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Abstract 
 

In response to DNA damage during S phase, cells slow DNA replication.  This 

slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin 

firing and reduction of replication fork speed.  Slowing of replication allows for 

tolerance of DNA damage and suppresses genomic instability.  Although the 

mechanisms of origin inhibition by the intra-S checkpoint are understood, major 

questions remain about how the checkpoint regulates replication forks: Does the 

checkpoint regulate the rate of fork progression?  Does the checkpoint affect all 

forks, or only those encountering damage?  Does the checkpoint facilitate the 

replication of polymerase-blocking lesions?  To address these questions, we 

have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe 

using a single-molecule DNA combing assay, which allows us to unambiguously 

separate the contribution of origin and fork regulation towards replication slowing, 

and allows us to investigate the behavior of individual forks.  Moreover, we have 

interrogated the role of forks interacting with individual sites of damage by using 

three damaging agents—MMS, 4NQO and bleomycin—that cause similar levels 

of replication slowing with very different frequency of DNA lesions.  We find that 

the checkpoint slows replication by inhibiting origin firing, but not by decreasing 

fork rates.  However, the checkpoint appears to facilitate replication of damaged 

templates, allowing forks to more quickly pass lesions.  Finally, using a novel 

analytic approach, we rigorously identify fork stalling events in our combing data 
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and show that they play a previously unappreciated role in shaping replication 

kinetics in response to DNA damage. 
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Chapter I 
Introduction: 

Checkpoint Regulation of Forks in Response to 
DNA Damage 

 

 

 

 

Chapter I is compiled from two published reviews which were written by Nick 

Rhind and me (Iyer and Rhind, 2013; Iyer and Rhind, 2017). Extra sections have 

been added to make it suitable for this thesis. 
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Why study fork regulation in response to DNA damage? 

Cells slow replication in response to DNA damage during S phase. This slowing 

of replication in response to DNA damage has been documented for more than 

half a century (Ord and Stocken, 1956; Ord and Stocken, 1958; Lajtha et al., 

1958; Painter, 1967). The initial hints of checkpoint regulation of replication 

slowing came from Ataxia Telangiectasia (AT) patients, characterized by 

hypersensitivity to ionizing radiation (IR). Cells from AT patients fail to slow 

replication in response to IR, a characteristic termed ‘radio-resistant DNA 

synthesis’ (Painter and Young, 1980; Painter, 1981; Houldsworth and Lavin, 

1980; Young and Painter, 1989). AT patients suffer from severe developmental 

defects and are highly predisposed to developing cancer (Gatti et al., 2001; 

Friedberg et al., 1995).  

The symptoms of AT patients highlight the importance of checkpoint 

regulated slowing of replication in response to damage. Later studies 

in Saccharomyces cerevisiae and Schizosaccharomyces pombe showed that 

slowing of S phase is an evolutionarily conserved mechanism in response to 

DNA damage (Lindsay et al., 1998; Rhind and Russell, 1998; Paulovich and 

Hartwell, 1995). This bulk slowing of replication is achieved through a 

combination of inhibition of origin firing and regulation of fork progression 

(Kaufmann and Cleaver, 1981; Kaufmann et al., 1980; Merrick et al., 2004; Falck 

et al., 2002; Santocanale and Diffley, 1998; Chastain et al., 2006; Seiler et al., 

2007; Kumar and Huberman, 2009).  
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Several studies have hinted that regulation of forks is perhaps the most 

crucial function of the intra-S checkpoint and yet there seems to be no clear 

answer to the exact role of the checkpoint in regulating forks encountering DNA 

damage (Paciotti et al., 2001; Tercero et al., 2003; Tercero and Diffley, 2001; 

Jossen and Bermejo, 2013; Cortez, 2015). A separation-of-function checkpoint 

mutant in which origin regulation is disrupted, is not sensitive to DNA damaging 

drugs, unlike a checkpoint null allele, suggesting that fork regulation is the more 

crucial role of the checkpoint (Tercero et al., 2003; Paciotti et al., 2001). Although 

origin regulation by the checkpoint has been worked out in great details, 

regulation of forks by the checkpoint has remained largely elusive (Santocanale 

and Diffley, 1998; Shirahige et al., 1998; Kaufmann et al., 1980; Merrick et al., 

2004; Falck et al., 2001; Falck et al., 2002; Chastain et al., 2006; Seiler et al., 

2007; Kumar and Huberman, 2009; Luciani et al., 2004). A long-standing 

question in the field is whether fork progression is regulated by the checkpoint 

and if so, how?  

To understand the regulation of forks by the checkpoint, we decided to use 

DNA combing, a single-molecule based technique for visualizing replication fork 

dynamics, to unequivocally monitor the regulation of individual forks in response 

to different kinds of lesions. This dissertation describes the development of 

sequential analog labeling in fission yeast to study the regulation of forks at 

single-molecule level by DNA combing (Chapter II) (Iyer et al., in press). Further, 

using a novel analytic approach we have identified fork stalling events in our 
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combing datasets (Chapter II). Using three different damaging drugs - 4NQO, 

MMS and bleomycin - we have studied the behavior of individual forks in 

response to different kinds of lesions during S phase (Chapter III).  Finally we 

have also studied the consequences of aberrations in chromosome number on 

replication kinetics by combing (Chapter IV).  

In this introductory chapter, I will discuss the mechanism of activation of the 

intra-S checkpoint, regulation of origins and forks by the checkpoint in response 

to DNA damage, and finally discuss the methodologies used over the years to 

study replication kinetics and end with the advantages of using a single-molecule 

approach to study the regulation of replication kinetics by the checkpoint. 

 

1. The Intra-S Checkpoint – why, what and how? 

1.1 Need for an S phase Checkpoint 

 “The dream of every cell is to become two cells” is the basic tenet of cell cycle, 

as stated by Francois Jacob in 1965 (Monod, 1971). In order to achieve this 

dream, cells need to faithfully duplicate their genetic material without aberrations.  

Genetic material is constantly subject to insults by both intrinsic and extrinsic 

factors such as free radicals and UV light (Zhou and Elledge, 2000; Hoeijmakers, 

2009; Lindahl and Barnes, 2000). DNA damage checkpoints safeguard the 

genome against these insults and ensure its faithful transmission across 

generations. Once activated, these checkpoints block cell cycle progression and 

ensure that the DNA is fully repaired before allowing progression to the next 
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phase of the cell cycle (Hartwell and Weinert, 1989). However, even though the 

cell has checkpoints and repair pathways dedicated to DNA damage repair in 

G1, it is impossible to guarantee that cells will enter S phase with a perfect 

template. Further, damage could occur during S phase itself. Therefore, the cell 

must be prepared to encounter damaged DNA during S phase (Bartek et al., 

2004; Ciccia and Elledge, 2010; Livneh et al., 2016).  

 
1.2 Sources of Damage 

1.2.1 Intrinsic Sources of Damage 

Intrinsic sources of damage include reactive oxygen species (ROS) generated as 

a by-product of cellular metabolism, which can cause oxidative damage to DNA 

(Cooke et al., 2003). Other toxic metabolites include reactive aldehydes 

generated via alcohol metabolism, which can crosslink DNA (Burcham, 1999; 

Brooks and Theruvathu, 2005). Apart from toxic by-products of metabolism, 

ribonucleotides can pose a threat, too (Dalgaard, 2012). Despite the specificity of 

DNA polymerases for deoxyribonucleotides over ribonucleotides, recent studies 

have shown that more than 10,000 ribonucleotides may be incorporated into 

the Saccharomyces cerevisiae genome during replication and can cause 

genomic stress if not actively removed. In unperturbed cells, ribonucleotides are 

removed from the genome using a combination of ribonuclease H (RNaseH) 

activity and post-replication repair pathways (Nick McElhinny et al., 2010; 

Lazzaro et al., 2012). Replication stress can also be caused by intrinsically 

difficult to replicate sequences in the genome, such as G-quadruplexes and 
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repeats, which can lead to replication fork slippage and chromosomal breaks 

(Pearson et al., 2005; Valton and Prioleau, 2016; Kim and Mirkin, 2013). Another 

natural impediment to the replication fork is the transcriptional machinery. 

Collision between the replication and the transcription machinery leads to fork 

stalling, R-loop formation, and topological stress, which may trigger DNA damage 

and recombination (Bermejo et al., 2012b; Helmrich et al., 2013). Cells have 

active mechanisms to constrain the deleterious effects of all these aberrations, 

so as to curtail their impact on the genome. 

 
1.2.2 Extrinsic Sources of Damage 

Extrinsic factors that damage DNA include ultra-violet light (UV) and IR, and 

chemicals such as methyl-methane sulfonate (MMS), mitomycin C, cisplatin, 

psoralen, camptothecin (CPT), and etoposide, to list a few of the well-known 

DNA damaging agents. These damaging agents cause different kinds of lesions, 

from simple alkylation of bases by MMS, to the more complex pyrimidine dimers 

by UV, topoisomerase-DNA covalent complexes by CPT, and inter-strand and 

intra-strand crosslinks by cisplatin and psoralen (Wyatt and Pittman, 2006; Cadet 

et al., 2005; Liu et al., 2000a; Deans and West, 2011). Cells have evolved 

various pathways to specifically detect and repair different kinds of lesions. The 

repair pathways include base excision repair (BER), which targets modified 

bases, nucleotide excision repair (NER), which targets more complex 

modifications such as pyrimidine dimers. Inter-strand crosslinks are repaired 

using inter-strand crosslink repair pathway, which involves a combination of 
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repair pathways consisting of NER, homologous recombination (HR), translesion 

synthesis (TLS), and Fanconi anemia (FA) repair pathways. Finally, double 

strand breaks (DSB) are repaired by non-homologous end-joining (NHEJ) and 

HR pathways (Hoeijmakers, 2009; Ciccia and Elledge, 2010; Wyatt and Pittman, 

2006; Deans and West, 2011; Lindahl and Wood, 1999; Sancar et al., 2004; 

Marteijn et al., 2014; Jackson, 2002; Mehta and Haber, 2014). 

 
1.3 The Main Players of Intra-S Checkpoint  

Despite having specific repair pathways dedicated to each kind of DNA lesion, 

the cell relies on a single checkpoint to mediate the DNA damage response 

during S phase. The cell has two main checkpoint kinases, Ataxia Telangiectasia 

Mutated (ATM) and ATM and Rad3-related (ATR), both of which are critical for 

maintaining genomic integrity. Of the two, ATR is the more crucial mediator of 

intra-S checkpoint responses since it is activated in response to diverse lesions. 

ATM (Tel1 in budding and fission yeast) mainly responds to double strand 

breaks, while ATR (Mec1 in budding yeast, Rad3 in fission yeast) is activated in 

response to a variety of genotoxins such as UV, MMS, hydroxyurea (HU), 

aphidicolin, and psoralen. ATR also functions in every unperturbed S phase, 

where it regulates origin firing (Shechter et al., 2004b; Syljuåsen et al., 2005; 

Petermann et al., 2010; Sørensen et al., 2003; Sørensen et al., 2004; 

Marheineke and Hyrien, 2004). Since several different pathways activate ATR in 

response to diverse lesions, it has been suggested that the checkpoint is 

activated by a common repair intermediate (Cimprich and Cortez, 2008; 
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Cimprich, 2007; Paulsen and Cimprich, 2007; Cortez, 2005; Flynn and Zou, 

2011; Maréchal and Zou, 2013; Shechter et al., 2004a). 

 
1.4 Detection of Lesion During S phase 

The first step key to all repair pathways is the detection of the lesion itself. 

Detection of a lesion can be a challenge in the vast pool of undamaged template 

(Livneh et al., 2016; Sancar et al., 2004). Furthermore, individual damaged bases 

must be detected in the context of DNA complexed with protein and condensed 

into chromatin (Peterson and Côté, 2004). Depending on the severity of lesions, 

certain aberrations may be detected only during the act of replication itself. The 

replication fork is a sensitive detector of lesions, since it has to interact with every 

base in the genome during replication. Several studies have shown that lesions 

caused by UV and MMS activate the checkpoint only during S phase (Tercero 

and Diffley, 2001; Tercero et al., 2003; Lupardus et al., 2002; Stokes et al., 2002; 

Callegari et al., 2010; Takeda and Dutta, 2005). Studies in S. cerevisiae have 

shown that, if replication initiation is blocked using conditional alleles of initiation 

factors such as Cdc6, or Cdc45, or Cdc7, then cells undergo nuclear division 

without replicating DNA or activating the checkpoint even when treated with 

0.033% MMS, demonstrating that this level of damage is not recognized outside 

of S phase (Tercero et al., 2003). However, during S phase, as little as 0.005% 

MMS is sufficient to activate the checkpoint, suggesting that the replication fork is 

a highly sensitive and efficient activator of the checkpoint (Tercero et al., 2003). 

Similarly, in Xenopus extracts, prevention of replication by addition of geminin 
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blocks checkpoint activation in response to UV and MMS induced lesions 

(Lupardus et al., 2002; Stokes et al., 2002). In human cells too, ATR activation in 

response to UV requires replication (Ward et al., 2004). 

UV- and MMS-induced lesions at high concentrations can activate the DNA 

damage checkpoint outside S phase. Such activation relies on repair pathways 

such as BER in the case of MMS-induced lesions and NER in the case of UV-

induced lesions to generate intermediate structures capable of activating the 

checkpoint (Pellicioli et al., 1999; Sidorova and Breeden, 1997; Sun et al., 1996; 

Marini et al., 2006; Giannattasio et al., 2010; Hanasoge and Ljungman, 2007). 

Thus, the checkpoint can be activated by stalled replication forks as well as 

intermediate structures generated by repair pathways in response to diverse 

lesions caused by different agents such as UV, MMS, and aphidicolin (Cimprich, 

2007). 

2. Intra-S Checkpoint Activation 

2.1 The Structure Necessary for Checkpoint Activation 

The fact that ATR is activated in response to different kinds of genotoxins 

suggests that the activation might occur not through recognition of damage itself 

but a common intermediate generated in response to any lesion that perturbs 

replication. Several studies indicate that the common intermediate necessary for 

checkpoint activation is replication protein A (RPA)–single-stranded DNA 

(ssDNA) complex (Longhese et al., 1996; Garvik et al., 1995; Kim and Brill, 2001; 

Zou and Elledge, 2003; Byun et al., 2005; Paulsen and Cimprich, 2007; Cortez, 
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2005). Replicative polymerases tend to stall in response to lesions while the 

helicase continues to unwind the DNA ahead of the lesion. Such uncoupling of 

the helicase and the polymerase leads to generation of ssDNA, which gets 

coated with the ssDNA binding protein RPA (Zou and Elledge, 2003; Byun et al., 

2005; Paulsen and Cimprich, 2007; Cortez, 2005). This common intermediate 

comprised of stalled replicative polymerase allows for a simple mode of 

checkpoint activation by diverse lesions (Paulsen and Cimprich, 2007; Cortez, 

2005). In the cases of double-strand breaks and inter-strand crosslinks—which 

do not directly produce ssDNA—lesion processing creates ssDNA, as described 

below. 

2.2 The Factors Necessary for Checkpoint Activation 

Several studies have shown that RPA coated ssDNA is essential for activation of 

the S-phase checkpoint kinase, ATR (Longhese et al., 1996; Zou and Elledge, 

2003; Byun et al., 2005; Costanzo et al., 2003; Ball et al., 2007). ATR is a highly-

conserved checkpoint kinase, which responds to various kinds of lesions that 

block DNA replication (Melo and Toczyski, 2002; Zeman and Cimprich, 2014). 

RPA bound ssDNA interacts with ATR-interacting protein (ATRIP) (Ddc2 in 

budding yeast, Rad26 in fission yeast), which binds ATR, leading to its 

recruitment to sites of DNA damage (Table 1) (Zou and Elledge, 2003; Ball et al., 

2007; Paciotti et al., 2000; Rouse and Jackson, 2002).  
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Table 1: List of key proteins involved in intra-S checkpoint activation 

conserved across species 

  

S. cerevisiae S. pombe Mammals
Checkpoint kinase Mec1 Rad3 ATR

Ddc2 Rad26 ATRIP
Rad24 Rad17 Rad17

Sensors Ddc1 Rad9 Rad9
Mec3 Hus1 Hus1
Rad17 Rad1 Rad1
Dpb11 Cut5 TopBP1

Adaptors Mrc1 Mrc1 Claspin
Tof1 Swi1 Tim
Csm3 Swi3 Tipin

Effector kinase Rad53 Cds1 Chk1
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The stalled fork junction composed of ssDNA-RPA complex and dsDNA further 

recruits Rad17-RFC complex, which loads a trimeric ring-shaped complex Rad9-

Rad1-Hus1 (9-1-1) at sites of damage, although it is unclear if Rad17-RFC 

recognizes the 3'ds/ssDNA junction, perhaps after polymerase release or a 

5'ds/ssDNA junction, which would be created by repriming ahead of a stalled 

polymerase on either the leading or lagging strand (Figure 1.1) (MacDougall et 

al., 2007; Zou et al., 2003). 9-1-1 complex in turn recruits DNA topoisomerase II 

binding protein 1 (TopBP1) (Dpb11 in budding yeast, Cut5 in fission yeast), 

which further stimulates ATR activity (Zou et al., 2003; Bonilla et al., 2008; 

Kumagai et al., 2006; Navadgi-Patil and Burgers, 2009; Majka et al., 2006; 

Bermudez et al., 2003; Parrilla-Castellar and Karnitz, 2003; Ellison and Stillman, 

2003; Mordes et al., 2008; Delacroix et al., 2007). Rad17-RCF and 9-1-1, 

together with regulators Claspin (Mrc1 in budding and fission yeast) and 

Tim/Tipin (Tof1/Csm3 in budding yeast, Swi1/Swi3 in fission yeast), are essential 

for activation of checkpoint kinase 1 (Chk1), which is the main target of ATR and 

the effector kinase in the checkpoint pathway in metazoan (Figure 1.1) (Foss, 

2001; Chou and Elledge, 2006; Noguchi et al., 2003; Noguchi et al., 2004; Bartek 

and Lukas, 2003; Osborn and Elledge, 2003; Yoo et al., 2004; Liu et al., 2006; 

Yoshizawa-Sugata and Masai, 2007; Unsal-Kaçmaz et al., 2007). 
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Figure 1.1 Intra-S checkpoint activation 

 
Figure 1.1 Intra-S checkpoint activation. Fig1.1 depicts how a stalled fork 
generates RPA-ssDNA, which subsequently recruits ATR-ATRIP, Rad17/9-1-1, 
TopBP1 leading to ATR activation. Rad17/9-1-1 complex further recruits 
adaptors like Claspin which leads to transduction of the signal to the effector 
kinase Chk1. Chk1 and ATR phosphorylate a wide range of substrates affecting 
several aspects of cellular physiology in response to damage such as 
transcription, replication kinetics, modulation of nuclear membrane processes 
and alteration of chromatin structure. 
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2.3 Downstream Effectors of Checkpoint Activation 

ATR and ATM activate two effector kinases, Chk1 and Chk2, in response to 

damage to relay the checkpoint signal across the cell. In mammals, Chk1 and 

Chk2 play overlapping roles. Although Chk1 is primarily activated by ATR in 

response to various kinds of lesions and Chk2 by ATM in response to DSBs, 

there is substantial cross-talk between the two pathways making it difficult to 

unambiguously assign Chk1 and Chk2 to a single checkpoint pathway (Zhao and 

Piwnica-Worms, 2001; Rhind, 2009; Shiotani and Zou, 2009; Bartek and Lukas, 

2001; Bartek et al., 2004; Bartek et al., 2001; Shiloh, 2001; Bartek and Lukas, 

2003; Zhang and Hunter, 2014). The roles played by Chk1 and Chk2 also vary 

substantially across species (Rhind and Russell, 2000b). In budding and fission 

yeasts, Rad53 and Cds1 are homologs of mammalian Chk2, respectively. 

However, they are functionally equivalent to mammalian Chk1. In budding yeast 

Rad53 is required for the intra-S checkpoint as well as G2/M checkpoint 

responses, while Cds1 in fission yeast acts only during S phase (Melo and 

Toczyski, 2002; Sanchez et al., 1999; Lindsay et al., 1998; Rhind and Russell, 

1998; Boddy and Russell, 1999). 

Inter-strand crosslinks also activate ATR, even though they do not generate 

RPA-ssDNA in the canonical way by uncoupling helicase and the polymerase. To 

activate ATR, inter-strand crosslinks rely on the FA pathway. Processing of the 

inter-strand crosslink by the FA pathway leads to generation of ssDNA-RPA, 

which in turn activates ATR. Inhibition of the FA pathway using chemical inhibitor 
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DDN or by immunodepletion of FANCD2, greatly diminishes Chk1 activation in 

response to inter-strand crosslinks (Pichierri and Rosselli, 2004; Ben-Yehoyada 

et al., 2009). 

 

2.4 Strength of Checkpoint Activation 

Replication initiation involves melting of DNA, which produces RPA-coated 

ssDNA, the structure necessary for checkpoint activation. Therefore, one 

complication of checkpoint activation via RPA-ssDNA complex is that it is a 

common intermediate generated even during an unperturbed S phase. Several 

studies indicate that the checkpoint functions in every S phase even in the 

absence of damage. The importance of this function is suggested by the fact that 

inhibition of Chk1 during unperturbed S phase leads to unrestrained origin firing, 

which is detrimental to genomic stability (Shechter et al., 2004b; Syljuåsen et al., 

2005; Petermann et al., 2010; Sørensen et al., 2003; Sørensen et al., 2004; 

Marheineke and Hyrien, 2004). The effect of the checkpoint during unperturbed 

replication can also be seen in Xenopus extracts, where the rate of replication 

decreases with increasing concentration of template in a checkpoint-dependent 

manner (Shechter et al., 2004b; Walter and Newport, 1997). Therefore, it 

appears that the ssDNA-RPA structures of many unperturbed replication forks 

are capable of collectively activating the checkpoint, even in the absence of 

damage. 
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Even though the checkpoint is activated in every S phase, there is a 

quantitative difference between level of activation during an unperturbed S phase 

and level required to be induced by DNA damage to activate a full-strength 

checkpoint response. The level of Chk1 activation is tightly correlated with the 

amount of ssDNA generated. In the presence of fork stalling lesions the helicase 

becomes uncoupled from the polymerase leading to generation of longer 

stretches of ssDNA than present in an unperturbed fork (Byun et al., 2005). The 

excess ssDNA-RPA complex formed in response to DNA damage leads to robust 

activation of the checkpoint. Titration experiments with plasmids of varying sizes 

in Xenopus extracts show that the amount of ssDNA generated determines the 

strength of Chk1 activation (Byun et al., 2005). Along similar lines, the number of 

active forks determine the activation of Rad53 in response to DNA damage in S. 

cerevisiae (Shimada et al., 2002). 

Although double strand breaks primarily activate ATM, resection of their 

ends leads to ssDNA generation leading to subsequent activation of ATR 

(Shiotani and Zou, 2009; Jazayeri et al., 2006; Myers and Cortez, 2006; Adams 

et al., 2006; Mantiero et al., 2007; Rhind, 2009). The strength of checkpoint 

activation and subsequent cell cycle delay in response to DSB is regulated by 

both the number of DSBs generated and the amount of ssDNA generated at 

each DSB (Mantiero et al., 2007; Lee et al., 1998; Nakada et al., 2004). Thus, 

checkpoint activation can be quantitatively modulated by the amount of ssDNA 

generated in response to different kinds of lesions. 
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2.5 Downstream Targets 

Unlike ATR, which mainly phosphorylates substrates on chromatin, the S-phase 

effector kinases transduce the signal to many targets across the cell (Bermejo et 

al., 2011; Bermejo et al., 2012a; Smolka et al., 2007; Randell et al., 2010; Chen 

et al., 2010; Rodriguez and Tsukiyama, 2013; Willis et al., 2016). Activation of 

Chk1 in metazoans and Rad53 and Cds1 in yeast in response to replication 

stress leads to regulation of replication kinetics via inhibition of origin firing and 

regulation of replication forks, and to transcriptional reprogramming. 

 
3. Regulation of Replication Kinetics by the Checkpoint 

3.1 Origin Regulation 

3.1.1 Inhibition of Origin Firing 

Replication of the genome occurs in a temporally ordered manner with different 

parts of the genome replicating at specific times in S phase (Rhind and Gilbert, 

2013). In the presence of damage, the early origins fire regardless of the 

presence of lesions, since the forks established by early origins are the ones, 

which sense the lesions and activate the checkpoint. Once the checkpoint is 

activated, it suppresses firing of late origins (Santocanale and Diffley, 1998; 

Shirahige et al., 1998; Kaufmann et al., 1980; Merrick et al., 2004; Falck et al., 

2001; Falck et al., 2002; Chastain et al., 2006; Seiler et al., 2007; Kumar and 

Huberman, 2009; Luciani et al., 2004). In S. cerevisiae, Rad53 phosphorylates 

the origin activation factors Sld3 and Dbf4 in response to replication stress to 
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prevent subsequent origin firing (Lopez-Mosqueda et al., 2010; Zegerman and 

Diffley, 2010). Sld3 is a replication-fork assembly factor required during early 

steps of replication initiation; Dbf4 is the regulatory subunit of Dbf4-dependent 

kinase (DDK), which is required for origin firing and fork progression (Kamimura 

et al., 2001; Kanemaki and Labib, 2006; Jackson et al., 1993). In mammals, 

Chk1 targets multiple substrates to block origin firing. In response to IR, Chk1 

phosphorylates Cdc25A, targeting it for ubiquitin-mediated degradation. Cdc25A 

is a phosphatase necessary for Cdk2-CyclinE activity, which is required for 

binding of Cdc45 to the pre-replicative complex (pre-RC) and initiating replication 

(Sørensen et al., 2003; Falck et al., 2001). Chk1 also phosphorylates Treslin, the 

metazoan homolog of Sld3, to prevent loading of Cdc45 onto chromatin (Guo et 

al., 2015). Further studies in Xenopus and mammalian cells suggest that Chk1 

also targets DDK in response to UVC and etoposide treatments (Costanzo et al., 

2003; Heffernan et al., 2007; Matsuoka et al., 2007). Inhibition of origin firing 

prevents new forks from encountering damage and stalling. Although reduction in 

origin firing leads to slowing of replication, it does not significantly contribute to 

maintenance of cell viability, at least not in S. cerevisiae (Tercero et al., 2003). 

 
3.1.2 Activation of Dormant Origins 

Although checkpoint activation inhibits origin firing globally, several reports 

suggest that it might allow dormant origins to fire locally in response to replication 

stress (Yekezare et al., 2013; McIntosh and Blow, 2012). Cells license origins 

during G1 phase of the cell cycle and activate them throughout S phase (Blow 
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and Dutta, 2005; Diffley, 2011; Masai et al., 2010; Tanaka and Araki, 2011). In an 

unperturbed S phase, a cell fires only about 10% of its licensed origins. Most of 

the remaining origins are licensed but not fired and hence referred to as dormant 

origins. During unperturbed replication, dormant origins are passively replicated. 

However, in the event of replication stress, forks from early origins stall and the 

dormant origins remain un-replicated. Under such conditions, the dormant origins 

fire and help complete replication in the vicinity of stalled forks and thereby 

mitigate the consequences of fork stalling. Reduction of dormant origin firing via 

depletion of mini-chromosome maintenance (MCM) complex makes the cell 

hypersensitive to replication perturbation, highlighting the importance of dormant 

origins (Ge and Blow, 2010; Ge et al., 2007; Woodward et al., 2006; Anglana et 

al., 2003). At this point, it is unclear how the checkpoint could suppress origin 

firing globally but permit activation of dormant origins in response to replication 

stress. A possible explanation is that the checkpoint reduces origin firing globally, 

but that even so dormant origin firing increases due to the reduction in passive 

replication or that the dormant origins fire before the checkpoint is fully activated 

and thus escape inhibition (Yekezare et al., 2013; McIntosh and Blow, 2012). 

 
3.2 Fork regulation 

3.2.1 Importance of fork regulation 

Several studies suggest that the regulation of replication forks in response to 

replication stress is the crucial function of the intra-S checkpoint. The first hint of 

the importance of fork regulation came from the discovery of a separation of 
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function mutant in budding yeast called mec1-100 (Paciotti et al., 2001). mec1-

100 cells cannot suppress origin firing in response to stress, but are not 

hypersensitive to MMS, unlike mec1Δ cells (Tercero et al., 2003; Paciotti et al., 

2001). Presumably fork regulation is intact in mec1-100, hinting that fork 

regulation is more critical for cell viability in response to MMS than origin firing 

inhibition. Consistent with this conclusion, Tercero et al. have shown that forks 

progress slowly but stably in mec1-100 to complete replication in response to 

MMS (Tercero et al., 2003). In contrast, in mec1Δ and rad53Δ cells treated with 

HU or MMS, forks collapse irreversibly leading to large stretches of un-replicated 

DNA (Tercero and Diffley, 2001; Lopes et al., 2001). Experiments in which 

Rad53 expression is suppressed during HU treatment but induced after release 

from HU arrest show that the checkpoint is necessary at the time of fork stalling 

to maintain the replication fork in a restart competent manner. Expression of 

Rad53 after release from HU arrest is not sufficient to maintain viability (Tercero 

et al., 2003). Along similar lines in mammals, ATR-/- and CHK1-/- are embryonic 

lethal in mice and inactivation of ATR during replication stress greatly hampers 

fork progression and cell viability (Couch et al., 2013; Brown and Baltimore, 

2000; Liu et al., 2000b). Collectively, these studies suggest that the checkpoint is 

essential for preventing fork collapse in response to replication stress. The 

mechanism by which the checkpoint accomplishes fork stabilization and 

maintains cell viability is not understood. 

 
3.2.2 Regulation of Fork Speed 
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A consistent observation is that forks slow in response to DNA damage (Tercero 

and Diffley, 2001; Szyjka et al., 2008; Unsal-Kaçmaz et al., 2007; Seiler et al., 

2007; Conti et al., 2007).  Whether slowing of forks in the presence of damage is 

checkpoint-dependent or simply due to the physical presence of lesions is not 

clear (Tercero and Diffley, 2001; Szyjka et al., 2008; Unsal-Kaçmaz et al., 2007; 

Seiler et al., 2007; Conti et al., 2007).  Initial work in budding yeast showed that 

replication forks in checkpoint mutant and wild-type cells were slowed to the 

same extent in the presence of damage, suggesting that slowing is checkpoint-

independent (Tercero and Diffley, 2001).  However, subsequent work showed 

that checkpoint activation inhibited replication of damaged DNA, suggesting an 

active role in the slowing of replication forks (Szyjka et al., 2008).  Furthermore, 

work in mammalian cells showed a role for checkpoint signaling in DNA-damage-

dependent slowing of replication forks (Unsal-Kaçmaz et al., 2007; Seiler et al., 

2007; Conti et al., 2007).  Thus, so far it is unclear whether the checkpoint 

regulates the progression of forks through the damaged template or not. 

 
3.2.3 Regulation of Number of Forks 

In response to replication stress, suppression of late firing origins limits the 

generation of an excess number of stalled forks. Unrestrained firing of origins in 

the presence of replication stress might overwhelm the capacity of the checkpoint 

to attenuate the consequences of stalled forks. Supporting this idea, Toledo et al. 

observed that in the absence of ATR activity, excess firing of origins in response 

to HU depletes the nuclear pool of RPA leading to DSB generation (Toledo et al., 
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2013). Therefore, the critical role of the checkpoint may not be to regulate the 

fork per se but to curtail origin firing in response to replication stress so as to 

avoid generation of an excess number of stalled forks. However, it is yet to be 

determined whether replication forks from ATR inhibited cells supplemented with 

excess RPA are capable of stably progressing and completing replication when 

released from HU arrest. Furthermore, HU treatment in the absence of a 

checkpoint leads to excessive unwinding and generation of longer stretches of 

ssDNA as compared to cells in which the checkpoint activity is intact (Sogo et al., 

2002). Therefore, RPA may have a more critical role under excessive unwinding, 

as seen in checkpoint mutants, than in wild-type cells. 

 
3.2.4 Maintenance of Replisome Stability 

The most controversial role of the checkpoint at stalled forks is the maintenance 

of replisome stability (Jossen and Bermejo, 2013; Cortez, 2015). Replisome 

stability refers to the physical association of the replisome factors with the stalled 

replication fork (Figure 1.2.a). Several chromatin immuno-precipitation (ChIP) 

studies done in budding yeast have suggested that, in response to HU, 

polymerases and helicases tend to dissociate from the stalled fork in the absence 

of an active checkpoint (Cobb et al., 2003; Cobb et al., 2005; Cotta-Ramusino et 

al., 2005; Lucca et al., 2004; Naylor et al., 2009). Similarly, studies 

in Xenopus and mammalian cells have shown that several components of the 

replisome are lost from forks stalled in response to prolonged treatment with 

aphidicolin in the absence of ATR (Trenz et al., 2006; Ragland et al., 2013; 



 

 

23 

Hashimoto et al., 2011). However, contrary to these studies, De Piccoli et al. 

have shown—using genome-wide ChIP-seq—that the replisome components 

remain stably associated with forks stalled in HU even in the absence of Rad53 

or Mec1 in budding yeast (De Piccoli et al., 2012). Perhaps the discrepancy 

between these reports can be explained by the differences between their ChIP 

assays. The former focused on early origins with ChIP PCR probes designed at 

close proximity to the early origins as opposed to genome-wide ChIP-seq by the 

latter, which gives a more comprehensive picture. The latter work shows that, in 

the absence of checkpoint, forks from early origins continue to replicate longer 

and hence stall replisome components further downstream than they would in 

wild-type cells. Thus, by ChIP-PCR with probes designed at close proximity to 

the early origins, the replisome components appear to be intact in wild-type and 

depleted in the checkpoint mutant (De Piccoli et al., 2012). However, at this 

point, it remains a matter of debate whether the checkpoint affects the physical 

association of the replisome components or only regulates their functionality in 

response to replication stress (Cortez, 2015). 

Most studies trying to understand the role of checkpoint in maintaining 

replisome stability have focused on forks stalled for a prolonged duration (20 to 

60 min) in response to HU arrest. Stalling forks in the order of tens of minutes in 

response to HU might be biologically very different than fork pausing briefly in 

response to MMS-induced lesions. It is not clear whether stability of the 

replisome components is affected if the fork stalls are short-lived as compared to 
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that in a HU arrest. Therefore, the mechanism by which Rad53 allows the forks 

to progress slowly but stably and complete replication of the whole genome in 

response to MMS remains unclear. 
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Figure 1.2 Regulation of forks in response to damage 
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Figure 1.2 Regulation of forks in response to damage. (a) Replisome stability 
pertains to stable association of replisome components; (b) Fork reversal in 
response to damage, wherein the leading strand anneals with the lagging strand 
to form a four-way structure. Fork reversal is opposed by nucleases such as 
Exo1, Dna2; (c) Downstream repriming. Leading strand can bypass damage by 
repriming downstream of the stalled fork; (d) Translesion polymerase based 
synthesis. A stalled fork can bypass damage by recruiting translesion 
ploymerase in an error prone manner. Recruitment of translesion polymerase 
requires mono-ubiquitination of PCNA; (e) Template switching. A stalled fork can 
bypass damage by using the lagging strand as a template instead of the 
damaged parental strand. Template switching requires poly-ubiquitination of 
PCNA. 
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3.2.5 Fork Reversal 

Regardless of whether the checkpoint affects replisome stability or not, it 

prevents accumulation of pathological structures at stalled replication 

forks. rad53 mutants accumulate structures similar to those obtained by 

destabilizing replisome components as monitored by 2D gels (Lopes et al., 

2001). Similarly, electron microscopy (EM) studies have shown that HU 

treatment of rad53Δ cells leads to excessive unwinding and generation of longer 

stretches of ssDNA as compared to wild-type cells (Sogo et al., 2002). 

Furthermore, rad53Δ cells accumulate reversed forks wherein the leading strand 

is unwound and anneals with the lagging strand to form a four-way structure 

(Figure 1.2.b) (Sogo et al., 2002; Cotta-Ramusino et al., 2005). Whether 

reversed forks are a pathological structure or productive repair intermediates is 

uncertain. In yeast, fork reversal is mainly observed in the absence of checkpoint 

and therefore appears to be pathological. However, in metazoans, fork reversal 

appears to be a part of DNA damage tolerance mechanism (Neelsen and Lopes, 

2015). Chaudhuri et al. have shown that in mammalian cells, Xenopus extracts, 

and yeast cells, low doses of CPT treatment lead to fork reversal. In mammals, 

reversal of forks is mediated by poly (ADP-ribose) polymerase 1 (PARP1) (Ray 

Chaudhuri et al., 2012). Depletion of PARP1 prevents fork reversal and leads to 

double strand break formation (Ray Chaudhuri et al., 2012). Furthermore, Rad51 

dependent fork reversal is seen in human cells in response to a variety of 

genotoxins (Zellweger et al., 2015). Thus, in mammals, fork reversal appears to 
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play a protective role. However, in the absence of checkpoint, nucleases such as 

Mus81 and Slx4 can improperly process reversed forks leading to genomic 

instability (Couch et al., 2013; Neelsen et al., 2013; Froget et al., 2008). Thus, 

fork reversal itself may not be pathological, but its regulation by the checkpoint 

may prevent deleterious outcomes. In vitro biochemical studies have identified 

several helicases and translocases such as Rad54, WRN, BLM, HLTF, FANCM, 

FBH1, SMARCAL1, and ZRANB3 capable of regressing forks (Bugreev et al., 

2011; Bétous et al., 2012; Bétous et al., 2013; Yusufzai and Kadonaga, 2008; 

Yusufzai and Kadonaga, 2010; Gari et al., 2008; Ciccia et al., 2012; Blastyák et 

al., 2007; Blastyák et al., 2010; Kile et al., 2015; Fugger et al., 2015; Machwe et 

al., 2006; Machwe et al., 2011). However, of all these factors, only Rad51 and 

FBH1 have been shown to be required for fork regression in vivo (Zellweger et 

al., 2015; Fugger et al., 2015). Furthermore, how helicases and translocases 

may be regulated by the checkpoint at stalled forks is not known. 

 
3.2.6 Regulation of Nucleases 

There is mounting evidence that the checkpoint plays a role in protecting forks 

from aberrant activity of nucleases. Support for this idea comes from Segurado 

and Diffley, who show that deletion of EXO1 rescues rad53Δ sensitivity to the 

genotoxins UV, MMS, and IR, although not HU (Segurado and Diffley, 2008). 

Phospho-proteomic screens have also identified Exo1 as a target of Rad53 and 

this phosphorylation has been shown to negatively regulate Exo1’s activity 

(Smolka et al., 2007; Morin et al., 2008). Furthermore, EM studies in budding 



 

 

29 

yeast have shown that Exo1 creates ssDNA intermediates of reversed forks and 

drives fork collapse in the absence of Rad53 (Cotta-Ramusino et al., 2005). 

However, deletion of EXO1 alone is not sufficient for fork stabilization. Forks are 

unable to restart when released from HU arrest even in 

a rad53Δexo1Δ background, as is the case for rad53Δ cells (Segurado and 

Diffley, 2008). Thus, Rad53 has Exo1-independent functions at maintaining fork 

integrity. 

In fission yeast, Cds1 phosphorylates and activates Dna2, a 

helicase/nuclease, which prevents accumulation of reversed forks (Hu et al., 

2012). In human cells, DNA2 is involved in the processing and restart of reversed 

forks (Thangavel et al., 2015; Duxin et al., 2012). These observations further 

support the notion that the checkpoint modulates fork reversal by activating or 

inhibiting nucleases. 

 

3.2.7 Restart of Stalled Forks 

The ultimate question of how the checkpoint restores progression of stalled forks 

is just being uncovered. As mentioned above, stalled forks can undergo fork 

reversal even in the presence of checkpoint. In human cells, reversed forks are 

restarted in a RECQ1 and DNA2 dependent manner (Thangavel et al., 2015; 

Berti et al., 2013). Mus81-Eme1, a structure specific endonuclease, is normally 

active only during mitosis due to the requirement of phosphorylation by CDK1 

and Polo-like kinase 1 (Plk1) for activation (Matos et al., 2011; Matos et al., 2013; 
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Szakal and Branzei, 2013). However, several recent studies suggest that Mus81 

could also play a role in fork restart mechanisms during S phase by creating 

double strand breaks and promoting recombination (Dehé et al., 2013; Pepe and 

West, 2014b; Whitby et al., 2003; Pepe and West, 2014a; Amangyeld et al., 

2014; Shimura et al., 2008; Regairaz et al., 2011; Fugger et al., 2013; Hanada et 

al., 2007). In human cells, fork cleavage and restart of stalled forks in S phase is 

governed by Mus81-Eme2, while the G2/M functions of Mus81 are guided by 

Mus81-Eme1 complex (Pepe and West, 2014b; Pepe and West, 2014a; 

Amangyeld et al., 2014). SMARCAL1 may also be an important candidate, as it 

possesses both fork reversal as well as fork restoration activities, and is 

regulated by ATR (Couch et al., 2013; Bétous et al., 2012; Bétous et al., 2013). 

However, its exact function at stalled forks in vivo is yet to be determined. 

In the case of stalled forks that have not reversed, restart or restoration of 

fork progression occurs mainly in three ways: by repriming (Figure 1.2.c), by 

translesion-polymerase-based synthesis (TLS) (Figure 1.2.d), or by template 

switching (Figure 1.2.e) (Branzei and Szakal, 2016; Branzei and Foiani, 2007; 

Branzei and Foiani, 2009; Ulrich and Walden, 2010; García-Rodríguez et al., 

2016; Sale, 2012; Ulrich, 2009). Lesions on the lagging strand can be easily 

bypassed due to the discontinuous nature of lagging-strand synthesis. However, 

lesions on the leading strand must be actively bypassed using various 

mechanisms in order to continue DNA synthesis. The first evidence that lesion 

bypass via repriming downstream could be employed in the case of leading 
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strand comes from studies done in bacteria. Bacterial replisomes are capable of 

repriming and re-initiating replication in response to UV-induced lesions (Figure 

1.2.c) (Heller and Marians, 2006; Yeeles and Marians, 2011). Recent discovery 

of similar activity by PrimPol in human cells shows that repriming downstream 

may be an evolutionarily widespread approach. PrimPol, which has primase as 

well as translesion polymerase activity, allows repriming of stalled forks in 

response to UV as well as dNTP depletion (Bianchi et al., 2013; Mourón et al., 

2013; Helleday, 2013). Furthermore, EM studies suggest that repriming activities 

on leading strand in response to UV occurs in budding yeast, too, although it 

must be via a distinct mechanism, because PrimPol is not conserved in yeast 

(Lopes et al., 2006; Rudd et al., 2014). 

The TLS and template switching mechanisms of fork restart are regulated by 

ubiquitination of the proliferating cell nuclear antigen (PCNA) (Hoege et al., 2002; 

Frampton et al., 2006; Lee and Myung, 2008). ssDNA generated in response to 

replication stress recruits Rad18, which, along with Rad6, monoubiquitinates 

PCNA at K164 (Hoege et al., 2002; Davies et al., 2008). Monubiquitination of 

PCNA allows recruitment of translesion polymerases, which have low fidelity, 

allowing the fork to replicate across damaged bases (Figure 1.2.d) (Kannouche 

et al., 2004; Watanabe et al., 2004; Stelter and Ulrich, 2003). Although 

translesion polymerases permit replication across damaged template, the bypass 

occurs in an error prone manner. PCNA can also be polyubiquitinated at K164 by 

Rad5 along with Mms-Ubc13 (Hoege et al., 2002; Ulrich and Jentsch, 2000; 
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Parker and Ulrich, 2009). Polyubiquitination of PCNA promotes template 

switching (Figure 1.2.e) (Zhang and Lawrence, 2005; Hishida et al., 2009; 

Branzei et al., 2004; Chiu et al., 2006). Template switching involves usage of the 

undamaged sister chromatid for bypass of lesions and usually occurs in an error 

free manner. Inhibition of polyubiquitination increases TLS-based mutations 

suggesting competition between TLS and template switching pathways (Chiu et 

al., 2006). SUMOylation at K164 of PCNA also affects template switching 

(Papouli et al., 2005; Pfander et al., 2005; Branzei et al., 2008). The exact role of 

polyubiquitination of PCNA and how it leads to recruitment of the recombination 

factors necessary for template switching are not known (Branzei and Szakal, 

2016; Ulrich and Walden, 2010; Lee and Myung, 2008; Moldovan et al., 2007). 

Regulation and crosstalk between various modifications on PCNA and the role of 

checkpoint in mediating lesion bypass are also poorly understood. Furthermore, 

PCNA functions as a tri-mer at the replication fork. Therefore, at a single stalled 

fork, individual copies of PCNA may harbor different modifications and the tri-mer 

collectively may regulate the mechanism of lesion bypass (Branzei and Szakal, 

2016; Ulrich and Walden, 2010; Sale, 2012; Moldovan et al., 2007). 

 

4. Tools to look at replication kinetics 

4.1 Bulk methods used to study replication kinetics in response to damage 

Some of the earliest methods looking at slowing of replication in response to 

irradiation involved measuring 32P, 14C or 3H incorporation rates into DNA (Ord 
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and Stocken, 1956; Ord and Stocken, 1958; Lajtha et al., 1958; Painter, 1967). 

At the time, the program of replication was not known and thus the net effect on 

replication rate via scintillation counting was the only way to study the effect of 

damage on DNA replication rate.  

 
4.1.1 Flow Cytometry – a rapid approach to look at slowing of replication 

A more rapid method to look at net slowing of replication in a large population of 

cell was made feasible with the development of flow cytometry to analyze DNA 

content and thereby define the distribution of cells across different phases of cell 

cycle (Holm and Cram, 1973; Imray and Kidson, 1983). Eventually slowing of 

DNA replication was characterized by flow cytometry in mammalian cells, 

budding and fission yeasts (Lavin et al., 1989; Lindsay et al., 1998; Rhind and 

Russell, 1998; Paulovich and Hartwell, 1995}. 

By 1960’s the mechanism of eukaryotic replication was beginning to be 

understood. Some of the key discoveries on the mechanism of replication, which 

were critical for understanding the regulation of replication kinetics was that the 

mammalian DNA was organized in the form of “long fibers” and the fibers 

replicated in “fork-like growing points” (Cairns, 1966; Huberman and Riggs, 1966; 

Sasaki and Norman, 1966). Furthermore these “fork-like growing points” 

originated at several sections on the fiber and the pairs of them tended to move 

in opposite directions (Huberman and Riggs, 1968). Thus with the discovery of 

the mechanism of replication it became important to understand how origins and 

forks are regulated in response to damage.  
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4.1.2 Density gradient centrifugation distinguishes between effects on 

initiation v. elongation rates 

Initial studies aimed at understanding the regulation of origins and forks involved 

labeling cells with 3H-thymidine and separating the newly replicated fragments of 

DNA by alkaline sucrose density gradient centrifugation. Several studies initially 

found that irradiation only led to repression of initiation of replication (Walters and 

Hildebrand, 1975; Painter and Young, 1975; Makino and Okada, 1975; Painter 

and Young, 1976; Dahle et al., 1979). However later studies using higher doses 

of irradiation found that initiation of replication as well as chain elongation (fork 

speed), both were affected. In conclusion, initiation of replication was highly 

sensitive to inhibition even at low doses, while fork rates were affected only at 

high doses of damage (Watanabe, 1974; Makino and Okada, 1974; Cleaver et 

al., 1983; Painter and Young, 1980; Painter, 1981; Young and Painter, 1989).  

 
4.1.3 2D-gels – studying the effect of damage one origin at a time 

Once again advances in the understanding of replication program generated 

further questions about the regulation of replication in response to damage. 

Specifically it was realized that replication of the genome occurs in a temporal 

manner (Hatton et al., 1988; McCarroll and Fangman, 1988; Fangman et al., 

1983; Fangman and Brewer, 1992; Reynolds et al., 1989). Studies were carried 

out to understand how the intra-S checkpoint regulates the temporal program of 

origin firing. 2D-gels were employed to study specific loci in the genome to 

understand the impact of damage-induced checkpoint activity on origin firing 
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(Larner et al., 1994). By late 1990’s several origins of replication were mapped in 

S. cerevisiae along with their replication timings. This knowledge allowed a 

systematic comparison of the checkpoint effects on early v. late-firing origins. It 

was discovered that the checkpoint preferentially inhibited the late-firing origins in 

response to DNA damage (Santocanale and Diffley, 1998; Shirahige et al., 

1998). 

 
4.2 Why use single-molecule approach to study replication kinetics? 

Caveats of bulk methods 

Labeling cells with 3H and separating newly synthesized DNA by density gradient 

centrifugation allows one to compare the effect of damage on initiation v. 

elongation rates. A reduction in origin firing rate is inferred from the absence of 

small fragments in the irradiated sample (Walters and Hildebrand, 1975; Painter 

and Young, 1975; Makino and Okada, 1975; Painter and Young, 1976; Dahle et 

al., 1979; Painter and Young, 1980). However absence of small fragments could 

be due to two reasons – reduction in origin firing rate or reduction in cells 

entering S phase. Using synchronized cultures a later study found that loss of 

small fragments was a combination of cells arresting in G1 phase as well as 

inhibition of origin firing in cells already in S phase (Lee et al., 1997). Thus 

density gradient results in isolation cannot give the complete picture. 

2D-gels can be employed to distinguish between the effects on origins and 

forks in response to damage, however the analysis is limited to one origin at a 

time and is suitable for only defined and highly efficient origins. Studies over the 
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last decade have highlighted that although distinct domains of the genome 

replicate at defined times during S phase, the replication of each domain itself is 

achieved using a different cohort of origins in each cell (Lebofsky et al., 2006; 

Cayrou et al., 2011; Hamlin et al., 2008; Bechhoefer and Rhind, 2012; Farkash-

Amar et al., 2008; Ryba et al., 2010; Yaffe et al., 2010; Xu et al., 2012; Dileep et 

al., 2015). This cell-to-cell variability in the usage of origin is due to the presence 

of inefficient origins, which fail to fire in every cell cycle (Patel et al., 2006; 

Czajkowsky et al., 2008; Hawkins et al., 2013). Particularly higher organisms 

tend to have many inefficient origins making 2D-gels an intractable approach to 

study the effects of DNA damage on origin regulation (Lebofsky et al., 2006; 

Cayrou et al., 2011; Hamlin et al., 2008; Bechhoefer and Rhind, 2012; Farkash-

Amar et al., 2008; Ryba et al., 2010; Yaffe et al., 2010; Xu et al., 2012; Hamlin et 

al., 2008; Rhind and Gilbert, 2013; Dileep et al., 2015). 

 

4.3 Single-molecule approaches 

4.3.1 DNA fiber autoradiography 

DNA fiber autoradiography was the first single-molecule method, applied to DNA 

replication, which allowed several seminal discoveries to be made. Replicating 

cells were first labeled with 3H-thymidine, and then chased with 3H-thymidine of 

higher activity or with cold thymidine. After labeling, cells were lysed and DNA 

fibers were spread on a surface and autoradiographed. The replicated DNA is 

observed as silver grains on an autoradiogram. Since the cells are first labeled 
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with 3H-thymidine, followed by cold or 3H-thymidine of a different activity, the 

direction of replication could be ascertained (Hand, 1975; Liapunova, 1994). This 

technique led to the discovery of the bi-directional movement of forks in 

Escherichia coli (Cairns, 1963; Masters and Broda, 1971; Prescott and Kuempel, 

1972). Later this technique was employed by Huberman and Riggs to discover 

that in mammalian cells the DNA fiber replicates by initiating replication at 

several loci called origins and the forks from each origin move in a bi-directionally 

opposite manner (Huberman and Riggs, 1968). Further since the length of the 

tracks could be estimated and divided by the length of the labeling period, the 

approach allowed for a quantitative estimation of parameters such as fork rate as 

well as distances between origins. DNA fiber autoradiography studies by 

Watanbe in 1974 provided the first direct proof that chain elongation (fork rate) is 

affected at high doses of irradiation (Watanabe, 1974). 

Despite the wealth of knowledge gained from DNA fiber autoradiography the 

technique had several limitations (Liapunova, 1994). The resolution was limited 

by the size and continuity of the silver grains. Moreover only the replicated 

regions could be visualized by autoradiography while the un-replicated regions 

had to be guessed. The size of the replicated regions could be vastly 

overestimated due to merging of tracks or bundling of fibers. Further the 

stretching of the DNA fibers was very unpredictable. Therefore a quantitative 

estimation of replicated regions was difficult. It was also difficult to isolate long 
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fibers reproducibly. Finally the exposure times were often in the order of several 

months making the whole process very time consuming. 

 

4.3.2 DNA Combing 

Several issues with fiber autoradiography were overcome with the development 

of fluorescence fiber techniques. Briefly cells are lysed on glass slides and the 

DNA fibers are stretched by the flow of the buffer across a tilted slide. Fibers are 

visualized by hybridizing fluorescently labeled probes complementary to specific 

regions in the genome (Parra and Windle, 1993). Fluorescence fiber studies of 

replication were first enabled with the development of antibodies specific to 

thymidine analogs such as 5-bromo-2’-deoxyuridine (BrdU) (Gratzner, 1982). 

Development of specific antibodies towards two different thymidine analogs, 5-

chloro-2’-deoxyuridine and 5-iodo-2’-deoxyuridine made it possible to study the 

temporal dynamics of replication (Aten et al., 1992). However a major drawback 

was still the lack of reproducibility of stretched fibers. These difficulties were 

overcome with the invention of dynamic molecular combing (Bensimon et al., 

1994; Allemand et al., 1997; Michalet et al., 1997).  

In combing, a silanized coverslip is dipped into a DNA solution and slowly 

withdrawn at constant rate to get reproducibly high density of uniformly stretched 

(1 µm ≈ 2 kb), linear, single molecules of DNA. The high density of molecules 

permits statistical sampling of parameters. The technique has been employed to 

study replication kinetics, map genes, detect micro-deletions or amplifications, as 
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well as rearrangements such as inversions, and translocations (Herrick et al., 

2000; Lebofsky and Bensimon, 2003; Herrick and Bensimon, 1999a; Herrick and 

Bensimon, 1999b; Herrick and Bensimon, 2009).  

Studying perturbations of replication kinetics by DNA combing has several 

advantages (Herrick and Bensimon, 1999a). Combing allows for detection of 

individual origins and forks on a global scale (Jackson and Pombo, 1998; Iyer et 

al., in press; Gallo et al., 2016a; Gallo et al., 2016b; Bianco et al., 2012). Briefly 

cells are labeled in vivo with thymidine analogs and DNA is isolated, combed and 

immuno-stained with antibodies against the thymidine analogs. Sequential 

labeling with two different analogs allows for determination of the direction and 

speed of replication of labeled tracks on a fiber(Jackson and Pombo, 1998; Iyer 

et al., in press). Further, combing can be supplemented with FISH to study 

specific regions of interest. Because combing reveals the behavior of individual 

replication origins and forks, it allows for unambiguous study of the effect of 

checkpoint on origin firing and fork rates.  In particular, it allows one to measure 

the heterogeneity of fork rates and determine if all forks respond the same way to 

lesions.  The importance of measuring the heterogeneity of fork rates can be 

illustrated in a case where some forks pass lesions without slowing, but others 

stop at the lesion and do not resume replication for the duration of the 

experiment, a condition we refer to as fork stalling (Chapter II and III).   

Finally using combing we can distinguish whether the regulation of forks is a 

global or local effect. A fundamental question about the regulation of fork 
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progression in response to DNA damage is whether it is a global or local effect 

(Iyer and Rhind, 2013).  The effect of checkpoint on origins is inherently a global 

response because origins distant to sites of damage are blocked from firing.  

However slowing of forks could be a local or a global effect.  If all forks are 

slowed by checkpoint activation, irrespective of whether they encounter damage 

or not, then slowing is a global effect.  On the other hand, if forks are slowed only 

when they encounter a lesion, then it is a local effect (Iyer and Rhind, 2013). 

Analysis of individual forks by combing should allow us to decipher whether fork 

regulation by checkpoint is global or local. 

 
Conclusion 

In conclusion, studying regulation of forks is critical to understand how the intra-S 

checkpoint contributes to maintenance of genomic stability. Important insight into 

the role of fork regulation comes from EM studies, which have helped us uncover 

the structural alterations observed at stalled forks, and from in vitro biochemical 

studies with fork components and artificial templates, which have allowed us to 

decipher their catalytic functions. However, how the fate of a stalled fork is 

determined by the interplay of various factors in vivo is unclear. Specifically how 

the checkpoint regulates the various factors to mediate stable progression of 

forks through a damaged template is unknown. Thus, to understand the 

regulation of individual forks on a global scale by the checkpoint at single-

molecule level we have used DNA combing (Chapter II and III). Specifically we 

have studied the behavior of forks in response to three different DNA damaging 
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drugs and the role of checkpoint in regulating the fork responses as discussed in 

greater detail in Chapter III.  
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Chapter II  

Materials and Methods: 

Analysis of DNA Replication in Fission Yeast by 
Combing 

 

 

 

 

A part of Chapter II is compiled from the methods paper, which was written by 

Nick Rhind and me. Shankar Das is also a contributing author in this methods 

paper for his efforts in initial trouble-shooting of the technique. The methods 

paper has been accepted at Cold Spring Harbor Protocols (Iyer et al., in press). 

Chapter II also contains a part of the manuscript written by Nick Rhind and me. 

This manuscript is currently under review at PLOS Genetics (Iyer and Rhind). 
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Introduction 

DNA replication studies based on population experiments give an average 

estimate of replication kinetics from many cells. This average replication profile 

masks the stochastic nature of origin firing in eukaryotes, which is revealed by 

using single-molecule techniques, such as DNA combing. The analysis of 

replication kinetics by DNA combing involves isolating DNA from cells that have 

been pulse-labeled with thymidine analogs and stretching it on a silanized 

coverslip. The analog-labeled patches on the stretched DNA fibers can then be 

detected using fluorescent antibodies against the analog. Each fiber represents a 

part of the genome from a single cell; therefore, it is possible to study the 

variation in behavior of individual origins and forks from one cell to another. 

Furthermore, each DNA fiber is uniformly stretched, making it possible to 

measure distances accurately at kilobase resolution. It is also possible to stretch 

a high density of fibers on coverslips allowing for statistical sampling of 

replication parameters.  

In order to study the effect of DNA damage on replication kinetics at single 

molecule level, we implemented a sequential analog labeling approach in fission 

yeast. Sequential analog labeling is necessary to ascertain the directionality of 

replication and thus distinguish between origins and forks. This chapter describes 

in detail the protocol developed for sequential analog labeling in fission yeast 

during S phase. Further it describes an in-depth analysis of every permutation of 

replication pattern observed in a tri-color combing dataset. Finally using a novel 
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analytic approach we have developed a probabilistic approach to rigorously 

determine the rate of fork stalling in a tri-color combing dataset. 

 

1. General methods 

All experiments were done in fission yeast. Uptake of the thymidine-analog label 

requires yeast cells integrated with human equilibrative nucleoside transporter 1 

(hENT1) and herpes simplex virus thymidine kinase (tk) (Hodson et al., 2003; 

Sivakumar et al., 2004). hENT1 is a nucleoside transporter that allows uptake of 

exogenous nucleosides into cell and tk phosphorylates them so that it can be 

incorporated into DNA (Griffiths et al., 1997; Lengronne et al., 2001; McNeil and 

Friesen, 1981; Vernis et al., 2003). The following strain used in this study was 

created by standard methods and grown in YES at 25°C (Forsburg and Rhind, 

2006): yFS940 (h+ leu-32 ura4-D18 his7-366 cdc10-M17 leu1::pFS181 (leu1 

adh1:hENT1) pJL218 (his7 adh1:tk)). 

 
2. S phase progression assay by flow cytometry 

2.1 Time course 

Cells were synchronized in G1 phase using cdc10-M17 temperature sensitive 

allele combined with centrifugal elutriation, which selects cells that have been 

arrested in G1 for as little time as possible (Willis and Rhind, 2011).  Cells were 

grown to mid log phase at 25°C and arrested at 35°C for 2 hours followed by 

centrifugal-elutriation-based size selection at 35°C to collect cells that had most 
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recently arrested in G1.  The cells were then immediately released into S phase 

by shifting them to 25°C. 

 
 2.2 Flow Cytometry 

S-phase progression was followed by flow cytometry using a nuclei isolation 

protocol, as previously described (Willis and Rhind, 2011) with the following 

minor modifications.   

• 0.6 O.D. of cells were pelleted every 20 minutes for 2 hours after release 

into S phase.  

•  Pelleted cells were fixed by resuspension in 70% ethanol and stored 

overnight at 4°C.   

• Fixed cells were washed once with 0.6M KCl and spheroplasted at 37°C 

for 1 hour in 0.6 M KCl with 1 mg/ml Lysing enzyme (Sigma # L1412) and 

0.5 mg/ml Zymolyase 20T (Sunrise Science Products # N0766391).   

• Cells were then washed with 0.1 M KCl containing 0.1% Triton X-100 

followed by 20 mM Tris-HCl, 5 mM EDTA, pH 8.0.   

• The cells were then resuspended in 20 mM Tris-HCl, 5 mM EDTA, pH 8.0 

containing 250 µg/ml RNaseA and incubated at 37°C overnight.   

• Cells were pelleted, chilled and sonicated for 7 seconds with a Sonifier 

(Branson Sonifier 450) equipped with a micro tip at power 5 and constant 

duty cycle to release nuclei.   



 

 

46 

• Nuclei were mixed with equal amount of 1x PBS containing 2 µM Sytox 

Green and analyzed by flow cytometry (Figure 2.1A).  S-phase 

progression values were obtained from the histograms as previously 

described (Figure 2.1B) (Willis and Rhind, 2011).  
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Figure 2.1 S phase progression by FACS in wild-type 

 

Figure 2.1 S phase progression by FACS in wild-type. A) yFS940 cells were 
synchronized in G1 phase using cdc10-M17 temperature sensitive allele followed 
by elutriation. Elutriated G1 cells were released into permissive temperature. 
Progression of S phase was monitored by collecting samples for FACS. B) S 
phase progression values were obtained from histograms of DNA content as 
described in Willis and Rhind, 2011.  Error bars represent standard deviation. 

  

asynchronous

35C arrest 2hrs

G1 elutriated cells

20 min

40 min

60 min

80 min

100 min

120 min

140 min

Wild-type

S
 p

ha
se

1C 2C

0 20 40 60 80 100 120
0.0

0.5

1.0

Time in min.
S 

ph
as

e 
pr

og
re

ss
io

n

n = 41

A B



 

 

48 

3. DNA Combing 

3.1 Cell labeling  

Cells were pulse labeled with 2 µM or 5 µM CldU for 5 minutes and chased with 

20 µM IdU for 10 minutes at 45, 50 or 55 minutes into S phase time course, 

which corresponds to mid S phase. Analog labeling was stopped by adding 

sodium azide to a final concentration of 0.1% and cooling the cells on ice.  10 

O.D. of cells were pelleted for combing, frozen in liquid N2 and stored at -80°C.  

 
The effect of analog addition on replication kinetics 

Addition of analog early in S phase causes slowing of bulk replication, probably 

due to checkpoint-dependent origin inhibition (Figure 2.2A). Therefore, we have 

labeled cells in a manner so as to incur minimal effect on S phase progression 

due to analog addition (Figure 2.2B).  By adding analogs at different time points 

across S phase and examining the effect on S phase progression by FACS, we 

chose to add analog at 50 minutes after release and harvest cells for combing by 

65 minutes after release for wild-type (Figure 2.2B). 
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Figure 2.2 Effect of analog addition on replication kinetics 

Figure 2.2 Effect of analog addition on replication kinetics.  A) Wild-type 
cells were synchronized and released into S phase with analog added at different 
concentrations—0.1 µM, 0.5 µM, 1 µM, 2 µM CldU—and chased with 20 µM IdU 
at 35 minutes after release or without any analog.  B) The S-phase progression 
of cultures with and without analog addition used for combing experiments.  2 µM 
or 5 µM CldU analog was added at 50 minutes after release for 5 minutes and 
chased with 20 µM IdU for 10 minutes and the cells were harvested for combing 
at 65 minutes after release so as to have minimal effects of analog addition on 
replication kinetics. 

0 20 40 60 80 100 120
0.0

0.5

1.0

Time in min.

S 
ph

as
e 

pr
og

re
ss

io
n

Addition of analog at the begining of S phase leads to slowing

Untreated 
(no analog added)

0.1 µM CldU
0.5 µM CldU
1 µM CldU
2 µM CldU

0 20 40 60 80 100 120
0.0

0.5

1.0

Time in min.

S 
ph

as
e 

pr
og

re
ss

io
n Untreated (no analog added) (n=39)

2 µM CldU (n=30) 

 5 µM CldU (n=9)

Addition of analog during mid-S phase leads to minimal slowing

50 min.
analog added

65 min.
end of analog labeling

A

B

pulsed with 2 µM or 5 µM CldU for 
5 min. at 50 min. after release
 

chased with 20 µM IdU for 10 min.

} chased with 20 µM IdU  
at 35 min. after release



 

 

50 

3.2 Plug preparation and digestion 

 
• The pellet was washed twice with 1ml spheroplasting buffer (20mM Citrate 

phosphate pH 5.6, 50mM EDTA pH 8.0, 1M Sorbitol) in a 2ml round-

bottomed microcentrifuge tube. To wash, the cells were re-suspended 

gently with a pipette, and centrifuged at 5000g for 1min, at room 

temperature.  

• The pellet was then re-suspended in 150 µL of DNA combing enzyme mix 

(spheroplasting buffer with 0.4 mg/ml Zymolyase 20T, 0.5mg/ml Lysing 

enzyme (Sigma # L1412), 0.5% β-mercaptoethanol) and incubated at 

37°C for 5 minutes.  

• The re-suspended cells were mixed with 150 µL of 1.5% low-melting 

agarose (1.5% in spheroplasting buffer, dissolved by boiling at 95°C and 

cooled to 42°C) using a cut-off 200 µL tip. The cells were mixed well with 

agarose and 150 µL was dispensed into each well of plug mold (two wells 

per sample) and left to solidify for 20 – 30 minutes at 4°C.  

• Plugs from each sample (two) were placed in a single round-bottomed 

tube with 1 ml of DNA combing plug solution (spheroplasting buffer with 

10mg/ml Zymolyase 20T, 12mg/ml Lysing enzyme, 1% β-

mercaptoethanol). The plugs were digested with DNA combing plug 

solution for at least 6 hours or up to 9 hours.  

3.3 Proteinase K treatment 
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The plugs were transferred to a new round-bottomed tube and digested with 1ml 

Proteinase K buffer (50mM EDTA pH 8.0, 1% SDS, 0.5mg/ml Proteinase K 

enzyme (10mM Tris pH 8.0, 1mM CaCl2, 30% glycerol, 20mg/ml Proteinase K)) 

in a 50°C water bath overnight. The Proteinase K buffer was replaced roughly 

every 12 hours. The Proteinase K digestion was done for a total of 60 hours with 

5 changes of freshly made buffer.  

 
3.4 TE washes 

After Proteinase K treatment the plugs were transferred to a 15ml conical bottom 

tube and washed twice for 2 hours each with 10ml TE buffer (10mM Tris, 1mM 

EDTA) + 1ml of 0.5M EDTA pH 8.0 at room temperature with gentle rocking.  The 

plugs were then washed twice for 2 hours each with 10ml TE buffer at room 

temperature with gentle rocking. The plugs were stored at 4°C in TE until 

needed. 

 
3.5 Melting plugs 

• One-half or one plug was placed in a 2 mL round bottomed 

microcentrifuge tube. To the plug 500 µL TE/YOYO (0.4 µM YOYO-1 

Iodide (ThermoFisher # Y3601) in TE), 480 µL 0.5 M MES pH 5.35* and 

up to 1.4 mL H2O was added.  

(*The pH of MES is extremely critical for combing. It determines the density of 

DNA that will stick to coverslips and their degree of stretching. Titrate the pH of 

MES using λ DNA. Prepare several combing solutions of λ DNA with MES buffer 



 

 

52 

of varying pH. Add 200 ng λ DNA to 500 µL TE/YOYO and 480 µL 0.5M MES of 

pH varying between 5.2 and 6.5 in a final volume of 1.4 mL. Comb the λ DNA 

and check for density of fibers and their stretching as described below. With 200 

ng of DNA, the coverslip should be densely covered with fibers. Use very small 

increments of pH for standardization (e.g., 0.05). Once the pH is standardized, 

use the optimum pH for melting sample plugs. Combing can vary substantially 

between pH 5.30 and pH 5.35; a more basic pH gives fewer, but longer fibers on 

the coverslip and a more acidic pH allows more DNA of shorter length to stick on 

the coverslip but allows more stretching. Higher pH of MES (6.25 or 6.35) was 

used for combing instead of pH 5.4 to isolate longer fibers (Kaykov and Nurse, 

2015).) 

• The plug was incubated for 20 minutes at 65°C. If the plug had not fully 

melted then the incubation was extended by another 10 minutes. 

• The plug was transferred to 42°C and incubated for 30 minutes.  

• 40 µL β-agarase mix (4 µL 10× NEB buffer, 4 µL β-agarase, 32 µL sterile 

H2O) was added to the tube**. The plug was digested overnight at 42°C.  

(**Do not mix after adding β-agarase. Gently swirl with a tip if needed. After 

digestion the samples should appear very clear. Usually, a small amount of 

wispy, thread-like agarose remnant is seen but there should be very few, if any, 

agarose clumps. If clumps are present, remelt the plug at 65°C and digest again 

with β-agarase mix. Improper cell wall digestion will make the plugs appear very 
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cloudy and the β-agarase digestion will not occur optimally leading to poor DNA 

recovery.) 

• The melted plug was centrifuged at 800g for 5 min at room temperature. 

The tubes were handled with extreme care to avoid any damage to DNA 

fibers.  

• The supernatant was transferred directly into the Teflon reservoir of a 

DNA Combing instrument or, if the sample is to be stored for latter 

processing, into a new round-bottomed tube using a cut off 1 mL tip***.  

(***This supernatant is the DNA combing solution and there should be hardly any 

pellet. Use extreme care while transferring the supernatant to avoid DNA fiber 

breakage. The combing solution can be stored at 4°C.  However, with time the 

DNA fibers break; therefore, avoid storing for >1 mo.)  

3.6 Preparation of silanized coverslips 

Coverslips were cleaned in a plasma cleaner such as a Harrick basic plasma 

cleaner. Liquid-based cleaning protocols can be used if a plasma cleaner is not 

available (Demczuk and Norio, 2009; Marheineke et al., 2009).  

 
3.6.1 Plasma cleaning of coverslips  

• Ceramic coverslip holders were washed with water and then with ethanol 

and allowed to dry.  

• The coverslips (22 x 22 mm, No. 1) were placed in ceramic holders 
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without touching the flat surfaces of the coverslips. The coverslips were 

cleaned according to the instructions of the plasma cleaner manufacturer. 

The coverslips were quickly transferred to the desiccator for silanization.  

(After plasma cleaning, proceed immediately to silanization. Exposure of the 

coverslip to oxygen will lead to poor silanization.) 

3.6.2 Silanization and storage of coverslips  

• A 25 mL beaker was placed in the center of the desiccator chamber. (Use 

a fresh beaker each time.) 

• 1 mL octenyltrichlorosilane mixture of isomers 96% (Sigma 539279) was 

added to the beaker.(Open the silane bottle, quickly take 1 mL and 

immediately close the bottle to minimize silane oxidization.)   

• The air was evacuated from the desiccator by connecting it to a vacuum 

pump. The silane will boil after vacuum is established. The desiccator was 

evacuated for 2 min.   

• The desiccator was sealed and silane coating was allowed to occur 

overnight.   

• The seal was broken and the beaker containing remaining silane was 

removed. The desiccator was resealed using vacuum. 

• The coverslips were stored under vacuum until needed but used within 1 

week.   

3.7 DNA Combing 
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This protocol is based upon the DNA Combing System instrument from Genomic 

Vision, although other surface- coating systems should work (Marheineke et al., 

2009; Kaykov et al., 2016). Over 50 coverslips can be combed using the combing 

solution from one-half of a plug.  

• The DNA combing solution was transferred very carefully (to avoid DNA 

breakage) into a Teflon reservoir.  To avoid breakage of DNA, after 

spinning the melted plug, the supernatant can be transferred using a cut 

off 1 mL tip directly into the Teflon reservoir, instead of transferring it into a 

new tube and then into the reservoir.   

• A silanized coverslip was attached to the instrument holder and dipped 

into the reservoir for 5 min.   

• The coverslip was withdrawn at a constant speed of 500 µM/sec to allow 

DNA molecules to  stretch.   

• The density of fibers and stretching on the coverslips was checked by 

epifluorescence using a GFP filter set and a 100× objective to visualize 

YOYO-1 stained DNA fibers. Coverslips with well- stretched fibers of 

appropriate density were selected for further analysis. Usually 5–10 

coverslips will be suitable for further analysis.  The coverslips can be 

easily viewed with an inverted microscope. An upright microscope can 

also be used, but a coverslip holder is required to hold the coverslip DNA-

side down while it is being viewed. Such a holder can be made by cutting 

a square hole in a thin piece of stiff plastic.   
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• The immersion oil was aspirated away from the coverslip. A drop of super 

glue was placed on a slide and the coverslip was placed oil-side down on 

the glue and the slide was labeled using pencil. 

• The slide was incubated for 2 h at 65°C or overnight. Baking robustly 

attaches DNA strands to the cover slip.   

3.8 Immuno-staining of stretched DNA fibers 

• The slides were cooled at room temperature for 5 min. The slides were 

placed in a Coplin jar. The slides were denatured with freshly prepared 0.5 

N NaOH or 2.5 N HCl for 30 min; acid or alkali was added and the jar was 

placed on a rocking platform.   

The choice of denaturing agent, either HCl or NaOH, depends on the batch of 

coverslips. Test the coverslip batch for optimal staining using spare labeled DNA 

before proceeding with test samples. Typically, CldU is best visualized using HCl 

denaturation. However, IdU staining does not work well with HCl denaturation. 

IdU is best visualized using NaOH denaturation, while CldU staining is moderate. 

At low concentrations, CldU staining is quite punctate, which can complicate 

analysis. At high CldU concentrations, NaOH gives good results.   

 
• The slides were transferred to a fresh Coplin jar and washed with 0.1× 

PBS three times for 5 min each on a rocking platform.   

• The slides were placed in a humid chamber (box containing wet paper 
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towels).   

• The coverslips were blocked with 1% BSA (1% BSA fraction V in 0.1x 

PBS with 0.05% Tween-20) by adding 50 µL of solution per coverslip. A 

second coverslip was placed on top of each to spread out the solution and 

to prevent evaporation. Incubate the box for 25 min at 37°C. Fresh top 

coverslips were applied as described in this step for all subsequent 

antibody incubations.   

• The top coverslip was removed by dipping the slide horizontally in a wide 

chamber containing 0.1× PBST (0.1x PBS with 0.05% Tween-20). The 

slides were washed with 0.1× PBST twice for 2 min each.  The top 

coverslips were removed as described in this step for all subsequent 

washes. In most cases the top coverslip will float off easily; however, it 

may be necessary to gently ease it off using a micropipette tip.   

• 50 µL CldU (rat) and IdU (mouse) primary antibodies were added to each 

coverslip (prepare all Ab dilutions in blocking agent; see Table 2 for 

dilutions). The coverslips were incubated for 1 h at 37°C.   

• The slides were washed with 0.1× PBST twice for 3 min each.   

• Anti-rat 594 or Cy5 and anti-mouse 488 or Cy 3.5 antibodies were added 

to each coverslip. The coverslips were incubated for 30 min at 37°C.  

• The slides were washed with 0.1× PBST twice for 3 min each.   

• Rabbit anti-ssDNA primary antibody was added to each coverslip. The 

coverslips were incubated for 1 h at 37°C.   
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• The slides were washed with 0.1× PBST twice for 3 min each.   

• Anti-rabbit 350 or BV480 was added to each coverslip. The coverslips 

were incubated for 30 min at 37°C.   

• The slides were washed with 0.1× PBST twice for 3 min each.   

• Excess 0.1× PBST was drained off. 18 µL of anti-fade mounting medium 

was added per coverslip. A coverslip was placed on top of each and 

sealed with nail polish. The nail polish was allowed to dry before 

visualization.  If using ProLong Gold Antifade, allow the slides to cure for 

24 h at room temperature before sealing with nail polish.   

• The slides were kept at −20°C for long-term storage.   
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Table2.1: Antibody dilutions (all dilutions were prepared in blocking agent) 

 Antibody Detection Dilution 

1 Mouse anti-BrdU (BD Biosciences 347580) 
 

IdU and BrdU 1:20 

2 Rabbit anti-ssDNA (IBL 18731) ssDNA 1:50 

3 Rat anti-BrdU (Abcam ab 6326) 
 

CldU and BrdU 1:50 

4 Alexa fluor 488 goat anti-mouse IgG (H+L), 
highly cross-adsorbed (Invitrogen A-11029) 

Mouse BrdU Ab 1:100 

5 Alexa fluor 350 goat anti-rabbit IgG (H+L), 
highly cross-adsorbed (Invitrogen A-21068) 

Rabbit ssDNA Ab 1:100 

6 Alexa fluor 594 goat anti-rat IgG (H+L) 
(Invitrogen A-11007) 

 

Rat BrdU Ab 1:100 

7 Goat anti-mouse IgG H&L Cy3.5 
preadsorbed (Abcam ab6946) 

 

Mouse BrdU Ab 1:50 

8 BV480 Goat anti-rabbit IgG polyclonal (BD 
Biosciences 564879) 

 

Rabbit ssDNA Ab 1:10 

9 Goat anti-rat IgG H&L Cy5 preadsorbed 
(Abcam ab6565) 

 

Rat BrdU Ab 1:50 
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3.9 Imaging 

Fibers stained with secondary antibodies Alexa Fluor 488, 350, and 594 were 

visualized using a Zeiss Axioskop 2 Plus epifluorescence microscope with 100X 

Plan-NEOFLUAR oil objective and standard DAPI (Ex:360/40 DC:400 

Em:460/50), GFP(Ex:470/40 DC:495 Em:525/50), and Texas red (Ex:560/60 

DC:600 Em:615) filter sets and imaged using SPOT monochrome cooled-CCD 

camera.  Fibers stained with secondary antibodies Cy3.5, BV480 and Cy5 were 

imaged using the FiberVision® scanner in collaboration with Genomic Vision, 

France.  

 
3.10 Data collection 

Fibers were measured in pixels using Image J (Schneider et al., 2012).  Pixels 

were converted to kb using λ DNA as a standard.  Only fibers longer than 120 kb 

were analyzed.  For images acquired in collaboration with Genomic Vision, the 

fibers were manually measured using FiberStudio® software. About 25 Mb of 

DNA was collected for each dataset. For each fiber, the length of each green, red 

and unlabeled track was manually measured. Analysis of this data was 

automated using MATLAB scripts.  

 
4. Data Analysis 

We pulsed cells in S phase with 5-chloro-2’-deoxyuridine (CldU) for 5 minutes 

and chased it with 5-iodo-2’-deoxyuridine (IdU) for 10 minutes, isolated and 

combed DNA, and visualized the CldU and IdU analogs with red and green 
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antibodies, respectively. Figure 2.3 shows a sample fiber from the dataset. The 

fiber contains a rightward moving fork (red-green [RG]), an origin that fired during 

IdU labeling (green [G]), and three origins that fired during CldU labeling (green-

red-green [GRG]).  Further replication patterns observed in our combing dataset 

are shown with an interpretation of each pattern.  The patterns observed were 

most simply interpreted as a leftward fork (green-red [GR]), a rightward fork 

(RG), origins that fired during CldU (GRG) or IdU (G), and terminations during 

IdU (red-green-red [RGR]) or CldU (red [R]).  However, a more sophisticated 

analysis allowing the possibility of fork stalling reveals that many of these 

patterns—in particular termination during CldU (R)—are ambiguous, as 

described below (Figure 2.6).  For each experiment we collected about 25 Mb of 

DNA, which is about twice the size of the fission yeast genome, ensuring 

representation of most genomic loci in our analysis.  From the combing data we 

estimated four parameters: origin firing rate, fork density, fork rate and fork 

stalling frequency 
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Figure 2.3 Visualization of replication fork progression 

Figure 2.3 Visualization of replication fork progression. Wild-type cells 
(yFS940) were G1 synchronized and pulse labeled at 50 minutes after release 
into S phase with CldU (visualized using red antibody) for 5 minutes, and chased 
with IdU (visualized using green antibody) for 10 minutes.  Shown are a sample 
fiber from the wild-type dataset and the various replication patterns observed in 
the dataset with their simplest interpretations.  See Figure 2.6 for other possible 
interpretations of ambiguous patterns. 
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4.1 Fork rate measurement 

Green tracks (containing IdU, the second analog added) continuing from red 

tracks (containing CldU, the first analog added) were used to determine fork rate.  

The length of the green track was measured from green-red (GR), red-green 

(RG) and green-red-green (GRG) events and divided by the length of the chase 

time (10 minutes).  For each dataset the fork rate distribution was plotted as a 

histogram and was fit to a Gaussian curve (Figure 2.4).  The mean fork rate was 

obtained from the fit. 

We also considered that there could be a lag between the addition of analog 

and its incorporation into the DNA, which might lead to an underestimation of the 

actual fork rate.  To estimate the lag we labeled the cells as previously described 

with 2µM CldU for 5 minutes and chased it with 20µM IdU but collected samples 

after different lengths of IdU incubation: 3, 4, 5, 6, 7, 8, 10, 14 and 16 minutes.  

However we did not find any lag in analog incorporation by plotting the lengths of 

IdU labeled forks across different lengths of time after IdU addition (Figure 2.5). 

Fork rate was also analyzed by excluding forks occurring at the ends of the 

fiber, as broken forks may lead to an under-estimation of the actual fork rate.  

However, excluding the forks occurring at the ends of the fiber does not 

significantly affect fork rate estimations, consistent with the observation that only 

6% of the forks in our dataset occur at the end of a fiber. 
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Figure 2.4 Fork rate distribution in wild-type sample 

 

 

Figure 2.4 Fork rate distribution in wild-type sample. Fork rate distribution 
from wild-type sample from three different time-courses (blue, red, green). Each 
distribution was fit to a Gaussian curve. Mean fork rate and standard deviation 
was obtained from the fit.  
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Figure 2.5 Estimation of lag in analog incorporation 

  

Figure 2.5 Estimation of lag in analog incorporation.  Cells were pulse 
labeled with 2 µM CldU for 5 minutes and chased with 20 µM IdU for varying 
lengths of time: 3, 4, 5, 6, 7, 8, 10, 14, 16 minutes.  At least 100 forks were 
collected for each time point except for 3 and 4 minutes of IdU labeling for which 
only 11 and 44 forks were measured, respectively, due to lack IdU labeled forks 
at such short lengths of labeling period. 
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4.2 Origin firing rate measurement 

To estimate the rate of origin firing, the total number of origin firing events in each 

fiber was divided by the length of the unreplicated DNA of that fiber and by the 

total length of the analog pulses (15 minutes).  The total number of origins firing 

in the fiber is the sum of origins that fire during the first and the second analog.  

Origins that fire during the first analog are identified as GRG events.  Origins that 

fire during the second analog are identified as isolated green events.  However, 

origins that fire in the first analog will appear as GRG only if both its forks 

progress into the second analog labeling.  In the event of a unidirectional fork 

stall during the first analog pulse, origins that fire will appear as GR or RG.  An 

origin may also appear as an isolated red event if both its forks stall during the 

first analog pulse.  Therefore, the origin firing rates were corrected by accounting 

for the probability of forks stalling during the first analog pulse which would have 

disrupted GRG events, based on the measured fork stall rate (see below for stall 

rate calculation). 

 
4.3 Fork density measurement 

Origin firing rate captures the origins that fire during the course of the analog 

pulses.  However, the rate of origin firing prior to labeling influences the density 

of forks during the pulses and provides a parallel measure of origin activity.  

Therefore, we measured fork density to assess origin firing rate during the period 

prior to our S-phase labeling pulses.  Fork density, the total number of forks in 

each fiber was divided by the length of the unreplicated DNA of that fiber, and 
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was calculated independently for the two labeling pulses.  The basic strategy for 

measuring the fork density during either analog pulse is straight-forward.  For the 

first pulse, it is done by counting the following events in each fiber and dividing by 

the length of the unreplicated DNA of that fiber: the number of origins firing 

(GRG) and terminations (R and RGR) during the first pulse multiplied by two, 

since each origin or termination comprises two forks, and the unidirectional forks 

(GR and RG) counted once.  Likewise, for the second analog pulse it is done by 

counting the following events in each fiber and dividing by the length of the 

unreplicated DNA of that fiber: the number of origin firing during the second pulse 

(G), forks from origins firing in the first pulse (GRG) and terminations during the 

second pulse (RGR) multiplied by two, and the unidirectional forks (GR and RG) 

counted once.  We also calculated the total fork density for each fiber, which is 

done by counting following events in each fiber and dividing by the length of the 

unreplicated DNA of that fiber: number of origins firing during each analog (GRG 

and G) and terminations (R and RGR) multiplied by two, and the unidirectional 

forks (GR and RG) counted once.  However, these calculations are confounded 

by forks that stall during the first pulse, leading to the misclassification of events 

(Figure 2.6).  To account for such stalling events, we took a probabilistic 

approach, in which the measured stall rate is used to more accurately estimate 

fork density, as described below. 

 
4.4 Fork stall rate measurement 
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Difficulty in identifying fork stalling events in combing data arises from the fact 

that stalls during the first pulse can result in ambiguous analog incorporation 

patterns (Figure 2.6A) (Técher et al., 2013).  For instance, an isolated first analog 

event is open to any of the following three interpretations: an unidirectional 

elongating fork that stalled, or an origin firing event for which both forks stalled, or 

a termination event (Figure 2.6A). Therefore, we cannot use first-pulse events 

alone as rigorous evidence for stalled forks. However, using double-labeled 

combing data we can unambiguously identify fork stalling. In particular, two 

apparently unidirectional forks moving in the same direction on a fiber must have 

had the fork in between them stall (Figure 2.6B).  Such unambiguous stall events 

leave signature red-unlabeled-green (RUG) or green-unlabeled-red (GUR) 

patterns (Figure 2.6B & 2.7).  On the other hand the signature for two unstalled 

forks is green-unlabeled-green (GUG) (Figure 2.7). Thus, a red-unlabeled-green 

(RUG) or green-unlabeled-red (GUR) pattern is diagnostic of a fork stall.  Since 

the fibers in our datasets average over 400 kb, we observed many neighboring 

forks, allowing us to robustly measure fork stalling. We can estimate the fork stall 

rate only during the first analog pulse.  Stalls occurring during the second analog 

pulse simply reduce the length of the second analog incorporation track and thus 

get interpreted as a reduction in fork rate. 
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 Figure 2.6 Identification of stalled forks using the context of neighboring 

forks 

 

Figure 2.6 Identification of stalled forks using the context of neighboring 
forks (A) Ambiguity in interpreting isolated first analog events. Possible 
interpretations of isolated first analog event based on the neighboring event are 
listed.  (B) The signature we have used to identify definite stalled forks: RUG 
(red-unlabeled-green) and GUR (green-unlabeled-red).  Two forks moving in the 
same direction indicate that the fork moving in between them in the opposite 
direction must have stalled.  
  

Definite stalled fork

 A

GUR

RUG

stalled elongating fork

origin with both forks stalled

termination

GUR                

 B

Origin

RUG

CldU - first analog 
IdU - second analog 

R - red
G - green
U - unlabelled

Possible interpretations for isolated first analog event

Identification of unambiguous stalled events in our dataset using signature RUG and GUR pattern
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Calculation of stall rate from unambiguous events 

To estimate the apparent stall rate in the dataset we counted every RUG and 

GUR event and divided it by the sum of GUR, RUG and GUG events (Figure 

2.7).  The GUR and RUG events are included in the denominator because every 

stall event represents a loss of one fork.  For example, consider an origin (GRG) 

on a fiber.  If one of its fork is stalled then it will appear as GR or RG and we 

would calculate the stall rate as 50% since one fork is stalled but ideally there 

should be two (one fork which we can visualize and one which is stalled). 

 
Calculation of stall rate from all events (unambiguous as well as 

ambiguous events) 

Although the unambiguous events allow us to determine the stall rate with 

certainty, not every isolated first analog event is flanked by second analog events 

to help us determine whether it is stalled or not.  For example consider Figure 

2.8, which shows two forks moving away from one another (RUR pattern).  It can 

be interpreted as forks moving away from a single origin or as two origins with 

stalled forks on their inner side.  
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Figure 2.7 Calculation of apparent stall rate (for unambiguous events only). 

 

Figure 2.7 Calculation of apparent stall rate (for unambiguous events only). 
Apparent stall rate was estimated by dividing the number of RUG and GUR 
events by summation of GUG, RUG, and GUR events. 

  

st    = 
n(RUG) + n(GUR) 
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GUR

RUG

Signature for 
stalled forks 

Signature for 
unstalled forks
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Figure 2.8 Ambiguous events in the dataset 

 

Figure 2.8 Ambiguous events in the dataset. Ambiguous events such as RUR 
(red-unlabeled-red) and their possible interpretations. 

  

Interpretation1:  
forks moving away 
from a single origin 

Interpretation2:  
two origins with stalled 
forks on the inner side 

Origin1      Origin2

RUR

Ambiguous replication patterns
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To estimate the stall rate across the ambiguous events we used a 

probabilistic approach.  We considered all combinations in which ambiguous 

events could occur (e.g. UR, RU, RUR, GRU, URG, GRUR, RURG, URUR, 

RURU, RURUR etc.) (Figure 2.9). Figure 2.9 shows a schematic representation 

of all the permutations in which a red track can occur and their possible 

interpretations. 

 

Figure 2.9 Permutations in which a red track can occur. 
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GURG

Permutation 1: red track is an origin with a stalled fork

URG ?

Permutation 2: red track could be an origin with a stalled 
leftward fork or just an elongating rightward fork

RURG
??

Permutation 3:elongating forks from an origin in the center 
or two origins whose inner forks have stalled

GRUG

Permutation 4: red track is an origin with 
a stalled rightward fork

GRU?

Permutation 5: red track could be an origin with a stalled 
rightward fork or just an elongating leftward fork

GRUR
? ?

Permutation 6: elongating forks from an origin in the center 
or two origins whose inner forks have stalled

GURU ?

Permutation 7: red track could be an elongating fork with 
a stalled leftward fork or an origin with two stalls

URUG?

Permutation 8:red track could be an elongating fork with 
a stalled rightward fork or an origin with two stalls
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??RURU

Permutation 9: red track could be a termination event or an 
origin with two stalls or an elongating fork with stall on either side

?? URUR

Permutation 10: red track could be a termination event or an 
origin with two stalls or an elongating fork with stall on either side

??
RURUR

Permutation 11: red track could be a termination event or an 
origin with two stalls or an elongating fork with stall on either side

? RURUG

Permutation 12: red track could be an elongating fork with
a stalled rightward fork or could be an origin with two stalls

?GURUR

Permutation 13: red track could be an elongating fork with 
a stalled leftward fork or could be an origin with two stalls

GURUG

Permutation 14: red track is an origin with both its forks stalled

??
URU

Permutation 15: red track could be a termination event or an origin 
with two stalls or an elongating fork with stall on either side 

GRG

Permutation 16: red track is an origin with two forks
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Figure 2.9 Permutations in which a red track can occur. A schematic 
representation of all the permutations in which a red track can occur and their 
possible interpretations. The red track of interest is italicized in each case. 

  

R - red
G - green
U - unlabeled
? - ambiguous red track



 

 

77 

 

The ambiguous events were assigned a probability of being either stalled or 

not, using the apparent stall rate as the probability of a fork stalling (Table 2.2).  

For example, consider red-unlabeled-red (RUR) event represented in Figure 2.8, 

if the leftward moving fork is interpreted as an origin with stalled rightward fork 

then it automatically implies that the rightward moving fork on the fiber is also an 

origin with stalled leftward moving fork.  Therefore the probability of both the 

events being considered as origins with a stalled fork, is the product of two stall 

events occurring at the same time i.e. square of the apparent stall rate.  If the 

apparent stall rate is 10%, then RUR events are assigned a 1% probability of as 

having two stalled forks.  The probabilistic interpretation of the ambiguous events 

also changes the absolute number of forks in the dataset.  For example 

according to interpretation 1 in Figure 2.8 there is only one origin with two 

elongating forks on the fiber. However according to interpretation 2 there are two 

origins with a total of 4 expected and 2 apparent forks.  To estimate the stalls per 

kb for each fiber the unambiguous stall events (RUG and GUR) in each fiber 

were combined with the fraction of the ambiguous events that were predicted to 

be stalled and this total was divided by the length of the un-replicated DNA.  To 

estimate the stall rate per fiber the unambiguous stall events (RUG and GUR) in 

each fiber were combined with the fraction of the ambiguous events that were 

predicted to be stalled and this total was divided by the total number of ongoing 

forks in the first analog, which was calculated as the sum of GR, RG, and R 
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events (counted once or twice based on whether they were interpreted as 

elongating forks or as an origin with a stalled fork) plus two forks for each GRG. 
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Table 2.2 Probability of stalling assigned to each permutation listed in 

Figure 2.9 

 

Permutation Probability 
of the red 

track 
having a 

stalled fork 

Probability 
of the red 

track 
being an 

origin with 
two stalled 

forks 

Total 
number of 

stalled 
forks 

Total 
number of 
unstalled 

forks 

Total number 
of ongoing 

forks 

1 1 - 
 

n(GURG) n(GURG) 2*n(GURG) 

2 st - n(URG)*st n(URG)*(1-
st) 

n(URG)*(1-st) 
+ 

2*st*n(URG) 
3 st2 - n(RURG)*

st2 
n(RURG)*(1

-st2) 
n(RURG)*(1-

st2) + 
2*st2*n(RUR

G) 
4 1 - n(GRUG) n(GRUG) 2*n(GRUG) 
5 st - n(GRU)*st n(GRU)*(1-

st) 
n(GRU)*(1-st) 

+ 
2*st*n(GRU) 

6 st2 - n(GRUR)*
st2 

n(GRUR)*(1
-st2) 

n(GRUR)*(1-
st2) + 

2*st2*n(GRU
R) 

7 1-st st n(GURU)*
(1-st) +  

2*n(GUR
U)*st 

- n(GURU)*(1-
st) + 

2*n(GURU)*st 
 

8 1-st st n(URUG)*
(1-st) + 

 

- n(URUG)*(1-
st) + 

2*n(URUG)*st 

R - red
G - green
U - unlabeled
st - apparent stall rate
n - number of events in the entire dataset
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2*n(URU
G)*st 

9 st + st2 - 
2*st3 

st3 n(RURU)*
(st + st2 - 
2*st3) + 

 
2*n(RURU

)*st3 

2*n(RURU)*
(1 - st - st2 + 

st3) 

n(RURU)*(st 
+ st2 - 2*st3) +  
2*n(RURU)* 

st3 + 
2*n(RURU)*(
1 - st - st2 + 

st3) 
10 st + st2 - 

2*st3 
st3 n(URUR)*

(st + st2 - 
2*st3) + 

 
2*n(URUR

)*st3 

2*n(URUR)*
(1 - st - st2 + 

st3) 

n(URUR)*(st 
+ st2 - 2*st3) +  
2*n(URUR)* 

st3 + 
2*n(URUR)*(
1 - st - st2 + 

st3) 
 

11 2*(st2 - st4) st4 2*n(RURU
R)*(st2 - 

st4) +  
2*n(RURU

R)*st4 

2*n(RURUR
)*(1 - 2*st2 + 

st4) 

2*n(RURUR)*
(st2 - st4) +  

2*n(RURUR)*
st4 + 

2*n(RURUR)*
(1 - 2*st2 + 

st4) 
12 1-st2 st2 n(RURUG

)*(1-st2) +  
2*n(RURU

G)*st2 

- n(RURUG)*(1
-st2) 

+2*n(RURUG
)*st2 

13 1-st2 st2 n(GURUR
)*(1-st2) +  
2*n(GUR
UR)*st2 

- n(GURUR)*(1
-st2) + 

2*n(GURUR)*
st2 

14 - 1 2*n(GUR
UG) 

- 2*n(GURUG) 

15 2*(st - st2) st2 2*n(URU)*
(st - st2) + 

 
2*n(URU)*

st2 

2*n(URU)*(
1 - 2*st + 

st2) 

2*n(URU)*(st 
- st2) + 

2*n(URU)*st2 
+  

2*n(URU)*(1 - 
2*st + st2) 

16 - - - 2*n(GRG) 2*n(GRG) 
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stall rate    =
total number of stalled forks per fiber

total number of ongoing forks per fiber
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Conclusion 

Bulk assays of replication kinetics, such as the quantitation of radioactive 

thymidine incorporation or flow cytometry, provide only an average profile of 

replication kinetics, convolving the effects of origin firing and fork progression and 

obscuring any heterogeneity in fork slowing.  The effects of DNA damage on 

specific origins and on forks replicating specific loci can be analyzed by gel- or 

sequence-based methods (Santocanale and Diffley, 1998; Shirahige et al., 1998; 

Tercero and Diffley, 2001; Kumar and Huberman, 2009; Szyjka et al., 2008), but 

these techniques still only reveal the average response to DNA damage.  Such 

approaches lack the single-molecule resolution necessary to identify 

heterogeneity in response to damage and to distinguish, for instance, if all forks 

pause briefly at all lesions or if only a fraction of forks stall, but for a longer time.   

Therefore, to investigate the effect of polymerase blocking lesions on 

individual origins and forks on a global scale, we have implemented a double-

analog labeled, single-molecule DNA combing assay in fission yeast. Sequential 

analog labeling allows us to distinguish between origins and forks and thus study 

their regulation in response to damage. Further, we have developed an in-depth 

analysis of every permutation of labeled track found in a tri-color combing dataset 

to rigorously study the effect of damage on origins v forks. Finally, using the 

context of neighboring events we have identified fork stalling events in tri-color 

combing dataset. Detection of fork stalling events is complicated due to lack of 

consensus on how to identify them in the DNA fiber datasets (Técher et al., 
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2013).  Generally, signal from the first (red) analog alone on a fiber (a unlabeled-

red-unlabeled [URU] event) is presumed to be either an elongating fork that 

stalled or an origin that fired in the first pulse followed by stalling of both its forks 

(Figure 2.6A) (Técher et al., 2013; Scorah and McGowan, 2009; Wilsker et al., 

2008; Merrick et al., 2004; Conti et al., 2010).  Alternatively the events from the 

first analog alone can be interpreted as terminations (Figure 2.6A) (Técher et al., 

2013; Anglana et al., 2003; Courbet et al., 2008; Letessier et al., 2011).  

However, both interpretations rely on heuristic arguments and are unable to 

quantitate ambiguous signals, such as URU.  Therefore we developed a new, 

rigorous way of quantitating stalled forks in double-labeled data.  We have used 

the context in which the first analog event occurs to define it as a stalled fork or 

not.  As discussed in greater detail in the data analysis section we have used 

RUG and GUR patterns as a diagnostic for fork stall event occurring during the 

first analog (Figure 2.6B and 2.7).  We then used a probabilistic approach to 

quantitate the frequency of stall events in the ambiguous patterns in order to 

determine the net fork stall rate for the entire dataset (Figure 2.8 and 2.9, Table 

2.2).  It should be noted that we can detect a stall only if it occurs during the first 

(red) analog pulse and persists throughout the second (green) analog pulse. 

Thus using the approach we have developed we can study the behavior of 

individual forks and understand their regulation by checkpoint in response to 

damage (Chapter III). We can ascertain whether regulation of forks is global or 
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local, that is do all forks show uniform or heterogeneous behavior in response to 

damage (Chapter III)(Iyer and Rhind, 2013). 
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Chapter III  
 

Replication fork slowing and stalling are distinct, 
checkpoint-independent consequences of 

replicating damaged DNA 
 

 

 

 

 

 

Chapter III is mainly from the manuscript written by Nick Rhind and me and is 

currently under review at PLOS Genetics (Iyer and Rhind, submitted). 
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Introduction 

In response to DNA damage during the G1 or G2 phase of the cell cycle, DNA 

damage checkpoints block cell cycle progression, giving cells time to repair 

damage before proceeding to the next phase of the cell cycle (Hartwell and 

Weinert, 1989; Rhind and Russell, 2012).  The response to DNA damage during 

S phase is more complicated, because repair has to be coordinated with ongoing 

DNA replication (Bartek et al., 2004).  DNA damage during S phase activates the 

intra-S DNA damage checkpoint, which does not completely block S-phase 

progression, but rather slows DNA replication, presumably allowing for 

replication-coupled repair (Rhind and Russell, 2000a).  Lack of the intra-S DNA 

damage checkpoint predisposes cells to genomic instability (Zhou and Elledge, 

2000).  Nonetheless, the mechanisms by which replication is slowed, and the 

roles of checkpoint-dependent and -independent regulation in the S-phase DNA 

damage response, are not well understood. 

The slowing of S phase in response to damage involves both inhibition of 

origin firing and reduction in fork rate (Kaufmann et al., 1980; Merrick et al., 2004; 

Falck et al., 2002; Santocanale and Diffley, 1998; Chastain et al., 2006; Seiler et 

al., 2007; Kumar and Huberman, 2009).  The effect of the checkpoint on origin 

firing has been characterized in budding yeast and mammalian cells.  The 

checkpoint prevents activation of late origins by targeting initiation factors 

required for origin firing.  In mammals, checkpoint kinase 1 (Chk1) inhibits origin 

firing by targeting the replication kinases, cyclin-dependent kinase (CDK) and 
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Dbf4-dependent kinase (DDK) (Zhao and Piwnica-Worms, 2001; Falck et al., 

2001; Sørensen et al., 2003).  In budding yeast, Rad53 targets Sld3, an origin 

initiation factor, and Dbf4, the regulatory subunit of DDK (Zegerman and Diffley, 

2010; Lopez-Mosqueda et al., 2010). 

Although checkpoint inhibition of origin firing is conserved from yeast to 

mammals, the contribution of origin regulation to damage tolerance is not clear.  

For instance, budding yeast mutants such as mec1-100, SLD3-m25 and dbf4-

m25, which cannot block origin firing in response to damage, are not sensitive to 

damaging agents such as methyl methanesulfonate (MMS) (Zegerman and 

Diffley, 2010; Lopez-Mosqueda et al., 2010; Tercero et al., 2003; Paciotti et al., 

2001) suggesting that checkpoint regulation of origin firing is not as critical as the 

checkpoint’s contribution to damage tolerance via fork regulation. 

The effect of checkpoint activation on replication forks is less well 

understood.  Because many DNA damage lesions block the replicative 

polymerases, in order for forks to pass leading-strand lesions, they must have 

some way to reestablish leading-strand synthesis downstream of the lesion.  

Recruitment of trans-lesion polymerases, template switching and leading-strand 

repriming have all been proposed to be involved in the fork by-pass of lesions, 

but which is actually used in vivo and how the checkpoint may affect that choice, 

is unclear (Branzei and Foiani, 2009; Branzei and Foiani, 2005; Ulrich, 2012; 

Daigaku et al., 2010; Sale, 2012; Lee and Myung, 2008). 
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DNA damage leads to slowing of fork progression. However, whether 

slowing of forks is checkpoint dependent or independent is controversial (Tercero 

and Diffley, 2001; Szyjka et al., 2008; Unsal-Kaçmaz et al., 2007). Bulk assays 

(2D-gels) provide only an average snapshot of fork behavior. To understand the 

regulation of individual forks on a global scale we have used single-molecule 

DNA combing assay. Sequential analog labeling allows us to distinguish between 

origins and forks and thus allows us to get a detailed snapshot of behavior of 

individual forks in response to damage. 

Here, we have assayed checkpoint-dependent slowing of S phase in fission 

yeast in response to three DNA damaging drugs that activate the checkpoint at 

significantly different densities of lesions: methyl methanesulfonate (MMS), which 

mainly methylates purines and creates a relatively small adduct, 4-nitroquinoline 

1-oxide (4NQO), which adds a quinoline group to purines resulting in a bulkier 

adduct (Sikora et al., 2010; Galiègue-Zouitina et al., 1985; Galiègue-Zouitina et 

al., 1986) and bleomycin, which mainly creates single strand and double strand 

DNA breaks (Chen and Stubbe, 2005).  MMS and 4NQO create polymerase-

stalling lesions and have been shown to activate the intra-S checkpoint 

(Friedberg et al., 1995; Larson et al., 1985; Minca and Kowalski, 2011; Lopez-

Mosqueda et al., 2010; Willis and Rhind, 2009; Lindsay et al., 1998).  The 

standard dose of 3.5 mM (0.03%) MMS causes about one lesion every 1 kb 

whereas a physiologically similar dose of 1 µM 4NQO causes one lesion about 

every 25 kb and 16.5 µM of bleomycin causes about 5 double-strand breaks per 
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haploid yeast genome (Lundin et al., 2005; Snyderwine and Bohr, 1992; Ma et 

al., 2008; Asaithamby and Chen, 2009).  Although these are only rough 

approximations of lesion density, they show that forks will encounter many more 

MMS lesions than 4NQO lesions or bleomycin-induced double-strand breaks.  

This wide disparity in lesion density allows us to address differences in global 

and local effects of the checkpoint.  In case of 4NQO, since the lesions are rare, 

we expect few forks to encounter lesions.  Therefore, if all forks slow in response 

to 4NQO then we can conclude that fork regulation by checkpoint is global in 

nature. On the contrary, if fork regulation is a local effect then only the very few 

forks that actually encounter lesion will slow.  Similarly since the double-strand 

breaks caused by bleomycin are infrequent we expect very few forks to be 

affected by the breaks unless the checkpoint actively regulates all forks.  In case 

of MMS, since the lesions are frequent we expect all forks to encounter lesions, 

and thus to slow regardless of whether slowing is a local or global effect.  By 

comparing the effects of these three drugs, we can differentiate between global 

and local effects on fork regulation by the checkpoint.  We find that fork slowing 

is a local, checkpoint-independent effect, but that persistent fork stalling plays a 

more significant role in replication kinetics than previously appreciated. 
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Results 

MMS, bleomycin and 4NQO-induced DNA damage show a similar effect on 

the overall replication rate 

To determine the effect of MMS, bleomycin, and 4NQO—three compounds that 

activate the checkpoint at very different densities of lesions—on the replication 

rate at a population level, we analyzed cells response to them by flow cytometry.  

G1 synchronized cells were released into S phase with or without DNA damage, 

using the commonly used dose of 3.5 mM (0.03%) MMS or a dose of 1 µM 

4NQO or 16.5 µM bleomycin chosen to produce a similar slowing of bulk 

replication (Figure 3.16).  These doses of MMS, 4NQO and bleomycin cause 

lesions about once every 1 kb, 25 kb, and 3000 kb respectively (Lundin et al., 

2005; Snyderwine and Bohr, 1992; Ma et al., 2008; Asaithamby and Chen, 

2009).  By flow cytometry, control cells completed replication by 80 minutes, 

while in the presence of either drug cells slowed replication, reaching only about 

60% replicated by the end of the time course (Figures 3.1A and 3.2A).   
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Figure 3.1 Slowing of S phase progression in response to damage by 

FACS.

 

Figure 3.1 Slowing of S phase progression in response to damage by 
FACS. Wild-type (yFS940) (A) and cds1∆ (yFS941) (B) cells were synchronized 
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in G1 phase using cdc10-M17 temperature sensitive allele followed by elutriation. 
Elutriated G1 cells were released into permissive temperature untreated or 
treated with 3.5 mM MMS or 1 µM 4NQO or 16.5 µM Bleomycin. S phase 
progression was followed by taking samples for FACS. 
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Figure 3.2 MMS-, 4NQO and bleomycin-induced DNA damage show a 

similar effect on the overall replication rate 

 

Figure 3.2 MMS-, 4NQO and bleomycin-induced DNA damage show a 
similar effect on the overall replication rate (A) Wild-type cells (yFS940) show 
similar slowing of replication in response to 3.5 mM (0.03%) MMS, 1 µM 4NQO, 
and 16.5 µM bleomycin by flow cytometry.  (B) Slowing in response to damage is 
largely checkpoint dependent by bulk assay.  Wild-type (yFS940, A) and cds1Δ 
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(yFS941, B) cells were synchronized in G1 and released into S phase in the 
presence or absence of 3.5 mM MMS, or 1µM 4NQO, or 16.5 µM bleomycin.  S-
phase progression values were obtained from histograms of Figure 3.1.  The 
error bars represent standard deviation. 
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Thus, despite the disparity in the number of lesions created by MMS, 4NQO and 

bleomycin, all three drugs led to a similar extent of replication slowing at the 

doses used.  In all cases, the slowing in response to DNA damage was largely 

checkpoint-dependent.  In the absence of the Cds1 checkpoint kinase, cells 

completed replication by 100 minutes even in the presence of damage, as 

reported previously (Figure 3.1B and 3.2B) (Lindsay et al., 1998; Rhind and 

Russell, 1998).  Although the three drugs appeared to have similar extent of 

slowing in wild-type, their effects in cds1Δ cells differed, with cds1Δ cells showing 

more checkpoint-independent slowing in MMS than in 4NQO or bleomycin 

(Figure 3.2B).  We therefore examined if there is a difference in the mechanism 

by which DNA replication is slowed in response to MMS, 4NQO and bleomycin. 

 
Inhibition of origin firing is immediate in response to 4NQO and Bleomycin, 

but delayed in the case of MMS 

As shown in Figure 3.2A we see similar levels of bulk slowing for all three 

damage treatments at 60 minutes in S phase (Figure 3.2A and 3.3A). We first 

analyzed the effect of DNA damage on origin firing.  To measure the rate of 

origin firing, we directly measured the number of new origins fired during the 

CldU pulse (green-red-green (GRG) patches) or IdU pulse (isolated green 

patches).  The overall origin firing rate was calculated as the total number of 

origin firing events in each fiber normalized to total length of un-replicated DNA of 

that fiber and to the length of the analog pulse (Figure 3.3B).  Additionally, the 
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origin firing rate during first analog and second analog was determined 

separately (Figure 3.4A, B, C).  In untreated controls, the rate of origin firing in 

the first analog was 2.3±0.7 origins per Mb per minute, similar to previous 

estimates of origin firing rates (Table 3.1) (Goldar et al., 2009). 
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Table 3.1 Summary of all the combing datasets with the total and analog 

specific origin firing rate and fork density for each sample. 

 

 
  

Origin firing rate per Mb per min Fork density per Mb 
Strain no. Expt Dataset No. Drug Total CldU IdU Total CldU IdU
yFS940 WT WT1-N Untreated 0.84 1.75 0.38 28.53 20.87 24.78
yFS940 WT WT1-N 4NQO 0.35 0.88 0.08 13.82 12.19 9.66
yFS940 WT WT2-M Untreated 0.81 1.92 0.26 28.43 23.19 24.75
yFS940 WT WT2-M MMS 0.72 1.96 0.09 24.96 23.12 15.79
yFS940 WT WT3-M Untreated 1.33 3.18 0.41 44.26 36.13 41.12
yFS940 WT WT3-M MMS 0.86 2.28 0.16 30.25 27.13 24.83
yFS940 WT WT4-M Untreated 1.28 2.25 0.80 43.88 27.80 40.54
yFS940 WT WT4-M MMS 1.06 2.23 0.47 36.53 27.05 31.15
yFS940 WT WT5-M Untreated 1.18 2.52 0.51 39.36 29.14 36.35
yFS940 WT WT5-M MMS 1.09 2.63 0.32 39.63 33.24 30.29
yFS940 WT WT6-M Untreated 1.06 2.21 0.49 39.07 29.35 34.96
yFS940 WT WT6-M MMS 0.78 1.82 0.25 31.86 26.82 22.57
yFS940 WT WT7-N Untreated 0.97 1.58 0.66 38.59 25.39 32.37
yFS940 WT WT7-N 4NQO 0.50 0.99 0.25 19.52 14.49 15.95
yFS940 WT WT8-B Untreated 1.15 1.65 0.90 42.48 24.50 36.88
yFS940 WT WT8-B Bleomycin 0.77 1.56 0.38 29.07 21.53 23.24
yFS940 WT WT9-B Untreated 1.53 3.51 0.54 62.58 51.84 52.06
yFS940 WT WT9-B Bleomycin 0.95 2.02 0.42 36.37 28.07 28.26
yFS941 cds1 cds1-1-N Untreated 1.24 3.28 0.22 41.25 36.81 37.00
yFS941 cds1 cds1-1-N 4NQO 1.03 2.63 0.23 35.58 30.90 29.42
yFS941 cds1 cds1-2-M Untreated 1.43 3.35 0.47 47.49 38.02 44.57
yFS941 cds1 cds1-2-M MMS 1.66 3.33 0.83 57.13 40.57 49.54
yFS941 cds1 cds1-3-M Untreated 1.54 3.29 0.66 49.10 35.86 46.45
yFS941 cds1 cds1-3-M MMS 1.81 3.94 0.75 60.98 45.91 55.83
yFS941 cds1 cds1-4-M Untreated 1.53 3.06 0.76 51.89 36.76 47.72
yFS941 cds1 cds1-4-M MMS 1.59 3.50 0.64 54.82 41.94 49.99
yFS941 cds1 cds1-5-N Untreated 1.62 3.00 0.93 63.93 45.24 52.43
yFS941 cds1 cds1-5-N 4NQO 1.77 2.20 1.56 61.33 30.22 55.85
yFS941 cds1 cds1-6-B Untreated 1.83 4.61 0.44 69.17 60.34 56.25
yFS941 cds1 cds1-6-B Bleomycin 1.53 3.50 0.55 58.95 47.98 41.93
yFS941 cds1 cds1-7-B Untreated 1.75 3.67 0.79 68.94 53.20 51.88
yFS941 cds1 cds1-7-B Bleomycin 1.36 2.70 0.69 53.40 39.55 41.09
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Figure 3.3 4NQO, MMS and bleomycin slow S phase by reducing origin 

firing rate. 

 

Figure 3.3 4NQO, MMS and bleomycin slow S phase by reducing origin 
firing rate. Wild-type cells (yFS940) were synchronized in G1 and released into 
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S phase untreated, or treated with 3.5 mM MMS, or 1µM 4NQO, or 16.5 µM 
bleomycin.  Cells were labeled at mid-S phase with CldU followed by IdU for 
DNA combing.  All parameters are represented as a ratio of treated v. untreated 
sample.  (A) 4NQO, bleomycin and MMS slow S phase to similar extent by flow 
cytometry. Total replication by FACS was calculated at 60 minutes after release, 
which is close to the mid-point of analog labeling.  (B) and (C) 4NQO, bleomycin 
and MMS show differing levels of reduction in origin firing rate and fork density. 
For calculations of origin firing rate and fork density refer to Chapter II.  For each 
sample of each experiment, about 25Mb of DNA was collected.  All error bars 
represent SD.   
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  In the presence of 4NQO, the origin firing rate in wild-type cells decreased 

to 47% of the untreated control (p=5.17x10-12, t tests were used for all statistical 

tests) (Figure 3.3B and Table 3.1).  Since, the origin firing rate only measures the 

origins that fired during the analog pulses, we also measured the density of 

active forks in the datasets in order to estimate the effect on origin firing prior to 

the analog pulses (see Chapter II for details).  Fork density in 4NQO-treated cells 

was 64% of the untreated control (p=1.28x10-6) during the first analog pulse and 

44% (p=3.08x10-13) in the second, consistent with the trend seen in origin firing 

rates (Figure 3.4A). Thus, the response to 4NQO included an immediate 

reduction in origin firing rate. We see a similar trend for bleomycin treated 

sample. The origin firing rate decreases to 58% (p=7.45x10-5) and the fork 

density decreases to 61% (p=1.33x10-5) (Figure 3.3B and 3.3C).  Analog specific 

estimation shows that bleomycin treatment leads to reduction in the origin firing 

rate in the first analog as well as second analog to 69% (3.91x10-4) and shows a 

corresponding decrease in fork density during the first (77%, p=7.65x10-4) and 

the second analog (55%, p=8.54x10-7) (Figure 3.4B). 
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Figure 3.4 Inhibition of origin firing is immediate in response to 4NQO and 

Bleomycin, but delayed in the case of MMS 
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Figure 3.4 Inhibition of origin firing is immediate in response to 4NQO and 
Bleomycin, but delayed in the case of MMS (A), (B), (C) Analog specific 
estimations of origin firing rate and fork density for 4NQO, bleomycin and MMS 
respectively.  4NQO and bleomycin treatment leads to immediate reduction in 
origin firing rate in the first analog while in MMS the reduction is apparent only 
during the second analog.  For calculations of origin firing rate and fork density 
refer to Chapter II.  For each sample of each experiment, about 25Mb of DNA 
was collected.  All error bars represent SD.   

  



 

 

103 

In case of MMS, the overall origin firing rate was reduced to 72% 

(p=1.18x10-6) (Figure 3.3B).  Analyzing origin firing during the first and second 

pulse separately, we saw no statistically significant reduction in the first analog 

(90%, p=0.0748) followed by a stronger reduction to 56% (p=7.15x10-11) in the 

second analog (Figure 3.4C).  Therefore, the effect of MMS on origin firing rate is 

delayed.  This conclusion was supported by two observations.  Firstly, the 

average fork density across both analogs in MMS showed a modest reduction to 

78% (p=2.59x10-5) as compared to 53% (p=5.7x10-12) in 4NQO (Figure 3.3C).  

Second, the analog-specific fork density estimations for MMS followed a similar 

trend as the origin firing rate showing a greater reduction during the second 

analog (0.93 v. 0.62, Figure 3.4C).  Hence, the effect of MMS-induced damage 

on origin firing is only manifest late in S-phase, after significant bulk slowing has 

already occurred, whereas 4NQO- and bleomycin-induced damage inhibit origin 

firing immediately in early S phase. 

 

Fork rate declines in response to MMS but not 4NQO or bleomycin 

Since 4NQO and MMS both create polymerase-blocking lesions (Friedberg et al., 

1995; Larson et al., 1985; Minca and Kowalski, 2011; Lopez-Mosqueda et al., 

2010), we next studied how these drugs affect fork speed.  We measured fork 

rate in the combing data as the length of the green track (second analog) 

continuing from a red track (first analog), divided by the length of the chase time 

(10 minutes).  The average fork rate in our untreated samples was 0.91±0.02 
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kb/minute, which is within the range of previous estimates (Conti et al., 2007; 

Conti et al., 2010; Técher et al., 2013; Petermann et al., 2008; Petermann et al., 

2010). 

In MMS, the fork rate decreases to 76% of the untreated control (p=6.13x10-

38) (Figure 3.5A and Table 3.2).  The reduction in fork rate was expected since 

the lesions are so frequent that every fork encounters about ten of lesions during 

the 10 minutes pulse.  In case of 4NQO, the lesions are significantly less 

common, so only about half of the forks should encounter a lesion during the 

second pulse.  Consistent with the low density of lesions, fork rates in 4NQO 

treated cells were similar to untreated cells (Figure 3.5A).  In fact, the fork rate 

showed a 27% increase in the presence of 4NQO as compared to untreated cells 

(p=5.75x10-4).  The dose of bleomycin used should create only 5 breaks per 

haploid yeast genome and therefore should not affect fork rates.  Consistently we 

do not see any statistically significant reduction in fork rate for bleomycin treated 

sample as compared to untreated sample (p=0.3138) (Figure 3.5A).  
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Figure 3.5 Fork rate decreases in response to MMS and fork stall rate 

increases in response to damage 
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Figure 3.5 Fork rate decreases in response to MMS and fork stall rate 
increases in response to damage (A) Fork rate decreases in response to 
MMS, but not in response to 4NQO or bleomycin.  (B) Fork stalls per kb 
increases in response to MMS, but not in response to 4NQO or bleomycin (C) 
Fork stall rate increases in response to MMS, 4NQO and bleomycin.  For 
calculations of fork rate, fork stalls per kb and fork stall rate refer to Chapter II. All 
error bars represent SD.   
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Table 3.2 Summary of all the combing datasets with the fork rate for each 

sample.

 

  

Fork rate pH of 
Strain no. Expt Dataset No. Drug kb/min combing buffer

yFS940 WT WT1-N Untreated 0.67 6.35
yFS940 WT WT1-N 4NQO 0.75 6.35
yFS940 WT WT2-M Untreated 0.67 6.35
yFS940 WT WT2-M MMS 0.53 6.35
yFS940 WT WT3-M Untreated 0.60 6.35
yFS940 WT WT3-M MMS 0.43 6.35
yFS940 WT WT4-M Untreated 0.92 6.25
yFS940 WT WT4-M MMS 0.66 6.25
yFS940 WT WT5-M Untreated 0.91 6.25
yFS940 WT WT5-M MMS 0.6 6.25
yFS940 WT WT6-M Untreated 0.89 6.25
yFS940 WT WT6-M MMS 0.57 6.25
yFS940 WT WT7-N Untreated 0.85 6.2
yFS940 WT WT7-N 4NQO 0.88 6.2
yFS940 WT WT8-B Untreated 0.65 6.2
yFS940 WT WT8-B Bleomycin 0.62 6.2
yFS940 WT WT9-B Untreated 0.48 6.2
yFS940 WT WT9-B Bleomycin 0.47 6.2
yFS941 cds1 cds1-1-N Untreated 0.42 6.35
yFS941 cds1 cds1-1-N 4NQO 0.48 6.35
yFS941 cds1 cds1-2-M Untreated 0.61 6.25
yFS941 cds1 cds1-2-M MMS 0.27 6.25
yFS941 cds1 cds1-3-M Untreated 0.76 6.25
yFS941 cds1 cds1-3-M MMS 0.43 6.25
yFS941 cds1 cds1-4-M Untreated 0.75 6.25
yFS941 cds1 cds1-4-M MMS 0.35 6.25
yFS941 cds1 cds1-5-N Untreated 0.61 6.2
yFS941 cds1 cds1-5-N 4NQO 0.58 6.2
yFS941 cds1 cds1-6-B Untreated 0.58 6.2
yFS941 cds1 cds1-6-B Bleomycin 0.51 6.2
yFS941 cds1 cds1-7-B Untreated 0.52 6.2
yFS941 cds1 cds1-7-B Bleomycin 0.52 6.2



 

 

108 

Fork stalling increases in response to MMS, 4NQO and bleomycin 

In case of MMS treated sample, we only see a modest reduction in fork density 

as compared to 4NQO and bleomycin (Figure 3.3C).  In particular, there is no 

statistically significant reduction in fork density in the MMS treated sample during 

the first analog (93%, p=0.1951) (Figure 3.4C).  However by bulk assay we see 

the same kinetics of slowing for all three damage treatments (Figure 3.2A and 

3.3A).  A possible explanation for this discrepancy is that forks stall during the 

first pulse in response to damage and thus are not observed during the second 

pulse (Chapter II, Figure 2.6).  We therefore interrogated our combing data for 

evidence of fork stalling. 

We first determined the absolute number of stalls per kb for each dataset 

(see Chapter II for details).  The absolute number of stalls per kb determines the 

contribution of stalled forks towards total replication slowing.  In MMS treated 

sample we see a 3.47-fold increase in the number of stalls as compared to 

untreated (p=6.23x10-27), while we see no significant increase in stalling in 

response to 4NQO (1.12, p=0.604) and bleomycin (0.99, p=0.346) (Figure 3.5B).  

Thus an increase in the total number of stalls per kb in response to MMS helps 

explain the slowing of total replication to similar levels as compared to 4NQO and 

bleomycin despite having a delayed effect on origin firing rate. 

Next we estimated the fork stall rate.  We define the fork stall rate as the total 

number of stall events per fiber during the first analog pulse divided by the total 

number of ongoing forks in that fiber during the first analog.  Although the 



 

 

109 

absolute number of stalls per kb in response to 4NQO and bleomycin treatment 

is similar to the wild-type untreated sample, the treated samples have far fewer 

origins firing as compared to untreated sample (Figure 3.3B and 3.5B).  

Therefore the rate of stalling normalized to the origin firing rate is higher in the 

treated sample (Figure 3.5C). The average stall rate per fiber in the untreated 

sample was 14%.  The fork stall rate showed 1.8-fold increase in response to 

4NQO (p=1.2x10-4) and a 1.9-fold increase in response to bleomycin (p=2.26x10-

7), whereas MMS caused a 3.8-fold increase relative to untreated cells 

(p=1.55x10-26) (Figure 3.5C).  Combining our stall-rate data with estimates of 

lesion density, we estimate that forks stall at 1.3% of 4NQO lesions and at 0.5% 

of MMS lesions, consistent with the fact that 4NQO creates a bulkier lesion than 

MMS.  The stall rate per lesion is more complicated to interpret for bleomycin.  

Since the stalls we detect are not at the ends for our fibers, they cannot be at the 

sites of bleomycin-induced double-strand breaks.  However, bleomycin creates 

about a 20-fold excess of single-strand nicks to double strand breaks, which, at 

the dose we used should produce one nick about every 150 kb (Chen and 

Stubbe, 2005).  In the absence of repair, forks would stall at 8.1% of bleomycin-

induced nicks.  If nicks are repaired, that rate of stalling at the remaining 

unrepaired nicks could be much higher.  Although the stall events seem to be 

infrequent relative to lesion density, approximately 53% of forks in MMS-treated 

cells and 25% of forks in 4NQO- and bleomycin-treated cells stalled, contributing 

significantly to slowing, and ensuring that all treated cells had many stalled forks. 
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Inhibition of origin firing is checkpoint dependent 

To determine the role of the intra-S checkpoint in the observed DNA-damage 

dependent changes in replication kinetics, we repeated our combing experiments 

in checkpoint-deficient cds1∆ cells.  In the presence of 4NQO, wild-type cells 

replicated 42% (p=5.55x10-16) as much as untreated cells, as assayed by flow 

cytometry at 60 minutes after release, whereas, in the absence of checkpoint, 

cds1Δ 4NQO treated cells replicated 77% as compared to untreated cells 

(p=5.82x10-8) (Figure 3.6A). 4NQO did not significantly reduce origin firing in 

cds1Δ cells (89%, p=0.206), as opposed to 47% in wild-type cells (p=5.17x10-12) 

(Figure 3.6B).   
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Figure 3.6 Reduction in origin firing rate is checkpoint dependent 

 

Figure 3.6 Reduction in origin firing rate is checkpoint dependent. cds1∆ 
cells (yFS941) were synchronized in G1 and released into S phase untreated, or 
treated with 3.5 mM MMS, or 1µM 4NQO, or 16.5 µM bleomycin.  Cells were 
labeled at mid-S phase with CldU followed by IdU for DNA combing.  All 
parameters from combing data of cds1Δ are represented as a ratio of treated v. 
untreated.  Wild-type dataset is plotted alongside cds1Δ for comparison.    (A) 
Total replication by FACS was calculated at 60 minutes after release, which is 
close to the mid-point of analog labeling.  (B) and (C) Reduction in origin firing 
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and fork density is checkpoint dependent for 4NQO, bleomycin and MMS. For 
calculations of origin firing rate and fork density refer to Chapter II.  For each 
sample of each experiment, about 25Mb of DNA was collected.  All error bars 
represent SD.   
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Thus, the inhibition of origin firing in response to 4NQO is checkpoint-dependent 

(Figures 3.3B and 3.6B).  Analog specific origin density and fork density followed 

similar trends as the total origin firing rate data (Figure 3.7A).  During both the 

analog pulses, cds1Δ cells had a higher origin firing rate and fork density than 

wild-type cells (Figure 3.7A). 

 Likewise, inhibition of origin firing in response to bleomycin and MMS is 

checkpoint-dependent (Figure 3.6B, 3.6C, 3.7B and 3.7C).  In wild-type cells, the 

overall origin firing rate was reduced to 58% by bleomycin (p=7.45x10-5) and 

72% by MMS (p=1.18x10-6) treatment (Figures 3.3B and 3.6B).  In contrast, 

cds1Δ cells showed no significant decrease in origin firing relative to untreated 

cells when treated with bleomycin (96%, p=0.389) or MMS (114%, p=0.011) 

(Figure 3.6B).  Analog specific estimation of fork density and origin firing rate in 

cds1Δ treated with bleomycin or MMS showed a similar trend (Figure 3.7B and 

3.7C).  cds1Δ cells had higher fork density and origin firing rate in response to 

bleomycin and MMS than wild-type cells for both analog pulses (Figure 3.7B and 

3.7C). 

Figure 3.7 Reduction in origin firing rate in response to damage during 

each analog is checkpoint dependent 
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Figure 3.7 Reduction in origin firing rate in response to damage during 
each analog is checkpoint dependent. (A, B, C) Analog specific estimations of 
origin firing rate and fork density for 4NQO, bleomycin and MMS respectively 
shows higher values in cds1Δ than wild-type.  For calculations of origin firing rate 
and fork density refer to Chapter II.  For each sample of each experiment, about 
25Mb of DNA was collected.  All error bars represent SD.   
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In the absence of DNA damage, the lack of Cds1 caused a 51% increase in 

the rate of origin firing (3.5±0.6 v. 2.3±0.6 origins firing/Mb/minute, Table 3.1), 

consistent with previous reports in other systems of checkpoint inhibition of origin 

firing in unperturbed S phase (Petermann et al., 2010; Shechter et al., 2004b).  

Nonetheless, loss of Cds1 increases origin firing in damaged cells to the same 

level as in undamaged cells, showing that there is no checkpoint independent 

inhibition of origin firing (Figure 3.8). 
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Figure 3.8 cds1Δ cells have a higher origin firing rate as compared to wild-

type in untreated as well as treated samples. 

 

Figure 3.8 cds1Δ cells have a higher origin firing rate as compared to wild-
type in untreated as well as treated samples. Origin firing rate from cds1Δ 
untreated and treated samples, and wild-type treated samples were normalized 
to wild-type untreated sample. 
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Reduction in fork rate is checkpoint independent 

In MMS-treated wild-type cells, fork rate was reduced to 76% of the untreated 

cells (p=6.14x10-38) (Figures 3.5A and 3.9A).  This effect was not checkpoint-

dependent.  In fact, at 61% (p=6.13x10-66), cds1Δ cells showed a greater 

reduction in fork rate than seen in wild-type cells in response to MMS (Figure 

3.9A).  Thus, the observed reduction in fork rate in response to MMS seems to 

be due to the physical presence of the lesions and the checkpoint activation may 

facilitate efficient by-pass of the lesions. 

 
 
 
 
 
 

Figure 3.9 Reduction in fork rate and increase in fork stalling is checkpoint 

independent. 
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Figure 3.9 Reduction in fork rate and increase in fork stalling is checkpoint 
independent. (A) Fork rate, (B) fork stalls per kb and (C) fork stall rate data for 
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cds1Δ (yFS941) treated with 4NQO, bleomycin and MMS.  Both parameters are 
represented as a ratio of treated v. untreated.  Wild-type dataset is plotted 
alongside cds1Δ for comparison.  See Chapter II for calculation of fork rate, fork 
stall per kb and fork stall rate. 
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Fork rates showed similar increase in cds1Δ cells treated with 4NQO (126%, 

p=1.17x10-5) as they did in wild-type cells (127%, p=5.75x10-4) (Figures 3.5A and 

3.9A).  Although the lack of Cds1 does not seem to have an effect on the relative 

fork rate between untreated and 4NQO-treated cells, it does have a significant 

effect on the absolute fork rate in untreated cells.  Forks moved significantly 

slower in untreated cds1∆ cells than in wild-type cells (0.72 v 0.91 kb/min, p < 10-

9, Table 3.2).  This difference may be an indirect effect of the higher origin firing 

rate and fork density in cds1∆ cells (Table 3.1).  Several groups working in 

different systems have made the similar observation that fork rate is inversely 

correlated to the number of active forks, perhaps due to constrains on a limiting 

factor required for replication, such as the dNTP pool (Herrick and Sclavi, 2007; 

Poli et al., 2012; Herrick and Bensimon, 2008). 

 

Fork stalling in response to damage is largely checkpoint independent 

Similar to wild-type cells, we see an increase in fork stalls per kb in response to 

MMS treatment in cds1∆ but not in case of 4NQO and bleomycin (Figure 3.5B 

and 3.9B).  The fork stalls per kb shows a 1.9-fold increase in response to MMS 

as compared to untreated (p=4.42x10-10) cds1∆ cells.  Fork stalls per kb does not 

change significantly between 4NQO (1.39, p=0.987) and bleomycin (1.05, 

p=0.839) treated cds1∆ cells as compared to untreated cds1∆ (Figure 3.9B).  

 In wild-type cells, the fork stalling rate was increased 1.8-fold by 4NQO 

(p=1.2x10-4), 1.9-fold by bleomycin (p=2.26x10-7) and 3.8-fold (p=1.55x10-26) by 
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MMS treatment, relative to untreated cells (Figures 3.5C and 3.9C).  In cds1Δ 

cells, we saw a 1.7-, 2.3- and 2.8-fold increase of the stall rate in 4NQO 

(p=2.59x10-4), bleomycin (p=7.96x10-13) and MMS (p=2.93x10-15) treated cells 

respectively as compared to untreated cells (Figure 3.9C).  This increase in stall 

rate is slightly lower in MMS-treated cds1Δ cells than in wild-type cells (2.8 fold v 

3.8 fold, p=9.86x10-5), showing that there are checkpoint-dependent and -

independent contributions to stalling in response to MMS, however the difference 

in stall rates for cds1Δ treated with 4NQO (1.7 fold v 1.8 fold, p=0.746) and 

bleomycin (2.3 fold v 1.89 fold, p=0.01) as compared to wild-type are not as 

significant.  Therefore the bulk of fork stalling events appears to be checkpoint-

independent (Figure 3.9C). 

 

Delayed Inhibition of Origin Firing by MMS Correlates with Delayed 

Checkpoint Kinase Activation 

To test the possibility that the later inhibition of origin firing seen in response to 

MMS (Figure 3.3C and 3.4C) is due to delayed checkpoint activation, and to 

confirm that the doses of the various damaging agents we use cause comparable 

checkpoint activation, we assayed activation of the Cds1 S-phase checkpoint 

kinase in response to MMS, 4NQO and bleomycin.  Cells with an HA-tagged 

Cds1 were synchronized in G1 and released into DNA damage (Figure 3.10).   
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Figure 3.10 S phase progression of time-courses used for kinase activity 

measurement 

 

Figure 3.10 S phase progression of time-courses used for kinase activity 
measurement. cds1-HA (yFS988) cells were synchronized in G1 phase using 
cdc10-M17 temperature sensitive allele followed by elutriation. Elutriated G1 cells 
were released into permissive temperature untreated or treated with 3.5 mM 
MMS or 1 µM 4NQO or 16.5 µM Bleomycin. S phase progression was followed 
by taking samples for FACS. 
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Cells were harvested throughout S phase and Cds1 was immunopurified and 

split into two portions. One-half was used to estimate the amount of Cds1 pulled 

down by western blot and the second half was used to perform in vitro kinase 

assays. Kinase assay reactions were run on SDS-PAGE gel normalized to the 

amount of pull down in each lane (Figure 3.11). Average kinetics of kinase 

activity from all time courses is shown in Fig 3.11A and results from individual 

time courses are shown in Fig 3.11B (Figure 3.11A and 3.11B). We observe a 

significant and reproducible delay of Cds1 activation in response to MMS, 

relative to both 4NQO and bleomycin (Figure 3.11A).  These results are 

consistent with MMS taking longer to disrupt a sufficient number of replication 

forks to trigger a robust checkpoint response. 
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Figure 3.11: Delayed Inhibition of Origin Firing by MMS Correlates with 

Delayed Checkpoint Kinase Activation. 
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Figure 3.11: Delayed Inhibition of Origin Firing by MMS Correlates with 
Delayed Checkpoint Kinase Activation. (A) Wild-type cells with an HA-tagged 
Cds1 (yFS988) were G1 synchronized, released into S phase is the presence of 
1µM 4NQO, 16.5 µM bleomycin or 3.5 mM MMS, harvested at the indicated 
times and processed for Cds1 IP kinase assays.  Average signal normalized to 
the 4NQO 90-minute time point is plotted ± standard error of the mean. (B) 
Kinase assay to measure Cds1 activation in 5 time courses. For each time 
course, Cds1 western was done to estimate the amount of Cds1 pulled down in 
each condition. Kinase assay reactions were run normalized to the amount of 
Cds1 pull down. Signal from each lane of the kinase assay gel was normalized to 
the asynchronous MMS sample to get the normalized kinase activity. 
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Accumulation of RPA foci in response to 4NQO and MMS 

To investigate the relationship between the fork stalling that we measured by 

DNA combing and the fate of forks in living cells, we visualized replication protein 

A (RPA)-GFP foci, which mark the accumulation of single-stranded DNA 

(ssDNA), in cells treated with MMS or 4NQO.  Because RPA-coated single-

stranded DNA is a trigger for the activation of the intra-S checkpoint (Zou and 

Elledge, 2003; Cimprich and Cortez, 2008; Byun et al., 2005; Xu et al., 2008; Wu 

et al., 2005), we hypothesized that stalls that accumulate substantial amounts of 

RPA are likely to correlate with checkpoint activation, but that stalls that lead to 

less RPA accumulation may be checkpoint silent. 

We analyzed 100 cells for each sample and sorted them into three 

categories based on the intensity and number of foci: strong foci, weak foci or no 

foci (see Methods for details).  21% of untreated wild-type cells have some foci, 

consistent with previous reports (Sabatinos and Forsburg, 2015), but the majority 

of these are weak foci, consistent with the hypothesis that weak foci do not 

activate the checkpoint (Figure 3.12A).  In the presence of damage, we saw 

distinctly different responses to MMS and 4NQO.  In the presence of MMS, 36% 

of cells had strong foci (Figure 3.12A).  Since all MMS-treated cells have stalled 

forks (Table 3.3), we conclude that only a minority of MMS-induced stalls 

accumulate substantial ssDNA.  On the contrary, essentially all 4NQO-treated 

cells had strong foci, suggesting a qualitatively different nature of 4NQO-induced 

fork stalls, in which the majority of 4NQO-induced lesions accumulated 
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substantial ssDNA (Figure 3.12A).  As previously reported (Sabatinos et al., 

2012), RPA did not accumulate at HU-stalled forks in checkpoint-proficient cells. 
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Figure 3.12: Accumulation of RPA foci in response to 4NQO and MMS. 

 

Figure 3.12: Accumulation of RPA foci in response to 4NQO and MMS. (A) 
Percentage of cells with RPA foci in each sample with the numbers on the bars 
indicating the percentage of cells with strong foci.  Wild-type (yFS956) and cds1Δ 
(yFS957) cells were synchronized and released into S phase in the presence of 
3.5 mM MMS,1 µM 4NQO or 12 mM HU or left untreated.  Samples were 
collected for microscopy at 100 minutes after release.  Cells were fixed and 
stained with DAPI and imaged in the DIC, GFP and DAPI channels.  For each 
sample 100 cells were blinded and scored independently by two individuals.  (B) 
Representative images for all samples quantified in (A). 
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Table 3.3 Summary of all the combing datasets with the fork stall rate for 

each sample.

 

  

Stalling Stalls per Mb
Strain no. Expt. Dataset No. Drug Rate of total DNA

yFS940 WT WT1-N Untreated 0.16 2.451
yFS940 WT WT1-N 4NQO 0.28 2.988
yFS940 WT WT2-M Untreated 0.13 2.239
yFS940 WT WT2-M MMS 0.41 9.165
yFS940 WT WT3-M Untreated 0.09 3.099
yFS940 WT WT3-M MMS 0.25 6.762
yFS940 WT WT4-M Untreated 0.14 3.308
yFS940 WT WT4-M MMS 0.24 6.027
yFS940 WT WT5-M Untreated 0.15 3.254
yFS940 WT WT5-M MMS 0.30 9.959
yFS940 WT WT6-M Untreated 0.12 3.079
yFS940 WT WT6-M MMS 0.34 8.543
yFS940 WT WT7-N Untreated 0.26 6.209
yFS940 WT WT7-N 4NQO 0.30 4.282
yFS940 WT WT8-B Untreated 0.26 5.92
yFS940 WT WT8-B Bleomycin 0.31 6.529
yFS940 WT WT9-B Untreated 0.23 10.75
yFS940 WT WT9-B Bleomycin 0.33 8.471
yFS941 cds1 cds1-1-N Untreated 0.12 3.795
yFS941 cds1 cds1-1-N 4NQO 0.23 5.916
yFS941 cds1 cds1-2-M Untreated 0.07 2.821
yFS941 cds1 cds1-2-M MMS 0.23 8.482
yFS941 cds1 cds1-3-M Untreated 0.11 3.571
yFS941 cds1 cds1-3-M MMS 0.15 6.564
yFS941 cds1 cds1-4-M Untreated 0.14 4.27
yFS941 cds1 cds1-4-M MMS 0.17 6.644
yFS941 cds1 cds1-5-N Untreated 0.25 11.443
yFS941 cds1 cds1-5-N 4NQO 0.26 7.638
yFS941 cds1 cds1-6-B Untreated 0.23 13.266
yFS941 cds1 cds1-6-B Bleomycin 0.38 18.358
yFS941 cds1 cds1-7-B Untreated 0.32 15.906
yFS941 cds1 cds1-7-B Bleomycin 0.31 11.707
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In the absence of checkpoint all treated samples displayed strong foci in 

about 90% of cells.  In particular, in MMS and HU treated cells we saw a large 

increase in the number of cells with strong foci in cds1Δ as compared to wild-

type, suggesting that in response to MMS treatment the checkpoint plays a role 

in preventing accumulation of excess ssDNA at stalled forks, as it does in HU 

(Sogo et al., 2002; Sabatinos et al., 2012) (Figure 3.12A). 

 

Discussion 

The regulation of DNA replication in response to DNA damage involves both 

inhibition of origin firing and reduction of fork speed, but relative contributions of 

the two effects have been unclear.  Furthermore, although genetic evidence has 

suggested that the checkpoint regulation of fork progression is critical for 

genomic stability, it has been unclear if the checkpoint regulates fork speed, per 

se, and, if so, whether the regulation is at a global or local level (Seiler et al., 

2007; Unsal-Kaçmaz et al., 2007; Wang et al., 2004; Szyjka et al., 2008; Iyer and 

Rhind, 2013).  One of the reasons that these questions have persisted is that 

bulk methods, such as gel- or sequence-based approaches, provide an average 

profile of checkpoint regulation of origins and forks in response to damage and 

often convolve origin and fork dynamics.  We have used DNA combing in fission 

yeast to systematically look at the effect of the checkpoint on individual origins 

and forks at a global scale and hence to capture the heterogeneity in response to 

damage.  To understand the behavior of the checkpoint at a global and local 
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scale we have used three different types of lesion inducing agents at vastly 

differing concentrations—3.5mM (0.03%) for MMS, 1µM for 4NQO and 16.5 µM 

bleomycin—which thus produce very different densities of lesions—1000 per Mb 

for MMS, 40 per Mb for 4NQO and 0.35 per Mb for bleomycin (Lundin et al., 

2005; Snyderwine and Bohr, 1992; Ma et al., 2008; Asaithamby and Chen, 

2009)—but nonetheless have very similar effects on bulk replication kinetics 

(Figures 3.2A and 3.16).  We find that the inhibition of origin firing is a 

checkpoint-dependent response, but one that develops more slowly in response 

to the many fork encounters with MMS than the less frequent but more severe 

fork interactions with 4NQO lesions or in response to repair of bleomycin-induced 

double-strand breaks.  The slowing of fork progression, in contrast, is checkpoint-

independent and therefore a local effect in which forks only slow when they 

encounter DNA damage (Figure 3.13).  Finally, we discover that fork stalling, an 

event in which a fork stops and does not resume for the duration of the 

experiment, plays a significant role, with as many as 50% of forks stalling in 

response to DNA damage caused by MMS. 
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Figure 3.13 Summary of results 

 

Figure 3.13 Summary of results. 4NQO causes 1 lesion every ~25 kb and 
bleomycin causes 1 DSB every ~3000 kb. Although the lesions are rare, 4NQO- 
and bleomycin-induced lesions are severe and thus lead to rapid activation of the 
checkpoint and a strong reduction in origin firing rate. MMS causes 1 lesion 
every ~ 1kb. Since the MMS-induced lesions are minor as compared to 4NQO or 
bleomycin the checkpoint activation is delayed and correspondingly there is a 
modest reduction in origin firing rate. However, since MMS-induced lesions are 
more frequent than those caused by 4NQO or bleomycin there is a reduction in 
fork rate only in response to MMS. Thus reduction in origin firing is checkpoint-
dependent while reduction in fork rate is checkpoint-independent and simply due 
to the physical presence of the lesions. 
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Inhibition of origin firing is a global, checkpoint-dependent response to 

interactions of forks with DNA damage 

Consistent with previous studies from S. cerevisiae (Santocanale and Diffley, 

1998) and human cells (Falck et al., 2002; Sørensen et al., 2003; Merrick et al., 

2004) reduction in origin firing in response to 4NQO, bleomycin and MMS is 

checkpoint-dependent.  By flow cytometry, 4NQO, bleomycin and MMS lead to 

similar extent of slowing, however the combing data reveals important 

differences in the regulation of origin firing in response to the two drugs.  In case 

of 4NQO reduction in origin firing is robust and immediate.  The fork density 

during the first analog, which is a proxy for origin firing occurring prior to analog 

labeling, decreases to 64% (p=1.28x10-6) in case of 4NQO and 77% (p=7.65x10-

4) in case of bleomycin, as compared to untreated cells (Figure 3.4A and 3.4B).  

Therefore, origin firing inhibition starts early in S phase in response to 4NQO 

bleomycin.  On the contrary, in the case of MMS, fork density in the first analog is 

not significantly reduced (93%, p=0.074) suggesting no significant reduction in 

origin firing during early S phase (Figure 3.4C).  Furthermore, even during the 

second analog, the fork density is 40% higher in MMS than in 4NQO (62% v. 

44%, Figure 3.4A and C).  Therefore reduction of origin firing in MMS is delayed 

and modest as compared to 4NQO. 

The disparity in origin firing inhibition response can be explained by the 

observation that a certain threshold of damage has to be met for the activation of 

the intra-S checkpoint.  A certain number of arrested forks are necessary for 
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checkpoint activation during S phase (Shimada et al., 2002).  Therefore robust 

reduction in origin firing in response to 4NQO in early S phase suggests that 

4NQO lesions, although less frequent than MMS lesion at the concentrations 

used in our studies, have more severe effects on forks and hence are more 

efficient at activating the checkpoint than MMS.  Consistent with this 

interpretation, 4NQO lesions lead to a 2.6- fold higher rate of fork stalls per lesion 

than MMS (1.3% v. 0.5%) as detected by combing.  The low density of stalls per 

lesion in response to MMS suggests that MMS takes longer to induce sufficient 

fork stalls to activate a checkpoint signal, and explains why the checkpoint mainly 

inhibits origin firing later in S phase.  Our analysis of RPA accumulation is also 

consistent with this interpretation, showing that 4NQO-induced lesions 

accumulate RPA to a much greater extent than MMS-induced lesions (Figure 

3.12). 

 

Reduction in fork rate is a local checkpoint-independent response to 

interactions of forks with DNA damage 

The fork rate in wild-type cells is reduced in response to MMS to 76% 

(p=6.14x10-38) (Figure 3.5A).  The fork rate is also reduced to 61% in cds1Δ cells 

treated with MMS (p=6.13x10-66) (Figure 3.9A) consistent with previous reports 

(Tercero and Diffley, 2001).  Thus, reduction in fork rate is checkpoint-

independent and seems to be simply due to the physical presence of the lesions.  

In fact, by combing we see a slower fork rate in response to MMS in cds1Δ cells 
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than in wild-type cells as compared to untreated (61% v. 76%, Figure 3.9A).  The 

previously discussed correlation between fork rate and fork density in 

undamaged cells notwithstanding (Herrick and Bensimon, 2008), we do not 

believe this effect in MMS-treated cds1∆ cells is an indirect consequence of the 

increased origin firing, because we do not see a similar decrease in fork rate in 

the 4NQO-treated cells, which show much greater increase in origin firing and 

fork density in cds1∆ cells relative to wild-type cells (Figures 3.9A, 3.7A and 

3.7C).  Instead, we prefer the interpretation that the checkpoint facilitates fork 

progression across a damaged template.  Recent work shows that even in the 

absence of the checkpoint, the replisome is intact at stalled forks (De Piccoli et 

al., 2012).  Therefore, it has been speculated that the checkpoint does not affect 

the stability of the replisome per se, but instead helps maintain the replisome in a 

replication competent state at sites of DNA damage (Segurado and Diffley, 

2008), a possibility supported by our data.  In contrast, previous studies have 

reported similar extent of slowing in both wild-type and the checkpoint mutants in 

response to MMS (Tercero and Diffley, 2001; Szyjka et al., 2008).  One 

explanation for the discrepancy could be that the previous methods—density 

transfer approach and BrdU-IP-seq—offer an average profile at lower resolution 

and mask the difference between wild-type and checkpoint-deficient cells. 

Reduction of fork rate in response to MMS but not to 4NQO supports the 

model that slowing of forks is simply due to a transient physical slowing of forks 

at each lesion encountered and is not due to a global checkpoint-dependent 
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effect on fork progression rates.  Consistent with this model, we do not see a 

reduction in fork rate in response to bleomycin treatment (1.06, p=0.31), which 

activates the checkpoint robustly (Figure 3.5A and 3.11).  This result is consistent 

with our previous observations that slowing is dependent on MMS dose (Willis 

and Rhind, 2009) and occurs in response to frequent UV-induced lesions, but not 

rare IR-induced double-strand breaks (Rhind and Russell, 1998).  Since the 

lesions induced by 4NQO and bleomycin are 25 and 3000 times rarer than those 

caused by MMS, the forks are less likely to encounter damage and slow down in 

4NQO-treated cells.  The corollary to this conclusion is that activation of the 

checkpoint does not slow replication forks, as demonstrated by the fact that forks 

in 4NQO- and bleomycin-treated cells fail to slow despite the strong Cds1 

activation and checkpoint-dependent inhibition of origin function. 

 

Fork stalling is a qualitatively different response to damage than fork 

slowing 

The interaction of a fork with a DNA lesion is a first step towards recognition of 

damaged template during S phase and is a critical mechanism for checkpoint 

activation (Zou and Elledge, 2003).  Activation of the intra-S checkpoint by stalled 

forks allows the cell to activate repair pathways, tolerate damage and prevent 

genomic instability (Cimprich and Cortez, 2008).  Although it is believed that forks 

can pass polymerase-blocking lesions on the leading strand using translesion 

polymerases, leading-strand repriming or recombinational lesion bypass, the role 
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of the checkpoint in such responses is unclear (Branzei and Foiani, 2009; 

Branzei and Foiani, 2005; Ulrich, 2012; Daigaku et al., 2010; Sale, 2012; Lee and 

Myung, 2008). 

Here we show that forks can bypass both MMS- and 4NQO-induced lesions 

and that the checkpoint is not required for that bypass.  However, in the case of 

MMS-induced lesion, the checkpoint seems to facilitate bypass, since forks move 

past lesions more slowly in cds1∆ cells as compared to wild-type (0.61% v. 

0.76%, Figure 3.9A).  We also show that, whereas forks can bypass most lesions 

efficiently, at a small fraction of lesions—0.5% of MMS-induced lesions, 1.3% of 

4NQO-induces lesions and 8.1% of bleomycin-induced breaks—forks stall for the 

duration of the experiment.  Given the large number of lesions throughout the 

genome, even these small numbers lead to a large number of stalled forks: 50% 

in MMS-treated cells and 25% in 4NQO- and bleomycin-treated cells. 

Fork stalling does not appear to be simply an extreme example of the 

transient fork pausing that leads to observed fork slowing.  If it were, we would 

expect to see a continuum of fork pause lengths from very short pauses to full 

stalls.  Such heterogeneity would lead to a greater variation in apparent fork 

speeds and, in particular an increase in the asymmetry of rates in fork pairs, 

neither of which we see (Figure 3.14, 3.15).   
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Figure 3.14 Fork rate distribution in MMS treated samples does not show 

wider range as compared to untreated samples. 
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Figure 3.14 Fork rate distribution in MMS treated samples does not show 
wider range as compared to untreated samples.  Fork rate distribution in wild-
type and cds1Δ cells untreated or treated with MMS from a single experiment at 
time points 1 and 3, respectively (A and C) and from two experiments at time 
points 2 and 4, respectively (B and D).  For the exact timings refer to Table 3.4.  
Each distribution of fork rate was fit to a Gaussian curve.  Mean fork rate was 
obtained from the fit. 
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Figure 3.15 Comparing fork rates of left and right fork pairs in wild-type 

(yFS940)  

 

Figure 3.15 Comparing fork rates of left and right fork pairs in wild-type (yFS940) 
does not show a greater asymmetry in treated samples as compared to an 
untreated sample. 
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Therefore, we conclude that there are two distinct possible fate for a fork that 

encounters damage.  It can pause briefly as it bypasses the lesion or it can stall 

permanently.  A permanent stall does not appear to be a catastrophic event, as a 

majority of MMS-treated cells, which all have many stalls (Table 3.3), do not have 

strong RPA foci (Figure 3.12A).  However, such stalls do appear to require the 

checkpoint to restrain ssDNA accumulation.  4NQO-induced lesions appear to 

cause more severe stalls, since 4NQO-treated cells have many more strong RPA 

foci, even though they have fewer stalls (Table 3.3 and Figure 3.12A). 

The replication fork dynamics that we observe in response to MMS- and 

4NQO-induced DNA damage demonstrate that forks interact with DNA damage 

largely in a checkpoint-independent manner.  Forks are able to bypass lesions 

that stall the replicative polymerases with only a modest reduction in speed 

(Figure 3.9A) and are no more prone to stall at lesions in the absence of 

checkpoint (Figure 3.9B and 3.9C).  However, stalled forks do appear to 

accumulate more ssDNA in the absence of the checkpoint (Figure 3.12).  These 

results suggest that the major role of the checkpoint is not to regulate the 

interaction of replication forks with DNA damage, per se, but to mitigate the 

consequences of fork stalling when forks are unable to successfully navigate 

DNA damage on their own. 
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Material and Methods 

General methods 

The following strains used in this study were created by standard methods and 

grown in YES at 25°C (Forsburg and Rhind, 2006): yFS940 (h+ leu-32 ura4-D18 

his7-366 cdc10-M17 leu1::pFS181 (leu1 adh1:hENT1) pJL218 (his7 adh1:tk)), 

yFS941 (h- leu-32 his7-366 cdc10-M17 cds1::kanMX leu1::pFS181(leu1 

adh1:hENT1) pJL218 (his7 adh1:tk)), yFS956 (h+ leu1-32 ura4-D18 cdc10-M17 

rpa1-GFP::hph-MX6), yFS957 (h+ leu1-32 ura4-D18 cdc10-M17 cds1::ura4 rpa1-

GFP::hph-MX6), yFS988 (h- leu1-32 ura4-D18 ade-? cdc10-M17 cds1-

6his2HA(int))  

S phase progression assay by flow cytometry 

Cells were synchronized in G1 phase using cdc10-M17 temperature sensitive 

allele combined with centrifugal elutriation, which selects cells that have been 

arrested in G1 for as little time as possible (Willis and Rhind, 2011).  Cells were 

grown to mid log phase at 25°C and arrested at 35°C for 2 hours followed by 

centrifugal-elutriation-based size selection at 35°C to collect cells that had most 

recently arrested in G1.  The cells were then immediately released into S phase 

by shifting them to 25°C, untreated or treated with 3.5mM MMS or 1 µM 4NQO or 

16.5 µM bleomycin.  S-phase progression was followed by flow cytometry using a 

nuclei isolation protocol, as previously described (Willis and Rhind, 2011) with 

some minor modifications (Chapter II). In case of MMS, 3.5mM or 0.03% 

concentration was used, which is the standard dose used in DNA damage field. 
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The concentration of 4NQO and bleomycin was titrated to get similar levels of 

bulk slowing as seen in case of MMS (Figure 3.16A and 3.16B). 
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Figure 3.16 Titration of 4NQO and Bleomycin   
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Figure 3.16 Titration of 4NQO and Bleomycin.  (A) Titration of 4NQO. Wild-
type (yFS940) and cds1Δ (yFS941) cells were synchronized and released into S 
phase with 3.5 mM MMS, 0.5 µM, 1 µM, 2 µM 4NQO or left untreated (B) 
Titration of Bleomycin. Wild-type (yFS940) and cds1Δ (yFS941) cells were 
synchronized and released into S phase with different concentrations of 
bleomycin 16.5 µM, 23.79 µM, 47.9 µM or left untreated. S phase progression 
was monitored by taking samples every 20 minutes for flow cytometry.  
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We have used three different drugs (3.5mM MMS, 1 µM 4NQO and 16.5 µM 

bleomycin) to create significantly differing lesion densities (of 1 every 1 kb, 25 kb 

or 3000 kb, respectively) in order to differentiate between global v. local 

regulation of forks.  Conceivably, variable lesion density could be achieved by 

just titrating one of the drugs.  However, we cannot achieve a 25-fold difference 

in lesion density (let alone a 3000-fold difference) by just titrating either drug 

alone.  In case of 4NQO, increasing dose concentration to even 2 µM 4NQO 

almost inhibits replication, while decreasing MMS dose below 3.5mM to 

0.875mM greatly reduces the effect of damage on replication kinetics (Figure 

3.16A) (Willis and Rhind, 2009). 

 

DNA Combing 

Cell labeling and plug preparation 

Cells were pulse labeled with 2 µM CldU for 5 minutes and chased with 20 µM 

IdU for 10 minutes.  For the second replicate of 4NQO dataset in wild-type and 

cds1Δ cells and all the bleomycin datasets, cells were labeled with 5 µM CldU for 

5 minutes and chased with 20 µM IdU for 10 minutes.  For MMS, experiments 

were done 5 times in wild-type cells and 3 times in cds1Δ cells; 4NQO and 

bleomycin experiments were done twice in each wild-type and cds1Δ cells.  Cells 

were pulse labeled at different time points across S phase for both wild-type and 

cds1Δ, however they gave similar results and hence have been combined and 
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represented together in the figures for simplicity.  Refer to Table 3.4 for the exact 

timing of analog labeling during S phase for the various replicates.  
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Table 3.4 Summary of all the combing datasets with the time at which 

analog was added, temperature at which Proteinase K treatment was done, 

and the pH of MES buffer used for combing. 

 

  

Time point # Time of analog pH of Proteinase K
Strain no. Expt Dataset No. Drug (see Methods) addition combing buffer  temperature

yFS940 WT WT1-N Untreated Time point 1 50 min. 6.35 50°C
yFS940 WT WT1-N 4NQO Time point 1 50 min. 6.35 50°C
yFS940 WT WT2-M Untreated Time point 1 50 min. 6.35 50°C
yFS940 WT WT2-M MMS Time point 1 50 min. 6.35 50°C
yFS940 WT WT3-M Untreated Time point 1 50 min. 6.35 37°C
yFS940 WT WT3-M MMS Time point 1 50 min. 6.35 37°C
yFS940 WT WT4-M Untreated Time point 1 50 min. 6.25 37°C
yFS940 WT WT4-M MMS Time point 1 50 min. 6.25 37°C
yFS940 WT WT5-M Untreated Time point 2 55 min. 6.25 37°C
yFS940 WT WT5-M MMS Time point 2 55 min. 6.25 37°C
yFS940 WT WT6-M Untreated Time point 2 55 min. 6.25 37°C
yFS940 WT WT6-M MMS Time point 2 55 min. 6.25 37°C
yFS940 WT WT7-N Untreated Time point 1 50 min. 6.2 50°C
yFS940 WT WT7-N 4NQO Time point 1 50 min. 6.2 50°C
yFS940 WT WT8-B Untreated Time point 1 50 min. 6.2 50°C
yFS940 WT WT8-B Bleomycin Time point 1 50 min. 6.2 50°C
yFS940 WT WT9-B Untreated Time point 1 50 min. 6.2 50°C
yFS940 WT WT9-B Bleomycin Time point 1 50 min. 6.2 50°C
yFS941 cds1 cds1-1-N Untreated Time point 1 50 min. 6.35 50°C
yFS941 cds1 cds1-1-N 4NQO Time point 1 50 min. 6.35 50°C
yFS941 cds1 cds1-2-M Untreated Time point 3 45 min. 6.25 37°C
yFS941 cds1 cds1-2-M MMS Time point 3 45 min. 6.25 37°C
yFS941 cds1 cds1-3-M Untreated Time point 4 50 min. 6.25 37°C
yFS941 cds1 cds1-3-M MMS Time point 4 55 min. 6.25 37°C
yFS941 cds1 cds1-4-M Untreated Time point 4 50 min. 6.25 37°C
yFS941 cds1 cds1-4-M MMS Time point 4 55 min. 6.25 37°C
yFS941 cds1 cds1-5-N Untreated Time point 1 50 min. 6.2 50°C
yFS941 cds1 cds1-5-N 4NQO Time point 1 50 min. 6.2 50°C
yFS941 cds1 cds1-6-B Untreated Time point 1 50 min. 6.2 50°C
yFS941 cds1 cds1-6-B Bleomycin Time point 1 50 min. 6.2 50°C
yFS941 cds1 cds1-7-B Untreated Time point 1 50 min. 6.2 50°C
yFS941 cds1 cds1-7-B Bleomycin Time point 1 50 min. 6.2 50°C
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Analog labeling was stopped by adding sodium azide to a final concentration of 

0.1% and cooling the cells on ice.  10 O.D. of cells were pelleted for combing, 

frozen in liquid N2 and stored at -80°C.  Cells were processed as previously 

described with minor modifications (Chapter II) (Iyer et al., in press).  For MMS 

experiments the plugs were digested with proteinase K at 37°C instead of 50°C 

to facilitate isolation of longer fibers based on the observation that MMS creates 

heat-labile DNA damage (Table 3.4)(Lundin et al., 2005).  Higher pH of MES 

(6.25 or 6.35) was used for combing instead of pH 5.4 to isolate longer fibers 

(Table 3.4) (Kaykov and Nurse, 2015).  Combing and immuno-staining of 

samples were done as previously described (Chapter II) (Iyer et al., in press).  

For the second replicate of 4NQO dataset in wild-type and cds1Δ cells, and for 

all the bleomycin datasets, data collection was done in collaboration with 

Genomic Vision, France. Data collection and analysis was done as described in 

detail in Chapter II. For distribution of fiber lengths refer to Figure 3.17 and Table 

3.5. 

 
Figure 3.17 Fiber length distribution 
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Figure 3.17 Fiber length distribution.  Length of fibers from wild-type 4NQO 
(A) and MMS (B) samples from a single experiment.  Approximately 25 Mb of 
total DNA was collected for each sample (Table 3.5). 
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Table 3.5 Summary of all combing datasets with total DNA measured, 

maximum, minimum, median, and standard deviation of fiber lengths for 

each dataset. 

 

 

  

Total Fiber Max. fiber Min. fiber Median fiber Standard
Strain no. Expt Dataset No. Drug Length (Mb) Length (kb) Length (kb) Length (kb) Dev. (kb)

yFS940 WT WT1-N Untreated 25.11 744.59 234.61 375.21 97.02
yFS940 WT WT1-N 4NQO 25.27 710.73 197.34 355.49 100.15
yFS940 WT WT2-M Untreated 25.53 958.11 292.80 504.67 148.24
yFS940 WT WT2-M MMS 25.23 490.24 186.47 239.17 52.55
yFS940 WT WT3-M Untreated 9.81 1220.10 295.16 383.56 198.90
yFS940 WT WT3-M MMS 9.34 686.20 342.61 426.18 112.81
yFS940 WT WT4-M Untreated 25.09 1002.70 391.83 578.93 140.03
yFS940 WT WT4-M MMS 25.24 709.70 320.85 409.88 108.80
yFS940 WT WT5-M Untreated 25.43 1041.07 362.80 543.91 156.67
yFS940 WT WT5-M MMS 12.03 489.21 171.04 262.82 69.55
yFS940 WT WT6-M Untreated 25.27 1161.17 335.90 463.26 141.31
yFS940 WT WT6-M MMS 24.94 656.86 251.81 339.72 85.47
yFS940 WT WT7-N Untreated 24.84 1293.50 416.02 636.30 186.11
yFS940 WT WT7-N 4NQO 24.73 1288.80 165.90 485.87 231.67
yFS940 WT WT8-B Untreated 24.58 1360.30 363.55 580.56 201.69
yFS940 WT WT8-B Bleomycin 25.08 828.12 206.87 437.54 120.18
yFS940 WT WT9-B Untreated 25.23 1521.10 429.79 658.65 257.08
yFS940 WT WT9-B Bleomycin 24.42 1004.30 291.86 435.38 147.10
yFS941 cds1 cds1-1-N Untreated 25.03 585.50 203.60 308.20 76.09
yFS941 cds1 cds1-1-N 4NQO 25.27 469.64 170.98 261.11 63.08
yFS941 cds1 cds1-2-M Untreated 25.08 1426.07 403.80 588.80 210.95
yFS941 cds1 cds1-2-M MMS 24.99 715.53 248.00 354.10 101.79
yFS941 cds1 cds1-3-M Untreated 25.18 1474.83 300.62 478.76 172.51
yFS941 cds1 cds1-3-M MMS 23.47 450.52 176.62 230.62 54.79
yFS941 cds1 cds1-4-M Untreated 25.35 1607.26 413.59 497.38 189.87
yFS941 cds1 cds1-4-M MMS 23.42 509.38 208.27 287.28 66.72
yFS941 cds1 cds1-5-N Untreated 24.72 1027.80 330.62 549.59 160.81
yFS941 cds1 cds1-5-N 4NQO 24.3 1225.40 308.95 510.19 225.41
yFS941 cds1 cds1-6-B Untreated 24.73 2139.40 393.45 720.47 401.47
yFS941 cds1 cds1-6-B Bleomycin 24.08 839.32 124.53 331.86 147.39
yFS941 cds1 cds1-7-B Untreated 25.25 1983.1 237.1 578.69 337.99
yFS941 cds1 cds1-7-B Bleomycin 22.94 588.37 138.17 327.4 100.25
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Variation in absolute fork rate values 

We note that the fork rate for wild-type untreated samples varies across different 

replicates (0.65±0.4 kb/min for the first three replicates v. 0.91±0.2 kb/min for the 

last three replicates, Table 3.2).  We ascribe this variation to the pH of MES 

(6.35) used for combing the first three replicates, which we used to facilitate 

isolation of longer fibers.  We have concluded that the stretching factor estimated 

from lambda DNA at 6.35 is not reliable.  Hence we switched to a lower pH of 

6.25 for further combing experiments.  We believe that the values obtained at pH 

6.25 are more reliable, since we have obtained 0.9 kb/min fork rate value from 

wild-type untreated samples stretched at pH 5.4, which is close to the standard 

pH used in most combing experiments (Figure 3.18) (Michalet et al., 1997; 

Allemand et al., 1997; Herrick and Bensimon, 1999b; Bianco et al., 2012).  

Despite the variation in the absolute fork rate values the relative trend observed 

between treated and untreated sample holds true across both pH.  For example 

consider experiments WT3-M and WT4-M, which are similar except for the pH of 

the combing solution used (Table 3.2).  The absolute value of wild-type untreated 

fork rate differs between the experiments (0.60 kb/min v. 0.92 kb/min, Table 3.2).  

However the change in fork rate in treated v. untreated sample is 0.72 for both 

the experiments. 
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Figure 3.18 Wild-type fork rate distribution in untreated sample combed 

using MES buffer pH 5.4 

 

 

Figure 3.18 Fork rate distribution in wild-type untreated sample combed 
using MES buffer pH 5.4.  Fork rate value was estimated from the second 
analog track continuing from the first analog as explained in Chapter II. 
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High fork stall rate in untreated sample 

The fork stall rate in untreated wild-type and cds1Δ cells is about 15% (Table 

3.3).  This result reveals an unexpectedly high rate of spontaneous fork stalling.  

To exclude the possibility that the high stall rate is a result of previously identified 

combing artifacts (Demczuk and Norio, 2009), we re-analyzed our dataset, 

excluding the labeled events occurring at the ends of the fibers, where such 

artifacts can occur.  However the stall rate estimations remain unchanged after 

re-analysis (Figure 3.19).  We cannot rule out the possibility that the observed 

fork stall rate is increased by the thymidine analogs used to label the DNA.  

Nonetheless, since we normalize our quantitation of fork-stalling to an untreated 

sample, our results are internally controlled.  Furthermore, double-labeled 

combing studies done in mammalian cells show similar rate of fork stalling in the 

untreated sample (Merav Socolovsky, personal communication).  
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Figure 3.19 Re-estimation of stall rate accounting for potential artifacts 

yields minimal variation 

 

 

Figure 3.19 Re-estimation of stall rate accounting for potential artifacts 
yields minimal variation.  We re-analyzed the fibers considering stretching 
artifacts, which may lead to incorrect interpretation of analog incorporation 
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patterns (Demczuk and Norio, 2009).  Ends of the fiber are most susceptible to 
such stretching artifacts and hence we ignored the labeled events occurring at 
the ends of the fiber and re-calculated the stall rate.  However we do not see a 
significant change between the stall rate calculated from the whole fiber or after 
ignoring the labeled events occurring at the ends of the fiber.  
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Cds1 kinase assay 

To estimate the Cds1 kinase activity S phase progression assay was done in 

triplicate as described earlier in response to 3.5 mM MMS, 1 µM 4NQO, and 16.5 

µM bleomycin in yFS988 strain.  Approximately 10 OD of cells were pelleted at 

10, 20, 30, 40, 50, and 90 minutes in S phase for measuring Cds1 activity.  Cells 

were lysed by bead beating in 400µl ice-cold lysis buffer (150 mM NaCl, 50 mM 

Tris pH 8.0, 5 mM EDTA pH 8.0, 10% Glycerol, 1%IGEPAL CA630, 50 mM NaF, 

freshly added 1 mM Na3VO4 and protease inhibitor cocktail (Sigma 

11836170001)) for 15 minutes at 4°C.  Lysate was cleared by centrifuging at 

1000g, 5 minutes and combined with anti-HA Ab conjugated agarose beads 

(Pierce 26181) and incubated with constant mixing at 4°C for 4 hours.  Beads 

were washed twice with lysis buffer and twice with kinase buffer (5 mM HEPES 

pH 7.5, 37.5 mM KCl, 2.5 mM MgCl2, 1 mM DTT).  The sample was then split 

into two portions, one was used to estimate the amount of Cds1 pulled down by 

western blot and the other was processed to estimate the kinase activity.  For 

western, the Cds1 was eluted off the beads by boiling in 2x SDS PAGE gel 

loading dye.  Cds1 was detected by using rabbit anti-Cds1 Ab at 1:1000 and anti-

rabbit HRP conjugated secondary Ab at 1:10000.  For kinase assay, the beads 

were re-suspended in 10 µl 2x kinase buffer, 0.5 µl 10 µCi/µl γP32-ATP, 2 µl 1 

mM ATP, 5 µl 1 mg/ml myelin basic protein and incubated at 30°C for 15 

minutes.  The reaction was quenched by adding SDS PAGE gel loading buffer 

and boiling at 95°C for 5 minutes.  Kinase reactions were run on a 15% gel 
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normalized to the amount of Cds1 pulled down in each lane.  The gel was dried 

under vacuum and exposed to phosphorimager screen for 48 hours.  The screen 

was scanned on Typhoon FLA-9000 and quantitated using ImageJ (Schneider et 

al., 2012).  Asynchronous culture of yFS988 treated with 3.5 mM MMS for 4 

hours was used as a control to normalize across gels and blots.  

 
RPA foci estimation 

In order to estimate RPA foci formation due to damage, S-phase progression 

assays were performed as described above with strains expressing GFP-tagged 

Rpa1 (yFS956 and yFS957).  Cells were collected at 100 minutes after release 

from untreated, 3.5 mM MMS, 1 µM 4NQO and 12 mM HU treated cultures and 

fixed in ice-cold 100% methanol and stored at -20°C for at least 20 minutes.  

Fixed cells were washed thrice with 1x PBS and re-suspended in 10 µl 

Vectashield mounting medium with DAPI at 2 µg/ml.  Cells were visualized using 

a Zeiss Axioskop 2 Plus epifluorescence microscope with 100X Plan-

NEOFLUAR oil objective and imaged using SPOT monochrome cooled-CCD 

camera.  Images were analyzed using ImageJ and Microsoft Excel.  Image of 

each nuclei in the GFP channel was cut and pasted into cells in an excel file.  

The nuclei were then blinded, randomly sorted and scored independently by two 

individuals.  100 nuclei were analyzed for each sample.  The nuclei were scored 

into three categories: uncertain, foci negative, and foci positive.  Foci positive 

cells were further characterized into nuclei with few weak foci (1 or 2) or 

containing many weak foci, strong foci or a combination of strong and weak foci. 
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Chapter IV  

Aneuploidy causes replication defects 

 

(This work was done in collaboration with Angelika Amon’s lab at MIT. The 

experiments were designed by AA, SS and DI. The cells were prepared by SS. 

Sample processing, combing and analysis was performed by DI. This work is 

published as part of a larger study(Santaguida et al., 2017))  
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Introduction 

What is aneuploidy? 

The term ‘ploidy’ refers to the chromosomal content of a cell. Most mammalian 

cells tend to have two copies of each set of chromosome, a condition referred to 

as diploidy (Orr et al., 2015). Although diploid is the preferred state in mammals, 

other species such as plants and amphibians tend to have more than two sets of 

chromosomes (polyploidy) with stable genomes (Comai, 2005). In fact, being 

polyploid confers adaptive advantages to the species (Paquin and Adams, 1983; 

Zerulla and Soppa, 2014; Selmecki et al., 2015). Thus having multiple (more than 

2) sets of chromosomes is well tolerated, so long as all the genes on different 

chromosomes are equally represented. This condition of having an exact multiple 

of the haploid chromosomal content is called euploidy (Comai, 2005; Orr et al., 

2015; Siegel and Amon, 2012). In contrast, aneuploidy is a condition of having an 

unbalanced karyotype involving loss or gain of whole chromosomes or parts of a 

chromosome. In humans, having one chromosome less (monosomy) or extra 

(trisomy) is mostly lethal. In the few cases where trisomy is tolerated (trisomy 13, 

18, 21) the individuals tend to have severe developmental abnormalities. Thus 

having a balanced number of chromosomes is essential for the survival and 

fitness of the organism (Hassold and Hunt, 2001; Nagaoka et al., 2012; Potapova 

et al., 2013; Orr et al., 2015). Consistently, aneuploidy is rare amongst somatic 

tissues (Knouse et al., 2014). 
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Aneuploidy and cancer 

Although aneuploidy is mostly detrimental for cell survival, oddly it is also a 

hallmark of a disease involving unrestrained growth - cancer, with 90% of solid 

tumors and 50% of blood cancers being aneuploid (Holland and Cleveland, 2012; 

Mitelman et al., 2017). Chromosomal instability associated with aneuploidy 

promotes genomic instability and thus leads to heterogeneity amongst the 

population of tumor cells, which in turn provides genetic diversity, from which 

cells refractory to treatment can be selected. Aneuploidy in tumors is linked to 

metastasis and poor prognosis (Gordon et al., 2012; McGranahan et al., 2012; 

Gerlinger and Swanton, 2010; Lee et al., 2011; Walther et al., 2008). Thus to 

understand the effects of aneuploidy on cell behavior, we looked at the 

immediate consequences of mis-segregation of chromosomes. The goal of this 

project is to understand how mis-segregation and the resulting aneuploidy affect 

the progression of cells through the subsequent phases of cell cycle. 

 
Generation of aneuploid cells 

A common method used to generate aneuploid cells involves destabilizing the 

mitotic spindle with small molecule spindle poisons such as colchicine, taxol, 

nocodazole or monastrol, which is an inhibitor of Eg5, a kinesin required for bi-

polar spindle establishment (Lampson and Kapoor, 2006). Destabilization of the 

spindle leads to activation of the spindle assembly checkpoint (SAC), which 

leads to mitotic arrest. The SAC is a quality control mechanism, which ensures 

that each kinetochore from a pair of sister chromatids are attached to microtubule 
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spindles originating from the opposite poles, a phenomenon called as bi-

orientation. Bi-orientation of sister chromatids ensures that during cell division, 

each daughter cell receives an equal complement set of chromosomes 

(Musacchio and Salmon, 2007). Perturbation of the mitotic spindle with poisons 

and subsequent mitotic delay favor merotelic kinetochore attachment, wherein a 

single kinetochore is attached to microtubules originating from both the poles 

(Cimini et al., 1999; Cimini et al., 2001; Knowlton et al., 2006). Mis-attachment of 

kinetochores hampers the fidelity of chromosome segregation leading to lagging 

chromosomes during anaphase culminating in generation of aneuploid daughter 

cells (Thompson and Compton, 2008).  

Recently, studies have found that aneuploidy induced by using spindle 

poisons leads to p53 activation and subsequent arrest in G1 phase and thus 

making it difficult to study cell cycle progression in aneuploid cells (Thompson 

and Compton, 2010; Hinchcliffe et al., 2016; Li et al., 2010). Interestingly, Uetake 

and Sluder found that the p53-dependent arrest is linked to the duration spent in 

pro-metaphase rather than mis-segregation of chromosomes. If cells spent more 

than 1.5 hours in pro-metaphase then they arrested in the subsequent G1 phase 

regardless of whether chromosomes mis-segregated or not (Uetake and Sluder, 

2010). Thus aneuploidy itself does not activate p53, but rather prolonged 

duration of arrest in pro-metaphase does (Uetake and Sluder, 2010; Orth et al., 

2012; Hayashi et al., 2012).  
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With this result in mind Santaguida et al., generated aneuploid cells by using 

the exact opposite approach, that is by inhibiting SAC rather than activating it 

(Santaguida et al., 2010; Santaguida et al., 2015; Hewitt et al., 2010; Colombo et 

al., 2010). Since SAC ensures bi-orientation and proper segregation of 

chromosomes, its inhibition allows for mitosis to occur even when the 

chromosomes are mis-attached thus generating aneuploid daughter cells. 

Aneuploid cells are generated by faster progression through mitosis in the 

presence of mis-attached chromosomes rather than a delay and thus avoid G1 

arrest. By generating aneuploid cells by inhibiting SAC, we could look at how 

aneuploidy affects the subsequent progression through cell cycle. Specifically we 

studied how subsequent S phase progression is affected by DNA combing 

(Santaguida et al., 2017). 

 

Results 

Examining S phase by DNA combing in human aneuploid cells 

To study the effect of aneuploidy on S phase progression we induced mis-

segregation in non-transformed human retinal pigment epithelial cells 

immortalized with human telomerase reverse transcriptase  (RPE-1 hTERT).  

The cells were treated for 24 hours with vehicle control or 2 µM AZ3146, an 

inhibitor of Mps1, to generate aneuploidy (Hewitt et al., 2010). Mps1 is a kinase 

that localizes to the kinetochores and is necessary for activation and 

maintenance of the SAC (Liu and Winey, 2012). Inhibition of Mps1 leads to mis-
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segregation of a few chromosomes in a majority of cells (Santaguida et al., 

2015). Each chromosome was found to be mis-segregated in 6-8% of mitoses 

(Santaguida et al., 2015; Santaguida et al., 2017). Following mis-segregation the 

cells were synchronized in G1 phase using mimosine and released into S phase. 

3 hours into S phase the cells were pulsed with 25 µM IdU for 1 hr. followed by 

200 µM CldU for 1 hr. The cells were processed for combing as before except 

the cell wall digestion step was skipped. IdU was visualized using green antibody 

and CldU was visualized using red antibody. Figure 4.1 shows a representative 

fiber from each sample with an interpretation for each labeled track below it. The 

combing experiment was done twice. The second replicate was done in 

collaboration with Genomic Vision, France. For euploid cells we collected a total 

of 47 and 54 Mb of DNA and for the aneuploid cells we collected 33 and 38 Mb of 

DNA in the first and the second replicate respectively. 
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Figure 4.1 Representative fibers from euploid and aneuploid cells. 

 
 
 
Figure 4.1 Representative fibers from euploid and aneuploid cells. RPE-1 
hTERT cells were treated with Mps1 inhibitor to induce aneuploidy. Following 
mis-segregation cells were synchronized in G1 phase and pulsed with IdU and 
CldU in the subsequent S phase. Figure 4.1 shows a fiber from each euploid and 
aneuploid cells with IdU labeled in green and CldU in red.   
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Aneuploidy causes an increase in origin firing rate 

We first examined the effect of aneuploidy on origin firing. As explained in greater 

detail in Chapter II we calculated origin firing rate and fork density for both 

analogs combined as well as separately for each analog per fiber per kb. We 

normalized the values obtained from the aneuploid cells to that from the euploid 

cells. We find that the total origin firing rate is higher by 2-fold (p=1.5x10-34) in the 

aneuploid cells as compared to euploid cells (Figure 4.2A). Analog specific origin 

firing estimations also show 2- and 1.5- fold higher origin firing during first 

(p=2.27x10-36) and second (p=0.03) analog in aneuploid cells as compared to 

euploid cells (Figure 4.2A). It should be noted that the increase in origin density 

seen in the second analog in aneuploid cells as compared to euploid cells is not 

reflected in the total origin density because, there were far fewer second analog 

origins than the first analog origins in the majority of fibers. Fork density also 

shows a similar pattern. We see a 1.7-fold increase in total (p=7.46x10-13) as well 

as first (p=1.22x10-19) and second (p=4.71x10-11) analog specific fork densities in 

aneuploid cells as compared to euploid cells (Figure 4.2A). 

 
 
 

Figure 4.2 Aneuploidy causes replication defects. 
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Figure 4.2 Aneuploidy causes replication defects. (A) Aneuploidy causes an 
increase in origin firing rate. Total and analog specific origin firing rate and fork 
densities were estimated for aneuploid cells from 2 replicates and normalized to 
that from the euploid cells. (B) Aneuploidy causes reduction in fork rate and an 
increase in fork stalls and fork stalling rate. Fork rate from all forks, or IdU forks, 
or CldU forks, fork stalls, and fork stall rate were estimated for aneuploid cells 
from 2 replicates and normalized to that from the euploid cells. See Chapter II for 
calculations. 
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Aneuploidy causes reduction in fork rate and an increase in fork stalls 

We calculated fork rate values from both IdU (green [G]) and CldU (red [R]) 

tracks. For IdU, fork rate values were obtained from RG and GR elongating forks 

as well as GRG termination events. For CldU, fork rates were obtained from RG, 

GR, and RGR (origins). Overall we see a reduction of 29% in fork rates 

(p=2.21x10-16) from aneuploid cells as compared to euploid cells (Figure 4.2B). 

Fork rate during IdU (p=4.46x10-10) and CldU (p=2.89x10-8) also show 29 and 

28% reduction respectively in aneuploid as compared to euploid cells (Figure 

4.2B). 

Next, we calculated fork stalls as well as fork stall rate per fiber per kb. We 

see a 2.35-fold increase (p=2.93x10-33) in absolute number of fork stalls per kb in 

aneuploid cells as compared to euploid cells (Figure 4.2B). Since the origin firing 

rate is higher in aneuploid cells as compared to euploid population, we 

normalized the absolute number of stalls to the number of ongoing forks to get 

the fork stall rate. We see a 1.4-fold increase (p=7.71x10-23) in fork stall rate in 

aneuploid cells as compared to euploid cells (Figure 4.2B). 

 

Discussion 

In this study we have looked at the immediate consequences of aneuploidy on S 

phase progression. Although aneuploidy is frequently associated with genomic 

instability and poor outcomes in tumor therapy, the exact mechanism by which 

aneuploidy induces genomic instability or whether it is merely a consequence of 
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genomic instability has been difficult to tease apart (Storchova and Pellman, 

2004; Santaguida and Amon, 2015; Gordon et al., 2012; Weaver and Cleveland, 

2006; Siegel and Amon, 2012). To understand the immediate consequences of 

aneuploidy on cell cycle progression we took a novel approach to generate 

aneuploid cells. Briefly, we used an SAC inhibitor rather than an activator to 

generate aneuploid cells, which usually triggers a mitotic delay. The absence of 

mitotic delay prevents p53 dependent G1 arrest, allowing us to study the 

immediate consequences of aneuploidy on cell cycle progression.  

By DNA combing we find that there is a discernable effect on the subsequent 

S phase progression following mis-segregation in mitosis. Fork progression is 

slowed and origin firing rate increased in aneuploid cells as compared to euploid 

cells. The reduced fork progression may prevent passive replication of less 

efficient origins and thus increase the probability of them firing leading to 

increased origin firing rate in aneuploid cells (Yekezare et al., 2013; Rhind et al., 

2010). Reduction in fork rate and increase in origin firing in response to 

aneuploidy was recently also reported in human pluripotent stem cells (Lamm et 

al., 2016). Thus it appears to be a conserved response to aneuploidy across cell 

types. Finally we also see an increase in fork stalling events in aneuploid cells as 

compared to euploid cells.  

 

What is the source of replication defects in aneuploid cells? 
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A recent study has found evidence that addition of even a single extra 

chromosome causes a reduction in the levels of MCM2, 3, 7 subunits. 

Specifically, less MCM complexes were loaded on the chromatin in aneuploid 

cells as compared to euploid cells (Passerini et al., 2016). Several studies have 

shown that reduced MCM levels causes replication defects (Ge and Blow, 2010; 

Ge et al., 2007; Woodward et al., 2006). Decrease in MCM levels was found to 

be consistent, regardless of which extra copy of chromosome was added 

(chromosome 3, 5, 8, 12 or 21) to HCT116 or RPE-1 cells. Finally Passerini et 

al., were able to mitigate the accumulation of DNA damage markers such as 

53BP1 foci by over-expressing MCM7 subunit in aneuploid cells (Passerini et al., 

2016). Thus, perturbations of replication components could be a source of 

replication stress in aneuploid cells. 

Based on the combing results Santaguida et al. carried out further 

investigation of immediate effects of aneuploidy on cell cycle progression 

(Santaguida et al., 2017). They found that replication defects during S phase 

furthers genomic instability as assessed by accumulation of 53BP1 and γ-H2AX 

foci, and DNA bridges during the subsequent anaphase. Mitosis of such 

aneuploid cells further exacerbates the genome imbalance with a larger 

percentage of cells harboring complex karyotypes during the second round of cell 

division.  Thus mis-segregation and generation of aneuploidy during one round of 

mitosis leads to replication stress and exacerbates the chromosomal imbalance 
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during the second round of mitosis leading to generation of cells with complex 

karyotypes. 
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Discussion 

 
The intra-S checkpoint plays a critical role in protecting the integrity of genome. 

ATR deletion is lethal and hypomorphic mutations lead to severe developmental 

abnormalities, resulting in Seckel Syndrome in humans (Brown and Baltimore, 

2000; O'Driscoll et al., 2003). Depletion of ATR in adult mice leads to replication 

stress, genomic instability and premature onset of age-related degeneration of 

tissues, emphasizing the importance of the intra-S checkpoint (Ruzankina et al., 

2007; Murga et al., 2009). Thus, understanding the role of intra-S checkpoint is 

critical.  

The overall goal of this project is to understand the regulation of forks by the 

checkpoint in response to DNA damage. Several studies have hinted that 

regulation of forks is the most crucial function of intra-S checkpoint in response to 

damage (Chapter I). However the role of the checkpoint at replication forks 

encountering damage has remained largely elusive. A major hurdle to studying 

fork progression has been lack of techniques to measure fork rates at single-

molecule resolution on a global scale. To address this issue we implemented 

sequential analog labeling in fission yeast to measure replication fork rates by 

DNA combing (Chapter II). We also developed a detailed analysis of every 

permutation of labeled track found in a tri-color combing dataset. This analysis 

has helped us rigorously identify and measure fork stall rates as a distinct 

response from fork slowing in response to DNA damage (Chapter III). Further, by 

combing we also saw a distinct response to DNA damage caused by different 
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kinds of lesions at different densities. To summarize, inhibition of origin firing is 

checkpoint dependent, while reduction in fork rate is checkpoint independent. 

However the checkpoint may facilitate progression of forks through a damaged 

template. 

Finally we also looked at how aneuploidy affects S phase progression in 

collaboration with Angelika Amon’s lab at MIT. We find that aneuploidy leads to 

decrease in fork rate, increase in origin firing and fork stall rate. 

In this chapter, I’ll discuss the implications of our results (Chapter III) and 

avenues for future research.  

 

Fork slowing is checkpoint independent 

Although several different groups have reported slowing of forks in response to 

DNA damage, whether the response is checkpoint dependent or not has been 

controversial (Tercero and Diffley, 2001; Szyjka et al., 2008; Unsal-Kaçmaz et 

al., 2007; Seiler et al., 2007; Conti et al., 2007). Therefore, we addressed this 

issue by using three different DNA damaging drugs – 4NQO, MMS and 

bleomycin at very different lesions densities. We find that fork rate reduces only 

in response to MMS, which causes the highest lesion density at the 

concentrations used in our study as compared to 4NQO and bleomycin. Even 

though 4NQO and bleomycin activate the checkpoint we don’t see any reduction 

in fork rate. Consistently, we see reduction in fork rate only in cds1Δ cells treated 

with MMS. Thus we have conclusively shown that reduction in fork rate is 
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checkpoint independent and depends on the physical presence of the lesions at 

a sufficiently high frequency (Chapter III). 

 
How does the checkpoint facilitate fork progression across a damaged 

template? 

We see a greater reduction in fork rate in cds1Δ cells as compared to wild-type 

cells treated with MMS (Chapter III). This result indicates that the checkpoint may 

facilitate replication through a damaged template. It would be interesting to 

identify the factors at the replication fork that facilitate replication across a 

damaged template in a checkpoint dependent manner. One approach could be 

using isolation of proteins on nascent DNA (iPOND), which involves labeling cells 

with 5-ethynyl-2’-deoxyuridine (EdU), conjugating biotin to EdU using click 

chemistry, and purifying nascent replicated regions using biotin-streptavidin 

affinity purification (Sirbu et al., 2012; Dungrawala and Cortez, 2015; Sirbu et al., 

2013; Dungrawala et al., 2015). When combined with mass-spectrometry, iPOND 

allows identification of proteins at nascent replication forks (Sirbu et al., 2012). 

Comparing the proteins or the post-translational modification they harbor in the 

presence and absence of checkpoint in response to damage may shed light on 

the role of checkpoint in facilitating replication across a damaged template. 

Further it would be interesting to quantitatively identify the modifications on 

PCNA in the presence and absence of the checkpoint. Such an approach may 

shed light on the regulation of mono-, poly-ubiquitination, and sumoylation of 

PCNA by the checkpoint in response to damage. 



 

 

183 

Another approach could be to try combing with mutants implicated in fork 

restart to see whether we can recapitulate the phenotype of cds1Δ. Candidates 

of interest could be Mus81 and Dna2 (Chapter I).  

 

Fate of stalled forks 

A major finding from our combing data is that fork slowing and fork stalling are 

two distinct responses to DNA damage with different contribution towards bulk 

slowing (Chapter III). This finding opens a lot of questions regarding fork 

progression through a damaged template. What is the kinetics of fork 

progression across a damaged template? What is the kinetics of fork stalling? Do 

forks stall only at complex lesions or is stalling a stochastic response to lesions? 

Are the fork stalls different between 4NQO and MMS? What is the fate of the 

forks that stall (at least throughout the duration of our experiment)? Further, we 

see a high percentage (15%) of forks stalling even in unperturbed conditions 

(Chapter III). What is the source of stalling under unperturbed conditions? Is it 

sequence specific?  

A major limitation of combing is that it provides a snapshot rather than a 

dynamic picture of replication. The questions listed above can be addressed by 

monitoring real-time fork progression through a damaged template as discussed 

below.  
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Real-time analysis of forks 

Several tools recently developed in the field of replication offer great promise for 

elucidation of fork regulation. The three main advances are – the first - 

development of in vitro purified system for regulated eukaryotic replication, the 

second - ‘DNA curtains’ to look at protein-DNA interaction at single–molecule 

level in a high-throughput manner, and the third - a novel approach termed 

‘PhADE’ to look at single molecules of labeled protein in action (Yeeles et al., 

2017; Yeeles et al., 2015; Kurat et al., 2017; Yardimci et al., 2012; Loveland et 

al., 2012; Greene et al., 2010; Duzdevich et al., 2014).  

The Diffley lab has made great advances in the field of replication by 

purifying and defining the minimal components necessary for eukaryotic 

chromosomal replication (Yeeles et al., 2017; Yeeles et al., 2015; Kurat et al., 

2017). This system could potentially be used to understand the roles of individual 

proteins in fork regulation identified from iPOND as well as other studies 

(Chapter I).  

Although the reconstituted system will allow us to identify the role of new 

factors at the fork, ensemble studies mask heterogeneity and short-lived 

interactions. DNA curtains, is a powerful approach to study protein-DNA 

interactions at single-molecule level in a high-throughput fashion (Greene et al., 

2010; Collins et al., 2014). Briefly, flow cells with slides containing nanobarriers 

are created manually or using nanofabrication techniques. The slide is coated 

with lipid bilayer and one end of the λ-DNA is conjugated to the lipid bilayer using 
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biotin-streptavidin interaction. The DNA molecules are aligned, by flowing buffer 

into the flow cell. The lipid molecules flow in the direction of buffer until they hit a 

nanobarrier, which is designed to be perpendicular to the direction of the flow. 

This approach leads to alignment of thousands of DNA molecules parallel to one 

another. The slide can be modified so that the second end of the DNA is also 

tethered. By flowing in a fluorescently labeled protein of interest we can study the 

dynamics of protein-DNA interaction at several molecules of DNA simultaneously 

using total internal reflection fluorescence (TIRF) microscopy (Sternberg et al., 

2014; Redding et al., 2015; Wang et al., 2013; Qi et al., 2015; Gorman et al., 

2012; Finkelstein et al., 2010; Collins et al., 2014).  

A major obstacle to studying protein function at single-molecule level in real-

time is the ability to image fluorescently labeled protein at physiological 

concentrations. This obstacle was overcome by the development of a novel 

approach termed ‘PhADE’ (PhotoActivation, Diffusion, Excitation) by Loveland 

from the Walter lab (Loveland et al., 2012).  Briefly, replication is visualized on λ-

DNA immobilized in a flow cell supplemented with Xenopus egg extract (Yardimci 

et al., 2012). In the egg extract, a protein of interest is tagged with a photo-

activatable fluorescent protein and allowed to flow in and bind to the immobilized 

DNA. The labeled molecules of the protein of interest close to the surface are 

converted by using TIRF illumination, so that they fluoresce at a different 

wavelength than the protein molecules that are not illuminated. The converted 

molecules of protein bound on the DNA can be easily visualized by TIRF 
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excitation. The converted protein molecules that are not bound to DNA but are 

close to the surface are in constant equilibrium with the non-illuminated protein 

molecules in the extract, which are in far greater excess. Thus the unbound 

converted protein molecules easily diffuse away minimizing the noise in this TIRF 

imaging system (Loveland et al., 2012).  

DNA curtains could be potentially combined with the purified reconstituted 

system developed by the Diffley lab to study the role of individual factors in action 

at the replication forks in real-time at single-molecule resolution. The PhADE 

approach could be implemented with DNA curtains if a protein of interest must be 

used at high concentration for optimal activity. While combing only gives us static 

information regarding fork stalling, using real-time monitoring will allow us to 

detect the kinetics of fork stalling. We will be able to address whether fork stalling 

is programmed or stochastic. We could potentially create λ-DNA molecules 

harboring different kinds of MMS-induced lesions, to characterize which lesions 

predominantly cause fork stalling. Further it will also allow us to clarify whether 

reduction of forks observed by combing is due to uniform slowing or frequent 

stalls leading to less replication in response to damage.  

 

Why does 4NQO activate the checkpoint faster than MMS? 

We estimate that the lesions caused by 4NQO are 25-fold rarer than those 

caused by MMS at the concentrations used in our study (Snyderwine and Bohr, 

1992; Lundin et al., 2005). Yet 4NQO appears to activate the checkpoint faster 
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than MMS and leads to similar levels of bulk slowing as assessed by flow 

cytometry (Chapter III). Lesions caused by 4NQO are repaired by NER and 

MMS-induced lesions are repaired by BER (Wyatt and Pittman, 2006; Jones et 

al., 1989; Fujiwara, 1989; Edwards et al., 1987; Ikenaga et al., 1977). The 

kinetics of repair of the lesions caused by the two drugs could be different. It 

would be interesting to ascertain how their repair efficiencies affect the 

checkpoint response. One approach could be to use radioactive 4NQO and MMS 

to estimate the lesion densities achieved in the S phase time course, although 

such reagents are not commercially available. It may be interesting to see 

whether the checkpoint activation occurs faster or slower in NER and BER repair 

deficient mutants as opposed to wild-type. Finally a quantitative detection of 

formation of ssDNA in response to 4NQO and MMS as described below may 

help us understand why 4NQO is better at activating the checkpoint.  

 
Bypass of lesions in cds1Δ cells 

cds1Δ cells show greater reduction in fork rate than wild-type in response to 

MMS, yet they manage to complete replication by 100 minutes as seen by flow 

cytometry (Chapter III). We wanted to understand how forks are able to bypass 

lesions and complete replication in cds1Δ cells treated with MMS. As mentioned 

in Chapter I, restart of forks encountering lesions is thought to rely on repriming, 

translesion-polymerase-based synthesis and/or recombination-mediated 

template switching. To see which of the above mechansims are used in cds1Δ 

cells to bypass lesions, we deleted all the translesion polymerases as well 
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recombination factors swi5 and rad51 (Chapter VI, Appendix). Surprisingly even 

in the absence of translesion polymerases as well as recombination factors, 

cds1Δ cells still manage to replicate in the presence of MMS nearly to the levels 

seen in wild-type (Figure 6.2B). Perhaps lesion bypass in the absence of 

translesion polymerase as well as recombination occurs via repriming. Repriming 

of forks on the leading strand should leave ssDNA gaps (Figure 6.2B). One 

approach could be to look for ssDNA gaps by electron microscopy (Lopes et al., 

2006). Another approach to detect ssDNA could be, to do a pull-down for ssDNA 

regions in the genome using an antibody against ssDNA binding protein followed 

by strand-specific sequencing (Zhou et al., 2013). 

 

Conclusion 

In summary, we have studied the regulation of replication in response to damage 

using a single-molecule approach in S pombe. Using three different damaging 

drugs at different densities we find that reduction in forks in response to damage 

is checkpoint independent. However the checkpoint may facilitate fork 

progression through a damaged template. Using a novel approach we have 

rigorously quantified fork stall events in a tri-color combing dataset and find that 

they contribute significantly towards bulk slowing.  

For future work, it would be interesting to look at the kinetics of fork stalling 

using real-time monitoring of fork progression as well identifying factors that 
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mediate checkpoint-dependent progression of forks through a damaged 

template. 
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Chapter VI 

Appendix 
 

Bypass of lesions in cds1Δ cells 
 
 
 

 

Unpublished results 
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Bypass of lesions in cds1Δ cells  

cds1Δ cells fail to suppress origin firing and show a greater reduction in fork rate 

than wild-type in response to MMS. By bulk assay, cds1Δ cells complete 

replication in the presence of MMS by 100 minutes. We were interested in 

understanding the mechanism by which cds1Δ cells bypass lesions and 

complete replication in the presence of MMS. As mentioned in Chapter I the 

mechanisms by which forks restart include repriming, translesion-polymerase-

based synthesis, and template switching. We were interested in understanding 

which of the above three pathways are employed in cds1Δ cells to bypass MMS-

induced lesions. To this end, we deleted all the four translesion polymerases as 

well as recombination factors swi5 and rad51 in a cds1Δ background in S. 

pombe. We performed the S phase progression assay in response to MMS and 

4NQO. 

 
Results 

To examine the progression of S phase in cds1Δ cells lacking translesion-

polymerase-based synthesis and recombination-mediated template switching we 

built cds1Δswi5Δrad51Δrev3Δrev1Δmug40Δeso1-D147N (yDI157) strain. The 

eso1 gene in fission yeast encodes a fusion protein of two domains with one 

domain coding for DNA polymerase η and the other domain coding for an 

essential sister chromatid cohesion protein, Eco1/Ctf7 (Tanaka et al., 2000). The 

point mutant (147 aspartate to asparagine) of Eso1 abolishes the catalytic activity 

of the polymerase domain (Callegari et al., 2010). We performed the S phase 
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progression assay as mentioned before. We found that in yDI157 replication in 

the untreated sample itself is slightly slower than in the cds1Δ cells. In the 

presence of MMS or 4NQO, yDI157 cells replicate slower and do not complete 

replication even by 180 minutes (Figure 6.1 A). The extent of slowing in yDI157 is 

quite similar to what we observe in wild-type in response to 4NQO or MMS, albeit 

a little less (Figure 6.1 B).  

We also looked at S phase slowing in cds1Δswi5Δrev3Δrev1Δmug40Δeso1-

D147N (yDI132) or cds1Δswi5Δrev3Δrev1Δmug40Δrad30Δnmt41::eso1 

(yDI131). rad30Δnmt41::eso1 is an allele in which the polymerase domain of 

eso1 is deleted and the eso1 is overexpressed under the nmt41 promoter. In 

yDI131 and yDI132, the TLS pathway is completely compromised however the 

rad51-dependent recombination pathway is only partially compromised. In S. 

pombe the Rad51-dependent recombination depends on two sets of mediators, 

Swi5/Sfr1 and Rhp55/57 (Akamatsu et al., 2003; Akamatsu et al., 2007). 

Therefore deletion of swi5 only compromises the recombination pathway 

partially. In yDI131 or yDI132 the phenotype in response to MMS is very similar 

to that of cds1Δ (Figure 6.1C). Only at 120 minutes we see slightly less 

replication in yDI131 or yDI132 as compared to cds1Δ treated with MMS (Figure 

6.1C). Thus recombination may play a bigger role than TLS pathway in bypass of 

lesions in the absence of cds1 (Figure 6.1).  



 

 

193 

Figure 6.1 Replication of damaged DNA in cds1Δ is partially dependent on 

translesion polymerases and recombination. 
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Figure 6.1 Replication of damaged DNA in cds1Δ is partially dependent on 
translesion polymerases and recombination. (A) yDI157 cells were 
synchronized in G1 phase using cdc10-M17 temperature sensitive allele followed 
by elutriation. Elutriated G1 cells were released into permissive temperature 
untreated or treated with 3.5 mM MMS or 1 µM 4NQO or 12mM HU. S phase 
progression was followed by taking samples for FACS. (B) S phase progression 
in yDI157 is overlayed with wild-type for comparison. (C) Average S phase 
progression of yDI131 and132 overlayed with cds1Δ. Error bars represent 
standard deviation. TLSΔ = rev3Δrev1Δmug40Δeso1-D147N or 
rev3Δrev1Δmug40Δrad30Δnmt41::eso1.   
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Discussion 

 
The goal of this experiment was to understand how forks bypass damage-

induced lesions to complete replication in cds1Δ cells. To address this question 

we deleted all the translesion polymerases and recombination factors in cds1Δ 

cells. We find that the bypass of lesion and continued progression of fork relies 

on translesion-polymerase-based synthesis as well as recombination-mediated 

template switching. Recombination may contribute more to bypass of lesions 

than the translesion polymerases in the absence of cds1. Despite the lack of 

translesion polymerases and recombination, the yDI157 cells still manage to 

replicate nearly as much as seen in wild-type cells in response to MMS. We 

hypothesize that some forks may still bypass lesions using downstream 

repriming as a mechanism (Figure 6.2). It would be interesting to test this 

hypothesis by looking for ssDNA gaps. 
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Figure 6.2 Schematic representation of ssDNA gaps left behind by 

repriming on the leading strand. 

 

Figure 6.2 Schematic representation of ssDNA gaps left behind by 
repriming on the leading strand. 
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Materials and Methods  

Strains 

yDI157 (h- leu1-32 ura4-D18 cdc10-M17 cds1::ura4+ rad51::natR swi5::his3 

rev3::kanMX6 rev1::ura4 mug40::hyg eso1-D147N-kanMX rad11-GFP::hph-MX6) 

yDI131 (h- leu1-32 ura4-D18 cdc10-M17 cds1::ura4+ swi5::his3 rev3::kanMX6 

rev1::ura4 mug40::hyg rad30::kanMX::nmt41:eso1) 

yDI132 (h- leu1-32 ura4-D18 cdc10-M17 cds1::ura4+ swi5::his3 rev3::kanMX6 

rev1::ura4 mug40::kanMX eso1-D147N-kanMX) 

 

S phase progression by flow cytometry. 

yDI157, 131, and 132 were grown to mid log phase at 25°C and arrested at 35°C 

for 2 hours followed by centrifugal-elutriation-based size selection at 35°C to 

collect cells that had most recently arrested in G1.  The cells were then 

immediately released into S phase by shifting them to 25°C, untreated or treated 

with 3.5mM MMS or 1 µM 4NQO or 12mM HU. S-phase progression was 

followed by flow cytometry using a nuclei isolation protocol, as previously 

described (Willis and Rhind, 2011) with some minor modifications (Chapter II). 
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