Defining a Registry of Candidate Regulatory Elements to Interpret Disease Associated Genetic Variation

Jill E. Moore
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss

Part of the Biology Commons, Computational Biology Commons, and the Genomics Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
DEFINING A REGISTRY OF CANDIDATE REGULATORY ELEMENTS TO INTERPRET DISEASE ASSOCIATED GENETIC VARIATION

A Dissertation Presented

By

Jill E. Moore

Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

OCTOBER 10, 2017

BIOINFORMATICS & COMPUTATIONAL BIOLOGY
DEFINING A REGISTRY OF CANDIDATE REGULATORY ELEMENTS TO INTERPRET DISEASE ASSOCIATED GENETIC VARIATION

A Dissertation Presented
By
Jill E. Moore

This work was undertaken in the Graduate School of Biomedical Sciences

Bioinformatics and Computational Biology

Under the mentorship of

Zhiping Weng, Ph.D., Thesis Advisor
Manuel Garber, Ph.D., Member of Committee
Konstantin Zeldovich, Ph.D., Member of Committee
Elinor Karlsson, Ph.D., Member of Committee
Mark Gerstein, Ph.D., External Member of Committee
Jeffrey Bailey, MD, Ph.D., Chair of Committee

Anthony Carruthers, Ph.D., Dean of the Graduate School of Biomedical Science

October 10, 2017
DEDICATION

This thesis is dedicated to my husband Eric LaRocque, the EP300 to my RNA POLII, enhancing every aspect of life.
ACKNOWLEDGEMENTS

This thesis would not have been possible without guidance from my advisor, the hard work and support of my peers, and the patience and love of my friends and family. I first would like to acknowledge fellow members of the "SCREEN team": Michael Purcaro and Henry Pratt. Over the last year we have worked tirelessly together to assemble the Registry and SCREEN. I could not have asked for two better partners, though I will not miss our 9pm Skype calls. All our hard work has paid off I know we will all celebrate when the paper eventually comes out. I would also like to acknowledge Zlab members as a whole for their support and friendship. I have thoroughly enjoyed our time spent out of lab, whether at Armsby or exploring after conferences.

Third, I would like to acknowledge my "D4L" family. We started on a journey together in the fall of 2008 at the University of Massachusetts Amherst on a floor dedicated to nerds, math and science. We have been inseparable ever since, which has enabled us to become the best architects, teachers, doctors, physician assistants, police officers, engineers, and computer scientists that we can be. I am forever thankful for the friendship that we all share.

Fourth, I would like to acknowledge my family. To my parents Donna and Robert, thank you for always supporting me. Thank you, Mom, for always lending an ear to vent my frustrations whether about the lab or life. Thank you, Dad, for instilling an appreciation for math and science in me at a young age and for the dimple chin. To my brothers, Mike and Ricky, thank you for preparing me for a
career in academia. Your playful (and sometimes not so playful) jabs growing up have readied me for the rejected grants, papers, and positions that I will undoubtedly face throughout my career. I am also very proud of what you have both accomplished at such a young age. A scientist, a lawyer, and a captain walk into a bar.... I am sure there is a joke somewhere in there. I also thank my husband Eric who has always encouraged me to be the best scientist and person that I can be. His unconditional patience and love throughout my PhD career have kept me sane and grounded, even while trying to plan a wedding.

Finally, I would like to acknowledge and thank my advisor over the last five years, Zhiping Weng. After meeting Zhiping during my prospective students weekend I knew that I wanted to work in her lab. Not only does she have a passion for research, but also for learning. She has instilled in me the importance of continually improving yourself, to reach your highest potential. I look forward to continuing to work together over the next several years.
ABSTRACT

Over the last decade there has been a great effort to annotate noncoding regions of the genome, particularly those that regulate gene expression. These regulatory elements contain binding sites for transcription factors (TF), which interact with one another and transcriptional machinery to initiate, enhance, or repress gene expression. The Encyclopedia of DNA Elements (ENCODE) consortium has generated thousands of epigenomic datasets, such as DNase-seq and ChIP-seq experiments, with the goal of defining such regions. By integrating these assays, we developed the Registry of candidate Regulatory Elements (cREs), a collection of putative regulatory regions across human and mouse. In total, we identified over 1.3M human and 400k mouse cREs each annotated with cell-type specific signatures (e.g. promoter-like, enhancer-like) in over 400 human and 100 mouse biosamples. We then demonstrated the biological utility of these regions by analyzing cell type enrichments for genetic variants reported by genome wide association studies (GWAS). To search and visualize these cREs, we developed the online database SCREEN (search candidate regulatory elements by ENCODE). After defining cREs, we next sought to determine their potential gene targets. To compare target gene prediction methods, we developed a comprehensive benchmark of enhancer-gene links by curating ChIA-PET, Hi-C and eQTL datasets. We then used this benchmark to evaluate unsupervised linking approaches such as the correlation of epigenomic signal. We determined that these methods have low overall performance and do not outperform simply
selecting the closest gene. We then developed a supervised Random Forest model which had notably better performance than unsupervised methods. We demonstrated that this model can be applied across cell types and can be used to predict target genes for GWAS associated variants. Finally, we used the registry of cREs to annotate variants associated with psychiatric disorders. We found that these "psych SNPs" are enriched in cREs active in brain tissue and likely target genes involved in neural development pathways. We also demonstrated that psych SNPs overlap binding sites for TFs involved in neural and immune pathways. Finally, by identifying psych SNPs with allele imbalance in chromatin accessibility, we highlighted specific cases of psych SNPs altering TF binding motifs resulting in the disruption of TF binding. Overall, we demonstrated our collection of putative regulatory regions, the Registry of cREs, can be used to understand the potential biological function of noncoding variation and develop hypotheses for future testing.
TABLE OF CONTENTS

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

LIST OF FIGURES .. xiv

LIST OF EXTERNAL FIGURES .. xv

LIST OF TABLES .. xvi

LIST OF EXTERNAL TABLES ... xvii

CHAPTER I: INTRODUCTION

Introduction ... 1

Prediction and Validation of Regulatory Elements ... 1

- Regulatory elements in the human genome ... 1
- Assays used to characterize regulatory elements .. 4
- Computational methods for predicting enhancers ... 5
- Methods for experimentally validating enhancer predictions 9

Linking Distal Enhancers with Target Genes ... 11

- Experimental methods for assaying three-dimensional chromatin structure 12
- Computational methods for linking enhancers and genes ... 14

Noncoding Variation Associated with Psychiatric Disorders 17

- Genetics of psychiatric disorders ... 17
- Interpreting GWAS variants with epigenomic data ... 20

CHAPTER II: DEVELOPING A REGISTRY OF CANDIDATE REGULATORY ELEMENTS

Preface ... 24

Abstract ... 25

Introduction ... 25

Results ... 27

- Cell Type Specific Enhancer Prediction ... 27
- Creating a Registry of candidate Regulatory Elements (cREs) 30
- Comprehensiveness of the Registry of cREs ... 35
- Comparison with previously defined regulatory regions ... 37
- Cell and tissue type clustering using cRE activity .. 39
- Applications to Genome Wide Association Studies (GWAS) 41
- SCREEN (Search Candidate Regulatory Element by ENCODE): A Web-based Visualization Tool ... 42

Discussion .. 43

Figures ... 49
Figure 2.29 | Top cell type enrichments for variants reported by genome wide association studies (GWAS) ... 78
Figure 2.30 | Overview of SCREEN .. 79
Figure 2.31 | Analyzing differential gene expression and cRE activity across developmental time-points .. 81

Tables... 82
Table 2.1 | ENCODE mouse experiments used for enhancer prediction ... 82
Table 2.2 | AUPR for VISTA Enhancer prediction ... 83
Table 2.3 | AUPR for VISTA Enhancer prediction anchored on DHSs. 84
Table 2.4 | Tested enhancer-like regions for midbrain e11.5 85
Table 2.5 | Tested enhancer-like regions for hindbrain e11.5 88
Table 2.6 | Tested enhancer-like regions for limb e11.5 91
Table 2.7 | Correlation of promoter activity and gene expression in mouse tissues ... 94
Table 2.8 | Correlation of promoter activity and gene expression in human cells ... 95
Table 2.9 | Combined ChromHMM states ... 96
Table 2.10 | Overlap of previous enhancer predictions with cREs 97
Table 2.11 | GWAS studies included in analysis 98

Methods .. 101
Mouse Transgenic Assays ... 101
Cell type specific enhancer prediction .. 101
Cell type specific promoter prediction ... 102
Creating representative DHSs (rDHSs) .. 103
Normalizing epigenomic signals ... 103
Classification of cREs .. 104
Saturation of cREs within each group with increasing numbers of cell types ... 105
Overlap of cREs with ChromHMM states ... 105
Clustering cell types on the basis of their cRE activities 106
Enrichment of GWAS variants in cREs .. 106
SCREEN .. 107
Scripts .. 107

CHAPTER III: EVALUATING METHODS FOR LINKING ENHANCERS WITH TARGET GENES
Preface ... 108
Abstract .. 108
Introduction .. 109
Results
Curating Benchmark Datasets ... 111
Comparing Benchmark Datasets .. 113
Ranking by Distance Outperforms Correlation Based Methods 115
Random Forest Models Outperform Unsupervised Methods 118
Our Random Forest Model Can be Applied Across Cell Types 120
Our Random Forest Model Identifies a New GWAS Gene for Multiple Sclerosis ... 121
Discussion .. 123

Figures
Figure 3.1 | Method for curating ELS-Gene pairs 127
Figure 3.2 | Benchmark datasets have different ELS-gene distance distributions .. 128
Figure 3.3 | Overlap of ELS-gene pairs between benchmark datasets 129
Figure 3.4 | Activity of ELS cREs and expression of genes in benchmark datasets .. 130
Figure 3.5 | Precision and recall for linking ELS cREs with closest gene ... 131
Figure 3.6 | PR curves for unsupervised linking methods: ChIA-PET datasets .. 132
Figure 3.7 | PR curves for unsupervised linking methods: eQTL and Hi-C datasets .. 133
Figure 3.8 | Correlation of DNase signal between of ELS-gene pairs 134
Figure 3.9 | Proposed random forest models for predicting ELS-gene pairs ... 135
Figure 3.10 | PR curves for Random Forest models: ChIA-PET datasets ... 136
Figure 3.11 | PR curves for Random Forest models: eQTL and Hi-C datasets .. 137
Figure 3.12 | PR curves for Random Forest models trained and validated in different cell types ... 138
Figure 3.13 | Predicting genes linked with MS variant rs1250568 139

Tables .. 140
Table 3.1 | Benchmark datasets .. 140
Table 3.2 | AUROC and AUPR for unsupervised methods 141
Table 3.3 | AUROC and AUPR for random forest methods 142
Table 3.4 | Feature importance for basic Random Forest Model 143
Table 3.5 | Feature importance for expression Random Forest Model 145
Table 3.6 | Feature importance for CTCF Random Forest Model 146
Table 3.7 | Feature importance for Comprehensive Random Forest Model ... 147
Table 3.8 | AUROC and AUPR for cross cell type comparisons 150

Methods .. 151
Creating Our Benchmark of ELS-Gene Pairs 151
Defining ELS cREs ... 151
Processing ChIA-PET Data .. 151
Processing Hi-C Data .. 152
Processing eQTLs ... 152
Generating negative pairs ... 153
Generating training, validation, and test sets 153
Predicting Target Genes Using Distance ... 154
Correlation Methods ... 154
Random Forest Model .. 155
Scripts .. 157

CHAPTER IV: USING THE REGISTRY OF CREs TO ANNOTATE GENETIC
VARIANTS ASSOCIATED WITH PSYCHIATRIC DISORDERS
Preface ... 158
Abstract ... 158
Introduction ... 159
Results ... 161

The majority of GWAS signal for psych SNPs is explained by cREs ... 161
Psych SNPs are enriched in cREs active in brain regions 163
SCZ and CD SNPs regulate genes expressed in the brain involved in neural pathways .. 166
Temporal activity of cREs containing psych SNPs reveals biological role ... 171
Psych SNPs overlap putative binding sites for TFs involved in neural and immune pathways .. 175
Psych SNPs disrupt sequence motifs resulting in the disruption of TF binding ... 179

Discussion ... 182

Figures
Figure 4.1 | Top tissues with enhancer-like cREs enriched for psych SNPs ... 188
Figure 4.2 | Enrichment for Psych SNPs in cREs with high H3K27ac signal ... 189
Figure 4.3 | SCZ SNP genes are enriched for brain expression and neural pathway terms ... 190
Figure 4.4 | Determining genes associated with psych SNPs 191
Figure 4.5 | Analysis of cRE activity across brain development 192
Figure 4.6 | Psych SNPs overlap orthologous mouse cREs active throughout brain development ... 193
Figure 4.7 | Clustering of enriched transcription factor motifs 194
Figure 4.8 | Psych SNPs are enriched for motifs and binding sites of TFs involved in neural and immune pathways .. 195
Figure 4.9 | Examples of allele specific chromatin accessibility and TF binding at psych SNPs ... 196

Tables ... 197
Table 4.1 | GWAS studies included in analysis 197
Table 4.2 | Genetic context of psych SNPs 198
Table 4.3 | Deleterious predictions for psych SNPs overlapping coding exons ... 199
Table 4.4 | Overlap of psych SNPs with cREs .. 202
Table 4.5 | Type of overlapping cREs ... 203
Table 4.6 | Overlap of eQTLs and psych SNPs .. 204
Table 4.7 | Enriched gene ontology terms for SCZ closest genes 205
Table 4.8 | Enriched TF ChIP-seq peaks overlapping SCZ SNPs 206
Table 4.9 | Enriched cell types with TF ChIP-seq peaks overlapping SCZ SNPs ... 207
Table 4.10 | Top 10 mouse RNA-seq experiments with enriched expression for TF ... 208

External Data and Figures ... 209

Methods .. 210
Generating Control Datasets .. 210
Testing for Enrichment in cRE Activity .. 210
Enrichment for Gene Expression .. 211
Temporal Clustering of Brain cREs ... 211
Determining Overlapping Motifs ... 212
Enrichment for TF Binding Sites ... 212
Testing for Allele Specificity .. 212
Scripts ... 213

CHAPTER V: CONCLUSIONS AND FUTURE DIRECTIONS
Introduction ... 214
The Registry of cREs and Future Plans for Expansion ... 214
Evaluating Methods Prediction Enhancer-Gene Links ... 218
Annotating Genetic Variants Associated with Psychiatric Disorders ... 220
Final Comments ... 225

REFERENCES ... 226
LIST OF FIGURES

Figure 2.1 | Protocol used to validate enhancers included in the VISTA database... 49
Figure 2.2 | ENCODE3 mouse embryonic time series data 50
Figure 2.3 | Unsupervised enhancer prediction methods 51
Figure 2.4 | Precision-Recall (PR) curves for VISTA Enhancer prediction 52
Figure 2.5 | PR curves for VISTA Enhancer prediction anchored on DHSs ... 53
Figure 2.6 | Validation rates of predicted enhancer-like regions using
transgenic mouse assays ... 54
Figure 2.7 | Examples of predicted enhancer-like regions which tested positive in
the transgenic mouse assays .. 55
Figure 2.8 | Overlap of cell types with epigenomic datasets 56
Figure 2.9 | Correlation of gene expression with epigenomic signals to predict
promoter-like regions in mouse hindbrain e11.5 57
Figure 2.10 | Method for creating representative DNase hypersensitivity
sites .. 58
Figure 2.11 | Method for normalizing genomic signals 59
Figure 2.12 | Classification scheme for human cRES (hg19) 60
Figure 2.13 | Classification scheme for mouse cRES (mm10) 61
Figure 2.14 | Coverage of the registry of cRES .. 62
Figure 2.15 | Nine states of cell-type specific cRES in GM12878 63
Figure 2.16 | Overview of 5 group classification method 65
Figure 2.17 | Saturation of cRES across 21 cell types with all four datatypes...... 66
Figure 2.18 | Cell-type specific annotations of the Registry of cRES 67
Figure 2.19 | Groups of orthologous cRES ... 68
Figure 2.20 | Coverage of histone modification peaks by the current human
Registry of cRES .. 69
Figure 2.21 | Coverage of histone modification peaks by the current mouse
Registry of cRES .. 70
Figure 2.22 | Coverage of the H3K4me3 peaks by the current Registry of
cRES is plotted against the average -log(FDR) of the H3K4me3 peaks ... 71
Figure 2.23 | Clustering of mouse cell types on the basis of cRE histone
modification activity .. 72
Figure 2.24 | Clustering of human cell and tissue types on the basis of cRE
H3K27ac signal ... 73
Figure 2.25 | Clustering of human cell and tissue types on the basis of cRE
DNase signal ... 74
Figure 2.26 | Overlap of cRES with chromHMM states 75
Figure 2.27 | Overlap of ELS cRES with previously predicted enhancers 76
Figure 2.28 | Overlap of previously predicted enhancers with cRES 77
Figure 2.29 | Top cell type enrichments for variants reported by genome
wide association studies (GWAS) .. 78
Figure 2.30 | Overview of SCREEN ... 79
Figure 2.31 | Analyzing differential gene expression and cRE activity across developmental time-points ... 81
Figure 3.1 | Method for curating ELS-Gene pairs ... 127
Figure 3.2 | Benchmark datasets have different ELS-gene distance distributions ... 128
Figure 3.3 | Overlap of ELS-gene pairs between benchmark datasets ... 129
Figure 3.4 | Activity of ELS cREs and expression of genes in benchmark datasets ... 130
Figure 3.5 | Precision and recall for linking ELS cREs with closest gene ... 131
Figure 3.6 | PR curves for unsupervised linking methods: ChIA-PET datasets ... 132
Figure 3.7 | PR curves for unsupervised linking methods: eQTL and Hi-C datasets ... 133
Figure 3.8 | Correlation of DNase signal between of ELS-gene pairs ... 134
Figure 3.9 | Proposed random forest models for predicting ELS-gene pairs ... 135
Figure 3.10 | PR curves for Random Forest models: ChIA-PET datasets ... 136
Figure 3.11 | PR curves for Random Forest models: eQTL and Hi-C datasets ... 137
Figure 3.12 | PR curves for Random Forest models trained and validated in different cell types ... 138
Figure 3.13 | Predicting genes linked with MS variant rs1250568 ... 139
Figure 4.1 | Top tissues with enhancer-like cREs enriched for psych SNPs ... 188
Figure 4.2 | Enrichment for Psych SNPs in cREs with high H3K27ac signal ... 189
Figure 4.3 | SCZ SNP genes are enriched for brain expression and neural pathway terms ... 190
Figure 4.4 | Determining genes associated with psych SNPs ... 191
Figure 4.5 | Analysis of cRE activity across brain development ... 192
Figure 4.6 | Psych SNPs overlap orthologous mouse cREs active throughout brain development ... 193
Figure 4.7 | Clustering of enriched transcription factor motifs ... 194
Figure 4.8 | Psych SNPs are enriched for motifs and binding sites of TFs involved in neural and immune pathways ... 195
Figure 4.9 | Examples of allele specific chromatin accessibility and TF binding at psych SNPs ... 196
LIST OF EXTERNAL FIGURES

These figure is too large to include in the PDF version of this thesis. It is available online at
https://drive.google.com/drive/folders/0B07orkTYRj9pRy1IdE9JUVYVTzA?usp=sharing
LIST OF TABLES

Table 2.1 | ENCODE mouse experiments used for enhancer prediction 82
Table 2.2 | AUPR for VISTA Enhancer prediction ... 83
Table 2.3 | AUPR for VISTA Enhancer prediction anchored on DHSs 84
Table 2.4 | Tested enhancer-like regions for midbrain e11.5 85
Table 2.5 | Tested enhancer-like regions for hindbrain e11.5 88
Table 2.6 | Tested enhancer-like regions for limb e11.5 91
Table 2.7 | Correlation of promoter activity and gene expression in mouse tissues ... 94
Table 2.8 | Correlation of promoter activity and gene expression in human cells ... 95
Table 2.9 | Combined ChromHMM states .. 96
Table 2.10 | Overlap of previous enhancer predictions with cREs 97
Table 2.11 | GWAS studies included in analysis .. 98
Table 3.1 | Benchmark datasets ... 140
Table 3.2 | AUROC and AUPR for unsupervised methods 141
Table 3.3 | AUROC and AUPR for random forest methods 142
Table 3.4 | Feature importance for basic Random Forest Model 143
Table 3.5 | Feature importance for expression Random Forest Model 145
Table 3.6 | Feature importance for CTCF Random Forest Model 146
Table 3.7 | Feature importance for Comprehensive Random Forest Model .. 147
Table 3.8 | AUROC and AUPR for cross cell type comparisons 150
Table 4.1 | GWAS studies included in analysis .. 197
Table 4.2 | Genetic context of psych SNPs .. 198
Table 4.3 | Deleterious predictions for psych SNPs overlapping coding exons ... 199
Table 4.4 | Overlap of psych SNPs with cREs .. 202
Table 4.5 | Type of overlapping cREs .. 203
Table 4.6 | Overlap of eQTLs and psych SNPs ... 204
Table 4.7 | Enriched gene ontology terms for SCZ closest genes 205
Table 4.8 | Enriched TF ChIP-seq peaks overlapping SCZ SNPs 206
Table 4.9 | Enriched cell types with TF ChIP-seq peaks overlapping SCZ SNPs .. 207
Table 4.10 | Top 10 mouse RNA-seq experiments with enriched expression for TF ... 208
LIST OF EXTERNAL TABLES

External Table 4.1 | Enriched cell types using H3K27ac in hg19
External Table 4.2 | Enriched cell types using DNase in hg19
External Table 4.3 | Enriched cell types using H3K27ac in mm10
External Table 4.4 | Enriched cell types using DNase in mm10
External Table 4.5 | eQTL Enrichment for Psych SNPs
External Table 4.6 | Tissues and cell types with enriched expression for eQTL genes
External Table 4.7 | Tissues and cell types with enriched expression for closest genes
External Table 4.8 | Tissues and cell types with enriched expression for genes within 100kb
External Table 4.9 | Gene expression for select psych genes
External Table 4.10 | Enriched gene ontology terms for psych genes
External Table 4.11 | Enriched gene ontology for brain development group genes
External Table 4.12 | Enrichment of psych SNPs in brain development groups
External Table 4.13 | Activity of select cREs
External Table 4.14 | Enriched TF motifs
External Table 4.15 | Allele specific binding results

These tables are too large to include in the PDF version of this thesis. They are available online at
https://drive.google.com/drive/folders/0B07orkTYRj9pRy1ldE9JUVVYTzA?usp=sharing
CHAPTER I: Introduction

INTRODUCTION

The human genome is comprised of three billion base pairs, of which less than 2% are protein-coding exons\(^1\). The remaining 98% of the genome contains introns, noncoding RNAs, pseudogenes, repeat sequences, transposons, and regulatory elements\(^1\). Properly annotating these regions is difficult and requires the integration of multiple genomic, transcriptomic, and epigenomic assays. Accurate characterization of these noncoding sequences has important biomedical applications. For example, mutations in regulatory elements are linked with monogenic disorders such as polydactyly\(^2\), cleft palate\(^3\), and congenital heart disease\(^4,5\). Additionally, 80% of common genetic variants associated with human disease are in noncoding regions with many overlapping potential regulatory elements\(^6\). Therefore, to better understand mutations linked with human disease and genome regulation as a whole, we aim to produce a comprehensive annotation of regulatory elements in the human genome.

PREDICTION AND VALIDATION OF REGULATORY ELEMENTS

Regulatory elements in the human genome

Regulatory elements are regions of DNA where proteins known as transcription factors (TFs) bind and interact with one another and transcriptional machinery to control gene expression\(^1,7\). While the genome likely has many different types of regulatory elements, with varying degrees of activity, the field
often classifies them into four generalized categories: promoters, enhancers, repressors, and insulators. Promoter elements are proximal to transcriptional start sites (TSSs) of genes and are responsible for recruiting TFs and polymerase machinery to initiate transcription\(^7,8\). The core promoter is the minimal set of DNA elements required for transcription to occur. In humans, this includes the TSS, RNA polymerase binding site and general TF binding sites such as the TATA Box\(^8\). In addition to the core promoter, there are also proximal promoter elements where additional TFs bind to further promoter transcription\(^7\).

Enhancers are regulatory elements that increase gene expression through TF interactions with a gene's promoter\(^7,9,10\). Initially discovered in viral genomes\(^11,12\), enhancers were first characterized in a mammalian genome by Banerji et al., who identified a lymphocyte specific enhancer within the Ig gene\(^13\). Enhancers can be located close to their target gene, like the Ig enhancer, or can be almost 1 Mb away such as the polydactylly linked ZRS element and its target SHH\(^2,14\). Generally, enhancers are more cell type specific than promoters and are responsible for regulating cell type specific gene expression\(^15\).

Repressors (also referred to as silencers) are elements that suppress transcription\(^7,16\). Though repressors are not as well characterized as their enhancer counterparts, several examples have been identified in the human genome. For example, neuron-restrictive silencer elements (NRSEs) are regions that repress the transcription of neuronal genes in non-neuronal cells\(^17\). These elements have been reported near many neuronal genes such as STMN2.
(SCG10), which is involved in neuronal growth18 and SCN2A, which encodes a voltage-gated sodium channel19. NRSEs contain binding sites for the REST (NRSF), a repressive TF20.

Insulators are elements that block transcriptional regulation between two genomic regions (often nearby genes)7. A well-studied example of insulator activity in the human genome is at the imprinting control region (IRC) located between the H19 and IGF2 genes21,22. On the paternal allele, the IRC is methylated, preventing TF binding, and IGF2 is expressed. However, on the maternal allele, the IRC is unmethylated, allowing the TF CTCF to bind and block IGF2 from interacting with its upstream enhancer21,22. While the exact biochemical mechanism of insulator activity is not well understood, it appears that CTCF is an important component of insulators23.

The aforementioned examples of regulatory elements were characterized over a period of years using various biochemical and validation assays. The majority of these methods are low throughput and attempting to apply these methods on a genome wide scale is not practical. With the advent of sequencing technology and high throughput genomic assays, we can predict regions of regulatory activity in the human genome. The National Human Genome Research Institute established The Encyclopedia of DNA Elements (ENCODE) Consortium24,25, a large collaborative effort, with the aim of identifying all of the functional elements in the human genome. Through technological development and collaborative analysis, the ENCODE project, along with other large consortia
such as the Roadmap Epigenomics Project26, has generated thousands of high throughput sequencing datasets which can be integrated to define an encyclopedia of DNA elements.

\textit{Assays used to characterize regulatory elements}

The ENCODE and Roadmap Epigenomics projects have generated thousands of high throughput sequencing experiments that assay components of the genome, transcriptome, and epigenome. Using these datasets, we can identify genomic regions bound by TFs and interpret their chromatin context to identify putative regulatory elements.

ENCODE has generated over three thousand TF chromatin immunoprecipitation sequencing (ChIP-seq) experiments, identifying binding sites for hundreds of TFs in up to hundreds of cell types. By analyzing the binding sites of specific TFs, we can identify regions with potential regulatory function. For example, POLR2A is a subunit of RNA polymerase II (POLII) and co-localizes with regions of transcriptional activity such as promoters27. EP300 (p300), on the other hand, is known to bind at enhancers28,29. Other TFs, such as the previously mentioned CTCF, have multiple functions and are known to bind at enhancers, repressors, and insulators30. In addition to assaying specific TFs, the ENCODE and Roadmap projects have generated chromatin accessibility data, such as DNase-seq31,32 and ATAC-seq (assay for transposase-accessible chromatin using sequencing)33. These assays identify regions of open chromatin (called DNase
hypersensitivity sites (DHS) and ATAC peaks) presumably due to TF binding. While these methods do not report the specific TFs bound at these regions, they produce a genome-wide list of potential regulatory sites.

We can further annotate TF binding sites and DHSs using histone modification ChIP-seq data. Histone proteins are core components of nucleosomes, which condense and package DNA into higher order chromatin structures\(^{34}\). Chromatin structure is regulated by biochemical modifications to histones, particularly to their tails, causing chromatin to relax or tighten. Therefore, specific types of histone modifications are enriched at regulatory elements. For example, promoters tend to have high levels of H3K4me3 (histone 3, lysine 4, trimethylation) and H3K27ac (histone 3, lysine 27, acetylation) and enhancers have high levels of H3K4me1 (histone 3, lysine 4, mono-methylation) and H3K27ac\(^{15,28}\). Repressed regions tend to have high levels of H3K27me3 (histone 3, lysine 27, trimethylation) and H3K9me3 (histone 3, lysine 9, tri-methylation)\(^{35}\). Therefore, by integrating these different types of epigenomic datasets, we can begin to define regulatory elements in the human genome at a genome-wide scale.

Computational methods for predicting enhancers

Because of their association with human disease and estimated abundancy in the genome\(^{15}\), labs have primarily focused on identifying enhancers. While EP300 binding sites have been shown to successfully predict functional enhancers\(^{29}\), ENCODE has only produced EP300 ChIP-seq data for a small set of
cell types. Therefore, to identify enhancers, we need to rely on computational methods that utilize other types of epigenomic datasets.

Over the last several years many labs have developed computational methods for identifying potential enhancers – a simple literature search for "enhancer prediction" generates hundreds of results. Most of these methods integrate histone modification ChIP-seq data to predict candidate enhancers, sometimes incorporating additional features such as DNA methylation36 or conservation37. Most top performing methods use supervised machine learning algorithms and require a known set of enhancers for training. Because there are few large collections of experimentally validated enhancers, many of these methods use complementary epigenomic data (e.g., EP30036,38 or H3K27ac ChIP-seq37) for their gold standard. For example, both RFECS (Random Forest based Enhancer identification from Chromatin States)38 and REPTILE (Regulatory Element Prediction Based on Tissue-specific Local Epigenetic Marks)36, two random forest based approaches, train on cell type specific EP300 binding sites. Therefore, predictions from these methods may be biased; they identify false positives due to spurious non-functional EP300 binding or ChIP-seq noise or fail to identify classes of enhancers lacking EP300 binding (false negatives). Additionally, while RFECS and REPTILE have high performance, they require data from many different experiments. For optimal performance, RFECS uses 24 histone modification ChIP-seq datasets as input; few cell types have this many assayed histone modifications. While the method can be modified to use just core
marks H3K4me1, H3K27ac, and H3K4me3, this results in decreased performance. REPTILE also requires extensive types of data with cell type specific DNA methylation and six histone modification ChIP-seq datasets in addition to "comparative deviation values" for these assays calculated across multiple cell types. Once again, only a small percentage of cell types surveyed by the ENCODE and Roadmap Epigenomics projects have all of these assays. While He et al. demonstrated that REPTILE can be trained on H1-hESCs and validated on other cell types, REPTILEs performance drops dramatically. Therefore, while supervised methods have high performance, they do not train and test on functionally validated enhancers and are not applicable to the majority of cell types.

An alternative approach to supervised enhancer prediction are chromatin segmentation methods such as ChromHMM39,40 and Segway41. These methods integrate multiple genomic signals and assign every position in the genome to a chromatin state (e.g., TSS, enhancer, repressed). For example, ChromHMM takes a binarized matrix of histone modification signals for 200 bp bins and using a Hidden Markov model, assigns each bin to a state based on the combinations of histone modifications and emission probabilities from neighboring regions. Because these methods are unsupervised, the user must designate the number of states before running the model and then manually label each state using complementary data and genetic annotations. Chromatin segmentation methods are advantageous because they do not require a gold-standard and they annotate regions other than enhancers such as promoters and insulators. They can also
identify sub-classes of elements such as strong and weak enhancers based on
different combinations of signals. However, like some supervised methods, both
ChromHMM and Segway require a lot of input data (at least eight histone
modifications) so these methods are not applicable across all cell types.

In addition to using epigenomic datasets, enhancers can be identified by
assaying transcriptional activity. In 2010, the Greenberg lab observed bidirectional
transcription at cortical neuron enhancers that resulted in the production of small
noncoding RNAs, which they called enhancer RNAs (eRNA)42. They hypothesized
that these transcripts were the result of interactions between the enhancer and
target promoter during the transfer of POLII. Because of these findings, groups
have predicted enhancers by identifying regions of transcription that are distal to
annotated TSSs. For example, the FANTOM5 consortium used cap analysis of
gene expression (CAGE) data to identify distal regions of bidirectional transcription
that they believed were candidate enhancers43. In total, they identified more than
43 thousand candidate enhancers for over 800 cell and tissue types. Similarly, the
Siepal lab developed a computation method, discriminative regulatory-element
detections from GRO-seq (dREG), to identify transcriptional regulatory elements
(TREs) using GRO-seq data in eight cell types44. Overall, these methods tend to
identify fewer candidate enhancers than epigenomic based methods, suggesting
that either we currently only have the resolution to identify a subset of enhancers
using transcriptional activity or that not all enhancers produce eRNA.
Methods for experimentally validating enhancer predictions

In order to properly validate computation methods for enhancer prediction, candidate regions should be experimentally tested for enhancer activity. Reporter assays, such as those used by Banerji et al. to identify the Ig enhancers13, test enhancer activity by detecting the expression of a reporter gene9. Candidate enhancers are cloned into a plasmid upstream of a minimal promoter and a reporter gene such as luciferase or GFP. Then, these plasmids are transfected into cells; if the candidate region has enhancer activity, the cell will test positive for gene expression (e.g., via luminescence). While effective, this method can only test one candidate enhancer per experiment, so validating the thousands of predictions generated by most methods would be infeasible.

To solve this problem, researchers have modified these methods to test thousands of regions in one experiment45-48. In massively parallel reporter assays (MRPAs), each candidate enhancer is assigned a unique bar code. When these regions are cloned into the plasmid construct, the enhancer is positioned upstream of the TSS and the barcode is downstream of the reporter gene's open reading frame. After co-transfection, enhancer activity is quantified by sequencing the produced mRNAs and computing the relative abundance of each tag. These methods can be used to systematically investigate how genetic variation affects enhancer activity45,46 or to identify sequences with enhancer activity from a synthetic library47. Similarly, STARR-seq (self-transcribing active regulatory region sequencing) developed by the Stark Lab, simultaneously tests thousands of
genomic sequences for enhancer activity48. STARR-seq uses a gene construct where the candidate enhancer lies between the open reading frame and poly-A site of the reporter gene. Therefore, if the tested region has enhancer activity, the gene is transcribed and the resulting mRNA contains the enhancer sequence. Computationally, this sequence can be isolated and mapped directly to the genome. Enhancers are then identified by scanning the genome for peaks of mRNA signal.

While MPRA and STARR-seq methods allow one to test thousands of candidate enhancers simultaneously, each experiment is limited to testing in one cell type. Mouse transgenic assays, on the other hand, allow researchers to determine the tissue specificity of an enhancer29,49,50. In these experiments, a candidate enhancer is cloned into a minimal promoter construct containing the lacZ reporter gene. This construct is microinjected into a fertilized mouse egg which is then implanted in a female mouse. After 11.5 days of embryonic development (e11.5) embryos are harvested and stained to assay enhancer activity. Tissues in which the enhancer is active will stain blue. With these assays, the Pennacchio and Visel labs have tested hundreds of candidate enhancers, the results of which are in the VISTA enhancer database51.

A major pitfall for all of these methods is that they do not assay enhancer activity in the candidate region's native chromatin context9. For reporter assays, MPRA, and STARR-seq, plasmids are transiently transfected into cells and therefore will have no chromatin organization. For the mouse transgenic assays,
the constructs are stably transfected and will integrate with the genome. However, the location of integration differs from the enhancer’s original position, and therefore local chromatin context and interactions may vary.

In order to study enhancer activity in its native environment, labs have utilized CRISPR-Cas9 genome editing methods. Using region specific guide RNAs, labs can delete candidate enhancers and perform RNA-seq to determine the effect of the deletion on gene expression52-54. Additionally, tiling approaches such as MERA (multiplexed editing regulatory assay) and CREST-seq (cis-regulatory element scan by tiling-deletion and sequencing) allow researchers to investigate large stretches of DNA to observe how systematically editing these regions effects gene expression55,56. With these methods, enhancer activity is measured by the decrease in target gene expression. This may not be a direct measure of enhancer activity due to regulatory elements that compensate for the deleted enhancer.

LINKING DISTAL ENHANCERS WITH TARGET GENES

Though labs have developed experimental and computational methods for identifying candidate enhancers, determining the genes they regulate (i.e., target genes) still remains a challenge. Some enhancers target their nearest gene, such as the intronic Ig enhancers. However other enhancers, such as the ZRS element, target genes up to 1 Mb away2. Currently, researchers utilize both experimental and computational approaches for predicting target genes.
Experimental methods for assaying three-dimensional chromatin structure

Capture chromosome conformation, commonly referred to as 3C, is a method used to investigate interacting genomic loci57. Briefly, 3C cross-links interacting regions of chromatin then digests and ligates the ends of the DNA regions. To quantify the amount of ligated product, one performs qPCR using region specific primers. Though this method is limited by one knowing ahead of time which loci to test, it has been used to successfully characterize interactions between regulatory elements. For example, Tolhuis et al. used 3C to characterize enhancer-promoter interactions at the mouse Beta Globin Locus, concluding that DHSs in the locus control region interact with actively expressed genes58.

3C has been modified to identify interacting loci without knowing them \textit{a priori}. 4C (circular chromosome conformation capture/chromosome conformation capture–on-chip)59,60 for example, allows one to investigate all possible interactions with region of interest (referred to as "one to all" approach), while 5C reports all interactions within a given region (up to several Mb) (referred to as a "many to many" approach)61. Hi-C is the most high-throughput approach reporting chromatin interactions on a genome wide scale62. Until recently, the resolution of Hi-C was not precise enough to capture the majority of enhancer-promoter interactions. However, in 2014, the Aiden lab generated kilobase resolution \textit{in situ} Hi-C data and demonstrated that they could identify CTCF anchored chromatin loops with a resolution of up to 5 kb63. In GM12878 they identified almost ten
thousand loops and determined they were enriched for promoter-enhancer interactions. These loops have subsequently been used to predict enhancer-promoter interactions and train computational models (such as those mentioned below). However, recent preprint data from the Aiden lab suggest that disrupting these loops by knocking out a component of the cohesion complex has little effect on gene expression \(^6^4\). A variation on the Hi-C method, promoter capture Hi-C (CHi-C), enriches for promoter interactions by adding a hybridization step before sequencing, which enriches for known promoter sequences \(^6^5\). CHi-C results in a ten-fold increase for promoter reads and therefore can be used to link candidate enhancers with these regions.

Another widely used method for investigating genomic interactions is chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) \(^6^6\). ChIA-PET follows a similar protocol to Hi-C except an antibody is used to select for interactions mediated by a specific protein such as CTCF, RAD21 or POLII. Using ChIA-PET, researchers have discovered distinct biological features associated with the interactions mediated by these proteins. For example, the Ruan lab reported significant biological differences between interactions generated by CTCF ChIA-PET data compared to POLII ChIA-PET data \(^6^7\). Enhancers and promoters in the CTCF interactions were much farther apart (as we also report in Chapter III) and genes anchored at these CTCF loops were more likely to be house-keeping genes, ubiquitously expressed across cell types. In contrast, most POLII interactions occurred within CTCF loops and overlapped cell type specific
enhancers. From these results, the Ruan lab concluded that CTCF brings together distant regulatory elements to form ubiquitous large domains and within these domains enhancers and promoters interact to create local, context specific loops.

Computational methods for linking enhancers and genes

While three-dimensional chromatin assays have been demonstrated to successfully identify interacting enhancers and promoters, these experiments (Hi-C in particular) are extremely expensive and have only been performed in a small number of cell types. Therefore, labs have developed computational methods for linking enhancers with target genes. In several publications, the members of the ENCODE consortium have predicted target genes by correlating epigenomic and transcriptomic signals. This method is based on the hypothesis that enhancers are active in the same cell types in which their target genes are expressed. To link enhancers with genes, groups correlated a range of signals such as DNase\(^6,68,69\), H3K4me1\(^70\), POLII\(^70\), and RNA-seq\(^69\). Each of these studies reported biologically relevant enhancer-promoter pairs with high correlation, but these methods have yet to be systematically evaluated using a gold standard. These methods are attractive because they are unsupervised and do not require cell-type specific experiments, but they have several major drawbacks. One, correlation methods cannot identify cell type interactions. Enhancers tend to be more cell type specific than promoters, and their activity will not correlate with their target gene if the gene is regulated by other enhancers in different cell types. Second, correlation based
methods are dependent on the breadth of data selected for the analysis. For example, performance may change depending on the number and type of samples (e.g., tissues, primary cells, cell lines) used for correlation. To determine the severity these problems, we need to evaluate correlation based methods systematically.

Like signal correlation, PreSTIGE (Predicting Specific Tissue Interactions of Gene and Enhancers), developed by the Scacheri lab, is an unsupervised enhancer-gene linking method. PreSTIGE predicts enhancer-promoter interactions by integrating ChIP-seq and RNA-seq data. First, PreSTIGE identifies cell type specific enhancers and genes by calculating the Shannon entropy, using H3K4me1 and RNA-seq respectively, across 12 cell types. PreSTIGE then links these cell type specific enhancers and genes using a linear domain model that considers both distance and CTCF binding sites. While this method predicts many enhancer-gene pairs with disease relevant applications, it only can identify links for cell-type specific genes. Genes that are ubiquitously expressed but are regulated by cell-type specific enhancers are not included in this analysis.

To address some of the problems with unsupervised prediction methods, labs have developed supervised learning approaches for linking enhancers with their target genes. These methods train on enhancer-gene pairs defined using ChIA-PET or Hi-C datasets and use many different types of features (e.g., histone modification signal, conservation, distance, correlation, expression) to predict pairs. While each of these methods reported high performance in their original
results, it is almost impossible to fairly compare them because they each use a
different gold standard for training and testing. To illustrate this fact, we will
compare three recently published methods: PETModule73, IM-PET72, and
TargetFinder74. First, the methods used different definitions for enhancers.
PETModule used EP300 peaks, IM-PET used the CSI-ANN algorithm with
H3K4me1, H3K4me3, and H3K27ac data, and TargetFinder used consensus
enhancer states called by ChromHMM and Segway. Second, each method used
different three-dimensional chromatin data to generate enhancer-gene pairs.
PETModule and IM-PET both used ChIA-PET data from Li et al.66 but PETModule
also included Hi-C data from Jin et al.75 TargetFinder exclusively used Hi-C loop
data from Rao et al.63. Finally, each method used a different scheme for generating
negative enhancer-gene pairs. For each enhancer, PETModule labeled all genes
within a 2 Mb window as negatives if they did not share a ChIA-PET or Hi-C link.
IM-PET selected negative pairs by matching a contact frequency distribution,
selecting one non-interacting promoter per enhancer. For its negative set,
TargetFinder generated 20 non-interacting pairs by randomly selecting gene pairs
to match the distance distribution between enhancer and promoter. Therefore, to
accurately compare the performance of these methods, as well as unsupervised
methods, we need to evaluated them using a consistent benchmark dataset.

NONCODING VARIATION ASSOCIATED WITH PSYCHIATRIC DISORDERS

Genetics of Psychiatric disorders
Schizophrenia, bipolar disorder, and major depressive disorder are prevalent, debilitating psychiatry disorders and little is known about their etiologies. Schizophrenia (SCZ) is characterized by a series of positive symptoms (e.g. delusions, hallucinations, and disorganized speech and behavior) and negative symptoms (e.g. diminished emotional expression and avolition)76. It affects between 0.3-0.7\% of the adult population with age an age of onset between 18 and 30 years old. Bipolar disorder (BPD) is characterized by patterns of manic and depressive episodes in which an individual may experience states of inflated self-esteem, decreased sleep, and mood changes followed by periods of deep depression76. BPD affects about 1.4\% of the US population and usually presents in patients in their mid-20s. Major depressive disorder is the most common of the three disorders affecting 7\% of the adult population76. It is marked by a depressed mood and loss of interest or pleasure for an extended period.

Studying these disorders is challenging due to their imprecise diagnoses and treatment regimens. The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM 5)76 characterizes each disorder at length, but most patients do not present with a clear set of symptoms. Additionally, these disorders are part of a spectrum of psychiatric disorders, many of which have overlapping symptoms. For example, patients with Schizoaffective disorder experience delusions or hallucinations, like patients with schizophrenia, but will also suffer from manic or depressive episodes, similar to patients with bipolar disorder76. Therefore, depending on the patient's presentation of symptoms, an exact clinical
diagnosis is difficult. Treating these disorders is equally challenging. Treatment regimens may include therapy, mood stabilizers, antipsychotic drugs and electroshock therapy76-79. Finding a successful treatment is often a process of trial and error and varies greatly among patients. Therefore, learning more about genetic risk factors for these disorders will give the field a better understanding as to their etiologies and potential therapeutic targets.

Studies suggest that these disorders are highly heritable. With an estimated heritability of 60\% for SCZ and BPD and 40\% for MDD76,80-82. In addition to being highly heritable, these disorders share common genetic risk factors. By analyzing over 30 years of medical records from the Swedish national registry, Lichtenstein et al. estimated that over 50\% of the genetic risk for SCZ and BPD is shared83. These results are concordant with findings by the Psychiatric Genomics Consortium (PGC) which estimated a SNP based correlation of 0.68 between SCZ and BPD, 0.47 between BPD and MDD, and 0.43 between SCZ and MDD84. These results suggest that these three psychiatric disorders share common genetic risk factors.

During the mid 2000's, groups started to investigate the role of common genetic variation in the onset of human disease using genome wide association studies (GWAS). GWAS operate under the hypothesis that many common variants (greater than 1\% frequency in the population) each contribute a small amount to disease risk85. These studies analyzed large cohorts of affected and healthy individuals to determine if common genetic variants are enriched in the affected
population and therefore associated with the disease. While GWAS were successful in identifying hundreds of variants associated with many different diseases, for psychiatric disorders they were only able to identify a small number of associations. For example, of the nine SCZ GWAS published between 2007 and 2011, only four studies reported variants meeting a genome wide significant threshold resulting in only 11 significant loci\(^6\). Many regions were just under genome-wide significance thresholds, and comparing across studies revealed common risk genes between the three disorders. Variants near ANK3\(^{87-91}\), CACNA1C\(^{88-90,92}\) and the majority histocompatibility complex\(^{93-99}\), were all been reported as associated with schizophrenia, bipolar disorder, and major depressive, often by multiple studies. Therefore, associations with these regions are replicatable across disorders and presumably by increasing sample size, more loci will reach genome wide significance. This was the case for the Schizophrenia Working Group of Psychiatric Genomics Consortium, who reported over 100 novel genomic regions associated with schizophrenia after analyzing over 100 thousand individuals. Though this study and subsequent large-scale analyses were successful in identifying hundreds of variants associated with psychiatric disorders, the majority of these variants lie in noncoding regions of the genome and therefore understanding how they may contribute to disease is not well understood.

Interpreting GWAS variants with epigenomic data
Over the last decade, genome wide association studies (GWAS) have identified thousands of genetic variants associated with human disease. However, the majority of these variants are in noncoding regions of the genome and determining how they contribute to disease remains a challenge. To aid in interpreting genetic variants, researchers have integrated epigenomic datasets such as DNase-seq, TF ChIP-seq and histone modification ChIP-seq data to annotate surrounding noncoding regions.

One common application is to determine disease relevant cell and tissue types. Using epigenomic datasets and subsequent predicted regulatory regions, many groups have developed methods for analyzing enriched cell types for GWAS variants. Group have repeatedly reported SNPs associated with blood cell traits are enriched in regulatory regions active in K562 (an erythroid leukemia cell line), autoimmune SNPs are enriched in regulatory regions active in T cells and B cells, and SNPs associated with cholesterol levels are enriched in liver regions. While cell type enrichments from these analyses may seem obvious, there are important biological applications. These results can give new insights for disease pathology and suggest cell types to consider for therapeutic targets. For example, in 2012, the Stamatoyannopoulos lab reported that SNPs associated with multiple sclerosis were enriched in DHSs active in CD3+ T cells and CD19+/CD20+ B cells. At the time, the role of T cells in multiple sclerosis was well established, but recent evidence also suggested B cells may also play important role and have therapeutic applications. Since, clinical trials have
demonstrated that Ocrelizumab, an anti-CD20 antibody, can lower disease activity and progression compared to traditional treatments. Therefore, analyzing cell type enrichments can give further insight into biological mechanisms of disease and highlight potential therapeutic strategies.

In the case of schizophrenia, the schizophrenia working group of the PGC previously reported that variants were enriched in cell type specific H3K27ac peaks from brain tissues and B cells. While the enrichment in brain was not surprising, the enrichment in B cells was intriguing as it remained significant even after removing SNPs in the major histocompatibility complex (MHC). As the authors only performed this analysis using data from 35 cell types, reanalyzing enrichment for these SNPs as well as other psychiatric associated variants using a larger panel of cell types is of great interest.

Epigenomic datasets can also be used to predict the biological function of disease associated variants. The Kellis and Snyder labs have summarized intersections with epigenomic datasets in their variant annotation databases HaploReg and RegulomeDB. For each variant, users can explore overlapping histone modification, DHS, and TF peaks and TF motif sites. RegulomeDB even supplies a score of how likely the variant is to disrupt TF based on overlapping peaks and TF motifs.

Groups have also annotated the functional consequences of genetic variants by correlating changes in gene expression and the epigenomic landscape with genotypes. Now with the relatively low cost of RNA-seq, genotyping arrays,
and whole genome sequencing, large consortia now have the ability to detect expression quantitative trait loci (eQTLs) for thousands of genes in many different cell types. One of the largest efforts to date, The Genotype-Tissue Expression (GTEx) project, aims to study the relationship between genetic variation and gene expression across different human tissues108. During the second phase of the project, the consortium identified over 1 million eQTLs in 44 tissues. eQTL methodology can also be applied to correlate changes in histone modification signal or chromatin accessibility with genotype. Groups have identified hundreds of histone modification QTLs109,110 and DNase QTLs111 using data lymphoblastoid cell lines generated by the HapMap112 and 1000 genomes projects113,114.

While QTL based methods require hundreds of genotyped individuals to observe significant trends, we can gather similar types of information at a cell type specific level by looking for allelic imbalance at heterozygous loci. By calculating the ratio of alleles from high-throughput sequencing reads, one can test whether a variant results in an allelic imbalance. Groups have analyzed TF ChIP-seq115,116, DNase-seq102 and RNA-seq data117 for sites of allelic imbalance and in doing so have uncovered mapping biases. It has been demonstrated that there are biases towards the reference allele118-121. To correct this bias, groups have suggested using an allele sensitive mapping tool, such as GSNAP122, or map reads to genomes containing the reference and alternative alleles, or masked positions121.

Ultimately, results from both functional characterization, eQTL, and AS analysis can be validated experimentally to test whether the observed correlation
or imbalance is directly caused by variant in question. Many groups have tested the effect of alleles on enhancer activity using luciferase assays and Vockley et al. even pioneered a MPRA version. However, as previously mentioned, these types of assays do not account for local genomic context. Therefore, as CRISPR-Cas9 technology improves to edit individual nucleotides, more labs will be effect of genomic variants using single nucleotide genomic editing.
CHAPTER II: Creating a Registry of Candidate Regulatory Elements for Human and Mouse Genomes

PREFACE

Len Pennacchio's lab tested candidate enhancers using transgenic mouse assays, the results of which are in Figure 2.7 Tables 2.4-6. I performed all analysis and generated all the figures in the chapter. Michael Purcaro and Henry Pratt designed, engineered and implemented the online visualization tool SCREEN (Search Candidate Regulatory Elements by ENCODE).

ABSTRACT

Here we described the Registry of candidate Regulatory Elements (cREs), which we defined using chromatin accessibility, histone modification and transcription factor occupancy data. The Registry currently contains 1.31 M human and 0.43 M mouse cREs, covering hundreds of biosample types. The cRE landscape recapitulates the current understanding of cellular identity, tissue composition, developmental progression, and disease-associated genetic
variants. Aided by a dedicated visualization engine called SCREEN (http://screen.encodeproject.org), the Registry is a resource for exploring noncoding DNA elements and their variants.

INTRODUCTION

Over 98% of the human genome is noncoding; less than 2% composes protein coding exons. A portion of these noncoding bases contain regulatory elements where transcription factors (TF) interact to control gene expression1,7. There are several classes of regulatory elements including promoter, enhancers, repressors, and insulators each with their own regulatory roles and epigenomic features. Identifying regulatory elements has important biological implications for studying gene regulation, cell type differentiation, and human disease.

Because of their cell-type specificity and long distance from TSSs, many groups have aimed to annotate enhancers. Enhancers are genomic elements that regulate and increase gene expression through interacting transcription factors. Using massively parallel report assays, STARR-seq, and mouse transgenic assays labs have generated collections of experimentally validated enhancers. For example, The VISTA enhancer browser is a collection mouse and human genomic regions that were tested for enhancer activity using transgenic mouse assays (Figure 2.2)51. These regions were selected using conservation49, EP300 ChIP-seq data29, and/or H3K27ac ChIP-seq data50. However, this is still a relative small
collection of validated enhancers and it far from annotating every enhancer in the human and mouse genomes.

Over the last few years many labs have developed enhancer prediction algorithms that integrate data from the ENCODE and Roadmap Epigenomics projects. Histone modifications H3K4me1 and H3K27ac and TF EP300 are enriched at enhancers so by integrating these datatypes, along with other epigenomic data, lab have generated genome wide lists of predicted enhancers. While some of these methods have high performance, the majority do not have practical biological applications. Some methods such as RFECS\(^{38}\) and REPTILE\(^{36}\), are supervised methods requiring a positive set of enhancers for training. These methods also require a large amount of input data in some cases requiring over 20 histone modifications. Additionally, these prediction methods are designed to only identify potential enhancers; they do not predict other types of regulatory elements. Unsupervised methods of genome segmentation, such as ChromHMM, generate chromatin state maps genome wide\(^{40}\). Using a Hidden Markov Model, ChromHMM labels the genome with regions having promoter, enhancer, transcription, and repressive features. While powerful, these methods also require a lot of input data (up to eight histone modifications) and are only able to segment regions at a resolution of 200bp making comparisons across cell types difficult.

In this chapter, we introduce the Registry of candidate Regulatory Elements (cREs), collection of putative regulatory regions in human in mouse. We assigned cREs functional annotations (i.e. promoter-like, enhancer-like) based on
computational methods that we experimentally validated. We compared the Registry with other methods element prediction finding that our method is concordant with other epigenomic data based methods. Finally, we demonstrated that these cREs have biological implications as cell types cluster based on cRE activity and variants reported by genome wide association studies are enriched in cREs active in disease relevant cell types.

RESULTS

Cell Type Specific Enhancer Prediction

We began by developing a method for tissue-specific enhancer prediction that met the following criteria: One, our method needed to be unsupervised. While we had a collection of experimentally validated enhancers from reporter assays, mouse transgenic assays, and STARR-seq experiments, these data were only from a small number of cell types. Therefore, while we developed and tested models using these validated regions, our method did not require them. Two, we needed to use our method to predict enhancers across hundreds of cell types. While the ENCODE consortium generated hundreds of genomic assays in cell lines such as K562 and GM12878, the majority of cell types only have a handful of experiments such as DNase-seq and histone modification ChIP-seq. Though we may be able to develop a more accurate enhancer prediction model using multiple data types (e.g., RAMPAGE and TF ChIP-seq), this model could not be applied to the majority of cell types.
Mindful of these requirements, we decided to develop our enhancer prediction model using data and experimentally validated regions from embryonic mice. During the third phase of the ENCODE project, production labs generated a dense matrix of genomic data surveyed across twelve tissues in up to eight embryonic stages. The Ren lab assayed nine histone modifications across 72 embryonic tissue-time points (Figure 2.1) and the Wold and Ecker labs generated matching RNA-seq and whole genome bisulfite sequencing data (WGBS). Additionally, the Stamatoyannopoulos lab produced DNase-seq data for 18 of these tissue-time points including limb, midbrain, hindbrain, and neural tube at embryonic day 11.5 (e11.5). In addition to this expansive collection of genomic data, we established collaborations with the Pennacchio and Visel labs who maintain the VISTA enhancer browser. As of November 2015, there were 1,994 tested regions in the VISTA database; 228 were active in limb, 301 were active in midbrain, 271 were active in hindbrain, and 193 were active in neural tube. Therefore, we decided to develop our enhancer prediction method using genomic data and experimentally validated enhancers in mouse limb, midbrain, hindbrain, and neural tube tissues at e11.5.

To develop our unsupervised enhancer prediction method, we went through two rounds of testing. First, we tested which data type was best for anchoring predictions (i.e., which peaks we should center our predictions on). Second, we tested methods for ranking these peaks (i.e., what type of signal or combinations of signals are most predictive). To begin, we tested anchoring predictions on
H3K27ac, H3K4me3, H3K4me1, and DNase peaks (further referred to as DNase hypersensitivity sites – DHSs) (Table 2.2). To fairly compare performance across the different data types, we selected the top 20,000 peaks from each dataset and then set each peak to a uniform width of 300 bp. On average, we achieved the highest performance anchoring on DHSs with an average AUPR of 0.36, followed by H3K27ac peaks with an average AUPR of 0.33 (Table 2.2). When we analyzed individual tissues, DHSs had the best performance for limb, hindbrain, and neural tube whereas H3K27ac peaks had the best performance for midbrain (Figure 2.4, Table 2.2). Because DHSs had the highest average AUPR and were the top predictor for three of the four tissues, we decided to anchor our enhancer predictions on DHSs.

Our next step was to evaluate different methods of ranking DHSs. We tested ranking by different histone modification signals (H3K27ac, H3K4me3, H3K4me1, H3K9ac, H3K36me3, and H3K27me3) and DNA methylation signal. We also tested combining DNase with histone modification and methylation signals. We were unable to simple average these signals, due to differences in data processing. Therefore, to combine signals for region, we averaged its DNase signal rank and histone modification/methylation rank generating a metric we referred to as "average rank." In general, the best performing method was ranking DHSs by the average rank of DNase and H3K27ac signals (Figure 2.5, Table 2.3).

To validate our method, the Pennacchio and Visel labs tested our enhancer predictions using transgenic mouse assays. For limb, midbrain, and hindbrain, we
curated a ranked list of predictions and selected three tiers of regions to test: ranks 1-20, ranks 1,500-1,515 and ranks 3,000-3,015 (Tables 2.4-2.6). In general, higher ranking regions were more likely to show enhancer activity than lower ranking regions in their predicted tissue (Figure 2.6). For example, in limb, 70% of the top ranked regions had enhancer activity in limb compared to 40% and 20% in the middle and bottom tiers respectively. In addition to the predicted tissues, we also observed activity in biologically similar tissues for some of the tested regions. For example, mm154, a high-ranking midbrain prediction, was active in midbrain, forebrain, hindbrain, neural tube and eye (Figure 2.7a, Table 2.4) and mm1489, a high-ranking hindbrain prediction, was active in hindbrain, midbrain and neural tube (Figure 2.7b, Table 2.5). High H3K27ac signal in these tissues supported this additional enhancer activity (right panels Figure 2.7). In contrast, mm1485, a high-ranking limb prediction, is only active in limb tissue (Figure 2.7c, Table 2.6) and we did not observe high H3K27ac signal in tissues other than limb. These results suggested that our unsupervised method of enhancer prediction, which combines DNase and H3K27ac data, was capable of successfully identifying tissue-specific enhancers.

Developing a Registry of Candidate Regulatory Elements

Since we developed a computational method that successfully identified active enhancers, our next step was to use this model to curate a collection of putative enhancers across human and mouse cell-types. Even though our method
only required DNase and H3K27ac data, only a small percentage of ENCODE and Roadmap cell types had both of these assays. In humans, of the 540 cell types surveyed by DNase and H3K27ac, only 58 had both assays while in mouse only 23 of 131 cell types had both DNase and H3K27ac (Figure 2.8). Additionally, our prediction method was limited in that it only identified potential enhancers; it did not define other types of regulatory elements such as promoters, insulators, or repressors. Using DNase, H3K4me3, and gene expression data, we demonstrated that by using a method analogous to our enhancer prediction method, we could predict candidate promoters (Figure 2.9, Tables 2.7-2.8). Because of these concerns, we decided to adapt our method to make it applicable to more cell and tissues types as well as flexible enough to identify other types of regulatory elements. With our new method, we aimed to create a collection of putative regulatory regions across human and mouse that we called the registry of candidate regulatory elements (cREs).

For both our enhancer and promoter prediction methods, anchoring predictions on DHSs consistently resulted in the best overall performance. Because the boundaries of DHSs are generally consistent across cell types (Figure 2.10a), we decided to anchor cREs on a consensus set of DNase accessible regions, which we call representative DHSs (rDHSs). To create rDHSs in humans, we curated over 48 million high-quality DHSs (FDR < 0.1%) from 449 DNase experiments and grouped them into overlapping clusters (Figure 2.10b). For each cluster, we selected the DHS with the highest signal as the rDHS and discarded
overlapping DHSs (Figure 2.10c). Using the selected rDHSs and the remaining non-overlapping DHSs we iteratively repeated the clustering and selection steps until all DHSs overlap at least one rDHS. For humans, we defined over 2 million rDHSs, and for mouse, with 8.6 million high-quality DHSs from 62 datasets, we defined about 1 million rDHSs.

To classify an rDHS as a cRE, we integrated DNase data with H3K4me3, H3K27ac, and CTCF data, adopting similar approaches to our enhancer and promoter prediction schemes. However, comparing these datasets and choosing consistent cutoffs is complicated due to differences in data processing pipelines, sequencing depth, and assay protocols. For example, DNase-seq, CTCF-ChIP-seq, and histone modification ChIP-seq experiments are all processed using different pipelines at the ENCODE data coordination center (DCC). Signal from ChIP-seq experiments is normalized using input data while signal from DNase is dependent on sequencing depth. Additionally, even for data that has been processed using the same pipeline, such as H3K27ac experiments, signal files are not comparable across cells types (Figure 2.11a). Therefore, to normalize signal across assays and cell types, we took the log of the average signal across an rDHS and converted it to a Z-score (Figure 2.11). This resulted in an approximately normal distribution of signals for each cell type. For each assay and cell type, we assigned an rDHS a signal Z-score. We refer to a max Z-score as the maximum Z-score for the rDHS across all cell types for the particular assay (DNase, H3K4me3, H3K27ac, or CTCF). While this method may bias against cell types,
such as embryonic stem cells that have higher numbers of active cREs, we decided error on the side of being more conservative rather than over call elements.

Using this signal normalization scheme, we required rDHSs to meet two criteria to be classified as a cRE. One, the rDHS must have a max DNase Z-score greater than 1.64 (95 percentile using one-tailed test). This filters out low signal rDHSs. Two, the rDHS must also have a max Z-score > 1.64 for either H3K4me3, H3K27ac, or CTCF. This step filters out rDHSs that may be due to spurious, nonfunctional transcription factor binding. These two requirements (DNase max Z > 1.64 and ChIP-seq max Z > 1.64) do not need to occur in the same cell type since only 3% of cell types have all four assays. However, cREs that have high DNase and one of the three ChIP-seq signals in the same cell-type are given a special designation as concordant cREs (approximately 55% of human cREs and 52% of mouse cREs). Using the classification trees in Figures 2.12 and 2.13, we classified cREs into three groups (cREs with promoter-like signatures (PLS), cREs with enhancer-like signatures (ELS), and CTCF-only cREs) based on max Z of ChIP-seq signals and distance from TSS. We refer to these groups as cell-type agnostic classifications. In total, we curated 1.3 million cREs in human, and 432 thousand cREs in mouse which comprise 20.8% and 8.8% of their respective genomes (Figure 2.14). We assigned each of these cREs a unique accession, with prefixes EH37E for human and EM10E for mouse.
After defining cREs, we next sought to determine the cell-type specific activity of each cRE across hundreds of human and mouse cell types. For cell types with DNase and all three ChIP-seq assays, there were 16 possible combinations of these four signals. Since we only considered a cRE as active in a cell type if it has a DNase Z-score > 1.64, we condense these 16 possible states into eight active states and one inactive state (2.15a). To simplify this classification scheme, we aimed to further condense these states into five groups: PLS-cREs, ELS-cREs, CTCF-only cREs, DNase-only cREs, and inactive cREs. To aid in classification, we used GM12878 as a test case (Figures 15,16). We separated cREs in each of the nine states based on TSS proximity, resulting in 18 sub-states (Figure 15a). For cREs in each of these sub-states, we calculated the average POLII (Figure 2.15b), EP300 (Figure 2.15c) and RAD21 ChIP-seq signal using experiments in GM12878. We predicted POLII, which is present at active transcription start sites, should be highest at PLS elements. EP300, a TF known to bind at active ELS elements\(^28\), should be the highest at enhancer-like elements, and RAD21, part of the cohesion complex that is known to localize with CTCF, should be the highest at CTCF-only elements. Using the median signal values for each TF, we compared the 18 sub-states and observed that like sub-states formed clusters (Figure 16a,b). For example, distal cREs with H3K27ac z-scores > 1.64 have EP300 high signal and low POLII and RAD21 signals (Figure 16a). Based on these plots, we assigned each of the 18 sub-states to one of the five groups (Figure 16c) which in the case of GM12878 results in 36,022 PLS, 27,739 ELS, 10,913
CTCF-only and 16,085 DNase-only cREs (Figure 16d). As groups PLS, ELS, and CTCF-only cREs are enriched in POLII, EP300, and RAD21 signals respectively (Figure 16e). Using this method, we classified cREs into cell-type specific groups for the 21 cell types with all four assays. For PLS, ELS, and CTCF-only groups, we plotted the saturation curve across the 21 cells types (Figure 2.17). There are more ELS cREs than PLS cREs, which we would expect since enhancers are more likely to be cell-type specific than promoters. For the majority of cell types, we do not have all four genomic assays, but we are still able to combine sub-states into simplified groups. We listed all possible state-group classification schemes in Figure 2.18. In total, we assigned each human cRE to a group in 620 cell types and each mouse cRE to a group in 138 cell types.

After generating cREs for human and mouse and determining their cell-type specificity, we wanted to compare cREs between species. We mapped mouse cREs to the human genome using UCSC’s liftover tool. 20% of human cREs overlapped a mouse cRE (52% of total mouse cREs), which we refer to as orthologous cREs. We noticed that larger percentage of orthologous cREs were PLS cREs compared to either human or mouse cREs as a whole.

Comprehensiveness of the Registry of cREs

First, we examined how many GENCODE-annotated TSSs (V19 for human and M4 for mouse) were covered by the current version of the Registry of cREs. For human, 67% of all annotated TSSs and 72% of protein-coding TSSs
overlap a cRE. When we searched +/- 2 kb around each TSS, to account for possible misannotation, 92% of all TSSs were proximal to at least one cRE. Coverage is similarly high in mouse, despite having far fewer cREs, with 61% of all annotated TSSs overlapping a cRE and 80% having at least one proximal cRE.

Second, we analyzed how rapidly the total number of unique rDHSs saturated when we increase the number of covered cell types. In ENCODE Phase II, Steven Wilder and Ian Dunham modelled DHS saturation using a Weibull distribution and estimated that they had discovered around half of the total DHSs25. We replicated this analysis using the 460 DNase datasets that we used to create the rDHSs. The saturation curves of rDHSs follow Weibull distributions, reaching a plateau at 1.66 M rDHSs with FDR < 0.1% and Z-score > 1.64 (Figure 2.17). Because only a subset of such rDHSs can be cREs (those with a high H3K4me3, H3K27ac, or CTCF Z-score in at least one cell type) we estimate that we have identified at least 78.9% of total cREs in human. We performed the same saturation analysis for mouse but could not reach a reliable estimate due to the smaller number of input tissue types.

Third, we computed the Registry's coverage of H3K27ac and H3K4me3 peaks (FDR<0.01) in cell types with ChIP-seq data but no DNase data. The Registry covered 90 ± 8% of H3K4me3 peaks (74 cell types), and 87 ± 5% of H3K27ac peaks (54 cell types) (Figure 2.20) The coverage was equally high for mouse, despite a smaller number of DNase experiments for building the mouse
Registry: 88 ± 5% of H3K27ac peaks (69 tissue–time-points) and 96 ± 8% of H3K4me3 peaks (74 tissue–time-points) were accounted for (Figure 2.21) The coverages for H3K4me3 peaks were low for several human and mouse cell types. The average -log(FDR) of the H3K4me3 peaks in these datasets were low (Figure 2.22) When we visually inspected the two datasets with the lowest coverage (CD-1 megakaryocyte and GR1-ER4 in mouse), we confirmed that the peaks that were not covered by the Registry had low signals and were likely false positives by the peak calling algorithm MACS2.

Therefore, when judged against gene annotations and epigenomic datasets, the human Registry appears to be comprehensive. It covers almost 80% of all cREs and 85% of elements marked by H3K4me3 or H3K27ac. The mouse Registry is less comprehensive than the human Registry, but we expect that it will continue to grow with experiments performed on additional cell types.

Comparison with Previous Defined Regulatory Regions

To further validate our approach, we compared the cREs to previously defined regulatory elements. Like cREs, ChromHMM regions are defined using epigenomic datasets generated by the Roadmap and ENCODE projects. Using states from a ChromHMM model, which was implemented using eight histone modifications and CTCF40, we found that the overlap between the model and our cREs was highly concordant. Of the top 10,000 ranked PLS cREs (ranked by H3K4me3 Z-scores), 90% overlapped ChromHMM TSS states while 85% of the top 10,000 ranked ELS cREs (ranked by H3K27ac Z-scores) overlapped
ChromHMM high-signal enhancers states. The overlap decreased for lower ranking ELS cREs, but the overlap with ChromHMM low-signal enhancers increased; 82% of the ELS cREs ranked above 20,000 overlap with ChromHMM enhancers or low-signal enhancers (Figure 2.26a,b). We also compared the cREs for five e11.5 and six e14.5 mouse tissues (tissues with DNase data) with the ChromHMM states called using eight histone modifications in the corresponding tissues. We observed that 95 ± 2% of PLS cREs overlapped ChromHMM TSS states and 78 ± 3% of ELS cREs overlapped ChromHMM enhancers states in the corresponding tissue and time point (Figure 2.26c,d). This suggests that while our method was able to identify similar putative regulatory regions as the ChromHMM model using less input data.

We also compared our ELS cREs with enhancers annotated by transcription data and STARR-seq peaks. We intersected our ELS cREs with FANTOM defined enhancers in GM12878, astrocyte, hepatocyte and keratinocyte cells. While the overall percentage of overlapping ELS cREs was low (2%), we observed the largest percentage of overlap for highly ranked enhancers (Figure 2.27a). When we overlapped the FANTOM enhancers with all cREs we found that 74% overlapped, with 70% overlapping cREs active in the cell type (Figure 2.28a, Table 2.10). Of the active cREs the majority were ELS (66%) followed by PLS (28%). We observed similar results transcriptional regulatory elements (TREs) defined using GRO-seq data, except that these elements overlapped a higher percentage of PLS cREs (57% of active cREs) because they encompass all types of regulator
elements (Figure 2.27b, and 2.28b, Table 2.10). STARR-seq peaks in HeLa cells overlapped even fewer cREs (31%) (Figure 2.27c and 2.28c, Table 2.10) but even by their own internal annotations, they only annotated 20% of their peaks with chromHMM enhancer states.

These results suggest that while the Registry had similar performance to other epigenomic data based methods, such as chromHMM, it did not identify all potentially functional regions in the human and mouse genomes.

Cell and tissue type clustering using cRE activity

To examine whether the Registry of cREs captured biologically relevant regulatory patterns, we clustered primary cells and tissues based on the number of overlapping active cREs defined using DNase, H3K27ac, or H3K4me3 signal. We first compared the clustering schemes in mouse using the 72 embryonic tissue-time points with H3K27ac and H3K4me3 data. Using H3K27ac, we observed almost perfect clustering of tissues by their organs of origin (Figure 2.23). When we clustered by H3K4me3 activity, the tissues do not segregate as cleanly. We believe this is because H3K4me3 signal is enriched at promoters, which are more consistent across cell types (Figure 2.17). This is reflected in average Jaccard coefficients; the average H3K27ac coefficient for mouse is 0.36 while for H3K4me3 it is 0.79. Higher similarity between cell types will make them more difficult to cluster.
In humans we decided to cluster primary cells and tissues by cRE DNase and H3K27ac activities since these assays cover different tissues (Figure 2.8). Using H3K27ac signal, we observed tissues from different regions of the same organ cluster together (Figure 2.24a). For example, brain regions form a distinct group. In some cases, we also observed fetal and adult tissues clustering such as fetal and adult adrenal gland tissues. Interestingly, samples from the gastrointestinal tract form two clusters, one for smooth muscle tissues (the purple and maroon samples at the top) and the other for mucosa tissue (the maroon samples at the center). This suggests that while these tissues are located in proximity to one another in the human body, they have different regulatory landscapes.

When we analyzed primary cells, we observed three perfectly segregated groups colored by their embryonic origins: blood, non-blood mesoderm, and ectoderm (Figure 2.24b). Even the endothelial cells of the umbilical vein, which are derived from the extraembryonic mesoderm, clustered with the cell types derived from the embryonic mesoderm such as fibroblasts, myoblasts, osteoblasts, and astrocytes.

When we clustered using DNase signal, we observed similar results. For DNase, we have multiple donors for the same types of tissues and in the majority of cases these donor samples clustered together (e.g., kidney, stomach, lung, and muscle tissues) (Figure 2.25a). We did observe some noticeable outliers such as one fetal thoracic segment muscle sample clustering with lung fetal lung tissue. This could be due to a possible sample swamp (i.e. samples were submitted to the
ENCODE DCC with incorrect labels) and therefore should be further analyzed.

When we clustered primary cells, we observed two large clusters, with the one cluster composed entirely of blood cells, subdivided into to the myeloid and lymphoid lineages (Figure 2.25b). The second cluster, was comprised of several smaller "subclusters". The bottom subcluster contained of four trophoblast samples (in black), thus reflecting their extraembryonic fate. The topmost subcluster contained mostly fibroblasts, and the middle subcluster contained endothelial cells, epithelial cells, keratinocytes, and melanocytes. The fibroblasts aggregated together regardless of their anatomical locations, as did most of the endothelial cells, in agreement with their common mesodermal origin. Most of the epithelial cells also clustered together, despite their different embryonic germ layers. Overall, these results demonstrated that like tissues and cell types clustered together when we compared their cRE activity, suggesting that the registry of cREs is able to capture biologically relevant regulatory patterns.

Applications to Genome Wide Association Studies (GWAS)
Previous studies have repeatedly demonstrated that most GWAS variants reside in noncoding regions of the genome. Annotation of these noncoding regions can be used to guide the interpretation of GWAS variants by predicting disease-relevant cell types and regulatory factors\(^6,26,39,100,101\). With the broad coverage of cell types and rich epigenetic and transcription factor binding data associated with the cREs, the Registry can be particularly useful for annotating GWAS SNPs.

We curated variants from over 50 studies in the NHGRI-EBI GWAS. For each phenotype-cell type comparison, we tested whether active cREs (H3K27ac or DNase z-score > 1.64) were significantly enriched in the GWAS SNPs. Overall, we observed enrichment in disease related cell types. Like previous studies\(^6,26,39,100,101\), we observed enrichments in immune cells such T and B cells for autoimmune disorders multiple sclerosis, type 1 diabetes, inflammatory bowel disease and Crohn's disease (Figure 26). Additionally, in blood cells we observed an enrichment for platelet count, platelet volume and red blood cell traits. We also observed enrichment for variants linked with cholesterols, metabolite, and fibrinogen levels in liver cREs. Finally, thyroid hormone level variants were enriched in thyroid tissue cREs, schizophrenia variants were enriched in brain cREs, and breast cancer variants were enriched in cREs active in MCF-7, a breast cancer cell line.

SCREEN: A Web Based Visualization Tool for the Registry of cRES
To search and visualize the Registry of cREs, we built a web-based tool called SCREEN (Search Candidate Regulatory Elements by ENCODE). SCREEN hosts the 1.3 million human and 430 thousand mouse cREs and connects them with underlying ENCODE data and annotations. The first version of SCREEN is divided into three “apps”, each of which provide a different perspective on the cREs. The core app is a cRE-centric search, where users can retrieve a subset of cREs using genomic coordinates, a gene name, or SNP accession (Figure 2.27a). SCREEN returns a list cREs, annotated with their location, nearest genes, and max Z-scores for H3K4me3, H3K27ac, and CTCF signals (Figure 2.27b). Users can filter this list by selecting a cell type interest; SCREEN will then filter out cREs that are not active in that cell type. Users can also filter results using Z-score cutoffs by choosing stricter or more permissive thresholds compared to the default (Z-scores > 1.64). If a user selects a cRE, SCREEN brings him to a cREs details page. Here the user can browse the cRE’s H3K4me3, H3K27ac, CTCF, and DNase Z-scores in every cell type (Figure 2.30c), search for overlapping genomic datasets and genetic features such as topologically associated domains and SNPs.

The gene-centric app, which opens when a user searches for a gene name, plots RNA-seq and RAMPAGE TSS expression data. Within this app, we developed a differential gene expression tool to analyze the relationship between changes in cRE activity and gene expression across mouse embryonic development. Users can selected two tissue-time point combinations and a
region of interest. SCREEN will display differentially expressed genes in this region and ELS and PLS cREs in this region. For example, we observed that Ogn, a protein involved in bone formation, dramatically increases in expression between e11.5 and e15.5 in limb tissue. This increase in gene expression corresponds to bone development which occurs around e12.041. SCREEN's differential gene expression tool displays the expression fold change of Ogn and nearby differentially expressed genes as bars (Figure 2.31a). PLS and ELS cREs are shown as red and yellow dots with the y-axis indicated difference in H3K4me3 and H3K27ac Z-scores between the time points. This large-scale view helps users identify cREs that might account for the increase in Ogn expression by looking for corresponding changes in cRE activity and gene expression. Using this approach, we identified an ELS cRE (EM10E0113220) that increases in activity between e11.5 and e15.5. When we analyzed EM10E0113220's H3K27ac activity across limb development (Figure 2.31b,c), we found that it is highly correlated with PLS cRE H3K4me3 activity and Ogn expression. Therefore we hypothesize that increase in EM10E0113220 activity leads to increased Ogn expression during limb development.

Finally, the SNP-centric GWAS app intersects cREs with SNPs we curated from the aforementioned GWAS studies. Users can selected a study of interest and SCREEN will return a list of cell types and cREs that are enriched for GWAS SNPs. All three apps show links to the UCSC genome browser, thus facilitating visualization of the epigenetic signals at a cRE's or a gene's locus,
such as the Ogn example describe above. We have also set up a trackhub for visualizing all available signal tracks at the UCSC browser, organized by cell type.

DISCUSSION

By integrating DNase-seq and ChIP-seq datasets, we generated a collection of putative regulatory regions in human and mouse, which we referred to as the Registry of cREs. Adapting our unsupervised approach for enhancer prediction, which we used to successfully predict enhancers active in embryonic mouse tissues, we developed a cRE identification and classification scheme. We classified cREs into groups (PLS, ELS, CTCF-only, DNase-only, inactive) across 600 human and 100 mouse cell types, generating the most comprehensive collection of cell-type specific regulatory elements. We demonstrated that the registry covers the majority of H3K4me3 and H3K27ac peaks in cell types without DNase data and that its classifications were concordant with ChromHMM genome segmentations.

We also determined that our registry is biologically consistent with our current biological understanding of cell type relationships. With our clustering analysis, we determined that these cREs have biologically relevant activity patterns. While human tissues and primary cells generally clustered by their organ and embryonic tissues of origin, the clustering was not nearly as clean as it was in mouse. This could be due to a number of reasons. The human samples were
collected from a number of individuals who had different genetic backgrounds and had experienced different environmental effects. These samples also may have been collected using different collection methods depending the on if the samples were biopsies or postmortem tissues. Finally, in some cases the ChIP-seq experiments were run by different production labs during different phases of the ENCODE and Roadmap projects. The means that this experiments were run with different quality control standards, on different sequencing machines, and analyzing using different analysis pipeline. For, mouse, the embryonic tissues were collected from mice with identical genetic backgrounds using identical tissue collection procedures. The assays were all conducted during the third phase of the ENCODE project by the same production labs. While experimental biases may still exist, the nature of these datasets controls for many common sources of bias. This also presents one of the advantageous of using mouse data such as the application of mouse cREs to (see Chapter IV).

While we have identified over 1 million cREs in human and 400 thousand in mouse, we are aware that our registry is far from complete. Currently, in order for an rDHS to be classified as a cRE, it must have high DNase signal and high H3K4me3, H3K27ac or CTCF signal. Therefore, we are filtering our elements such as poised/weak enhancers, which have high H3K4me1 and H3K27me3 signals and low H3K27ac signal39. Additionally, our current classification scheme only identifies three types of elements. Realistically, the human genome is composed of many types of cREs with a spectrum of activity patterns. For example, recent
studies have reported promoters having enhancer-like activity and regulating the activity of distal genes. By analyzing additional histone modifications, we may be able to identify PLS cREs with these long-range activities. Additionally, CTCF has many roles in the genome: It is associated with the cohesion complex, insulators, and repressors. Therefore, we maybe be able to further separate CTCF-only cREs into different sub-classifications. During phase IV of the ENCODE project, we hope to not only increase the number of cell types for these assays, but continue to analyze different combinations of signal patterns, binding of transcription factors and transcription data play a role, particularly in cell types such as K562 and GM12878 that have a large number of datasets. We also hope to integrate in publicly available datasets, from databases such as CISTROME to cover a wider range of cell types and further annotate cREs.

Finally, while the registry of cREs had high coverage across the epigenomic landscape, its overlap with regulatory elements defined by other methods such as GRO-seq, CAGE and STARR-seq was far less. One possibility for the poor overlap is that our method is filtering out low signal enhancer that test positive in these assays or have strong transcriptional activity. For transcription based methods, such as CAGE and GRO-seq, this poor overlap could also be due to random transcription events in the genome. These regions, despite not having hallmark histone modifications, may have sequences with transcription initiation potential. These regions may have no biological function, so transcription is a result of the noise of genomic regulation, or they could be a different class of regulatory
elements. In the future, it will be worth investigating the transcriptionally active loci to see what features are predictive of these regions.

For methods that test specific genomic regions for enhancer activity, such as STARR-seq, MPRA, and transgenic mouse assays, this poor overlap could be due to differences in genomic context. For example, the Stark lab reported in their original STARR-seq paper that 31% of STARR-seq peaks did not overlap DHSs in the same cell type128. They hypothesized that this is due genomic context of the region. For example, a sequence may innately have enhancer-like activity causing it to test positive in STARR-seq, luciferase, or transgenic mouse assays. However, in the genome, the region may be silenced and inaccessible to transcription factors and therefore will not overlap a DHS. Moving forward, we can isolate these cases to learn more about how sequence features contribute to enhancer activity. We can apply the same analysis to analyze human regulatory elements and use these features to further refine our enhancer prediction models.
Figure 2.1 | Protocol used to validate enhancers included in the VISTA database. Regions were selected based on conservation, EP300 ChIP-seq, or H3K27ac ChIP-seq signals. These regions were then cloned and then injected into mouse embryos. Embryos were harvested and enhancer activity was measured using lacZ staining (blue regions). This figure was adapted from the home page figure on https://enhancer.lbl.gov/.
Figure 2.2 | ENCODE3 mouse embryonic time series data. During phase III of the ENCODE project the Ren lab generated histone modification ChIP-seq data for twelve tissues across eight embryonic time points (orange and green boxes, 72 unique tissue-time point combinations). The Stamatoyannopoulos lab generated DNase-seq data for 18 of these tissue-time points (green boxes).
Figure 2.3 | Unsupervised enhancer prediction methods. a, Testing which peaks to anchor predictions. To control for genome coverage, all peaks are set to a uniform 300bp in width. For DHSs, we use signal across the 300bp region. For histone peaks we use +/- 1kb from the summit of each peak. b, After we determined anchoring on DHSs result in the best performance, we tested ranking schemes using signal. For DHSs, we use signal across the 300bp region. For histone peaks we use +/- 1kb from the summit of each DHS.
Figure 2.4 | Precision-Recall (PR) curves for VISTA Enhancer prediction. PR curves for a, limb, b, midbrain, c, hindbrain, c, midbrain, and d, neural tube enhancers at e11.5. Colors indicate peaks and signals used for anchoring and ranking the enhancer predictions. All peaks were set to 300 bp centered on their summits and the 20k top-ranked peaks were used for each tissue to ensure consistent genome coverage.
Figure 2.5 | PR curves for VISTA Enhancer prediction anchored on DHSs. PR curves for a, limb, b, hindbrain, c, midbrain, and d, neural tube enhancers at e11.5. All predictions were anchored on DHSs in the respective tissue. Colors indicate signals used for ranking predictions; black indicates the average of DNase and H3K27ac signals.
Figure 2.6 | Validation rates of predicted enhancer-like regions using transgenic mouse assays. Bars indicated the percent of tested regions that were positive in the transgenic mouse enhancer assay. Dark colors indicate the region is active in the predicted tissue (blue for midbrain, green for hindbrain, and orange for limb). The lighter color indicates a lack of activity in the predicted tissue with activity in other tissues.
Figure 2.7 | Examples of predicted enhancer-like regions which tested positive in the transgenic mouse assays. Enhancer-like regions predicted using DNase signal (green) and H3K27ac signal (orange) in a, midbrain, b, hindbrain and c, limb. H3K27ac signal on accurately predicts additional observe activity in midbrain (MB), hindbrain (HB), neural tube (NT), limb (LM), heart (HT), and/or liver (LV).
Figure 2.8 | Overlap of cell types with epigenomic datasets. Venn diagrams indicate the number of cell types that have either DNase-seq, H3K4me3 ChiP-seq, and/or H3K27ac ChiP-seq data in a, human and b, mouse.
Figure 2.9 | Correlation of gene expression with epigenomic signals to predict promoter-like regions in mouse hindbrain e11.5. Scatterplots demonstrating correlation of expression with a) DHSs ranked by DNase signal ($r = 0.34$), b) DHSs ranked by H3K4me3 signal ($r = 0.73$), c) H3K4me3 peaks ranked by DNase signal ($r = 0.24$), and d) H3K4me3 peaks ranked by H3K4me3 signal ($r = 0.56$).
Figure 2.10 | Method for creating representative DNase hypersensitivity sites (rDHSs). a, DHSs across cell types tend to have similar boundaries. b, Method for generating rDHSs. We cluster DHSs if they overlap and then for each cluster select the DHS with the highest signal Z-score. This DHS serves as the representative DHS (rDHS) for the cluster. We iteratively repeat this process until all DHS overlap at least one rDHS.
Figure 2.11 | Method for normalizing genomic signals. a, Distribution of the H3K27ac signals at rDHSs from five cell types (B cell, Liver, K562, T cell, and GM12878; shown in different colors). b, Distributions of the log of the H3K27ac signals in a. Individually, log(signal) values of the rDHSs in each cell type roughly follow a normal distribution. c, Distribution of the Z-scores corresponding to the log(signal) values in b. Signal values of zero are assigned a Z-score of -10.
Figure 2.12 | Classification scheme for human cRES (hg19). We begin by clustering high-quality DHSs (FDR > 0.1%) to create representative DHSs (rDHSs). For each assay (DNase, H3K4me3, H3K27ac or CTCF), we calculate a Z-score for every rDHS in a particular cell or tissue type. We then obtain the maximum Z-score across all cell types which we denote the Max-Z. We use the decision tree to classify cRES into three cell-type-agnostic groups according to their Max-Z and proximity to the nearest TSS, including cRES with promoter-like signatures (cRES-PLS, n = 254,880), cRES with enhancer-like signatures (cRES-ELS, n = 991,173), and cRES bound by CTCF only (n = 64,099). The three groups comprise 1,310,152 cRESs.
We begin by clustering high quality DHSs (FDR > 0.1%) to create representative DHSs (rDHSs). For each assay (DNase, H3K4me3, H3K27ac or CTCF), we calculate a Z-score for every rDHS in a particular cell or tissue type. We then obtain the maximum Z-score across all cell types, known as the Max-Z. Using the Max-Z as well as the distance to the nearest TSS, we classify cREs into three cell-type agnostic groups using the decision tree: cREs with promoter-like signatures (n = 87,119), cREs with enhancer-like signatures (n = 310,472), and cREs bound by CTCF only (n = 33,611). The total number of cREs is the sum of the three groups: 431,202.
Figure 2.14 | Coverage of the registry of cREs. Percent of the DNase-mappable (36 nt, single-end reads) genome covered by each group of cREs in a, human and b, mouse.
Figure 2.15 | Nine states of cell-type specific cREs in GM12878

a, Number of GM12878 cREs in each group

b, Violin plots show the average POLII signal for cREs belonging to each of the nine cRE states. cREs proximal and distal to the nearest TSSs are displayed separately. Median values are displayed along with the number of cREs in each state.

c, Violin plots show the average EP300 signal for cREs belonging to each of the nine cRE states. cREs proximal and distal to the nearest TSSs are displayed separately. Median values are displayed along with the number of cREs in each state.
Figure 2.16 | Overview of 5 group classification method. Scatterplots of a, median EP300 signal or b, median RAD21 signal vs. median POLII signal for each cRE state in GM12878. The size of an icon is proportional to the number of cREs in that state except for the inactive state. Proximal cREs are represented by square icons. Distal cREs are represented by circular icons. c, Assignment of cRE states to the five following groups: with promoter-like signatures, with enhancer-like signatures, CTCF-only, DNase-only, and inactive. d, Number of GM12878 cREs in each group. e, Median ChIP-seq signal for POLII, EP300 and RAD21 in GM12878 for the cREs in each group.
Figure 2.17 | Saturation of cREs across 21 cell types with all four datatypes. Total numbers of cREs with Promoter-like, Enhancer-like, or CTCF-only signatures grow when more cell types are considered. Enhancer-like cREs are more cell-type-restrictive than promoter-like cREs or CTCF-only cREs.
<table>
<thead>
<tr>
<th>Assays</th>
<th># Cell Types</th>
<th>States</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>H3K4me3, H3K27ac, CTCF, & DNase</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3K4me3, H3K27ac & DNase</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3K4me3, CTCF & DNase</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3K4me3 & DNase</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3K27ac, CTCF & DNase</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3K27ac & DNase</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTCF & DNase</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNase</td>
<td>365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- H3K4me3 Z-score < 1.64
- H3K27ac Z-score < 1.64
- CTCF Z-score < 1.64
- DNase Z-score < 1.64
- Z-score < 1.64
- No Data

Figure 2.18 | Cell-type specific annotations of the Registry of cREs. Scheme for translating cell type specific state classifications into group classifications for cell types with different combinations of datasets.
Figure 2.19 | Groups of orthologous cREs. Percentage of cREs with promoter-like (red), enhancer-like (yellow), or CTCF-only (blue) signatures for human and mouse cREs as well as orthologous human and mouse cREs.
Figure 2.20 | Coverage of histone modification peaks by the current human Registry of cREs. Overlap of cREs with a, H3K4me3 peaks and b, H3K27ac peaks and c, CTCF peaks from cell types without DNase data. On average 89.7% and 86.8%, H3K4me3 and H3K27ac peaks overlap a cRE, respectively.
Figure 2.21 | Coverage of histone modification peaks by the current mouse Registry of cREs. Overlap of cREs with a, H3K4me3 peaks and b, H3K27ac peaks from cell types without DNase data. On average 95.8% and 87.6% of H3K4me3 and H3K27ac peaks overlap a cRE, respectively.
Figure 2.22 | Coverage of the H3K4me3 peaks by the current Registry of cREs is plotted against the average -log(FDR) of the H3K4me3 peaks. In a, human and b, mouse, cell-types with peaks that have a lower average -log(FDR) across all peaks tend to have a lower percentage of peaks covered. Manual inspection reveals that this lower coverage is due to lower-signal, false-positive peaks called by the algorithm for these datasets.
Figure 2.23 | Clustering of mouse cell types on the basis of cRE histone modification activity. Mouse embryonic tissues were hierarchically clustered according to the Jaccard similarity coefficient of cREs with high a, H3K27ac and b, H3K4me3 Z-scores. Colors indicate the organs of origin of the tissues. When clustered according to H3K27ac signals at cREs (panel a), the tissues segregate completely according to their organs of origin.
Figure 2.24 | Clustering of human cell and tissue types on the basis of cRE H3K27ac signal. Human a, primary cells and b, tissues were hierarchically clustered according to the Jaccard similarity coefficient of cREs with a high H3K27ac signal (Z-score > 1.64). The tissue samples in a are colored by their organ of origin and the primary cells in b are colored according to their lineages.
Figure 2.25 | Clustering of human cell and tissue types on the basis of cRE DNase signal. Human a, tissues and b, primary cells hierarchically clustered according to the Jaccard similarity coefficient of cREs with a high DNase signal (Z-score > 1.64). The tissue samples in a are colored by their organ of origin and the primary cells in b are colored according to their lineages.
Figure 2.26 | Overlap of cREs with chromHMM states. In GM12878, we ranked cREs with a, promoter-like signatures and b, enhancer-signatures on the basis of H3K4me3 and H3K27ac Z-scores respectively. For each bin of 1 k cREs, we calculated the percentage of cREs overlapping each chromHMM state. In mouse, we selected all cREs with c, promoter-like and d, enhancer-like signatures from tissue–time-point combinations with both DNase and histone data. We then calculated the percent of cREs that overlapped each chromHMM state. In all panels, high- and low-signal enhancers denote chromHMM enhancer states with high or low H3K27ac signals.
Figure 2.27 | Overlap of ELS cREs with previously predicted enhancers. The percentage of ELS cREs that overlap enhancers predicted by a, the FANTOM5 consortium, b, GRO-seq data, c, and STARR-seq. ELS cREs are ranked based on cell type specific H3K27ac Z-scores.
Figure 2.28 | Overlap of previously predicted enhancers with cREs. The percentage of enhancers predicted by a, the FANTOM5 consortium, b, GRO-seq data, c, and STARR-seq that overlap with cREs. Colors indicate groups of cREs active in each cell type: red for PLS, yellow of ELS, blue for CTCF-only, green for DNase-only and gray for inactive. Predicted enhancers that do not overlap any cREs are shown in white.
Figure 2.29 | Top cell type enrichments for variants reported by genome wide association studies (GWAS). For each GWAS we report the cell or tissue type of which active cREs are significantly enriched in the disease variants. Cell types that do not meet the FDR threshold of 0.05 are in grey. Most studies have multiple significantly enriched cell types but only the top hit is reported here. Traits listed multiple times are from different studies.
Figure 2.30 | Overview of SCREEn. a, Landing page of SCREEn where user can enter a gene, SNP, or locus of interest to investigate cREs. Alternatively, users can select the GWAS app to analyze cREs overlapping disease associated genetic variants. b,
Example results page from searching in the main query box. SCREEN lists cREs with accession, location, nearby genes, and overview of activity. c, cRE details page displaying additional information about each cRE such as its activity across cell types and overlapping TF peaks.
Figure 2.31 | Analyzing differential gene expression and cRE activity across developmental time-points.

a, Comparison between limb e11.5 and e15.5 gene expression and cRE activity. Blue bars indicate differentially expressed genes, and red and yellow dots indicate cREs with promoter-like and enhancer-like signatures. The heights of bars or dots indicate changes (Log2 FC or difference in Z-score) between time-points.

b, Genome browser view of the Ogn locus with H3K27ac, H3K4me4, DNase, and RNA-seq signals for the limb across all surveyed time-points. Promoter-like cREs are designated by red bars and enhancer-like cREs are designated by orange bars.

c, Ogn gene expression and nearby cRE activity increase coordinately across time-points. The increase in gene expression lags behind the increases in cRE-PLS and cRE-ELS activities.
<table>
<thead>
<tr>
<th></th>
<th>Midbrain</th>
<th>Hindbrain</th>
<th>Neural Tube</th>
<th>Limb</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNase</td>
<td>ENCSR292QBA</td>
<td>ENCSR358ESL</td>
<td>ENCSR312QVY</td>
<td>ENCSR661HDP</td>
</tr>
<tr>
<td>H3K27ac</td>
<td>ENCSR088UKA</td>
<td>ENCSR129LAP</td>
<td>ENCSR531RZS</td>
<td>ENCSR897WBY</td>
</tr>
<tr>
<td>H3K4me3</td>
<td>ENCSR283RFW</td>
<td>ENCSR928CYU</td>
<td>ENCSR427OZM</td>
<td>ENCSR654VMK</td>
</tr>
<tr>
<td>H3K4me1</td>
<td>ENCSR450ITF</td>
<td>ENCSR695FPP</td>
<td>ENCSR448TTC</td>
<td>ENCSR548BCO</td>
</tr>
<tr>
<td>H3K9ac</td>
<td>ENCSR502WUI</td>
<td>ENCSR734IEL</td>
<td>ENCSR547PLI</td>
<td>ENCSR286IGS</td>
</tr>
<tr>
<td>H3K36me3</td>
<td>ENCSR535NVF</td>
<td>ENCSR175QZX</td>
<td>ENCSR445UYH</td>
<td>ENCSR871YCT</td>
</tr>
<tr>
<td>H3K27me3</td>
<td>ENCSR545BRW</td>
<td>ENCSR375GSG</td>
<td>ENCSR240OUM</td>
<td>ENCSR085EYQ</td>
</tr>
<tr>
<td>WGBS</td>
<td>ENCSR091VFX</td>
<td>ENCSR398UCM</td>
<td>ENCSR613BMI</td>
<td>ENCSR916GKL</td>
</tr>
<tr>
<td>Peak Space</td>
<td>Signal</td>
<td>Limb</td>
<td>Midbrain</td>
<td>Hindbrain</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>DNase</td>
<td>DNase</td>
<td>0.4108</td>
<td>0.3725</td>
<td>0.3862</td>
</tr>
<tr>
<td>H3K27ac</td>
<td>H3K27ac</td>
<td>0.3375</td>
<td>0.4320</td>
<td>0.3311</td>
</tr>
<tr>
<td>H3K4me3</td>
<td>H3K4me3</td>
<td>0.1228</td>
<td>0.2397</td>
<td>0.1994</td>
</tr>
<tr>
<td>H3K4me1</td>
<td>H3K4me1</td>
<td>0.2589</td>
<td>0.3227</td>
<td>0.2124</td>
</tr>
</tbody>
</table>
Table 2.3 | AUPR for VISTA Enhancer prediction anchored on DHSs

<table>
<thead>
<tr>
<th>Peak Space</th>
<th>Signal</th>
<th>Hindbrain</th>
<th>Limb</th>
<th>Midbrain</th>
<th>Neural Tube</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNase Peak</td>
<td>DNase Signal</td>
<td>0.3788</td>
<td>0.4159</td>
<td>0.3797</td>
<td>0.2951</td>
<td>0.3673</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>H3K27ac Signal</td>
<td>0.3113</td>
<td>0.3265</td>
<td>0.3959</td>
<td>0.2526</td>
<td>0.3216</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>Average Rank DNase-H3K27ac Signal</td>
<td>0.3764</td>
<td>0.3948</td>
<td>0.4148</td>
<td>0.3050</td>
<td>0.3727</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>H3K4me3 Signal</td>
<td>0.2276</td>
<td>0.1828</td>
<td>0.2602</td>
<td>0.1615</td>
<td>0.2080</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>Average Rank DNase-H3K4me3 Signal</td>
<td>0.2584</td>
<td>0.2392</td>
<td>0.2933</td>
<td>0.1751</td>
<td>0.2415</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>H3K4me1 Signal</td>
<td>0.2442</td>
<td>0.2799</td>
<td>0.3122</td>
<td>0.1762</td>
<td>0.2531</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>Average Rank DNase-H3K4me1 Signal</td>
<td>0.2527</td>
<td>0.2647</td>
<td>0.2901</td>
<td>0.1740</td>
<td>0.2454</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>H3K9ac</td>
<td>0.2367</td>
<td>0.1977</td>
<td>0.2756</td>
<td>0.1721</td>
<td>0.2205</td>
</tr>
<tr>
<td>DNase Peaks</td>
<td>Average Rank DNase-H3K9ac Signal</td>
<td>0.2831</td>
<td>0.2574</td>
<td>0.3250</td>
<td>0.2147</td>
<td>0.2700</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>H3K36me3 Signal</td>
<td>0.1910</td>
<td>0.1776</td>
<td>0.1911</td>
<td>0.1265</td>
<td>0.1715</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>Average Rank DNase-H3K36me3 Signal</td>
<td>0.2280</td>
<td>0.2262</td>
<td>0.2212</td>
<td>0.1548</td>
<td>0.2075</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>WGBS methylation</td>
<td>0.2470</td>
<td>0.2151</td>
<td>0.2663</td>
<td>0.1550</td>
<td>0.2208</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>Average Rank DNase-WGBS Signal</td>
<td>0.3127</td>
<td>0.3031</td>
<td>0.3278</td>
<td>0.1981</td>
<td>0.2854</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>H3K27me3 Signal</td>
<td>0.2187</td>
<td>0.1964</td>
<td>0.1853</td>
<td>0.1285</td>
<td>0.1822</td>
</tr>
<tr>
<td>DNase Peak</td>
<td>Average Rank DNase-H3K27me3 Signal</td>
<td>0.2700</td>
<td>0.2750</td>
<td>0.2325</td>
<td>0.1664</td>
<td>0.2360</td>
</tr>
<tr>
<td>VISTA ID</td>
<td>mm10 Coordinates</td>
<td>Result Summary: predicted tissue (Hb, Mb, Lb pos or neg)</td>
<td>Additional Tissue Activity Observed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1502</td>
<td>chr14:76253890-76257212</td>
<td>Mb positive (3/3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1471</td>
<td>chr16:35584523-35589773</td>
<td>Mb positive (3/3)</td>
<td>Fb (3/3), Hb (3/3), neural tube (3/3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1480</td>
<td>chr6:112808528-112813000</td>
<td>Mb positive (4/5)</td>
<td>Fb (5/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1504</td>
<td>chr16:44528746-44534514</td>
<td>Mb positive (4/5)</td>
<td>Hb (4/5), Fb (4/5), neural tube (4/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1503</td>
<td>chr14:40955282-40959325</td>
<td>Mb positive (4/8)</td>
<td>Hb (5/8), cranial nerve (5/8), trigeminal V (8/8), DRG (8/8), Lb (6/8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1469</td>
<td>chr12:80059965-80065110</td>
<td>Mb positive (5/5)</td>
<td>Fb (4/5), Hb (5/5), neural tube (5/5), Ht (5/5), branchial arch (3/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1460</td>
<td>chr1:133185980-133189493</td>
<td>Mb positive (5/5)</td>
<td>Fb (5/5), Hb (5/5), neural tube (4/5), eye (5/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1458</td>
<td>chr8:93916782-93919741</td>
<td>Mb positive (5/7)</td>
<td>Fb (5/7), Hb (5/7), neural tube (5/7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1456</td>
<td>chr12:109946504-109950294</td>
<td>Mb positive (6/6)</td>
<td>Fb (6/6), Hb (6/6), neural tube (5/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1462</td>
<td>chr11:113783367-113787793</td>
<td>Mb positive (8/12)</td>
<td>Fb (7/12), Hb (9/12), neural tube (9/12), trigeminal V (7/12), DRG (7/12), Lb (7/12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1479</td>
<td>chr17:29354850-29357878</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1472</td>
<td>chr11:20654380-20657594</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1459</td>
<td>chr3:65973873-65976364</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1482</td>
<td>chr17:37028041-37029979</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1470</td>
<td>chr6:90780495-90784241</td>
<td>other positive</td>
<td>Hb (6/8), neural tube (5/8), trigeminal V (6/8), DRG (7/8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1481</td>
<td>chr11:120314873-120317426</td>
<td>other positive</td>
<td>DRG (3/4), other (3/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1457</td>
<td>chr18:38378941-38381638</td>
<td>other positive</td>
<td>Fb (6/6), Lb (6/6), cranial nerve (4/6), DRG (4/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1463</td>
<td>chr5:21731579-21734432</td>
<td>other positive</td>
<td>Fb (4/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1553</td>
<td>chr9:86186309-86188376</td>
<td>Mb positive (3/5)</td>
<td>Hb (3/5), Fb (3/5), neural tube (3/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1557</td>
<td>chr6:65309702-65311689</td>
<td>Mb positive (3/6)</td>
<td>Fb (4/6), neural tube (4/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1552</td>
<td>chr19:41715402-41718238</td>
<td>Mb positive (5/6)</td>
<td>Fb (6/6), Hb (6/6), DRG (4/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1555</td>
<td>chr11:26772020-26774013</td>
<td>Mb positive (5/6)</td>
<td>Hb (3/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1558</td>
<td>chr7:117685707-117687616</td>
<td>Mb positive (6/12)</td>
<td>Hb (8/12), Lb (9/12), Fb (9/12), neural tube (6/12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1546</td>
<td>chr1:96482223-96509565</td>
<td>Mb positive (6/8)</td>
<td>Hb (7/8), trigeminal V (6/8), neural tube (5/8), DRG (4/8), cranial nerve (5/8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1544</td>
<td>chr16:94723154-94725386</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1545</td>
<td>chr18:54759740-54761758</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1547</td>
<td>chr9:50451431-50453445</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1550</td>
<td>chr5:140767048-140769052</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1551</td>
<td>chr6:144165683-144167703</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1554</td>
<td>chr9:121359503-121361504</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1549</td>
<td>chr3:127705248-127707248</td>
<td>other positive</td>
<td>Fb (7/7), neural tube (6/7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1556</td>
<td>chr13:76809879-76811879</td>
<td>other positive</td>
<td>Fb (3/3), Hb (3/3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1548</td>
<td>chr6:145855046-145857046</td>
<td>other positive</td>
<td>Fb (4/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1524</td>
<td>chr6:52365164-52368224</td>
<td>Mb positive (4/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1583</td>
<td>chr11:85857229-85860254</td>
<td>Mb positive (4/7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1526</td>
<td>chr11:113307639-113310548</td>
<td>Mb positive (4/7)</td>
<td>Hb (4/7), neural tube (4/7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1522</td>
<td>chr5:114298723-114301210</td>
<td>Mb positive (6/7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1520</td>
<td>chr8:124313443-124316007</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1580</td>
<td>chr13:113913477-113916032</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1521</td>
<td>chr12:111161954-111163777</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1582</td>
<td>chr9:107644011-107645376</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1523</td>
<td>chr14:100374296-100376562</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1585</td>
<td>chr6:83434774-83436371</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1587</td>
<td>chr15:84259559-84261268</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1581</td>
<td>chr18:55784854-5587217</td>
<td>other positive</td>
<td>Hb (4/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1525</td>
<td>chr17:28105717-28108643</td>
<td>other positive</td>
<td>Fb (3/4), Hb (3/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1586</td>
<td>chr7:48749001-48750980</td>
<td>other positive</td>
<td>trigeminal V (9/12), Hb (6/12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA ID</td>
<td>mm10 Coordinates</td>
<td>Result Summary: predicted tissue (Hb, Mb, Lb pos or neg)</td>
<td>Additional Tissue Activity Observed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1444</td>
<td>chr12:86822930-86827112</td>
<td>Hb positive (7/8)</td>
<td>Mb (3/8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1496</td>
<td>chr11:94158655-94162177</td>
<td>Hb positive (3/4)</td>
<td>Fb (3/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1494</td>
<td>chr4:136754322-136758801</td>
<td>other positive</td>
<td>Mb (3/3), nose (3/3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1446</td>
<td>chr14:25107155-25110736</td>
<td>Hb positive (3/3)</td>
<td>Fb (3/3), Mb (3/3), neural tube (3/3), eye (3/3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1488</td>
<td>chr17:10333563-10337174</td>
<td>Hb positive (4/4)</td>
<td>Mb (4/4) neural tube (4/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1447</td>
<td>chr2:21008806-21012242</td>
<td>Hb positive (6/6)</td>
<td>Mb (5/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1448</td>
<td>chr7:111121648-111123424</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1449</td>
<td>chr15:98967479-98972541</td>
<td>Hb positive (5/7)</td>
<td>Fb (6/7), Mb (6/7), neural tube (4/7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1450</td>
<td>chr19:45057481-45059842</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1497</td>
<td>chr7:145204877-145207696</td>
<td>Hb positive (5/6)</td>
<td>Mb (6/6), Fb (6/6), neural tube (5/6), Ht (4/6), Lb (4/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1498</td>
<td>chr14:19984462-19988065</td>
<td>Hb positive (3/4)</td>
<td>Mb (4/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1499</td>
<td>chr17:66478396-66482145</td>
<td>Hb positive (6/6)</td>
<td>Fb (4/6), Mb (6/6), neural tube (6/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1451</td>
<td>chr5:112236129-112240520</td>
<td>Hb positive (10/10)</td>
<td>Fb (9/10), Mb (10/10), neural tube (10/10), cranial nerve (5/10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1489</td>
<td>chr7:140056813-140059080</td>
<td>Hb positive (5/5)</td>
<td>Mb (5/5), neural tube (5/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1452</td>
<td>chr3:51787852-51791869</td>
<td>Hb positive (4/6)</td>
<td>Mb (3/6), neural tube (5/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1453</td>
<td>chr5:125140066-125142757</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1500</td>
<td>chr14:66492741-66497119</td>
<td>Hb positive (3/4)</td>
<td>Fb (3/4), Mb (3/4), neural tube (3/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1501</td>
<td>chr13:84344551-84350110</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1478</td>
<td>chr15:91016522-91020048</td>
<td>Hb positive (3/4)</td>
<td>Fb (3/4), Mb (3/4), neural tube (3/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genomic Location</td>
<td>Description</td>
<td>Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr8:108243823-108246831</td>
<td>Hb positive (3/5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr7:93060869-93063626</td>
<td>Hb positive (4/5)</td>
<td>Fb (5/5), neural tube (5/5), Lb (4/5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr4:148859471-148860956</td>
<td>Hb positive (5/5)</td>
<td>cranial nerve (3/5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr14:63585329-63587537</td>
<td>Hb positive (8/9)</td>
<td>neural tube (9/9), Mb (8/9), Fb (7/9), cranial nerve (6/9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr18:54610385-54613247</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr12:86798248-86799852</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr4:154593394-154596395</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr7:70329472-70332465</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr15:77335353-77337280</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr3:104540534-104542671</td>
<td>other positive</td>
<td>neural tube (5/6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr17:62851927-62854939</td>
<td>other positive</td>
<td>Mb (5/6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:93277888-93280895</td>
<td>other positive</td>
<td>Lb (3/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:163188663-163191536</td>
<td>other positive</td>
<td>Fb (3/6), eye (3/6), Lb (4/6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr3:5386841-5389926</td>
<td>other positive</td>
<td>Fb (6/7), neural tube (6/7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr19:21164417-21167450</td>
<td>other positive</td>
<td>tail (5/6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr5:125214963-125216753</td>
<td>other positive</td>
<td>Fb (3/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:166215189-166217391</td>
<td>Hb positive (4/5)</td>
<td>neural tube (6/5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr12:105972686-105975121</td>
<td>Hb positive (7/9)</td>
<td>other/abdomen (6/9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr3:5348379-5351461</td>
<td>Hb positive (8/10)</td>
<td>branchial arch (4/10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr16:33593467-33596065</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr2:70559085-70560255</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr12:16854925-16857237</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chr16:72690693-72694735</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1513</td>
<td>chr6:95173859-95175593</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1579</td>
<td>chr18:15173064-15176000</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1517</td>
<td>chr1:182981864-182984314</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1519</td>
<td>chr7:46452307-46455505</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1509</td>
<td>chr9:63058010-63060489</td>
<td>other positive</td>
<td>Mb (4/4), Fb (4/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1516</td>
<td>chr6:89241345-89243919</td>
<td>other positive</td>
<td>Mb (5/11), facial mesenchyme (8/11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1514</td>
<td>chr7:82713868-82717092</td>
<td>other positive</td>
<td>Lb (6/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1518</td>
<td>chr9:63958315-63961551</td>
<td>other positive</td>
<td>Lb (6/8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA ID</td>
<td>mm10 Coordinates</td>
<td>Result Summary: predicted tissue (Hb, Mb, Lb pos or neg)</td>
<td>Additional Tissue Activity Observed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1473</td>
<td>chr9:72639094-72641466</td>
<td>Lb positive (11/11)</td>
<td>eye (5/11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1505</td>
<td>chr3:101394801-101399299</td>
<td>Lb positive (12/12)</td>
<td>somite (10/12), branchial arch (10/12), facial mesenchyme (9/12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1464</td>
<td>chr8:126825533-126828569</td>
<td>Lb positive (3/3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1476</td>
<td>chr2:128712175-128715819</td>
<td>Lb positive (3/4)</td>
<td>facial mesenchyme (3/4), branchial arch (3/4), DRG (3/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1486</td>
<td>chr9:41227902-41230545</td>
<td>Lb positive (3/5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1474</td>
<td>chr6:72710179-72712952</td>
<td>Lb positive (4/4)</td>
<td>branchial arch (3/4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1485</td>
<td>chr14:24261692-24264509</td>
<td>Lb positive (4/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1493</td>
<td>chr9:41949140-41954525</td>
<td>Lb positive (4/7)</td>
<td>eye (5/7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1475</td>
<td>chr9:106354104-106358319</td>
<td>Lb positive (4/7)</td>
<td>facial mesenchyme (6/7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1492</td>
<td>chr4:154707415-154711162</td>
<td>Lb positive (5/5)</td>
<td>facial mesenchyme (5/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1506</td>
<td>chr4:139597441-139601336</td>
<td>Lb positive (5/8)</td>
<td>blood vessels (5/8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1484</td>
<td>chr7:123096694-123099867</td>
<td>Lb positive (6/6)</td>
<td>Ht (6/6), eye (6/6), facial mesenchyme (5/6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1490</td>
<td>chr4:108361018-108364528</td>
<td>Lb positive (7/7)</td>
<td>Mb (7/7), neural tube (7/7), facial mesenchyme (7/7), Hb (7/7), nose (7/7), branchial arch (6/7), somite (5/7), genital tubercle (7/7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1483</td>
<td>chr8:90860971-90863490</td>
<td>Lb positive (8/8)</td>
<td>Fb (6/8), Hb (6/8), Mb (6/8), cranial nerve (6/8), trigeminal V (7/8), DRG (7/8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1507</td>
<td>chr8:11584424-11587803</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1491</td>
<td>chr9:41934743-41936889</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1477</td>
<td>chr13:51312386-51316734</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1508</td>
<td>chr10:91179718-91183751</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1495</td>
<td>chr14:65342605-65345502</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1487</td>
<td>chr10:59919229-59922102</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1574</td>
<td>chr7:136389300-136391216</td>
<td>Lb positive (3/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1567</td>
<td>chr8:87659116-87661534</td>
<td>Lb positive (4/5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1564</td>
<td>chr2:60785660-60787563</td>
<td>Lb positive (5/5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1576</td>
<td>chr5:16778223-16779671</td>
<td>Lb positive (5/5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1571</td>
<td>chr15:95638744-95641449</td>
<td>Lb positive (5/6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1570</td>
<td>chr14:49121140-49122633</td>
<td>Lb positive (7/8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1563</td>
<td>chr9:32823262-32824682</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1559</td>
<td>chr6:5801484-5804011</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1568</td>
<td>chr11:104288616-104290675</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1572</td>
<td>chr3:81782584-81784020</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1573</td>
<td>chr10:38972079-38974105</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1565</td>
<td>chr13:51919913-51922132</td>
<td>other positive (Fb (3/3), Mb (3/3), Hb (3/3), neural tube (3/3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1566</td>
<td>chr4:148984734-148987251</td>
<td>other positive (nose (4/4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1575</td>
<td>chr1:59333923-59335433</td>
<td>other positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1569</td>
<td>chr5:65414975-65416572</td>
<td>other positive (Unidentifiable structures in chest and abdomen (9/10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1597</td>
<td>chr6:89613039-89615855</td>
<td>Lb positive (10/11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1598</td>
<td>chr8:26832486-26834858</td>
<td>Lb positive (3/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1599</td>
<td>chr3:37934422-37937092</td>
<td>Lb positive (8/9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1588</td>
<td>chr11:60365089-60367681</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1589</td>
<td>chr12:107951151-107953994</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1590</td>
<td>chr7:135888196-135890453</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td>Chromosome</td>
<td>Coordinates</td>
<td>Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1591</td>
<td>chr8:108018634-108020810</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1592</td>
<td>chr12:108913631-108917155</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1593</td>
<td>chr11:118083180-118085181</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1594</td>
<td>chr6:85022961-85025939</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1595</td>
<td>chr12:73510499-73513049</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1596</td>
<td>chr7:112867931-112870363</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1602</td>
<td>chr7:132203278-132205205</td>
<td>neg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1600</td>
<td>chr14:21673440-21675700</td>
<td>other positive</td>
<td>tail (3/3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm1601</td>
<td>chr1:61202202-61204582</td>
<td>other positive</td>
<td>facial mesenchyme (3/5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.7 | Correlation of ranked peaks with ranked gene expression in mouse tissues

<table>
<thead>
<tr>
<th>Peak Space</th>
<th>Signal</th>
<th>Hindbrain</th>
<th>Limb</th>
<th>Midbrain</th>
<th>Neural Tube</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNase</td>
<td>DNase</td>
<td>0.3454</td>
<td>0.3643</td>
<td>0.3973</td>
<td>0.4714</td>
<td>0.3946</td>
</tr>
<tr>
<td>DNase</td>
<td>H3K4me3</td>
<td>0.7332</td>
<td>0.7472</td>
<td>0.7507</td>
<td>0.7488</td>
<td>0.7450</td>
</tr>
<tr>
<td>H3K4me3</td>
<td>DNase</td>
<td>0.2364</td>
<td>0.2603</td>
<td>0.2239</td>
<td>0.1055</td>
<td>0.2065</td>
</tr>
<tr>
<td>H3K4me3</td>
<td>H3K4me3</td>
<td>0.5551</td>
<td>0.6112</td>
<td>0.5691</td>
<td>0.5555</td>
<td>0.5727</td>
</tr>
</tbody>
</table>
Table 2.8 | Correlation of ranked peaks with ranked gene expression in human cells

<table>
<thead>
<tr>
<th>Peak Space</th>
<th>Signal</th>
<th>GM12878</th>
<th>K562</th>
<th>HepG2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNase</td>
<td>DNase</td>
<td>0.4904</td>
<td>0.3848</td>
<td>0.4024</td>
<td>0.4258</td>
</tr>
<tr>
<td>DNase</td>
<td>H3K4me3</td>
<td>0.7152</td>
<td>0.7310</td>
<td>0.7084</td>
<td>0.7182</td>
</tr>
<tr>
<td>H3K4me3</td>
<td>DNase</td>
<td>0.4122</td>
<td>0.3016</td>
<td>0.2469</td>
<td>0.3202</td>
</tr>
<tr>
<td>H3K4me3</td>
<td>H3K4me3</td>
<td>0.5833</td>
<td>0.6012</td>
<td>0.5484</td>
<td>0.5777</td>
</tr>
<tr>
<td>Combined State</td>
<td>State 1</td>
<td>State 2</td>
<td>State 3</td>
<td>State 4</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td>1 Active Promoter</td>
<td>2 Weak Promoter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSS Bivalent</td>
<td>3 Poised Promoter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Signal Enhancer</td>
<td>4 Strong Enhancer</td>
<td>5 Strong Enhancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Signal Enhancer</td>
<td>6 Weak Enhancer</td>
<td>7 Weak Enhancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulator</td>
<td>8 Insulator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transcription</td>
<td>9 Txn Transition</td>
<td>10 Txn Elongation</td>
<td>11 Weak Txn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repressed</td>
<td>12 Repressed</td>
<td>13 Heterochrom/lo</td>
<td>14 Repetitive/CNV</td>
<td>15 Repetitive/CNV</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.10 | Overlap of previous enhancer predictions with cREs

<table>
<thead>
<tr>
<th>Assay</th>
<th>Cell Type</th>
<th>PLS</th>
<th>ELS</th>
<th>CTCF</th>
<th>DNase</th>
<th>Inactive</th>
<th>No Overlap</th>
</tr>
</thead>
<tbody>
<tr>
<td>FANTOM5</td>
<td>GM12878</td>
<td>274</td>
<td>646</td>
<td>5</td>
<td>64</td>
<td>342</td>
<td>1,135</td>
</tr>
<tr>
<td>FANTOM5</td>
<td>hepatocyte</td>
<td>36</td>
<td>118</td>
<td>2</td>
<td>24</td>
<td>127</td>
<td>266</td>
</tr>
<tr>
<td>FANTOM5</td>
<td>keratinocyte</td>
<td>139</td>
<td>380</td>
<td>1</td>
<td>2</td>
<td>111</td>
<td>546</td>
</tr>
<tr>
<td>FANTOM5</td>
<td>astrocyte</td>
<td>256</td>
<td>427</td>
<td>0</td>
<td>30</td>
<td>182</td>
<td>786</td>
</tr>
<tr>
<td>GRO-seq</td>
<td>GM12878</td>
<td>27,771</td>
<td>15,312</td>
<td>612</td>
<td>1,601</td>
<td>34,030</td>
<td>34,703</td>
</tr>
<tr>
<td>GRO-seq</td>
<td>K562</td>
<td>26,815</td>
<td>20,206</td>
<td>1,193</td>
<td>4,230</td>
<td>32,206</td>
<td>33,233</td>
</tr>
<tr>
<td>GRO-seq</td>
<td>IMR-90</td>
<td>15,993</td>
<td>11,020</td>
<td>293</td>
<td>1,852</td>
<td>25,177</td>
<td>26,343</td>
</tr>
<tr>
<td>GRO-seq</td>
<td>MCF-7</td>
<td>21,283</td>
<td>10,124</td>
<td>320</td>
<td>1,493</td>
<td>34,150</td>
<td>28,876</td>
</tr>
<tr>
<td>GRO-seq</td>
<td>HeLa</td>
<td>21,738</td>
<td>16,463</td>
<td>353</td>
<td>1,127</td>
<td>17,143</td>
<td>26,807</td>
</tr>
<tr>
<td>STARR-seq</td>
<td>HeLa</td>
<td>687</td>
<td>2,800</td>
<td>67</td>
<td>1,035</td>
<td>10,447</td>
<td>7,809</td>
</tr>
<tr>
<td>First Author</td>
<td>PMID</td>
<td>Phenotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson</td>
<td>21297633</td>
<td>Ulcerative colitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anttila</td>
<td>23793025</td>
<td>Migraine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arking</td>
<td>24952745</td>
<td>QT Interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrett</td>
<td>19430480</td>
<td>Type 1 Diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baurecht</td>
<td>25574825</td>
<td>Inflammatory skin disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baurecht</td>
<td>25574825</td>
<td>Psoriasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentham</td>
<td>26502338</td>
<td>Systemic lupus erythematosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berndt</td>
<td>23563607</td>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berndt</td>
<td>23563607</td>
<td>Obesity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cai</td>
<td>25130324</td>
<td>Heschl's gyrus morphology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chasman</td>
<td>19936222</td>
<td>Lipid metabolism phenotypes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deVries</td>
<td>26561523</td>
<td>Fibrinogen levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dubois</td>
<td>20190752</td>
<td>Celiac disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dupuis</td>
<td>20081858</td>
<td>Fasting glucose-related traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox</td>
<td>22589738</td>
<td>Subcutaneous adipose tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox</td>
<td>22589738</td>
<td>Visceral adipose tissue adjusted for BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox</td>
<td>22589738</td>
<td>Visceral adipose tissue/subcutaneous adipose tissue ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox</td>
<td>22589738</td>
<td>Visceral fat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franke</td>
<td>21102463</td>
<td>Crohn's disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gieger</td>
<td>22139419</td>
<td>Platelet count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gieger</td>
<td>22139419</td>
<td>Mean platelet volume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gudbjartsson</td>
<td>18391951</td>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hromatka</td>
<td>25628336</td>
<td>Motion sickness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imboden</td>
<td>22424883</td>
<td>Pulmonary function decline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jostins</td>
<td>23128233</td>
<td>Inflammatory bowel disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplan</td>
<td>21216879</td>
<td>Insulin-like growth factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kapoor</td>
<td>24962325</td>
<td>Alcohol dependence (age at onset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kottgen</td>
<td>23263486</td>
<td>Urate levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lango</td>
<td>20881960</td>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lemaitre</td>
<td>21829377</td>
<td>Phospholipid levels (plasma)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Study ID</td>
<td>Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesch</td>
<td>18839057</td>
<td>Attention deficit hyperactivity disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>26252872</td>
<td>Cognitive decline rate in late mild cognitive impairment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>26301688</td>
<td>Pediatric autoimmune diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu</td>
<td>26192919</td>
<td>Crohn's disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu</td>
<td>26192919</td>
<td>Inflammatory bowel disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu</td>
<td>26192919</td>
<td>Ulcerative colitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Michailidou</td>
<td>23535729</td>
<td>Breast cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mozaffarian</td>
<td>25646338</td>
<td>Trans fatty acid levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patsopoulos</td>
<td>22190364</td>
<td>Multiple sclerosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perry</td>
<td>25231870</td>
<td>Menarche (age at onset)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcu</td>
<td>23408906</td>
<td>Thyroid hormone levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rietveld</td>
<td>25201988</td>
<td>Educational attainment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripke</td>
<td>25056061</td>
<td>Schizophrenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sawcer</td>
<td>21833088</td>
<td>Multiple sclerosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shin</td>
<td>24816252</td>
<td>Blood metabolite levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shin</td>
<td>24816252</td>
<td>Blood metabolite ratios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speedy</td>
<td>24292274</td>
<td>Chronic lymphocytic leukemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhre</td>
<td>21886157</td>
<td>Metabolic traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surakka</td>
<td>25961943</td>
<td>Cholesterol, total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surakka</td>
<td>25961943</td>
<td>HDL cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surakka</td>
<td>25961943</td>
<td>LDL cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surakka</td>
<td>25961943</td>
<td>Triglycerides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teslovich</td>
<td>20686565</td>
<td>Cholesterol, total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teslovich</td>
<td>20686565</td>
<td>HDL cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teslovich</td>
<td>20686565</td>
<td>LDL cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teslovich</td>
<td>20686565</td>
<td>Triglycerides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vanderHarst</td>
<td>23222517</td>
<td>Red blood cell traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wain</td>
<td>21909110</td>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang</td>
<td>20889312</td>
<td>Bipolar disorder and schizophrenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willer</td>
<td>24097068</td>
<td>Cholesterol, total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willer</td>
<td>24097068</td>
<td>HDL cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>ID Number</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willer</td>
<td>24097068</td>
<td>LDL cholesterol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willer</td>
<td>24097068</td>
<td>Triglycerides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td>25282103</td>
<td>Height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yucesoy</td>
<td>25918132</td>
<td>Diisocyanate-induced asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
METHODS

Mouse Transgenic Assays

To test for enhancer activity, each region was cloned into a construct containing the Hsp68 promoter, which lacks activity in embryonic mice, and the LacZ reporter gene. Individually, these constructs were injected into fertilized mouse eggs which were then implanted into pseudopregnant female mice. At e11.5, the embryos were harvested and stained for LacZ reporter gene activity. If the tested genomic region has tissue specific enhancer activity, the tissue will stain blue. For a tissue to have enhancer activity, at least three embryos were required to test positive.

Cell type specific enhancer prediction

In November 2015, we downloaded regions from the VISTA database. We lifted these regions from the mm9 to the mm10 genome and merged overlapping regions, generating 1,994 unique regions. To test anchoring schemes on different datatypes, we selected the top 20,000 peaks ranked by p-value and shrank the size of the peak to 300 bp. For histone modifications, we used peaks call by MACS2 which were in both biological replicates. To modify the width of these peaks, we used +/- 150 bp around the peak summit. For DHS, we used peaks call by HOTSPOT2 for the first biological replicate. To modify the width of these peaks, we used +/- 150 bp around the peak center. To rank peaks, we used signal from each experiment. For histone modifications, we used "fold-change over control"
signal from the combined biological replicates and calculated signal over a +/- 1 kb window around the peak summit. For DHSs, we used raw signal from replicate one and calculated signal over the 300 bp DHS.

To evaluate performance, we intersected peaks with all tested VISTA regions. If more than one peak overlapped a region we selected the peak with the highest signal. VISTA regions were then ranked by the signal of their overlapping peak. VISTA regions that did not overlap peaks were assigned a signal of 0. We plotted the PR curves using the R package ROCR and calculated the area under the curves using custom R scripts.

To compare ranking schemes, we ran the same pipeline except we anchored all predictions on the 300 bp DHSs. For histone modification and methylation (WGBS) signals we used a +/- 1 kb window centered at each DHS. For H3K27me3 and methylation signals we reversed the order of ranking when making our PR curves as high H3K27me3 and methylation correlate with repressed regions.

Cell type specific promoter prediction

To evaluate the performance of promoter prediction methods, we downloaded transcript expression quantifications from the ENCODE DCC produced from the ENCODE RNA-seq uniform processing pipeline. Using TSS-proximal (± 2 kb) DHSs or H3K4me3 peaks, we computed the Pearson correlation between the ranks of these peaks and the ranks of the expression (TPM) of
transcripts within 2 kb. We tested four combinations of ranking schemes: DHSs ranked by DNase signal, H3K4me3 peaks ranked by DNase signal, DHSs ranked by H3K4me3 signal, and H3K4me3 peaks ranked by H3K4me3 signal. Overall, the method with the high correlation was anchoring predictions on DHSs and ranking by H3K4me3 signal.

Creating representative DHSs (rDHSs)

As of February 1, 2017 there were 449 hg19 DNase experiments and 62 mm10 DNase experiments on the ENCODE data portal with HOTSPOT2 calls. As a preprocessing step, we normalized the signal at these DHSs so that we can compare relative signals across datasets. For each experiment, we calculated the Z-score of the log of the DNase signals across the DHSs (see below for an explanation of Z-score of log(signal)). We then selected for all DHSs passing an FDR threshold of <0.1%. Using a script adapted from the Stamatoyannopoulos lab, we clustered these high quality DHSs and we selected the DHS with the highest signal (normalized as a Z-score to enable the comparison of signal levels across samples) as the representative DHS for each cluster. All the DHSs that overlapped with this rDHS by at least one bp were removed. We iteratively repeated this process until we obtained a list of non-overlapping rDHSs representing all DHSs.

Normalizing epigenomic signals
To normalize DNase, H3K4me3, H3K27ac, and CTCF signal for each rDHS, we transformed average signals into Z-scores. For each experiment, we used the UCSC tool `bigWigAverageOverBed` to compute the average signal across each cRE. For H3K4me3 and H3K27ac we added +/- 500 to both ends of the rDHS when computing the signal. Using a custom Python script, we calculated the log of these signals and computed a Z-score for each rDHS compared with all other rDHS signals within the cell type. rDHSs with a raw signal of 0 were assigned a Z-score of -10 due to inconsistencies with pseudocounts.

Classification of cREs

To classify rDHSs as cREs we used the classifications trees in Figures 2.12 and 2.13. Based on maximum DNase, H3K4me3, H3K27ac, and CTCF Z-scores across all cell types as well as distance from GENCODEV19 annotated TSS, rDHSs can be classified as PLS, ELS, or CTCF-only cREs. Because both promoters and enhancers can have high levels of H3K4me3 and H3K27ac, the classification tree first splits based on whether a rDHS is proximal (+/- 2 kb) to a TSS. rDHSs that are not classified as cREs are discarded. To classify cRE activity in a particular cell type we used the classification scheme in Figure 2.18 relying on the Z-scores of genomic signals in the cell type of interest.
Saturation of cREs within each group with increasing numbers of cell types

To determine the relative saturation of cREs with promoter-like, enhancer-like or CTCF-only signatures, we used 21 cell types with all four core genomic marks (DNase, H3K4me3, H3K27ac, and CTCF). For \(X \) in the range of 1–21, we randomly selected \(X \) cell types 100 times. For each selection, we calculated the number of unique cREs in each of the three groups—promoter-like, enhancer-like, and CTCF-only signatures. Then, using the R script adapted from Steven Wilder and Ian Dunham\(^{25}\), we calculated the cREs in each group to be at 95% saturation for each curve using a Weibull distribution.

Overlap of cREs with ChromHMM states

To compared PLS and ELS cREs with chromatin states called by chromHMM, we first combined similar chromHMM states to generate seven broad states (Table 2.9). For human, we analyzed chromHMM regions for GM12878 cells from the ENCODE 2012 paper (ENCODE experiment accession ENCF001TDH). We selected all PLS or ELS cREs and ranked them by H3K4me3 and H3K27ac Z-scores, respectively. Then, we calculated the percentage of cREs in each 1 k bin that overlapped regions with each chromHMM state. Each cRE was assigned to only one chromHMM state—the state that overlapped the largest number of basepairs. For mouse, we analyzed 11 tissue–time-point combinations (from e11.5 and e14.5) for which we had DNase, H3K4me3, and H3K27ac data. We overlapped cREs with promoter-like
or enhancer-like signatures with chromHMM states derived from eight histone modifications in the same tissue–time-point.

Clustering cell types on the basis of their cRE activities

We performed hierarchical clustering on all primary cells and tissues with DNase-seq data by classifying the DNase Z-score at each cRE as either high (Z-score > 1.64) or low within each cell type. We also performed the same analysis using the Z-scores of H3K27ac and H3K4me3. We clustered tissues and primary cells separately because each tissue comprises multiple types of primary cells with different embryonic origins. For each cell or tissue type, we selected all cREs with a Z-score > 1.64 for each epigenomic mark and then calculated the Jaccard index for pairwise tissue or cell type comparisons. We clustered the tissues according to the pairwise Jaccard index using the hclust function in R.

Enrichment of GWAS variants in cREs

We curated studies from the NHGRI-EBI Catalog (Table 2.11) that were performed on European populations and used minor allele frequencies (MAF) and linkage disequilibrium (LD) of these populations to generate control SNPs. Because MAF and LD differ across populations, we limited the scope of our initial analysis to the populations with the most data. We used CEU-specific data of linkage disequilibrium (LD; correlation coefficient $r^2>0.7$) to perform statistical tests. For each study, we generated a matching set of control SNPs as follows:
for each SNP in the study ($p < 1E-6$) we selected a SNP on Illumina and Affymetrix SNP ChIPs that fell within the same MAF quartile and the same distance to TSS quartile. We repeated this process 100 times, generating 100 random control SNPs for each GWAS SNP. Then, for both GWAS and control SNPs, we retrieved all SNPs in high linkage disequilibrium (LD $r^2 > 0.7$), creating LD groups. To assess whether the cREs in a cell type were enriched in the GWAS SNPs, we intersected GWAS and control LD groups with cREs with an H3K27ac Z-score > 1.64 in the cell type. To avoid over counting, we pruned the overlaps, counting each LD group once per cell type. We modified the Uncovering Enrichment through Simulation (UES) method101 with Fisher's exact tests for performing statistical testing. We calculated enrichment for overlapping cREs, comparing the GWAS LD groups with the 100 matched controls. Finally, we applied an FDR of 5% to each study.

SCREEN

SCREEN was engineered by Michael Purcaro and Henry Pratt of Zhiping Weng's lab. Their code is available at https://github.com/weng-lab/SCREEN.

Scripts

Scripts for this analysis can be found on GitHub: https://github.com/Jill-Moore/Dissertation/tree/master/Chapter-II/
CHAPTER III: Systematic evaluation of enhancer target
gene prediction methods

PREFACE

Results from this chapter were adapted from

ENCODE Consortium. Cherry, Myers, Bing Ren, Graveley, Stamatoyannopoulos,
Gerstein, Pennacchio, Gingeras, Snyder, Bernstein, Wold, Hardison, and Weng.
"ENCODE Phase III: Building an Encyclopaedia of candidate Regulatory
Elements for Human and Mouse,"

which is currently under review at Nature and from

Moore, Garnick, and Weng. "A Systematic Evaluation of Enhancer Target Gene
Prediction Methods using the ENCODE Encyclopedia."

which is currently in preparation. I performed all analysis and generated all the
figures that were used in the chapter.

ABSTRACT

To interpret the biological function of an enhancer, we need to determine
the genes it regulates. While many enhancers target nearby genes, there are
examples of enhancers regulating genes up to 1 Mb away. Many groups have
developed computational methods for linking enhancers with target genes, yet
these methods are trained and tested on different enhancer-gene links, making
comparisons between methods difficult. To systematically and accurately evaluate
enhancer-gene linking methods, we developed a benchmark of chromatin and
genetic interaction datasets. In this benchmark, we used Hi-C, ChIA-PET and eQTL links to generate positive and negative ELS-gene pairs that can be used for training, validating and testing computational methods. Using this benchmark, we evaluated correlation based methods and found that they had low overall performance and did not outperform ranking genes by distance. We then developed a Random Forest model which outperformed unsupervised methods and was applicable across cell types. We used our Random Forest model to predict genes linked with a variant associated with multiple sclerosis identifying a novel GWAS risk gene. Our results establish a pipeline for generating a benchmark of ELS-gene pairs, which can be used to evaluate published target gene methods.

INTRODUCTION

Chapter II of this thesis detailed the Registry of candidate Regulatory elements (cREs), a collection of putative regulatory regions in human and mouse. The majority, 75%, of these cREs have enhancer-like signatures (i.e. high DNase and H3K27ac signals) and are distal from TSSs. To interpret the biological function of these cREs, we need to determine the genes they regulate. While many enhancers target nearby genes, there are examples of enhancers regulating genes up to 1 Mb away² so simply assigning an enhancer to its nearest gene may not be an ideal method. Therefore, labs have developed experimental and computational methods for investigating enhancer-gene interactions.
Experimental assays such as Hi-C and ChIA-PET survey physical interactions between genomic regions62,66. By overlapping the anchors of these interactions with annotated enhancers and promoters, we can infer regulatory connections. However, these assays are expensive to perform and have only been conducted with high resolution in a small number of cell types. Therefore, we need to rely on computational methods to more broadly predict enhancer-gene interactions.

Previous work by members of the ENCODE consortium demonstrated that they could identify the target genes of enhancers by correlating enhancer activity with transcriptional activity. Correlation based methods rely on the hypothesis that enhancers are active in the same cell types in which their target gene is expressed. These labs used DNase signal6 or H3K4me170 signal to estimate enhancer activity and DNase signal6,68, POLII70 signal or gene expression69 to estimate transcriptional activity. While these methods identified biologically relevant enhancer-gene links, they have yet to be systematically analyzed to evaluate their overall precision and recall.

Other target gene prediction methods such as, IM-PET72, PETmodule73 and TargetFinder74, use supervised machine learning algorithms to predict enhancer-gene links utilizing features such as epigenomic signal72-74, gene ontology terms73, and conservation72. While these methods have overall high performance they require known enhancer-gene pairs for training. These methods use Hi-C and ChIA-PET data as their gold standards but since each method uses data from
different studies, as well as different collections of enhancers, it is difficult to compare the performance of each model.

In order to determine the best method for linking ELS cREs with potential target genes, we developed a collection of benchmark datasets using the Registry of cREs and experimentally derived enhancer-gene interactions. We then tested common methods of linking enhancers with genes such as using distance and signal correlation. Ultimately, we developed a high performing Random Forest approach that can be applied across cell types to predict target genes. Using this Random Forest model, we predicted targets genes for a SNP associated with multiple sclerosis and identified a novel GWAS risk gene. Our analysis lays the groundwork for future comparisons of gene-enhancer linking methods and a push towards standardizing the comparison of computational models.

RESULTS

Curating Benchmark Datasets

In order to compare methods of predicting target genes, we curated a collection of potential enhancer-gene interactions. We focused on two types of data: three-dimensional chromatin interactions (e.g. ChIA-PET and Hi-C data) and genetic interactions (e.g. eQTLs). We chose to use both types of data because they complement each other's limitations. For example, ChIA-PET reports proximal physical interactions between two genomic regions, but does not imply regulation of one region by another. eQTLs, on the other hand, suggest a
functional relationship between a SNP and gene, but do not imply direct regulation by the SNP. Therefore, by testing methods on both types of data we can investigate what features are more indicative of physical interactions versus genetic interactions.

We decided to create our initial benchmark using interaction data surveyed in GM12878 and lymphoblastoid cell lines due to the large amount of genomic data that has been generated by the ENCODE project and the biological community. For chromatin interaction data, we selected ChIA-PET and Hi-C datasets from the ENCODE DCC and the gene expression omnibus (GEO). During the second phase of the ENCODE project, the Snyder lab generated ChIA-PET data in GM12878 targeting RAD21, a component of the cohesion complex. We supplemented this data with ChIA-PET datasets generated by the Ruan lab targeting POLII and CTCF. For Hi-C, we included links from promoter capture Hi-C (CHi-C) data generated by the Osborne lab and high resolution Hi-C loops generated by the Aiden lab. For genetic interaction data, we included eQTLs reported by the Dermitzakis lab and the GTEx consortium in lymphoblastoid cell lines.

To generate candidate ELS-gene pairs from these datasets, we required one end of a link to overlap an ELS cRE and the other end to fall within 2 kb of a GENCODE annotated TSS (Figure 3.1). To correctly identify the target gene, we excluded ambiguous links that connected to multiple gene TSSs. For eQTLs, we linked a cRE to a gene if it directly overlapped the eQTL SNP.
negative set, for cREs with positive links, we selected all genes with TSSs within a window that were not a part of a positive or ambiguous pair. For each dataset, we determined the size of this window by calculating the 95th percentile of distance between positive ELS-gene pairs (Figure 3.2). This window ranged from +/- 170 kb for POLII ChIA-PET to +/- 983 kb for Aiden Hi-C links (Table 3.1). Using this method, we generated thousands of GM12878 specific ELS-gene pairs. For each dataset, we split pairs into three groups with 50% of pairs forming the training set, 25% forming the validation set, and the remaining 25% forming the test set. Therefore, this benchmark can be used to train, validate, and test any target gene prediction method.

Comparing Benchmark Datasets

To determine the similarity of the benchmark datasets, we calculated the overlap coefficient for the number of positive ELS-gene pairs between each dataset. When we clustered the datasets, we observed two large groups, one for genetic interaction data and the second for chromatin interaction data (Figure 3.3). Within the second cluster, we observed two sub-clusters with ChIA-pet and Hi-C datasets aggregating together. We also observed that POLII ChIA-PET and Osborne CHi-C data had a higher overlap with eQTL datasets compared to Aiden Hi-C, CTCF ChIA-PET or RAD21 ChIA-PET (max overlap coefficient = 0.14 vs. max overlap coefficient = 0.03) though the overall overlap was still very low.
For each benchmark dataset, we also analyzed the activity and expression levels of the ELS-gene pairs. POLII ChIA-PET cREs tended to have higher levels of H3K27ac and H3K4me3 signals (p<4.2E-8, p<8.1E-8) compared to the other benchmarks, while RAD21 ChIA-PET cREs had lower levels (p<3.6E-9, p<2.9E-3) (Figure 3.4a,b). We did not observe notable differences for these signals between the other datasets. For CTCF, however, there were differences in the distributions of signal for ELS cREs. For RAD21 ChIA-PET, CTCF ChIA-PET and Aiden Hi-C pairs, there were populations of ELS cREs with very high levels of CTCF signal (Figure 3.4c). For RAD21 ChIA-PET this was a large group of about 79% of total cREs; for CTCF ChIA-PET and Aiden Hi-C, these groups were smaller, containing 35% and 20% of cREs respectively. This enrichment for CTCF signal is biologically consistent with these chromatin interaction experiments. CTCF was the target for the CTCF ChIA-PET experiment, RAD21 is known to co-localize with CTCF and the Aiden lab reported that their links are anchored at CTCF binding sites. When we analyzed gene expression, we found that genes in the POLII ChIA-PET pairs had higher expression levels than other datasets (median 15.3 TPM) while genes in the Osborne CHi-C pairs had low expression levels (median of 0.2 TPM) (Figure 3.4d). This suggests that some of these CHi-C pairs may be false positives or are links for ELS cREs that have yet to regulate gene expression.

Overall, these results suggest that these benchmark datasets capture different types of genomic interactions and that to accurately determine the
performance of a target gene method, we should test it using all of these benchmark datasets.

Ranking by Distance Outperforms Correlation Based Methods

We began by evaluating the simplest method of enhancer target gene prediction: selecting the closest gene by linear distance. We tested this method using TSSs for all annotated genes and only TSSs from protein coding genes by calculating the precision and recall for each benchmark dataset. For all datasets except RAD21 ChIA-PET, we observed higher performance using TSSs for protein coding genes, rather than all genes. POLII ChIA-PET links had the highest performance with a precision of 0.66 and recall of 0.46 for protein coding gene TSSs (Figure 3.5). eQTLs and other ChIA-PET links had moderate performance and the Hi-C datasets had the lowest performance. We then tested whether we could predict links simply by ranking genes by their linear distance from the ELS cRE. Since this method was independent of cell type and did not require any genomic data, we considered it our baseline method. For each benchmark dataset, we evaluated performance by calculating the areas under the receiver operating characteristic (ROC) and precision recall (PR) curves focusing primarily on the area under PR (AUPR) curves due to class imbalance in the benchmark datasets (Table 3.2). As expected POLII ChIA-pet pairs had the highest AUPR (0.41) and Aiden Hi-C pairs had the lowest (0.06) (Figure 3.6 and 3.7, Table 3.2b). We compared all subsequent methods to these baseline results.
Our next step was to evaluate correlation based approaches. Adapting methods from Thurman et al., we calculated the correlation coefficient for average signal across the ELS cRE and the TSS across hundreds of cell types (462 for DNase and 136 for H3K27ac). We tested this method using different epigenomic signals (e.g. DNase vs H3K27ac), signal normalization techniques (e.g. Raw vs Z-score) and correlation methods (e.g. Pearson vs Spearman). For all benchmark datasets, the best performing method was calculating the Spearman correlation of Z-score normalized DNase signals (Table 3.2). However, for all of the benchmark datasets except RAD21 ChIA-PET, this method did not outperform our baseline model (Figure 3.6 and 3.7). For RAD21 ChIA-PET links, though we achieved a 57% improvement using correlation over the baseline method (AUPR 0.18 vs 0.11), the overall performance was still poor. To understand why the correlation methods had such low AUPR values, we analyzed specific ELS-gene pairs. We found that there were some pairs that did have high correlation coefficients. For example, the highest ranked POLII ChIA-PET ELS-gene pair was EH37E0572541-WNT10A, which had a Spearman correlation coefficient of 0.82 (Figure 3.8a,b). Both WNT10A’s promoter and EH37E0572541 have high DNase signal in over a hundred of DNase experiments suggesting that EH37E0572541 regulates WNT10A in many types of cells. This example, however, is in the minority. There are many other cases where the DNase correlation for the ELS-gene pair is low. For example, ELS cRE EH37E0853090 is paired with AKIRIN2 by both a POLII ChIA-PET link and a GTEx eQTL. However, EH37E0438944 and
AKIRIN2 have low DNase correlation (p=0.06) (Figure 3.8c,d). AKIRIN2 is expressed across many cell types and has high DNase activity (PLS cRE DNase Z-score > 1.64) in all of the 462 surveyed cell types. EH37E0365491, on the other hand, only has high DNase signal (Z-score > 1.64) in six cell types, four of which are lymphoblastoid or lymphoma cell lines. Therefore, we predict that AKIRIN2 is only regulated by EH37E0853090 in B cell related cell types and that because of this cell type specific regulation, we are unable to identify this ELS-gene pair using correlation. In general, we hypothesized that the low overall performance for correlation based methods is because enhancers are much more likely to be cell type specific than promoters (Chapter II, Figure 2.17). Therefore, while correlation methods are simple to implement because they do not require cell-type specific data, they cannot identify cell-type specific ELS-gene pairs, such as EH37E0853090-AKIRIN2, which results in worse performance compared to our baseline method.

When we compared the shape of the PR curves for correlation with our baseline method, we observed that correlation methods tended to have higher AUPR for the top ranked ELS-gene pairs whereas distance had better performance with the lower ranked pairs. We decided to combine the methods by taking the averaging rank of the two different schemes. For all benchmark datasets except eQTLs, this resulted in an average increased AUPR of 38% (Figures 3.6 & 3.7, Table 3.3). Our baseline method remained the best performing method for both GTEx and Dermitzakis eQTL pairs. In conclusion, while correlation based
methods did not outperform selecting genes using distance, we observed an increase in performance when we combined the two features.

Random Forest Models Outperform Unsupervised Methods

Because simply combining distance and DNase correlation resulted in higher performance than our baseline model, we sought to develop a more sophisticated computational method that could combine multiple features to predict ELS-gene links. We decided to utilize the Random Forest algorithm \(^{130}\), a supervised machine learning approach that is able to handle class imbalanced datasets (i.e. different number of positive and negatives), and used two approaches for developing models (Figure 3.9). First, we focused on developing models that can be applied across many cell and tissue types. These models would only require cell type specific DNase and/or H3K27ac data along with cell type independent features such as signal correlation, sequence features (k-mers), and distance (see methods for full feature list). Second, we focused on developing the best performing model in GM12878 using all available data. For this model, we included gene expression, TF and histone modification ChIP-seq, and RAMPAGE data. This model may only be able to be applied across a few cell types (e.g. GM12878, K562, H1-hESC) but may indicate which types of experiments we should prioritize in the future.

Starting with the DNase and H3K27ac only models, we found these relatively simple models had higher AUROC and AUPR compared to our average
rank method for all benchmarks (Figure 3.10 and 3.11, Table 3.4). Including both signals as features resulted in the best performance, but models using only one of the signals (for cell types with just one datatype) still had comparable performance. We analyzed feature importance for each model and found that distance was consistently ranked the most important feature (Table 3.4). The next most important features were average DNase and H3K27ac signal around the gene's TSS suggesting that activity at the gene's promoter is indicative of ELS-gene links.

We then decided to expand on this basic model by adding in other features such as expression, TF ChIP-seq signal and other histone modifications (Table 3.3). We found that expression universally improved performance, with AUPR for the eQTL benchmarks having the highest increases (13% and 9%) (Figures 3.10 and 3.11). This is consistent with the methodology of defining eQTLs as the gene must be expressed in LCLs to be detected (Table 3.5). When we added CTCF signal to this expression model, considering both signal at the ELS cRE and TSS, AUPR increase 13% for CTCF ChIA-PET and 18% for RAD21 ChIA-PET. When we analyzed feature importance for this model, TSS CTCF signal was the top ranked feature for RAD21 ChIA-PET and the second ranked feature for CTCF ChIA-PET after distance (Table 3.6). For Aiden Hi-C, we only observed an increase of 2% for including CTCF and TSS CTCF was the fifth most important feature after distance and TSS DNase, H3K27ac, and conservation signals. For all three benchmarks, CTCF-signal at the enhancers was not even one of the top ten most important features. When we added POLII, EP300, RAMPAGE, or
additional histone modification signals to our expression model, we did not observe dramatic increases in performance (Table 3.7). Our comprehensive model, which includes all of these features only had an average improvement of 0.5% over the expression + CTCF model.

Our Random Forest Model Can be Applied Across Cell Types

As we do not have chromatin or genetic interaction data for the majority of cell types covered by the Registry of cREs, if we were to apply our method to predict cell type specific ELS-gene pairs, we would need to train our model in a cell type with benchmark data. In order to evaluate the versatility of our models across different cell types, we tested our basic RF model using POLII and CTCF ChIA-PET data from HeLa cells generated by the Ruan Lab\(^{67}\). We compared performance of models trained and validated with data from the cell type versus models trained and validated in different cell types. We also compared performance to our best performing unsupervised method: taking the average rank of distance and DNase correlation. We found that while the cross-cell type models had lower AUPR than the same cell type models, they outperformed the average rank method with an average increase in AUPR of 25% (Figure 3.12, Table 3.10). The POLII ChIA-PET datasets retained higher performance across cell types compared to the CTCF ChIA-PET datasets. We hypothesize this is because distance is a more important feature in the POLII ChIA-PET models and is truly cell type independent. DNase and H3K27ac data quality can vary between cell
types and though we normalized the signals, these biases can lower performance. Therefore, while we aim to improve the cross cell type application of our model, our random forest model still outperformed our best unsupervised approach.

Our Random Forest Model Identifies a New GWAS Gene for Multiple Sclerosis

Since our expression random forest model had high performance across all benchmark datasets without requiring multiple features, we used this model to predict ELS-gene pairs in GM12878 cells. Our previous GWAS enrichment analysis (Chapter II) demonstrated that variants associated with multiple sclerosis are enriched in cREs active in GM12878, which is in agreement with previously findings by the Stamatoyannopoulos lab102. Multiple sclerosis is a disease in which the body's immune system attacks the myelin sheaths of axons, resulting in neurological deficits and deterioration131. The role for B cells in the pathology of multiple sclerosis has recently been recognized103 with clinical trials targeting B cell antigens reporting success for slowing disease progression104. Therefore, identifying potential target genes in GM12878 may present new therapeutic targets.

One SNP of particular interest was rs1250568, which is in LD with two SNPs associated with multiple sclerosis132,133. Rs1250568 overlaps ELS cRE EH37E0182314 which has high H3K27ac and DNase signal in blood cells like GM12878. Rs1250568 also overlaps both a ChIP-seq peak and motif site for ELF1
(Figure 3.13a). ELF1 is primarily expressed in lymphoid cells and is involved in the IL-2 and IL-23 immune response pathways, both of which have previously been implicated in multiple sclerosis134,135. Additionally deltaSVM, a computational method that predicts the functional impact of variants using DNA sequence k-mers, predicted that rs1250568 is likely a causal SNP136. Because rs1250568 may disrupt ELF1 binding, thus affecting gene regulation, we aimed to identify genes that interact with EH37E0182314.

Using our expression Random Forest model trained on POLII ChIA-PET pairs, we predicted genes links using a probability cutoff of 0.5 (precision=0.80, recall=0.59). Our model reported two linked genes: ZMIZ1 and PPIF (Figure 3.13b). These predictions are also supported by POLII ChIA-PET links that were not a part of our training set (Figure 3.13c). ZMIZ1 is involved with androgen receptor signaling pathway and is expressed at lower levels in patients with multiple sclerosis137. Due to its proximity to the GWAS lead SNPs, ZMIZ1 was reported as the risk gene in both GWAS132,133. The other linked gene, PPIF (Cyclophilin D), is located downstream of EH37E0182314 and encodes a mitochondrial permeability transition pore protein. While PPIF was not previously reported as a MS susceptibility gene by GWAS, evidence demonstrates that its dysregulation likely plays a role in the onset of multiple sclerosis. For example Forte et al. demonstrated that knocking out Ppif in mice with experimental autoimmune encephalomyelitis (EAE, a mouse disease model for multiple sclerosis) protected spinal cord axons, enabling the knock out mice to partially
recover from EAE138. These findings are supported by recent work from Warne \textit{et al.} who demonstrated that treating EAE mice with a Ppif inhibitor protects axons and improves motor ability139. Therefore, our comprehensive Random Forest model is able to predict biologically significant enhancer-gene links which can be used to better understand disease etiology and identify potential therapeutic targets.

\textbf{DISCUSSION}

In this chapter, we evaluated methods for linking enhancers with putative target genes. We curated a benchmark of ELS-gene pairs using chromatin and genetic interaction datasets and then used this benchmark to test common methods of target gene prediction. We found that overall, correlation of epigenomic signal across cell types is not an ideal method for predicting ELS-gene pairs. Though we observed that some ELS-gene pairs such as EH37E0572541-\textit{WNT10A} have high correlation, the overall performance of these methods are low. We demonstrated that one reason for low performance is that with correlation methods we are unable to detect cell type specific regulation, which is the case for EH37E0853090-\textit{AKIRIN2}. Another possible reason for poor performance is we survey signal across a biased set of cell and tissues types. For example, we have many more types of blood cells than lung or heart tissue samples. This imbalance could dramatically alter the results depending on the gene’s expression patterns. In the future, we could curate a set of recommended cell types to use for correlation
based methods (e.g., equal representation from different tissues of origin) but this still does address the problem of cell type specificity. Our results, however, do not discredit all correlation based methods. For example, correlation may be a much more powerful tool when analyzing activity and expression across differentiation or development. For example, in Chapter IV we link cREs with target genes using correlation of signal activity and gene expression within the same tissues across embryonic development. Our results simply suggest that using correlation across a wide range of different cell and tissue types is less than ideal.

We also demonstrated that even basic Random Forest Models, with few cell type specific features had a considerable improvement in performance over unsupervised methods. Adding other features such as expression and CTCF signal improved performance for specific benchmarks, but a comprehensive model including all features did not result in a much higher AUPR. Since simply adding more types of epigenomic signal did not drastically improve performance, moving forward we will integrate different types of features. For example, the Aiden lab reported enrichment for CTCF motifs at the anchors of their Hi-C loops so we plan to include distance to nearest CTCF motif site in our model. While our Random Forest model had high performance when trained and validated on the same cell type, we were surprised of its lower performance when validated across cell types. With models dependent on cell type specific signals, we need to be aware of differences in data quality and biases in signal. For our analysis used Z-score normalized signals to try and alleviate this problem but we may need to
investigate alternative methods of normalization. It is also possible fundamental differences between cell types may causing this lower performance. For example, GM12878 and HeLa cells are histologically very different from one another and may have different numbers of ubiquitous or cell type specific cREs. We plan on continuing to modify our models so that they are applicable across cell types perhaps implementing new normalization methods or using a ranking metric. Our next step will be to compare our Random Forest model with other target gene prediction methods such as PET-Module, IM-PET and Target Finder. These models have all been trained and evaluated using different enhancer-gene links so our benchmark will allow for an unbiased comparison between the methods.

Finally, our analysis also revealed key differences between the benchmark interaction datasets. In general, there is little overlap between these datasets and the ELS-genes pairs have different features. For example, CTCF ChIA-PET, RAD21-ChIA-PET and Aiden Hi-C ELS cREs have higher CTCF signal and their links are better predicted when CTCF is included in the Random Forest model. Additionally, the Osborne CHi-C data link ELS cREs with genes with low expression. This suggests that either many of these interactions are random noise or CHi-C captures new interactions that have yet to result in gene expression. Both cases warrant further investigation. In the future, we can also investigate features that differentiate between types of links. For example, the Ruan lab reported differences between the gene expression patterns of genes at the anchors of their CTCF and POLII ChIA-PET with the CTCF genes having ubiquitous expression
and POLII genes having cell type specific expression. We can incorporate these features into our model to predict what types of interactions link the ELS-gene pair.

During the next phase of the ENCODE project, the Ruan labs and Aiden labs plan on generating new ChIA-PET and Hi-C datasets in cell types relevant to the Registry of cREs. Therefore, establishing these methods for creating benchmarks will aid in the future evaluation of target gene methods.
Figure 3.1 | Method for curating ELS-Gene pairs. To include a link in one of our benchmark datasets, it must overlap a ELS cRE active GM12878 (yellow) and the proximal region surrounding a TSS (+/- 2 kb). Links that overlap multiple TSSs are not included in either the positive or negative set of links (black listed). For the negative set we included all genes with a TSS within a +/- distance based on the 95th percentile.
Figure 3.2 | Distance distributions for benchmark datasets.

a, Distribution of distances between ELS cREs and gene TSSs in benchmark links.

b, Lines indicating 95th percentile of distance for each benchmark dataset.
Figure 3.3 | Overlap of benchmark datasets. Heatmap displaying overlap coefficients for each pairwise comparison of benchmark datasets. Benchmark datasets cluster by type of dataset (i.e. ChIA-pET, Hi-C, and eQTLs).
Figure 3.4 | Activity of ELS cREs and expression of genes in benchmark datasets. a, H3K27ac b, H3K4me3 and c, CTCF Z-scores in GM12878 for ELS cREs in benchmark datasets. d, Gene expression in TPM for genes in benchmark datasets
Figure 3.5 | Performance for closest gene method. Precision (X-axis) and recall (Y-axis) for each benchmark dataset using the closest gen method. Results from using all genes are indicated by circles. Results from using protein coding genes are indicated by triangles.
Figure 3.6 | PR curves for unsupervised target gene prediction methods: ChIA-PET datasets. Precision recall curves for enhancer gene pairs ranked by distance, DNase and H3K27ac Z-score Spearman correlation, and the average rank of DNase correlation and distance for a, POLII, b, CTCF, and c, RAD21 ChIA-PET datasets.
Figure 3.7 | PR curves for unsupervised target gene prediction methods: eQTL and Hi-C datasets. Precision recall curves for enhancer gene pairs ranked by distance, DNase and H3K27ac Z-score Spearman correlation, and the average rank of DNase correlation and distance for a) GTEx eQTLs, b) Dermitazikis lab eQTL, c) Aiden lab Hi-C and d, Osborne lab CHi-C datasets.
Figure 3.8 | Correlation of DNase signal between ELS-gene pairs.

a, ELS cRE EH37E0572541 *WNT10A* are paired by a POLII ChIA-PET link. EH37E0572541 and the promoter of *WNT10A* DNase signal correlation coefficient of 0.82.

b, ELS cRE EH37E0853090 and *AKIRIN2* are paired by a POLII ChIA-PET link and GTEx eQTL. EH37E0853090 and the promoter of *AKIRIN2* DNase signal correlation coefficient of 0.06.
Figure 3.9 | Proposed random forest models for predicting ELS-gene pairs. We propose developing two models. The minimal model will only cell type specific DNase and H3K27ac as well as cell type agnostic features such as conservation and distance. With the comprehensive model, we will integrate as many data types as possible to generate the best performing model.
Figure 3.10 | PR curves for Random Forest model predicting ELS-Gene links: ChIA-PET datasets. Precision recall curves for the average rank of DNase correlation and distance, and basic, expression, CTCF, and comprehensive Random Forest models for a, POLII, b, CTCF, and c, RAD21 ChIA-PET datasets.
Figure 3.11 | PR curves for Random Forest model predicting ELS-Gene links: eQTL and Hi-C datasets. Precision recall curves for the average rank of DNase correlation and distance, and basic, expression, CTCF, and comprehensive Random Forest models for a) GTEx eQTLs, b) Dermitazkis lab eQTL, c) Aiden lab Hi-C and d) Osborne lab CHi-C datasets.
Figure 3.12 | PR curves for Random Forest models trained and validated in different cell types. Precision recall curves for the average rank of DNase correlation and distance, and Random Forest models trained using GM12878 data or HeLa data for ELS-gene pairs from a, POLII ChIA-PET from GM12878, b, POLII ChIA-PET from HeLa, c, CTCF ChIA-PET from GM12878, and d, CTCF ChIA-PET from HeLa.
Figure 3.13 | Predicting genes linked with MS variant rs1250568. a, MS variant rs1250568 overlaps ELS cRE EH37E0182314 which has high DNase (green) and H3K27ac (yellow) signal in GM12878. Rs1250568 overlaps a ELF1 ChIP-seq peak (blue) and ELF motif site. b, Results from comprehensive Random Forest model where bars indicated the probability of each gene being linked with EH37E0182314. c, Genome browser view of the locus showing POLII ChIA-PET links validating the predicting links between rs1250568 and ZMIZ1 and PPIF.
Table 3.1 | Benchmark Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of Enhancer-Gene Pairs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive Set</td>
<td>Negative Set</td>
</tr>
<tr>
<td>POLII ChIA-PET^67</td>
<td>12,118</td>
<td>75,380</td>
</tr>
<tr>
<td>CTCF ChIA-PET^67</td>
<td>4,354</td>
<td>72,070</td>
</tr>
<tr>
<td>RAD21 ChIA-PET</td>
<td>198</td>
<td>3,979</td>
</tr>
<tr>
<td>Promoter Capture Hi-C^65</td>
<td>48,638</td>
<td>328,724</td>
</tr>
<tr>
<td>High Resolution Hi-C^63</td>
<td>1,132</td>
<td>43,472</td>
</tr>
<tr>
<td>GTEX eQTLs</td>
<td>1,162</td>
<td>24,082</td>
</tr>
<tr>
<td>Dermitazakis (2013) eQTLs^11d</td>
<td>2,145</td>
<td>30,223</td>
</tr>
<tr>
<td></td>
<td>H3K27ac</td>
<td>DNase</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Pearson</td>
<td>Spearman</td>
</tr>
<tr>
<td>Raw</td>
<td>Z-score</td>
<td>Raw</td>
</tr>
<tr>
<td>H3K27ac</td>
<td>0.5837</td>
<td>0.6234</td>
</tr>
<tr>
<td></td>
<td>0.6082</td>
<td>0.6149</td>
</tr>
<tr>
<td></td>
<td>0.5897</td>
<td>0.6328</td>
</tr>
<tr>
<td></td>
<td>0.5511</td>
<td>0.5919</td>
</tr>
<tr>
<td></td>
<td>0.5920</td>
<td>0.6346</td>
</tr>
<tr>
<td>DNase</td>
<td>0.0833</td>
<td>0.0806</td>
</tr>
<tr>
<td></td>
<td>0.6265</td>
<td>0.6795</td>
</tr>
<tr>
<td>GTEx eQTLs</td>
<td>0.0641</td>
<td>0.0657</td>
</tr>
<tr>
<td></td>
<td>0.0969</td>
<td>0.1053</td>
</tr>
<tr>
<td>Dermitzakis eQTL</td>
<td>0.1579</td>
<td>0.1590</td>
</tr>
<tr>
<td>Osborne CHi-C</td>
<td>0.0321</td>
<td>0.0342</td>
</tr>
<tr>
<td>Aiden HiC</td>
<td>0.0960</td>
<td>0.1007</td>
</tr>
<tr>
<td>Average</td>
<td>0.5849</td>
<td>0.6195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H3K27ac</th>
<th>DNase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson</td>
<td>Spearman</td>
</tr>
<tr>
<td>Raw</td>
<td>Z-score</td>
<td>Raw</td>
</tr>
<tr>
<td>H3K27ac</td>
<td>0.1761</td>
<td>0.1891</td>
</tr>
<tr>
<td></td>
<td>0.0833</td>
<td>0.0806</td>
</tr>
<tr>
<td></td>
<td>0.0641</td>
<td>0.0657</td>
</tr>
<tr>
<td></td>
<td>0.0597</td>
<td>0.0630</td>
</tr>
<tr>
<td></td>
<td>0.1579</td>
<td>0.1590</td>
</tr>
<tr>
<td></td>
<td>0.0321</td>
<td>0.0342</td>
</tr>
<tr>
<td>Average</td>
<td>0.0960</td>
<td>0.1007</td>
</tr>
</tbody>
</table>
Table 3.3a | AUROC for Random Forest models

<table>
<thead>
<tr>
<th>Gene Expression</th>
<th>DNase</th>
<th>H3K27ac</th>
<th>Basic</th>
<th>Basic</th>
<th>CTCF</th>
<th>POLII</th>
<th>p300</th>
<th>RAMPAGE</th>
<th>His Mods</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLII ChIA-PET</td>
<td>0.9285</td>
<td>0.9327</td>
<td>0.9348</td>
<td>0.9396</td>
<td>0.9409</td>
<td>0.9415</td>
<td>0.9417</td>
<td>0.9411</td>
<td>0.9464</td>
<td>0.9487</td>
</tr>
<tr>
<td>CTCF ChIA-PET</td>
<td>0.8930</td>
<td>0.8934</td>
<td>0.8967</td>
<td>0.9022</td>
<td>0.9158</td>
<td>0.9064</td>
<td>0.9046</td>
<td>0.9039</td>
<td>0.9111</td>
<td>0.9227</td>
</tr>
<tr>
<td>RAD21 ChIA-PET</td>
<td>0.7798</td>
<td>0.7847</td>
<td>0.7841</td>
<td>0.7762</td>
<td>0.8184</td>
<td>0.7777</td>
<td>0.7748</td>
<td>0.7797</td>
<td>0.7676</td>
<td>0.8037</td>
</tr>
<tr>
<td>GTEx eQTLs</td>
<td>0.9289</td>
<td>0.9292</td>
<td>0.9297</td>
<td>0.9401</td>
<td>0.9416</td>
<td>0.9419</td>
<td>0.9401</td>
<td>0.9405</td>
<td>0.9432</td>
<td>0.9447</td>
</tr>
<tr>
<td>Dermitzakis eQTL</td>
<td>0.8970</td>
<td>0.8984</td>
<td>0.9043</td>
<td>0.9221</td>
<td>0.9232</td>
<td>0.9241</td>
<td>0.9251</td>
<td>0.9238</td>
<td>0.9312</td>
<td>0.9337</td>
</tr>
<tr>
<td>Osborne CHiC</td>
<td>0.8263</td>
<td>0.8330</td>
<td>0.8488</td>
<td>0.8521</td>
<td>0.8536</td>
<td>0.8522</td>
<td>0.8507</td>
<td>0.8731</td>
<td>0.8736</td>
<td>0.8736</td>
</tr>
<tr>
<td>Aiden HiC</td>
<td>0.9216</td>
<td>0.9218</td>
<td>0.9220</td>
<td>0.9270</td>
<td>0.9285</td>
<td>0.9263</td>
<td>0.9247</td>
<td>0.9256</td>
<td>0.9310</td>
<td>0.9302</td>
</tr>
<tr>
<td>Average</td>
<td>0.8915</td>
<td>0.8838</td>
<td>0.8864</td>
<td>0.8937</td>
<td>0.9029</td>
<td>0.8959</td>
<td>0.8948</td>
<td>0.8950</td>
<td>0.9005</td>
<td>0.9082</td>
</tr>
</tbody>
</table>

Table 3.3b | AUPR for Random Forest models

<table>
<thead>
<tr>
<th>Gene Expression</th>
<th>DNase</th>
<th>H3K27ac</th>
<th>Basic</th>
<th>Basic</th>
<th>CTCF</th>
<th>POLII</th>
<th>p300</th>
<th>RAMPAGE</th>
<th>His Mods</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLII ChIA-PET</td>
<td>0.7353</td>
<td>0.7466</td>
<td>0.7557</td>
<td>0.7718</td>
<td>0.7761</td>
<td>0.7778</td>
<td>0.7803</td>
<td>0.7773</td>
<td>0.7985</td>
<td>0.8065</td>
</tr>
<tr>
<td>CTCF ChIA-PET</td>
<td>0.4342</td>
<td>0.4387</td>
<td>0.4488</td>
<td>0.4712</td>
<td>0.5342</td>
<td>0.4861</td>
<td>0.4819</td>
<td>0.4826</td>
<td>0.5306</td>
<td>0.5857</td>
</tr>
<tr>
<td>RAD21 ChIA-PET</td>
<td>0.2594</td>
<td>0.2546</td>
<td>0.2532</td>
<td>0.2651</td>
<td>0.3137</td>
<td>0.3026</td>
<td>0.2812</td>
<td>0.2874</td>
<td>0.3041</td>
<td>0.3569</td>
</tr>
<tr>
<td>GTEx eQTLs</td>
<td>0.5301</td>
<td>0.5392</td>
<td>0.5484</td>
<td>0.5982</td>
<td>0.6040</td>
<td>0.6051</td>
<td>0.6030</td>
<td>0.6041</td>
<td>0.6260</td>
<td>0.6320</td>
</tr>
<tr>
<td>Dermitzakis eQTL</td>
<td>0.4950</td>
<td>0.4917</td>
<td>0.5184</td>
<td>0.5872</td>
<td>0.5938</td>
<td>0.6008</td>
<td>0.6017</td>
<td>0.5991</td>
<td>0.6465</td>
<td>0.6617</td>
</tr>
<tr>
<td>Osborne CHiC</td>
<td>0.4753</td>
<td>0.4930</td>
<td>0.5329</td>
<td>0.5453</td>
<td>0.5446</td>
<td>0.5408</td>
<td>0.5408</td>
<td>0.6071</td>
<td>0.6074</td>
<td>0.6074</td>
</tr>
<tr>
<td>Aiden HiC</td>
<td>0.4949</td>
<td>0.5405</td>
<td>0.5583</td>
<td>0.5963</td>
<td>0.6139</td>
<td>0.6104</td>
<td>0.6350</td>
<td>0.6082</td>
<td>0.6823</td>
<td>0.6825</td>
</tr>
<tr>
<td>Average</td>
<td>0.4915</td>
<td>0.4981</td>
<td>0.5108</td>
<td>0.5461</td>
<td>0.5687</td>
<td>0.5610</td>
<td>0.5606</td>
<td>0.5571</td>
<td>0.5993</td>
<td>0.6190</td>
</tr>
</tbody>
</table>
Table 3.4 | Feature importance for basic Random Forest Model

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>POLII ChIA-PET</th>
<th>CTCF ChIA-PET</th>
<th>RAD21 ChIA-PET</th>
<th>GTEx eQTLs</th>
<th>Dermitzakis eQTL</th>
<th>Osborne CHi-C</th>
<th>Aiden Hi-C</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>0.2578</td>
<td>0.1667</td>
<td>0.1074</td>
<td>0.1777</td>
<td>0.1486</td>
<td>0.1532</td>
<td>0.1030</td>
<td>0.1592</td>
</tr>
<tr>
<td>Promoter DNase</td>
<td>0.0706</td>
<td>0.0611</td>
<td>0.0723</td>
<td>0.0602</td>
<td>0.0611</td>
<td>0.0636</td>
<td>0.0674</td>
<td>0.0652</td>
</tr>
<tr>
<td>Enhancer H3K27ac Mean</td>
<td>0.0446</td>
<td>0.0528</td>
<td>0.0602</td>
<td>0.0553</td>
<td>0.0618</td>
<td>0.0615</td>
<td>0.0655</td>
<td>0.0574</td>
</tr>
<tr>
<td>Promoter Conservation</td>
<td>0.0395</td>
<td>0.0515</td>
<td>0.0605</td>
<td>0.0601</td>
<td>0.0581</td>
<td>0.0611</td>
<td>0.0676</td>
<td>0.0569</td>
</tr>
<tr>
<td>Promoter H3K27ac</td>
<td>0.1027</td>
<td>0.0578</td>
<td>0.0666</td>
<td>0.0633</td>
<td>0.0630</td>
<td>0.0597</td>
<td>0.0715</td>
<td>0.0692</td>
</tr>
<tr>
<td>Enhancer H3K27ac SD</td>
<td>0.0418</td>
<td>0.0516</td>
<td>0.0547</td>
<td>0.0571</td>
<td>0.0578</td>
<td>0.0579</td>
<td>0.0640</td>
<td>0.0550</td>
</tr>
<tr>
<td>Promoter H3K27ac Mean</td>
<td>0.0339</td>
<td>0.0466</td>
<td>0.0506</td>
<td>0.0495</td>
<td>0.0486</td>
<td>0.0554</td>
<td>0.0575</td>
<td>0.0489</td>
</tr>
<tr>
<td>Promoter H3K27ac SD</td>
<td>0.0352</td>
<td>0.0456</td>
<td>0.0543</td>
<td>0.0487</td>
<td>0.0487</td>
<td>0.0553</td>
<td>0.0509</td>
<td>0.0484</td>
</tr>
<tr>
<td>H3K27ac Correlation</td>
<td>0.0416</td>
<td>0.0536</td>
<td>0.0656</td>
<td>0.0511</td>
<td>0.0611</td>
<td>0.0525</td>
<td>0.0557</td>
<td>0.0545</td>
</tr>
<tr>
<td>DNase Correlation</td>
<td>0.0564</td>
<td>0.0703</td>
<td>0.0853</td>
<td>0.0536</td>
<td>0.0515</td>
<td>0.0474</td>
<td>0.0593</td>
<td>0.0605</td>
</tr>
<tr>
<td>K-mer Correlation</td>
<td>0.0413</td>
<td>0.0508</td>
<td>0.0705</td>
<td>0.0542</td>
<td>0.0527</td>
<td>0.0461</td>
<td>0.0565</td>
<td>0.0532</td>
</tr>
<tr>
<td>Enhancer H3K27ac</td>
<td>0.0376</td>
<td>0.0432</td>
<td>0.0369</td>
<td>0.0440</td>
<td>0.0415</td>
<td>0.0427</td>
<td>0.0398</td>
<td>0.0408</td>
</tr>
<tr>
<td>Promoter DNase Mean</td>
<td>0.0344</td>
<td>0.0436</td>
<td>0.0373</td>
<td>0.0377</td>
<td>0.0440</td>
<td>0.0424</td>
<td>0.0406</td>
<td>0.0400</td>
</tr>
<tr>
<td>Enhancer Conservation</td>
<td>0.0323</td>
<td>0.0417</td>
<td>0.0381</td>
<td>0.0371</td>
<td>0.0408</td>
<td>0.0421</td>
<td>0.0437</td>
<td>0.0394</td>
</tr>
<tr>
<td>Promoter DNase SD</td>
<td>0.0331</td>
<td>0.0404</td>
<td>0.0309</td>
<td>0.0451</td>
<td>0.0454</td>
<td>0.0420</td>
<td>0.0413</td>
<td>0.0397</td>
</tr>
<tr>
<td>Enhancer DNase</td>
<td>0.0357</td>
<td>0.0405</td>
<td>0.0378</td>
<td>0.0386</td>
<td>0.0385</td>
<td>0.0412</td>
<td>0.0397</td>
<td>0.0388</td>
</tr>
<tr>
<td>Enhancer DNase SD</td>
<td>0.0313</td>
<td>0.0424</td>
<td>0.0392</td>
<td>0.0336</td>
<td>0.0385</td>
<td>0.0387</td>
<td>0.0380</td>
<td>0.0374</td>
</tr>
<tr>
<td>Enhancer DNase Mean</td>
<td>0.0302</td>
<td>0.0397</td>
<td>0.0320</td>
<td>0.0333</td>
<td>0.0383</td>
<td>0.0373</td>
<td>0.0380</td>
<td>0.0355</td>
</tr>
<tr>
<td></td>
<td>POLII ChIA-PET</td>
<td>CTCF ChIA-PET</td>
<td>RAD21 ChIA-PET</td>
<td>GTEx eQTLs</td>
<td>Dermitzakis eQTL</td>
<td>Osborne CHi-C</td>
<td>Aiden CHi-C</td>
<td>Average</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Distance</td>
<td>0.2512</td>
<td>0.1633</td>
<td>0.1016</td>
<td>0.1765</td>
<td>0.1470</td>
<td>0.1521</td>
<td>0.0999</td>
<td>0.1559</td>
</tr>
<tr>
<td>Expression</td>
<td>0.0759</td>
<td>0.0518</td>
<td>0.0620</td>
<td>0.0713</td>
<td>0.0828</td>
<td>0.0530</td>
<td>0.0571</td>
<td>0.0648</td>
</tr>
<tr>
<td>Promoter H3K27ac</td>
<td>0.0875</td>
<td>0.0522</td>
<td>0.0580</td>
<td>0.0554</td>
<td>0.0552</td>
<td>0.0542</td>
<td>0.0655</td>
<td>0.0611</td>
</tr>
<tr>
<td>Promoter DNase</td>
<td>0.0583</td>
<td>0.0561</td>
<td>0.0664</td>
<td>0.0535</td>
<td>0.0540</td>
<td>0.0547</td>
<td>0.0624</td>
<td>0.0579</td>
</tr>
<tr>
<td>DNase Correlation</td>
<td>0.0507</td>
<td>0.0658</td>
<td>0.0814</td>
<td>0.0478</td>
<td>0.0453</td>
<td>0.0485</td>
<td>0.0546</td>
<td>0.0563</td>
</tr>
<tr>
<td>Promoter Conservation</td>
<td>0.0365</td>
<td>0.0490</td>
<td>0.0572</td>
<td>0.0596</td>
<td>0.0549</td>
<td>0.0529</td>
<td>0.0647</td>
<td>0.0535</td>
</tr>
<tr>
<td>Promoter DNase Mean</td>
<td>0.0399</td>
<td>0.0496</td>
<td>0.0556</td>
<td>0.0498</td>
<td>0.0542</td>
<td>0.0536</td>
<td>0.0600</td>
<td>0.0518</td>
</tr>
<tr>
<td>Promoter DNase SD</td>
<td>0.0389</td>
<td>0.0492</td>
<td>0.0522</td>
<td>0.0517</td>
<td>0.0531</td>
<td>0.0506</td>
<td>0.0596</td>
<td>0.0508</td>
</tr>
<tr>
<td>K-mer Correlation</td>
<td>0.0383</td>
<td>0.0477</td>
<td>0.0657</td>
<td>0.0488</td>
<td>0.0474</td>
<td>0.0474</td>
<td>0.0527</td>
<td>0.0497</td>
</tr>
<tr>
<td>H3K27ac Correlation</td>
<td>0.0372</td>
<td>0.0491</td>
<td>0.0592</td>
<td>0.0444</td>
<td>0.0518</td>
<td>0.0504</td>
<td>0.0532</td>
<td>0.0494</td>
</tr>
<tr>
<td>Promoter H3K27ac Mean</td>
<td>0.0322</td>
<td>0.0439</td>
<td>0.0480</td>
<td>0.0472</td>
<td>0.0454</td>
<td>0.0481</td>
<td>0.0556</td>
<td>0.0458</td>
</tr>
<tr>
<td>Promoter H3K27ac SD</td>
<td>0.0325</td>
<td>0.0428</td>
<td>0.0520</td>
<td>0.0450</td>
<td>0.0453</td>
<td>0.0474</td>
<td>0.0485</td>
<td>0.0448</td>
</tr>
<tr>
<td>Enhancer H3K27ac</td>
<td>0.0353</td>
<td>0.0418</td>
<td>0.0340</td>
<td>0.0401</td>
<td>0.0382</td>
<td>0.0415</td>
<td>0.0376</td>
<td>0.0384</td>
</tr>
<tr>
<td>Enhancer H3K27ac Mean</td>
<td>0.0325</td>
<td>0.0423</td>
<td>0.0362</td>
<td>0.0350</td>
<td>0.0404</td>
<td>0.0416</td>
<td>0.0388</td>
<td>0.0381</td>
</tr>
<tr>
<td>Enhancer H3K27ac SD</td>
<td>0.0309</td>
<td>0.0387</td>
<td>0.0299</td>
<td>0.0416</td>
<td>0.0415</td>
<td>0.0414</td>
<td>0.0386</td>
<td>0.0375</td>
</tr>
<tr>
<td>Enhancer Conservation</td>
<td>0.0302</td>
<td>0.0394</td>
<td>0.0371</td>
<td>0.0341</td>
<td>0.0373</td>
<td>0.0428</td>
<td>0.0414</td>
<td>0.0375</td>
</tr>
<tr>
<td>Enhancer DNase</td>
<td>0.0340</td>
<td>0.0386</td>
<td>0.0357</td>
<td>0.0360</td>
<td>0.0351</td>
<td>0.0415</td>
<td>0.0375</td>
<td>0.0369</td>
</tr>
<tr>
<td>Enhancer DNase SD</td>
<td>0.0295</td>
<td>0.0407</td>
<td>0.0367</td>
<td>0.0312</td>
<td>0.0359</td>
<td>0.0395</td>
<td>0.0362</td>
<td>0.0357</td>
</tr>
<tr>
<td>Enhancer DNase Mean</td>
<td>0.0286</td>
<td>0.0381</td>
<td>0.0313</td>
<td>0.0308</td>
<td>0.0352</td>
<td>0.0388</td>
<td>0.0361</td>
<td>0.0341</td>
</tr>
</tbody>
</table>
Table 3.6 | Feature importance for CTCF Random Forest model

<table>
<thead>
<tr>
<th>Feature</th>
<th>POLII ChIA-PET</th>
<th>CTCF ChIA-PET</th>
<th>RAD21 ChIA-PET</th>
<th>GTEx eQTLs</th>
<th>Dermitzakis eQTL</th>
<th>Osborne CHi-C</th>
<th>Aiden CHi-C</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>0.2436</td>
<td>0.1559</td>
<td>0.0934</td>
<td>0.1699</td>
<td>0.1409</td>
<td>0.1460</td>
<td>0.0934</td>
<td>0.1490</td>
</tr>
<tr>
<td>Promoter CTCF</td>
<td>0.0346</td>
<td>0.0745</td>
<td>0.1057</td>
<td>0.0462</td>
<td>0.0521</td>
<td>0.0481</td>
<td>0.0562</td>
<td>0.0596</td>
</tr>
<tr>
<td>Expression</td>
<td>0.0709</td>
<td>0.0451</td>
<td>0.0512</td>
<td>0.0660</td>
<td>0.0765</td>
<td>0.0489</td>
<td>0.0521</td>
<td>0.0587</td>
</tr>
<tr>
<td>Promoter H3K27ac</td>
<td>0.0820</td>
<td>0.0464</td>
<td>0.0499</td>
<td>0.0503</td>
<td>0.0502</td>
<td>0.0496</td>
<td>0.0603</td>
<td>0.0555</td>
</tr>
<tr>
<td>Promoter DNase</td>
<td>0.0559</td>
<td>0.0490</td>
<td>0.0560</td>
<td>0.0501</td>
<td>0.0490</td>
<td>0.0496</td>
<td>0.0567</td>
<td>0.0523</td>
</tr>
<tr>
<td>DNase Correlation</td>
<td>0.0477</td>
<td>0.0589</td>
<td>0.0692</td>
<td>0.0438</td>
<td>0.0418</td>
<td>0.0440</td>
<td>0.0500</td>
<td>0.0508</td>
</tr>
<tr>
<td>Promoter Conservation</td>
<td>0.0333</td>
<td>0.0426</td>
<td>0.0508</td>
<td>0.0546</td>
<td>0.0493</td>
<td>0.0479</td>
<td>0.0591</td>
<td>0.0482</td>
</tr>
<tr>
<td>Promoter DNase Mean</td>
<td>0.0377</td>
<td>0.0439</td>
<td>0.0460</td>
<td>0.0458</td>
<td>0.0489</td>
<td>0.0485</td>
<td>0.0542</td>
<td>0.0464</td>
</tr>
<tr>
<td>K-mer Correlation</td>
<td>0.0354</td>
<td>0.0418</td>
<td>0.0583</td>
<td>0.0459</td>
<td>0.0431</td>
<td>0.0430</td>
<td>0.0484</td>
<td>0.0451</td>
</tr>
<tr>
<td>Promoter DNase SD</td>
<td>0.0357</td>
<td>0.0429</td>
<td>0.0420</td>
<td>0.0471</td>
<td>0.0491</td>
<td>0.0457</td>
<td>0.0528</td>
<td>0.0450</td>
</tr>
<tr>
<td>H3K27ac Correlation</td>
<td>0.0343</td>
<td>0.0431</td>
<td>0.0518</td>
<td>0.0410</td>
<td>0.0475</td>
<td>0.0461</td>
<td>0.0485</td>
<td>0.0446</td>
</tr>
<tr>
<td>Promoter H3K27ac Mean</td>
<td>0.0295</td>
<td>0.0379</td>
<td>0.0420</td>
<td>0.0431</td>
<td>0.0407</td>
<td>0.0437</td>
<td>0.0495</td>
<td>0.0409</td>
</tr>
<tr>
<td>Promoter H3K27ac SD</td>
<td>0.0299</td>
<td>0.0374</td>
<td>0.0438</td>
<td>0.0414</td>
<td>0.0411</td>
<td>0.0431</td>
<td>0.0431</td>
<td>0.0400</td>
</tr>
<tr>
<td>Enhancer H3K27ac</td>
<td>0.0328</td>
<td>0.0361</td>
<td>0.0291</td>
<td>0.0370</td>
<td>0.0350</td>
<td>0.0377</td>
<td>0.0337</td>
<td>0.0345</td>
</tr>
<tr>
<td>Enhancer H3K27ac Mean</td>
<td>0.0298</td>
<td>0.0356</td>
<td>0.0313</td>
<td>0.0318</td>
<td>0.0367</td>
<td>0.0377</td>
<td>0.0351</td>
<td>0.0340</td>
</tr>
<tr>
<td>Enhancer H3K27ac SD</td>
<td>0.0280</td>
<td>0.0340</td>
<td>0.0261</td>
<td>0.0379</td>
<td>0.0375</td>
<td>0.0375</td>
<td>0.0349</td>
<td>0.0337</td>
</tr>
<tr>
<td>Enhancer Conservation</td>
<td>0.0277</td>
<td>0.0344</td>
<td>0.0318</td>
<td>0.0313</td>
<td>0.0342</td>
<td>0.0387</td>
<td>0.0373</td>
<td>0.0336</td>
</tr>
<tr>
<td>Enhancer CTCF</td>
<td>0.0272</td>
<td>0.0405</td>
<td>0.0328</td>
<td>0.0284</td>
<td>0.0317</td>
<td>0.0362</td>
<td>0.0368</td>
<td>0.0334</td>
</tr>
<tr>
<td>Enhancer DNase</td>
<td>0.0313</td>
<td>0.0337</td>
<td>0.0310</td>
<td>0.0324</td>
<td>0.0320</td>
<td>0.0376</td>
<td>0.0337</td>
<td>0.0331</td>
</tr>
<tr>
<td>Enhancer DNase SD</td>
<td>0.0268</td>
<td>0.0344</td>
<td>0.0306</td>
<td>0.0283</td>
<td>0.0317</td>
<td>0.0354</td>
<td>0.0325</td>
<td>0.0314</td>
</tr>
</tbody>
</table>
Table 3.7 | Feature importance for comprehensive Random Forest model

<table>
<thead>
<tr>
<th>Feature</th>
<th>POLII ChIA-PET</th>
<th>CTCF ChIA-PET</th>
<th>RAD21 ChIA-PET</th>
<th>GTEx eQTLs</th>
<th>Dermitzakis eQTL</th>
<th>Osborne Chi-C</th>
<th>Aiden Hi-C</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>0.1903</td>
<td>0.1212</td>
<td>0.0597</td>
<td>0.1307</td>
<td>0.1080</td>
<td>0.1114</td>
<td>0.0600</td>
<td>0.1116</td>
</tr>
<tr>
<td>Promoter CTCF</td>
<td>0.0152</td>
<td>0.0471</td>
<td>0.0714</td>
<td>0.0239</td>
<td>0.0250</td>
<td>0.0227</td>
<td>0.0272</td>
<td>0.0332</td>
</tr>
<tr>
<td>Expression</td>
<td>0.0392</td>
<td>0.0233</td>
<td>0.0260</td>
<td>0.0371</td>
<td>0.0433</td>
<td>0.0281</td>
<td>0.0252</td>
<td>0.0317</td>
</tr>
<tr>
<td>DNase Correlation</td>
<td>0.0261</td>
<td>0.0359</td>
<td>0.0426</td>
<td>0.0236</td>
<td>0.0216</td>
<td>0.0218</td>
<td>0.0255</td>
<td>0.0282</td>
</tr>
<tr>
<td>Promoter H2AFZ</td>
<td>0.0284</td>
<td>0.0249</td>
<td>0.0278</td>
<td>0.0231</td>
<td>0.0275</td>
<td>0.0240</td>
<td>0.0281</td>
<td>0.0262</td>
</tr>
<tr>
<td>Promoter H3K4me1</td>
<td>0.0222</td>
<td>0.0244</td>
<td>0.0297</td>
<td>0.0211</td>
<td>0.0241</td>
<td>0.0230</td>
<td>0.0331</td>
<td>0.0254</td>
</tr>
<tr>
<td>Promoter H3K27ac</td>
<td>0.0393</td>
<td>0.0208</td>
<td>0.0219</td>
<td>0.0223</td>
<td>0.0214</td>
<td>0.0222</td>
<td>0.0266</td>
<td>0.0249</td>
</tr>
<tr>
<td>K-mer Correlation</td>
<td>0.0191</td>
<td>0.0223</td>
<td>0.0347</td>
<td>0.0251</td>
<td>0.0217</td>
<td>0.0212</td>
<td>0.0249</td>
<td>0.0241</td>
</tr>
<tr>
<td>Promoter Conservation</td>
<td>0.0154</td>
<td>0.0205</td>
<td>0.0257</td>
<td>0.0297</td>
<td>0.0233</td>
<td>0.0237</td>
<td>0.0281</td>
<td>0.0238</td>
</tr>
<tr>
<td>Promoter DNase</td>
<td>0.0242</td>
<td>0.0221</td>
<td>0.0273</td>
<td>0.0225</td>
<td>0.0214</td>
<td>0.0224</td>
<td>0.0246</td>
<td>0.0235</td>
</tr>
<tr>
<td>Promoter H3K9ac</td>
<td>0.0297</td>
<td>0.0202</td>
<td>0.0226</td>
<td>0.0221</td>
<td>0.0226</td>
<td>0.0227</td>
<td>0.0236</td>
<td>0.0234</td>
</tr>
<tr>
<td>H3K27ac Correlation</td>
<td>0.0163</td>
<td>0.0221</td>
<td>0.0284</td>
<td>0.0206</td>
<td>0.0250</td>
<td>0.0228</td>
<td>0.0245</td>
<td>0.0228</td>
</tr>
<tr>
<td>Promoter EP300</td>
<td>0.0237</td>
<td>0.0194</td>
<td>0.0220</td>
<td>0.0213</td>
<td>0.0215</td>
<td>0.0233</td>
<td>0.0282</td>
<td>0.0228</td>
</tr>
<tr>
<td>Promoter POLII</td>
<td>0.0235</td>
<td>0.0194</td>
<td>0.0224</td>
<td>0.0248</td>
<td>0.0228</td>
<td>0.0210</td>
<td>0.0233</td>
<td>0.0224</td>
</tr>
<tr>
<td>Promoter H3K27me3</td>
<td>0.0146</td>
<td>0.0199</td>
<td>0.0245</td>
<td>0.0220</td>
<td>0.0268</td>
<td>0.0224</td>
<td>0.0256</td>
<td>0.0223</td>
</tr>
<tr>
<td>Promoter H3K4me2</td>
<td>0.0198</td>
<td>0.0196</td>
<td>0.0276</td>
<td>0.0203</td>
<td>0.0236</td>
<td>0.0215</td>
<td>0.0229</td>
<td>0.0222</td>
</tr>
<tr>
<td>Promoter H3K4me3</td>
<td>0.0227</td>
<td>0.0198</td>
<td>0.0226</td>
<td>0.0212</td>
<td>0.0215</td>
<td>0.0227</td>
<td>0.0238</td>
<td>0.0220</td>
</tr>
<tr>
<td>Promoter DNase SD</td>
<td>0.0165</td>
<td>0.0205</td>
<td>0.0198</td>
<td>0.0246</td>
<td>0.0247</td>
<td>0.0211</td>
<td>0.0243</td>
<td>0.0217</td>
</tr>
<tr>
<td>Promoter H3K79me2</td>
<td>0.0247</td>
<td>0.0177</td>
<td>0.0196</td>
<td>0.0224</td>
<td>0.0211</td>
<td>0.0208</td>
<td>0.0244</td>
<td>0.0215</td>
</tr>
<tr>
<td>Promoter H3K9me3</td>
<td>0.0155</td>
<td>0.0198</td>
<td>0.0233</td>
<td>0.0212</td>
<td>0.0191</td>
<td>0.0209</td>
<td>0.0288</td>
<td>0.0212</td>
</tr>
<tr>
<td>Promoter H4K20me1</td>
<td>0.0148</td>
<td>0.0196</td>
<td>0.0214</td>
<td>0.0213</td>
<td>0.0235</td>
<td>0.0212</td>
<td>0.0257</td>
<td>0.0211</td>
</tr>
<tr>
<td>Promoter H3K36me3</td>
<td>0.0164</td>
<td>0.0208</td>
<td>0.0222</td>
<td>0.0205</td>
<td>0.0217</td>
<td>0.0215</td>
<td>0.0222</td>
<td>0.0208</td>
</tr>
<tr>
<td></td>
<td>0.0148</td>
<td>0.0195</td>
<td>0.0211</td>
<td>0.0217</td>
<td>0.0225</td>
<td>0.0215</td>
<td>0.0236</td>
<td>0.0207</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Promoter DNase Mean</td>
<td>0.0132</td>
<td>0.0181</td>
<td>0.0212</td>
<td>0.0214</td>
<td>0.0195</td>
<td>0.0209</td>
<td>0.0220</td>
<td>0.0195</td>
</tr>
<tr>
<td>Promoter H3K27ac Mean</td>
<td>0.0220</td>
<td>0.0164</td>
<td>0.0204</td>
<td>0.0184</td>
<td>0.0223</td>
<td>0.0147</td>
<td>0.0203</td>
<td>0.0192</td>
</tr>
<tr>
<td>Promoter RAMPAGE</td>
<td>0.0133</td>
<td>0.0177</td>
<td>0.0223</td>
<td>0.0197</td>
<td>0.0193</td>
<td>0.0206</td>
<td>0.0195</td>
<td>0.0189</td>
</tr>
<tr>
<td>Promoter H3K27ac SD</td>
<td>0.0141</td>
<td>0.0152</td>
<td>0.0146</td>
<td>0.0158</td>
<td>0.0171</td>
<td>0.0177</td>
<td>0.0186</td>
<td>0.0162</td>
</tr>
<tr>
<td>Enhancer H3K79me2</td>
<td>0.0128</td>
<td>0.0204</td>
<td>0.0157</td>
<td>0.0126</td>
<td>0.0146</td>
<td>0.0162</td>
<td>0.0177</td>
<td>0.0157</td>
</tr>
<tr>
<td>Enhancer CTCF</td>
<td>0.0131 0.0156</td>
<td>0.0118 0.0178</td>
<td>0.0179 0.0169</td>
<td>0.0154 0.0155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancer H3K27ac SD</td>
<td>0.0141</td>
<td>0.0174</td>
<td>0.0138</td>
<td>0.0142</td>
<td>0.0154</td>
<td>0.0176</td>
<td>0.0156</td>
<td>0.0154</td>
</tr>
<tr>
<td>Enhancer Conservation</td>
<td>0.0127</td>
<td>0.0161</td>
<td>0.0144</td>
<td>0.0140</td>
<td>0.0158</td>
<td>0.0175</td>
<td>0.0175</td>
<td>0.0154</td>
</tr>
<tr>
<td>Enhancer H3K27ac Mean</td>
<td>0.0134</td>
<td>0.0157</td>
<td>0.0142</td>
<td>0.0142</td>
<td>0.0171</td>
<td>0.0165</td>
<td>0.0156</td>
<td>0.0152</td>
</tr>
<tr>
<td>Enhancer H3K36me3</td>
<td>0.0144</td>
<td>0.0159</td>
<td>0.0134</td>
<td>0.0152</td>
<td>0.0150</td>
<td>0.0173</td>
<td>0.0151</td>
<td>0.0152</td>
</tr>
<tr>
<td>Enhancer H2AFZ</td>
<td>0.0146</td>
<td>0.0170</td>
<td>0.0131</td>
<td>0.0137</td>
<td>0.0142</td>
<td>0.0159</td>
<td>0.0168</td>
<td>0.0151</td>
</tr>
<tr>
<td>Enhancer POLII</td>
<td>0.0137</td>
<td>0.0160</td>
<td>0.0127</td>
<td>0.0168</td>
<td>0.0143</td>
<td>0.0173</td>
<td>0.0140</td>
<td>0.0150</td>
</tr>
<tr>
<td>Enhancer EP300</td>
<td>0.0162</td>
<td>0.0151</td>
<td>0.0142</td>
<td>0.0139</td>
<td>0.0138</td>
<td>0.0168</td>
<td>0.0144</td>
<td>0.0149</td>
</tr>
<tr>
<td>Enhancer H4K20me1</td>
<td>0.0134</td>
<td>0.0161</td>
<td>0.0117</td>
<td>0.0154</td>
<td>0.0143</td>
<td>0.0177</td>
<td>0.0156</td>
<td>0.0149</td>
</tr>
<tr>
<td>Enhancer H3K4me1</td>
<td>0.0138</td>
<td>0.0156</td>
<td>0.0117</td>
<td>0.0149</td>
<td>0.0155</td>
<td>0.0168</td>
<td>0.0159</td>
<td>0.0149</td>
</tr>
<tr>
<td>Enhancer H3K27me3</td>
<td>0.0131</td>
<td>0.0158</td>
<td>0.0124</td>
<td>0.0172</td>
<td>0.0146</td>
<td>0.0173</td>
<td>0.0137</td>
<td>0.0149</td>
</tr>
<tr>
<td>Enhancer Dnase</td>
<td>0.0145</td>
<td>0.0148</td>
<td>0.0139</td>
<td>0.0141</td>
<td>0.0137</td>
<td>0.0165</td>
<td>0.0146</td>
<td>0.0146</td>
</tr>
<tr>
<td>Enhancer H3K27ac</td>
<td>0.0145</td>
<td>0.0153</td>
<td>0.0120</td>
<td>0.0156</td>
<td>0.0141</td>
<td>0.0158</td>
<td>0.0145</td>
<td>0.0145</td>
</tr>
<tr>
<td>Enhancer Dnase SD</td>
<td>0.0126</td>
<td>0.0166</td>
<td>0.0144</td>
<td>0.0130</td>
<td>0.0150</td>
<td>0.0157</td>
<td>0.0141</td>
<td>0.0145</td>
</tr>
<tr>
<td>Enhancer Dnase Mean</td>
<td>0.0126</td>
<td>0.0151</td>
<td>0.0125</td>
<td>0.0128</td>
<td>0.0144</td>
<td>0.0153</td>
<td>0.0146</td>
<td>0.0138</td>
</tr>
<tr>
<td>Enhancer H3K4me3</td>
<td>0.0126</td>
<td>0.0147</td>
<td>0.0128</td>
<td>0.0126</td>
<td>0.0133</td>
<td>0.0159</td>
<td>0.0135</td>
<td>0.0136</td>
</tr>
<tr>
<td>Enhancer</td>
<td>H3K9ac</td>
<td>H3K4me2</td>
<td>RAMPAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancer H3K9ac</td>
<td>0.0122</td>
<td>0.0117</td>
<td>0.0094</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancer H3K4me2</td>
<td>0.0117</td>
<td>0.0120</td>
<td>0.0084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhancer RAMPAGE</td>
<td>0.0094</td>
<td>0.0083</td>
<td>0.0090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.8a | AUROC for cross cell type comparisons

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>ChIA-PET Target</th>
<th>Average Rank Distance & DNase Correlation</th>
<th>GM12878 Trained RF Model</th>
<th>HeLa Trained RF Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM12878</td>
<td>POLII</td>
<td>0.8327</td>
<td>0.9316</td>
<td>0.8654</td>
</tr>
<tr>
<td>HeLa</td>
<td>POLII</td>
<td>0.8072</td>
<td>0.8801</td>
<td>0.9193</td>
</tr>
<tr>
<td>GM12878</td>
<td>CTCF</td>
<td>0.8065</td>
<td>0.8936</td>
<td>0.8055</td>
</tr>
<tr>
<td>HeLa</td>
<td>CTCF</td>
<td>0.8346</td>
<td>0.8611</td>
<td>0.9047</td>
</tr>
</tbody>
</table>

Table 3.8.b | AUPR for cross cell type comparisons

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>ChIA-PET Target</th>
<th>Average Rank Distance & DNase Correlation</th>
<th>GM12878 Trained RF Model</th>
<th>HeLa Trained RF Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM12878</td>
<td>POLII</td>
<td>0.4553</td>
<td>0.7458</td>
<td>0.5465</td>
</tr>
<tr>
<td>HeLa</td>
<td>POLII</td>
<td>0.2658</td>
<td>0.3845</td>
<td>0.5663</td>
</tr>
<tr>
<td>GM12878</td>
<td>CTCF</td>
<td>0.2399</td>
<td>0.4380</td>
<td>0.2681</td>
</tr>
<tr>
<td>HeLa</td>
<td>CTCF</td>
<td>0.2259</td>
<td>0.2827</td>
<td>0.4074</td>
</tr>
</tbody>
</table>
METHODS

Creating Our Benchmark of ELS-Gene Pairs

Defining ELS cREs

We selected all cREs as defined as having enhancer-like signatures in GM12878 per own registry of regulatory elements pipeline. To be classified as an ELS cRE in GM12878, the cRE must have a DNase and H3K27ac Z-scores > 1.64 in GM12878 and either be 1) distal from an annotated TSS or 2) not have a H3K4me3 Z-score > 1.64 in GM12878. In total, there are 27,739 ELS cREs in GM12878.

Processing ChIA-PET Data

We downloaded Ruan lab ChIA-PET data from NCBI’s Gene Expression Omnibus (GEO) under the accession GSE72816. We used links from GSM1872886_GM12878_CTCF_PET_clusters.txt for CTCF and GSM1872887_GM12878_RNAPII_PET_clusters.txt for POLII. We also downloaded ChIA-PET data produced by the Snyder from the ENCODE DCC (experiment ENCSR752QCX). We used links called from both replicates in ENCF002EM0 and ENCF002EMQ.

To generate ELS-Gene pairs, we intersected the ends of the ChIA-PET links with GM12878 ELS cREs and TSSs from GENCODE 19 genes. We selected all links for which one end of the link overlapped an ELS-cRE and the other end fell
within 2 kb of an annotated TSS. We classified links that overlapped an ELS-cRE but linked to more than one TSS as "ambiguous" and added them to a blacklist.

Processing Hi-C Data

We downloaded Hi-C loops generated by the Aiden lab from GEO under the accession GSE63525. We used the lab's called loops from GSE63525_GM12878_primary+replicate_HiCCUPS_looplist.txt. We also downloaded CHi-C links generated by the Osborne lab from ArrayExpress under the accession E-MTAB-2323. We used the lab's called links from TS5_GM12878_promoter-other_significant_interactions.txt

To generate ELS-Gene pairs, we intersected the ends of the (C)Hi-C links with GM12878 ELS cREs and TSSs from GENCODE 19 genes. We selected all links for which one end of the link overlapped an ELS-cRE and the other end fell within 2 kb of an annotated TSS. We classified links that overlapped an ELS-cRE but linked to more than one TSS as "ambiguous" and added them to a blacklist.

Processing eQTLs

We downloaded eQTLs curated from HaploReg, a database curated by the Kellis lab. To generate the GTEx eQTL pairs, we intersected ELS-cREs with eQTLs from lymphoblastoid cell lines. To generate the Derm eQTL pairs we intersected ELS-cREs with eQTLs from lymphoblastoic cell liens. For each overlap generated an ELS-cRE pair using the overlapping ELS and the gene reported by the eQTL.
Generating negative pairs

For each of the seven datasets, we calculated the 95th percentile of distance between the ELS-gene pairs. We defined distance and the minimum linear distance between a ELS-cRE and any TSS of the linked gene. We then selected all ELS-gene pairs that fell within this distance. For each ELS cRE in this pool, we generated a list of all genes within the 95th percentile distance. For datasets with blacklisted links (ChIA-PET and (C)Hi-C) we removed all genes that appeared on the black list connected to the ELS cRE. We considered all remaining genes negatives.

Generating training, validation, and test sets

After generating positive and negative ELS-gene pairs, we assigned them to training, validation and test sets. For training sets, we randomly selected half of the ELS-cREs and assigned all of their positive and negative parirs to the training sets. For the validation and test sets we split the remaining cREs in half and assign the pairs of each to validation and test sets respectively. This results in training, validation and test sets containing roughly 50%, 25%, and 25% of the total number of ELS-gene pairs respectively. All of our analysis was currently evaluated using the validation datasets. We plan on using the test dataset for final comparisons of models.
Predicting Target Genes Using Distance

To identify the closest gene to each ELS cRE, we used the Bedtools command closest with ELS cREs as file a and GENCODE V19 TSSs as file b. We repeated this process using a filtered set of TSSs to identify the closest protein coding genes. We calculated the overall precision (TP/(TP+FP)) and recall (TP/(TP+FN)) for each dataset using both sets of TSSs.

To test using distance as a ranking scheme, for each ELS-gene pair we calculated the minimum linear distance between the ELS cRE and every annotated TSS for the gene. We used a custom python script. We calculated the AUROC and AUPR using custom the ROCR package and custom R scripts. Because prediction with larger values are considered a higher rank by the ROCR package, we used the inverse of distance to generated the ROC and PR curves.

Correlation Methods

For correlation based methods we tested DNase vs. H3K27ac signal, using raw signal (reported directly from ENCODE bigwig files) vs. Z-score normalized signal (see Chapter II for explanation), and Pearson vs Spearman correlation coefficients. To determine signal at each cRE, we used Z-score and raw signals generated during the creation of the Registry of cREs. For these cREs, Z-score signals were calculated across all rDHSs. For TSSs, we used bigwigaverageoverbed to calculate the average signal in a +/- 500bp window around each TSS. We converted this signal to a Z-score relative to all other TSSs.
Note – these Z-scores are different from PLS-cRE Z-scores. Then using custom python scripts we calculated the correlation between each ELS-gene pair. If a gene had multiple TSSs, we selected the highest correlation coefficient for the pair. We calculated the AUROC and AUPR using custom the ROCR package and custom R scripts.

Random Forest Model

We implemented the Random Forest algorithm using the python package scikit learn. For each test, we ran the algorithm 25 times, generating 100 trees each run. For each ELS-gene pair we reported the average class probability across the 25 runs.

We included the following features in our Random Forest model:

1. Distance = the minimum linear distance between ELS cRE and any of the genes TSSs
2. Expression = expression of gene in GM12878 measured in transcripts per million
3. DNase correlation = Spearman correlation of DNase Z-score normalized signal across 460 cell types
4. H3K27ac correlation = Spearman correlation of DNase Z-score normalized signal across 136 cell types
5. Kmer correlation = Pearson correlation of k-mer correlation (default is 3-mer) for k-mer counts across 1 kb sequences centered at gene TSS and ELS cRE

6. Enhancer DNase Mean = the average DNase Z-score for ELS cRE across all cell types

7. Enhancer DNase SD = the standard deviation of ELS DNase Z-scores across all cell types

8. Enhancer H3K27ac Mean = the average H3K27ac Z-score for ELS cRE across all cell types

9. Enhancer H3K27ac SD = the standard deviation of ELS H3K27ac Z-scores across all cell types

10. Promoter DNase Mean = the average DNase Z-score for +/- 500 bp around surrounding the TSS across all cell types

11. Promoter DNase SD = the standard deviation of ELS DNase Z-score for +/- 500 bp around surrounding the TSS across all cell types

12. Promoter H3K27ac Mean = the average H3K27ac Z-score for +/- 500 bp around surrounding the TSS across all cell types

13. Promoter H3K27ac SD = the standard deviation of ELS H3K27ac Z-score for +/- 500 bp around surrounding the TSS across all cell types
14. Enhancer signal = Signal at ELS cREs including DNase, H3K27ac, POLII, CTCF, EP300, RAMPAGE, histone modifications, and conservation

15. Promoter signal = Signal at ELS cREs including DNase, H3K27ac, POLII, CTCF, EP300, RAMPAGE, histone modifications, and conservation for +/- 500 bp around surrounding the TSS across all cell types

For each benchmark, we generated a model from the training data and validated using the benchmark validation sets. We calculated the AUROC and AUPR using custom the ROCR package and custom R scripts.

Scripts

Scripts for this analysis can be found on GitHub: https://github.com/Jill-Moore/Dissertation/tree/master/Chapter-III/
CHAPTER IV: Functional annotation of noncoding variants reveals role of neural and immune pathways in psychiatric disorders

PREFACE

Results from this chapter were adapted from Moore and Weng. "Functional annotation of noncoding variants reveals role of neural and immune pathways in psychiatric disorders."

which is currently in preparation. I performed all analysis and generated all the figures that were used in the chapter.

ABSTRACT

Schizophrenia, bipolar disorder, and major depressive disorder are debilitating psychiatric disorders that affect a significant percentage of the population. While the etiologies of these psychiatric disorders are unknown, each have strong hereditary components and studies have demonstrated that they share common genetic risk factors. Genome wide association studies (GWAS) have associated over one hundred single nucleotide polymorphisms (SNPs) with these disorders and a majority of the associated SNPs lie in noncoding regions of the genome. Our aim was to functionally characterize these noncoding psych SNPs. We determined psych SNPs were enriched in ELS cREs in active in brain tissues as well as immune related tissues such as T-cells and the thymus. We also determined that these SNPs regulate genes expressed in brain tissue with roles in
neural pathways. Under the hypothesis that psych SNPs alter gene expression by disrupting transcription factor (TF) binding, we analyzed TF ChIP-seq data and observed the SNPs are enriched in SP4 motifs and binding sites for TFs with enriched expression in developing brain tissue. Finally, we characterized four cases of allele specific binding, demonstrating that specific psych SNPs disrupt TF binding sites. Our findings demonstrate that common genetic variants affect both neural and immune pathways.

INTRODUCTION

Schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD) are three prevalent and debilitating psychiatric disorders that affect millions of people every year. While the causes of these disorders are unknown, studies demonstrate both genetic and environmental factors contribute to their onset. SCZ and BPD are highly heritable (~60% estimated heritability)76,80,140 and through large scale analyses of national medical records and correlation of genetic risk variants studies have reported that these disorders share common genetic risk factors83,84. Though MDD has a lower estimated heritability (30-40%)82, studies demonstrated that it also shares common genetic risks with SCZ and BPD84.

Genome wide association studies (GWAS) have successfully identified hundreds of single nucleotide polymorphisms (SNPs) associated with SCZ, BPD, and MDD. The majority of these SNPs are in noncoding regions of the genome, and our understanding of how these variants contribute to disease onset is limited.
There have been efforts to characterize noncoding variants associated with SCZ but their scope was limited to characterizing individual variants, resulting in only a handful of annotated variants141.

During the third phase of the Encyclopedia of DNA Elements (ENCODE) project we generated the ENCODE Encyclopedia, a collection of high throughput experiments (e.g. DNase-seq, RNA-seq, histone modification and transcription factor ChIP-seq) and higher-level analyses aimed at annotating the human and mouse genomes. In addition to assembling this resource, we also integrated DNase-seq data with ChIP-seq data to create the Registry of candidate Regulatory Elements (cREs), a collection of putative regulatory regions across human and mouse (described in Chapter II). In total, we identified over 1.3M human and 400k mouse cREs each annotated with cell-type specific signatures (e.g., promoter-like, enhancer-like) in over 400 human and 100 mouse cell types. Our goal was to use the Registry of cREs and supporting data from the ENCODE Encyclopedia to functionally characterize noncoding SNPs associated with SCZ, BPD, and MDD. By analyzing enrichments in cRE activity in over 500 cell types and integrating RNA-seq, TF-ChIP-seq data, we hoped to learn more about the genetic contributions of these diseases.

Here we report that SNPs associated with psychiatric diseases (psych SNPs) are enriched in candidate regulatory elements active in brain tissues and neural cells. We also curated lists of potential target genes for these SNPs and determined that these genes are enriched for expression in brain tissue. Using
orthologous cREs in mouse, we analyzed temporal patterns of cRE activity during brain development and found specific examples of psych cREs active during brain development. We also determined that psych SNPs are enriched in motifs for neural TFs, particularly SP4, as well as immune related TFs such as IRF1. Additionally, we discovered specific instances of psych SNPs in regulatory elements that alter TF binding by disrupting TF motifs. Our analysis supports a genetic foundation for neural pathways in psychiatric disorders and also suggests a role for immune pathways.

RESULTS

The majority of GWAS signal for psych SNPs is explained by cREs

As of July 2017, there were 139 studies in the NHGRI-EBI GWAS catalog tagged with the terms "schizophrenia," "bipolar disorder," or "major depressive disorder." Due to variations in methodology and sampled populations, we selected one representative study for each disorder, prioritizing studies with the largest number of associated variants (Table 4.1). We also considered variants reported by the Cross-Disorder Group of the Psychiatric Genomics Consortium (PGC) who analyzed a mixed cohort of SCZ, BPD, MDD, autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) patients. In total, we curated 96 variants for SCZ, 23 for BPD, 43 for MDD, and 73 for cross-disorders (CD). These 235 associations, along with 6,479 SNPs in high ($r^2 > 0.7$) linkage disequilibrium
(LD), amount to 6,714 SNPs associated with psychiatric disorders (psych SNPs) in 233 regions of high LD, which we refer to as LD blocks.

We began by determining the genetic context of psych SNPs using GENCODE V19 gene annotations. As expected, the majority of psych SNPs (99%) are in noncoding regions of the genome; only ~1% overlap coding exons (Table 4.2). Of these, only two variants (rs4584886 and rs678) are predicted by PROVEAN and SWIFT to be deleterious and damaging to the resulting protein (Table 4.3). While these two SNPs are likely causal, the majority of GWAS signal for psych SNPs is from noncoding regions of the genome.

To annotate these noncoding regions, we overlapped psych SNPs with human and mouse cREs. On average, 20% of psych SNPs overlapped a human cRE accounting for 79% of LD blocks (Table 4.4a,b). Of these, the majority, 76%, overlap cREs with enhancer-like signatures (ELS), while 20% overlap cREs with promoter-like signatures (PLS) and 4% overlap CTCF-only cREs (Table 4.5). An average of 7% of SNPs overlapped orthologous mouse cREs accounting for 46% of LD blocks (Table 4.4c,d). Individually, psych SNPs were slightly more enriched at cREs compared to controls (~1.2 and 1.4 fold enrichment for human and mouse cREs respectively), but there was no significant difference when we performed this analysis with the LD blocks. These results suggest the majority of signal (~79%) from these GWAS can be explained by variants in cREs and that additional annotation of these regions will give us further insight into the mechanisms that underlie these disorders.
Psych SNPs are enriched in cREs active in brain regions

Previous work has demonstrated that variants associated with human disease are enriched in regulatory elements active in disease-relevant cell and tissue types. For example, SNPs associated with Crohn’s disease were enriched in T-helper cell DNase peaks⁶, and SNPs associated with cholesterol levels are enriched in liver H3K27ac peaks²⁶. The Schizophrenia Working Group of the PGC reported their SCZ associated loci were enriched in brain-specific and B cell-specific H3K27ac peaks when looking across 35 tissues from the Roadmap epigenomics project¹⁰⁵

We wanted to extend this work by analyzing DNase and H3K27ac signals at cREs overlapping psych SNPs. Using data from the Registry of cREs, we calculated activity enrichments using 540 cell and tissue types (462 DNase and 136 H3K27ac). Additionally, during the third phase of the ENCODE project, production labs generated H3K27ac, DNase and RNA-seq data for twelve tissues across mouse embryonic development (eight surveyed time points). These experiments enabled us to analyze enrichment for specific temporal patterns of activity in mouse across development. To calculate enrichment, we counted the number of overlapping cREs with a signal (DNase or H3K27ac) Z-score greater than 2, indicating high signal in that cell type. To prevent over counting of SNPs in LD, we pruned our results by only reporting one hit per LD block for each cell type (see methods). We calculated enrichment using Fisher’s exact test. Additionally,
differing number of SNPs between the studies makes using a uniform p-value cutoff difficult. P-values from Fisher’s exact test inflate as sample size increases, and therefore it is ideal to use more stringent cutoffs for studies with more reported SNPs. We also used a more conservative method for calculating our FDR than previous studies26 (see methods). Therefore, for our analysis, we focused the top 5 most enriched tissues with at least p<0.05 for each study, noting those that meet our FDR threshold of 5%.

Overall, we detected significant enrichments for SCZ and CD SNPs in cREs active in neural cells and brain tissues (Figures 4.1 and 4.2, External Table 4.1). For SCZ SNPs, when we filtered cREs using H3K27ac Z-scores, the five most significantly enriched cell types were temporal lobe, angular gyrus, middle frontal area, iPS DF 19.11, and caudate nucleus (Figure 4.1a). The enrichment in neural tissues was so pronounced that when we expanded our search to the top ten most significantly enriched cell types, seven were from brain tissues or neural cells. Of the remaining three, two were iPSCs, and one was from fetal thymus (External Table 4.1). Even after removing variants on chromosome 6 to account for SNPs in the major histocompatibility complex (MHC), we still observed enrichment in fetal thymus (External Table 4.1). When we filtered cREs using DNase Z-scores, we also observed enrichment in brain tissues (fetal brain and superior temporal gyrus) and neural cells (neuronal progenitor and stem cells) (External Table 4.2). Interestingly, the most significant enrichment was for NCI-H226, a lung cancer cell line. When we clustered DNase cell types by their activity in cREs overlapping SCZ
SNPs, we observed that NCI-H226 did not cluster with lung tissue but rather in a large block consisting of various primary cells and cell lines suggesting that the enrichment is not due to lung-related factors but rather properties unique to the immortalized cell NCI-H226 (External Figure 4.1). For CD SNPs, when we filtered using H3K27ac, the top five most enriched tissues were brain (middle frontal area), neural cells, OCI-LY7 (lymphoma cell line), neural progenitor cells, and iPS-20b. When we excluded cREs on chromosome 6, OCI-LY7 dropped in ranked from third most enriched tissue to tenth and was replaced by temporal lobe tissue (External Table 4.1). When we filtered by DNase four of the top five most enriched tissues were from the brain (occipital lobe, superior temporal gyrus, middle frontal gyrus and the cerebellar cortex) with other being L1-S8R, an iPS cell line (External Table 4.2).

When we analyzed H3K27ac signal orthologous mouse cREs, we also observed enrichment in brain tissues for SCZ and CD SNPs. SCZ SNPs were enriched in midbrain, forebrain, and hindbrain regions particularly at later developmental time points (Figure 4.1b, External Table 4.3). CD SNPs were enriched primarily in forebrain. These tissues were also highly ranked when filtered cREs using DNase signal but none of the tissues met our FDR threshold of 5%.

With BPD and MDD SNPs we did not observe any enrichments that met our FDR threshold of 0.05, however, due to the small number of SNPs reported in each study we still analyzed top-ranked tissues to look for general patterns of enrichment (External Tables 4.1-4.4). In the case of MDD, there were no
enrichments for human cell types \((p < 0.05)\) thresholding by either H3K27ac or DNase. However, when we filtered with H3K27ac in mouse, we observed enrichments in hindbrain and neural tube tissue at time points e13.5 and e14.5 (Figure 4.1b, External Table 4.3). When we used DNase for filtering, we observed enrichment in CD-1 mesoderm tissue (External Table 4.4). For BPD SNPs, we only observed enrichment for human cell types with H3K27ac data. Four of the top five most enriched tissues were from blood (T cell subtypes and mononuclear blood cells) while the fifth was iPSC cell line 20b (External Table 4.1). We repeated the analysis filtering out variants on chromosome 6 to account for SNPs in the MHC. We still observed enrichments in T helper cells and iPSCs but now observed enrichments in SK-N-MC, a neuroblast cell line, HUES64 ESCs and fetal adrenal gland (External Table 4.1). In mouse, the only tissue with \(p<0.05\) for CD SNPs was bone marrow (External Table 4.3).

Overall, psych SNPs, particularly SCZ and CPD SNPs, are enriched in cREs that are active in brain tissue and neural cells in both human and mouse. We also observed enrichment of cREs in immune-related tissues such as fetal thymus for SCZ SNPs, T cells for BPD SNPs, and lymphoma cell line for CD SNPs. While these enrichments became less significant when we removed cRES on chromosome 6, they were still some of the top-ranked tissues.

SCZ and CD SNPs regulate genes expressed in the brain involved in neural pathways
Since we determined that the majority of signals for the psych GWAS can be explained by SNPs in cREs, we wanted to determine the genes regulated by these regions. We began by analyzing expression quantitative trait loci (eQTLs) generated by the Genotype-Tissue Expression (GTEx) project. In their 2015 release, the GTEx project reported over one million eQTLs surveyed across 44 tissues, ten of which are from the brain. We intersected our psych SNPs with a list of GTEx tissue specific eQTLs curated by HaploReg. LD blocks containing SCZ and CD SNPs were enriched for eQTLs with about 43% of LD blocks overlapping at least one eQTL ($p=4.5\times10^{-3}$, $p=8.5\times10^{-3}$, fisher’s exact test) (Table 4.6). BPD and MDD LD blocks were neither enriched nor depleted.

When we analyzed the tissue specificity of these eQTLs we did not observe any enrichments with an FDR < 5% (External Table 4.5). Unlike cRE enrichments, most of the top ranked tissues for SCZ and CD genes were not from the brain. For SCZ only two of the top five tissues were from the brain (cerebellum and frontal cortex) with the others from thyroid, whole blood, and testis. For CD eQTLs, there were no brain regions in the top five tissues. BPD and MDD eQTLs did not have any tissues with $p<0.05$. In order to further investigate these eQTL genes, we first looked for enrichment of gene ontology (GO terms) using PantherDB. For all four eQTL genes sets, we did not observe any significant enrichments for GO terms. Using GTEx expression data we compared the expression of these eQTL linked genes to those linked with control SNPs. When we analyzed the top ten most enriched tissues, we only observed three brain regions for SCZ SNPs; the
other tissues were testis, female reproductive tissues and colon (Figure 4.3, External Tables 4.6). CD eQTL genes were enriched for expression in immune tissues such as EBV lymphocytes, spleen and whole blood. MDD and BPD eQTLs genes did not have enrichments with p < 0.05.

These results lead us to believe that many of these eQTL links were tissue specific and LD may prevent us from identifying the direct target of the cRE. For example, rs9936474 overlaps cRE EH37E1142914 which has high H3K4me3, H3K27ac, and DNase signal in human brain tissues (External Table 4.13). While this cRE overlaps a noncoding RNA (CTD-2574D22.4), its closest protein coding gene (1.6 kb away) is \textit{KCTD13}, a gene which encodes a potassium channel tetramerization domain protein. \textit{KCTD13} is highly expressed in developing brain and neural cells (External Table 4.9) and has previously been linked with psychiatric disorders and brain development pathways143,144. If we only consider genes linked via eQTLs as potential target genes, \textit{KCTD13} is not one of the 16 genes on the list. This example highlights two major problems with solely using eQTLs to predict target genes. First, none of the eQTL links for rs9936474 are in brain; some of the eQTLs may be tissue specific and therefore are not relevant to SCZ. If we restrict ourselves to only using eQTLs from brain tissue, however, we cover less than 20% of GWAS LD blocks. Second, of these 16 potential gene targets, only five are within 100kb of EH37E1142914. The majority of these links are likely due to indirect regulatory effects or SNPs in LD with rs9936474 rather than direct regulation by EH37E1142914. Because of these two issues, we believe
using only eQTL genes for target gene prediction results in a gene list full of false positives and negatives. Therefore, we decided to curate our own lists of putative target genes for further analysis.

In chapter III, we demonstrated that 61% of high resolution GM12878 POLII ChIA-PET data links connected ELS cREs with the promoter of the closest protein coding gene; additionally, 86% of ELS-promoter links are with 100kb (Figure 4.4a). As we did not have POLII ChIA-PET in human or mouse brain tissues, we curated potential target genes based the observed ranges in GM12878. For each study, we generated two lists of genes: 1) all protein coding genes with a TSS within 100kb of the SNP, 2) the closest protein coding gene using linear distance from TSS for each SNP. These gene lists have limited overlap with eQTL genes (Figure 4.4b); in fact, approximately 41% of eQTL genes are unique.

We began by analyzing the expression of each of the genes sets comparing them to gene sets generated using control SNPs. For SCZ and CD, both the closest gene set and 100kb gene sets were enriched for expression in brain tissues surveyed by GTEx and ENCODE (Figure 4.3b,c, External Tables 4.7-4.8). Specifically, the closest genes for SCZ (N=157) had the most significant enrichment in the frontal cortex, cortex and anterior cingulate cortex. When we compared the expression of these genes using ENCODE RNA-seq data, we also observed enrichment in brain tissue, such as the parietal, occipital and temporal
lobes of fetal brain (Figure 4.3d). We also analyzed the expression of orthologous mouse genes using gene expression data from the developmental time series. SCZ genes were enriched for expression in brain tissue (forebrain, midbrain, and hindbrain) particularly at later time points (Figure 4.3e). CD genes also were enriched for expression in brain tissues for both human GTEx and ENCODE samples, but these enrichments did not meet our FDR threshold of 5% (External Tables 4.7 and 4.8). We did not observe any significant (p<0.05) tissue-specific enrichments in expression for the BPD and MDD gene lists (External Tables 4.7 and 4.8). This is not surprising since we were also unable to detect strong tissue-specific enrichments in cRE activity for these disorders.

We also performed gene ontology analysis using these genes lists. For SCZ genes, we observed overwhelming enrichment in neural pathway terms (Figure 4.4f, Table 4.7, External Table 4.10) such as neuron components, synaptic transmission and gated channel activity. This suggests that these SCZ genes have primary roles in neural pathways. For the other disorders, there were not many enriched terms (External Table 4.10). For CD genes, we observed significant enrichments in immune related terms such as T-cell activation and MHC Class II receptor activity. However, these terms were no longer significant after removing genes on chromosome 6; therefore, these enrichments were only driven by SNPs in the MHC. The one enrichment that did remain significant was for genes in the Alzheimer disease-amyloid secretase pathway. For MDD, there were two genes,
IL12A and IL12B, that were components of the interleukin-12 complex. Finally, there were three BPD genes involved with mannose metabolic processes.

Overall, we determined that potential target genes of SCZ SNPs have enriched expression in brain tissues and have roles in neural pathways. We also determined that solely using eQTLs to predict target genes results in enrichments for unrelated cell and tissues types possibly due to tissue specificity and LD.

Temporal activity of cREs containing psych SNPs reveals biological role

Since psych SNPs are enriched in orthologous mouse cRES active in developing brain tissues and are near genes expressed during these timepoints, we wanted to know if there was a temporal dependence on this enrichment. Using K-means clustering (K=4), we grouped cREs using H3K27ac signal across embryonic development in mouse forebrain, midbrain, and hindbrain. The resulting four clusters had nearly identical temporal patterns across the three brain subregions: cluster 1 cREs increased in activity overtime, cluster 2 cREs decreased in activity over time, cluster 3 cREs increased in activity until ~e12.5 then decrease in activity, and cluster 4 cREs increased in activity and tapered off/slightly decreased just before birth (Figure 4.5a). Comparing across the tissues, we determined that cREs tended to belong to the same clusters in all three tissues (Figure 4.5b). For each cRE group, we generated a list of linked genes by selecting the nearest protein coding gene defined using linear distance to the closest TSS. We observed the gene expression patterns of these linked genes followed the
same trends as H3K27ac signal patterns across forebrain, midbrain, and hindbrain demonstrating that trends we observed in cREs hold for gene expression (Figure 4.5c). We then performed GO analysis with these gene lists and selected all enriched terms with a bonferroni corrected p-value > 0.05 (Figure 4.5d, External Table 4.11). Cluster 1 cREs were near genes involved with basic cellular processes such as translation, nuclear transport and metabolism. Cluster 2 cREs were near genes involved with embryonic development including neural crest cell differentiation, regulation of cell cycle arrest and embryonic pattern specification. Cluster 3 cREs, were enriched in terms related to CNS development such as neuron fate specification, cranial nerve development, and pallium development. Cluster 4 cREs, were enriched GTPase signaling, axon development, and neuron projection morphogenesis.

Using these clusters, we tested whether psych SNPs were enriched in cREs with a specific temporal activity pattern. To account for LD structure for both psych SNPs and controls, we randomly selected one representative cRE per LD block and averaged the results over 500 trials. In general, psych SNPs were not enriched for cREs with a specific temporal pattern. SCZ, MDD, and CD SNPs were evenly distributed across cREs clusters in the three brain regions (External Table 4.12). BPD SNPs on the other hand were enriched in cREs in cluster 2 cREs in midbrain and hindbrain (Chi-Square test p=2.83E-02, 5.47E-03). While only a small number of LD blocks overlap mouse cREs, on average 71 and 91% of the cREs are in cluster 2 in midbrain and hindbrain compared to 20 and 21% in controls.
While the majority of psych SNPs were not enriched in a particular temporal cluster, this type of analysis leads to new biological insights of how these SNPs contribute to disease. For example, CD SNP rs12424245 overlaps an ELS cRE in both human and mouse (EH37E0250841 and EM10E0283811). EH37E0250841 lies within CACNA1C, a well-documented SCZ and BPD associated gene88-90,92. CACNA1C encodes a calcium voltage-gated channel subunit and expressed in many tissues such as heart, muscle, and brain (External Table 4.9). In humans, EH37E0250841 has high H3K27ac signal (z-score > 1.64) in 28 cell types including adult brain, heart, and GI tissues and high DNase activity in 168 cell types including fetal brain, spinal cord, and kidney (External Table 4.13). Interestingly, the orthologous mouse cRE, EM10E0283811, only has high H3K27ac signal in neural tissues: forebrain, midbrain, hindbrain and neural tube (Figure 4.6a). In these tissues, EM10E0283811's H3K27ac z-score increases over time, plateauing just before birth; therefore, the K-means algorithm classified EM10E0283811 as a group 4 cRE in forebrain, midbrain, and hindbrain. This pattern of H3K27ac activity also correlates with CACNA1C expression these brain tissues ($r=0.79$) (Figure 4.6b). Though CACNA1C is also highly expressed in heart and lung tissue during embryonic development, EM10E0283811 is a neural specific enhancer and therefore would only control CACNA1C in developing brain tissue. Because of this temporal pattern and EH37E0250841's high H3K27ac signal in human adult brain tissue and high DNase signal in fetal brain tissue, we predict that this ELS cRE turns on during brain development and remains active throughout adulthood.
Therefore, we predict rs12424245 may contribute to the onset of psychiatric disorders by altering the regulation of CACNA1C expression.

Additionally, this temporal analysis enables us to more precisely determine target genes of SNPs. For example, rs7959408, a SCZ SNP, overlaps human cRE EH37E1112284 and mouse cRE EM10E0066315. EH37E1112284 is classified as a distal PLS cRE because it only has high H3K4me3 signal in two cell types: WERI-Rb-1 and bipolar spindle neurons. However, it does have high DNase signal in fetal brain tissue (External Table 4.13). In mice, EM10E0066315 has high DNase and H3K27ac signals across brain tissues (External Table 4.13). Because, EM10E0066315 H3K27ac z-score increases then decreases in forebrain and midbrain (Figure 4.6c), the K-means algorithm classified EM10E0066315 as a group 3 cRE; because of the steady decrease of H3K27ac signal in hindbrain, the K-means algorithm classified EM10E0066315 as a group 2 cRE. These temporal patterns in mouse embryonic brain and the complementary DNase data from human fetal brain suggests that this ELS cRE is only active during brain development. In humans, the closest protein coding gene (GENCODE V19 annotations) to EH37E1112284 is RP11-552I14.1, which has no mouse ortholog and is only expressed in the testis and prostate gland (External Table 4.9). More recent annotations of GENCODE genes (on hg38 genome) reclassify RP11-552I14.1 as a lincRNA gene. Therefore, we sought to identify the potential gene target of this ELS cRE. Using a +/- 300 kb window we analyzed expression levels of all protein coding, human-mouse orthologous genes. The two next closest
protein coding genes, C12orf42 and PAH are not expressed in brain tissue or neural cells. C12orf42 overall has very low expression except in testis and PAH is almost exclusively expressed in the liver tissues (Figure 4.6d, External Table 4.9). ASCL1, a gene involved with neuronal commitment and differentiation, is highly expressed in developing brain and has correlated gene expression with EM10E0066315 H3K27ac signal (r=0.78) (Figure 4.6e, External Table 4.9). Therefore, we predict the target gene of EH37E1112284 and rs7959408 is ASCL1. This analysis demonstrates how analyzing temporal patterns of activity during embryonic development can lead to new biological insights for SCZ and CD.

Psych SNPs overlap putative binding sites for TFs involved in neural and immune pathways

Since we determined psych SNPs are in cREs active in neural and brain tissues and likely regulate genes expressed in these tissues, we wanted to determine the mechanism by which these SNPs alter gene expression. One possibility is that psych SNPs disrupt transcription factor (TF) binding sites, thus altering the regulation of target genes. To test this hypothesis, we analyzed TF binding motifs and ChIP-seq peaks that overlap psych SNPs.

We began by searching for TF sequence motifs overlapping each SNP using experimentally derived motifs from Cis-BP and FIMO, a motif search software. In general, SCZ, MDD, and CD SNPs were enriched for TF motifs but this enrichment was only significant for individual SNPs, not LD blocks as a whole.
Conversely, while individual BPD SNPs were not enriched for TF motifs, BPD LD blocks were with 22 of 23 LD blocks (95%) containing a SNP that overlaps a motif instance. We then tested for enrichment for specific TFs using Fisher's exact test. After selecting all enrichments with FDR < 5%, we clustered TFs with similar motifs (e.g. GC rich SP family motifs) using overlap coefficients and selected one representative TF per group based on the most significant p-value (Figure 4.7).

For SCZ, MDD and CD SNPs, we observed enrichments in motifs corresponding to TFs with important roles in neural differentiation and brain development. For both SCZ SNPs and CD SNPs, SP4 was the most significantly enriched motif (Figure 4.8a). SP4 is primarily expressed in the brain (External Table 4.9) and is thought to play a role in central nervous system development147-149. SP4 has also been previously reported as a disease susceptibility gene in schizophrenia150 and major depressive disorder151,152. In addition to SP4, SCZ SNPs were also enriched in motifs for FOXJ3, NR2F2, and LHX9 all of which are highly expressed in embryonic mouse brain tissue and human neural cells (External Table 4.9) and have roles in CNS (central nervous system) function development153-156. MDD SNPs were enriched for neural related transcription factors HOXA1 and TCF4. HOXA1 is involved with hindbrain and neural tube development and subsequently is highly expressed in these tissues during embryonic development (External Table 4.9). TCF4 is involved in initiating
neuronal differentiation and is primarily expressed in the brain (External Table 4.9). It is also a well-established SCZ susceptibility risk gene89,93-96,105,150,157-159.

In addition to neural related TFs, psych SNPs were enriched for motifs related to immune response and blood cell development (Figure 4.8a). SCZ SNPs were enriched for MGA motifs. MGA is highly expressed in hematopoietic stem cells (External Table 4.9) and is linked with development cell proliferation and development160. CD SNPs were enriched for IRF1 motifs. IRF1, encodes an interferon regulatory factor, which is primarily expressed in blood cells and immune related tissues such as the thymus (External Table 4.9). BPD SNPs were significantly enriched for the SPI1 motif, a transcription factor known to regulate blood cell development161. MDD SNPs were enriched in motifs for RREB1, which is involved with cell differentiation and is a negative regulator of HLA complex162 as well as MEIS1, which regulates hematopoietic development163.

We then compared these enrichments with TF ChIP-seq data by intersecting psych SNPs with ChIP-seq peaks from 914 ENCODE experiments. We calculated enrichment for general TF peak overlap as well as for individual TFs (N=303) and cell types (N=85) using fisher's exact test, removing SNPs on chromosome 6 due to the overwhelming enrichment of RNA POLIII machinery at the MHC. Overall, all SNPs were enriched for overlapping TF peaks but only SCZ SNPs were enriched for specific TFs and cell types. SCZ SNPs were enriched for ChIP-seq peaks for 21 TFs and 14 cells types (Table 4.8). Six of the top ten most enriched cell types were lymphoblastoid cell lines (LCLs); only one, SK-N-SH, was
neural related. While this enrichment for TFs in LCLs may have biological significance, such as the enrichment Ripke et al. observed for SCZ SNPs in B cell H3K27ac peaks, it is most likely due to fact that ENCODE TF ChIP-seq experiments were performed in a different subset of cell types. For example, 22 (25%) of the cell types surveyed for TF ChIP-seq are LCLs, which is significantly higher compared to DNase (0.6%) and H3K27ac (0.7%) experiments. Additionally, unlike DNase and H3K27ac experiments, there are no ENCODE TF ChIP-seq experiments in human brain tissue.

Therefore, in order to gain a better of understanding of the role of cell type specificity with TFs, we decided to compare the expression patterns of the 21 enriched TFs against the other 282 TFs. While we did not observe an enrichment in human cell types, we observed significantly enriched expression in mouse embryonic brain tissues and blood cells (Figure 4C, Table 4.12). In mouse brain, we observed the most significant enrichments in hindbrain and midbrain at timepoints e11.5 and e13.5. In addition to brain, we observed enrichment for expression in mouse B cell and megakaryocytes (Table 4.10). This enrichment in both neural and immune cells compliments both the enrichments we observed in motifs for both neural and immune related TFs.

One possibility for the connection between neural and immune enrichments is due to the dual role of some transcription factors in immune and neural pathways. For example, SCZ SNPs are enriched 2.5-fold in POU2F2 ChIP-seq peaks in lymphoblastoid cell lines GM12878 and GM12891. POU2F2 has well
documented roles in the immune system but has also been identified as a regulator of neuronal differentiation. In humans, POU2F2 is highly expressed (30-40 tpm) in lymphoblastoid cells and bipolar spindle neurons (External Table 4.9) and in mouse, Pou2f2 is highly expressed (30-50 tpm) during brain development. Therefore, the dual roles of POU2F2 and other enriched TFs in both neural and immune pathways may explain the enrichment that we observe for neural and immune system factors. Overall, psych SNPs are enriched in regions bound by TFs involved in neural and immune pathways.

Psych SNPs disrupt sequence motifs resulting in the disruption of TF binding

After identifying global enrichment patterns for psych SNPs, we wanted to identify specific psych SNPs that are likely to be causal. We decided to analyze SNPs that result in allele specific binding of TFs. Using mapped reads directly from the ENCODE processing DNase pipeline, we performed *in silico* genotyping using a method adapted from Maurano et al. We classified a SNP as heterozygous in a given cell-type if there were at least 15 non-redundant DNase reads at the locus and a ratio of minor allele reads to major allele reads greater than 0.05. Similar to Maurano et al, we evaluated our method using SNPs which were genotyped using Illumina Human 1M-Duo arrays during phase 2 of the ENCODE project. Though only 4.7% of the psych SNPs had more than 15 reads, our method had perfect sensitivity (100%) and specificity (100%). To test for allelic imbalance
of DNase reads at heterozygous SNPs, we used a binomial test with an FDR threshold of 5%. In total, we identified 263 allele specific SNPs: 129 for SCZ, 38 for BPD, 24 for MDD and 78 for CD (External Table 4.15). We further annotated these psych SNPs filtering for those that also overlap TF motifs (21%) (External Table 4.15). Within these lists there were several examples of allelic imbalance with interesting biological implications -- four of which we describe in detail below.

MDD SNP rs12552369 overlaps ELS cRE EH37E1025241, which lies in AK8, which encodes an adenylate kinase. AK8 is expressed in human adult hepatocytes and mouse developing lung and brain and has also been reported as a susceptibility genes for ADHD166. EH37E1025241 has high H3K27ac signal in endodermal cells and high DNase signal in fetal brain tissues. We observed allelic imbalance for DNase reads in fetal brain tissue (day 58) with reads favoring the alternative allele A over the reference allele G (Figure 4.9a). Rs12552369 overlaps a RFX2 motif site, and the reference allele results in lower log odds score compared to the alternative allele (Figure 4.9a). We hypothesize rs12552369 disrupts RFX2 binding resulting in altered expression of AK8.

SCZ SNP rs12895055 overlaps ELS cRE EH37E0354132, which lies within BCL11B (Figure 4.9b). BCL11B is a transcriptional repressor that has been linked to T cell and neuronal development167. BCL11B is expressed in skin and brain tissue and its murine ortholog, Bcl11b, is highly expressed in embryonic thymus and brain tissue (External Table 4.9). EH37E0354132 has high DNase signal and H3K27ac across many different cell and tissue types (T-cells, neural cells, and
fetal brain) as does its orthologous mouse cRE EM10E0105028 (External Table 4.13). We observed allelic imbalance at rs12895055 in both fetal arm muscle and eye tissues. DNase reads favored the reference allele, C (72%), over the alternative allele T (Figure 4.9b). Rs12895055 overlaps a SP4 motif, and the alternative allele results in lower log odds score compared to the reference allele (Figure 4.9b). We hypothesize rs12895055 disrupts SP4 binding therefore altering expression of BCL11B during brain development.

BPD SNP rs2861405 overlaps PLS cRE EH37E1171401, which overlaps the TSSs of two genes ZNF490 and ZNF791 (Figure 4.9c). Rs2861405 overlaps a motif for IKZF1, a tumor suppressor TF linked with lymphocyte differentiation. We observed allelic imbalance at rs2861405 in kidney, blood vessel and cerebellar cortex DNase reads all favoring the reference allele C. Interestingly, we also observed allelic imbalance favoring the alternative allele A in fetal muscle. While both ZNF490 and ZNF791 are highly expressed in many tissues, they genes are not expressed equally across all cell types suggesting differing regulation between the genes. Rs2861405 overlaps a motif site for a IKZF1 motif site that slightly favors reference allele C which is reflected in the observed allelic imbalance. We also observe binding of IKZF1 in five of the eight surveyed cell types. Therefore, we hypothesize that rs2861405 disrupts the binding of IKZF1 resulting changes in expression of ZNF490 and/or ZNF791.

Finally, CD SNP rs73048919 overlaps EH37E0884523 a ELS cRE in 22 cell types and a CTCF-only cRE in 18 cell types. We detected significant allelic
imbalance across rs73048919 in 14 cell types with 80% of DNase reads favoring the reference allele, C, over the alternative allele, A (Figure 4.9d). Rs73048919 overlaps CTCF ChIP-seq peaks in 81 ENCODE experiments including the brain cancer cell line SK-N-SH (Figure 4.9d). After confirming our \textit{in silico} genotyping of rs73048919 in SK-N-SH using array genotyped SNPs in LD (rs12666575 and rs6461049), we observe almost complete imbalance of CTCF reads favoring the reference allele (Figure 4.9d). We believe this is because the minor allele of rs73048919 disrupts a CTCF motif site reducing the log odds score of matching the motif. Unlike the previous examples it is difficult to determine the biological consequence of this imbalance. CTCF-only cREs may have different biological functions such as insulators, repressors or anchors of three-dimensional chromatin loops. Since we also observed allelic imbalance of RAD21, a component of the cohesion complex, we propose that in SK-N-SH EH37E0884523 may be an anchor for chromatin loops mediate by cohesion. However, in order to truly elucidate the function of EH37E0884523 we need to perform additional experiments such as CRISPR-CAS9.

\section*{DISCUSSION}

In this chapter, we used the Registry of cREs and data from the ENCODE, Roadmap and GTEx consortia to annotate noncoding variants associated with psychiatric disorders. We observed overwhelming evidence for the role of psych SNPs in neuronal development and function. We demonstrated that SCZ and CD
SNPs are enriched in cREs active in brain tissue and neuronal precursor cells and that these cREs likely target genes expressed in these tissues. While these results are not surprising, they do reaffirm the role for neural development pathways in the onset of psychiatric disorders.

The most significantly enriched TF motif for both SCZ and CD SNPs was for SP4, which we demonstrated has high expression in human neural cells and mouse developing brain. We were also able to identify a potential SP4 binding site within a ELS cRE that we believe is disrupted by the alternative allele ultimately affecting the expression of \(BCL11B \). This strong enrichment for SP4 is of particular interest due to previously established link between SP4 and psychiatric disorders. SP4 has previously been reported as a disease susceptibility gene for BPD152,169 and groups have reported altered SP4 levels in the brain of patients with SCZ and BPD170,171 However, some of the most striking evidence for the role of SP4 in neural development is from Zhou et al who demonstrated hypomorphic SP4 mice undergo changes in behavior and memory formation analogous to symptoms of psychiatric disorders172,173.

Additionally, we demonstrated that we can gain additional insight into the temporal dynamics of cRE activity during brain development. In order to properly study the developing human brain, we would need to collect fetal brain samples for DNase and ChIP-seq experiments at uniform time intervals. Even if we could accomplish this very difficult task there are many factors that may bias results such as gender, genetic background, and gestational conditions. During ENCODE3,
production groups were about to precisely harvest brain regions at specific time points from genetically identical mice. Because of this, we are able to clearly see patterns of activity over time for cREs and identity potential therapeutic targets. For example, EM10E0066315 and ASCL1 are only active during brain development and therefore would not likely be a therapeutic target for an adult presenting with SCZ. However, EH37E0250841 and CACNA1C are active throughout adulthood and may present a better potential target. Our findings also enable us to use mouse models in the future to understand the global response of these variants. Since we demonstrated that psych SNPs are enriched in cREs that are active in mouse brain tissues, we can further investigate the role of these cREs through mouse transgenic assays and CRISPR-Cas9 experiments.

While our analysis supports a strong link between psych SNPs and neural development, our data also suggests that factors linked with the immune system have a role in the genetic risk for psychiatric disorders. We observed enrichments for cREs active in immune tissues, fetal thymus for SCZ, T-cells for BPD SNPs, and lymphoma cells for CD SNPs. We also observed enrichment of motifs for TFs with strong links to the immune system such as IRF1, RREB1, and MEIS1.

There have been several studies suggesting that dysregulation in the immune system has a role in the onset of psychiatric disorders. Smith was one of the first to propose the involvement of the immune system with his macrophage theory of depression174 and macrophage-T-lymphocyte theory of schizophrenia175,176. Additionally, Schwarz and colleagues proposed the Th2-
hypothesis of schizophrenia in which certain subgroups of schizophrenia patients had altered ratio of Th1 cells vs. Th2 cells resulting in differing ratios of cell specific cytokines177,178. There have been numerous studies looking at the levels of cytokines in blood samples of patients with psychiatric disorders. Results from some of these studies are inconsistent with one another due to complexity of psychiatric disorders. For example, difference in results have been attributed to the psychiatric state of the patient during sample collection (e.g. manic episode, first psychotic episode, latent period)179,180. However, there is a general pattern of dysregulation of many different cytokines. Imbalances in cytokines could directly lead to the onset of psychiatric disorders or could be the results of the dysregulation of immune pathways that have roles in regulating the CNS. Recently, Filiano et al. demonstrated that reducing the number of meningeal T cells in mice resulted in a decrease of social behaviors analogous to autism and schizophrenia181.

One hypothesis is that genes involved with the onset of psychiatric disorders have duels roles in both immune and neural development pathways. For example, BCL11B and POU2F2, two genes we report as potential psych risk genes, have important roles in both the immune system and neural development. Therefore, it is possible that the dysregulation of these genes during embryonic development alters brain structure and connections leaving the patient more susceptible to developing a psychiatric disorder. These genes are also dysregulated in the adult immune system, but this is not causal towards developing a psychiatric disorder.
We hope to test this hypothesis by analyzing cell type specific activity patterns and integrating results from additional GWAS.

Even though the signal for the majority of LD blocks can be explained by SNPs in cREs, we currently cannot explain the signal for 21% of the LD blocks. This could be for a variety of reasons. First, SNPs in these LD blocks may overlap cREs that we have yet to annotate. While we have surveyed over 500 biosamples, we have not covered every type of cell in the human body. Additionally, even if we have surveyed the cell type, our current method of curating cREs requires a cRE to have both high DNase signal (Z-score > 1.64) and high H3K4me, H3K27ac, or CTCF signal in at least one cell type. Some cell types such as fetal brain tissue only have DNase signal and therefore we are unable to curate cREs specific to these tissues without additional experiments. Also, psych SNPs may overlap cREs specific to a particular neural cell type such as neurons or glial cells; tissues collected from different brain regions are comprised of many different cell types so signals from a particular cell type may become diluted. Second, the signal for some of these LD blocks may be explained by SNPs that function at the level of transcriptomic regulation versus genomic regulation. These variants may disrupt RNA binding proteins sites, splicing sites or microRNA target sites, altering final protein production. In the future, we can consider these option by analyzing eCLIP and RNA-seq data to further annotate these variants.

Overall our results suggest that genetic variants associated with psychiatric disorders effect the regulation of genes involved in neural development pathways.
and that while components of the immune system may also play a role, the nature of their contribution remains unknown.
FIGURES

Figure 4.1 | Top tissues with enhancer-like cREs enriched for psych SNPs.
Enrichment for a, Human cell types with cREs enriched for psych SNPs. Pie charts indicated the number of LD blocks that overlap cREs. Bars indicate Z-score of –log(p) for each enrichment. MDD SNPs did not have any enrichments with p<0.05. b, Embryonic mouse tissues with orthologous cREs enriched for psych SNPs. Pie charts indicated the number of LD blocks that overlap orthologous mouse cREs. Colors indicate Z-score of –log(p) for each enrichment. BPD SNPs did not have any enrichments with p<0.05.
Figure 4.2 | Enrichment for Psych SNPs in cREs with high H3K27ac signal.

Enrichment for a, schizophrenia, b, bipolar disorder, c, major depressive disorder, and d, cross disorder SNPs in cREs with H3K27ac activity. X axis indicates –log(p). Color indicates tissue of origin with purple representing brain tissue and neural cells and red indicating immune tissue and blood cells.
Figure 4.3 | SCZ SNP genes are enriched for brain expression and neural pathway terms. Enrichment for expression of a, eQTLs genes, b, closest genes, and c, genes within 100 kb for SCZ SNPs in GTEx tissues. Color indicates tissue of origin with purple representing brain tissue and neural cells. d, Enrichment for expression of SCZ closest genes in ENCODE d, human cell types and e, mouse embryonic tissues. f, Enriched gene ontology terms for SCZ closest genes.
Figure 4.4 | Determining genes associated with psych SNPs. a, Distribution of distances between ELS-gene in POLII ChIA-PET dataset. 86% of pairs occur within 100 kb. b, Overlap of genes called by three different methods: green = eQTLs, red=closest gene, blue= all genes within 100 kb.
Figure 4.5 | Analysis of cRE activity across brain development. a, H3K27ac Kmeans clustering of H3K27ac signal across embryonic time points results in four clusters. b, Overlap of cREs in each group between brain subregions. cREs tend to be in the same activity group in all three brain subregions. Color indicates overlap coefficient. c, Expression of closest protein coding genes linked with cREs in each group. d, Enriched gene ontology terms for genes linked with cREs in each group.
Figure 4.6 | Psych SNPs overlap orthologous mouse cREs active throughout brain development. **a**, H3K27ac Z-score signal at EM10E0283811, whose orthologous cRE overlaps CD SNP rs12424245. Color in heatmap indicates H3K27ac Z-score. **b**, Expression of Cacna1c across embryonic development with focus on brain subregions. Color in heatmap indicates Log(TPM). **c**, H3K27ac Z-score signal at EM10E00066315, whose orthologous cRE overlaps SCZ SNP rs7959408. Color in heatmap indicates H3K27ac Z-score. **d**, Expression of Ascl1 across embryonic development with focus on brain subregions. Color in heatmap indicates Log(TPM). **e**, Expression of protein coding genes near EM10E00066315 across mouse embryonic development. Noncoding genes are shown in gray. Color in heatmap indicates Log(TPM).
We connected motifs if they overlapped the same SNP with the thickness of the line indicating the number of common SNPs. Size of each motif is relative to its -log(FDR). For each cluster, we reported the most significant motif.

Figure 4.7 | Clustering of enriched transcription factor motifs.
Figure 4.8 | Psych SNPs are enriched for motifs and binding sites of TFs involved in neural and immune pathways. a, Enriched TF motifs at psych SNPs. b, Enriched expression in mouse tissues and cell types for TF peaks enriched at SCZ SNPs. Colors indicate tissue of origin with purple for brain tissue and red for blood.
Figure 4.9 | Examples of allele specific chromatin accessibility and TF binding at psych SNPs. Allele specific chromatin accessibility at a, MDD SNP rs12552369, b, SCZ SNP rs12895055, c, BPD SNP rs2861405 and d, CD SNP rs73048919. Pie charts indicate percentage of reads with each allele. Numbers next to motif sequences indicate FIMO score for the TF motif at each sequence.
TABLES

Table 4.1 | GWAS studies included in analysis

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Authors</th>
<th>PMID</th>
<th>Publication Date</th>
<th># Reported Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bipolar Disorder (BPD)</td>
<td>Jiang and Zhang</td>
<td>21254220</td>
<td>Feb 2011</td>
<td>24</td>
</tr>
<tr>
<td>Major Depressive Disorder (MDD)</td>
<td>GENDEP</td>
<td>23377640</td>
<td>Feb 2013</td>
<td>49</td>
</tr>
<tr>
<td>Cross-disorders</td>
<td>Cross-Disorder Group of the Psychiatric Genomics Consortium</td>
<td>23453885</td>
<td>April 2013</td>
<td>74</td>
</tr>
</tbody>
</table>
Table 4.2 | Genetic context of psych SNPs

<table>
<thead>
<tr>
<th></th>
<th>Schizophrenia</th>
<th>Bipolar Disorder</th>
<th>Major Depressive Disorder</th>
<th>Cross-Disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># SNPs</td>
<td>% SNPs</td>
<td># SNPs</td>
<td>% SNPs</td>
</tr>
<tr>
<td>Coding Exon</td>
<td>38</td>
<td>1.11%</td>
<td>3</td>
<td>0.41%</td>
</tr>
<tr>
<td>UTR</td>
<td>88</td>
<td>2.57%</td>
<td>18</td>
<td>2.45%</td>
</tr>
<tr>
<td>Intron</td>
<td>2,226</td>
<td>65.13%</td>
<td>450</td>
<td>61.22%</td>
</tr>
<tr>
<td>Intergenic</td>
<td>1,066</td>
<td>31.19%</td>
<td>264</td>
<td>35.92%</td>
</tr>
<tr>
<td>Proximal</td>
<td>505</td>
<td>14.77%</td>
<td>76</td>
<td>10.34%</td>
</tr>
<tr>
<td>Distal</td>
<td>2,913</td>
<td>85.23%</td>
<td>659</td>
<td>89.66%</td>
</tr>
<tr>
<td>Study</td>
<td>SNP</td>
<td>Protein</td>
<td>Reference AA</td>
<td>Alternative AA</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs4584886</td>
<td>ENSP00000326870</td>
<td>R</td>
<td>W</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs2955365</td>
<td>ENSP00000205890</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs2955367</td>
<td>ENSP00000205890</td>
<td>W</td>
<td>G</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs12596883</td>
<td>ENSP00000457441</td>
<td>E</td>
<td>D</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs13107325</td>
<td>ENSP00000349174</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs20551</td>
<td>ENSP00000263253</td>
<td>I</td>
<td>V</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs3176443</td>
<td>ENSP00000354481</td>
<td>L</td>
<td>V</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs3617</td>
<td>ENSP00000415769</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs950169</td>
<td>ENSP00000286744</td>
<td>T</td>
<td>I</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs10117</td>
<td>ENSP00000297185</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs10414643</td>
<td>ENSP00000394510</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs1047361</td>
<td>ENSP00000384899</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs1051431</td>
<td>ENSP00000445859</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs1143702</td>
<td>ENSP00000353030</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs13189822</td>
<td>ENSP00000261483</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs2074090</td>
<td>ENSP00000262815</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs216193</td>
<td>ENSP00000263073</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs2229193</td>
<td>ENSP00000332549</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs2274267</td>
<td>ENSP00000439065</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs2955355</td>
<td>ENSP00000268719</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs2955366</td>
<td>ENSP00000205890</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs3743739</td>
<td>ENSP00000219345</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs3745474</td>
<td>ENSP00000246794</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs3745475</td>
<td>ENSP00000394510</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs4368210</td>
<td>ENSP00000326870</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs4685</td>
<td>ENSP00000335321</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs5629</td>
<td>ENSP00000244043</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs6163</td>
<td>ENSP00000358903</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs62021888</td>
<td>ENSP00000260402</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs7148456</td>
<td>ENSP00000338814</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs749240</td>
<td>ENSP00000263073</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs769267</td>
<td>ENSP00000326215</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs788018</td>
<td>ENSP00000335321</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs788023</td>
<td>ENSP00000335321</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs8539</td>
<td>ENSP00000340019</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs9611519</td>
<td>ENSP00000216237</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs9806806</td>
<td>ENSP00000332549</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>SCZ</td>
<td>rs4072738</td>
<td>record not found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPD</td>
<td>rs10458896</td>
<td>ENSP00000263181</td>
<td>I</td>
<td>V</td>
</tr>
<tr>
<td>BPD</td>
<td>rs2297815</td>
<td>ENSP00000354623</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>BPD</td>
<td>rs4804725</td>
<td>record not found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDD</td>
<td>rs4777035</td>
<td>ENSP00000403392</td>
<td>P</td>
<td>L</td>
</tr>
<tr>
<td>CD</td>
<td>rs678</td>
<td>ENSP00000273283</td>
<td>E</td>
<td>V</td>
</tr>
<tr>
<td>CD</td>
<td>rs214967</td>
<td>ENSP00000341887</td>
<td>S</td>
<td>L</td>
</tr>
<tr>
<td>CD</td>
<td>rs3132580</td>
<td>ENSP00000417182</td>
<td>E</td>
<td>K</td>
</tr>
<tr>
<td>CD</td>
<td>rs1042779</td>
<td>ENSP00000273283</td>
<td>Q</td>
<td>R</td>
</tr>
<tr>
<td>CD</td>
<td>rs41273537</td>
<td>ENSP00000358064</td>
<td>M</td>
<td>V</td>
</tr>
<tr>
<td>CD</td>
<td>rs3094086</td>
<td>ENSP00000417182</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>CD</td>
<td>rs1058766</td>
<td>ENSP00000338629</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>CD</td>
<td>rs11121172</td>
<td>ENSP00000338629</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>CD</td>
<td>rs13596</td>
<td>ENSP00000338629</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CD</td>
<td>rs2071702</td>
<td>ENSP00000436786</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>CD</td>
<td>rs2229193</td>
<td>ENSP00000332549</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>CD</td>
<td>rs2230534</td>
<td>ENSP00000233027</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>CD</td>
<td>rs2230535</td>
<td>ENSP00000233027</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>CD</td>
<td>rs2275271</td>
<td>ENSP00000402831</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>CD</td>
<td>rs2523721</td>
<td>ENSP00000391879</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>CD</td>
<td>rs3740387</td>
<td>ENSP0000039479</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>CD</td>
<td>rs6951493</td>
<td>ENSP00000265854</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>CD</td>
<td>rs7107305</td>
<td>ENSP00000436786</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>CD</td>
<td>rs</td>
<td>ENSP</td>
<td>1st Base</td>
<td>2nd Base</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>CD</td>
<td>rs72696841</td>
<td>ENSP00000358064</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>CD</td>
<td>rs748002</td>
<td>ENSP00000264051</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>CD</td>
<td>rs9324</td>
<td>ENSP00000273283</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>CD</td>
<td>rs9332801</td>
<td>ENSP00000436786</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>CD</td>
<td>rs943037</td>
<td>ENSP00000402831</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>CD</td>
<td>rs9806806</td>
<td>ENSP00000332549</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Study</td>
<td>Total # SNPs</td>
<td># Overlap cREs</td>
<td>Percent</td>
<td>Total # SNPs</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>SCZ</td>
<td>3418</td>
<td>687</td>
<td>20.10%</td>
<td>1635798</td>
</tr>
<tr>
<td>BPD</td>
<td>735</td>
<td>150</td>
<td>20.41%</td>
<td>371792</td>
</tr>
<tr>
<td>MDD</td>
<td>777</td>
<td>159</td>
<td>20.46%</td>
<td>715619</td>
</tr>
<tr>
<td>CD</td>
<td>1784</td>
<td>409</td>
<td>22.93%</td>
<td>1198932</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internal ID</th>
<th>Total # LD Blocks</th>
<th># Overlap cREs</th>
<th>Percent</th>
<th>Total # LD Blocks</th>
<th># Overlap cREs</th>
<th>Percent</th>
<th>Enrichment</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCZ</td>
<td>96</td>
<td>78</td>
<td>81.25%</td>
<td>47408</td>
<td>37518</td>
<td>79.14%</td>
<td>1.03</td>
<td>7.06E-01</td>
</tr>
<tr>
<td>BPD</td>
<td>23</td>
<td>20</td>
<td>86.96%</td>
<td>11221</td>
<td>8901</td>
<td>79.32%</td>
<td>1.1</td>
<td>4.51E-01</td>
</tr>
<tr>
<td>MDD</td>
<td>43</td>
<td>34</td>
<td>79.07%</td>
<td>21276</td>
<td>16002</td>
<td>75.21%</td>
<td>1.05</td>
<td>7.24E-01</td>
</tr>
<tr>
<td>CD</td>
<td>71</td>
<td>49</td>
<td>69.01%</td>
<td>36298</td>
<td>27849</td>
<td>76.72%</td>
<td>0.90</td>
<td>1.24E-01</td>
</tr>
</tbody>
</table>
Table 4.5 | Type of overlapping cREs

<table>
<thead>
<tr>
<th>Disorder</th>
<th>PLS cREs</th>
<th></th>
<th>ELS cREs</th>
<th></th>
<th>CTCF-only cREs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>150</td>
<td>26.83%</td>
<td>387</td>
<td>69.23%</td>
<td>22</td>
<td>3.94%</td>
</tr>
<tr>
<td>Bipolar Disorder</td>
<td>21</td>
<td>19.63%</td>
<td>78</td>
<td>72.90%</td>
<td>8</td>
<td>7.48%</td>
</tr>
<tr>
<td>Major Depressive Disorder</td>
<td>15</td>
<td>12.82%</td>
<td>98</td>
<td>83.76%</td>
<td>4</td>
<td>3.42%</td>
</tr>
<tr>
<td>Cross-Disorder</td>
<td>68</td>
<td>20.86%</td>
<td>253</td>
<td>77.61%</td>
<td>5</td>
<td>1.53%</td>
</tr>
</tbody>
</table>
Table 4.6 | Overlap of eQTLs and psych SNPs

<table>
<thead>
<tr>
<th>Disorder</th>
<th># eQTL SNPs</th>
<th>% Total SNPs</th>
<th># eQTL SNPs</th>
<th>% Total SNPs</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCZ</td>
<td>2171</td>
<td>63.52%</td>
<td>757632</td>
<td>46.32%</td>
<td>1.87E-90</td>
</tr>
<tr>
<td>BPD</td>
<td>189</td>
<td>25.71%</td>
<td>142694</td>
<td>38.38%</td>
<td>5.24E-13</td>
</tr>
<tr>
<td>MDD</td>
<td>217</td>
<td>27.93%</td>
<td>223867</td>
<td>31.28%</td>
<td>4.41E-02</td>
</tr>
<tr>
<td>CD</td>
<td>868</td>
<td>48.65%</td>
<td>495409</td>
<td>41.32%</td>
<td>4.34E-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disorder</th>
<th># eQTL LD Blocks</th>
<th>% Total LD Blocks</th>
<th># eQTL LD Blocks</th>
<th>% Total LD Blocks</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCZ</td>
<td>52</td>
<td>54.17%</td>
<td>18707</td>
<td>39.46%</td>
<td>4.52E-03</td>
</tr>
<tr>
<td>BPD</td>
<td>10</td>
<td>43.48%</td>
<td>3641</td>
<td>32.45%</td>
<td>2.70E-01</td>
</tr>
<tr>
<td>MDD</td>
<td>11</td>
<td>25.58%</td>
<td>5600</td>
<td>26.32%</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>CD</td>
<td>35</td>
<td>49.30%</td>
<td>12403</td>
<td>34.17%</td>
<td>8.52E-03</td>
</tr>
</tbody>
</table>
Table 4.7 | Enriched gene ontology terms for SCZ closest genes

<table>
<thead>
<tr>
<th>Category</th>
<th>Term</th>
<th>Fold Enrichment</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO Cellular Component</td>
<td>postsynapse (GO:0098794)</td>
<td>5.81</td>
<td>3.82E-06</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>neuron projection (GO:0043005)</td>
<td>3.44</td>
<td>1.43E-05</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>somatodendritic compartment (GO:0036477)</td>
<td>4.16</td>
<td>5.46E-05</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>neuron part (GO:0097458)</td>
<td>3.01</td>
<td>7.47E-05</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>dendrite (GO:0030425)</td>
<td>4.71</td>
<td>2.13E-04</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>postsynaptic density of dendrite (GO:0014069)</td>
<td>7.45</td>
<td>4.79E-04</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>postsynaptic specialization (GO:0099572)</td>
<td>7.42</td>
<td>5.02E-04</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>asymmetric synapse (GO:0032279)</td>
<td>7.31</td>
<td>5.80E-04</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>neuron to neuron synapse (GO:0098984)</td>
<td>7.24</td>
<td>6.38E-04</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>modulation of chemical synaptic transmission (GO:0050804)</td>
<td>6.14</td>
<td>7.96E-04</td>
</tr>
<tr>
<td>GO Biological Process</td>
<td>Nicotine pharmacodynamics pathway (P06587)</td>
<td>19.93</td>
<td>1.02E-03</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>synapse part (GO:0044456)</td>
<td>3.73</td>
<td>1.29E-03</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>synapse (GO:0045202)</td>
<td>3.42</td>
<td>1.30E-03</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>neuronal cell body (GO:0043025)</td>
<td>4.63</td>
<td>1.47E-03</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>cell projection (GO:0042995)</td>
<td>2.36</td>
<td>3.80E-03</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>plasma membrane bounded cell projection (GO:0120025)</td>
<td>2.37</td>
<td>5.10E-03</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>cell body (GO:0044297)</td>
<td>4.06</td>
<td>7.20E-03</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>postsynaptic membrane (GO:0045211)</td>
<td>6.08</td>
<td>9.84E-03</td>
</tr>
<tr>
<td>GO Biological Process</td>
<td>regulation of membrane potential (GO:0042391)</td>
<td>4.73</td>
<td>1.71E-02</td>
</tr>
<tr>
<td>PANTHER Pathways</td>
<td>Nicotinic acetylcholine receptor signaling pathway (P00044)</td>
<td>8.05</td>
<td>1.88E-02</td>
</tr>
<tr>
<td>GO Cellular Component</td>
<td>synaptic membrane (GO:0097060)</td>
<td>5.05</td>
<td>1.90E-02</td>
</tr>
<tr>
<td>GO Biological Process</td>
<td>chemical synaptic transmission, postsynaptic (GO:0099565)</td>
<td>11.86</td>
<td>2.27E-02</td>
</tr>
<tr>
<td>GO Molecular Function</td>
<td>gated channel activity (GO:0022836)</td>
<td>4.91</td>
<td>2.37E-02</td>
</tr>
<tr>
<td>GO Biological Process</td>
<td>biological regulation (GO:0065007)</td>
<td>1.31</td>
<td>3.45E-02</td>
</tr>
<tr>
<td>GO Biological Process</td>
<td>regulation of neurogenesis (GO:0050767)</td>
<td>3.49</td>
<td>4.13E-02</td>
</tr>
</tbody>
</table>
Table 4.8 | Enriched TF ChIP-seq peaks overlapping SCZ SNPs

<table>
<thead>
<tr>
<th>TF</th>
<th>Fold Enrichment</th>
<th>P-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCLAF1</td>
<td>3.6255</td>
<td>2.38E-04</td>
<td>2.85E-02</td>
</tr>
<tr>
<td>TAF1</td>
<td>2.1440</td>
<td>3.06E-04</td>
<td>2.85E-02</td>
</tr>
<tr>
<td>TAF7</td>
<td>3.2253</td>
<td>3.53E-04</td>
<td>2.85E-02</td>
</tr>
<tr>
<td>ZNF263</td>
<td>2.2811</td>
<td>3.76E-04</td>
<td>2.85E-02</td>
</tr>
<tr>
<td>POU2F2</td>
<td>2.5088</td>
<td>5.81E-04</td>
<td>3.52E-02</td>
</tr>
<tr>
<td>CCNT2</td>
<td>2.5539</td>
<td>7.34E-04</td>
<td>3.71E-02</td>
</tr>
<tr>
<td>USF1</td>
<td>2.0150</td>
<td>9.89E-04</td>
<td>3.78E-02</td>
</tr>
<tr>
<td>PHF8</td>
<td>2.3665</td>
<td>1.08E-03</td>
<td>3.78E-02</td>
</tr>
<tr>
<td>SREBF1</td>
<td>3.0027</td>
<td>1.12E-03</td>
<td>3.78E-02</td>
</tr>
<tr>
<td>SAP30</td>
<td>2.8971</td>
<td>1.49E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>CEBPD</td>
<td>3.2675</td>
<td>1.83E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>eGFP-ATF1</td>
<td>1.9465</td>
<td>2.03E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>NBN</td>
<td>2.7484</td>
<td>2.25E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>RFX5</td>
<td>2.2771</td>
<td>2.28E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>ZNF207</td>
<td>2.8709</td>
<td>2.63E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>eGFP-ZBTB11</td>
<td>2.1681</td>
<td>2.64E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>FLAG-SSRP1</td>
<td>2.8535</td>
<td>2.74E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>eGFP-ELF1</td>
<td>2.3168</td>
<td>2.76E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>SIN3A</td>
<td>1.7325</td>
<td>2.85E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>TBP</td>
<td>1.8900</td>
<td>2.90E-03</td>
<td>4.40E-02</td>
</tr>
<tr>
<td>TARDBP</td>
<td>2.1932</td>
<td>3.26E-03</td>
<td>4.70E-02</td>
</tr>
</tbody>
</table>
Table 4.9 | Enriched cell types with TF ChIP-seq peaks overlapping SCZ SNPs

<table>
<thead>
<tr>
<th>TF</th>
<th>Fold Enrichment</th>
<th>P-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM15510</td>
<td>2.97</td>
<td>1.51E-04</td>
<td>9.89E-03</td>
</tr>
<tr>
<td>GM10847</td>
<td>3.33</td>
<td>2.68E-04</td>
<td>9.89E-03</td>
</tr>
<tr>
<td>HEK293</td>
<td>1.82</td>
<td>4.02E-04</td>
<td>9.89E-03</td>
</tr>
<tr>
<td>GM19099</td>
<td>2.64</td>
<td>5.27E-04</td>
<td>9.89E-03</td>
</tr>
<tr>
<td>GM18526</td>
<td>2.88</td>
<td>5.82E-04</td>
<td>9.89E-03</td>
</tr>
<tr>
<td>SK-N-SH</td>
<td>1.59</td>
<td>1.81E-03</td>
<td>2.17E-02</td>
</tr>
<tr>
<td>PFSK-1</td>
<td>2.14</td>
<td>2.23E-03</td>
<td>2.17E-02</td>
</tr>
<tr>
<td>GM19193</td>
<td>2.28</td>
<td>2.28E-03</td>
<td>2.17E-02</td>
</tr>
<tr>
<td>H1-hESC</td>
<td>1.44</td>
<td>2.43E-03</td>
<td>2.17E-02</td>
</tr>
<tr>
<td>GM18505</td>
<td>2.34</td>
<td>2.55E-03</td>
<td>2.17E-02</td>
</tr>
<tr>
<td>Panc1</td>
<td>2.07</td>
<td>3.03E-03</td>
<td>2.31E-02</td>
</tr>
<tr>
<td>Raji</td>
<td>2.37</td>
<td>3.26E-03</td>
<td>2.31E-02</td>
</tr>
<tr>
<td>GM18951</td>
<td>2.07</td>
<td>4.13E-03</td>
<td>2.69E-02</td>
</tr>
<tr>
<td>Ishikawa</td>
<td>1.79</td>
<td>4.42E-03</td>
<td>2.69E-02</td>
</tr>
<tr>
<td>Tissue/Cell Types</td>
<td>Enriched Expression</td>
<td>Background Expression</td>
<td>~ Fold Enrichment</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>B10.H-2aH-4bp/Wts CH12.LX</td>
<td>39.86</td>
<td>13.87</td>
<td>2.87</td>
</tr>
<tr>
<td>C57BL/6 hindbrain embryo (11.5 days)</td>
<td>31.75</td>
<td>18.65</td>
<td>1.70</td>
</tr>
<tr>
<td>C57BL/6 midbrain embryo (13.5 days)</td>
<td>39.86</td>
<td>18.26</td>
<td>2.18</td>
</tr>
<tr>
<td>C57BL/6 midbrain embryo (11.5 days)</td>
<td>35.90</td>
<td>19.29</td>
<td>1.86</td>
</tr>
<tr>
<td>C57BL/6 forebrain embryo (13.5 days)</td>
<td>38.17</td>
<td>20.49</td>
<td>1.86</td>
</tr>
<tr>
<td>C57BL/6 midbrain embryo (16.5 days)</td>
<td>24.05</td>
<td>15.55</td>
<td>1.55</td>
</tr>
<tr>
<td>C57BL/6 forebrain embryo (11.5 days)</td>
<td>46.56</td>
<td>22.09</td>
<td>2.11</td>
</tr>
<tr>
<td>C57BL/6 hindbrain embryo (13.5 days)</td>
<td>30.95</td>
<td>17.58</td>
<td>1.76</td>
</tr>
<tr>
<td>C57BL/6 megakaryocyte male adult (5-6 weeks)</td>
<td>23.19</td>
<td>13.56</td>
<td>1.71</td>
</tr>
<tr>
<td>C57BL/6 midbrain embryo (12.5 days)</td>
<td>41.95</td>
<td>25.41</td>
<td>1.65</td>
</tr>
</tbody>
</table>
EXTERNAL FIGURES AND TABLES

These figures and tables are too large to include in the PDF version of this thesis. They are available online at

https://drive.google.com/drive/folders/0B07orkTYRj9pRy1ldE9JUVYVTzA?usp=s haring
METHODS

Generating Control Datasets

For each lead SNP from the NHGRI GWAS catalog182,183, we selected a random SNP from the SNP chip used in the study that fell in the same minor allele frequency (MAF) quartile and distance from transcription start site (TSS) quartile as the lead SNP. For each of the control SNPs, we extracted all SNPs in LD ($r^2>0.7$) based on phasing analysis from the 1000 Genomes Project European population (EUR)113 using the HaploReg Database106. This constituted one control dataset. We generated 500 control datasets for each GWAS. This method was adapted from the Understanding Enrichment Through Simulation (UES) algorithm from the Klein lab101.

Testing for Enrichment in cRE Activity

Using Bedtools (v25.5.0) we intersected psych and control SNPs with cREs from the Registry of cREs. To assess whether the cREs in a cell type were enriched in psych SNPs, we select all cREs overlapping psych or control SNPs with cREs that have a H3K27ac/DNase Z-score > 2 in the cell type. To avoid over counting, we pruned the overlaps, counting each LD group once per cell type. We calculated enrichment between GWAS LD groups with the 500 matched controls using a one-sided Fisher's exact test. Finally, we applied an FDR of 5% to each study. To compare relative enrichments across studies, we calculated Z-scores of the -log(p-value).
Enrichment for Gene Expression

For each cell type, we tested whether the psych genes group had higher expression than the control group using a one-sided Wilcoxon-Rank Sum test. We used gene expression values generated by the GTEx consortium108 and the ENCODE project. We also considered mouse datasets for which we compared the expression of genes with orthologous mouse genes as defined by the Jackson laboratory (HOM_MouseHumanSequence.rpt).

Gene Ontology Analysis

We performed gene ontology analysis using the online tool Panther’s statistical overrepresentation test (http://pantherdb.org/). For all analyses, we reported enrichments from five collections: GO Molecular Function, GO Biological Process, GO Cellular Component, Reactome Pathways, and Panther Pathways. We only report categories with a Bonferroni p-value < 0.05.

Temporal Clustering of Brain cREs

We selected all mouse cREs that had a DNase Z-score > 1.64 and H3K27ac Z-score > 1.64 for at least one brain region time point. For each of these brain cREs we extracted their Z-score signal for forebrain, midbrain, and hindbrain. For each cRE in each tissue, we normalized the range of Z-scores so that all values fell between 0 and 1. Using the elbow method, we determined the optimal number
of clusters was four. We then implemented K-means clustering for each tissue using the python scikit learn package.

Determining Overlapping Motifs

For each psych SNP, we generated major and minor allele sequences for 41 bps window centered on the SNP. Using the FIMO algorithm, we searched for motifs from the CISBP transcription factor database145. We selected all motifs that overlapped a psych SNP with a q-value < 0.05. We tested for motif enrichment by comparing the fraction of psych SNPs overlapping each motif compared to the control SNPs using one-sided fisher's exact test and applying an FDR of 5%.

Enrichment for TF Binding Sites

We intersected psych and control SNPs with optimal IDR ChIP-seq peaks from 914 ENCODE experiments. To assess whether psych SNPs we enriched for a TF binding sites, we used a one-sided Fisher's exact test comparing the number psych SNPs overlapping peaks vs control SNPs after pruning for LD. We ran three tests: 1) analyzing TFs 2) analyzing cell types, and 3) analyzing individual experiments. In all three cases we applied an FDR of 5%.

Testing for Allele Specificity

To test for allele specificity, began by first identifying heterozygous loci. For each psych SNP, we determined for which cell types it overlapped an active
cRE (DNase Z-score). For these cell types, we downloaded mapped reads DNase reads (bam files) and determined the allele at the SNP. We considered a locus heterozygous if it has at least 15 reads at the ratio of the alternative allele to reference allele was at least 0.05. If a SNP was heterozygous, we tested for allele specificity in that cell type using a two-sided Fisher's exact test. We evaluated our in silico genotyping method using genotyping results generated by the ENCODE consortium: wgEncodeHaibGenotypeB alleleSnp2015-03-04.tsv

Scripts

Scripts for this analysis can be found on GitHub: https://github.com/Jill-Moore/Dissertation/tree/master/Chapter-IV/
CHAPTER V: Conclusions and Future Directions

Introduction

In this thesis, we described the Registry of candidate Regulatory Elements, a collected of putative regulatory regions we curated across the human and mouse genomes. We demonstrated several biological applications of cREs, in particular their use in annotating variants reported by genome wide association studies (GWAS). In Chapter III, we evaluated methods for linking cREs with potential target genes. We developed a benchmark of ELS-gene links which we used to test correlation methods and Random Forest models. In Chapter IV, we demonstrated the usefulness of the Registry by annotating genetic variants associated with psychiatric disorders. Our results suggest that in GWAS variants disrupt neural pathways and may also play a role in the immune system.

The Registry of cREs and Future Plans for Expansion

Chapter II of this thesis detailed the creation and implementation of the Registry of cREs. We curated this registry by integrating hundreds of DNase-seq and ChIP-seq datasets, generating over 1.3 million cREs in human and 400 thousand cREs in mouse. We classified these cREs into groups using H3K4me3, H3K27ac, and CTCF ChIP-seq signals and extended these classification schemes to generate cell type specific annotations for every cRE. We based these classification schemes on unsupervised enhancer prediction methods that we developed using embryonic mouse data. In this analysis, we determined that
combining DNase and H3K27ac data was the best performing method and we used this method to predict enhancers which were validated using transgenic mouse assays. Subsequent analyses of our classification schemes demonstrated they are concordant with other enhancer prediction methods, particularly those that also integrate epigenomic datasets. We further demonstrated the utility of the registry of cREs by annotating variants reported by GWAS, particularly in Chapter IV where we focused on SNPs associated with psychiatric disorders.

Unlike other collections of regulatory elements, The Registry of cREs has several unique features which make it useful for biological research. First, we accessioned all cREs so they can be accurately referenced in presentations and publications. Other tools generate run-specific identifiers for their called regions, but these are not maintained during subsequent uses of the programs. Additionally, the Roadmap Epigenomics Consortium generated genome segmentations for 3 different ChromHMM models (15 state, 18 state and 25 state models). Determining the exact elements a paper used may be difficult if the authors do not specifically mention which set of segmentations they used. Second, boundaries of cREs are fixed across cell types, which allows us to evaluate the cell type specificity of a cRE. While not all elements retain the same boundaries between cell types, we have observed that the vast majority do within 50 bp. In the future, we can further annotate cREs with estimated boundaries in each cell type using overlapping DHSs. Third, to annotate and investigate cREs, users can download the Registry from the ENCODE portal or use our web based tool.
SCREEN. Unlike other web-based catalogs of regulatory elements, SCREEN is user friendly, especially for biologists without a computational background. Additionally, by integrating other data from the ENCODE Encyclopedia and the NHGRI-EBI GWAS catalog, users can easily characterize regions of interest. The Registry of cREs also bridges the gap between mouse and human for comparing gene regulation. Users can investigate cREs that are orthologous between the species, which ultimately allows them to survey different types of data across new cell types.

Moving forward, we plan on expanding the Registry of cREs. During Phase IV of the ENCODE project, production labs will generate new DNase-seq and histone modification ChIP-seq datasets which we will incorporate into the registry. We are collaborating with data production labs to expand the Registry in two ways. One to generate datasets that will increase the number of cell types with four core epigenomic marks (DNase, H3K4me3, H3K27ac, and CTCF). We currently have 21 cell types with all four marks and by increasing this number we can further analyze cREs for tissue specificity and different regulatory roles across cell types. Two, generate datasets from underrepresented cell types that are not currently covered by the Registry. Using publicly available data processed by CISTROME, we plan on identifying cell types with a low numbers of overlapping histone modification peaks or DHSs and will prioritize these cell type for data generation.

We also aim to identify new classes of regulatory elements such as repressors. While labs have experimentally characterized repressive elements,
there are currently no methods for computationally predicting them. One possible direction is to study REST ChIP-seq binding sites. As mentioned in Chapter I, REST is a repressive transcription factor that binds at RE-1 elements and prevents the transcription of neuronal genes in non-neuronal cell types20. The ENCODE consortium has generated REST ChIP-seq data for over 25 cell types. Using the Registry of cRE we can determine if REST binding sites overlap 1) our current set of cREs, or 2) rDHSs that are not currently classified as cREs. If the former, this suggests that: a) repressors are also enriched for H3K27ac signal, b) repressors act as enhancers in other cell types, or c) the majority of REST binds to enhancers. If the latter, we can determine which features (TF signal, histone modification signal, sequence motifs) are enriched at rDHSs with REST binding and using these features, identify cREs that are likely to silence gene expression. In addition to identifying new classes of cREs, we hope to develop a more sophisticated classification scheme for cREs. We currently categorize cREs in generalized groups, which make interpretation easy but may miss finer biological features. For example, we currently classify all proximal cREs with high H3K4me3 signal as PLS. However, we have observed that PLS cRE that directly overlap TSS have different features than those that do not. Therefore, we might be able to split these cREs into two distinctive classes. In cell types such as GM12878, K562 and H1-hESCs, we hope to integrate TF data and cluster cREs based on TF binding to observe if there are any natural classes of elements. These analyses may reveal sub-types of regulatory elements.
Evaluating Methods Prediction Enhancer-Gene Links

In order to accurately evaluate enhancer-gene linking methods we developed a benchmark of ELS-gene pairs base on chromatin and genetic interaction data. We used this benchmark to test correlation base methods and found they had low overall performance. While these methods can identify ELS-gene pairs, they have extremely high false negative and positive rates. These results suggest that previous work by ENCODE labs may not identify the correct target gene and should be used with caution. We then developed Random Forest models which had remarkable improvement over unsupervised approaches and can be applied across cell types. Finally, we demonstrated the practical applications of target gene predictions by identifying a novel GWAS gene associated with multiple sclerosis.

We felt that it was important to included different types of genomic interaction data in our benchmark because each experiment assays a different type of interaction. For example, POLII ChIA-PET links tend to be close together and occur within the larger domain of CTCF ChIA-PET links. Eventually, we hope to train models that will be able to identify specific links; for example, using Shannon Entropy, we can predict whether an ELS cRE is more likely to be an a CTCF loop (ubiquitous activity) or POLII loop (cell type specific activity). In the future, we also hope to expand our benchmark. During phase IV of the ENCODE project, the Ruan and Aiden labs plan on generating new ChIA-PET and Hi-C.
datasets for cell types covered by the Registry of cREs. Therefore, we will incorporate these new links into our benchmark. Additionally, we plan on adding confidence levels to our benchmark. With our proposed classification scheme, most of our ELS-gene pairs would be considered a "bronze" standard (i.e. they are supported by one type of link). A subset of the pairs would be considered a "silver" standard if they are supported by both physical and genetic interactions (i.e. Hi-C/ChIA-PET and eQTLs). Finally, if some of these predictions are experimentally validated using genome editing techniques, we will label them as a "gold" standard. Expanding this benchmark will enable us to further refine our methods as well as continue to annotate the registry of cREs.

One interesting result from our analysis was the importance of distance for predicting ELS-gene links. Simply ranking genes by distance has a higher AUPR than even the best performing correlation method and distance was consistently the most important feature in our Random Forest models. This heavy reliance on distance is partially due to how ELS-gene links are distributed. Some methods such as TargetFinder, use a distance matched negative set, but we feel this method is impractical. In practice, to predict the enhancer of a target gene one would test all genes within a specific distance boundary (e.g. 200 kb) not genes of matched distances. Therefore, while distance may dominate our models, it is a biologically relevant feature that should not be ignored. Additionally, this dependence on distance suggests that while some enhancers target genes at very far distances, the majority of interactions occur nearby.
Moving forward we plan on refining our Random Forest models, by including additional biological features such as CTCF binding sites, and patterns of gene expression. We also plan on comparing our models with the published models PReSTIGE, IM-PET, PETmodule, and TargetFinder. Of particular interest will be how each program performs on individual datasets. For example, TargetFinder, which is trained on Hi-C loops, claims to be able to better identify long range interactions than close range interactions. Therefore, TargetFinder may outperform the other algorithms for identifying Aiden Hi-C pairs but may have lower performance for POLII ChIA-PET pairs.

Ultimately, we hope to apply the best performing model to predict ELS-gene pairs across all cell types in the registry. Then we can identify differences in links between cell types and how these links change over embryonic development.

Annotating Genetic Variants Associated with Psychiatric Disorders

In chapter IV we demonstrated how we can use the Registry of cREs to annotated noncoding variants associated with schizophrenia (SCZ), bipolar disorder (BPD) and major depressive disorder (MDD). By analyzing cRE activity and gene expression, we determined that SCZ SNPs and CD SNPs were enriched for cREs and target genes active in brain tissue and neural development pathways. Interestingly, we also observed enrichments in immune related features such as cRE activity in blood cells and TFs involved in the immune system. These findings are also supported by the previous enrichment in B cell specific H3K27ac peaks.
reported by the PGC105.

We developed several hypotheses for this observed enrichment. The first being that the immune system is interacting directly with the central nervous system and its dysregulation results in CNS changes. Second, these immune related TFs are active in glial cells that are not surveyed by ENCODE. The brain sub-regions contain a mixture of cell types and therefore the enrichments we observe could be due to these non-neuron cells. Third, these factors may have dual roles in the CNS and immune system. This hypothesis is not completely independent from our second hypothesis but suggests that TFs involved in the immune system also have roles in brain development. We plan on testing these hypotheses first by analyzing cRE activity and gene expression. For example, we can analyzed whether psych cREs are active in both brain and immune tissues or if they tissue specific. We also plan on integrating data from the psychENCODE consortium who have generated cell type specific (neuron +, neuron -) histone modification data from brain samples. Finally, we also plan to systematically analyzing TF expression between human and mouse datasets to determine whether there is a general enrichment for TF activity in the brain and immune system.

Overall our analysis demonstrated that psych SNPs across different disorders share common enrichments for cRE activity, gene expression, and TF motifs. The most strikingly was that both SCZ and CD SNPs were enriched for TF SP4 motif sites. As we detailed in Chapter IV, SP4 has previously been linked with
psychiatric disorders and has been shown to prune dendrites during brain development147. Moving forward, we plan to further characterize SP4 binding sites using the Registry of cREs and identify potential target genes to determine regulatory networks that may be disrupted by the dysregulation of SP4. We also plan on further characterizing SP4 expression to determine if it would be a viable therapeutic target. For example, if SP4 only targets psych risk genes during brain development, it would not be a reasonable target.

While we observed many similarities between enrichments across the four studies, we currently are unable to analyze differences between the disorders. For example, we have far more variants associated with SCZ than BPD. The lack of enrichment for BPD SNPs in brain regions does not mean that BPD risk factors are not active in the brain – just that the BPD GWAS did not report significant hits in these regions. This could be due to a number of factors most notably the size of the cohort. Therefore, in the future, we hope to develop a method for combining multiple GWAS for the same phenotype to increase statistical power. We cannot simply just concatenate results from multiple studies due differences in methodologies, but we could develop an ensemble voting scheme that would weight enrichments observed in different studies. Additionally, the NHGRI-EBI GWAS catalog continues to release summary statistics from GWAS. We could use these to further prioritize regions of interest that may not reach genome wide significance. Both of these approaches would allow us to substantially increase the number of variants we could analyze and possible reveal even more about the
genetic risk factors of psychiatric disorders.

Additionally, we showcased two examples of cREs with distinct enhancer activity patterns across mouse embryonic development. We are currently collaborating with the Pinnacchio and Visel labs to experimentally validate these regions and investigate allele specific activity changes. These ELS cREs have important yet different biological implications. CACNA1C, is expressed in many different tissues, such as the heart, muscle, and brain. EH37E0250841, which overlaps a CD SNP, is a brain specific cRE that we predict regulates CACNA1C. Because of this brain tissue specificity, the SNP would presumably only effect the expression of CACNA1C in the brain, not the heart or muscle.

Unlike EH37E0250841, EH37E1112284, which overlaps a SCZ SNP, is only active during early stages of brain development. ASCL1, EH37E1112284’s target gene, is involved in neuronal commitment and is highly expressed in brain at early embryonic time points. Interestingly, while psychiatric disorders manifest during early adulthood, we did not observe enrichment for SNPs in cREs active at later time points. Therefore, we hypothesize that these common genetic variants result in changes in brain structure and composition that increase an individual's risk for developing a psychiatric disorder.

These two examples also demonstrate the advantage of using orthologous mouse cREs to study cRE activity patterns across embryonic development. Without the mouse embryonic data, we would not be able to cleanly define temporal patterns of brain cRE activity. While we did have fetal brain DNase data
for a number of fetal stages, these samples were not surveyed at uniform time points and were subject to a number of uncontrollable biases (i.e. genetic background, gestational conditions, gender, collection methods). The brain samples collected from the embryonic mice, however, were collected from mice with the same genetic background and similar gestational conditions using uniform protocols. In the future, we plan on extending our analysis to study SNPs associated with other human disease. By analyzing enrichments in temporal patterns, we can classify diseases based on when their genetic risk factors are active (i.e. development, adulthood) which will also give us more information about possible therapeutic targets.

We also plan on generalizing our analysis by annotating cREs allele specific binding of TFs and chromatin accessibility. We plan to apply our in silico genotyping method described in Chapter IV to genotype SNPs overlapping cREs across all 600 cell and tissue types covered by the Registry. For each cell type, we can test at heterozygous loci whether DNase, histone modification, or TF ChIP-seq reads favor one allele. This will be a valuable resource for interpreting genetic variants reported by GWAS and whole genome sequencing but also may explain underlying mechanisms of gene regulation. For example, one anecdotal observation from characterizing allelic imbalance at psych SNPs was that the direction of allelic imbalance changed depending on the cell type. We observed this for BPD SNP rs2861405 at ZNF490 and ZNF791. When we manually surveyed other SNPs that had allelic imbalance in both directions we observed
that the many of them located at bidirectional promoters. This anecdotal evidence suggests that different TFs bind at promoters depending on cell type context, thus resulting in differences in chromatin accessibility between alleles. While this is a very small sampling, we aim to test if this phenomenon is more global by characterizing AS binding at cREs.

Final Comments

Overall our work has created a foundation for the future characterization and annotation of regulatory elements in the human genome. We developed a pipeline for curating and characterizing candidate regulatory regions in human and mouse which can be expanded as more epigenomic datasets are produced. We can functionally annotate these cREs by predicting the genes they regulate and our work demonstrated that several popular methods of linking enhancer and genes should not be used. Additionally, we can utilize these tools to interpret variants associated with disease. While we demonstrated the Registry’s use for annotated common variants, these methods can be applied to annotate rare, personal, or cancerous mutations as well. This is especially pertinent to clinicians as researchers as whole genome sequencing become more widely used.
REFERENCES

94. Bergen, S. E. *et al.* Genome-wide association study in a Swedish

143. Lin, G. N. et al. Spatiotemporal 16p11.2 protein network implicates

