ efflux, alum etc) activate the intracellular nucleotide 
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oligomerization domain-like receptors (NLR). In contrast to other receptor family 

members, the NLRs have not been shown to definitively bind or receive any specific 

microbial product. The NLR family includes NLRP1, NLRP3, NLRC4, NLRP6 and 

NLRP12 that activate the inflammasomes to regulate caspase activity and induce an 

inflammatory response.  There are 22 human and 34 mouse NLRs that have a common 

central nucleotide binding and oligomerization (NACHT) domain and a C-terminal 

leucine-rich repeat (LRR) responsible for immune activities of the NLR (16). (More 

details about NLR Inflammasomes in Section 1.4.1) 

  The NOD1 and NOD2 proteins were the first NLRs found to regulate NF-

κB and MAPK pathways. Another NLR, NLRC5, expressed widely in various tissues and 

cell types in both human and mouse, acts as a negative regulator in both NF-κB and type 

I IFN signaling pathways (171). NLRX1 is specifically located at the mitochondria and 

interacts with the MAVS to activate the transcription factors IRF3 and NF-κB signaling 

pathways, leading to the production of IFNα/β and proinflammatory cytokines. RIG-I-

MAVS interaction is impeded by NLRX1, thus negatively regulating of IFN-α/β 

induction during RNA virus infection. In contrast, NOD2 uses MAVS to activate an anti-

viral IRF3 response, leading to enhanced IFN-α/β induction (175). 

 

1.2.4 C-type lectin receptors (CLR) 

  The CLR family includes the receptors DC-SIGN, dectin-1, dectin-2, 

Mincle. They are soluble or transmembrane proteins, containing a distinct C-type lectin-

like domain (Carbohydrate Recognition Domain or CRD), that detect various fungal, 

bacterial and viral sugar-based derivatives such as zymosan, β-glucan, N-linked mannan, 
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a-mannose etc (17) The CLR activates NF-κB signaling pathway via a kinase, Syk 

(spleen tyrosine kinase) through direct interaction with the immunoreceptor tyrosine 

based activation (ITAM) motif present in their intracellular region (e.g. Dectin-1, DC-

SIGN) or indirectly through other molecules containing the ITAM motif (e.g. Dectin-2 or 

Mincle via FcRγ), and regulates TLR-induced gene transcription as well.  

 

1.2.5 AIM-2 like receptors (ALR) and cGAS 

  Of all the ALRs, so far, only absent in melanoma (AIM) 2 and Interferon 

Gamma Inducible protein (IFI) 16 have been characterized as PRRs. cGAS (cytosolic 

GAMP synthase; also known as MB21D1) is an enzyme that belongs to the 

nucleotidyltransferase family (18-20). AIM2 and cGAS localize in the cytoplasm and 

senses DNA in a sequence-independent manner to activate ASC-dependent 

inflammasome and STING-dependent type-I IFN respectively. IFI16 is a nuclear protein, 

which shuttles to the cytoplasm as well on post-translational modification or during 

specific infections, and activates the inflammasome upon Kaposi's sarcoma-associated 

herpesvirus (KSHV) infection, and also in CD4+ T-cells during Human 

Immunodeficiency Virus (HIV) infection (21, 22). The nucleic acid sensors AIM2 and 

IFI16 belong to the family of proteins called PYHIN proteins or as AIM2-like receptors 

(or ALRs) and are described in detail in Section 1.6. Other DNA sensors include 

DAI/ZBP1, MRE11, DDX41, LRRFIP1 and RNA Polymerase III that are described in 

detail in Section 1.5. 
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1.3 Innate Immune Signaling pathways 

  Activation of the PRRs upon detection of DAMPs and PAMPs within the 

host system triggers multiple distinct and parallel downstream signaling pathways that 

control the cellular processes, e.g. inflammation, autophagy, apoptosis, necrosis, cell 

survival and proliferation, that determines the fate of the infected or damaged host cells 

as well as that of the neighboring bystander cells. The Type-I Interferon pathway elicits 

the synthesis and secretion of IFN-α and IFN-β that initiates another cascade of antiviral 

and anti-tumor gene expression. The NF-κB/MAPK pathway, also known as the MyD88-

dependent pathway, activates multiple proinflammatory cytokine genes, including tumor 

necrosis factor (TNF) α, IL-6 and pro-IL-1β. Inflammasome activation causes a robust 

pro-inflammatory response through secreted cytokines such as IL-1β, IL-18 and leads to 

an inflammatory cell death. 

 

1.3.1 The Complement System 

  The complement system is comprised of a subset of proteins circulating in 

the blood that enhances the ability of antibodies and phagocytic cells to clear microbial 

pathogens and damaged cells, promotes opsonization and disrupts the plasma membrane 

of microbes (membrane attack complex or MAC) to kill the organism. The distinct 

biochemical pathways that activate the complement system are (i) the classical 

complement pathway, (ii) the alternative complement pathway and (iii) the lectin 

pathway (23). These reactions amplify the innate anti-microbial mechanisms, recruit 

leukocytes, initiate phagocytosis of pathogens and clear immune complexes. While un-

opsonized pathogens are eventually sensed and phagocytosed by other PRRs, 
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opsonization by complement provides an immediate and effective mechanism of 

pathogen clearance. 

  The classical pathway is triggered by activation of the C1-complex 

composed of C1q, C1r and C1s (C1qr2s2), when C1q binds to IgM or IgG antibodies 

bound to antigens. The complex is also activated when C1q binds directly to the surface 

of the pathogen. The C1r2s2 is a serine protease complex that cleaves C4 and then C2, 

producing C4a, C4b, C2a, and C2b. C4b and C2b bind to form the classical pathway C3-

convertase (C4b2b complex), which promotes cleavage of C3 into C3a and C3b. C3b 

later joins with C4b2b to make C5 convertase (C4b2b3b complex). It initiates the later 

events of complement activation comprising of a sequence of polymerization reactions in 

which the terminal complement components, C6, 7, 8 and 9 interact to form a membrane-

attack complex, which creates pores in the plasma membranes of pathogens leading to 

their death. 

  In the alternative pathway, a similar C3 convertase is formed from 

membrane-bound C3b complexed with Bb, from the component Factor B. The alternative 

pathway can act as an amplification loop for all three pathways, as it is initiated by the 

binding of C3b, and spontaneous C3 hydrolysis due to the breakdown of the internal 

thioester bond. The lectin pathway is similar to the classical pathway, except that it is 

initiated by mannose-binding lectin (MBL) instead of C1q. It is activated by the binding 

of MBL to mannose residues on microbial surfaces, which activates the MBL-associated 

serine proteases, MASP-1, and MASP-2 (similar to C1r and C1s in the classical 

pathway). 
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1.3.2 Type-I & Type-II Interferons  

  The type-I Interferon family consists of multiple cytokines including IFN-

α (13 human subtypes, 14 mouse subtypes), IFN-β and other less characterized cytokines 

such as IFN-ε, IFN-τ, IFN-κ, IFN-ω, IFN-δ and IFN-ζ. IFN-α/β are the most well 

defined, broadly expressed type-I IFN that can induce an anti-pathogenic state via 

changes in host gene transcription in infected as well as surrounding uninfected cells 

(24). Dependent on infections, different conditions arise that determine how type-I IFN 

are induced as well as the downstream signaling pathways that are initiated through type I 

IFN receptor (IFNAR), which trigger IFN-stimulated genes (ISG) activation or 

repression. The primary ligands that can activate type-I IFN are lipopolysaccharides 

(LPS), RNA and DNA. Hence, among the TLRs, TLR4 on the cell surface and TLR 

3/7/8/9 in the endosomes are potent activators of IFN. Similarly, the RNA helicases, 

RIG-I, MDA5 and the DNA sensors, cGAS, IFI16 can activate the type-I IFN pathways.  

 The multiple receptor signaling pathways converge upon the recruitment 

of the cytosolic TIR domain activating the tank binding kinase 1 (TBK1) complex that 

phosphorylates the transcription factors, IRF3 and IRF7 leading to their dimerization. 

The IRF3 and IRF7 homodimers translocate to the nucleus and activates downstream 

type-I IFN pathway including IFNα/β and other ISGs. 

 Upon activation, the receptors employ different adapter proteins to initiate 

IFN signaling. TLR3 activates TRIF to recruit TRAF3, IKKι and NAK-associated protein 

(NAP) 1 to activate TBK1 kinase activity while the other TLRs recruit MyD88 and IL-1 

receptor associated kinases (IRAK) to activate type-I IFN. TLR4 dimers use Myd88 and 

IRAKs as well as TRIF and TRIF-related adapter molecule (TRAM) to activate IRF3. 
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The RNA helicases, upon detection of viral RNA, signal through the adapter, MAVS also 

known as VISA (virus-induced signaling adapter), IPS-1 and Cardiff located on the outer 

membrane of mitochondria and peroxisomes via homotypic interactions between their 

CARD (Caspase-recruitment domains) domains. On binding of activated RIG-I or MDA-

5 filaments, MAVS aggregates on the on the surface of the mitochondria and recruits 

TNF receptor associated factor (TRAF) 3 and 6, caspase-8, RIP1, FAS-associated death 

domain (FADD), and TNF receptor-associated death domain (TRADD) are recruited to 

activated MAVS, forming a signaling complex for activation of the kinases IKKα/β and 

TBK1, resulting in downstream NF-κB and IRF3/7-dependent transcription of antiviral 

genes (Kawasaki et al., 2011). The cytosolic DNA sensors initiate IFN signaling through 

yet another adapter protein, STING. Overexpression of STING drives IFN expression. 

STING localizes to the outer membrane of the endoplasmic reticulum (ER) but 

relocalizes, upon activation, to the Golgi forming large aggregates (Ishikawa et al., 2009). 

The activated STING complex recruits TBK-1 that leads to the phosphorylation and 

dimerization of IRF3 and IRF7.  

 IFNα/β activates a second wave of IFN-dependent gene expression by 

engaging its extracellular receptor, IFNAR. Binding of IFNα/β, IFNAR1 and IFNAR2 

recruits the tyrosine phosphorylases, JAK1 and TYK2 that phosphorylates and activates 

STAT1, STAT2 and STAT3 that form STAT1 or STAT3 homodimers and/or STAT1/2 

heterodimers. These dimers translocate to the nucleus, bind the chromatin (ISRE; IFN-

Stimulatory Response Element) and activate transcription of several ISGs (e.g. IRF7, 

IRF9, Cxcl10, Cxcl9, RANTES, Viperin) in the damaged cell (autocrine) as well as in the 

surrounding cells (paracrine). 
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  Type II interferon or IFN-γ is mainly secreted by T cells, natural 

killer (NK) cells and macrophages. IFN-γ is c ritical for innate antiviral and anti-tumor 

immunity. While mice lacking IFN-γ or its receptor, IFNGR1 are able to manage the viral 

burden during VSV or Semliki Forest virus (SFV) infections, they are more susceptible to 

Vaccinia Virus (VACV) or lymphocytic choriomeningitis virus (LCMV) infections (14, 

19, 20). Interestingly, mice lacking both Ifnar1 and Ifngr1 gene expression show higher 

mortality rate to VV and LCMV (21), which suggests that the two IFN types are often 

complementary with respect to immune resistance to different viral pathogens. 

 IFN-γ–activated macrophages are better equipped to kill bacterial or 

protozoan pathogens. IFN-γ activates the factors, NADPH oxidase subunits, NOS2, 

lysosomal enzymes, and tryptophan-metabolizing enzymes that kill of microbes by 

reactive oxygen species (ROS), NO radicals, degradation, and tryptophan depletion 

respectively. Some of these factors are also regulated by STAT1. Additionally, IFN-γ 

enhances the synthesis of cytokines (e.g. IL-12 p40 subunit) that enhance antimicrobial 

immunity in vivo. IFN-γ is particularly effective against pathogens within the cells such 

as Listeria, Mycobacterium, Salmonella, Chlamydia, and Leishmania. Treatment with 

recombinant IFN-γ or genetic depletion of IFN-γ demonstrates the efficacy of IFN-γ as 

factor regulating pathogen survival or clearance. 

 

 

1.3.2 NF-κB and MAPK  

 The NF-κB (Nuclear Factor- κB) and MAPK (Mitogen-activated protein 

kinase) or ERK (extracellular protein kinase) pathways are the downstream signaling 
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pathways of most PRRs and are crucial for immune responses to cellular stress and 

infection. In mammals, the NF-κB family consists of five members, NF-κB1 (p105/p50), 

NF-κB2 (p100/p52), RelA (p65), RelB and c-Rel while the MAPK family contains 14 

kinases, of which extracellular signal-regulated kinase 1 (ERK1), ERK2, p38α, Jun N-

terminal kinase 1 (JNK1) and JNK2 have been studied extensively in innate immunity 

(25, 26). 

 All the TLRs induce a NF-κB dependent inflammatory gene signature in 

the host cells. Most of the TLRs signal through MyD88, with the exceptions of TLR3 that 

uses TRIF, and TLR4 that uses both MYD88 and TRIF. Activated TLRs bind MyD88 

and TIR domain containing adaptor protein (TIRAP) in the cytosol, which recruits 

IRAK-1, IRAK-4 and TRAF-6. IRAK-4 and TRAF6, in turn, associate with another 

complex consisting of transforming growth factor (TGF)-β-activated kinase (TAK1; also 

called MAP3K7) and TAK1-binding proteins (TAB) 1 and 2 that activates TAK1 and 

consequently, the transcription factors NF-κB through the IκB kinase (IKK) complex and 

activator protein 1 (AP-1) through the MAPK pathway. The TLR3-mediated NF-κB is 

activated through the homotypic binding of Receptor-interacting protein (RIP1) to the 

Rip motif in TRIF C-terminus and cooperative binding of TRAF6 to the N-terminus of 

TRIF. Although NF-κB pathway, upon TLR3 activation, in TRAF6-deficient fibroblasts 

is impaired, TRAF6 is not necessary for NF-κB activation in macrophages. Similar to 

TLR3, TLR4 can also activate TRIF/RIP1/TRAF6 dependent NF-κB signaling. Cells 

deficient for TRAF6 and MyD88 can activate NF-κB in response to LPS suggesting that 

TRIF could activate the pathway in TRAF6-independent RIP-1-dependent manner. The 
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NF-κB pathway remains active in LPS-stimulated, RIP1-deficient cells, but LPS-

stimulation in cells deficient for both MyD88 and RIP1 show no NF-κB activation.  

Various PRRs that can activate the MAPK pathway include the TLRs among 

others. MAPK activation in innate immune cells has been mostly studied in the context of 

TLR agonists. Following ligand binding to TLRs, IRAK4 is recruited to MYD88to form 

a complex with the related kinases IRAK1 and IRAK2, TRAF6 and the E2 ubiquitin-

conjugating enzyme 13 (UBC13; also known as UBE2N). TRAF6 and UBC13 catalyzes 

K63-linked polyubiquitination on TRAF6 and IRAK1, which leads to the activation of 

the MAPK pathway. TRAF3 is also recruited to MYD88 and its degradation by IAPs 

(inhibitor of apoptosis proteins) is required for the activation of MAPKs and for the 

induction of pro-inflammatory cytokines, but not for TLR-dependent of type I IFN 

production. The activated MAP3K TAK1 directly activates the MAPK kinases (MAP2K, 

MAPK) for both p38 and JNK that induce AP1-mediated gene activation. However, 

depending on the stimuli (e.g. TNF or IL-1) TAK1 can induce parallel pathways that may 

or may not require regulation by TAB1 and TAB2.  

  

 

1.3.3 Inflammasomes 

 Cellular stress, bacterial, fungal or viral infections also trigger a distinct 

set of sensors that activates the inflammasome complex. The receptors that activate the 

inflammasome are the NLRs and AIM2, IFI16 (ALRs). The inflammasome is a large 

multimeric complex consisting of the receptor, the adaptor protein Apoptosis-Associated 

Speck-Like Protein Containing a CARD domain (ASC; also known as PYCARD), and its 
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effector protein, caspase 1 (cysteine aspartate proteases 1) (27, 28) that cleave the 

inactive forms of IL-1β and IL18 to their mature, bioactive, secreted forms leading to a 

robust inflammatory response.  The Inflammasomes are described in more detail in the 

following Section 1.4. 
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1.4 What are Inflammasomes? 
 
 Inflammasomes are cytosolic multi-protein complexes that are assembled 

upon detection of pathogenic or self-derived danger molecules, and are responsible for 

the activation and induction of pro-inflammatory cytokines Interleukin-1β (IL-1β) and 

Interleukin-18 (IL-18), and an inflammatory form of programmed cell death known as 

pyroptosis via caspase 1 (27, 29) and Gasdermin-D (GSDMD) (30, 31). Inflammasomes 

are critical for resisting infection upon detection of pathogen-associated molecular 

patterns (PAMP) such as microbial nucleic acids, lipoproteins and carbohydrates by 

pattern recognition receptors (PRR). Similarly, inflammasomes also are activated upon 

recognition of endogenous triggers or danger-associated molecular patterns (DAMP) like 

mitochondrial damage, ionic imbalance, free ATP that are typical markers of injured or 

dying cells. Innate immune cells like macrophages, dendritic cells, fibroblasts, mast cells, 

monocytes and neutrophils express the PRRs that are responsible for launching 

inflammatory responses. However, deregulated inflammasome activation can lead to 

aggravated disease symptoms, autoimmune disorders and inflammatory diseases such as 

Alzheimer’s disease, atherosclerosis, diabetes and cancer. 

 Over the years, multiple distinct PRRs have been identified that can 

activate inflammasomes. The classical inflammasome complex contains a cytosolic 

receptor (e.g. a nucleotide-binding domain and leucine-rich-repeat containing protein or 

NLR or, an AIM2-like receptor or ALR) that gets activated upon microbial or 

endogenous insults and oligomerizes to recruit an adapter protein called ASC (apoptosis-

associated speck-like protein containing a CARD domain) and an effector, inflammatory 

cysteine aspartate protease, caspase to form a multimeric structure that promotes a 
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signaling cascade that elicits the maturation and production of inflammatory cytokines 

and chemokines as well as pyroptosis. 
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Figure 1.2: Structure of an Inflammasome. The inflammasome is a multimeric 
protein complex, which forms a speck-like structure, composed of a ligand-
activated receptor protein (e.g. NLRP3, NLRP1, AIM2), an adapter, ASC and an 
effector protease such as Caspase 1. The inflammasome is required for the 
maturation of inflammatory cytokines such as IL-1β and IL-18 as well as in 
promoting an inflammatory form of cell death called pyroptosis. 

Receptor Adapter Effector
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1.4.1 Caspase-1 dependent canonical inflammasomes 

  

  The term “inflammasomes” was initially coined to describe the multimeric 

complex composed of a receptor that recruits ASC, which enhances the nucleation and 

polymerization of the effector protease, caspase 1 that cleaves pro-IL-1β and pro-IL-18 

into their mature, secreted forms. Caspase 1 was initially called Interleukin-1 converting 

enzyme (ICE) owing to its role in converting the 31 kD pro-IL-1β into an active 17.5 kD 

fragment in 1989 (32, 33). In 1992, it was characterized as a heterodimeric cysteine 

protease composed of two subunits, p10 and p20 (34). The macromolecular protein 

complex comprising caspase 1, caspase 5, ASC and an NLR, NLRP1 was described in 

vitro for the first time in 2002 (27). The most well characterized caspase 1-dependent 

inflammasomes are NLRP1b, NLRP3, NLRC4 and AIM2. Other inflammasomes include 

NLRP12, NLRP6 and pyrin. 
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Figure 1.3: Canonical caspase 1-dependent inflammasomes. Canonical 
inflammasomes receptors include NLRC4 (activated by bacterial flagellin) 
NLRP1b (activated by anthrax lethal toxin), AIM2 (activated by cytosolic dsDNA) 
and NLRP3 (activated by a wide variety of signals e.g. pore-forming cytotoxins, 
ATP, ROS or reactive oxygen species). On activation, the receptors form an 
inflammasome complex with or without the adaptor, ASC, and recruit 
procaspase-1, which is subsequently cleaved into active caspase-1, which in turn 
cleaves pro-forms of IL-1b and IL-18 into their active forms as well as Gasdermin 
D (GsdmD) to induce cell death. (Adapted from Vanaja, Rathinam and Fitzgerald, 
Trends in Cell Biol., 2015) 
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NLR inflammasomes   

  NLRs are generally composed of three separate domains, all of which are 

found throughout metazoan evolution. At the N-terminus, NLRs either have a pyrin 

(PYD) domain, a caspase recruitment domain (CARD), or a baculovirus inhibitory repeat 

(BIR; also called IAP repeat) domain (2, 5). The central NBD (nucleotide-binding 

domain; also called NACHT, NAIP, CIITA, HET-E and TP1) domain is responsible for 

nucleoside-triphosphatase (NTPase) activity and oligomerization. The NBD, in the 

presence of nucleotides, especially ATP, is thought to maintain a ligand-receptive state. 

The C terminus of NLR proteins is composed of a manifold series of leucine-rich repeats 

(LRR). All these domains have been implicated in protein-protein interactions and 

downstream signal activation, through association with large macromolecular complexes 

called inflammasomes (28). 

 

NLRP1b   The first NLR that was shown to form an inflammasome 

complex was NLRP1. Humans only have one NLRP1 protein compared to the multiple 

paralogues found in mice, such as Nlrp1a, Nlrp1b and Nlrp1c. NLRP1 is expressed in 

adaptive immune cells and tissues as well as in non-hematopoietic tissues. Human 

NLRP1 is structurally unique among NLRs- it has an N-terminal CARD, central 

NACHT, LRR, function-to-find (FIIND) domains, and another C-terminal CARD.  

  Mouse Nlrp1b recognizes the anthrax lethal toxin (LeTx) from Bacillus 

anthracis in the cytoplasm to activate inflammasomes that is crucial for defense against 

B. anthracis spores in mice. The B. anthracis LeTx is a zinc metalloprotease lethal factor 

that enters the host cytosol and cleaves mitogen-activated protein kinase (MAPK) kinases 
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to block immune signaling. The LeTx also cleaves Nlrp1b close to its N-terminus that 

likely releases the receptor from its autoinhibitory state and/or induces structural changes 

that is more conducive to oligomerization. The lethal-toxin responsive Nlrp1b also 

undergoes an autoproteolytic processing in its FIIND domain, which is required for its 

function (35).  

  In vitro, NLRP1 interacts with caspases 1 and 5 to form a macromolecular 

complex that is necessary for IL-1β/IL-18 processing and pyroptosis. NLRP1 also 

interacts with caspases 2 and 9 to facilitate cell death via the apoptosome (36). 

Additionally, the Nlrp1b inflammasomes are functional independent of ASC, as caspase 

1 is activated via ubiquitination, and not cleavage, to induce IL-1β release and cell death.   

 

NLRP3    The NLRP3 (also called as cryopyrin and NALP3) 

inflammasome is the most well characterized inflammasome to date. NLRP3 is expressed 

by myeloid cells and is upregulated in response to the stimulation PAMPs (13). The gene 

encodes a pyrin domain, NBD and C-terminal LRR (14). NLRP3 lacks the CARD 

domain and thus, recruits procaspase-1 only in the presence of the adaptor molecule ASC 

through homophilic interactions between pyrin domains. It is triggered by various distinct 

DAMPs and PAMPs like K+ efflux, mitochondrial reactive oxygen species (ROS), 

mitochondrial or lysosomal damage, ATP, β-amyloids, hyaluronan, cholesterol crystals, 

crystalline particles (e.g. silica, alum), RNA:DNA hybrids, pore-forming toxins (e.g. 

hemolysin, pneumolysin) and several microbial pathogens. It is likely that NLRP3 is 

activated in response to a common cellular event (e.g. disruption in the cellular 

homoeostasis, pore formation in plasma membrane, lysosomal damage releasing 
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cathepsin B, ROS generation), which is downstream of all the aforementioned triggers. 

Activation of NLRP3 requires priming of the innate immune cells that induces NLRP3 

gene expression. NLRP3 activates IL-1β release via the classical ASC and caspase 1-

dependent inflammasome pathway. However, caspase 8 and FADD have also been 

implicated in NLRP3 inflammasomes in bacterial (e.g. Staphylococcus aureus (37), 

Listeria monocytogenes (38), Klebsiella pneumoniae, Neisseria gonorrhoeae, 

Escherichia coli, Porphyromonas gingivalis, Shigella flexneri and Chlamydia spp.), 

fungal (e.g. Paracoccidioides brasiliensis (39), Cryptococcus neoformans (40), 

Aspergillus fumigatus (41) Candida albicans (42)) and viral (e.g. adenovirus, IAV, SeV, 

VACV) infections, though the mechanism has not been entirely elucidated. 

  In addition, nucleic acids like bacterial RNA (43), mitochondrial DNA 

(44) as well as RNA:DNA hybrids (45) derived from bacterial replication intermediates 

also stimulate the NLRP3 inflammasomes. Although the nucleic acids co-localize with 

active NLRP3 inflammasome specks, it is unclear if they interact directly with NLRP3 or 

through an intermediate nucleic acid binding component. 

  It is not completely understood how NLRP3 gets activated though some 

recent insights have defined a role for NEK7 (NIMA-related protein kinase 7) that acts 

downstream of K+ efflux, binds to NLRP3 and controls NLRP3 oligomerization via its 

catalytic domain. HSP90 and SGT1 have been shown to interact with NLRP3 LRRs to 

maintain an inactive but stabilized structure (46). Further, deubiquitination of NLRP3 is 

required for its activity. So far there has been no direct evidence of ligand binding to 

NLRP3, which led to the general hypothesis that NLRP3 senses changes in the cellular 

milieu initiated by activators both self-derived and foreign.  
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  Genetic mutations that activate or predispose towards activation of the 

NLRP3 inflammasome are associated with cryopyrinopathies or cryopyrin-associated 

periodic fever syndromes (CAPS) such as FCAS (familial cold-induced 

autoinflammatory syndrome), MWS (Muckle-Wells syndrome), and NOMID/CINCA 

(neonatal onset multisystem inflammatory disorder or chronic infantile neurologic 

cutaneous and articular syndrome) (47). All these disorders are associated with periodic 

fevers and rashes, arthralgia, and conjunctivitis associated with neutrophil-dependent 

inflammation as well as neurological involvement, including aseptic meningitis and 

deafness as seen in NOMID/CINCA. 

 

NLRC4  NLRC4 is expressed predominantly in hematopoietic tissues and 

cells. The gene encodes a CARD, NBD and C-terminal LRRs. It can interact directly 

with procaspase-1 via homotypic CARD interactions as well as through the adapter ASC, 

which leads to the processing of caspase-1 (48). Intracellular flagellin is an activator of 

the NLRC4 inflammasome (49, 50). These responses to flagellin depend on an intact type 

III or IV secretion system (T3SS or T4SS) in the bacteria by which the flagellin enters the 

host cytosol (51). The rod proteins, which are the components of the bacterial secretion 

system, also act as activators of NLRC4 inflammasome (51). Using NLRC4-deficient 

system demonstrated that NLRC4 is critical for host defense against Salmonella, 

Shigella, Pseudomonas, and Legionella. Moreover, it has been shown that Salmonella 

and Legionella mutant lacking flagellin are incapable of activating the inflammasome. 

  Similar to NLRP3, there has been no direct evidence of a ligand-receptor 

relationship between NLRC4 and flagellin or rod proteins. NLRC4 also co-operates with 
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other NLRs such as NLRP3 in Salmonella, Shigella infections to activate the 

inflammasome (52, 53). In contrast to other inflammasomes, NLRC4 requires another 

NLR protein that functions as a co-receptor. There are four NAIP proteins in mice - 

NAIP1 binds to needle proteins of the T3SS, NAIP2 binds to the Salmonella SPI-1 basal 

rod component PrgJ and Shigella T3SS protein MxiI, and NAIP5/6 sense flagellin (54-

58). Humans express only one NAIP protein, which binds the Chromobacterium 

violaceum needle protein, Cprl (and not flagellin) (58). NAIP5 had been genetically 

linked to Legionella replication in mice (83) and humans (84) and was shown to sense an 

additional epitope found within flagellin (85, 86) which led to the discovery of 

association of NLRC4 with NAIP5 that restricts Legionella replication (87). 

 

NLRP12  Infection with the plague-causing bacteria, Yersinia pestis induces 

NLRP12 inflammasome activation leading to production of IL-18, which is critical for 

the pathogen clearance (59). Further, NLRP12-deficient mice are highly susceptible to Y. 

pestis infection. The NLRP12 as well as NLRP3 inflammasome complexes are also 

present in monocytes of malaria patients, suggesting that, together with the NLRP3 

inflammasome, the NLRP12 inflammasome may be important in IL-1β production and 

hypersensitivity to secondary bacterial infections in infected patients (60). However, the 

specific ligand that activates the NLRP12 inflammasome is not known, and further 

elucidation of the role of NLRP12 in infectious diseases is required. 

 

NLRP6    The NLRP6 inflammasome induces IL-1β and IL-18 

production and simultaneously regulates autophagosome formation that is required for 
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mucin granule exocytosis from the goblet cells in the intestine that maintains intestinal 

barrier integrity. NLRP6 depletion in mice alters the composition of colonic microbiota 

due to expansion of colitogenic bacteria, Bacterioidetes and TM7 (61-63). However, the 

mechanism of how NLRP6 modifies the intestinal microbiota, and the ligand that drives 

NLRP6 activation are still unknown. 

 

Pyrin inflammasomes  

 Pyrin (also called marenostrin and TRIM20) is a non-NLR protein 

expressed primarily in immune cells such as monocytes and dendritic cells (64). Encoded 

by the gene, MEFV, the protein contains an N-terminal pyrin, two B-box zinc-fingers, a 

coiled coil, and C-terminal B30.2 (also called SPRY) domains (65). Mutations in the 

MEFV gene cause an autoinflammatory disease, familial Mediterranean fever (FMF) 

(66). Pyrin had been shown to form an inflammasome complex with ASC and activate 

caspase-1 in in vitro reconstitution assays, but the biological relevance of this 

inflammasome had remained unknown for a while (65, 66). The physiological activation 

of pyrin inflammasome was only recently characterized in macrophages and DCs that 

occurred in response to bacterial toxins of Clostridium difficile Toxin B, of Clostridium 

botulinum C3 toxin as well as by effector proteins VopsS from Vibrio parahaemolyticus 

and IBpA from Histophilus somni (64). Intriguingly, pyrin is activated by pathogen-

mediated modifications of the host proteins, Rho GTPases. Rho glycosylation by C. 

difficile Toxin B, FIC-domain adenylylation by VopS and IbpA, ADP-ribosylation by C. 

botulinum C3 toxin, and deamination by Burkholderia cenocepacia act as ligands for 

pyrin and activate inflammasomes. Pertussis toxin also induces the pyrin inflammasome 
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through its ADP-ribosyltransferase activity (67). All of these inactivating modifications 

occur in the switch-I residue of RHOA proteins and inactivation of other members (e.g. 

RAC and CDC42) does not trigger pyrin inflammasomes. This indicates that pyrin may 

not directly interact with RHOA but senses a downstream event such as changes in 

cytoskeletal dynamics, since pyrin is known to interact with actin (68). Further, Wdr-/- 

mice that lacks a protein involved in actin depolymerization has been found to be 

susceptible to pyrin-dependent autoinflammation and thrombocytopenia (69). Taken 

together, the pyrin inflammasome represents a novel inflammatory pathway that detects 

pathogen-induced cellular changes to induce fitting immune responses. 

 

AIM2 and IFI16 inflammasomes     

  AIM2 detects cytosolic DNA derived from DNA viruses such as murine 

cytomegalovirus (MCMV) and Vaccinia Virus (VACV) as well as from cytosolic 

bacteria like Francisella tularensis and Listeria monocytogenes to induce an ASC-

caspase 1-dependent inflammasome that leads to IL-1β, IL-18 processing and cell death. 

IFI16, on the other hand, activates an ASC-dependent inflammasome in the nucleus in 

cells infected with KSHV. IFI16 also detects the RNA virus, HIV to initiate 

inflammasome activation. (Detailed descriptions of AIM2 and IFI16 in Sections 1.5 and 

1.6) 
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1.4.2 Caspase-11/Caspase-4/5 dependent non-canonical inflammasomes 

  The non-canonical inflammasome pathway involves the activation of 

mouse caspase 11 and the human caspases 4 and 5 in response to the Gram-negative 

bacterial endotoxin, LPS in the host cytoplasm (70-73). Unlike caspase 1, caspase 11, 4 

and 5 activation does not process IL-1β or IL18 (71) but initiates GSDMD-mediated 

pyroptotic cell death (30) and release of endogenous alarmin molecules such as HMGB-1 

in a caspase-1 independent manner (72). Activation of caspase-11 by intracellular LPS 

cleaves gasdermin D to release an active N-terminal fragment of gasdermin D that 

controls NLRP3-dependent activation of caspase-1 and cell death via pore formation in 

the plasma membrane that promotes pyroptosis. Again, in contrast, caspase 11 activation 

seems to progress independently of all known inflammasomes including NLRP3, NLRC4 

and NLRP6 (72).  

  In comparison to canonical inflammasomes, it was expected that a CARD-

containing upstream of caspase 11 should be responsible for intracellular LPS-mediated 

caspase 11-dependent inflammasome activation. However, interestingly, an alternative 

multiprotein complex assembly was proposed that suggests that caspase 11 (caspase 4/5 

in humans) itself may be acting as the direct receptor for cytosolic LPS. This conclusion 

was drawn from the observations that caspase 11 purifies from E. coli as an oligomer of 

higher order. Further, biochemical studies showed that caspase 11 bound directly to LPS 

through the positively-charged lysine residues in the caspase 11 CARD domain (73). 

Interestingly, this interaction was specific to caspase 11 as the closely related CARD 

domain of caspase 1 was unable to bind LPS (73). However, it still remains to be shown 



	 45	

whether there are other factors that facilitate the detection of cytosolic LPS, binding and 

subsequent activation of caspase 11. 

  Other studies have demonstrated the roles of TRIF and type-I IFN in 

causing pyroptosis and caspase 11- dependent caspase 1 activation in Gram-negative 

bacterial infections. Type-I IFN, via TLR3 and/or MAVS, induces caspase 11 expression 

through STAT1-IRF9 activation though it is partially upregulated by NF-κB as well. 

Furthermore, IFNα/β regulates caspase 11 pathway by inducing guanylate-binding 

proteins (GBPs) that are involved in host immunity and antimicrobial defenses (74, 75). 

The precise mechanism by which GBPs control caspase-11 remains unresolved. The 

GBPs are though to mediate optimal caspase 11 activation by disrupting the pathogen-

containing vacuoles that releases bacteria into the cytosol and thus activating caspase 11 

(74). Conversely, another study claims that instead of regulating the integrity of the 

bacteria-containing vacuole but the GBPs act downstream to activate caspase 11 (75).  

  Moreover, while it is known that caspase-11 synchronizes pyroptotic cell 

death and caspase 1 activation downstream of NLRP3 inflammasomes, the mechanism 

still remains unclear. While the assembly of NLRP3-ASC specks does not require 

caspase 11, caspase 11 does interact with caspase 1 during Gram-negative bacterial 

infections. However, the discovery that induction if caspase 11 by poly (I:C) (TLR3 

ligand) conferred Tlr4-/- mice susceptible to LPS-induced lethality indicates that caspase 

11 drives LPS- dependent endotoxemia (in contrast to TLR4 that only primes the cells in 

response to extracellular LPS) (70, 72). Thus, the host system has evolved with two 

distinct pathways that respond differentially to extracellular and intracellular Gram-



	 46	

negative bacteria. Together these findings establish the essential role of caspase 11 

dependent immune responses in controlling bacterial infections. 

  

1.4.3 Caspase-8 dependent non-canonical inflammasomes 

  Initially, the inflammasomes induction and processing of IL-1β was 

attributed solely to caspase 1 activity. However, recently it has come to light that there 

are alternative pathways, involving other caspases, which can process IL-1β release and 

regulate inflammatory responses. 
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Figure 1.4: Role of caspase 8 in fungal infection, cell death and regulation 
of inflammasomes. Caspase 8 activates IL-1β activation during fungal infections 
in dectin-1/Syk/MALT1/CARD9/Asc dependent manner. The dectin-1 complex 
also regulates pro-IL-1β gene expression. Signaling through CD95/Fas (e.g. LPS 
stimulation) or with TRAIL induces apoptosis by recruitment of FADD and 
caspase 8 homodimers, which is blocked by cFLIP-Caspase 8 heterodimers. 
Caspase 8 also controls the decision between apoptosis and necroptosis 
(through RIPK1, RIPK3 and MLKL) upon TNFα stimulation. Caspase 8 is also 
required for canonical and non-canonical NLRP3 inflammasome activation. 
Stimulation of TLR results in NF-κB activation and up-regulation of pro–IL-1β as 
well as NLRP3 mRNA that is partially dependent on caspase-8. Active caspase-8 
is required for activation of the canonical caspase 1 (e.g. LPS+ATP, 
LPS+nigericin) and non-canonical caspase 11 (e.g. C. rodentium, E. coli) 
inflammasome through assembly and activation of the NLRP3 complex. 
However, caspase 8 can also negatively regulate NLRP3 inflammasome 
activation in a RIPK1/RIPK3 dependent manner (not shown). 
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  Involvement of caspase 8 in cell death through mitochondrial apoptotic 

signaling is well characterized. Caspase 8 is expressed in its zymogen form that is 

activated by its autoactivation and proteolytic cleavage. Activation of death receptors 

(e.g. Fas, tumor necrosis factor receptor (TNFR) 1 and death receptor 3) promotes the 

association of the adapter protein Fas-associated death domain (FADD) with caspase 8. 

Activated caspase-8 propagates the apoptotic signal either by directly cleaving and 

activating downstream apoptotic caspases such caspase 3, or by cleaving the pro-

apoptotic proteins, BH3 Bcl2-interacting protein, which leads to the release of 

cytochrome c from mitochondria, that activates caspase-9, which promotes apoptosis.  

  Recent studies have shown that activated caspase 8 acts as a protease that 

can cleave IL-1β, independently or as a part of inflammasomes, at the Asp117 site, the 

same site that is targeted by caspase 1 but not by caspase 3, caspase 7, caspase 9 and 

catalytically inactive caspase 8 mutant (76-79). Caspase 8 is a critical protease that that 

activates pro-IL-1β during fungal pathogenesis such as Candida albicans and Aspergillus 

fumigatus infections (80).  The dectin-1 receptor signaling pathway is activated by fungal 

components such as β-glucans and induces a non-canonical inflammasome complex 

composed of Caspase recruitment domain-containing protein (CARD) 9, B-cell 

lymphoma/leukemia (BCL) 10 and Mucosa-associated lymphoid tissue lymphoma 

translocation protein (MALT) 1 that interact with ASC and caspase 8. The CARD9-

BCL10-MALT1 (CBM) complex activates the kinase, Syk that induces NF-κB-

dependent transcription of pro-IL-1β, through the phosphorylation and degradation of the 

IKK complex. The recruitment of ASC-caspase 8 to this complex activates caspase 8 that 

cleaves pro-IL-1β in a caspase 1 –independent manner. This mechanism of caspase 8-
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dependent IL-1β activation was is important during infections with Mycobacterium bovis 

and Mycobacterium leprae (80).  

Blocking or depletion of IAPs (inhibitors of apoptosis proteins) in 

macrophages resulted in LPS-induced IL-1β secretion that was dependent on both 

caspase 8 and caspase 1- NLRP3 inflammasome. Blocking of the IAPs, XIAP (X-linked 

IAP; also called BIRC4), cellular IAP (cIAP) 1 (also called BIRC2) and 2 (also called 

BIRC3), resulted in the release of receptor-interacting serine/threonine-protein kinase 

(RIPK) 3 that triggers the caspase 1 and/or caspase 8 dependent pathways (81, 82). 

Further, a later study confirmed that RIPK3 is required for LPS-induced caspase 1- or 

caspase 8-dependent secretion of IL-1β in dendritic cells. The caspase 8-containing pro-

IL-1β processing complex contains RIPK1, RIPK3 and FADD, and requires signaling 

through interaction with the C-terminal receptor-interacting protein homotypic interaction 

motif (RHIM) of TRIF (83).  

 Pro-apoptotic chemotherapeutic drugs (e.g. doxorubicin) that induce ER 

stress promotes caspase 8-TRIF dependent, caspase 1 independent secretion of IL-1β in 

LPS-primed macrophages or dendritic cells. It is hypothesized that the drugs dysregulate 

mitochondrial functions that induce the release of second mitochondrial-derived activator 

of caspases (SMAC), which inhibits IAPs, and thus averting IAP-mediated degradation 

of RIPK3 and inhibition of caspase 8-dependent processing of IL-1β (77, 84). 

  Another pathway employs TLR7-MyD88-primed FAS and FAS ligand 

(FASL; also called TNFSF6 and CD95L) interactions to drive caspase 8- and FADD- 

dependent release of IL-1β and IL-18, and is independent of RIPK3. 
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  Recent studies have implicated caspase 8 involvement in the activation of 

caspase 1 that leads to IL-1β maturation. Caspase 8 have been identified to co-localize 

with ASC or caspase 1 inflammasome specks in macrophages and DCs infected with S. 

typhimurium, F.novicida, C. rodentium and A. fumigatus. Recombinant caspase 8 has 

been shown to cleave and activate caspase 1 in vitro upon stimulation with LPS and ATP 

or infection with Yersinia pestis, Yersinia psuedotuberculosis, C. rodentium and A. 

fumigatus. Activation of caspase 1 by caspase 8 in Yersinia infection requires RIPK1 and 

FADD and partly dependent on RIPK3 and TRIF. This is in contrast to C. albicans 

infection where caspase 1 and caspase 8 regulate IL-1β maturation independently of each 

other. Also, a delayed pathway of caspase 8-dependent IL-1β release occurs in absence of 

caspase 1 upon prolonged stimulation with LPS or nigericin, or infection with S. 

typhimurium. Hence, the caspases 1 and 8 can act synergistically as well as independently 

dependent on the stimulations to activate canonical and non-canonical inflammasomes 

and further studies are required to tease apart the mechanics of this relationship. 

 

 

1.4.4 Regulation of Inflammasome Activation 

  The inflammasomes are tightly modulated by multiple mechanisms 

including transcriptional and post-transcriptional control, post-translational modifications 

and through other factors and pathways that regulate the expression of the inflammasome 

components like the receptors, the adapter ASC or the caspases as well as fine-tune the 

intensity and efficacy of inflammasome activation.  

 



	 51	

Regulation by Host Proteins Interactions 

Pyrin-containing regulators 

  A major class of inflammasome regulators includes proteins that contain 

only the pyrin domain. The PYD-only proteins (POPs) are found primarily in humans and 

higher primates but not in mouse. There are three POP proteins, POP1, POP2 and POP3 

that blocks the PYD-PYD interactions and subsequent inflammasome multimerization.  

  POP1 (also called PYDC1, ASC2) shares sequence similarity with the 

pyrin domain of ASC and its overexpression blocks IL-1β activation. It competitively 

binds to ASC, making the latter unavailable to bind NLRP3, thus dysregulating NLRP3-

mediated, canonical inflammasome activation. POP1 expression is induced by TLR-NF-

κB signaling, suggesting that it provides a regulatory feedback loop that may block 

further assembling of the inflammasome structure (85, 86). 

  Though POP2 is more similar to the pyrin domains of NLRP3, its mode of 

action is comparable to POP1. Recently Stehlik and group showed that POP2 inhibits 

inflammasome assembly by binding ASC and interfering with the recruitment of ASC to 

upstream sensors. Using transgenic mice expressing POP2, they showed that POP2 also 

reduces macrophage priming by inhibiting the activation of non-canonical kinase, IκBɛ, 

and IκBα and thus, protects the mice from excessive inflammation and acute septic shock 

(87). 

   The third pyrin-only protein gene, POP3 is present in the human PYHIN 

locus between PYHIN1 and IFI16, and is often considered as the fifth PYHIN protein in 

humans. Similar to the PYHINs, type-I IFN controls the expression of POP3 and shows 

sequence similarity with AIM2 and other PYHIN family members. POP3 interacts with 
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AIM2 and IFI16, and regulates DNA-induced cytokine responses. Knockdown of POP3 

expression in human macrophages resulted in increased AIM2 inflammasomes. Mouse 

macrophages expressing ectopic POP3 reduced AIM2-mediated inflammation during 

infections with the DNA virus, MCMV or modified vaccinia virus Ankara but did not 

alter NLRP1, NLRP3 or NLRC4 activation (88).  

  Interestingly, a murine IFN-inducible, PYHIN protein, p202 (also called 

ifi202) contains a single pyrin-domain and negatively regulates AIM2 activation. But 

instead of PYD-PYD interactions, it blocks AIM2 activation through DNA binding and 

interaction with AIM2 that prevents ASC clustering (89).   

 

CARD-containing regulators 

  Another class of proteins that modulate inflammasome signaling are the 

caspase recruitment domain or CARD-only proteins (COPs), whose modes of action are 

similar to that of the POPs. There are three COPs in humans, CARD16 (also called COP, 

PSEUDO-ICE), CARD17 (also called INCA) and CARD 18 (also called ICEBERG), all 

of which share high sequence homology with caspase 1. Evidence from biochemical 

interactions in overexpression systems suggests that they may negatively regulate caspase 

1 activity possibly by sequestration or blocking recruitment to ASC. Alternatively, a 

recent study showed that CARD16 could promote caspase 1 oligomerization to enhance 

activity. Other studies have shown that CARD16 and 18 can also interact with RIPK2 

indicating they may regulate other pathways as well. 

  A less-characterized caspase, caspase 12 has also been shown to regulate 

caspase 1 activity. Multiple polymorphisms are found in the CASP12 gene, which can 



	 53	

generate a full-length caspase (Caspase12L) or an inactive truncated form (Caspase12S). 

Caspase12L is found amongst populations of African descent that makes them 

hyporesponsive to LPS and protects from sepsis. Overexpression of caspase 12 in mouse 

negatively regulates caspase 1 activity. 

 

Post-translational modifications 

Phosphorylation  

  Modifications of the receptors and the adapter ASC by phosphorylation or 

ubiquitination regulate activity of the inflammasome. The phosphorylation of NLRC4 by 

protein kinase Cδ (PKCδ) was essential against Salmonella infections but not Shigella 

flexineri-induced responses in macrophages (90, 91). Dixit and group showed that a 

Serine residue (Ser533) in the helical domain 2 (HD2) of the NLRC4 NOD motif requires 

phosphorylation in unprimed macrophages to induce caspase 1 activation (90). 

Conversely, in primed cells, the need for phosphorylation is bypassed, with NLRP3 

expression that associates with NLRC4, independently of its Ser533 phosphorylation, to 

activate caspase 1 (91). Similarly, the dsRNA-dependent protein kinase (PKR or 

EIF1AK2) has been suggested to regulate the activities of NLRP3, NLRP1, NLRC4 and 

AIM2, though a role for PKR in the phosphorylation of these PRRs in inflammasome 

activation is yet to be elucidated (92, 93). Phosphorylation of the inflammasome adapter 

protein, ASC at multiple sites in its CARD domain by the kinases, Syk and JUN N-

terminal Kinase (JNK) are essential for caspase 1 activity.   
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Ubiquitination 

  Activation of NF-κB pathways that prime the immune cells is required for 

inflammasome activation. Priming has been known upregulate NLRP3 expression 

transcriptionally. In addition, it was demonstrated that it also enhanced NLRP3 

inflammasome signaling by eliciting the deubiquitination of NLRP3 by a Lys63-specific 

deubiquitinase, BRC33.  

  The multi-protein linear ubiquitin chain assembly complex (LUBAC) 

consists of three proteins, HOIL-1, HOIP and SHARPIN, of which HOIL-1 and 

SHARPIN are essential for TLR-dependent for NF-κB activation and inflammasome 

activation. LUBAC activates the inflammasome by directly interacting ASC, but not 

NLRP3 or AIM2, catalyzing its linear ubiquitination, through the E3 ligase activity of 

HOIL-1 and HOIP. However, SHARPIN inhibits inflammasome activation, likely 

through ubiquitination and degradation of the inflammasome. 

  K63-ubiquitination can provide either inhibitory or activating signal for 

the ASC-dependent inflammasomes. In macrophages, activation of autophagy results in 

decreased inflammasome activity with ASC displaying increased K63-linked 

ubiquitination and autophagosome recruitment in the NLRP3 or AIM2 inflammasome 

(described later in the section). In contrast, in response to viral RNAs or VSV infection, 

MAVS engages TRAF3, an E3 ligase and ASC. K63-linked ubiquitination of ASC, at 

Lys174, by TRAF3 was essential for inflammasome activation and IL-1β release, but also 

promoted autophagosome recruitment. Activation of the inflammasome and autophagy 

by the same signal provides a possible mechanism by which the host immune responses 

are self-limiting and controlled. 
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  Levels of IL-1β are also regulated by ubiquitination. TLR-induced pro-IL-

1β (Signal 1) that does not receive an inflammatory signal (Signal 2) is ubiquitinated and 

degraded at the proteasome. A high-risk strain of human papillomavirus (HPV16) uses an 

ubiquitin ligase E6-AP that promotes ubiquitination and proteasomal degradation of pro-

IL-1β and thereby evading host immune responses. 

 

Transcriptional and Post-transcriptional Regulation 

 Priming, through NF-κB activation, is the critical first step in the two-step 

activation process of inflammasomes. Priming (e.g. LPS-TLR4, Pam3-TLR2) constitutes 

the Signal 1 that induces a subset of proinflammatory genes including NLRP3, pro-IL-1β.  

Signal 2 (e.g. NLRP3 triggers such as K+ efflux, mitochondrial DNA or AIM2 triggers 

such as DNA viruses) are provided by the ligands that engage the receptors that activate 

the inflammasome formation, caspase 1 activity and IL-1β secretion.  

 Fungal PAMPs are recognized by several CLRs and TLRs that can prime 

cells (94). In addition to inducing caspase 1-independent, caspase 8-dependent IL-1β, 

dectin-1 signaling is also involved in fungus-induced priming for NLRP3 inflammasomes 

(95). As mentioned earlier, dectin-1 uses an immunoreceptor tyrosine-based activation 

motif (ITAM) to couple itself to Syk kinase for downstream signaling to NF-κB via the 

CBM scaffold resulting in cytokine production. Additionally, phagocytosis and reactive 

oxygen species (ROS) production result from dectin-1 engagement (96). Dectin-1-/- mice 

orally infected with C. albicans presented significantly reduced serum IL-1β levels (97). 

Similarly, mice lacking CARD9 as well as humans with mutations in dectin-1 and 

CARD9 show susceptibility to candidiasis and other fungal infections (97-101). The Syk 
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kinase-dependent NLRP3 priming also occurs in infections with Paracoccidioides 

brasiliensis (102), Cryptococcus neoformans (40) and Aspergillus fumigatus (41). 

Intriguingly, glucuronoxylomannan, the main capsule component of C. neoformans, 

inhibits Syk signaling and subsequently NLRP3 inflammasomes, which may assist in the 

infectivity of the fungus (40). Studies from our group showed that caspase-8, dectin-1 

and CR3 (another receptor capable of detecting β-glucan) are necessary for IL-1β 

processing by in dendritic cells infected with C. albicans (103). It also opened up new 

questions about C. albicans -induced, caspase 8 -dependent programmed cell death 

pathways (104). 

 Another pathway that has been implicated to enhance NLRP3 activation is 

the TAK1-JNK pathway, which is activated by lysosomal rupture (an NLRP3 trigger), 

and is essential for the priming of NLRP3-ASC pathway.  

 

Regulation by Autophagy 

  Autophagy is a cell-intrinsic, homeostatic process during which cellular 

components are recycled through the autophagosomes and lysosomes to benefit cell 

survival, and is triggered by starvation, damaged organelles and infection. Further, 

autophagy can regulate both cell death and inflammasome assembly, and depending on 

the conditions, can be either pro- or anti-apoptotic (105). Autophagy negatively regulates 

inflammasome activation and IL-1β release, such that mice that lack ATG16L1 

(autophagy-related protein 16-like 1), an essential component of the autophagy 

machinery, show increased caspase 1 activity and higher IL-1β, IL-18 levels in LPS-

treated macrophages (106). The mechanisms by which autophagy regulates the 
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inflammasome is not entirely elucidated. One theory suggests that autophagy removes 

ubiquitinated inflammasomes (107) or pro-IL-1β (108).  

  Induction of AIM2 or NLRP3 inflammasomes in macrophages triggers the 

activation of a Ras-like small G protein, RalB that promotes autophagosome formation, 

and was dependent on the presence of the inflammasome receptor, not ASC or caspase 1. 

In the assembled inflammasomes, ASC was Lys63 (K63)-linked polyubiquitinated that 

recruited the autophagic adaptor p62, which in turn delivered the inflammasome to the 

autophagosomes for degradation (107). Activation of autophagy with rapamycin, in 

macrophages, induces the degradation of TLR-induced pro-IL-1β in autophagosomes and 

blocked secretion of the mature IL-1β. Similarly, in vivo, treatment with rapamycin 

decreased levels of IL-1β in the serum upon LPS stimulation.  Inhibition of autophagy 

promoted the processing and secretion of IL-1β in an NLRP3- and TRIF-dependent 

manner and was dependent on ROS, but not NOX2 (108).  

  Another mechanism suggests that autophagy removes damaged 

mitochondria, which limits the availability of NLRP3 inflammasome triggers (109). 

ROS-generating mitochondria are constantly removed by mitophagy, a specialized 

process of autophagy. Treatment THP1 macrophages with a mitophagy inhibitor to, 

which, as expected, resulted in the accumulation of damaged mitochondria and increased 

concentrations of mitochondrial ROS that correlated with the dose-dependent secretion of 

IL-1β. Processing of proIL-1β caused by the blockade of mitophagy, that prevents the 

release of mitochondrial ROS and DNA into the cytoplasm, was NLRP3- and ASC-

dependent and not reliant on NLRC4. In contrast, caspase 1 activation in NLRP3 and 

AIM2 inflammasomes leads to blockade of mitophagy through multiple that allow 
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mitochondrial disassembly, ROS production, loss of membrane potential, to amplify 

mitochondrial damage, partly by the cleavage of a mitophagy regulator, Parkin. Hence, 

these studies show that inflammasomes and autophagy are tightly coordinated processes 

that control each other. The pathways are regulated at multiple steps to achieve an 

optimal level of inflammasome activation. 

 

Regulation through Crosstalk with Other Pathways  

Regulation by Interferons 

  Both type I (IFN-α/β) and type II (IFN-γ) are known to control 

inflammasome signaling. Type I IFN reduces the expression of pro-IL-1β and pro-IL-18 

as well as represses NLRP1b and NLRP3 inflammasomes in a STAT3- (through anti-

inflammatory cytokine, IL-10) and STAT1- dependent manners respectively. Similarly, 

type I IFN induction in vivo by poly (I:C) treatment reduces cell recruitment after 

injection with a NLRP3 activator, alum as well as increases susceptibility during C. 

albicans infection. In mycobacterium infection, T-cell derived IFN-γ was shown to 

inhibit NLRP3 inflammasome in vivo, through nitric oxide synthase that promotes 

nitrosylation and inactivation of NLRP3, and CD4+ T cell-derived IFN-γ suppresses IL-1 

in inflammatory monocytes. IL-1 production by macrophages and dendritic cells is also 

inhibited by type I IFN in infection with Mycobacterium tuberculosis. 

  Interferons can also activate inflammasome signaling. For example, AIM2 

activation during F. novicida needs STING-dependent production of type I IFN. As 

described before, the activation of caspase 11 in bacterial infections requires TLR4-

TRIF-IRF3 mediated IFN signaling. Both AIM2 and caspase 11 gene expressions are 
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stimulated by IFN signaling. Further, a family of IFN-iducible GTPases, GBPs 

upregulated by IFNAR-IRF1, control inflammasome activation. GBPs restrict the 

replication of intracellular pathogens and control antimicrobial processes such as 

oxidation, autophagy, to the destabilization of pathogen-containing vacuoles and direct 

killing of the pathogens. GBP2 and GBP5 were shown to be required for F. novicida-

dependent AIM2 activation and GBP2 is required for caspase 11 activation but not for 

inflammasome activation in response to poly (dA:dT) and LPS. In another study, GBPs 

were shown to enhance inflammasome signaling by promoting NLRP3–ASC 

oligomerization or by inducing pyroptosis.  

  Conversely, our group and others have observed that inflammasome 

activation can also dampen IFN responses. For example, AIM2 activation by DNA 

viruses or purified DNA ligands, such as poly (dA:dT) that activate the inflammasome 

represses the STING-dependent type-I IFN induction in response to DNA. Together, 

these observations begin to explain how different pathways, which are activated during 

infections or cellular stress, interact and how they may regulate each other, and the 

efficacy and intensity of immune responses. 

 

Regulation by Caspase 8, RIPK1/RIPK3 and Necroptosis 

 In addition to being able to form non-canonical inflammasomes dependent 

and independent of caspase 1, caspase 8 has multiple regulatory roles that can activate or 

inhibit the inflammasome as well as modulate signaling and priming of antigen-

presenting cells. Caspase 8 has been shown to be involved in modulating NF-κB 

signaling and production of pro-inflammatory cytokines in mouse macrophages and B 
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cells (78, 110-112). When mouse macrophages lacking both caspase 8 and the kinase, 

RIPK3 were infected with S. typhimurium, Citrobacter rodentium or E. coli or were 

stimulated with LPS (TLR agonist), Pam3CSK4 (a TLR2 agonist), muramyl dipepetide 

(MDP; a TLR2/4 agonist) or poly (I:C) (a TLR3 agonist), the macrophages failed to 

induce robust expression of pro-IL-1β, IL-6 and TNFα compared with wild-type 

macrophages or macrophages lacking RIPK3 alone. Further studies confirmed that the 

caspase 8 adapter, FADD (Fas-associated protein with death domain) is required for the 

NF-κB activation. It is known that the genomic deletions of Casp8 or Fadd confer 

embryonic lethality in mice, which is rescued by a parallel genomic deletion 

of Ripk3 (113-115). Hence, the macrophages deficient in caspase 8 or FADD also lack 

RIPK3. Conditional deletion of caspase 8 in B cells exhibit impaired phosphorylation and 

nuclear translocation of the NF-κB transcription factor, p65/RelA and concomitant 

decrease in expression of IL-6, TNFα, IFNβ and CXC-chemokine ligand 10 (CXCL10) in 

response to LPS stimulation. 

 The molecular mechanism by which caspase 8 mediates NF-κB signaling 

is unclear. One study found that full-length caspase 8 and its catalytic activity were 

crucial for driving NF-κB activities in humans (116), while another study in cancer 

patients showed that the DEDs of caspase 8 are sufficient (117). Additional studies have 

reported that the catalytic activity of caspase 8 is dispensable for NF-κB signaling (118). 

A two-pronged role for caspase 8 has also been proposed, where pro-caspase 8 

contributes to TNFR1-induced activation of NF-κB and the activated caspase 8 engages 

cleavage of NF-κB-inducing kinase (NIK; also called MAP3K14) to prevent the same 

(118)Caspase 8 also targets and cleaves the N-terminal fragment of c-FLIP (FLIP(L); 
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FLICE-like inhibitory protein), which generates a p43 fragment that forms a tripartite 

complex with TRAF2 and caspase 8 to activate the NF-κB signaling (119). Although the 

specific mechanism of caspase 8 involvement in NF-κB signalling is still unclear, it is 

evident that caspase 8 is critical for NF-κB-dependent priming and production of pro-

inflammatory cytokines. 

 In addition to its pro-inflammatory function, caspase 8 has anti-

inflammatory roles including inhibition of inflammasome activity. Caspase 8 deficient 

dendritic cells have increased inflammation that can be blocked by deletion of the TLR 

adaptor, MYD88, which suggests a role for caspase 8 in modulating TLR signaling (120). 

In skin, loss of caspase 8 expression promotes IL-1α secretion and the transcriptional 

activation of NF-κB-responsive genes during wound healing (121).	 Dendritic cells 

lacking caspase 8 can activate the NLRP3 inflammasome and release of IL-1β in 

response to LPS or Pam3CSK4 (a TLR2 agonist) alone, without the requirement of an 

inflammasome activator (122). This LPS-induced production of IL-1β in conditionally 

deleted DCs required RIPK1, RIPK3, the effector MLKL and the serine/threonine protein 

phosphatase, PGAM5 and hence could be blocked by genetic deletion of RIPK3 and 

necrostatin (an inhibitor of RIPK1). Further siRNA-mediated ablation of MLKL also 

rescued the Casp8-/- DCs. This suggests that LPS stimulation promotes an association of 

caspase 8 with FADD that inhibits RIPK1–RIPK3-MLKL complex and its downstream 

effector functions including the NLRP3 inflammasome activation (122). It has also been 

proposed that caspase 8 and FADD bind NLRP3 to directly inhibit the inflammasome 

(122).  
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Caspase 8 indirectly inhibits the inflammasomes is by its ability to prevent 

necroptosis. Necroptosis is an inflammatory and necrotic form of programmed cell death 

mediated by RIPK1 and RIPK3 independently of caspases (123, 124). Caspase 8 can bind 

and inhibit RIPK1-RIPK3-mediated inflammasome activation (122), as well as cleave 

RIPK1, RIPK3 and the deubiquitinating enzyme CYLD, which activates RIPK1 by 

removing its ubiquitin chains (125-127). Intestinal epithelial cells lacking caspase 8 

display spontaneous ileitis, loss of Paneth and goblet cells, elevated infiltration of 

granulocytes and CD4+ T cells into the lamina propria, and increased expression of 

inflammatory markers. Inhibition of RIPK1 and subsequently necroptosis, by necrostatin 

1 prevents spontaneous inflammation and TNF-induced lethality in mice epithelial cells 

lacking caspase 8 (128). Another study reported that caspase 8 prevents RIPK3-mediated 

necroptosis, death of enterocytes and immune cell infiltration of the colon (129). 

Similarly, mice intestinal epithelium lacking FADD are more susceptible to necrosis of 

epithelial cells, loss of Paneth cells and develop colitis, a phenotype that is rescued by 

deletion of RIPK3 (130). Further in-depth studies are required to discern the varied roles 

of caspase 8 as a regulator of inflammasomes. 

 

 

1.4.5 Effector functions of Inflammasomes  

  Beyond controlling infection in the host system, recent discoveries have 

revealed a range of effector functions of the inflammasome that include cell viability, 

induction of eicosanoids, phagosome maturation and roles in metabolism, aging and 

tumorigenesis. The inflammasomes have also been implicated in disorders such as 
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inflammatory bowel diseases, vitiligo, gouty arthritis, type 1 and type 2 diabetes (131-

137). 

  Eicosanoids are lipid molecules that include the prostaglandins, 

thromboxane and leukotrienes, and are derived from the membrane lipids. They are 

important for various homeostatic and pathological processes, such as leukocyte 

recruitment, increasing vascular permeability. The resultant active caspase 1 from 

inflammasome activation generates arachidonic acid that is converted to prostaglandins 

and thromboxane by the enzymes, cyclooxygenases. Macrophages also synthesize and 

secrete prostaglandins and leukotrienes upon inflammasome activation. This “eicosanoid 

storm” can also be activated by caspase 11. 

  As described earlier, autophagy is a mechanism of regulation for 

inflammasome activation but interestingly, the inflammasome itself has an inhibitory 

effect on autophagy. AIM2, NLRP3 and NLRC4 inflammasomes suppresses autophagy 

and autophagosome formation. Autophagy is pro-cell survival process versus 

inflammasome that is pro-cell death, the balance between the two processes decides the 

cell’s decision to survive or die. However, the NLRP6 inflammasome uses autophagy as 

a downstream effector mechanism to maintain intestinal homeostasis. Phagosome 

acidification and maturation are critical anti-microbial defenses that are dependent on the 

NLPR3 inflammasome. Acidification of phagosomes into lysosomes that carry Gram 

positive bacteria such as Staphylococcus aureus or Group B streptococcus require ROS 

production and accumulation of active caspase 1 on the phagosome double-membrane 

carrying the bacteria. Additionally, caspase 11 or caspases 4/5 promotes the fusion of 
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phagocytic vacuoles containing specific pathogenic bacteria such as Legionella 

pneumophila with lysosomes by manipulating the cytoskeletal assembly. 

  Exciting recent developments have linked inflammasomes to metabolism. 

While metabolism within the host system has been found to dictate the kind and intensity 

of inflammatory responses, many metabolic disorders (e.g. obesity, diabetes) are a result 

of deregulated, chronic inflammation. Recently, proteomic analyses revealed proteins in 

the glycolysis pathway (e.g. aldolase, triose-phosphate isomerase, glyceraldehyde-3-

phosphate hydrogenase, pyruvate kinase) as substrates of active caspase 1. Hence, the 

glycolytic rates are dampened in cells with active inflammasomes. Additionally, 

inflammasomes regulate lipid homeostasis as well. Caspase 1 activation by a pore-

forming, bacterial toxin called aerolysin activates the sterol regulatory element-binding 

proteins (SREBPs), that upregulate the expressions of cholesterol and fatty acid 

biosynthesis proteins. Caspase 1 is also involved in the metabolism of triglycerides, by 

enhancing its absorption in intestine, production in liver as well as clearance from blood 

during fasting conditions or uptake of excess lipid.  

   Inflammasome-independent functions of AIM2 include control of 

tumor progression in various tissues (described in detail in Section 1.6) while NLRP3 

regulates T-cell immunity. NLRP3 is expressed in differentiated T helper cells, but do not 

form inflammasomes and controls Th2 cell differentiation instead via IRF4-dependent 

Th2 cytokines induction. NLRP6 negatively regulates MAPK and NF-κB pathways in 

response to TLRs while NLRP12 blunts NF-κB and ERK activation, which is protective 

against colon inflammation and cancer. NLRP12 also functions as a negative regulator of 

cell migration in neutrophils, and blocks T cell-mediated IL-4 production. 
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  All these effector mechanisms possibly function together to mount a fast 

and effective innate immune response against an invading pathogen, and might 

manipulate the host immune system to function in a manner detrimental to the pathogen, 

and beneficial to the host while alerting the adaptive immune system to respond to the 

risks present.  
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1.5 Nucleic acids (NA) as triggers for immune responses 

Amongst the multiple PAMP or DAMP that the host immune system is 

equipped to identify, the appreciation for nucleic acids (NA) as a trigger for immune 

responses has escalated only in the last two decades. Foreign DNA or RNA as well as 

aberrantly expressed or differentially modified nucleic acids can elicit strong immune 

reactions within the host cells. Most receptors differentiate between the sugars, ribose and 

deoxyribose, that enable them to specifically recognize either RNA or DNA respectively. 

However, several sensors termed as Universal NA Sensors can recognize both RNA and 

DNA while there are other receptors that detect RNA:DNA hybrids which are often a by-

product of pathogen replication.  

 Introduction of nucleic acid into the host cytoplasm as well as in the nucleus via 

viral infection, viral and bacterial replication or transfection triggers multiple distinct, 

parallel and often redundant pathways that culminate in interferon production, 

inflammation, autophagy as well as cell death through pyroptosis, apoptosis or 

necroptosis. The currently known NA sensors include TLR3, TLR7/8, RIG-I/MDA5 (6, 

11, 138) and TLR9, cGAS, AIM2, IFI16 (8, 18-20) that can sense RNA and DNA 

respectively. Universal NA sensors include LRRFIP1, HMGBs, LSm14A and RNA:DNA 

hybrids trigger TLR9, NLRP3 and cGAS/STING pathways. 

 

1.5.1 RNA sensors 

The RNA immune receptors can recognize extracellular and intracellular, 

pathogen-derived single-stranded or double-stranded RNA. In order to avoid responding 
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to host cytosolic RNA, often these receptors distinguish foreign RNA by recognizing 

distinct modifications and specific lengths. 

 

RIG-I         

The RLR, RIG-I recognizes short blunt-ended, 5’-triphosphorylated (5’-ppp) dsRNA, or 

short hairpin, “panhandle” structured RNA found in negative-strand RNA viruses such as 

IAV, VSV, modifications that are absent in host mRNA (139, 140). Composition of the 

viral RNA ligand also play a role in RIG-I activation such as, poly (U/UC) motifs 

combined with a 5’-ppp, found in the genomic RNA of HCV. In addition to RNA viruses, 

RIG-I contribute to the detection of DNA viruses, such as Epstein-Barr virus (EBV), that 

detects 5’-ppp small RNA species generated through transcription of viral AT-rich DNA 

by RNA Polymerase III.  

 

MDA5        

MDA5 also identifies viral RNA, however, the distinct RNA ligands that activate MDA5 

signaling is largely unknown. It is widely considered that MDA5 detects long molecules 

of dsRNA, organized in web-like structures as found in the Picornaviridae and 

Caliciviridae virus families, other positive-sense RNA viruses as well as DNA viruses 

that transcribes long dsRNA. Further, MDA5 is activated by poly (I:C), a synthetic RNA 

that is equivalent to long dsRNA. Kato et al. recently showed that MDA5 can be 

activated by long dsRNA from reoviruses or by annealed sense and antisense strands of 

in vitro transcribed, synthetic RNA (141). Detection of RNA virus through its packaged, 

genomic RNA may occur upon its entry into the host cell. However, the receptors are 
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also activated by other RNA species, internalized with the virion as well as those 

produced during viral replication (e.g. SeV, IAV) during different times after infection.  

 

TLR3         

Endosomal TLR3 is a critical receptor that senses dsRNA, a common intermediate of 

viral replication but is also triggered by dsRNA of non-viral origin, especially 

endogenous mRNA and RNA released from necrotic cells. The TLR3 pathway can sense 

and potentially control infections by flaviviruses, hepatitis B and C viruses, herpesvirus, 

rotavirus, retroviruses, orthomyxoviruses and poxviruses as well as extracellular poly 

(I:C) that is internalized within endosomes (6).  

 

TLR7/8        

TLR7 and TLR8 also initiate immune responses to viral infection. Specifically, they 

recognize ssRNAs as their natural ligand as well as small synthetic molecules such as 

imidazoquinolines and nucleoside analogs. TLR7/8 senses GU-rich, ssRNA viral 

replication intermediates from SeV, IAV, Coxsackie B that are released the endosomes 

(142). 

 

1.5.2 DNA sensors 

Unlike RNA, changes in subcellular localization of DNA in cell, which is 

generally within organelles like nucleus, mitochondria or peroxisomes in a healthy cell, 

serves as an indicator of infection or cellular stress. DNA in the cytosol is associated with 

viral infection or tumorigenesis where the DNA acts either as PAMP or DAMP 
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respectively. Hence, when any DNA, pathogenic or host-derived, appears in the cytosol, 

it can trigger strong immune reactions in the form of type-I IFN production and/or 

inflammation. Any dsDNA longer than 25 bp with a phosphodiester backbone, present in 

the cytoplasm is capable of generating such immune responses. 

 

TLR9        

TLR9 was the first PRR discovered that initiates immune responses utilizes DNA as 

PAMP/DAMP. TLR9 senses single-stranded, unmethylated, CpG (deoxycytidylate-

phosphate-deoxyguanylate)-rich viral and bacterial DNA or oligodeoxynucleotides 

(ODN), containing the core sequence “GACGTT”. The CpG motifs are less frequent in 

the vertebrate genomes compared to bacterial or viral genomes. The CpG DNA with a 

sugar-phosphate backbone interacts with TLR9 in a sequence specific manner whereas, 

DNA with phosphorothioate backbone (where the sugars have a sulfur atom in the 

backbone instead of phosphorus) bind to TLR9 much less specifically, but show a CpG 

sequence-dependent activation. Thus, this difference between binding of two distinct 

ODN suggests that activation of TLR9 requires discrete conformational changes that are 

governed by the structure of the ODN (143). TLR9 is expressed in dendritic cells, 

macrophages, natural killer (NK) cells, and other antigen presenting cells. It is expressed 

within endosomes where it detects phagocytosed extracellular DNA as well as DNA 

released in the cytosol and taken up by the endosomes. Hence, it follows that TLR9-CpG-

DNA interaction occurs at the acidic pH (6.5–5.0) found in endosomes and lysosomes 

(143). TLR9 is critical for detection of multiple DNA viruses such as EBV, Human 

Papilloma Virus (HPV), Hepatitis B Virus (HBV), Herpes Simplex Virus (HSV) 1 and 2, 
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MCMV, Kaposi's sarcoma-associated herpesvirus (KSHV) and Murid herpesvirus 68 

(MHV-68). 

 

DAI/ZBP1        

After TLR9, DNA-dependent activator of IFN-regulatory factors (DAI; also known as 

ZBP1 or DLM-1) had been reported as an intracellular dsDNA sensor (144), but Zbp1-/- 

mice are capable of producing type I IFN after intracellular DNA stimulation (145), 

suggesting that the roles of DAI are either redundant or limited to specific cell types. 

Recently, DAI/ZBP1 was shown to respond to dsDNA virus by positively regulating 

programmed necrosis or necroptosis through its interaction with RIP3 during MCMV 

infection (146). 

 

cGAS and STING         

It had been known for a long time that pathogen-derived DNA could activate fibroblasts 

to produce type I IFNs (147). The existence of DNA sensors, other than TLR9, became 

apparent with the observations that transfection of pathogenic dsDNA could activate a 

thyroid cell line lacking TLR9 to induce multiple immune genes (148). Following the 

discovery of TLR9 as a sensor for CpG DNA, Akira and group showed that Tlr9-/- MEFs 

could still activate type-I IFN in response to synthetic B-form dsDNA or genomic DNA 

isolated from bacteria, viruses and mammalian cells. Further, Medzhitov and group 

showed that transfection of Immunostimulatory DNA (ISD), a 45bp dsDNA region from 

the Listeria monocytogenes genome to the cytosol induced type-I IFN in mice lacking 

both the TLR adapters, MyD88 and TRIF. The discovery of DNA-induced type-I IFN 
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pathway was propelled forward with the discovery of the adapter molecule STING 

(Stimulator of Interferon Genes). STING is the critical adapter required to induce type I 

IFN and NF-κB dependent inflammatory responses to cytosolic DNA. STING-/- mice 

have impaired cytokine responses and are susceptible to HSV-1 infection (149). 

Interestingly, STING deficient mice are also susceptible to VSV infection alluding to an 

involvement of STING in RNA virus pathogenesis, possibly through the sensing of host 

DNA released into damaged tissues (149). 

The C-terminal domain of STING directly recognizes bacterial cyclic-

dinucleotides (CDN) through its C-terminal domain resulting in its dimerization and 

activation of TBK1/IRF3 and NF-κB signaling. Bacteria often use CDNs as secondary 

messengers in intracellular signaling pathways. For example, cyclic-adenosine 

monophosphate (cAMP) and cyclic-guanine monophosphate (cGMP) from Vibrio 

cholerae stimulates type I IFN in a STING-dependent manner (150).  

Of all the cytosolic DNA receptors, so far, cGAS is the best-characterized DNA 

sensor with a clarified mechanism of STING activation and type-I IFN production. cGAS 

is an enzyme, identified in vertebrates, that catalyzes the production of endogenous 

cyclic-GMP-AMP (cGAMP) in a DNA-dependent manner. The secondary messenger 

cGAMP acts as a substrate for STING, which then activates the TBK1/IRF3-dependent 

IFNα/β pathway. cGAS belongs to the nucleotidyltransferase family of enzymes that 

catalyzes the conversion of mononucleotides into oligonucleotides and other higher order 

structures. cGAS directly binds to DNA using its N-terminal region, forms dimers that 

process 2’3’-cGAMP production from ATP and GTP, which is an intermediate capable 

of inducing STING-dependent IFN activation (151, 152). Structural studies have shown 
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direct binding of cGAMP to STING, stimulating its dimerization and activation (153, 

154). cGAMP also behaves as an intercellular signal that activates type-I IFN signaling in 

neighboring cells, by moving through cellular gap junctions (151). cGAS deficient 

macrophages, dendritic cells, and fibroblasts have completely abrogated type-I IFN 

responses to transfected DNA and DNA virus (155). Further, cGAS-/- mice were found to 

be susceptible to HSV-1 and VACV infections, and had higher viral loads during latent 

infection with MHV-68 (155, 156). 

 

DDX41        

DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), a member of the DEAD/H 

helicases family identified from a siRNA screen, was characterized as a putative 

cytosolic DNA sensor (157). Knockdown of DDX41 in BMDC and THP-1 leads to an 

impaired IFN production in response to cytosolic DNA and HSV-1 infection (157). 

DDX41 also senses bacterial CDNs, cyclic di-AMP (cAMP) and cyclic di-GMP (cGMP) 

by directly binding through its DEAD catalytic domain, leading to STING-dependent 

activation of type I IFN (158). However, further elucidation of DDX41-dependent IFN 

signaling pathway in response to cytosolic DNA remains to be uncovered. 

 

DHX9/36        

DHX9 and DHX36 are DEAH RNA Helicase A helicases that bind CpG-B and CpG-A 

DNA respectively in plasmacytoid dendritic cells (pDC). DHX9 activates IRF-7 and 

IFNα production, while DHX36 activates IL-6 and TNFα through NF-κB pathway. RNAi 
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knockdown of DHX9 and DHX36 abrogated cytokine responses in HSV-1 infection, 

while responses to the IAV (an RNA virus) were unaltered (159). 

 

DNA-PK & Mre11       

Host DNA damage also induces type I interferon production. DNA-dependent protein 

kinase DNA-PK, a holoenzyme with three subunits: the catalytic subunit DNA-PKc and 

the DNA binding proteins Ku70 and Ku80, elicit IFN-β in response to DNA transfection, 

HSV-1 and co-localizes with sites of viral DNA replication in VACV infection in MEFs 

in an IRF3-dependent, NK-κB-independent manner. DNA-PK-deficient mice showed 

attenuated IFN response to VACV (160). Meiotic recombination 11 homolog A (Mre11), 

a double-strand break repair protein, along with its binding protein Rad50, is a cytosolic 

sensor for transfected dsDNA that induces IFN-β production in BMDCs. However, 

Mre11 was found to be dispensable for type-I IFN production in HSV-1 and Listeria 

monocytogenes infection in BMDC (161). The identification of DNA Damage Response 

(DDR) proteins as regulators of immune response to cytosolic DNA allude to 

interdependence of DNA damage and DDR with generation of DAMPs and DNA sensing 

pathways.  

  

RNA Polymerase III       

Cytosolic RNA Polymerase III (Pol III) uses transfected AT-rich DNA (poly dA:dT) in 

the cytoplasm as a template to generate short ssRNA transcripts, which are then 

recognized by RIG-I to activate type-I IFN (162). 
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AIM2 and IFI16     

The Aim2-like receptors or ALRs or the PYHIN proteins (e.g. AIM2, IFI16) have a 

conserved DNA sensing motif that make them good candidates for behaving as DNA 

receptors in immune sensing pathways. They are described in detail in the Section 1.6. 

 

1.5.3 Sensors for both RNA and DNA 

 Some less-studied pattern recognition receptors, also called universal NA sensors 

(e.g. LRRFIP1, HMGBs, LSm14A), have been implicated in triggering innate immune 

responses, which do not differentiate between the sugar backbones of nucleic acids and 

can identify both RNA and DNA with similar affinities. Hence, they often respond 

equally effectively to infections with bacteria, RNA or DNA viruses. 

 

LRRFIP1        

LRRFIP1 (Leucine-rich repeat flightless-interacting protein 1) has recently been 

implicated as a regulator of DNA-driven innate immune signaling. LRRFIP1 was found 

to bind to the Drosophila homolog flightless I and play a role in cytoskeletal 

development during Drosophila embrogenesis. An RNAi screen designed for discovering 

potential cytosolic DNA sensors showed that LRRFIP1 inhibited type-I IFN induction 

upon Listeria monocytogenes infection. LRRFIP1 knockdown also affected IFN 

production upon VSV infection as well as in response to poly (I:C), and the synthetic 

DNA species, poly (dG:dC) and poly (dA:dT), implicating LRRFIP1 as a sensor for 

dsRNA as well as both B and Z forms of dsDNA. Intriguingly, this function is 

independent of RNA Pol III. However, LRRFIP1 regulates type-I IFN activation through 
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a β-catenin-dependent co-activator pathway. Upon binding RNA or DNA, LRRFIP1 

mediates the phosphorylation of β-Catenin, which translocates to the nucleus and 

associates with the p300 acetyltransferase to induce increased IFNβ production (163). β-

catenin also activates IRF3 to do the same. Though, LRRFIP1 has been shown to act as a 

sensor in Listeria and VSV infections, further studies are required to delineate the role of 

LRRFIP1 as a nucleic acid immune receptor. 

 

HMGB1        

HMGB1 (High Mobility Group Box protein 1) is released from cells during necrosis and 

acts as a DAMP. It interacts with RAGE, TLR2 and TLR4 to induce inflammatory 

responses. HMGB1 binds both DNA and RNA to activate RIG-I and other NA sensors 

(164).  

 

LSm14A        

LSm14A is a component of RNA processing bodies (P-bodies). It has been shown to bind 

both DNA and RNA and induce type I interferon production through IRF3 and requires 

STING, MAVS, and RIG I respectively. This suggests that viral recognition may take 

place within P-bodies and LSm14A plays a role in antiviral activation through nucleic 

acid sensors (165). 
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1.5.4 Sensors for RNA:DNA hybrids 

Recent advances have classified RNA:DNA hybrids as a novel class of 

immunostimulatory molecules that behave as pathogen-associated or danger-associated 

ligands and can activate immune signaling pathways. Bacterial nucleic acids as well as 

retroviral replication intermediates form RNA:DNA hybrids in the infected host cell 

cytoplasm. In a healthy cell, the RNA:DNA hybrids are formed only within the nuclei 

and mitochondria as DNA replication intermediates (166) or transcription-induced R-

loops (166) or G-quadruplexes (167). Inhibitory studies showed that RNA Polymerase III 

generates cytosolic RNA:DNA hybrids within virus-free, human cancer cell lines, 

including transformed cell lines that may act as a danger signal for activating immune 

pathways (168). Endosomal TLR9 and cytosolic cGAS and NLRP3 have been implicated 

in detecting RNA:DNA hybrids in different contexts (45, 169, 170).  

 

TLR9         

Retroviral replication intermediates form RNA:DNA hybrids in both cytoplasm and 

endosomes of the infected host cells and can activate the endosomal receptor TLR9. 

TLR9 was shown to bind the hybrid molecules with high affinity and induced MyD88-

dependent pro-inflammatory cytokines and antiviral type I IFN in dendritic cells and 

human PBMCs (169). 

 

NLRP3        

Infection with an extracellular bacteria, enterohemorrhagic Escherichia coli (EHEC), 

generates bacterial RNA:DNA hybrids in the cytoplasm that was found to co-localize 
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with NLRP3 specks. Introduction of the hybrid molecules are sufficient to activate the 

NLRP3 inflammasome and this inflammatory response can be blocked by RNase H that 

degrades RNA:DNA hybrids (45).  

 

cGAS-STING        

cGAS knockout in THP-1 cells revealed that type-I IFN responses upon recognition of 

synthetic RNA:DNA hybrids of different lengths, produced enzymatically in vitro using 

transcribed RNA molecules (e.g. T7 RNA polymerase) as templates for reverse 

transcriptase, was found to be highly dependent on the cGAS–STING pathway. The in 

vitro studies showed that, similar to dsDNA recognition, a recombinant cGAS could 

produce cGAMP on detecting RNA:DNA hybrids (170).  
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1.6 Introduction to PYHIN proteins 

AIM2 and IFI16 belong to the same family of proteins called the PYHIN 

(Pyrin and HIN domain containing proteins) or IFI200 (Interferon-inducible with a 200 

amino acid repeat) proteins, classified by their defining structures, also known as ALR 

(Aim-2 like Receptors), following the discovery of AIM2 as an innate receptor that 

detects pathogen-derived DNA (171). 

The PYHIN genes are found in a cluster in many mammals within a syntenic 

region, situated between CADM3 (cell adhesion molecule 3) and a set of olfactory 

receptors and SPTA1 (spectrin alpha chain) genes. The human PYHIN genes, AIM2, 

IFI16, IFIX and MNDA are encoded on chromosome 1q23 (172, 173). There is a fifth 

gene, POP3 situated at the locus between IFIX and IFI16, which belongs to the Pyrin-

only Protein family (POP) (174). Comparatively, other mammals express variable 

number of PYHIN proteins. There are 13 PYHIN genes found on chromosome 1q band 

H3 in C57BL/6 mice within a locus flanked by the PYHIN genes, Aim2 and p205. 
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Figure 1.5: The PYHIN family of proteins in mice and humans. There 
are 13 PYHIN proteins in mice and 4 in humans. The pyrin (PYD) domains are 
indicated by pink boxes, and the HIN domain (in blue) subtypes (A, B or C) are 
denoted within boxes. 

MOUSE HUMAN



	 80	

The interferon-inducible PYHIN proteins are expressed in hematopoietic cells as 

well as in non-hematopoietic cells (e.g. skin epithelium). Spleen is a major site opf 

expression for most of the proteins. p204, p205 and p207 show the strongest expression 

in the skin, but are also expressed in heart and muscle (172). They are primarily nuclear 

proteins with defined nuclear localization signal (NLS) that may be monopartite, bipartite 

or both, although some PYHINs like Ifi204/p204 in mouse have a characterized nuclear 

export sequence as well that allows them to move in between the cytosol and nucleus. 

Some of the PYHIN proteins also undergo relocalization upon stimulation or 

overexpression with other proteins e.g. STING (173), upon heterodimerization with other 

PYHIN and/or by modification of their nuclear localization signals (e.g. acetylation of 

IFI16 causes relocalization to the cytoplasm). The exceptions are AIM2/Aim2 and 

Ifi202/p202 that lack an NLS and are almost exclusively localized in the cytoplasm, 

though Aim2 has recently been reported to sense DNA damage in the nucleus (175).  

The PYHIN proteins are characterized by the presence of a pyrin domain at the N-

terminal and one or two HIN200 domain at the C-terminal, flanking a variable 

intermediate spacer region. 

 

Pyrin/PAAD/DAPIN domain    

Pyrin domain (PYD), also known as the PAAD or DAPIN domain, is a 

member of the death domain (DD) family of proteins which is a 80 amino acids motif 

that consists of five α-helices, and can mediate homotypic interactions with other DD-

containing proteins.  It forms higher complexes that have been implicated in 
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inflammation, apoptosis and cell cycle. The only PYHIN proteins that do not contain a 

pyrin domain are the p202 variants, p202a and p202b. 

 

HIN200 domain     

The HIN (hematopoietic, interferon-inducible, nuclear) domain is a 

conserved 200 amino acid motif that consists of two-oligonucleotide/ oligosaccharide 

binding (OB) folds that form a β-barrel structure capable of binding NA, and are the 

characteristic DNA-binding domains found predominantly in the PYHIN proteins. The 

HIN200 (or HIN) domains are classified into three subtypes called HIN A, B or C 

depending on their consensus motifs. Structural analysis have shown that IFI16 HIN-A 

domain has a higher affinity to ssDNA that can wrap, stretch and form oligomers with 

ssDNA. In contrast, IFI16 HIN-B domain binds dsDNA with higher affinity but this 

binding was augmented by the presence of both HIN-A and HIN-B. Biochemical and 

structural studies using DNA-bound AIM2 revealed that in the absence of DNA, AIM2 is 

maintained in self-inhibited state, in a wrapped structure, where the region around the 

negatively charged α2- helix in the pyrin domain binds the DNA-binding interface of the 

HIN domain limiting the ability of the pyrin domain to initiate downstream signaling. 

Interestingly, work from Stetson’s lab using a transfected DNA-dependent cell death 

assay in AIM2 deficient THP-1 cells expressing individual chimeric PYHINs, showed 

that the proteins containing PYHIN1/IFIX HIN domain or MNDA HIN domain did not 

bind DNA to induce cell death. Additionally, both IFI16 HIN domains were required to 

bind dsDNA and induce cell death in this assay (176). 
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  The HIN domain has been implicated in protein-protein interactions and 

dimerization as well through a highly conserved motif MF/LHATVAT/S. The domain 

also contains a retinoblastoma (Rb)-binding site, LXCXE and putative Cyclin-dependent 

kinase (CDK)-2 phosphorylation sites (e.g. p204, p205, p203, p202, IFI16, MNDA) 

(177). 

 

Intermediate domain     

The intervening spacer regions, separating the two domains, that confer 

the maximum variability between proteins, are consistent in size and are rich in S/T/P 

residues. The NLS is located in this region, just after the pyrin domain and some PYHINs 

(e.g. p204, p205) have a common heptamer repeat sequence within the domain (177). 

 

Before the discovery of the role of PYHIN proteins in innate immunity, they were 

characterized as regulators of cell growth, differentiation and proliferation in apoptosis, 

tumor progression and DNA damage responses. Much of the functions of PYHIN 

proteins have been linked with cellular differentiation as many of the family members are 

upregulated to varying degrees at different stages of the process in multiple cell lineages. 

IFI16, PYHIN1/IFIX, p202, and p204 regulate cell cycle transcription factors such as 

p53, p21, pRb, and E2F resulting in cell cycle arrest (178). p202 acts as a transcriptional 

repressor targeting NF-κB (179), AP-1 (180, 181), MYOD1 (182), and myogenin (181, 

183). p204 also regulates gene expression during monocyte/macrophage differentiation 

and osteoblast differentiation. p205 acts as a putative tumor suppressor and controls 
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p21CIP/WAF gene expression via p53 in Saos2 cell lines as well as impacts gene expression 

in adipogenesis and osteogenesis via transcriptional mechanisms. 

  

1.6.1 PYHINs as Regulators of Immune Responses 

     

AIM2/Aim2     

AIM2 (also called PYHIN4) was identified during a functional screen for 

tumor suppressor genes in melanoma (100). Though not an NLR protein, AIM2 activates 

the inflammasome similar to the NLRs. The gene encodes an N-terminal pyrin domain 

and HIN200 domain, sub-type C. The pyrin domain of AIM2 interacts with the pyrin 

domain of ASC to recruit caspase 1 and form the inflammasome. 

  Activation of the AIM2 inflammasome is mediated by DNA binding to 

form the DNA:protein heteroduplex. Structural study shows that the positively charged 

HIN200 domain binds to the negatively charged sugar phosphate backbone of dsDNA, 

making contacts across the major and minor grooves, which makes AIM2 unable to form 

stable complexes with ssDNA (184). Like other DNA sensors, AIM2 does not 

discriminate between the origins of DNA, synthetic, mammalian, or microbial, but relies 

on the misexpression of DNA in the cytosol to initiate an immune response. AIM2 binds 

DNA independent of the sequence, but the dsDNA must be more than 80bp in length.  

  The DNA from invading intracellular bacteria which escape into the 

cytoplasm and the cytosolic DNA viruses activate the AIM2 inflammasome leading to 

the processing and secretion of IL-1β and IL-18. Francisella is a facultative intracellular 

pathogen that infects macrophages through phagosomes but escape into the cytosol to 
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replicate. Francisella novicida infection was known to induce IL-1β and IL-18 in an 

NLRP3- and NLRC4- indepedent ASC-dependent manner. Subcutaneous Francisella 

infection of Aim2-/- mice showed decreased IL-1β/IL-18 secretion and increased bacterial 

burden and mortality (185, 186). AIM2 is required for IL-1β production by macrophages 

and dendritic cells in response to infection with the intracellular bacterium Listeria 

monocytogenes, as well as the DNA viruses VACV and murine cytomegalovirus 

(MCMV) (171, 187). MCMV infection in Aim2-/- mice led to increased viral titers due to 

decreased NK cell activation, as a likely consequence of result of decreased IL-18R 

signaling (171). However, infection with attenuated MCMV severely dampens the AIM2 

inflammasome indicating that replication of the virus is required for AIM2 activation. In 

contrary to the hypothesis that AIM2 would respond to all DNA viruses, it was 

discovered that inflammasome activation during HSV-1 or MHV-68 infections is 

independent of AIM2, but require NLRP3, emphasizing the necessity of the cellular 

localization of the viral genomic DNA was critical in eliciting AIM2-dependent immune 

responses. In contrast, a recent study from Flavell and group observed that the Aim2-/- 

mice were protected against radiation-induced gastrointestinal as well as hematopoietic 

toxicity. They showed that AIM2 mediates the inflammasome-dependent death of 

intestinal epithelial cells and bone marrow cells in response to radiation-induced double-

strand DNA breaks caused by ionizing radiation and chemotherapeutic agents, and 

interestingly AIM2 detected the damaged DNA in the nucleus (175). 
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IFI16     

The human PYHIN family member, IFI16 contains one N-terminal Pyrin 

domain and two HIN200 domains (subtypes A and B) that can bind directly to dsDNA in 

a sequence-independent manner (183). IFI16 was first identified as a putative DNA 

sensor by its ability to pull down IFN-β-inducing VACV dsDNA motif in human 

monocytes cytosolic extracts (20). Knockdown of IFI16 in human THP-1 cells partly 

inhibited IRF3 activation and type-I IFN responses to transfected DNA and HSV-1 

infection (20). Similarly, another study observed that viral DNA intermediates from the 

RNA virus, HIV-1 as well as synthetic ssDNA corresponding to DNA formed during 

lentivirus replication cycle stimulates the IFI16-dependent STING-TBK-1-IRF3/7 

pathway, where IFI16 colocalizes with the lentivirus in the cytoplasm and is activated by 

stem regions in the single stranded DNA structure (188).  

  However, the role of IFI16 as a cytosolic DNA sensor has been 

controversial with debates about its necessity for type-I IFN production, which has been 

highly variable between studies. Recent studies from Stetson and group, using 

lentiCRISPR-mediated genetic disruption have demonstrated that cGAS-STING was the 

critical pathway for human cytomegalovirus (HCMV)-induced type-I IFN production in 

human primary and immortalized fibroblasts whereas IFI16 was dispensable for the same 

(176). However, work from other groups has established that IFI16 is a critical mediator 

that enhances the cGAS-cGAMP-STING axis of immune responses during infection 

(189-191). These studies used human fibroblasts, keratinocytes and macrophages to show 

that IFI16 is an essential component in type-I IFN induction, which co-operates with the 

cGAS-STING pathway during viral infections to enhance and control immune activation. 
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Orzalli et al., showed that nuclear cGAS interacted with and stabilized IFI16 in HSV-

infected human fibroblasts or human fibroblasts with transfected plasmid DNA, and 

IFI16 served as the primary sensor in the nucleus (189). Unterholzner and group used 

keratinocytes lacking IFI16 or cGAS to show that the sensors were not redundant in 

sensing exogenous DNA but that IFI16 interacted with cGAS in a DNA-dependent 

manner and was essential for the full activation of STING (190). Similarly, work from 

Jakobsen’s lab used CRISPR-Cas9 technology in human monocyte-derived macrophages, 

and phorbol myristate actetate (PMA) -treated THP1 cells, to show that IFI16 increased 

cGAMP production by enhancing cGAS activity, and is critical for downstream signaling 

by controlling the efficacy of STING dimerization, phosphorylation and recruitment of 

TBK1 to the STING complex (191). Additionally, our group also described IFI16 as a 

positive regulator involved in the transcription of critical ISGs in response to RNA virus 

infection (192).  

  Cell-specific, cellular distribution of IFI16 that varies between the nucleus 

and cytoplasm depending on cell types, determines the function of IFI16 as a pathogen 

sensor (193). IFI16 recognizes DNA from the nuclear-replicating herpesvirus, KSHV in 

infected endothelial cells, in the nucleus (21). It also sensed HSV-1 genomic DNA in 

infected human foreskin fibroblasts in the nucleus, and relocalized to the cytoplasm 

(194). These studies have also highlighted the role of IFI16 as an inflammasome 

activator. IFI16 co-localized with ASC and pro-caspase-1 in the KSHV-infected 

endothelial cells, first in the nucleus and then relocalized to the perinucleus. In the HSV-1 

infected human fibroblast, IFI16 recognized the virus in the nucleus, re-localized and co-

localized with ASC in the cytoplasm. Knockdown of IFI16 was found to block 
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processing of caspase-1 and IL-1β in response to KSHV and HSV-1, but not VACV 

infection (194). Additionally, cytosolic viral DNA derived from of incomplete HIV 

reverse transcripts, that lead to abortive HIV-infection of CD4+ T cells stimulates the 

IFI16 that triggers caspase-1-dependent pyroptosis (22). Conversely, other reports have 

shown IFI16 being unable to form inflammasome in other cell types indicating that 

further work is necessary to define the cellular contexts in which IFI16 activates the 

inflammasome (18). 

 

IFIX/PYHIN1      

The human PYHIN, IFIX (also called PYHIN1) was originally discovered 

as a tumor suppressor that promotes ubiquitination and subsequent degradation of pro-

survival proteins (195-197). IFIX contains the N-terminal pyrin domain and a C-terminal 

conserved HIN-A domain. Recently it was reported that IFIX detects herpesvirus DNA in 

both the nucleus and cytoplasm, binding foreign DNA via its HIN domain in a sequence-

independent manner, and leads to interferon responses (198). Further study from the 

group reported the IFIX had a dynamic localization during HSV-1 infection that changes 

from diffused nuclear and nucleoli distribution in uninfected cells to discrete nuclear 

puncta early in infected cells. Mass spectrometry showed that IFIX associated with 

multiple transcriptional regulatory proteins mediated by its HIN domain, to suppress viral 

transcription (199).  
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Ifi204/p204      

Though mice lack a clear homolog to IFI16, the mouse PYHIN p204 (also 

called Ifi204) is the closest in secondary structure to IFI16 and is considered its ortholog. 

Similar to IFI16, it contains a pyrin domain and two conserved HIN200 domains. 

Alongside IFI16, knockdown of p204 in mouse macrophages had partially inhibited 

IRF3, NF-κB and type-I IFN activation in response to DNA and HSV-1 infection (20). 

However, the p204 knockout mice showed no clear immune phenotype in response to 

DNA virus infection, possibly due to other IFN-activating pathways (e.g. cGAS) that 

protect the host in absence of p204.  

    

Ifi203/p203      

Using a murine leukemia virus (MLV) variant that induces a strong IFN-β 

response, and HIV, Ifi203 (along with DDX41 and cGAS) was identified as a sensor for 

the reverse transcribed DNA that required STING and TREX-1 to stimulate immune 

responses. In addition the group demostrated that the IFN-inducible cytidine deaminase, 

APOBEC3 (apolipoprotein B editing complex 3), which inhibits reverse transcription in 

the infectious retroviuses by introducing lethal mutations in the virus, restricting the viral 

load in vivo, serves as the primary defense. The cytosolic sensing is the secondary 

response and is critical for IFN-induction of anti-retroviral genes such as Apobec3 (200).  

   

Ifi205/p205      

The mouse PYHIN protein, p205 (also called Ifi205) is a nuclear protein 

with the characteristic pyrin domain and a conserved HIN domain subtype A. Aside from 
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the potential role of p205 as a tumor suppressor, it has been reported that Ifi205 also acts 

as a senor for cytosolic DNA. Ifi205 sensed cytosolic, self-DNA derived from 

endogenous retroelements in macrophages and activated cGAS and cGAMP-

independent, STING-dependent type-I IFN production. This pathway was blocked by 

AIM2 by sequestering cytosolic Ifi205 from STING (201). In this dissertation, I 

demonstrate that Ifi205/p205 acts as a nuclear co-transcriptional activator that controls 

the expression of immune genes such as ASC, and thereby regulates inflammasome 

activation in macrophages. 

 

    Several mechanisms have evolved within the host system 

that regulates the PYHIN proteins and the immune responses activated by them. As 

described previously in Section, POP3 and p202 limit the ability and activity of 

AIM2/Aim2 and/or IFI16 to form the inflammasomes through their Pyrin and HIN 

domains respectively. p202 has two HIN200 domains, the first of which sequesters 

cytosolic dsDNA available for initiating immune responses while the second HIN200 

domain is responsible for binding and inhibiting AIM2 resulting in the prevention of 

AIM2-ASC clustering. Another example of regulation within the PYHIN family is 

regulation of AIM2 by IFI16, where IFI16 can bind AIM2 and inhibit AIM2 mediated 

caspase-1 activation (202), by reducing the levels of AIM2 available for associating with 

ASC. Similar to NLRP3, AIM2, in a ligand-free environment, is found in an auto-

inhibited state, where the PYD is in association with the HIN domain. Only after binding 

of the HIN domain with dsDNA, the pyrin domain is freed and becomes available for 

binding with the ASC-pyrin domain (203). 
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1.6.2 PYHINs as Tumor Suppressors and in DNA Damage Response 

    The PYHIN proteins were initially characterized as a 

family of potential tumor suppressors. AIM2 or Absent in melanoma-2, as the name 

suggests was described as a protein that lost its expression in malignant, human 

melanoma cells (204). In addition to its function as a DNA sensor, AIM2 is also 

differentially expressed in multiple tumors, and is often down regulated in various 

cancers. AIM2 has been reported to inhibit fibroblast and breast cancer cell growth in 

vitro (205). AIM2 gene mutations have been found to correlate with gastric and 

endometrial cancers (206), and AIM2 gene expression can be silenced by DNA 

methylation in immortalized cells (207). Aim2 gene therapy in a mouse model of 

mammary tumor growth induced tumor cell death, and Aim2 expression greatly 

suppressed NF-κB transcriptional activity and was unresponsive to TNFα-mediated NF-

κB activation (205). 

  The AIM2 gene contains a site of microsatellite instability that results in 

gene inactivation in almost 50% of colorectal tumors (208). AIM2 deficiency has been 

correlated to poor prognosis in patients with colorectal cancer. One study showed that 

AIM2 is required to mediate protection against colorectal cancer, in an inflammasome-

independent mechanism. It suppressed tumor growth by blocking proliferation in 

enterocytes and expansion of the intestinal stem cell population. They also demonstrated 

that lack of Aim2 changed the composition of colon microbiota in mice, which favored 

tumor growth (209). Another study showed that in resting cells, AIM2 interacts with 

DNA-dependent protein kinase (DNA-PK), a phosphatidylinositol 3-kinase (PI3K)-

related family member that promotes protein kinase B (Akt) phosphorylation. AIM2 
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reduces Akt activation and controls tumor burden in colorectal cancer models, while 

Aim2-/- mice had increased tumor load, which was reduced by the use of an Akt inhibitor 

(210).	 A recent study rescued AIM2 expression in a colorectal cancer cell line and 

demonstrated that AIM2 inhibited increased apoptosis and blocked cell growth by 

inhibiting cell cycle transition from G1 to S phase of the cancer cells. Further analysis 

showed that AIM2 promoted apoptosis by suppressing the phosphatidylinositol 3-kinase 

(PI3K)/protein kinase B (Akt) pathway (211). Interestingly, all the studies agree that the 

mechanism, by which AIM2 suppresses tumor growth in colon cancer, is inflammasome-

independent.  

  DNA Damage Response (DDR)-induced signaling by DNA-damaging 

agents like ultraviolet light, ionizing radiations, or cancer chemotherapeutic agents, 

activates the ATM-p53 and ATM-IKKα/β-interferon (IFN)-β signaling pathways, leading 

to an induction of the p53 and IFN-inducible IFI16 gene. Further, upon DNA-damage, 

DNA accumulates in the cytoplasm, thereby inducing the IFI16 protein and STING-

dependent IFN-β production as well as activation of the inflammasome. Increased 

expression of IFI16 in cells also promotes p53-mediated transcriptional activation of 

genes, inhibition of cell cycle, cell growth and proliferation while fostering cellular 

senescence. IFI16 constitutively binds to BRCA1 breast cancer tumor suppressor and is 

involved in p53-mediated regulation of cell growth and apoptosis. Analyses of breast 

cancer cell lines and specimens revealed that decrease in the levels of IFI16 is closely 

associated with tumor progression. IFI16 deficiency induces levels of NBS1 (nijmegen 

breakage syndrome protein 1), which activates of DNA-PK (DNA-dependent kinase), 

phosphorylation of p53 and accumulation of p21WAF1. Hence, IFI16 negatively affects 
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p53-dependent transcription of p21 as well as p53 and p21 protein stability. Localization 

of IFI16 is determined by the status of BRCA1 protein under conditions of DNA damage, 

such as ionizing radiation. More recently, it has been shown that levels of IFI16 are 

increased by oxidative stress. Together, these results illustrate that IFI16 is involved in 

DNA damage signaling and responses in controlling tumor growth. 

  Initially, IFIX was discovered to function as a tumor suppressor. 

Expression of IFIX is diminished in breast tumor tissues and breast cancer cell lines like 

MCF-7 (195), and its overexpression suppressed the growth of breast cancer cell. IFIX 

negatively regulates HDM2 (a RING finger E3 ubiquitin ligase that degrades p53) by 

promoting its self-ubiquitination and degradation (196). IFIX exerts similar tumor 

suppressive activity by upregulating a metastasis suppressor called maspin (197). In both 

pathways involving HDM2 or maspin, IFIX is directly involved in ubiquitination 

reactions. 

  MNDA (myeloid nuclear differentiation antigen) is important for 

neutrophil apoptosis, where the nuclear MNDA is cleaved by caspases and relocated to 

the cytoplasm. A study reported that when healthy neutrophils are challenged with 

mediators of sepsis, apoptosis is induced, during which MNDA promotes proteasomal 

degradation of MCL-1 (myeloid cell leukemia-1), causing mitochondrial dysfunction that 

promotes the progression of apoptosis, and inflammation (212).  

  p205 localizes in the nucleus of hematopoietic and non-hematopoietic 

cells and acts as putative tumor suppressor by controlling p53-dependent expression of 

p21CIP/WAF in Saos2 cell line. p205 can block cell growth in a p53- and Rb- independent 
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manner, but it also induces the expression of Rb protein and can directly bind p53 and 

Rb.  

  These reports indicate that besides their roles in host defense and 

regulation of immune responses against invading pathogens, the PYHIN proteins play 

major role in tumor progression. The proteins may recognize the released or damaged 

self-DNA in the cytosol (due to damaged nuclear envelope) or nucleus, and co-ordinate 

multiple immune pathways to block tumor development and survival. 

 

1.6.3 Roles of PYHINs in health, infection and autoimmunity 

  Multiple pathogens have co-evolved with their host to combat the cytokine 

induction and early detection by the PYHIN proteins and have mechanisms for bypassing 

host immune signaling. HSV-1 presented the first example of a virus targeting a PYHIN 

protein. The HSV-1 immediate early protein ICP0 is known to be capable of inhibiting 

IFN-α/β signaling, however its mechanism of inhibition remained had been unclear. One 

of the mechanisms suggest that ICP0 target IFI16 for proteasomal degradation to evade 

immune responses (213). Further, Johnson et al., showed that ICP0 co-localized with 

IFI16 after infection with HSV-1, and likely targeted IFI16 for degradation by its 

phosphorylation. Additionally, HSV-1 infection induced the NLRP3 inflammasome 

along with IFI16, but it also blocked NLRP3 induced activation, at later time points, by 

immobilizing caspase-1 in actin clusters. Another study argued that though ICP0 impacts 

IFI16-related responses but that IFI16 may not necessarily be an ICP0 substrate (214). 

However, it agrees that HSV-1 infection leads to IFI16 degradation, which is a very 

effective in limiting prolonged viral detection. Recently, HSV-1 has also been shown to 
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target the PYHIN protein IFIX that co-localizes with nuclear proteasome post- infection 

and its pyrin domain is rapidly degraded in a proteasome-dependent manner. Unlike other 

host proteins targeted by HSV-1, degradation of IFIX is independent of ICP0, but 

requires immediate-early viral gene expression, suggesting a distinct viral host 

suppression mechanism (199). Human MNDA may also be targeted by viral proteins, 

such as Latency-associated nuclear antigen (LANA) from KSHV that co-localizes with 

MNDA, but the physiological relevance of the interaction are yet unknown (215). It is 

becoming more apparent that innate host sensors frequently utilize aggregation dependent 

amplification mechanisms for signal activation. Indeed, The HCMV protein, pUL83 also 

blocks IFI16 activation by interacting with its pyrin domain and blocking its 

oligomerization (216).  Li et al. demonstrated in a HCMV strain lacking pUL83, that 

IFI16 oligomerization is required for phosphorylation and nuclear translocation of IRF1 

and IRF3. But there was no change in caspase 1 activation. Surprisingly, the amino acids 

in the IFI16, which are required for oligomerization are not well-conserved in 

AIM2 (217), raising the possibility that during inflammasome activation AIM2 (and, may 

be IFI16 as well) oligomerizes differently or only through ASC recruitment, though 

overexpression of the pyrin domain of AIM2 results in filament formation (216). pUL83 

has also been reported to bind other nuclear PYHIN proteins, IFIX and MDNA, and can 

disrupt their ability to form nuclear oligomers (216).  

  The roles of PYHIN proteins in sensing DNA as well as regulating 

immune gene responses protect the host from from invading pathogens, but dysregulation 

of the PYHINs and their pathways can harm the host leading to diseases and autoimmune 

disorders. As describe before, differential expressions of the PYHIN proteins have been 
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reported in numerous diseases, from viral infections to cancer. However, it is not always 

clear whether the expression patterns are the cause or an effect of the disease in question, 

especially since the PYHINs inducible proteins. For example, PYHIN proteins have been 

reported to lie within a susceptibility locus for the autoimmune disease, systemic lupus 

erythematosus (SLE) (218) and the PYHIN1 locus has been identified as a novel 

susceptibility locus for asthma, especially for people of African descent (219).	Protective 

roles for AIM2 has been indicated in prostate diseases with increased levels of AIM2 

mRNA and protein in benign prostate hyperplasia and lower levels of AIM2 expression 

in prostate cancer epithelial cells. Genetic and epigenetic inactivation of AIM2 is 

prevalent in patients with mismatch repair-deficiency that is a major mechanism for 

colorectal tumorigenesis and sporadic colorectal cancers (220). Contrastingly, levels of 

AIM2 and inflammasome activity are enhanced in psoriatic lesions, a chronic 

autoimmune disease (221), possibly via sensing of self-DNA as well as in chronic 

vascular inflammation in abdominal aortic aneurysm (222). Increased levels of AIM2 and 

IFI16 have also been correlated to occurrence of oral squamous cell carcinoma, which 

inactivates the p53 system (223). Altered PYHIN1 and MNDA levels in a number of 

conditions have also been associated with diseases such as asthma, breast cancer, 

Lymphoma Myelodysplastic syndrome (MDS). Chronic autoimmune diseases such as 

SLE, systemic sclerosis, rheumatoid arthritis and Sjögren's syndrome have been reported 

to have anti-IFI16 autoantibodies (224-227). IFI16 re-localizes to the cytosol following 

UV treatment leading to DNA damage or upon viral DNA detection. It is hypothesized 

that IFI16 can also be released into the extracellular matrix that can bind to endothelial 

cells, propagating the stress signal and causing further damage. IFI16 acts as an immune 
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sensor for HIV and HIV patients often have elevated IFI16 mRNA levels, possibly due to 

chronic immune activation of IFI16. However, more insights into IFI16 activation, its 

subcellular localization in HIV patients will determine the detrimental or beneficiary role 

of elevated IFI16 levels in HIV patients.  

 Inflammasomes are critical immune regulators that help in maintaining a normal 

abundance of gut microbiota, an intact epithelial barrier and a continuous turnover of 

intestinal epithelial cells to prevent intestinal diseases such as inflammatory bowel 

diseases (IBD) and colorectal cancer. Increased expression of AIM2 in epithelial cells 

and IFI16 in both lymphocytes and epithelial cells was associated with increased 

inflammation in the mucosa of IBD patients, and anti-TNF treatments decreased 

expression of AIM2 and IFI16 in the patients (228). Further, another group reported 

intestinal epithelial cells are a primary source of IFI16 that is increased in the inflamed 

gut mucosa of IBD patients. IFI16 localized to both intestinal epithelial cells and lamina 

propria leukocytes, and was inducible by TNF, IL-1β and IL-33. However, as mentioned 

before, a controlled AIM2 expression is protective against colorectal cancer, and is 

critical for maintaining the proper gut microbiota that detects and clears harmful 

pathogens such as Listeria monocytogenes, Francisella tularensis and Aspergillus 

fumigatus and blocks the epithelial translocation of Salmonella typhimurium in the gut. 

 Further mechanistic studies with the PYHIN proteins are required in the 

pathogenesis of diseases, cancer and autoimmunity, to understand the contribution of 

these proteins in protection as well as in dysregulated host immune responses such that 

they may be considered as therapeutic targets or disease bio-markers. 
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Dissertation Objectives 

   

This dissertation has two major objectives:  

(1) To characterize the functions of the nuclear, murine PYHIN protein, p205/Ifi205 in 

innate immune responses, and its mechanism of action in regulating the pathways in 

macrophages, using a series of loss-of-function and gain-of-function approaches.  

(2) To determine the involvement of caspase 8-dependent inflammasome activation 

during Paracoccidiodes brasiliensis fungal infection ex vivo and in vivo using Caspase8-/- 

Rip3-/- mouse model. 
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Preface to Chapter II 

 

Most of the content of this chapter has been submitted for the following manuscripts/ 

publications: 

 

Sreya Ghosh, Christina Wallerath, Sergio Covarrubias, Veit Hornung, Susan Carpenter 

and Katherine A. Fitzgerald. The PYHIN protein p205 regulates the inflammasome by 

controlling Asc expression. Journal of Immunology, 2017 Sep 20; 199 (9): 3249–3260 

 

 

 

 

• The project was conceptualized by K.A.F., S.C. and S.G. 

• S.G. designed and performed the experiments. 

• C.W. and V.H. made the CRISPR/Cas9 knockout in B16 melanoma cell lines 

• S.G. and K.A.F. wrote the manuscript for publication.
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Chapter 2 

The PYHIN protein p205 controls innate immune responses by regulating the 

expression of the inflammasome adapter, Asc and other immune genes 
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Abstract 

 

Members of the interferon-inducible PYHIN protein family such as Absent in Melanoma-

2 and IFI16 bind double-stranded DNA (dsDNA) and form caspase-1 activating 

inflammasomes, important in immunity to cytosolic bacteria, DNA viruses or Human 

Immunodeficiency Virus. IFI16 has also been shown to regulate transcription of type I 

Interferons during Herpes Simplex Virus infection. The role of other members of the 

PYHIN protein family in the regulation of immune responses is much less clear. Here, we 

identified an immune regulatory function for a member of the murine PYHIN protein 

family, p205 (also called as Ifi205). Examination of immune gene expression in p205 

knockdown lines in bone marrow derived macrophages revealed that inflammasome 

responses to dsDNA as well as ligands that engage the NLRP3 inflammasome were 

severely compromised in these cells. Further analysis revealed that p205 knockdown cells 

showed reduced expression of Asc at the RNA and protein level. p205 knockdown 

resulted in reduced binding of actively transcribing RNA Polymerase II to the 

endogenous Asc gene resulting in decreased transcription and processing of Asc pre-

mRNA. Deletion of p205 in B16 melanoma cells using CRISPR/Cas9 showed similar 

loss of Asc expression. Ectopic expression of p205 induced expression of an Asc 

promoter-luciferase reporter gene and collaborated with other transcription factors such 

as c/EBPβ and p65/RelA to further enhance expression. Together these findings suggest 

that p205 controls expression of Asc mRNA to regulate inflammasome responses. These 

findings expand on our understanding of immune regulatory roles for the PYHIN protein 

family.
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Introduction 

 

 Foreign nucleic acids play a critical role in initiating innate and adaptive 

immune responses. Nucleic acid (NA) sensors expressed in distinct cellular 

compartments survey the extracellular and intracellular environment for signs of infection 

and initiate immune defenses against bacterial, viral and eukaryotic pathogens (229). NA 

sensors include RNA Sensors such as TLR3, 7/8 and RIG-I/MDA5 (6, 11, 138) as well as 

DNA sensors such as TLR9, AIM2, cGAS and IFI16 (8, 18-20). In addition, recognition 

of foreign nucleic acids especially dsDNA leads to assembly of an inflammasome, a large 

caspase-1 activating multiprotein complex that controls the proteolytic processing and 

release of IL-1β. Inflammasome activation also results in a proinflammatory form of cell 

death called pyroptosis. While most inflammasomes are composed of members of the 

NLR family, the dsDNA-activated inflammasome is formed following dsDNA binding to 

a PYHIN protein, Absent in Melanoma-2 (AIM2) (18). Work from several labs including 

our own has defined AIM2 as a cytosolic DNA binding innate immune receptor (18, 230-

232). AIM2 binds pathogen-derived dsDNA that accumulates in the cytosol during 

infection with DNA viruses or cytosolic bacterial pathogens (171, 185). In some 

instances, AIM2 can also recognize host dsDNA that gains access to the cytosol leading 

to autoinflammation (233). The related PYHIN protein IFI16 also forms an 

inflammasome during infection with Kaposi’s Sarcoma Herpes Virus (KSHV) and 

Human Immunodeficiency 1 (HIV1) (21, 22). 

 

 The PYHIN proteins were first characterized as a family of interferon 
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inducible proteins that are predominantly nuclear localized (183). PYHINs are 

constitutively expressed in different hematopoietic cell types, although most members of 

this family are also inducible by type I Interferon in non-hematopoietic cells (183). 

Phylogenetic analysis of the mammalian PYHIN proteins also called the AIM2-like 

receptors or ALRs show strong evolutionary and functional diversity (172). The murine 

PYHIN locus has undergone extensive gene duplication with more than 13 members 

encoded in the murine genome in contrast to the human gene family with 4 genes (172, 

173). PYHIN proteins have been implicated in a wide-range of cellular processes 

including transcription, tumor suppression, cell cycle, cell growth, differentiation and cell 

death(183).  The majority of the PYHIN proteins share the same structural domains. They 

contain an N-terminal α-helical domain known as the Pyrin domain capable of homotypic 

protein-protein interactions and one or more HIN200 domains. Most PYHIN proteins 

contain a nuclear localization signal in their N-terminus that can be either monopartite, 

bipartite or both. Some family members also contain a nuclear export sequence that 

enables them to shuttle between the nucleus and the cytosol. Aim2 is the most conserved 

family member. Unlike the other PYHINs, AIM2 is localized in the cytosol. Phylogenetic 

analysis indicates that, with the exception of AIM2, there is a complete lack of orthology 

among mammalian ALRs.  

 

 While the role of AIM2 and IFI16 in dsDNA recognition and immune activation 

has been well established, the role of other members of the PYHIN protein family, 

especially those in the mouse remains unclear. Recently, genetic studies in mice lacking 

the entire PYHIN locus and analysis of type I IFN induction following dsDNA treatment 
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in cells from these animals demonstrated no clear link to dsDNA recognition and 

induction of type I IFN in murine myeloid cells (176). It remains to be defined therefore 

whether the PYHINs have other immune regulatory functions. In this study we examined 

the contribution of the murine PYHIN protein p205 (also called p205) in innate 

immunity.  p205 is primarily expressed in macrophages and granulocytes (234). p205 

shares the highest homology with p204 and the human PYHIN protein, MNDA (235). 

p205 has been implicated in cell growth, and differentiation playing roles in 

hematopoiesis, adipogenesis and osteogenesis (236-238). To evaluate a possible immune 

function for p205, we investigated the ability of p205 to control immune gene expression. 

Using a series of loss of function and gain of function approaches combined with 

functional studies we demonstrate that p205 regulates transcription of important immune 

genes. In particular, we found a critical role for p205 in controlling expression of the 

inflammasome adapter molecule Asc. This effect of p205 was not related to the prior 

work linking AIM2 and IFI16 to sensing of foreign DNA. Rather we find that p205 

works in the nucleus to control Asc gene expression. These findings add to our 

understanding of PYHIN proteins in innate immunity, expanding their functions beyond 

dsDNA sensing to regulating innate immune responses through gene regulation.  
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Material and Methods  

 

Reagents and Plasmids:  

Lipopolysaccharide (LPS) and poly-dAdT (pdAdT) were obtained from Sigma-Aldrich 

and Immunostimulatory DNA oligonucleotides were synthesized as described (20). 

Nigericin and ATP were from Invivogen and Sigma respectively. Polyinosinic-

polycytidylic acid (poly I:C) was obtained from Invivogen. Sendai virus (Cantrell strain) 

was purchased from Charles River Laboratories (Wilmington, MA). Lipofectamine 

2000® Transfection Reagent was from Invitrogen. GeneJuice was from Novagen 

(Madison, WI). Universal type I IFN and IFN-γ were from PBL Interferon Source 

(Piscataway, NJ) and PeproTech (315-05), respectively. S. typhimurium (SL1344 lab 

strain) was from M. O'Riordan. The plasmids used were p65-pCMV4, c/EBPβ-pcDNA 

(Addgene), pGL3-enhancer luciferase reporter (Promega). Other plasmids such as Asc in 

pMSCVneo (Clontech), p205-HA in pRZ-retro, Aim2-FLAG, p204-HA, p205-HA in 

pEF-BOS or HA-tagged ΔHIN-p205, ΔPYD-p205 and ΔH/ΔP-p205 in pMSCV-PIG 

(Addgene) were made in the lab. 

 

Cell culture, Stimulations, ELISA and Cell death assays:  

Primary bone-marrow derived macrophages (BMDM) from C57BL/6J mice, cultured 

with L929 supernatant as a source for Macrophage Colony Stimulating Factor (MCSF), 

were transformed using CreJ2 virus to make immortalized BMDM (iBMDM). The cells 

were cultured in DMEM with 10% FCS and PenStrep. Antibiotics for selection were used 

as required. Cells were primed with repurified LPS at 100 ng/ml for 2-3h and stimulated 
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with Salmonella sp., Nigericin or ATP for 1h, pdAdT and Interferon Stimulatory DNA 

(ISD) for 6h, poly I:C and Sendai virus for overnight. Cells infected with Salmonella 

typhimurium and media containing gentamicin (100 µg/ml) was added to kill the 

extracellular bacteria. Supernatants from the stimulated cells were analyzed for the 

cytokines, IL-1β (eBiosciences) and IFN-β by ELISA. Cell death was measured by 

quantitating the amount of LDH, which is released into the supernatant upon cell lysis, 

using CytoTox96 Non Radio Cytotoxicity Assay (Promega) kit. 10% Triton-X was added 

to the cells as a representation of 100% cell death. 

 

shRNA mediated silencing:  

The shRNA sequences targeting p205 were cloned into a lentiviral pLKO.1 TRC cloning 

vector. Two separate shRNA sequences for p205 used either targeted the coding region 

(KD CDS) (Dharmacon TRCN0000095887 or TRCN0000095885) or the 3’ untranslated 

region (KD 3’UTR) (Dharmacon TRCN0000095884). HEK 293T cells were transfected 

with 4 µg shRNA along with 3 µg pSPAX (gag/pol) and 1 µg pMD2 (VSV-G) plasmids 

for production of lentiviral particles. Viral particles were collected at 48 h, filtered and 

added to immortalized BMDM. As controls, BMDM were transduced with either an 

empty pLKO.1 vector (EV) or pLKO.1 containing an shRNA sequence targeting GFP 

(GFP shRNA). The cells were selected for effective transduction by selection with 

puromycin (5 µg/ml). 
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qRT-PCR and Nanostring:  

RNA was extracted using Qiagen RNeasy Kit. cDNA was synthesized from 1 µg total 

RNA using either iScript cDNA synthesis kit  (Bio-Rad) or QuantiTect Reverse 

Transcription Kit (Qiagen). Quantitative RT-PCR was performed using iQ SYBR Green 

supermix (Bio-Rad) or QuantiNova SYBR Green PCR Kit (Qiagen). Primers were 

constructed to respective genes (Table 1). Target genes expressions are relative to 

housekeeping genes expression and were normalized to respective controls. The 

expression of a subset of genes including p205, p204, Mnda, Mndal and Aim2 were 

measured using nCounter (Nanostring). Briefly, endogenous RNA transcript counting 

was performed on total RNA hybridized to a custom gene expression CodeSet and 

analyzed on an nCounter Digital Analyzer (29). The counts were normalized to internal 

spike-in and endogenous controls per Nanostring Technologies’ specifications. The 

heatmaps were generated using the Morpheus software. 
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Table 1: qRT- PCR Primers for mRNA 

Gene Forward (5' à  3') Reverse (5' à  3') 
p205 GTATGAGTGAAGAAAAGACTGAC GGATATTGGTGACTGGCATG 
p205 AAGATCAAGGCATCTGGGAAAG CCTCTGGGAATGTTCTGGTTC 
p204 GACAACCAAGAGCAATACACCA ATCAGTTTGCCCAATCAGAAT 
Mnda TGTGAAGAACCCACAGCCAT TGATTTTTGGTTCTTAGCCGAAA 
Gapdh ATTGTCAGCAATGCATCCTG   ATGGACTGTGGTCATGAGCC 
Hprt TGAAGAGCTACTGTAATGATCAGTCAA AGCAAGCTTGCAACCTTAACCA 
Asc (3'UTR) CCAAACATGCACAAATCAGTC AAATGGGGAGCCAGGAATCA 
Asc int2-ex3 CACCCTTGCACAGCCTATCT CTCCGTCCACTTCTGTGACC 
Asc ex2/3-ex3 CAGCCAGAACAGGACACTTT CTCCGTCCACTTCTGTGACC 
Asc ex1-ex1/2 CTGCGAGAAGGCTATGGG CTCCAGACTCTTCTTTAGT 
Asc ex1-in1 CTGCGAGAAGGCTATGGG GAACAAGGGGACACACT 
IL-1α mature TCTCAGATTCACAACTGTTCGTG AGAAAATGAGGTCGGTCTCACTA 
IL1α int5-ex6  CACACACACACACACATCTGC GGGCTGGTCTTCTCCTTGAG 
IL1α int1 CGCTCTTCCCGTTTTGTAAG GTGGCCATGTGTGTGTCACT 
IL1α int2 TCCTCCTCCTCCTCCTTCTC GAACCTGATGGCCTCTCTCA 
IL-6 ex3-ex5 AACGATGATGCACTTGCAGA GAGCATTGGAAATTGGGGTA 
IL-6 ex2-ex2/3 GACTGATGCTGGTGACAACC TTGCACAACTCTTTTCTCAT 
IL-6 ex2-int2 AACGATGATGCACTTGCAGA TTGAAAGTAAACGTGACAAG 
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Western Blot and Co-immunoprecipitation:  

For detecting caspase-1 and IL-1β in the supernatants and lysates, 20% vol RIPA buffer 

and 30% vol SDS-loading dye were added directly to the wells containing cells and 

media. The samples were boiled at 100°C for 15’-30’ and were run on 13% 

polyacrylamide gels. Cytosolic and nuclear fractions for protein detection were prepared 

by using Active Motif Nuclear Extract Kit. Co-immunoprecipitation assays were carried 

out with 5x106 cells (treated or untreated) in ice-cold RIPA buffer (without SDS and 

DOC) using Protein A Dynabeads (Novex/Life Technologies, Cat#10001D) conjugated 

with specific antibodies, and immunoblotted for proteins of interest. Antibodies used 

were against Asc (Santa Cruz, Cat# sc-22514-R or Cell Signaling, Cat# 67824), IL-1β 

(R&D Systems, Cat# AF-401-NA), caspase-1 (Adipogen, Cat# AG-20B-0042), Aim2 

(eBioscience, 14-6008), Nlrp3 (Enzo Life Sciences), Histone 3 (Abcam, Cat# ab1791), 

c/EBPβ (Santa Cruz, Cat# sc-150), Usf2 (Santa Cruz, Cat# sc-862), Gapdh (Sigma, Cat# 

G9295), β-actin (Sigma, Cat# A3854) HA-tag (Anti-HA-Peroxidase; Roche, Cat# 12 013 

819 001), and FLAG-tag (Sigma, Cat# A8592).  An affinity purified polyclonal antibody 

against p205 was generated using the following peptide: AGLDRLINFCERVPTL-amide) 

was generated (21st Century Biochemicals). 

 

Confocal Microscopy:  

HEK 293T cells were transfected with p205 tagged with CFP and 24h post-transfection, 

the cells were washed with PBS and stained with Acridine Orange and/or Cholera toxin-

B (CtxB) (Thermofisher) and were visualized by confocal microscopy (Leica 8000) for 

localization. 
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Luciferase assays:  

The Asc gene promoter from -2000 +10 bp was cloned into pGL3-Enhancer reporter 

vector upstream of the firefly luciferase gene. The promoter-reporter construct was either 

transfected alone or co-transfected with plasmids expressing p205, p204, Aim2, p205 

deletion mutants, p65/RelA or c/EBPβ or a combination thereof in HEK 293T cells. A 

plasmid expressing Renilla luciferase gene under thymidine kinase (pGL4-TK Renilla) 

promoter was included as transfection efficiency control. Data is represented as fold 

change over Asc reporter construct alone, and relative to transfection efficiency. 

 

Chromatin Immunoprecipitation:  

Cells were crosslinked with 1% formaldehyde for 10 min with gentle shaking. The 

crosslinking reaction was stopped by 125mM Glycine solution for 10 min on shaker. The 

crosslinked cells were lysed in cell lysis buffer containing 1% SDS and sonicated for 10 

cycles (30s on, 30s off) using Bioruptor®300. The DNA was quantified, and 5 µg of total 

chromatin was immunoprecipitated with specific antibodies and Dynabeads Protein G 

(Novex/Life Technologies, Cat#10009D) overnight. The beads were washed with high 

and low salt buffers, and the crosslinked protein-DNA was eluted. The DNA was then 

reverse crosslinked, purified and quantitated by qPCR amplification with primers at Asc, 

Gapdh genes (Table 2). Antibodies used were against total RNA Polymerase II (RNAPII; 

Active Motif Cat# 39097), phospho Serine-2 RNA Polymerase II (Ser2 RNAPII; Abcam 

Cat# ab5095), phospho Serine-5 RNA Polymerase II (Ser5 RNAPII; Abcam Cat# 

ab5131) or IgG isotype (Abcam, Cat# AB37415 and Cell Signaling, 5415). 
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Table 2: Primers for Chromatin Immunoprecipitation 

Gene Forward (5' à  3') Reverse (5' à  3') 
Asc upstream TCAGCCTAGCCAAAAAGCCA GACTCCCCCACCCTCTTTTC 
Asc TSS 1 CACGAGATGCCATCCTGGAC CCCATAGCCTTCTCGCAGTT 
Asc TSS 2 CTGCAGATGGACGCCATAGA TGTGAGCTCCAAGCCATACG 
Asc downstream CACTCATTGCCAGGGTCACAG CCTGGAGGAGGGAGTCCTTG 
Gapdh TSS TGAAGGTCGGTGTGAACGG CAATCTCCACTTTGCCACTGC 

 

CRISPR/Cas9-mediated gene knockout:  

B16 mouse melanoma cells were cultured in DMEM containing 10% FBS, 0.5% 

Ciprofloxacin and 0.0075 % β-mercaptoethanol and transfected with 200 ng of plasmid 

containing mCherry-Cas9 and a U6 promoter-driven gRNA against p205 (Target 

Sequence: ATGAAGCCGAAGATGAGACCTGG) using Lipofectamine 2000® 

according to manufacturer’s protocol (239). Two days after transfection cells were sorted 

for mCherry expression. Positive cells were plated at limiting dilution to obtain single 

cell clones. Genotyping of the B16 clones was conducted by deep sequencing (Illumina, 

MiSeq) as previously described (240) using the following primer sequences: 5’-

ACACTCTTTCCCTACACGACGctcttccgatctCGTGAAGAAGATCAAGGCATCTG-

3’ and 5’-  

TGACTGGAGTTCAGACGTGTGctcttccgatctAAATCTCAGGGAGAAGTGGGGGA

-3’ (uppercase letters: 1st PCR adapter sequences, lowercase letters: linker sequences, 

uppercase letters: target site specific primer sequences). Cell clones harboring all-allelic 

frame shift mutations were then selected as p205 KO cell clones. 
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Statistics: 

ELISA and luciferase assays are presented as mean ± SD from three independent 

biological replicates and are representative of at least three separate experiments. Data 

was analyzed using two-way ANOVA by Prism 6 Software (GraphPad, San Diego, CA). 

The p values < 0.05 were considered significant (*p < 0.05, **p < 0.001, ***p < 0.005, 

****p < 0.0001) and n.s. = non-significant, unless otherwise indicated.
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Results 

 

p205 is highly inducible by LPS, type I and type II Interferons  

  The p205 gene is encoded on chromosome 1q, the last of the 13 

consecutive genes of the mouse PYHIN locus. p205 is encoded on the reverse strand and 

flanked by p202b at the 5’-end and several olfactory receptor genes as well as the Spta1 

gene at its 3’-end (Figure 2.1.A). p205 is expressed in murine primary bone marrow 

derived macrophages and treatment of these cells with type-I IFN, IFN-γ and LPS 

treatments further upregulated its expression, similar to other PYHIN genes such as 

Mnda and p204 (Figure 2.1B, C and D). The inducible expression of p205 was as robust 

as the well-characterized immune genes such as Il6 or Cxcl10 that are used as positive 

controls. 
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BA

Figure 2.1: p205 is highly induced by Type I and Type II Interferons, and LPS. 
(A) Schematic of the p205 mouse gene. Primary BMDMs stimulated with (B) Type-I IFN 

(100 U/ml), (C) IFN-γ (20 ng/ml) or (D) LPS (200 ng/ml), at different time points 
(0, 2, 4, 8, 16, 24 h) were tested for p205 mRNA expression as well as other PYHIN 

genes, Mnda, p204 and Aim2. Levels of IL-6 or Cxcl10 mRNA were included as positive 
controls. Gene expression is reported relative to a combination of three housekeeping 
genes- Gapdh, Hprt, β-actin.  
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Inducible and overexpressed p205 localizes primarily to the nucleus  

  The NLS Mapper prediction software projected p205 to have a 

monopartite signal, ‘PTLKKRAEIL’ (score >5) and two bipartite signals, 

‘TAQKRKGMSEEKTDVKKIKAS’, ‘FHLKRERGQPKLVCGDHSFVKVTKAGKKK’ 

(score >6) that predict the protein is preferentially nuclear. However, as Brunette et al 

showed previously, overexpressed p205 may change localization as with change in 

stimuli, such as STING overexpression (173). Hence, we tested p205 localization when 

overexpressed as well as upon induction. We looked at the levels of induced p205 protein 

in macrophages and tested for its subcellular localization. Treatment of primary BMDM 

with LPS, type-I IFN and IFN-γ increased p205 protein expression and it was mainly 

expressed in the nucleus (Figure 2.2A). Further, we stimulated primary BMDM with 

type-I IFN at different time points and separated the cell lysates into nuclear and 

cytosolic fractions, which were immunoblotted for endogenous p205. Upon IFN-

treatment, p205 expression was robustly increased over time in the nucleus (Figure 

2.2B). 

 Furthermore, immortalized macrophages transduced with the hemagglutinin (HA) 

tagged p205 were fractionated into nuclear and cytosolic extracts. Analysis of these 

fractions by Western blot showed that overexpressed p205 localized to the nucleus in the 

immortalized macrophages as well (Figure 2.2C). Similarly, we observed the 

localization of ectopically expressed p205 in HEK 293T cells by imaging a CFP-tagged 

p205 construct using confocal microscopy and p205 appeared to be predominantly in the 

nucleus (Figure 2.2D).  
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Figure 2.2: Inducible and overexpressed p205 primarily localizes to the nucleus.
(A) Primary BMDM untreated (Ctl) or treated with LPS for 6h, with type-I IFN for 16h 
or with IFN-γ for 16h were separated into nuclear and cytosolic fractions and 
immunoblotted for endogenous p205 (n.s.- non-specific band). (B) Western blot 
analysis of endogenous p205 expression in the nuclear and cytosolic extracts of 
primary macrophages treated with type-I IFN as indicated. Usf2 and Gapdh were 
used as controls for nuclear and cytosolic fractions respectively (n.s.- non-specific 
band). (C) Immunoblot analysis of the nuclear and cytoplasmic fractions of wild-type 
BMDM transduced with empty vector (EV) and wild-type BMDM overexpressing 
HA-tagged p205 using anti-HA antibody. Histone 3 and Aim2 were used as controls 
for nuclear and cytosolic extracts respectively. (E) Confocal microscopy of CFP-tagged 
p205 (green) in HEK 293T cells stained for nucleus using Acridine orange in first panel 
and Cholera Toxin B (CtxB) staining plasma membrane in second panel. Data is 
representative of two independent experiments. 
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Generating shRNA-mediated p205 knockdown in immortalized bone marrow 

derived mouse macrophages 

 Bone marrow derived macrophages or BMDM from C57BL/6 wild-type 

mice were transformed and immortalized by CreJ2 virus. Resting macrophages express 

modest levels of p205 that can be robustly induced upon stimulation with Interferon or 

LPS. The immortalized macrophages were stably transduced with pLKO.1 lentiviral 

particles either containing short-hairpin RNA (shRNA) targeting p205 (p205 KD) or GFP 

(GFP shRNA) or, with no shRNA sequence (EV Ctl). The shRNA to p205 either targeted 

the 3’ untranslated region (KD 3’UTR) (Figure 2.3A) and the coding region (KD CDS) 

(Figure 2.3B). After positive selection with puromycin for transduced cells, the levels of 

p205 were assessed by quantitative PCR (qPCR). The shRNAs targeting the coding 

region showed efficient knockdown of p205, with no effects on other closely related 

family members, p204 and Mnda. This effect was also evaluated using Nanostring where 

p205 mRNA was reduced with little impact on 4 other related PYHIN genes (p204, 

Mnda, Mndal and Aim2) (Figure 2.3C).  
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Figure 2.3: shRNA-mediated p205 knockdown in immortalized BMDM.
Immortalized BMDM transduced with shRNA targeting either (A) 3’UTR or (B) CDS 
of p205 gene were inspected for expression of p205, Mnda and p204 mRNA relative
to β-actin mRNA and normalized to expression in GFP shRNA BMDM. (C) Heatmap 
of PYHIN gene expression in p205 KD 3’UTR and KD CDS BMDM compared to 
control (Ctl) BMDM.  
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Knockdown of p205 in macrophages results in compromised inflammasome 

activation 

 In order to ascertain the potential immune functions of p205, the 

macrophages with reduced p205 expression were tested for their abilities to respond to 

various stimuli and launch effective cytokine expression. Following the involvement of 

other PYHIN proteins in the IFN-pathway, we first evaluated the induction of type-I IFN 

in these macrophages. The p205 knockdown and control BMDM were treated with LPS, 

poly dAdT (pdAdT), Interferon Stimulatory DNA (ISD), Sendai virus (SV) or poly I:C, 

all of which induces type I IFN, the levels of which were measured by ELISA. For most 

of these ligands the inducible expression of IFNβ was largely unaffected by the absence 

of p205 (Figure 2.4A). However, transfection with pdAdT, a dsDNA mimetic, showed a 

heightened IFNβ response in the macrophages lacking p205. Besides the IFN-pathway, 

PYHIN proteins such as AIM2 and IFI16 have also been implicated in the inflammasome 

pathway that produces IL-1β. Hence, the macrophages were treated with LPS (200 ng/ml) 

for two hours and stimulated with transfected pdAdT or ISD, or Nigericin that activate 

the Aim2 and Nlrp3 inflammasomes respectively. LPS behaves as Signal 1 that primes 

the cells via TLR signaling allowing transcriptional induction of several pro-

inflammatory genes such as pro-IL1β, while stimulation with DNA or Nigericin (a 

bacterial toxin from Streptomyces hygroscopius that forms pores in membranes) activates 

the inflammasome, which processes pro-IL1β into active IL-1β. Macrophages lacking 

p205 showed a much-diminished response to pdAdT stimulation indicative of an 

impaired Aim2 inflammasome but surprisingly, the cells were also unresponsive to 

Nigericin stimulation that induces the Nlrp3 inflammasome (Figure 2.4B). 
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Pro-forms of caspase 1 and IL-1β are unaffected in macrophages lacking p205 

  To discern whether p205 knockdown was affecting the priming (Signal 1) 

or the processing of pro-IL1β (Signal 2), the lysates and the supernatants from the 

stimulated macrophages were tested for both the inactive and proteolytically processed 

forms of both caspase-1 and IL-1β by Western blot (Figure 2.4C). Cells with reduced 

p205 lacked the active IL-1β, as expected; however, there was no difference in the 

transcription of pro-IL-1β upon LPS signaling ruling out an effect of p205 on TLR 

signaling. Moreover, even though no change was observed in the levels of quiescent 

caspase 1 in the p205 knockdown macrophages with the control cells, no cleaved, active 

form of the caspase 1 was being made. Taken together these observations implied that 

reduction in p205 affected inflammasome dependent activation of caspase-1 leading to 

reduced processing of pro-IL1β. 
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Figure 2.4: p205 knockdown in macrophages results in impaired inflammasome 
activation. The p205 knockdown BMDMs were primed with LPS (200ng/ml) for 3h 
and then stimulated with transfected pdAdT (1μg/ml for 6h), transfected ISD (3μM for 
6h), Nigericin (10μM for 1h), ATP (5μM) or, stimulated alone with Sendai virus (SV; 
overnight) or poly I:C (overnight). Secreted (A) IFNβ and (B) IL-1β levels were 
assessed by ELISA. (C) GFP shRNA CTL, p205 KD 3’UTR and KD CDS were primed
with LPS (200ng/ml) for 3h and then stimulated with pdAdT (1 μg/ml for 6h) or 
Nigericin (10 μM for 1h) and the supernatants and the lysates from the macrophages
were immunoblotted for pro-IL1β (35 kD), cleaved form of IL-1β (p17), pro-caspase 1 
(45kD) and the active subunit of caspase 1(p20).
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Reduced expression of p205 impacts Asc expression 

   For further mechanistic analysis of the lack of inflammasome activation in 

absence of p205, we inspected the levels of the receptors Nlrp3 and Aim2 as well as the 

inflammasome adapter Asc in LPS-stimulated macrophages. There was no difference in 

the levels of Nlrp3 or Aim2, however Asc protein expression was completely abrogated 

in the macrophages with reduced p205 expression (Figure 2.5A). We established the loss 

of p205 in the LPS-stimulated macrophages using a newly generated antibody against 

p205, and the macrophages with reduced p205 showed diminished Asc expression 

(Figure 2.5B). Further analysis showed that the Asc mRNA levels were also impacted in 

the macrophages lacking p205 (Figure 2.5C). We inspected the shRNA sequences and 

they showed no sequence similarity with the Asc mRNA, indicating that the decrease in 

Asc transcript levels was not due to an off-target effect of the shRNA. Collectively, these 

results show that p205 affects Asc mRNA expression. 
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Figure 2.5: Loss of p205 leads to a defect in Asc expression.
(A) Levels of Nlrp3, Aim2, Asc and β-actin proteins were elucidated by Western blot 
in LPS stimulated (200 ng/ml) GFP shRNA CTL, p205 KD 3’UTR and KD CDS 
macrophages. (B) Immunoblot of p205, Asc and β-actin proteins in LPS-stimulated 
(200 ng/ml for 6h) p205 knockdown macrophages. (C) Levels of p205 and Asc mRNA 
(relative to β-actin and normalized to GFP shRNA BMDM) were detected by qPCR 
in the same cell lines. 
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p205 controls inflammasome activation via its adapter molecule, Asc 

 The Asc cDNA was cloned into a retroviral vector, pMSCV, and viral 

particles were generated to transduce macrophages lacking p205 to rescue Asc 

expression. The transduced macrophages were selected with neomycin, and the levels of 

restored Asc were inspected by Western blot. Asc proteins levels in the p205 knockdown 

macrophages were stably restored comparable to the control cell lines (Figure 2.6A). 

Inflammasome activation and IL-1β production with were fully restored in these 

macrophages with renewed Asc expression, following LPS priming and pdAdT 

transfection or Nigercin treatment (Figure 2.6B).  

 Salmonella typhimurium also activates the inflammasome. When 

Salmonella is in its log phase of growth i.e. the bacteria are actively dividing they are 

recognized by Nlrc4, while when in their non-dividing or stationary growth phase, 

Salmonella is primarily recognized by Nlrp3. Unlike Nlrp3 or Aim2, Nlrc4 itself contains 

a CARD domain, and can directly recruit and activate pro-caspase 1 as well as engage 

Asc to do so. Hence, Nlrc4 activates the inflammasome in a manner that is only partially 

dependent on Asc. The p205 knockdown cells were challenged with Salmonella sp. either 

in their stationary phase or in log phase after LPS stimulation for one hour. In the 

stationary phase (overnight culture), Salmonella sp., which primarily activates Nlrp3 to 

trigger inflammasomes showed minimal IL-1β production by ELISA. But when the same 

cells were infected with the actively dividing Salmonella (4-6hr fresh culture), the 

macrophages retained part of their inflammasome activating capability that was again 

rescued to its full potential upon reconstitution with Asc (Figure 2.6C). The IFN-β 
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responses were largely unaffected by Asc reconstitution except upon pdAdT transfection 

where p205 knockdown enhanced IFN-β production (Figure 2.6D). 

 Furthermore, stimulation with LPS and subsequent pdAdT transfection in 

the p205 knockdown macrophages reconstituted with Asc showed renewed processing of 

caspase 1 and IL-1β into their active, cleaved forms signifying a functional 

inflammasome (Figure 2.6E and F). Taken together, these findings attribute the loss of 

inflammasome responses in p205-knockdown cells directly to p205-dependent effects on 

Asc expression. 
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Restoring p205 expression rescues Asc expression and inflammasome activation 

 We next strived to restore the expression of p205 in the knockdown cells. 

p205 cDNA with a hemagglutinin (HA) tag at the C-terminal was cloned into pRZ 

retroviral vector. Viral particles were generated and stably transduced into p205 

knockdown macrophages containing shRNA targeting the 3’UTR of p205 transcripts.  

The transduced cells were selected with zeocin (200 ng/ml). The p205 gene expression 

was first measured by qPCR (Figure 2.7A). Reconstitution of p205 restored Asc mRNA 

expression in these knockdown cell lines (Figure 2.7B). p205 protein expression was 

detected using an anti-HA antibody. Cell lysates from GFP shRNA, p205 KD 3’UTR cell 

lines along with the p205 KD 3’UTR cell line reconstituted with p205-HA were 

separated into nuclear and cytoplasmic fractions. The reconstituted HA-tagged p205 was 

found to be primarily nuclear. Level of Asc protein in both nucleus and cytoplasm was 

increased in cells expressing p205-HA (Figure 2.7C). Analysis of IL-1β release by 

ELISA in these macrophages expressing p205-HA further demonstrated that 

reconstitution of p205 restored inflammasome dependent responses (Figure 2.7E and F). 

Collectively these findings provide further evidence that p205 behaves as a regulator 

controlling Asc expression and inflammasome responses.  
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p205 overexpression enhances Asc expression in macrophages but the reverse is not 

true 

 The HA-tagged p205 was ectopically expressed in the wild type 

immortalized BMDM (Figure 2.8A) resulted in the increase of Asc mRNA levels 

compared to that found in the control cell lines (Figure 2.8B). However, the ectopic 

overexpression of Asc in the p205 knockdown macrophages had no obvious effect on the 

reduced p205 transcript levels. Furthermore, stable overexpression of p205-HA in wild 

type macrophages showed a concomitant increase of Asc mRNA (Figure 2.8C). 
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Knockdown of p205 protects the macrophages from pyroptotic cell death 

 Activation of inflammasome also leads to an inflammatory cell death 

called pyroptosis that can be monitored by measuring the amount of lactate 

dehydrogenase enzyme (LDH) released. Transfection of pdAdT and stimulation with 

ATP in macrophages leads to Aim2 and Nlrp3 inflammasome dependent release of LDH 

respectively. Consistent with the other effects on inflammasome function, the release of 

LDH, hence, cell death was also significantly affected in macrophages lacking p205. 

Restoration of Asc in the p205 knockdown cell lines rendered these cells susceptible to 

more cell death compared to the levels seen in the control cell line (Figure 2.6F).  

Similarly, more cell death was observed upon reconstitution with p205 in the knockdown 

cells stimulated with LPS and transfected pdAdT or ATP (Figure 2.7F). Hence, loss of 

p205 diminishes the inflammatory responses and protects from inflammasome-dependent 

pyroptotic cell death.  

 

Loss of p205 in macrophages results in reduced recruitment of actively transcribing 

RNA Polymerase II to the endogenous Asc gene 

 The reduced mRNA levels of Asc in cells lacking p205 could be due to 

either effects on Asc gene transcription or Asc mRNA stability. To further explore how 

p205 affected Asc mRNA levels we performed chromatin immunoprecipitation assays to 

explore the binding of RNA Polymerase II (RNA Pol II) to the endogenous Asc promoter, 

as a marker for active transcription, in both the GFP shRNA and p205 KD BMDM. 

Figure 2.9A shows a schematic of the Asc gene locus and the location of the primers 

used to evaluate RNA Pol II binding. Using antibodies to RNA Pol II and an isotype 
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control, IgG we evaluated binding of RNA Pol II to the endogenous Asc gene. RNA Pol 

II binding was considerably lower in the p205 KD cell lines using a series of primers as 

indicated (Figure 2.9B).  

 We further analyzed the functional status of RNA Pol II using antibodies 

to RNA Pol II phosphorylated either at position Serine 5 (Serine-5P RNA Pol II) or at 

Serine 2 (Serine-2P RNA Pol II) in its C-terminal domain.  The RNA Pol II carboxy-

terminal domain (called CTD or CT7n) is responsible for controlling the transcriptional 

activity of the polymerase. The CTD contains multiple repeats of a heptapeptide 

sequence, YSPTSPS (e.g. 26 in yeast, 44 in Drosophila melanogaster and 52 in 

mammals) rich in hydroxyl groups that are differentially phosphorylated and essential for 

its function. When preferentially phosphorylated at Serine 5 alone, there is only abortive 

transcription where the RNA Pol II can initiate, but not elongate further or process 

functional mRNA. The change from an initiating to an actively elongating or transcribing 

RNA Pol II occurs with the increased phosphorylation of the Serine 2 residue on the CTD 

repeats. Consistent with the findings with antibodies to total RNA Pol II, both Serine-5P 

RNA Pol II (Figure 2.9C) and Serine-2P RNA Pol II (Figure 2.9D) distributions on the 

Asc gene were considerably lower in the p205-shRNA cells compared to the GFP shRNA 

BMDM.  

 As controls, the recruitment of total RNA Pol II, Serine-5P RNA Pol II 

and Serine-2P RNA Pol II to the housekeeping gene, Gapdh, was measured and the 

occupancy levels were unchanged between the GFP shRNA and p205 KD macrophages 

(Figure 2.9E).  



 132	

  

Asc  gene locus

Total RNAP II Ser5P RNAP II Ser2P RNAP II
0.0

0.5

1.0

1.5

R
ec

ru
itm

en
t a

t G
ap
dh

 T
SS

 (%
 In

pu
t) GFP shRNA

 KD 3'UTR
 KD CDS

A

C

0.0

0.5

1.0

1.5

R
ec

ru
itm

en
t to

 A
sc

 g
en

e 
(%

 In
pu

t) GFP shRNA
 KD 3'UTR
 KD CDS

upstream TSS (1) TSS (2) downstream
0.0

0.5

1.0

R
ec

ru
itm

en
t t

o 
As
c

 g
en

e 
(%

 In
pu

t)
E

0.0

0.5

1.0

R
ec

ru
itm

en
t t

o 
A
sc

 g
en

e 
(%

 In
pu

t) GFP shRNA
 KD 3'UTR
 KD CDS

II esare
myloP A

N
R latoT

II esare
myloP A

N
R P-5-enireS

II esare
myloP A

N
R P-2-enireS

n.s.

upstream TSS (1) TSS (2) downstream

upstream TSS (1) TSS (2) downstream

bp: -500 +500 -250 +250 0 

n.s. n.s.

n.s.

**.**.  *.

***.

***.

****.

***.

****.

n.s.
*.

upstream downstreamTSS (1)TSS (2)Primers:

Figure 2.9: Loss of p205 affects transcription from the endogenous Asc gene in
macrophages. (A) Schematic of the Asc gene locus and Chromatin-IP primers locations 
on the gene. (B) Recruitment of total RNA Pol II to endogenous Asc gene in GFP shRNA 
CTL, p205 KD 3’UTR or KD CDS macrophages. Recruitment of (C) Serine-5-P RNA Pol II 
and (D) Serine-2-P RNA Pol II on endogenous Asc gene. (E) Recruitment of total, 
Serine-5-P or Serine-2-P RNA Pol II to the Gapdh transcription start site. All values are 
represented as percent fraction of total input DNA. Data was calculated against the IgG 
isotype control and is representative of three independent experiments. 

n.s.

B

D
GFP shRNA

 KD 3'UTR
 KD CDS

n.s. n.s.n.s.



 133	

p205 knockdown impacts transcription as well as the mRNA processing of Asc 

mRNA 

 However, the decreased occupancy of RNA Pol II at the endogenous Asc 

locus in the p205 KD macrophages was less severely affected than what the Asc mRNA 

levels suggested. Compared to the near ablation of Asc mRNA expression observed in 

the absence of p205, there was still some RNA Pol II being recruited to the Asc gene. 

Recent studies have shown that RNA Pol II is also a major player in successful mRNA 

processing and splicing. Serine-2 phosphorylated RNA Pol II is responsible for mRNA 

elongation, recruitment of spliceosome and mRNA processing. Transcription and splicing 

are dependent on each other- a phenomenon termed co-transcriptional splicing. Hence, to 

understand if p205 was regulating transcription as well as mRNA processing of the Asc 

transcript, we measured the levels of Asc pre-mRNA as well as that of the processed and 

mature mRNA in macrophages with or without p205 (Figure 2.10). By designing primers 

that specifically measure either pre-mRNA or mature mRNA (Table), we observed that 

though there was some leaky transcription going on in the BMDM lacking p205, there 

was minimal processing of the Asc pre-mRNA into its mature form. We also tested for 

the GAPDH pre-mRNA and mature mRNA status and observed no difference between 

the knockdown and control macrophages. Thus, we inferred that p205 controls Asc 

expression both at the level of gene transcription as well as processing of mRNA. 
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Figure 2.10: Knockdown of p205 affects transcription and processing of Asc 
mRNA. qRT-PCR analysis of p205, nascent or mature Asc mRNA expression (relative

to the housekeeping genes, Hprt and Gapdh, and normalized to EV CTL BMDM) in 

p205 knockdown macrophages.
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CRISPR/Cas9-mediated knockout of p205 affects Asc expression 

  In addition to shRNA–based loss-of-function approach, we strived to 

define the influence of p205 on Asc gene expression using an independent strategy and in 

a different cell-type that expresses p205. We carried out CRISPR/Cas9 mediated 

knockout of p205 in B16 melanoma cell line derived from C57BL/6 mice. Plasmids 

expressing Cas9 and the sgRNA targeting specific regions of p205 were transfected into 

B16 melanoma cells to generate p205 knockout (p205 KO) cells. A clone of these cells 

was produced and evaluated for p205 deficiency using sequencing, qPCR and Western 

blot, and similar clone without p205 knockout was used as a control (p205 WT). No 

induction of p205 mRNA was observed in p205 KO after overnight stimulation with 

IFN-γ compared to the WT (Figure 2.11A). Additionally, unlike the WT cells, there was 

no detectable p205 protein expression in the KO cells when stimulated with Sendai virus 

(Figure 2.11B).  

 We tested these p205 KO cell lines for Asc expression and found that the 

B16 melanoma lines lacking p205 had a similar loss of mature Asc mRNA (Figure 

2.11C) and protein (Figure 2.11D). These observations further support our shRNA-based 

studies and emphasize upon the importance of p205 as a regulator of Asc gene 

expression. 
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Figure 2.11: CRIPSR/Cas9-mediated knockout of p205 affects Asc expression.
(A) Expression of p205 mRNA in IFNγ-stimulated wild type (WT) and p205 knockout (KO) 
B16 melanoma cell lines relative to Hprt and normalized to non-treated (NT). (B) p205 and 
β-actin protein expression in WT and p205 KO cell lines stimulated with Sendai virus (n.s.- 
non-specific band) (C) Mature mRNA and pre-mRNA profile of Asc expression (relative to 
Hprt and normalized to WT) and (D) Western blot analysis of Asc and β-actin in WT and 
p205 KO B16 melanoma cell lines.
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p205 drives expression from an Asc gene-luciferase reporter in a dose-dependent 

manner 

  To understand the mechanisms involved in the transcription of Asc, we 

cloned the Asc promoter region (-2000 to +10 Asc gene) as a reporter gene upstream of a 

firefly luciferase gene. This Asc gene-reporter construct was transfected into HEK 293T 

cells together with increasing concentrations of p205. Ectopic expression of p205 led to a 

dose dependent increase in the Asc-luciferase reporter gene activity. This effect was 

specific to p205, as transfection of two related DNA-binding PYHIN proteins p204 and 

Aim2 had no effect on reporter expression (Figure 2.12A). Further to determine the roles 

of the specific domains of p205 on reporter gene expression, we generated deletion 

mutants of p205 that either lacked the pyrin domain (ΔPYD), the HIN domain (ΔHIN) or 

both (intermediate region only; ΔH/ΔP). We tested the deletion mutants for their ability 

to drive the Asc gene reporter but the mutants lacking either the HIN or pyrin domain 

failed to induce any significant expression from the reporter (Figure 2.12B) suggesting 

the importance of both the DNA-binding HIN domain and protein-binding pyrin domain 

of p205 in controlling transcription. 
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p205 synergizes with other transcription factors to enhance expression from the Asc 

gene reporter 

 Bioinformatics analysis of the Asc promoter region for response elements 

of known transcription factors revealed binding sites for c/EBPβ and NF-κB amongst 

others. Previously, Parsons et al has shown that TNFα treatment could enhance Asc 

expression through p65/RelA in MCF7 cell lines, though the luciferase reporter assay 

results in the study were not conclusive. Furthermore, p205 has been shown to co-

localize and bind directly with the CCAAT/enhancer binding protein-β (c/EBPβ) in 

mouse adipose-derived stem cells. Also, c/EBPβ has also been implicated in the 

induction of several proinflammatory genes in macrophages. Therefore we tested the 

effect of ectopic expression of c/EBPβ or p65/RelA on Asc reporter gene expression. In 

both cases these inducible transcription factors showed modest increase in Asc luciferase 

reporter activity in a dose dependent manner (Figure 2.13 left panel). In addition, co-

expressing p205 together with either c/EBPβ or p65/RelA further enhanced Asc reporter 

gene expression (Figure 2.13 middle panel). However, when minimal concentrations of 

c/EBPβ and p65/RelA were transfected together with increasing concentrations of p205, 

we observed a strong, synergistic increase of activity from the Asc gene-luciferase 

reporter (Figure 2.13 right panel).  
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Figure 2.13: p205 synergizes with c/EBPβ and p65/RelA to drive Asc gene luciferase
reporter activity. Transfection of increasing concentrations of c/EBPβ, p65/RelA and 
p205 alone or, co-transfection of increasing concentrations of p205-HA with either c/EBPβ 
or p65/RelA with Asc promoter-reporter or, transfection of the Asc promoter-reporter with 
increasing concentrations of p205 with both c/EBPβ and p65/RelA, as indicated. 
All luciferase values were measured and normalized to Renilla values. Values are displayed 
as fold change over the Asc reporter construct alone. Data is representative of three 
independent experiments.
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p205 interacts with c/EBPβ in HEK 293T and macrophages 

In addition to c/EBPβ, p65/RelA and p205 synergistically activating 

expression from the Asc gene reporter in HEK 293T, we wanted to test whether proteins 

interact in a complex. We transiently transfected HA-tagged p205 and c/EBPβ in HEK 

293T and observed that p205 specifically interacted with overexpressed c/EBPβ (Figure 

2.14A). To test whether p205 and c/EBPβ interacted endogenously as well, we co-

immunoprecipitated the proteins in resting and LPS-stimulated (200ng/ml for 3h or 6h) 

wild-type macrophages. p205 could successfully pull down c/EBPβ, and vice versa, in 

both unstimulated and LPS-induced macrophages, as was observed by co-

immunoprecipitation assays (Figure 2.14B). Together these observations imply that p205 

can increase Asc gene expression, and can collaborate with c/EBPβ or p65/RelA as well 

to do so. 
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p205 and other transcription factors co-operate to drive Asc gene reporter activity  

  Bioinformatic analysis also displayed sites for transcription factors, c-Rel 

and p53 in the Asc gene promoter. Transfection of c-Rel and p53 alone showed modest 

increase from the Asc gene reporter (Figure 2.15A). Co-transfection of c-Rel and p53 

with increasing concentrations of p205 with the reporter, compared to transfected p205 

alone showed an additive effect (Figure 2.15B). Further, co-transfection of p205 with 

c/EBPβ and c-Rel did not show a synergy in the activation of the Asc gene reporter 

suggesting that c-Rel dependent activation occurs non-competitively and independently 

of p205 and c/EBPβ-mediated transcription of Asc (Figure 2.15C). 
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Figure 2.15: p205 co-operates with cRel and p53 to drive Asc gene reporter activity. 
(A) Transfection of increasing concentrations of cRel and p53 alone with Asc gene reporter
(B) Transfection of p205 alone or co-transfection of increasing concentrations of p205
with either cRel and p53 with Asc gene-reporter, as indicated. (C) Transfection of increasing 
concentrations of p205 alone with fixed amount of c/EBPβ and c-Rel with Asc gene reporter.
All luciferase values were measured and normalized to Renilla values. Values are displayed 
as fold change over the Asc reporter construct alone. Data is representative of two 
independent experiments.
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Shorter mutants of Asc gene-luciferase reporter are not inducible by p205 

  We cloned shorter promoter-reporter constructs containing only 500 bp, 

800 bp, 1000 bp or 1500 bp upstream of the transcription start site of the Asc gene and 

found that the p205-dependent increase in reporter gene expression was maximal in Asc 

gene construct that contained promoter sequence 2000 bp upstream, and reporter activity 

lost in constructs that were less than 1500 bp upstream of the transcription start site (TSS) 

(Figure 2.16A). We cloned the sequence between -2000 to -1500 Asc gene in the 

luciferase reporter to test whether that region was necessary and sufficient to drive Asc 

gene reporter activity, but p205 was unable to drive reporter activity from the construct 

(Figure 2.16B) indicating that the cis and distal regions of the Asc promoter region that is 

necessary for driving expression. 
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Figure 2.16: Shorter Asc gene-luciferase reporters are not inducible by p205.
(A) HEK 293T cells were transfected with a mixture containing 10 ng of TK-Renilla 

luciferase with 1 ng of Asc promoter firefly luciferase reporter constructs (2000 bp, 

1500 bp, 1000 bp, 800 bp and 500 bp upstream of the transcription start site) alone 

or with 25 ng of p205. (B) An Asc gene reporter construct with sequence -2000 to 

-1500 bp upstream was transfected similarly in HEK 293T cells with TK-Renilla and 

25 ng p205. The immunoblot show p205 expression in the HEK 293T cells. All 

luciferase values were measured and normalized to Renilla values. Values are shown 

as fold change over the Asc reporter constructs alone. Data is representative of three 

independent experiments.
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p205 drives expression from a NF-κB luciferase reporter as well 

 The effect of p205 was also studied on p125 IFNβ-luciferase reporter as 

well as a NF-κB luciferase reporter. p205 had no effect on IFN promoter construct but it 

showed substantial increased activity from the NF-κB reporter that consists of 5 tandem 

NF-κB sites as well as from an IL-8 reporter indicating that p205 could drive expression 

of other NF-κB genes in HEK 293T cells (Figure 2.17A).	Induction	of	the	NF- κB, IL-8, 

PRDIII and IFNβ-luciferase reporters were tested with transfected p65/RelA or mSTING 

as positive controls (Figure 2.17B). Following the specific effect of p205 on the NF-κB 

reporter, the loss of induction by p205 on shorter Asc reporter constructs and previous 

studies showing that 1200+ bp of Asc promoter was insufficient for induction, and that 

p65/RelA can interact with p205 and other pyrin-containing proteins, we concluded that 

p205 might be interacting with other factors on the NF-κB sites on the Asc promoter to 

affect gene expression. 
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Figure 2.17: p205 drives expression from NF-κB luciferase reporter.
(A) HEK 293T cells were transfected with a mixture containing 10 ng of TK-Renilla 

luciferase and 25 ng of p205 with 1 ng of Asc gene reporter, 5 ng of NF-κB reporter, 
IL-8 reporter, PRDIII reporter and IFN-β reporter (B) The Asc gene reporter, 

NF-κB reporter, IL-8 reporter, PRDIII reporter and IFN-β reporter were transfected 
similarly in HEK 293T cells with TK-Renilla and 25 ng p62/RelA or STING. cells. All 

luciferase values were measured and normalized to Renilla values. Values are shown 

as fold change over the Asc reporter constructs alone. Data is representative of two 

independent experiments.
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p205 regulates expression of other immune genes in LPS-stimulated macrophages 

  We wanted to determine the impact of p205 on the global expression of 

immune genes in resting and LPS-stimulated bone marrow derived macrophages. We 

collected RNA from either untreated or LPS-treated control and p205 knockdown 

BMDM for multiplex gene expression analysis (nCounter, NanoString) that included a 

selected panel of immune genes. Each immune gene in the NanoString panel is 

represented by fluorescently labeled probes that hybridize directly to the target mRNA, 

and gives a highly sensitive count of mRNA. We observed changes in multiples genes, 

especially in the LPS stimulated macrophages. Genes such as MyD88, Aim2, Il18, Irf3, 

Irf5, Stat1, Stat3 showed no change between the control and the p205 knockdown lines. 

We selected a subset of genes that exhibited a considerable decrease in both the 

knockdown cell lines. As expected, we observed a decrease in the Asc gene expression in 

both the resting and LPS-stimulated macrophages. Other immune genes that showed a 

strong decrease in expression in the LPS-stimulated p205 knockdown macrophages were 

Ccl4, Ccl5, Cd86, Cox2, Cxcl2, Il10, Il1α, Il12α, Il6 and Ifnα as represented by the 

heatmap (Figure 2.18).  
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Figure 2.18: p205 affects expressions of other immune genes in LPS-stimulated
macrophages. Heatmap of Nanostring analysis of immune genes expression in p205 

knockdown macrophages stimulated with LPS (200 ng/ml for 3h).
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We further inspected the levels of IL-1α and IL-6 mRNA in p205 knockdown 

macrophages. Since IL-1α, IL-6 are not expressed in resting state, we stimulated the 

macrophages with LPS for different times (0, 3, 6, 12 h) to observe if loss of p205 

changed its expression over time. We observed that the induction of IL-1α and IL-6 

mRNA was much lower in the knockdown cells with LPS stimulation, corresponding to 

the low p205 expression (Figure 2.19A). As expected, there was no Asc expression in 

LPS-stimulated p205 knockdown macrophages. Parallel to Asc mRNA expression in 

p205-deficient cells, we designed primers to distinguish between the levels of IL-1α and 

IL-6 pre-mRNA and mature mRNA in these cells (see Table 1). Both IL-6 and IL-1α pre-

mRNA and mature mRNA levels were affected in p205 knockdown macrophages treated 

with LPS for 6 hours. Interestingly, the mRNA profile of IL-1α in LPS-stimulated 

macrophages mirrored that of Asc. The mature form of IL-1α mRNA was negligible 

whereas a low amount of its pre-mRNA was present in the macrophages lacking p205 

(Figure 2.19B). Hence, p205 regulates immune responses by controlling transcriptional 

activation of other immune genes such as Il1α, Il6. 
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NLRP3 and NLRC4 inflammasomes are partially compromised in ALR-/- mice 

  Stetson and lab generated an ALR-/- mouse that lacks the PYHIN/ALR 

locus on chromosome 1 containing the 13 PYHIN genes. Deletion of all the ALR/PYHIN 

genes indicates that it also lacks Aim2, and thus ALR-/- cells are unresponsive to triggers 

for the Aim2 inflammasomes. Since ALR-/- cells would also be lacking p205 among other 

PYHIN genes, we wanted to test for activation of other inflammasomes such as NLRP3 

and NLRC4 (Figure 2.20A and B). As expected, IL-1β production upon pdAdT 

transfection in both primary BMDM and BMDC was absent. Interestingly, NLRP3-

dependent IL-1β secretion was partially impaired in ALR-/- BMDM and dendritic cells 

upon stimulation with Nigericin or ATP. Infection with Salmonella typhimurium in 

stationary phase (overnight culture) as well as log phase (4-6 h culture) also showed 

impaired IL-1β secretion. Hence, in these cells, there’s a partial phenotype of p205 

deficiency on IL-1β activation, but there’s the possibility than the PYHIN proteins may 

cross regulate each other’s functions and often, the PYHIN proteins have been observed 

to differentially regulate similar pathways.  

Further, upon observation of the defect in IL-1β secretion in the ALR-/- primary 

BMDM and BMDC, we tested the expression of Asc in the cells. We generated ALR-/- 

immortalized macrophages that showed no p205 protein expression (Figure 2.20C left 

panel). Consistently, compared to wild-type immortalized macrophages, there was a 

marked reduction of Asc protein expression in these macrophages at basal level as well as 

after LPS stimulation (Figure 2.20C right panel). Hence, p205 is important for 

maintaining Asc expression in the cells, though some cross-regulation by the other 

PYHIN proteins (lacking as well in ALR-/- cells) may also be involved.  
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Discussion 

 Studies over the last decade have defined the importance of AIM2, a 

cytosolic DNA binding protein as a regulator of caspase-1 activity and proteolytic 

processing of IL-1β and IL18 (29). The role of the PYHINs in sensing dsDNA was 

further highlighted by the identification of IFI16 as a regulator of type I IFN gene 

transcription following HSV-1 infection (20). 

 Early studies had also linked members of the murine PYHIN family to 

type I IFN gene regulation. Knockdown of mouse Ifi203 and mouse p204 have been 

shown to dampen the IFN response to infection with multiple pathogens, including HSV-

1, human immunodeficiency virus (HIV), murine leukemia virus (MLV), Francisella 

tularensis, and Mycobacterium tuberculosis (20, 241, 242). Despite these studies, a recent 

genetic study from Gray et al using mice lacking the entire PYHIN locus, lacking all 13 

PYHIN genes, found that there was no change in the IFN signature when challenged with 

various immunostimulatory DNA ligands, DNA virus infection and lentivirus infection 

(176). This body of work indicates that the murine PYHIN proteins play limited roles in 

DNA ligand recognition at least in the myeloid cells and fibroblasts tested in these 

studies, raising the possibility that the PYHINs have alternative functions in these cells.  

 Prior to the discovery of AIM2 and IFI16 as sensors of microbial DNA, 

PYHIN proteins were shown to regulate cell growth, differentiation, tumor suppression 

and DNA damage responses (235). IFI16, IFIX, p202, and p204 regulate cell cycle 

transcription factors such as p53, p21, pRb, and E2F resulting in cell cycle arrest (178). 

p202 acts as a transcriptional repressor targeting NF-κB (179), AP-1 (180, 181), MYOD1 

(182), and myogenin (181, 183). p204 also regulates gene expression during 
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monocyte/macrophage differentiation and osteoblast differentiation (243-245).  

 Here we expand upon these studies and define p205, a murine PYHIN 

protein as an additional regulator of gene expression in innate immunity. Using a series 

of loss of function approaches (both shRNA and CRISPR/Cas9 mediated gene editing), 

we report that p205 regulates expression of the inflammasome adapter protein Asc and in 

so doing controls inflammasome activation pathways broadly. Cells lacking p205 failed 

to activate caspase-1 and control inflammasome dependent processing of IL-1β in 

response to multiple ligands that engage the AIM2 inflammasome as well as the NLRP3 

inflammasome. The abrogated inflammasome activation in the p205 KD macrophages 

upon pdAdT stimulation also likely explained the enhanced IFNβ levels detected in these 

cells, since prior work from our lab and others have shown that activation of the AIM2 

inflammasome by intracellular DNA antagonizes the type I IFN pathway (171, 246). In 

cells with defects in inflammasome responses, there is a more robust dsDNA driven 

induction of type I IFNs.  

 By carefully measuring expression levels of key components of the Aim2 

and Nlrp3 pathways, we found that cells lacking p205 had reduced expression of Asc. 

This effect was observed at both the protein and mRNA levels. The compromised 

inflammasome dependent responses observed in these cells could be fully rescued by 

ectopically expressing either p205 or Asc itself. Cells lacking p205 had reduced RNA 

Polymerase II binding to the Asc gene indicating that p205 functioned in part to control 

Asc gene transcription. In addition, by comparing the levels of the Asc pre-mRNA to 

those of the mature transcript, we could also observe additional effects on Asc mRNA 

processing. It is broadly accepted that the CTD of RNA Pol II is involved in efficient 
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transcription as well as mRNA processing (247, 248), and the Serine-2 phosphorylated 

polymerase determines the rate of mRNA elongation, spliceosome assembly and splicing 

efficiency (249). Thus we deduced from our ChIP experiments and qPCR analysis of Asc 

pre-mRNA and mature transcripts, that the absence of p205 not only affects Asc gene 

transcription but also affected the processing of the immature Asc mRNA.  

 Further, we show that in regulating gene expression, p205 cooperates with 

both c/EBPβ and p65/RelA to drive Asc expression. The transcription factor c/EBPβ is 

important in controlling macrophage differentiation. c/EBPβ remains fully active in 

resting macrophages and stays positioned on target genes, ready to stimulate transcription 

with other inducible transcription factors (250). p205 has previously been shown to 

interact with c/EBPβ in adipocytes. p205 interacts with c/EBPβ in unstimulated 

macrophages as well, and maintains basal expression of Asc, while under stimulated 

conditions, LPS-inducible p205 may interact with both c/EBPβ and activated NF-κB 

transcription factors to further enhance expression. 

Previous studies have shown that Asc, originally identified as TMS1 

(Target of methylation induced silencing-1) is influenced by DNA methylation. The Asc 

gene contains a 600-bp long CpG island located near the transcription start site and the 

methylation status of this CpG island correlates with the expression level of Asc/TMS1. 

The methylation status of the CpG island, as well as promoter proximal pausing of RNA 

Polymerase II in multiple cancer cell lines and tissues result in reduced expression of Asc 

(251-259). Our studies indicate that Asc levels are influenced by p205 in murine 

macrophages adding additional understanding to the regulation of this important immune 

gene. Our findings expand on our understanding of transcriptional regulatory roles for the 
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PYHIN proteins. p205 has previously been shown to control p21CIP/WAF gene expression 

via p53 in Saos2 cell lines and to impact gene expression in adipogenesis and 

osteogenesis via transcriptional mechanisms. p205 acts as a transactivator synergizing 

with p53 to induce expression of the cell cycle inhibitor p21 to inhibit cell growth. In 

adipocytes, p205 interacts with c/EBPβ and c/EBPα to further activate the transcriptional 

activity of c/EBPα and PPARγ. All of these studies help establish evidence for PYHIN 

proteins as regulators of gene expression. The discovery of p205 as a regulator of 

inflammasomes via transcriptional regulation of Asc further supports a role for the 

PYHIN proteins as regulators of gene expression and in addition emphasizes the 

importance of PYHIN family members in innate immunity. 
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Chapter 3 

Dectin-1/Syk signaling through caspase-8 promotes caspase-1/11-independent 

inflammasome activation upon Paracoccidioides brasiliensis infection
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Abstract 

 

Paracoccidioides brasiliensis is equipped with an arsenal of virulence factors that are 

crucial for causing infection. NLRP3 inflammasome has been defined as a mediator of P. 

brasiliensis-induced cell damage, and also in promoting an effective Th1 immune 

response. However, the loss of caspase-1 only partially reduced IL-1β levels. Here we 

identify an additional pathway for IL-1β production in response to P. brasiliensis 

infection. By engaging dectin-1 and Syk signaling, P. brasiliensis initiated caspase-8-

mediated IL-1β production, an event that was necessary and sufficient for transcriptional 

priming and posttranslational cleavage of pro-IL-1β. Caspase-8 subsequently synergizes 

with the canonical inflammasome pathway to control caspase-1 processing and caspase-

1/11-independent IL-1β maturation, providing a regulatory role in host resistance to in 

vivo P. brasiliensis infection. Together these findings revealed a novel function for 

dectin-1 in innate immune response of host cells to P. brasiliensis infection, 

demonstrating a connected network between non-canonical caspase-8 and canonical 

caspase-1 inflammasomes to coordinate IL-1β production upon P. brasiliensis challenge. 
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Introduction 

  

The systemic granulomatous disease, paracoccidioidomycosis (PCM), is initiated 

when airborne particles produced by the mycelial stage of Paracoccidioides brasiliensis 

are inhaled and converted into pathogenic yeast in the lungs due to an increase in 

temperature (260, 261). This morphological transition, crucial for the establishment of the 

infection, is accompanied by extensive structural changes in cell wall architecture and 

composition. Both forms have comparable contents of glucans (36–47%), but differ in the 

type of glucan predominantly expressed (262). The polysaccharides shift (263, 264) has 

been proposed as a virulence factor during P. brasiliensis infection (265), as it 

presumably enhances the fungal survival in the mammalian host by modulating the β-

glucan-triggered inflammatory response (266, 267). 

 β-1,3-glucans are recognized by dectin-1 (Clec7A), a C-type lectin receptor 

(CLR) that drives CARD9/Bcl-10/MALT1 scaffold assembly via Src/Syk- dependent 

signaling to activate the transcription factor NF-κB (268, 269). It was suggested that P. 

brasiliensis-dependent Syk kinase phosphorylation (270) culminates in pro-IL-1β 

production (102), and relies on the dectin-1 pathway (271). The expression, maturation 

and secretion of IL-1β are tightly controlled processes that require at least two signals: 

synthesis of the precursor pro-IL-1β through pattern-recognition receptor- mediated NF-

κB activation (signal 1) and processing of the immature pro-IL-1β by caspase-1 or 11-

dependent inflammasome complexes to generate mature, bioactive IL-1β (signal 2) (71, 

272). However, besides dectin-1-induced IL-1β transcription, this CLR also functions as 

an extracellular sensor that directly activates caspase-8, which then cleaves pro-IL-1β 
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during Candida albicans infection (80, 273), emphasizing that diverse and complex 

molecular platforms can form inflammasomes. Caspase-8 cleaves the inactive form of IL-

1β at the same site as recombinant caspase-1 producing similar mature IL-1β fragments 

(79) and similar to caspase-1, forms Asc (apoptosis-associated speck-like protein) puncta 

after Salmonella typhimurium and Aspergillus fumigatus infections (111, 274). Since 

there exists a caspase-1 and 11-independent inflammasome pathway regulating IL-1β 

maturation after fungal invasion, we were interested in understanding the mechanisms 

underlying the non-canonical inflammasome activation. Particularly, we focused on 

defining the contribution of caspase-8 in the modulation of inflammasome-mediated 

immune response during P. brasiliensis infection, as the absence of caspase-1 did not 

completely abrogate IL-1β levels in the infected macrophages (39). In this study, we 

show that caspase-8 activated by P. brasiliensis interacting with the adapter molecule 

Asc after engagement of dectin-1/Syk signaling orchestrates the caspase-1/11-

independent IL-1β release and impairs fungal growth. The appearance of the non-

canonical caspase-8 inflammasome as a partner for IL-1β secretion during P. brasiliensis 

infection demonstrates the versatility of this platform to recruit distinct effector proteins 

to tailor the immune response and sheds new light on the complexity of this host-

pathogen interaction. 
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Material and Methods 

 

Mice:  

Mouse strains were maintained in specific pathogen-free conditions and bred at the 

University of Massachusetts Medical School. C57BL/6 mice were bred in-house or 

obtained from Jackson Labs (Bar Harbor, ME). Casp1/11-/- mice were provided by Dr. V. 

Dixit (Genentech, South San Francisco, CA) , and Clec7a-/- mice were from Dr. G. D. 

Brown (University of Aberdeen, King's College, Aberdeen, U.K.). Asc-/- were from 

Millennium Pharmaceuticals. Rip3-/-Casp8-/- were obtained from Dr. W.J. Kaiser and Dr. 

E.S. Mocarski (Emory University School of Medicine, Atlanta, GA). Rip3-/- mice were 

provided by Dr. D. Green (St. Jude Children’s Research Hospital, Memphis, TN) and in 

some cases by Dr. F. K.-A. Chan (University of Massachusetts Medical School, 

Worcester, MA). All mice were on a C57BL/6 background. 

 

Fungal infection:  

The yeast cells of P. brasiliensis (Pb) 60855 strain (ATCC 60855), obtained from Dr. B. 

S. Klein (University of Wisconsin, Madison, WI), were cultured for 7 days at 37°C in 

brain heart infusion agar medium (Sigma Aldrich) supplemented with 5% FBS (Life 

Technologies). To prepare the inocula, the yeast cells were harvested and maintained 

overnight under agitation in F12 Coon's Modification medium (Sigma Aldrich) at 37ºC. 

The yeast phase suspension was transferred to sterile tubes and centrifuged (400 x g) for 

10 min at 4°C. The pellets were resuspended in PBS (pH 7.2–7.4), diluted and counted 

using a hemocytometer and a light microscope. The viability was determined by the 
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fluorescein diacetate (5mg/mL)-ethidium bromide (1mg/mL) method. Only fungal 

suspensions containing more than 90% of viable yeast cells were used. The cells were 

infected with viable fungi at a multiplicity of infection (MOI) of 1 or 5 whereas each 

animal was inoculated intravenously with 1x106 yeast cells. 

 

Recovery of CFUs (colony-forming units) and Cytokine Analysis:  

The numbers of viable yeast cells in the organs (lungs, liver, and spleen) of the Pb60855-

infected mice were determined at 30 days post-infection (dpi) by counting the CFUs. 

Fragments of the lung, liver, and spleen were aseptically collected, weighed, and 

homogenized using a sterile tissue grinder. The resulting macerate was diluted 10-fold in 

sterile PBS and plated onto Petri dishes containing brain heart infusion agar enriched 

with 5% FBS. The plates were incubated at 37°C for 7 days, and the number of CFUs per 

gram of tissue was calculated. For cytokine analysis of the lungs samples of the animals, 

the tissue in lysis buffer was tested at 10-fold dilution, and amount of cytokine released 

was calculated as per gram of tissue. 

 

Histopathological analysis: 

Animals selected at random from each group were sacrificed at 30 dpi. The lungs were 

excised, fixed with 10% formalin for 48 h, and embedded in paraffin. Tissue sections (5 

mm) were stained with H&E for analysis of the lesions in the lung tissue using standard 

protocols. 

 

Bone marrow-derived dendritic cell (BMDC) differentiation and stimulation:  
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Bone marrow progenitor cells were obtained from femurs and grown in RPMI 1640 

medium with 10% heat-inactivated serum, 1% penicillin-streptomycin, 1% sodium 

pyruvate, 1% NEAA, 20 ng/mL of recombinant GM-CSF, 50 mM 2-ME for 7–10 days to 

differentiate into dendritic cells. On day 7, BMDCs were seeded in cell culture plates and 

the next day were primed or not with Pam3CSK4 (200ng/mL) for 3 hours and then were 

infected with P. brasiliensis at an MOI of 1 or 5 for 24 hours. Where indicated, 

Pam3CSK4-primed BMDCs were treated either with caspase-1 (z-YVAD-fmk), caspase-

8 inhibitors (z-IETD-fmk) (both Santa Cruz; 50uM) for 2 hours or with 40uM of Syk 

inhibitor (piceatannol; InvivoGen) for 1 hour before adding the fungus. As a control, cells 

were incubated overnight with a canonical inflammasome activator such as pdAdT 

(poly(deoxyadenylic-deoxythymidylic) acid). For pdAdT transfection, each reaction 

consisted of 1ug of poly(dA:dT) per one million cells (Sigma-Aldrich) mixed with 

(1:2)(v/v) of Lipofectamine® 2000 Transfection Reagent (Invitrogen). After 15 min, 

DNA complexes were added to BMDCs in Opti-MEM (Gibco) and incubated for 16 

hours. 

Cytokine analysis:  

Cytokines in culture supernatants were measured by ELISA (eBioscience or R&D 

Systems), according to the manufacturers’ instructions. 

Western blot: 

Cell lysates and culture supernatants either combined or separated were denatured in 

loading buffer containing SDS and DTT, boiled and subjected to 13% SDS-PAGE gel. 

SDS-PAGE–separated proteins were transferred to nitrocellulose membranes, blocked 

with 1% nonfat dry milk and immunoblotted with primary antibodies against caspase-1 
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(Adipogen; clone casper-1), pro–caspase-8 (Enzo Life Sciences; clone 1G12 or Cell 

Signaling Technology; #4927), cleaved caspase-8 (Cell Signaling Technology; clone 

D5B2), IL-1β (R&D Systems), Asc (Millipore; clone 2EI-7 or Santa Cruz Biotechnology; 

sc-22514-R) and β-actin (Sigma Aldrich; clone AC15), followed by secondary anti-

rabbit, anti-rat, anti-mouse or anti-goat HRP antibodies (BioRad Laboratories). In some 

cases, proteins from the cell culture supernatants were precipitated by the methanol-

chloroform extraction method. The bands were quantified densitometrically using the 

ImageTool 2.0 software (University of Texas), and the results were expressed as arbitrary 

units. 

 

Caspase-8 activity and cell death assay:  

Caspase-8 activity in cell lysates was assayed using Caspase-Glo 8 Assay kit (Promega). 

Cell death was assessed detecting the release of lactate dehydrogenase (LDH) by 

CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega), according to the 

manufacturer’s instructions. The percentage of cytotoxicity was calculated as (LDH 

infected - LDH uninfected)/(LDH total lysis - LDH uninfected) x 100. LDH total lysis 

was determined by lysing the cultures with Triton X-100. 

 

Asc oligomerization assay: 

Asc oligomerization assay was performed as described (275) with minor modifications 

(276). In brief, BMDCs were primed either with LPS or Pam3CSK4 (50ng/mL) overnight 

and incubated with pan-caspase inhibitor z-VAD (25uM) 30min before the 24-hour 

stimulation with P. brasiliensis or pdAdT. Cytosolic lysates from the cells were enriched 
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for inflammasome fractions by low-speed centrifugation and subjected to cross-linking 

with disuccinimidyl suberate (DSS) (2 mM). The crosslinked samples were analyzed for 

Asc oligomerization by immunoblotting. 

 

Confocal immunofluorescence:  

Following infection, BMDCs were washed twice with PBS and fixed in 4% 

paraformaldehyde for 30 min, followed by blocking with 5% normal goat serum (Dako) 

in Perm/Wash buffer (BD Biosciences) for 1 hr. Cells were incubated with a mouse anti-

Asc antibody (1:500 dilution, clone 2EI-7; Millipore) overnight followed by incubation 

with a rabbit anti-caspase-8 (1:500 dilution, 8592; CST) for an additional 1 hr. The 

secondary antibodies used were Alexa Fluor 488 anti-rabbit IgG and Alexa Fluor 633 

anti-mouse IgG. Cells were counterstained in DAPI mounting medium (1:1000 dilution; 

Vector Laboratories). Cells and inflammasomes were visualized and imaged using a 

Leica TCS SP8 confocal microscope at the Research Core Facility at University of 

Massachusetts Medical School.  

 

Statistical analysis:  

GraphPad Prism 5.0 software was used for statistical analysis. The data were represented 

as mean ± standard errors of the means (SEM) and the differences observed among the 

experimental groups after infection were examined by applying one-way ANOVA 

followed by the parametric Tukey’s test for comparing multiple groups. p < 0.05 was 

considered statistically significant.
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Results 

 

P. brasiliensis-induced IL-1β secretion is dependent on both caspase-1 and caspase-8 

  Regulation of IL-1β production in macrophages and dendritic cells has 

focused on caspase-1, the predominant interleukin-1-converting enzyme (ICE) 

downstream of the NLRP3 (nucleotide-binding oligomerization domain–like receptor 

family pyrin domain–containing 3) inflammasome signaling complex, which is the best 

characterized enzyme for the proteolytic maturation of IL-1β (29). However, some 

studies have also implicated caspase-8 either as a direct executioner caspase for 

generating the mature 17-kDa IL-1β or as an initiator caspase for the activation of 

caspase-1 in response to infection by diverse microbial pathogens (76, 79). However, the 

‘if and how’ of caspase-8 activation during P. brasiliensis infection is still unknown. 

Caspase-8 is synthesized as a single chain zymogen, procaspase-8 (p55), which consists 

of two death effector domains and two active domains (p18 and p10) (277). To monitor 

the activation status of caspase-8 after P. brasiliensis infection, we infected BMDCs, and 

24 hours p.i., immunoblotted for the presence of the caspase-8 p18 subunit, which is 

yielded upon procaspase-8 proteolysis (278). The procaspase-8 processing into the small 

catalytic (p18) subunit as well as the intermediate 43kD form, that avoids apoptosis 

(279), was markedly augmented in Pam3CSK4-primed dendritic cells infected with P. 

brasiliensis, which explains the reduced procaspase-8 level in WT cells after incubation 

with the yeast form (Figure 3.1A). Additionally, the infection of BMDCs with P. 

brasiliensis induced caspase-8 activity in the two fungal concentrations tested (Figure 

3.1B), denoting that P. brasiliensis recognition positively regulates caspase-8 activation. 
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Figure 3.1: Caspase 8 is activated during P. brasiliensis infection.
(A) WT BMDCs were primed with 200 ng/mL of Pam3CSK4 for 3 hours and infected
with P. brasiliensis (MOI 5) for 24 hours before lysates and supernatants were collected and 
immunoblotted for caspase-8 and caspase-1, respectively. Supernatant proteins were 
precipitated with methanol and chloroform. Control cells were stimulated with canonical 
inflammasome activator pdAdT after LPS priming. (B) Caspase-8 activity induced by 
P. brasiliensis in Pam3CSK4-primed WT BMDCs after 24 hours of stimulation with indicated 
MOI of fungus. The results are presented as relative light units. 
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  As caspase-8 has been linked to pro-IL1β maturation in response to 

stimulation via TLR4 (79) as well as after fungal recognition by dectin-1 (80, 273), next 

we investigated whether caspase-8 was involved in P. brasiliensis-induced IL-1β 

production. Blocking caspase-8 activity with a chemical inhibitor (z-IETD-fmk) that 

binds irreversibly to active caspase-8 significantly attenuated the release of active IL-1β 

(Figure 3.2A), but did not affect TNF-α production after stimulation with P. brasiliensis 

(Figure 3.2B). Consistent with that, we also found suppressed cleavage of pro-IL-1β in 

z-IETD-treated cells compared to the untreated cells (Figure 3.2C), demonstrating the 

importance of caspase-8 for pro-IL-1β processing. Accordingly we noted that caspase-8 

inhibition prevented cell cytotoxicity, resulting in lower LDH release, indicating 

decreased cell death (Figure 3.2D). Altogether these data suggest that infection with P. 

brasiliensis leads to processing of pro-IL-1β after fungal recognition not only through the 

activation of caspase-1-dependent inflammasome responses but also through caspase-8. 
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Figure 3.2: Caspase-8 activates P. brasiliensis dependent IL-1β processing and release. 
(C) Culture supernatants harvested from WT BMDCs activated for 3 hours with Pam3CSK4, treated the 
last 2 hours with caspase-1 (z-YVAD-fmk) or caspase-8 (z-IETD-fmk) inhibitors and subsequently 
challenged for 24 hours with P. brasiliensis were analyzed by ELISA to measure the levels of secreted 
IL-1β and (D) TNFα. (E) z-YVAD-fmk or z-IETD-fmk were added to Pam3CSK4 or LPS-primed BMDCs 
2 hours before either infection with 5 yeast of P. brasiliensis per cell or incubation with pdAdT. After 24 
and 16 hours, respectively, the samples prepared by combining cell lysates with culture supernatants 
were immunoblotted for IL-1β. (F) Pam3CSK4-primed BMDCs untreated or treated with z-YVAD-fmk 
or z-IETD-fmk were cultured with P. brasiliensis prior to the assessment of extracellular LDH. 
Values correspond to the percentage of LDH release compared with cells lysed with Triton X-100. 
Data show the averages ± SD from triplicate wells of at least three independent experiments.
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Caspase-1/11 deficiency exacerbates P. brasiliensis-induced caspase-8 maturation  

  Though mouse BMDM lacking caspase-1 failed to produce appreciable 

levels of IL-1β (39, 280), the deficiency of caspase-1 only partially reduced IL-1β 

production. Therefore, it is possible that caspase-8 may also be playing a role in this 

process. To explore the relative contribution of caspase-8 for the caspase-1/11-

independent IL-1β secretion, we analyzed caspase-8 activation and its enzymatic activity 

in the absence of caspase-1 and 11. Surprisingly, P. brasiliensis-induced caspase-8 

processing and activity were greatly enhanced (41.5%) in caspase-1/11–deficient BMDCs 

(Figure 3.3A and B), These data correlated with the key role of caspase-8 in mediating 

IL-1β secretion in Casp1/11-/- cells, since the administration of caspase-8 inhibitor 

completely abolished the residual IL-1β production from the untreated dendritic cells that 

have no caspase-1 or 11 (Figure 3.4A). On the other hand, under the same conditions, the 

z-IETD treatment of P. brasiliensis-stimulated Casp1/11-/- BMDCs did not interfere with 

TNF-α production (Figure 3.4B). In agreement with the hypothesis that caspase-8 is 

essential for IL-1β release when caspase-1 and 11 are not present, the expression of the 

processed mature form of IL-1β, p17 was severely impaired in BMDCs from Casp1/11-/- 

mice, and it completely disappeared under caspase-8 blockade (Figure 3.4C). We 

conclude that P. brasiliensis activates the non-canonical caspase-8 inflammasome 

pathway, which is required for IL-1β release in the absence of caspase-1 and 11. 

Establishing that dendritic cells require caspase-8 activation when caspase-1 is absent and 

that this non-canonical caspase-8 inflammasome is suppressed by caspase-1 in WT cells, 

we set out to address whether Asc, a key component for caspase-1 activation after P. 

brasiliensis infection (39), was also involved in this process. Even though Asc-/- cells are 
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hampered in IL-1β secretion (Figure 3.5A and B), Asc deletion boosted P. brasiliensis-

induced caspase-8 proteolysis (Figure 3.5C) and activity (Figure 3.5D). Therefore, 

canonical caspase-1 inflammasome pathway inhibits the potent non-canonical caspase-8 

inflammasome activation, but in the context of caspase-1/11 deficiency, IL-1β secretion 

is mechanistically dependent on the robust contribution of caspase-8 activity.   
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Figure 3.3: P. brasiliensis triggers caspase 1-independent caspase 8 activation.
(A) BMDCs from indicated mice were primed with Pam3CSK4, infected with P. brasiliensis at 
(5:1) for 24 hours. The cell lysates were subjected to caspase-8 staining by Western blotting. 
(B) Caspase-8 activity in Pam3CSK4-primed WT or Casp1/11-/- BMDCs 24 hours after 
stimulation with Pb60855 was determined by the generation of luminescent signal as result of 
caspase-8 substrate cleavage (Caspase-Glo 8 Assay kit). The results are presented as 
relative light units (RLU)
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Figure 3.4: Caspase-8 is responsible for the caspase-1-independent IL-1β 
secretion triggered by P. brasiliensis. (A) BMDCs obtained from WT or Casp1/11-/- mice 

were primed with Pam3CSK4 and under caspase-8 activity blockade were incubated for 24 hours 

with P. brasiliensis at a MOI of 5:1. The amounts of IL-1β and (B) TNFα were quantified by an 
ELISA assay. (C) IL-1β processing on whole cell extracts was detected after incubation of 
Pam3CSK4-primed WT and Casp1/11-/- BMDCs with DMSO or z-IETD-fmk and infection with 

MOI-5 for 24 hours. Data are mean ± SD from one of three independent experiments. 

A

0

1000

2000

3000

4000

DMSO ZIETD

(1:1)
IL

-1
β 

(p
g/

m
L
)

0

1000

2000

3000

4000

DMSO ZIETD

(5:1)

* *
# #

WT Casp1/11-/-

B

WT Casp1/11-/-

0

50

100

150

200

250

DMSO ZIETD

(1:1)

T
NF

α
 (

n
g/

m
L
)

0

100

200

300

DMSO ZIETD

(5:1)

IL-1β (p17)

pro-IL-1β  (p35)

_

P
a

m
3

C
S

K
4

P
b

 (
5

:1
)

DMSO

βactin  (p42)

WT Casp1/11-/-

_

P
a

m
3

C
S

K
4

P
b

 (
5

:1
)

_

P
a

m
3

C
S

K
4

P
b

 (
5

:1
)

ZIETD

_

P
a

m
3

C
S

K
4

P
b

 (
5

:1
)

WT Casp1/11 -/-

C



 177	

Figure 3.5: ASC deficiency activates caspase 8 after P. brasiliensis infection.
(A) IL-1β secretion by WT and Asc-/- BMDCs stimulated with Pam3CSK4 and P. brasiliensis for 
3 and 24 hours, respectively, was defined by ELISA. (B) Pam3CSK4-primed WT and Asc-/- 
dendritic cells were incubated with P. brasiliensis. 24 hours later, pro-IL-1β conversion into 
biologically active IL-1β was analyzed by western blotting of total cell lysates. In parallel, 
WT cells were treated with LPS and pdAdT as control. (C) Caspase-8 activation and (D) activity 
were examined in BMDCs from WT and Asc-/- mice that were stimulated for 3 hours with 
Pam3CSK4 and for an additional 24 hours with P. brasiliensis.
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Caspase-8 recruits to Asc speck assembly upon P. brasiliensis infection promoting 

IL-1β release through caspase-1 activation  

  Since caspase-8 plays a role in the regulation of inflammasome-generated 

IL-1β, we sought genetic evidence of the potential role of caspase-8 in the canonical 

inflammasome activation response. The genetic deletion of caspase-8 in mice results in 

embryonic lethality (281), which can be rescued by a simultaneous ablation of receptor 

interacting protein kinase-3 (RIP3) (113, 114). We differentiated BMDCs from caspase-

8–deficient mice in a RIP3-deficient background and examined IL-1β release and 

caspase-1 activation following P. brasiliensis infection. Interestingly, P. brasiliensis-

induced IL-1β production was diminished in Rip3-/- and Rip3-/-Casp8-/- BMDCs (Figure 

3.6A), but the amount of TNF-α produced by those cells was comparable to WT (Figure 

3.6B). Similarly, the amount of mature IL-1β in the supernatants of stimulated BMDCs 

was also decreased in Rip3-/-Casp8-/- compared to WT and Rip3-/- cells (Figure 3.6C). 

Nevertheless, considering the known function of caspase-8 as a positive modulator of 

NF-κB transcriptional signaling (77, 78, 116, 118), the reduction in the quantity of 

mature IL-1β from the P. brasiliensis-stimulated Rip3-/-Casp8-/- cells could reflect both 

attenuation of inflammasome assembly as well as less pro-IL-1β substrate available for 

activation. As shown in Figure 3.6C, the levels of pro-IL-1β after Pam3CSK4 priming 

were intact in WT, whereas dendritic cells lacking either RIP3 alone or caspase-8 and 

RIP3 both had less of the 35kD precursor form. However, this decrease did not happen 

when the cells were stimulated with P. brasiliensis, which confirms the effect of caspase-

8 on signal 2 (inflammasome mediated pro–IL-1β processing) instead of signal 1 (NF-

κB–mediated pro–IL-1β induction). Consistently, Rip3-/-Casp8-/- BMDCs infected with P. 
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brasiliensis expressed normal levels of pro-caspase-1, but presented a significant defect 

in inducing caspase-1 activation compared to WT and Rip3-/- cells (Fig 3.7A), which 

correlated with the lower caspase-1 maturation observed on TLR2 agonist-primed WT 

cells treated with z-IETD-fmk, prior to P. brasiliensis stimulation (Figure 3.7B). To 

extend our findings, we evaluated whether even with the faint caspase-1 activation in 

Rip3-/-Casp8-/- BMDCs, caspase-1 still contributes to IL-1β maturation. Caspase-1 

inhibition clearly limited the ability of Pam3CSK4-primed Rip3-/-Casp8-/- BMDCs to 

produce mature IL-1β in response to P. brasiliensis (Figure 3.8A and B). Thus, these 

data indicate that caspase-8 licenses caspase-1 activation in the P. brasiliensis-triggered 

inflammasome, mediating efficient canonical inflammasome activation.  
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Figure 3.8: Caspase-1 controls IL-1β release in the absence of RIP3 and caspase-8. 
BMDCs from wild-type, Rip3-/- and Rip3-/-Casp8-/- mice were stimulated with Pam3CSK4. After 

1 hour we added DMSO or z-YVAD-fmk (50uM) in the cell cultures and kept it for 2 hours until 

proceed to the 24-hour P. brasiliensis infection. The culture supernatants or the whole cell extract 

from the infected BMDCs were collected (A) to measure the concentrations of secreted IL-1β by 
ELISA and (B) to analyze the processed form of  IL-1β by western blotting, respectively. 
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A key question that arises from these results is how does caspase-8 impact 

caspase-1 inflammasome activation. Inflammasome activation results in Asc 

redistribution in the host cytosol to arrange a single cytoplasmic focus, called an Asc 

speck, which can be visualized using microscopy techniques (282). Hypothesizing that 

caspase-8 may be recruited to the P. brasiliensis-induced Asc inflammasome platform, 

we stained for caspase-8 and Asc to determine whether caspase-8 forms a distinct speck-

like protein and/or co-localizes to the same Asc puncta. Comparing the distribution of the 

fluorescently labeled proteins, our immunofluorescence analysis showed a significant co-

localization of caspase-8 and Asc in dendritic cells stimulated with Pam3CSK4 and P. 

brasiliensis (Figure 3.9A). Hence, our observation places caspase-8 as a component of 

the Asc inflammasome complex during P. brasiliensis infection. 

  Currently it is known that Asc forms a single supramolecular platform 

composed of oligomerized Asc dimers that allows the recruitment and subsequent auto-

activation of caspase-1 (275). In that case, one possibility is that caspase-8 facilitates Asc 

oligomerization. In order to find out the oligomeric state of Asc in P. brasiliensis-

stimulated WT, Rip3-/- and Rip3-/-Casp8-/- cells, we pelleted Asc aggregates with 

relatively low speed centrifugation and subjected it to chemical crosslinking. Asc was 

predominantly found as monomers and dimers in the pellets from WT, Rip3-/- and Rip3-/-

Casp8-/- BMDCs, and isolated in equal amounts between WT and Rip3-/- cells. In 

contrast, the oligomerizarion of Asc in Rip3-/-Casp8-/-- infected dendritic cells was 

strikingly weaker (Figure 3.9B). Thus, these results show that caspase-8 is an upstream 

mediator of the canonical caspase-1-dependent inflammasome, demonstrating a 

connection between these two signaling pathways during P. brasiliensis infection. 
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Figure 3.9: Caspase 8 promotes ASC oligomerization and speck formation. 
(A) ASC oligomerization in inflammasome-enriched and cross-linked lysates of Pam3CSK4-primed 

WT, Rip3-/- and Rip3-/-Casp8-/- BMDCs that were put in contact with P. brasiliensis for 24 hours. 

All cultures contained the pan-caspase inhibitor z-VAD-fmk (25uM). Monomers, dimers, and 

oligomers of ASC are indicated accordingly. Where indicated wild-type BMDCs stimulated for 

3 hours with LPS (200 ng/ml) and treated with pdAdT overnight were used as the positive control. 

(B) Caspase-8 (blue) and ASC (green) confocal micrographs taken from Pam3CSK4-primed 

BMDCs seeded on coverslips and stimulated with P. brasiliensis during 24 hours. DAPI was 

used for nuclear staining. Scale bars, 7,5µm. 
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P. brasiliensis recognition by dectin-1 engages IL-1β processing through a 

noncanonical caspase-8 inflammasome pathway 

  IL-1β cleavage downstream of the C-type lectin receptor, dectin-1 in 

dendritic cells can proceed through a noncanonical pathway involving the activation of 

caspase-8 (80). Hence, we sought to understand how P. brasiliensis activates the non-

canonical caspase-8 inflammasome, by checking whether dectin-1 was involved in 

caspase-8-induced pro-IL-1β processing. To ensure that the IL-1β cleavage elicited by P. 

brasiliensis occurs through β-glucan receptor we verified the processing of IL-1β in WT 

and Clec7a-/- cells after fungal challenge. To exclude the effects of dectin-1 on pro-IL-1β 

accumulation, we primed Clec7a-/- cells with Pam3CSK4 to guarantee dectin-1 

independent pro-IL-1β production. Even though dectin-1 could play a role in priming, 

acting upstream of inflammasome signaling, this C-type lectin receptor was also 

important for pro-IL-1β / IL-1β conversion after P. brasiliensis infection, as the reduction 

in IL-1β released was prominent (Figure 3.10A and B). As we hypothesized, this defect 

was not caused by less pro-IL-1β production, but because Pam3CSK4-primed Clec7a-/- 

dendritic cells infected with P. brasiliensis did not provoke caspase-8 activation (Figure 

3.10C and D).  

  Upon ligand binding to the extracellular carbohydrate-recognition domain 

of dectin-1, the immunoreceptor tyrosine-based activation motif (ITAM)-coupled 

cytoplasmic tail is phosphorylated by Src tyrosine kinases causing the subsequent 

recruitment and activation of Syk (268, 283, 284). To ascertain the participation of Syk 

kinase as a potential transducer for dectin-1-mediated IL-1β secretion, we treated 

Pam3CSK4-primed WT BMDCs with piceatannol, a Syk kinase inhibitor, prior to P. 
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brasiliensis infection. Unlike DMSO-treated control cultures, TLR2 agonist-primed WT 

cells that received piceatannol before P. brasiliensis infection had compromised release 

of IL-1β (Figure 3.11A and B), supporting the idea that P. brasiliensis recognition 

incites IL-1β production via Syk kinase. The next question we asked was, how is Syk 

kinase mediating IL-1β cleavage. The treatment of BMDCs with piceatannol 

accompanied by P. brasiliensis stimulation not only dampened caspase-8 activity (Figure 

3.11C) and activation (Figure 3.11D), but also interfered with caspase-1 processing 

(Figure 3.11E), which may be a consequence of activation of multiple receptors that 

converge on Syk. Collectively, Syk kinase signaling is fundamental for IL-1β production 

upon P. brasiliensis recognition as it is necessary for both non-canonical and canonical 

inflammasome activation. 
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Figure 3.10: P. brasiliensis sensing by dectin-1 induces caspase-8 inflammasome
-mediated IL-1β maturation. (A) IL-1β concentration in BMDCs from WT or Clec7a-/- mice 
stimulated with Pam3CSK4 plus P. brasiliensis at an MOI of 5 for 24 hours. (B) Western blotting 
of the processed IL-1β p17 subunit in whole cell extracts from Pam3CSK4-primed WT and 
Clec7a-/- dendritic cells infected with P. brasiliensis. LPS-primed WT BMDCs cultured with 
pdAdT overnight were used as the control for IL-1β production. (C) The lysates from Pam3CSK4-
treated WT and Clec7a-/- BMDCs, which were infected or not with P. brasiliensis for 24 hours, 
were fractionated by SDS-PAGE and incubated with caspase-8 antibody. (D) Caspase-8 activity 
measured after 24 hours of incubation with P. brasiliensis in Pam3CSK4-treated wild-type BMDCs 
or in BMDCs lacking dectin-1. 
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Figure 3.11: Syk kinase signaling activates both caspase 8 and caspase 1 
inflammasome-dependent processing of pro-IL-1β. (A) Pam3CSK4-stimulated BMDCs 

from WT mice with or without Syk kinase inhibitor (piceatannol 40uM) treatment were infected 
with P. brasiliensis for 24 hours and then the supernatants were assayed for IL-1β. (B) BMDCs
from WT mice were infected with P. brasiliensis (MOI 5) for 24 h in the absence or presence of
40µM Syk inhibitor. The combination of supernatant and cell lysate was analyzed by 
immunoblotting to determine the levels of IL-1β released. (C) Assay of caspase-8 activity in 
wild-type BMDCs stimulated with P. brasiliensis and treated or not with Syk inhibitor. 
(D) Pam3CSK4-primed WT BMDCs were pretreated with Syk inhibitor for 1 hour followed by 
24-hour P. brasiliensis infection. Cell lysate samples were used to probe caspase-8 and 
(E) pro-caspase-1, while the supernatant was precipitated by methanol and chloroform before 
carrying out the caspase-1 western blotting. On the panel D, the intensities of immunoreactive 
caspase-8 p 18 bands in the western blotting were quantified through densitometric analysis.
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Caspase-8 augments host resistance to P. brasiliensis infection 

  Subsequently, our effort was to look for in vivo evidence that would 

connect the non-canonical caspase-8 inflammasome to the immune responses against P. 

brasiliensis. To ascertain whether non-canonical caspase-8 inflammasome response 

protects against challenge with P. brasiliensis, we infected WT, Rip3-/- and Rip3-/-Casp8-/- 

mice with 1x106 viable yeasts of P. brasiliensis to analyze the fungal colonization in 

tissues. Rip3-/-Casp8-/- mice had large numbers of fungi in their lungs compared to Rip3-/- 

mice, which behaved similarly as wild-type control mice, while no significant changes 

were observed in the liver and spleen (Figure 3.12A). The reduced ability in attenuating 

fungal growth in P-brasiliensis-infected Rip3-/-Casp8-/- mice was also confirmed in 

histological sections by the presence of extensive lesions containing fungi colonies 

(Figure 3.12B). When the H&E staining was used to visualize the pulmonary fungal 

distribution, we found that P. brasiliensis was localized within granulomatous foci in WT 

and Rip3-/- mice, but was more widespread in the Rip3-/-Casp8-/- mice, which failed to 

confine the pathogen inside granulomas (Figure 3.12B upper panel). Additionally, at 30 

days post-infection, while the immune cells surrounded the granulomatous areas in the 

lung tissues from WT and Rip3-/- mice, the intense inflammatory reaction of Rip3-/-Casp8-

/- mice was diffuse and infiltrated the alveolar spaces (Figure 3.12B lower panel). 

Together these findings show that caspase-8 plays a critical role in mediating protective 

immune defense in vivo and that a deficiency in non-canonical caspase-8 inflammasome, 

leads to a dysregulated inflammatory response, which is unable to control P. brasiliensis 

replication.  
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Figure 3.12: Caspase-8, but not RIP3, deficiency confers susceptibility to P. brasiliensis 
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were fixed in formalin, paraffin embedded, stained with H&E, and analyzed by light microscopy. 

The asterisks indicate the fungi in the tissue. Each dot represents a male mouse.
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Discussion 

  A major signaling pathway involved in the release of IL-1β is the 

activation of the classical or canonical inflammasome pathway, a multi-protein platform 

that activates caspase-1 (285). Beside caspase-1, additional caspases such as caspase-8 

and caspase-11 have also been implicated in the inflammasome-dependent control of IL-

1β processing and maturation (286). As the inflammasome is a dynamic complex that 

recruits different components to a single molecular platform depending on the contextual 

cue, the emergence of non-canonical inflammasomes for pro-IL-1β processing 

emphasizes the diversity of the innate immune system to combat pathogens, indicating 

that several effectors can form inflammasomes during infection in vivo.  

  Caspase-8, first described in 1996, is classically known for its function as 

a mediator of the death receptor–induced extrinsic pathway of apoptosis, that is triggered 

by several death receptors such as TNF-receptor type 1 (TNFRI) and CD95, both 

requiring the FAS-associated death domain (FADD) protein (287, 288). However, 

unexpectedly, caspase-8 is not always involved in apoptotic signaling (289). Substantial 

evidence has built up regarding its non-apoptotic functions, including activation of the 

transcription factor NF-κB (116, 118, 290) and production of mature IL-1β (79). 

Although IL-1β secretion coordinated by caspase-8 activation is not restricted to fungal 

pathogens (76, 78, 111, 291), a body of literature reinforces the influence of this caspase 

in IL-1β production during C. albicans, A. fumigatus and, Cryptococcus neoformans 

infections (80, 273, 274, 292). Previosuly, we demonstrated that the production of IL-1β 

during P. brasiliensis infection is not exclusively due to caspase-1 signaling (39). In 

order to reveal an alternative route for IL-1β secretion, we expanded our views to clarify 
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the interplay between the non-canonical caspase-8 and the canonical caspase-1 

inflammasome pathways after P. brasiliensis infection.  

  Here, we showed that the moderate level of caspase-8 activation observed 

in Pam3CSK4-primed WT dendritic cells incubated with P. brasiliensis was controlled 

by caspase-1/11, because in caspase-1 and -11-sufficient cells the expression and activity 

of these two proteases bypasses vigorous caspase-8 proteolysis and activity. However, 

caspase-8 served as an accessory to induce IL-1β production in P. brasiliensis-infected 

BMDCs under conditions in which canonical caspase-1 inflammasome activation is 

prevented. Consistent with these results, C. neoformans-infected dendritic cells also turn 

to caspase-8 activation when caspase-1 is absent, since caspase-1 suppresses the non-

canonical caspase-8 inflammasome activation (292). Beyond that, the delayed export of 

mature IL-1β in conjunction with increased level of the 18-kDa caspase-8 subunit after 

sustained nigericin treatment also proceeds in a caspase-1 and -11-independent way 

(293).	An explanation for the improved caspase-8 activation in Casp1/11-/- cells is that 

caspase-8 and caspase-1/11 compete with each other. Consequently, caspase-1 and -11 

ablation assures that more Asc would available to bind to 55-kDa procaspase-8. 

  Like other caspases, caspase-8 is translated as a monomeric zymogen 

comprised of a pro domain followed by a large and small catalytic subunit. The pro 

domain of caspase-8 monomers, consists of two death effector domains (DEDs) that 

interact with the N-terminal PYRIN domain of Asc (275, 294) and mediate colocalization 

with the AIM2 inflammasome in Francisella tularensis-infected cells (295). Through 

confocal experiments, we found that caspase-8 interacts and colocalizes together with the 

adapter protein Asc in a single cytoplasmic speck during P. brasiliensis infection, similar 
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to earlier published observations (111, 274, 292, 294, 295). It will be interesting to 

investigate the spatial orientation of caspase-1 and Nod-like receptor proteins in the Asc-

caspase-8 inflammasome in future studies to understand whether the components of the 

canonical inflammasome pathway also reside in the same Asc complex.  

  Even when caspase-1 and 11 are present, we demonstrate that caspase-8 

mediates IL-1β maturation upon P. brasiliensis infection. The reduced IL-1β processing 

assigned to the pharmacological inhibition of caspase-8 was corroborated using the Rip3-

/-Casp8-/- double knockout mice. Caspase-8 deficiency, more than RIP3 deficiency, 

disturbs P. brasiliensis-induced IL-1β secretion in Pam3CSK4-primed BMDCs, 

disrupting caspase-1 activation and Asc oligomerization. The requirement of caspase-8 

for caspase-1 activation suggests that caspase-8 might be upstream of caspase-1, but 

future studies will dissect the mode of action of caspase-8 to elucidate whether the 

protease acts directly or is a parallel pathway that converges with the canonical 

inflammasome to facilitate IL-1β production. Caspase-8 could regulate caspase-1 

activating cellular inhibitors of apoptosis proteins (cIAPs), which have been shown to 

interact with caspase-1, through their respective N-termini, in a complex containing 

TRAF2 (TNF receptor-associated factor 2) to direct the non-degrading K63-linked 

polyubiquitination of caspase-1 that could favor either the assembly of inflammasome or 

coordinate its activity (81). Several groups have demonstrated the involvement of 

caspase-8 in the cleavage of the caspase-1 pro form over the last few years (78, 274, 

291). The exception is the Salmonella typhimurium-sensing pathway, in which caspase-1 

processing in Rip3-/-Casp8-/- macrophages is preserved (111). Nevertheless, how caspase-
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1 and caspase-8 operate, whether synergistically or independently, as well as the nature 

of the activators that determine this relationship remain to be fully elucidated. 

  Mechanistic studies also described that apart from IL-1β cleavage, 

caspase-8 regulates the synthesis of pro-IL-1β mRNA (111). At the transcriptional level, 

caspase-8 is involved in NF-κB-dependent upregulation of pro-IL-1β in LPS-primed 

BMDCs (77). However, another observation revealed that the transcriptional role of 

caspase-8 is not confined to TLR4-induced signaling alone, but extends to NF-κB and 

MAPK activation by the TLR2 ligand Pam3CSK4 (78), which is in agreement with our 

data that showed a weaker protein band for the p35kDa precursor form of IL-1β in Rip3-/-

Casp8-/- dendritic cells compared to Rip3-/- and WT cells. It has been established that the 

catalytic functions of caspase-8 as well as caspase-8-mediated IL-1β production in 

response to heat killed C. albicans are regulated by cFLIP (cellular FLICE-inhibitory 

protein) (296). Furthermore, caspase-8 forms a heterodimer with cFLIP (297) and the 

cFLIP cleavage fragments generated by association with caspase-8 are involved in 

NF-κB activation (298). Combined with our results, it raises the possibility that cFLIP 

proteolysis, a prerequisite for induction of NF-κB activation, does not occur in dendritic 

cells deficient for both caspase-8 and RIPK3, which could explain why the levels of pro-

IL-1β are low after TLR2 engagement. Although the Il1b gene upregulation induced by 

caspase-8 is not applicable to the experimental model of P. brasiliensis infection, 

additional inquiries are needed to better comprehend the precise mechanism by which 

caspase-8 contributes to efficient NF-κB-mediated gene transcription.  

  In addition, we demonstrate that dectin-1-mediated IL-1β production after 

P. brasiliensis challenge requires the non-canonical caspase-8 inflammasome, permitting 
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us to uncover a previously unknown pathway for dectin-1 in P. brasiliensis-infected 

dendritic cells. In fact, in our fungal model, dectin-1 is connected to the posttranslational 

cleavage of pro-IL-1β, but alternatively could regulate IL-1β transcription on priming. 

Similarly, dectin-1-ligand β-glucan participates in both NLRP3 inflammasome activation 

and NF-κB-mediated priming (95, 299). Moreover, it has been shown that dectin-1 

signals alone can activate NF-κB in BMDCs (268, 300), but not in BMDM due to the 

differential use of CARD9 (300). For IL-1β secretion, we saw that inflammasome 

activation was amplified in dendritic cells rather than macrophages (data not shown). 

Regardless of the undesirable IL-1β secretion in certain myeloid cells populations, 

quiescent dendritic cells have increased amounts of NLRP3 transcripts (301, 302), higher 

NLRP3 promoter activity (303) compared to macrophages, and GM-CSF treatment 

maximizes the pro-IL-1β production by NF-κB activating agonists (304), prompting them 

to achieve a satisfactory activation threshold for the NLRP3 inflammasome.  

  Several studies firmly underline the effectors and regulatory mechanisms 

of pattern recognition receptors (PRRs) in innate and adaptive immunity against this 

fungal pathogen (305, 306). However, they did not study their relevance for IL-1β 

induction and secretion, probably because the compensatory pathways seem to mask the 

immunological differences caused by PRR deficiencies. Based on our results, at least one 

additional pathway is responsible for pro-IL-1β induction in dendritic cells since a 

remnant IL-1β production was consistently observed in Clec7a-/- BMDCs. As dectin-1 

manipulates the expression of Toll-like receptors (TLRs) during PCM (271), and P. 

brasiliensis is simultaneously sensed by TLR2 and TLR4 (307, 308) further 

investigations are necessary to unveil the roles of these TLRs for IL-1β production.  
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  Interestingly, Pam3CSK4 priming greatly boosted this response compared 

to LPS (data not shown), suggesting a more prominent expression of the pro-IL-1β 

precursor form after engagement of TLR2 signaling in P- brasiliensis-infected BMDCs. 

In accordance, Netea et al., 2002 (309) verified that TLR2 neutralization in mononuclear 

cells, using a specific anti-TLR2 antibody, leads to a significant reduction of C. albicans-

induced TNF-α and IL-1β production, whereas anti-TLR4 treatment did not influence the 

secretion of these proinflammatory cytokines. In contrast, the IL-1β production triggered 

by Aspergillus fumigatus hyphae on telomerase-immortalized human corneal epithelial 

cells is mediated through both signaling pathways, TLR2 and TLR4 (310). However, the 

sensing pathway engaged by P. brasiliensis to trigger pro-IL-1β synthesis varies with cell 

type. As the transcript levels of genes that encode TLRs and MyD88 are not elevated in 

P. brasiliensis-infected BMDCs (311), the induction of pro-IL-1β in BMDCs is only 

dependent on Syk kinase (102).  

  Even though Syk kinase operates on pro-IL-1β expression during P. 

brasiliensis infection, in our present work we also identified that it plays a pivotal 

function in controlling both non-canonical caspase-8 and canonical caspase-1 

inflammasome activation. In contrast, Gringhuis et al. (80) demonstrated Syk signaling 

induced by non-phagocytosed C. albicans was restricted to caspase-8 activity in human 

dendritic cells. Considering that the requirement of Syk for dectin-1 function is confined 

to cell type (96, 269), this discrepancy may result from variations in the experimental 

approaches or reflect species-based differences that come from the use of either human or 

murine-derived dendritic cells.  
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  Other studies also have linked the NLRP3 inflammasome to Syk-induced 

IL-1β processing in mouse dendritic cells and macrophages infected with fungi (42, 95, 

299). The proposed mechanism is that Syk augments canonical inflammasome activation 

upon dectin-1 signaling by generating reactive oxygen species (ROS) (42, 95, 96, 299), 

chemical compounds that are relevant to NLRP3/caspase-1 inflammasome activation in 

P. brasiliensis-stimulated murine dendritic cells (102). Another important aspect is that 

Syk represents a common point in the signaling pathways of CLEC6A (also known as 

dectin-2) and CLEC4E (also known as Mincle). Unlike dectin-1, dectin-2 and Mincle 

have no known intracellular signaling motifs (312, 313). Instead, they associate with 

ITAM-containing adaptor protein Fc receptor γ chain (FcRγ) to propagate the signal 

(312, 314, 315). Future investigations are likely to dissect the necessity of these receptors 

during PCM.  

  Finally, we demonstrated a greater fungal load in P. brasiliensis-infected 

Rip3-/-Casp8-/- mice denoting a critical role for caspase-8 in host protection. Likewise, the 

same phenotype was described in response to Citrobacter rodentium (78), A. fumigatus 

(274) and Yersinia pestis (291, 316). As mice lacking caspase-8 on a Rip3-deficient 

background (Rip3-/-Casp8-/-) or dendritic cells with deleted caspase-8 (Casp8fl/flItgaxcre) 

have defects in cell death that cause lymphocytes accumulation (113, 122), and the 

capsular polysaccharide component galactoxylomannan from C. neoformans induces 

apoptosis of human T-cells, through caspase-8 activation (317), we believe that caspase-8 

mediated cell death might prevent unwanted or excessive innate immune responses. 

Nonetheless, whether cell death is directly responsible for the inability of caspase-8-

deficient animals to clear P. brasiliensis or for the mobilization of bystander cells that 
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rapidly produce cytokines and phagocytose pathogen-associated cell debris remain to be 

studied. The new insights gained from deciphering how pathogen recognition shapes the 

development of appropriate innate immune responses during P. brasiliensis infection 

allow a better understanding of the underlying cause of inflammation after host-pathogen 

interactions.
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Chapter 4: Discussion, perspectives and implications 

 

  Innate immunity navigates a very fine line between launching an effective 

onslaught against an invading pathogen or self-derived dangers, and controlling these 

responses in such a way so that harm to the host is minimal. Hence, innate immune 

responses are regulated by multiple factors upon which the balance between pathogenesis 

and autoimmunity is hinged. Too less a response, the infection wins or damage persists, 

whereas prolonged or too intense a response, and the healthy host cells and tissues are 

damaged. Multiple layers of regulation have evolved that control immune responses, 

some of which have been described earlier in this dissertation. For example, stimulation 

of inflammatory pathways upon the detection of microbial agents or nucleic acids leads 

to the production of pro-inflammatory as well as anti-inflammatory cytokines and 

chemokines, that counteract each other. Temporal regulation, feedback inhibition of gene 

expression and degradation of effector components are a few critical factors that fine-tune 

a necessary and sufficient immune response to pathogens or danger molecules, and are 

involved in switching off the responses over time. 

 

p205 as a Regulator of Immune Genes and Inflammation 

   

In this dissertation, I outline a novel function of a PYHIN protein in 

regulating inflammation. Previous studies indicate that Asc is upregulated in response to 

cytokines such as IL-1β, IFN- γ, TNF- α and LPS in immune cells (318-320), but the 

mechanism of this regulation has not been clearly elucidated. p205 is a nuclear protein 
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that is highly inducible upon stimulation with the microbial PAMP, LPS as well as by the 

cytokines IFN-α/β and IFN-γ. Deficiency of p205 impaired the Aim2 and Nlrp3 

inflammasomes and had a partial effect on Nlrc4 inflammasomes. In resting 

macrophages, loss of p205 abrogated the expression of the inflammasome adapter 

protein, Asc. Here, I show that p205 is required in maintaining Asc expression in resting 

macrophages as well as B16 melanoma cells, and induction of p205 (e.g. TLR4-

dependent signaling through LPS or the interferons) during infection or cellular stress 

stimulates Asc expression further, in a feed-forward mechanism, which is recruited to 

form a caspase-1 dependent inflammasome required for maturation and activation of the 

inflammatory cytokine, IL-1β. This study illustrates that besides acting as receptors for 

DNA damage and invading pathogens, the DNA-binding PYHIN proteins also control the 

immune pathways by regulating immune gene expressions (Figure 4.1).    
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Figure 4.1: p205 and Inflammasome Activation. p205 expressed in the cell 
nucleus controls Asc gene expression in resting cells. Upon priming of macrophages 
by TLR agonists such as LPS (Signal 1) that induces pro-IL1β expression, p205 
expression is also enhanced. In these primed cells, induction of the receptors like 
NLRP3 or AIM2 (Signal 2) by their respective ligands leads to the recruitment of the 
adapter Asc, and subsequently pro-caspase 1 that forms the inflammasome. The 
activated caspase 1 then cleaves the pro-IL1β into its active, secreted form that 
stimulates a downstream inflammatory response. 
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p205 deficiency diminished inflammasome activation due to decreased 

Asc protein and mRNA expression. Loss of p205 affected the RNA Polymerase II 

transcription machinery at the endogenous Asc gene. It reduced the recruitment of total 

RNA Pol II as well as the differentially phosphorylated RNA Pol II that are responsible 

for transcriptional initiation and elongation as well as mRNA processing and maturation. 

p205 also interacted with other known transcription factors such as c/EBPβ and p65/RelA 

to synergistically enhance Asc gene expression. ASC/TMS1 gene activity has been 

known to be regulated by DNA methylation, which blocks RNA Pol II recruitment, and 

by promoter proximal pausing, which recruits an RNA Pol II that can initiate 

transcription but does not allow transcriptional elongation. In the context of p205, I 

suggest that p205 is an integral part of the larger transcriptional complex containing RNA 

Pol II with or without other transcription factors that is required for effective Asc gene 

expression. Loss of p205 from this transcriptional complex allows for some leaky 

transcription at the endogenous Asc gene but blocks efficient transcription and mRNA 

maturation. Further, the reduced levels of the initiating as well as elongating RNA Pol II 

in the absence of p205 alludes to the inability of RNA Pol II to successfully initiate 

and/or elongate gene transcription even though it is recruited to the gene promoter. 

Hence, other immune genes that are regulated by p205 may not exhibit a similar 

phenotype of leaky pre-mRNA production, but may simply be inhibited by p205 at the 

transcription level - as RNA Pol II pausing and aborted initiation is characteristic of the 

gene promoter, and not the transcription factor. 
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The interaction of p205 with c/EBPβ opens up possibilities about the 

genes that may be regulated by p205, as well as how p205 is doing so. The transcription 

factor, c/EBPβ remains poised on multiple gene promoters in resting macrophages while 

upon induction by LPS, it initiates gene expression (250). c/EBPβ acts by binding to 

DNA, and recruiting other factors or co-activators to open up the chromatin structure to 

facilitate transcription. c/EBPβ can interact with NF-κB and other proteins for trans-

activating gene expression. Interestingly, in our study we observed that p205 interacted 

with c/EBPβ in LPS-stimulated macrophages as well as in the resting cells. Hence, 

c/EBPβ and p205 cooperate in resting cells to sustain Asc gene expression that is 

expressed constitutively, whereas in context of inducible genes such as IL-1α or IL-6, 

c/EBPβ might collaborate with p205 to effectually initiate gene expression during 

stimulation, as indicated by the decreased mRNA levels of these genes in LPS-induced 

macrophages lacking p205. Similarly, NF-κB signaling via TLR4-LPS can induce 

p65/RelA collaboration with p205 that would enhance a LPS-mediated induction of Asc 

expression and other immune genes. p65/RelA induces gene expression by altering the 

chromatin signature towards successful transcription. It facilitates the recruitment of co-

activator complexes (e.g. p300/CBP histone acetyltransferase complex), removal of 

inhibitory modifications, and recruits general transcriptional machinery to the gene. 

Hence, upon stimulation, p205, along with c/EBPβ, can recruit p65/RelA to generate a 

more accessible chromatin conformation that further augments inducible gene 

transcription (Figure 4.2). 
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Figure 4.2: Schematic model describing the mechanism of action by which p205 
regulates Asc gene expression by modulating transcription as well as mRNA 
processing. 

p205

p205

Figure 4.1: Schematic model describing the mechanism of action by which p205 
regulates Asc gene expression by modulating transcription as well as mRNA processing 
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In our study, we were unsuccessful in generating p205-/- knockout mice 

with ES-cell microinjection due to very low chimera percentage in the pups. Instead we 

used an ALR-/- mouse model that has the complete PYHIN/ALR locus deleted and hence, 

lacks the 13 PYHIN genes including p205 (176). On testing primary bone marrow-

derived macrophages and dendritic cells from these animals we observed a partial defect 

in the Nlrp3 and Nlrc4 inflammasomes as well. However, at first, we did not observe a 

strong effect on Asc protein expression in the primary macrophages and dendritic cells. 

Primary macrophages and dendritic cells are cultured in conditional media that contain 

Macrophage Colony Stimulating Factor (MCSF) and Granulocyte Macrophage Colony-

Stimulating Factor (GM-CSF) that are responsible for differentiating hematopoietic stem 

cells, and thus stimulate multiple signaling pathways. Any such pathway, or a component 

of it (e.g. c/EBPβ), upon differentiation, can regulate signaling cascades that are 

otherwise controlled by p205 in the resting or LPS- and IFN-induced differentiated cells. 

However, in immortalized ALR -/- macrophages, Asc protein expression was markedly 

reduced, confirming our previous observations that p205 indeed regulates Asc 

expression. This can be due to multiple reasons including that immortalization of the cells 

augments the effect of p205 on Asc expression, which is not unlikely as both the proteins 

have been previously associated with tumor progression. Additionally, PYHIN proteins 

can interact with each other, and quite possibly be regulating themselves as well as 

similar pathways. Deletion of all 13 PYHIN genes could be overshadowing the singular 

effect attributable to p205. A point to be noted here, several PYHIN proteins, including 

p204, p205 have been reported to be induced and necessary during myeloid cell 

differentiation; hence, deletion of the complete PYHIN locus can change the make-up of 
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the primary macrophages and dendritic cells. However, the decrease in IL-1β production 

in the differentiating primary macrophages and dendritic cells was consistent across 

separate ALR -/- mice, which is in agreement with our observations that there is defect in 

the machinery responsible for IL-1β maturation upon Nlrp3 and Nlrc4 activation. 

 

A previous study on ASC/TMS1 induction in breast cancer epithelial cells 

predicted the involvement of p65/RelA upon TNF-α stimulation but lacked experimental 

evidence. Using an ASC promoter reporter construct, 1254 bp upstream of the translation 

start site, they did not observe sufficient induction with TNF-α stimulation or p65/RelA 

transfection (321). They predicted that promoter regions distal to the translation start site 

would be involved. These observations agree with our study, where p205 could drive 

expression only from the Asc promoter construct containing up to 2000 bp upstream of 

the translation start site. Bioinformatics of the Asc promoter predicted transcription sites 

for c/EBPβ and NF-κB factors scattered within the gene sequence. Hence, it is likely that 

more than one DNA response element and a specific, folded secondary structure is 

essential to initiate effective Asc gene transcription. 

 

  So, which motifs of p205 are involved in mediating gene transcription? As 

mentioned earlier, the PYHIN proteins consist of at least one conserved 200 amino acid 

domain that is capable of binding DNA. Interestingly, HIN-A domain, as found in p205, 

is considered to bind single stranded DNA with higher affinity, compared to HIN-C 

domain of AIM2 and the combination of HIN-A and HIN-B domains of IFI16 that 

preferentially bind double stranded DNA (183). Thus, it is quite likely that the HIN 
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domain of p205 is responsible for binding to the transcriptional elements on the gene 

promoters. However, so far reports indicate that the binding of DNA by the HIN domains 

is sequence-independent, which is contradictory to how transcription factors act. 

Additionally, from our reporter studies we observed, that both pyrin and HIN domains of 

p205 were required to drive expression from the Asc gene luciferase reporter. This 

suggests that while p205 may bind the gene promoter DNA mediated by its HIN domain, 

the specificity of binding may be promoted by protein-protein interactions between the 

p205-pyrin domain with other factors. Hence, p205 binds to another transactivator or 

transcription factor and recruited to the gene promoter where it clamps on to the exposed 

single-stranded DNA in a sequence- independent manner. 

 

For example, Pyrin protein, encoded by the gene MEFV, that forms 

inflammasomes and is the genetic basis for familial Mediterranean fever (FMF), is 

cleaved by caspase 1 and interacts with p65/RelA and other NF-κB factors to enhance 

NF-κB-mediated signaling (322). Intriguingly, a protease cleavage site prediction tool 

(ExPASy) predicts that p205 also has a single caspase 1 cleavage site within its pyrin 

domain, at Asp59 that would generate a N-terminal fragment, and it might interact with 

p65/RelA under stimulated conditions to induce gene transcription.  

 

Future directions 

   

  Outstanding questions about the functions of p205 include determining the 

DNA sequence that is bound by p205 (by ChIP sequencing), the array of genes that are 
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regulated by p205, and whether it cell-type specific (using DNA microarray) and 

deciphering all the interacting partners of p205 (by Mass spectrometry) that form the 

transcriptional complex involved in gene regulation. Another model that can prove useful 

in studying the functions of p205 (independent of other PYHIN proteins) is the ALR-/- 

mouse; however, it has to be kept in mind, that PYHIN proteins may regulate each other 

and often, have been reported to be working in tandem to regulate different pathways 

(e.g. cell growth and proliferation, cell differentiation). Further, defining the functional 

homolog of p205 in humans that regulates Asc and other inflammatory genes would 

make the candidate an exciting therapeutic target in autoimmune and inflammatory 

disorders. 

 

  The innate immune system has evolved to detect microbial threats as well 

as self-derived danger molecules in the cells. In context of immune responses, Asc is 

expressed in resting cells and had been considered to be largely unaffected by microbial 

stimulations. However, expression of Asc is highly variable, and is often silenced, in 

context of cancers and tumors. Previously, p205 has been shown to regulate p21CIP/WAF 

expression in a p53-dependent manner (323). The tumor suppressor function of p205 may 

also be implemented through the action of Asc, which has been implicated in p53-

mediated Bax-dependent mitochondrial apoptosis (324). This is supported by the 

observation that CRISPR/Cas9 mediated knockout of p205 in melanoma cell line also 

affected Asc expression potently. Thus, it is possible that Asc deficiency in murine 

tumors can be correlated to a lack of p205 expression. Also, p205 is inducible by type II 

interferon that is involved in viral infection as well as in DNA damage response. Hence, 
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it would be interesting to study the role of p205 in tumorigenesis, cell proliferation and/or 

cell death. 

 

Humans have 4 PYHIN proteins including AIM2, IFI16, PYHIN1/IFIX 

and MNDA compared to 13 in mouse. The functional human ortholog of p205 is 

unknown. However, the convergence of genes in higher mammals signifies that their 

functions have converged as well. p205 shares high sequence homology with both 

PYHIN1/IFIX and human MNDA. Both PYHIN1/IFIX and MNDA contain a HIN200 

subtype A motif. However, the functions of these proteins have remained unsolved. One 

study has reported that during viral infection, PYHIN1/IFIX can associate with other 

regulatory transcription factors to inhibit viral replication. On the other hand, multiple 

reports have observed differential expression of MNDA in tumor and cancer cell lines 

similar to gene silencing of ASC in tumors, and cancer patients. It is also interesting to 

note that phylogenetic analysis shows that p204, p211, p205 and p207 form a clade with 

human IFI16 and PYHIN1/IFIX in the pyrin domain tree, rather than other mouse 

proteins (172). Hence, depending on the cell-type and immune responses, the functions of 

p205 is likely carried out by one or more PYHINs in humans. The straightforward 

approach would be to determine the expression of these PYHIN proteins in cancer cell 

lines known to down-regulate ASC expression. 
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Caspase 8 as a Regulator of Inflammasomes Activation in Fungal Infections  

   

  Regulation of inflammation and inflammasomes by caspase 8 is context-

dependent, and often contradictory. While caspase 8 itself can activate a non-canonical 

inflammasome, it is also involved in regulation of the canonical inflammasomes, 

inhibitory or activating. In BMDC infected with Paracoccidioides brasileinsis, NLRP3-

dependent caspase 1/11 activation of inflammasomes is the major pathway but in our 

study we show that there is a parallel pathway regulated by activated caspase 8 that is 

also responsible for IL-1β release (Figure 4.3). Future studies will delineate the subtle 

interplay that occurs between caspase 1 and caspase 8 in regulating infection. In the 

absence of caspase 8 activity, there is higher caspase 1 being produced whereas caspase 8 

induces higher IL-1β cleavage and secretion when caspase 1 is blocked. However, 

caspase 1 is activated primarily through the NLRP3 pathway and caspase 8 

inflammasome is dependent on the dectin-1/Syk pathway. It will be interesting to study 

the crosstalk between the two pathways and whether they cooperate or compete with each 

other. Using a Syk inhibitor showed an effect on IL-1β and caspase 8 processing as well 

as a partial effect on caspase 1 proteolysis during P. brasiliensis infection. However, in 

dectin-1 deficient mice (Clec7a-/-), P. brasiliensis infection caused reduction in IL-1β 

processing and release, but showed some amount of caspase 8 cleavage. Hence, further 

studies will be required to outline any other receptors that might activate the 

inflammasome as well as caspase 8 in fungal infection. The in vivo infection model of P. 

brasiliensis in Casp8-/-Rip3-/- mice clarified the critical involvement of caspase 8, but not 

Rip3, in controlling the fungal load in the lungs of animals that led to higher 
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inflammation in the lungs as well. At 30 days post-infection, P. brasiliensis infected 

Casp8-/-Rip3-/- mice were also in worse conditions than Rip3-/- or WT mice, with the 

DKO mice showing symptoms of shivering and acute weight loss. Hence, caspase 8 is 

crucial in controlling fungal infection, and may be regulating inflammation and immune 

responses through more than one signaling pathway.  
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Figure 4.3: Regulation and Activation of the Inflammasome by p205 and 
Caspase 8. p205 maintains the expression of the inflammasome adapter protein, Asc 
in a RNA Polymerase II-dependent manner. Upon stimulation with LPS or Interferons, 
p205 can collaborate with other transcription factors like c/EBPβ and p65 to enhance 
Asc expression. Asc is required for activation of the inflammasome (e.g. NLRP3, 
AIM2) to induce IL-1β secretion, cell death and other inflammatory responses. 
Infection with the fungal pathogen, Paracoccidioides brasiliensis stimulates caspase 
1- as well as caspase 8- dependent inflammasomes to activate IL-1β secretion. The 
caspase 8-dependent inflammasome requires dectin-1, Syk kinase and Asc. 
Caspase 8 also controls inflammasome activation by regulating the activity of mature 
caspase 1 (NLRP3 inflammasome).  
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