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ABSTRACT 

Chronic alcohol use results in accelerated liver injury, leading to alcoholic 

steatohepatitis, cirrhosis, and hepatocellular carcinoma. However, due to the complex 

nature of this disease process, a central, druggable mechanism has remained elusive. 

microRNAs are potent post-transcriptional regulators of gene expression. A single 

miRNA has the ability to regulate hundreds of pathways simultaneously, defining cellular 

fate and function. microRNA-122 (miR-122), the most abundant miRNA in hepatocytes, 

has a demonstrated role as an tumor suppressor, regulator of hepatocyte metabolism, and 

hepatic differentiation.  

In this dissertation I demonstrate the role of miR-122 on alcoholic liver disease 

(ALD) pathogenesis over four parts. In chapter II, I will demonstrate chronic alcoholic 

patients, free of neoplastic changes, have a reduction of miR-122 and that this miRNA 

regulates HIF-1α, a determinant of ALD pathogenesis. In chapter III, using hepatocyte-

tropic adeno-associated virus 8 (AAV8) vector, I demonstrate that miR-122 inhibition 

mimics ALD pathogenesis, and furthermore, using hepatocyte-specific HIF-1α-null 

(HIF1hepKO) mice that this phenomenon is HIF-1α dependent. Given this finding, in 

chapter IV, I demonstrate that ectopic expression of miR-122 in vivo can reverse alcohol-

induced liver damage, steatosis, and inflammation by directly targeting HIF-1α. Finally, 

in chapter V, I present evidence that alcohol-induced dysregulation of grainyhead-like 

proteins 1 and 2 (GRHL2), mediate the inhibition of miR-122 at the transcriptional level. 

These findings dissect a novel mechanistic regulatory axis of miR-122 and indicate a 

potential opportunity for restoration of miR-122 as a therapy in early ALD. 
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CHAPTER 1: INTRODUCTION 

Alcoholic Liver Disease: Epidemiology & Clinical Progression 

Epidemiology  

The pathologic effect of chronic alcohol abuse has been cited for thousands of 

years. 1 Approximately two-thirds of the US population consume alcohol, with the 

incidence of abuse and/or dependence nearing 7%, it is the cause of 44% of all liver 

related deaths. 2 In fact, morbidity and mortality from alcoholic cirrhosis far exceeds than 

that of non-alcoholic cirrhosis. 3,4 

 World-wide, clinically diagnosed alcoholic liver disease is among the top 20 

causes of death, and constitutes a significant social and economic burden to drinkers and 

society. 1 The World Health Organization’s Global Alcohol Database has estimated 

alcohol will contribute to 9.2% of disability-adjusted life years the world over.5 While 

these numbers are staggering, given the prevalence of consumption and the extra hepatic 

manifestations of excessive alcohol consumption such as cardiovascular diseases, fetal 

alcohol syndrome, and diabetes mellitus, to name a few, it is widely believed that the 

morbidity and mortality estimates associated with excessive alcohol consumption are 

vastly underreported. 

Disease Spectrum  

Alcoholic liver disease (ALD) is a term used to describe a spectrum of clinical 

manifestations classically described as occurring in three stages; steatosis, alcoholic 

hepatitis, and cirrhosis (Figure 1.1). 6 These independent characterizations, are a 
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manifestation of histological descriptions and are not exclusive events, rather they are 

concurrent events in ALD pathogenesis.  

Steatosis  

Macro- and microvesicular steatosis, also known as alcoholic fatty liver disease 

(AFLD) occurs in as many as 90% of individuals who drink excessively. 6-8 This 

asymptomatic process is typically reversible with abstinence and lifestyle modification. 

However, it has been suggested that 5-15% of patients still progress to fibrosis or 

cirrhosis, regardless of abstinence. This risk doubles to 30-37% with continued 

consumption of >40g/day. 6-8  

Alcoholic Hepatitis, fibrosis, and cirrhosis  

Alcoholic hepatitis or steatohepatitis (AH or ASH) occurs in 10-35% of patients 

with ALD and can range from mild injury to acute hepatic decompensation superimposed 

on chronic liver disease.9 Histologically, AH presents with considerable hepatocyte 

death, neutrophilic infiltration, Mallory body formation, and fibrosis.6-8 Liver biopsy 

remains the definitive diagnostic tool for alcoholic hepatitis, however, it is often 

unnecessary and unwarranted given a carefully obtained patient history.10,11 In addition to 

a thorough history, laboratory findings may hold vital hints as to liver disease etiology. 

Patients with AH will often have elevated AST and ALT with a ratio of AST to ALT of 

>2.10,12 This distinguishing characteristic can be used diagnostically to define alcoholic 

hepatitis when non-alcoholic hepatitis, or drug-induced liver injury is suspected.10,12 

ALT, is enriched within peri-portal hepatocytes in zone 1 of the liver lobule, an oxygen 

rich environment, while AST demonstrates elevated expression in zone 3. Being at a  
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Figure 1.1: Schematic Representation of ALD pathogenesis. 

Thicker arrows indicate traditional course of disease. Percentages indicate likelihood of 

developing disease with continued exposure to alcohol. Adapted from medchrome.com. 



21 

 

 
  



22 

 

lower oxygen tension, zone 3 hepatocytes are more susceptible to alcohol-induced liver 

injury and thus upon release more AST into circulation. Additionally, patients typically 

present with decreased albumin production, severe jaundice, hypertriglyceridemia, 

hyperuremia, hypokalemia, leukocytosis, and thrombocytopenia. In this context the 

elevation of serum creatinine is indicative of acute renal failure, also known as hepato-

renal syndrome, and is a poor prognostic indicator. Prediction of disease severity and 

mortality can be calculated using one of many methods, including Maddery’s 

Discriminant Function (DF), MELD, or Glasgow scores.10-12 Typically, patients who 

present with symptomatic disease are at an advanced stage with evidence of cirrhosis and 

those with severe alcoholic hepatitis (DF>32, MELD>18) have a 40-50% 6-month 

mortality. 10-12 At this stage of disease, even with abstinence from alcohol, 73% will 

progress to cirrhosis or have persistent alcoholic hepatitis. 13 

Fibrosis 

Fibrosis is the increased deposition of collagen within the liver parenchyma. 

Characteristically, alcoholic fibrosis beings with perivenular fibrosis and extends in a 

pericellular distribution, commonly referred to as “chicken-wire” fibrosis.6-8 These 

findings, superimposed with those of alcoholic hepatitis confers a 40% risk of cirrhosis 

within 5 years.10,14,15 The resulting cirrhosis significantly increases the risk of 

hepatocellular carcinoma (HCC). Worldwide, primary liver cancers are the 3rd leading 

cause of cancer mortality, 80% of which are due to HCC.14-16 While there are many risk 

factors for cirrhosis and HCC development, alcohol consumption of 80 g/day constitutes 
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a five-fold increase in risk, while concurrent HCV infection increases that risk 100-

fold.17,18 14,15   
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Overview of molecular mechanisms in ALD pathophysiology 

The broad characterizations of ALD represents varying degrees of hepatic 

parenchymal and non-parenchymal dysfunction. These changes are driven by direct and 

indirect effects of alcohol on the metabolic and inflammatory processes within the liver. 

Steatosis, which is marked by increased hepatic lipid accumulation within hepatocytes 

was originally attributed to redox shifts within hepatocytes due to alcohol metabolism 

and mobilization of peripheral adipose stores to the liver. However, an abundance of 

literature has demonstrated that alterations within hepatocytes that promote cell death, 

lipogenesis, decreased triglyceride (TG) export, and decreased fatty acid oxidation (FAO) 

are not only directly due to alcohol, but are also extensively influenced by innate immune 

signaling pathways. This portion of the introductory chapter will serve to briefly 

summarize the essential pathways in ALD.  

Oxidative Stress 

A well-established mechanism for hepatic injury due to alcohol is that of 

increased oxidative stress from a variety of sources. Hepatocytes, are extremely 

metabolically active and must constantly buffer against reactive oxygen species (ROS) 

production.19 Their buffering capacity stems from a combination of enzymatic species 

such as superoxide dismutase and catalase, to non-enzymatic species such as glutathione 

(GSH), and vitamins A, C and E.20-24 However, chronic alcohol consumption, severe 

malnutrition and vitamin deficiencies significantly deplete the ROS buffer capacity of the 

liver. Furthermore, the metabolism of alcohol produces acetaldehyde, hydrogen peroxide 

(H2O2), and superoxide anions (O2-) which result in lipid peroxidation of biological 
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membranes, protein adduct formation, and DNA mutations triggering cell death 

pathways. 20-23,25-27  Treatments with various antioxidants such as N-acetylcystine (NAC) 

and S-Adenosyl-L-methionine (SAM) have been shown to inhibit steatosis and liver 

injury. 28-32 

The pathogenic effect of chronic alcohol is due to the direct and indirect effects of 

ethanol itself and the intermediates from its metabolism. The oxidation of ethanol to 

acetaldehyde and then acetate is catalyzed by the enzymes alcohol dehydrogenase (ADH) 

and aldehyde dehydrogenase (ALDH), respectively. 33-36 Both enzymes utilize NAD+ as 

a cofactor, converting it to its reduced form, NADH. This nets a large increase in NADH 

levels in the liver, and a reduction of the NAD+/NADH ratio. The consequence of this is 

a dramatic shift in metabolic pathways including the inhibition of gluconeogenesis, the 

TCA cycle, and fatty acid oxidation as well as a shift to lipogenesis. 33-35 Two alternative 

pathways of ethanol metabolism are also present; the enzyme catalase, and the 

microsomal ethanol oxidation system enzyme, cytochrome P450-2E1 (CYP2E1). 37-39 

Catalase, has been shown to have negligible expression in the liver and does not 

significantly contribute to alcohol metabolism, but does serve as an ROS buffer by 

degrading H2O2. CYP2E1 on the other hand accounts for 10% of ethanol metabolism in 

the normal liver. This high kd enzyme is only utilized upon ADH saturation and unlike 

ADH, is inducible by its many substrates. In chronic alcoholics, ADH is quickly saturated 

forcing CYP2E1 to be used. 37-39 This increases its accumulation in the perivenous zone 

(zone 3) of the hepatic lobule. However, CYP2E1, unlike ADH, uses NADPH and 

molecular oxygen during the oxidation of ethanol, dramatically increasing the oxygen 
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demand of perivenular hepatocytes. 40 The simultaneous inhibition of TCA cycle leaves 

only the mitochondria respiratory chain available to regenerate NAD+ from NADH, 

further increasing oxygen demand. Taken together, it is widely accepted these processes 

result in increased oxygen consumption creating a hypoxic microenvironment in the liver 

prone to ROS-induced injury, particularly in zone 3.40 

 Lipid Accumulation 

As mentioned above, the metabolism of alcohol decreases the NAD+/NADH 

ratio, causing shifting hepatic metabolic end-points towards de novo triglyceride 

synthesis rather than β-oxidation. Additionally, it has been found that alcohol promotes 

steatosis via dysregulation of a number of nuclear factors that control lipid metabolism 

including; sterol regulatory element binding protein-1c (SREBP1c), liver retinoid acid X 

receptors (LXR and RXR), and peroxisome proliferator-activated receptors (PPARs). 41-44 

PPARs are considered to be master regulators of metabolic function. Generally, 

they are directly regulated by many lipid-derived products such as prostaglandins, free 

fatty acids (FFAs), and as described later, pharmacological agents. Upon activation by its 

ligand, PPARs form heterodimers with RXR which then, in-turn bind its genomic 

peroxisome-proliferator responsive elements (PPREs). Within the umbrella of the PPAR 

family, there are three distinct isoforms, PPARα, PPARβ/δ, and PPARγ which have 

varied expression patterns with overlapping. Globally, the role PPARs/RXR are central to 

regulation of hepatic β-oxidation and de novo lipogenesis, primarily through 

SREBP1c.41,45  
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While less studied in alcoholic liver disease, studies into the function of PPARs, 

and specifically, the roles of PPARα and PPARγ, have primarily been performed in 

models of non-alcoholic fatty liver disease (NAFLD). 46,47 In models of NAFLD, it has 

been shown that while PPARα expression decreases significantly, and this is associated 

with a corresponding increase in PPARγ. 46,48  

In models of chronic alcohol, the reduction of PPARα expression and 

transcriptional activity in the liver has been well characterized, particularly due to its high 

level of hepatic expression when compared to other tissues. 41,45 PPARα functions to 

stimulate mitochondrial β-oxidation of fatty acids (FA) via carnitine palmityl transferase-

1 (CPT-1) which is responsible for FA transport into the mitochondrial inner membrane. 

49,50 This inhibition of PPARα results in decreased CPT-1 expression, decreased β-

oxidation and the accumulation of toxic FFA within the liver.51,52 Importantly, both RXR-

null and PPARα-null mice, had worsened liver injury due to chronic alcohol. 

Pharmacologically, PPARα agonists are within a class of amphipathic carbocyclic acids 

or fibrate drugs (fenofibrate). Initial indications included hypercholesterolemia, however, 

they are also being used for treatment of hypertriglyceridemia as well by stimulation of β-

oxidation and inhibition of de novo lipogenesis. 46 Given the reduction in activity noted 

in ALD, studies have shown that PPARα agonists may be able to reverse liver injury due 

to chronic alcohol. 45,53 

As mentioned above, regulation of SREBP-1c is central to hepatic cholesterol and 

lipid homeostasis in NAFLD and ALD. While many factors have been shown to regulate 

SREBP-1c expression, few more so than PPAR-γ/RXR. PPAR-γ, is expressed at 
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significantly lower levels in the liver when compared to PPAR-α and in adipose tissue. 54-

56 In models of NAFLD, it has been found that PPAR-γ directly activates SREBP-1c via 

binding to a PPRE within the SREBP-1c promoter, stimulating its expression. The 

increase in SREBP-1c drives de novo lipogenesis. Importantly rosigilitazone, a PPAR-γ 

specific agonist, enhances glucose uptake in response to insulin while also increasing 

SREBP-1c-mediated lipogenesis, enhancing hepatic steatosis. 48 

Finally, insulin resistance is a significant factor in ALD progression. Alcohol 

consumption associated with metabolic syndrome has been shown to accelerate disease 

progression and mortality. 57-59 Insulin resistance in animal models of chronic alcohol is 

well documented and results in increased macrophage infiltration within adipose 

tissue.57,59 The subsequent release of pro-inflammatory cytokines leads to a reduction in 

adiponectin, AMPK, and PPARα, promoting FA synthesis.  

Hypoxia & Hypoxia inducible factors. 

As mentioned above, alcohol metabolism significantly increases oxygen demand 

within the liver, effecting zone 3 hepatocytes more than others in zone 3. Interestingly, 

the arteriovenous oxygen gradient within the liver is very different when compared to 

other capillary systems. Typically, oxygenated blood contains a partial pressure 74-104 

mm Hg on the arterial side, and 34-46 mm Hg on the venous. In the liver this gradient is 

strikingly different. Zone 1, where oxygenated blood enters via the hepatic artery and is 

mixed with portal blood, the partial pressure of oxygen is 60-65 while the venous side, 

(perivenular, zone 3) is 34-46 mm Hg. 60-63 As a reflection the difference in oxygen 

tension, there appears to be a difference in the metabolomics in hepatocytes depending 
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where they are along this gradient. Those in zone 1 hepatocytes typically express higher 

levels of enzymes relating to urea formation, glutathione conjugation, and glucose 

production enzymes. 60. 

Conversely, the zone 3 perivenous zone contains hepatocytes more suited to 

glucose uptake, glycolysis, and xenobiotic metabolism. 60-62,64 Beyond differences in 

metabolic function, the differences in relative anoxia in these zones, mediates their 

susceptibility to hypoxic stressors. Hepatocytes incubated at periportal oxygen tensions 

were more resilient to cell death when compared to those cultured in perivenous oxygen 

environments. 65 Taken together, perivenular hepatocytes live at a threshold oxygen 

tension where they are susceptible to hypoxic or oxidative injury such as alcohol. 

Indeed, as one would expect, given the inherent oxygen gradient in the liver, 

perivenular hepatocytes demonstrate substantially higher mRNA and protein expression 

of aptly named hypoxia-inducible factors (HIF) when compared to negligible expression 

in zones 1 and 2.  

As a family, these transcriptional regulators function as heterodimers, containing 

an alpha and a beta subunit which bind to hypoxia-responsive elements (HREs) found 

within the promoter regions of the genes they regulate. Within the family of HIF proteins, 

there are 3 alpha subunits; HIF-1α, and HIF-2α, and HIF-3α which are well conserved 

among multiple species. Additionally, there is a single beta subunit, HIF-1β also referred 

to as aryl-hydrocarbon-nuclear receptor (ARNT). 60 Since there is only one common 

subunit, the active heterodimer is commonly referred to by their alpha submit, (e.g. the 

HIF-1α/ARNT heterodimer is called HIF-1α), (Figure 1.2) . 60 
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Under normoxic conditions, the alpha subunits of HIF are subjected to rapid 

hydroxylation by prolyl hydroxylates (PHDs) accompanied by a complex of scaffolding 

proteins, critically containing the Von Hippel-Lindau (VHL) protein. The binding of this 

complex leads to ubiquitinization and subsequent proteasomal degradation. 66 In 

conditions of hypoxia or redox imbalances, the HIF proteins are able to escape 

hydroxylation, translocate to the nucleus to heterodimerize with ARNT, exerting their 

transcriptional activity. 67 It is key to mention, that while most hypoxic models have 

demonstrated that HIF-1α mRNA either does not, or only slightly changes, and that 

regulation of its activity is only post-translational, it has been found that this can vary by 

cell type, frequency, and duration of the insult. 68,69 

The association between hypoxia inducible factors and lipid accumulation has 

been described in a variety of tissues. Of note, overexpression of HIF-1α in 

cardiomyocytes increased lipid accumulation and was noted to suppress PPARα, while 

enhancing PPARγ. 70 While a direct link has not been established for PPARα, Krishnan et 

al determine that the PPARγ promoter contains a conserved HRE ~1Kb upstream of the 

TSS.71 Furthermore, using mice homozygous for a mutated degradation resistant form of 

HIF1-α (HIF1dPA) mice they noted enhanced PPARγ expression and FA uptake.  
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Figure	1.2:	General	schematic	of	HIF-1α	signaling	

Under conditions of normal oxygen tension and balanced redox status, HIF-1α subunits 

are rapidly hydroxylated at proline and asparagine residues. Hydroxylation facilitates 

complexation with the Von Hippel-Lindau (VHL) tumor suppressor, resulting in 

polyubiquitination at the hydroxylated sites followed by rapid degradation by the 

proteasome. However, conditions which result in overt hypoxia, shifts in cellular redox 

states, and exposure to toxic stimuli such as alcohol, the alpha subunits escape 

hydroxylation and degradation. As these proteins accumulate, they dimerize with the 

Aryl Hydrocarbon Nuclear Translocator (ARNT also known as the β subunit). The 

now active heterodimer, translocates to the nucleus activating target genes which 

contain hypoxia responsive elements in their upstream promoter region. In chronic 

alcohol, our lab has demonstrated that not only is there an accumulation of HIF-1α 

protein, but alcohol also increases in HIF-1α mRNA. Furthermore, this increase in 

HIF-1α drives steatotic changes within hepatocytes.  
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In the liver, deletion of VHL, which leads to accumulation of all HIF subunits in 

hepatocytes is associated with significant steatosis. 72,73 Mice homozygous for the HIF-

dPA gene in hepatocyte develop hepatic steatosis as well, albeit to a lesser degree than 

VHL-knockouts, or degradation resistant HIF-2α (HIF2dPA) mice which exhibited a 

steatotic phenotype similar to that of VHL knockout mice.74 Subsequent studies using 

simultaneous knockouts of VHL and HIF-1α or VHL and HIF-2α, demonstrated that 

HIF-2α may be stronger driver of lipid accumulation. 73 

In alcoholic liver disease, there have been two studies into the role of HIF-1α in 

alcoholic liver disease with conflicting results. Our lab has previously reported that 

alcohol increases HIF-1α expression in hepatocytes and hepatocyte-specific HIF-1α 

knockout mice (HIF1hepKO) were protected from chronic alcohol. Furthermore, 

HIF1dPA mice had evidence of steatosis in the control group that was augmented 

alcohol-induced liver injury. Collectively, the loss or increase in HIF-1α was inversely 

correlated with Pparα expression. 75 However, contrary to these findings and the role of 

HIF-1α regulation of PPARγ described above, Nishyama et al. in 2012 reported that HIF-

1α played a protective role and could suppress steatosis by enhancing β-oxidation in 

chronic alcohol by inhibiting SREBP-1c via its inhibitor, differential embryochondrocyte 

1 (DEC1). 76 While the activation of DEC1 by HIF-1α has been shown, these findings are 

contradictory to other studies demonstrating that HIF-1α directly increases PPARγ 

expression, a direct transcriptional activator of SREBP-1c, and a very well characterized 

enhancer of FA synthesis. 54,71,77 This discrepancy of HIF-1α has not been fully resolved. 

Inflammation 
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 Innate immune signaling due to activation of resident liver macrophages 

(kupffer cells, KCs) and infiltrating lymphocytes is critical to ALD pathogenesis. It is 

widely accepted that chronic alcohol exposure impairs the barrier function of the gut 

resulting in translocation of bacteria, and bacterial components into portal circulation and 

thus into the liver.78,79 In both humans and mice, chronic alcohol exposure is associated 

with increased circulating concentrations of lipopolysaccharide (LPS) which also 

correlates with the severity of liver injury.79-82 While the interaction between LPS and 

toll-like-receptor 4 (TLR4) is the most studied in ALD, other bacterial components, 

collectively referred to as pathogen-associated molecular patters (PAMPs), are also 

elevated in portal circulation. 83,84 In the liver, LPS binds to pattern-recognition receptors 

(PRRs), specifically TLR4 on parenchymal and non-parenchymal cells of the liver. 

However, it is key to mention that once sensitized by alcohol, hepatocytes and immune 

cells within the liver readily respond via other innate immune receptors such as NODs 

1/2, and TLRs 2/4 as well. TLR2 has been shown to recognize prokaryotic unmethylated 

CpG DNA (CpG DNA) while TLRs 2 and 6 recognize bacterial lipopeptides.83,84 

Additionally, while I am describing the effects of alcohol on TLR and innate immune 

signaling pathways within immune cells, hepatocytes, and hepatic stellate cells have both 

been shown to express PRRs and respond to PAMPs as well. 85 In fact, hepatocytes 

specifically, in response to LPS, significantly up regulate a key cytokine in ALD 

pathogenesis, monocyte chemoattractant protein 1 (MCP1 or CCL2). 86-88 Additionally, it 

has been shown that hepatocytes exposed to alcohol and infected with HCV, have 
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unregulated expression, and constitutive activation, of TLR4 driving neoplastic 

changes.89  

In kupffer cells, LPS, via TLR4, signal through MyD88 dependent and 

independent pathways to result in activation of MAP-kinases ERK1, ERK2, and JNK, as 

well as NFkB and AP-1. The activated KCs release pro-inflammatory cytokines TNF-α, 

IL-1Β, and IL-6. KCs also contribute to the redox imbalance in the liver by producing 

ROS, via NAPDH oxidase.88,90-94 

Hepatocytes are traditionally resistant to the to the pro-apoptotic effect of TNF-α. 

However, chronic alcohol exerts a priming effect on hepatocytes for TNF-α-mediated cell 

death pathways.95-99 As mentioned before, depletion of mitochondrial GSH and SAM 

reduce mitochondrial integrity favoring mitochondrial transition pore formation. 97-102 

Furthermore, it has been noted in mouse models and patients that chronic alcohol 

consumption increases TNF-α-receptor (TNFR). 95 A result of the increase in cell death is 

the release of sterile stimuli (immune ligands not derived from microbial pathogens), 

from damaged parenchymal and nonparenchymal cells. Collectively these are known as 

damage-associated molecular patterns (DAMPs). 103-105 Multiple DAMPs, in coordination 

with alcohol and PAMPs, have been implicated in the pathogenesis of ALD, leading to 

the assembly of the inflammasome and activation of the serine protease, caspase-1, 

leading to the cleavage of pro-IL-1Β to cleaved (active) IL-1Β. 84,103,104,106,107 

Peripheral leukocytes contribute to hepatic inflammation as well. As stated 

earlier, the histological characterization of steatohepatitis is the infiltration of 

lymphocytes, particularly neutrophils, into the liver parenchyma. 7 Attracted by PAMPs 
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and cytokines, infiltrating neutrophils also respond strongly to PAMPs and DAMPs, 

enhancing liver injury. However, it is key to mention that the infiltration of leukocytes is 

beyond that of just phagocytic cells. A combination of cytotoxic T-cells, natural killer T-

cells and circulating monocytes enter the liver to contribute to the pro-inflammatory state 

within the liver. 88 

  



37 

 

microRNA Biogenesis and Mechanism of Action 

Background and Overview 

Since their discovery of microRNAs (miRNAs) in 1993, over 500 have been 

discovered in the human genome.108 These small molecules are 21-24 nucleotide (nt) 

RNA molecules that generally repress the expression of genes via Watson-Crick base-

pairing to complementary sequences within target mRNAs.109-111 With each of these 

small molecules able to simultaneously inhibit hundreds of genes, and in many cases, 

through imperfect complementarity, studies have implicated them in the regulation of 

virtually every cellular pathway.111-114 The expression patterns within different cells types 

are are equally as diverse. In many cases, individual miRNAs are “specific” or enriched 

within in a particular cell type or stage of development.   

Their involvement in diseases has been well documented. Let-7, one of the first 

miRNAs described, functions as a tumor-suppressor where its loss promotes cancer cell 

growth. 115-117 miRNAs have also been associated with mediating inflammatory responses 

from cytokine production to cellular differentiation; miR-155 induction can both directly 

stabilize TNF-α mRNA as well as promote inflammatory responses by targeting 

suppressor of cytokine signaling 1 (SOCS1), and M1/M2 macrophage polarization is 

regulated by miR-27a. 118-121 In contrast to alterations in expression, microRNA-122 

(miR-122), a highly abundant, liver-expressed miRNA is utilized by HCV as a host factor 

to promote viral replication. miR-122 binds to two closely spaced target sites in the 5′ 

noncoding region (NCR) of the HCV genome, stabilizing viral RNA.122-124  
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The maturation of miRNAs is a complex process involving 5 major steps that are 

tightly regulated; transcription of miRNA primary transcript (pri-miRNA), the cleavage 

of the pri-miRNA into a pre-miRNA, export of the pre-miRNA from the nucleus to the 

cytoplasm, cleavage of the pre-miRNA to form a mature miRNA duplex, and finally its 

loading into the active RNA silencing complex. Given the complexity and multiple steps 

involved, any changes due to stressors or mutations can alter the functions or abundance 

of specific miRNAs leading to human disease (Figure 1.3). 

Genomic loci  

MiRNAs in animals are found in diverse genomic locations. Seventy percent of 

all miRNAs are derived from intronic regions, typically within a protein-coding gene, but 

they may also be found in exonic regions. 125 The remaining 30% are transcribed as 

independent ncRNA transcripts by RNA polymerase II (RNA pol II).125,126 These 

independently transcribed miRNAs can either code for individual miRNAs or clusters 

which contain anywhere from 2-7 miRNA genes. 112,127 These clusters may, but not 

always, contain multiple miRNAs that have highly similar seed sequences, (nucleotides 

2-7), the primary determinant of target recognition. 114 For the purposes of this review, I 

will primarily focus on the mechanism and regulation of independently transcribed 

miRNAs derived from ncRNA transcripts. 

Transcription of pri-miRNA and pre-miRNA processing 

Most miRNAs are transcribed in an RNA pol II dependent fashion resulting in a 

primary transcript (pri-miRNA), which can vary in length from a few hundred  
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Figure 1.3: General Schematic of miRNA biogenesis 

Most miRNAs are transcribed in an RNA pol II dependent fashion resulting in a primary 

transcript (pri-miRNA). The pri-miRNA transcript is very short lived, and is quickly 

processed into the pre-miRNA stem-loop which can even occur co-transcriptionally. This 

process is mediated by the microprocessor complex consisting of the RNase III enzyme 

DROSHA and the dsRNA binding protein, DGRC8. Once formed the pre-miRNA is 

transferred to the cytoplasm by exportin 5 (XPO5) hydrolyzing GTP to GDP in the 

process. This is considered to be a rate-limiting step in miRNA biogenesis, and if 

saturated, may be toxic to the cell. Once in the cytoplasm, the pre-miRNA is further 

cleaved by an enzyme complex containing the RNase II enzyme DICER and its binding 

partner PASHA. Subsequent to Dicer formation of the mature miRNA duplex, one of the 

strands (more thermodynamically stable) is loaded onto an Argonaute protein thus 

forming the miRNA-induced silencing complex (RISC or miRISC). The anti-sense, 

“passenger” or star (*) strand is quickly degraded. Guided by their seed region 

(nucleotides 2-8) of the miRNA, the RISC complex binds to target mRNAs leading to 

direct AGO2-mediated slicing or deadenylation/translational repression.  
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nucleotides to many thousands, with a 5’ methylated cap and a 3’ poly-A tail (Figure 

1.3). 

The result is a double-stranded short hairpin RNA (shRNA).128-130 Multiple 

studies have shown that the pri-miRNA transcript is very short lived, and that processing 

into the pre-miRNA stem-loop can even occur co-transcriptionally. 131-133 These 

transcripts contain promoter and enhancer elements similar to other RNA pol II regulated 

genes. 110,111,134,135 Taken together, these studies indicate that pri-miRNA formation is 

solely controlled by RNA pol II processivity and the transcriptional regulatory 

environment in a particular cell.   

Pre-miRNAs are ~66nt hairpins that have been liberated from their respective pri-

miRNAs, in many cases co-transcriptionally, by a microprocessor complex which 

minimally contains an RNase III enzyme, Drosha, and DGCR8 (DiGeorge syndrome 

critical region gene 8). 131-133,136-139 Dosha itself contains two RNase III domains and a 

double-stranded RNA binding domain (dsRBD).140,141 DGRC8 also has two additional 

sdRBDs which are also essential for binding to the pri-miRNA substrate.138,140 The result 

of the microprocessor complex cleavage of the pri-miRNA is a ~66nt stem-loop that 

contains a two-nucleotide overhang at the 3’ end characteristic of RNase III enzymes.  

Processing by the Microprocessor complex, Drosha/DGCR8, is subjected to 

complex regulation by positive and negative factors. Briefly, two additional proteins, p68 

and p72 have been co-precipitated with Drosha and are essential for processing of 

specific miRNAs.142 It has been shown that p68/p72 may act as a bridge for other 

regulatory factors such as p53 and SMAD to fine-tune the maturation of specific 
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miRNAs.143-145 P53 is a transcription factor and tumor suppressor often activated during 

stress responses. Its function is to inhibit cell cycle progression while promoting 

apoptotic pathways. 143 p53 has been shown to stimulate transcription of certain miRNAs 

(pri-miRNA formation) in the miR-34 family, as well as directly stimulate 

microprocessor activity for other miRNAs via p68/p72. 146-148 SMAD proteins, 

downstream of TGF-β  signaling, can regulate miRNAs in two distinct ways.145,149 First, 

SMAD proteins have been shown to bind promoter elements at SMAD-binding elements 

(SBEs) activating or repressing transcription. Additionally, SMAD has been shown to 

bind similar SBEs found in the stem region of pri-miRNAs (r-SBEs). The binding of 

SMAD, recruits and stabilizes the interaction between p68, Drosha, and the pri-miRNA 

molecule, enhancing processing. 144,150  

Nuclear export 

To function and be processed as a mature miRNA, pre-miRNAs generated by 

DROSHA cleavage must be transported out of the nucleus to be processed by Dicer. As 

with most RNA nuclear transporters, the process uses the cofactor Ran-GTP.151 Once the 

RNA is transferred to the cytoplasm, GTP is hydrolyzed to GDP and the RNA is 

released. 151  Once such exporter, exportin 5 (XPO5), preferentially recognizes structures 

of pre-miRNA products.152-155 XPO5 specifically distinguishes the 2 nucleotide overhang 

found on the 3’ end after DROSA cleavage, a loop of at least 5 nucleotides, and base 

pairings within the stem region of at least 15 nucleotides.156-158 In addition to its function 

as an exporter, it has been shown that XPO5 is also able to stabilize pre-miRNAs from 

exonuclease digestion.158 Export of pre-miRNAs is a presumed to be the rate limiting step 
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in miRNA biogenesis and its expression is closely tied with that of Dicer. Saturation of 

XPO5 by expression of synthetic shRNAs has been shown to saturate the transporter 

resulting in significant toxicity and represents a barrier to therapies seeking to increase 

miRNAs.155,159 This finding is of particular importance when considering miRNA 

therapeutics that utilize endogenous maturation pathways. 

Dicer, Argonauts, & RISC 

Dicer, another Rnase III enzyme is the final step in the formation of miRNA 

maturation. 160-162 Similar to DROSHA, Dicer also contains two RNase III domains, a 

dsRNA binding domain, however Dicer also contains a PAZ and a helicase domain. 163 

The PAZ domain recognizes the 2-nt overhang left by DROSHA. Once recognized and 

loaded, Dicer simultaneously removes the both ends of the pre-miRNA loop structure, 

gauging this site by measuring 21-24-nucleotides from the 5’mono-phosphorylated end. 

164  

Dicer function can be regulated in many ways. Global miRNA maturation can be 

effected by endogenous targeting of Dicer mRNA by miRNAs themselves. 161,165 In 

humans, let-7 has been shown to have three binding sites within the Dicer coding 

sequence and facilitate its degradation. 166 While Dicer is capable of cleaving pre-miRNA 

substrates without the use of cofactors, HIV-1 TAR RNA binding protein has been shown 

to enhance the reaction rate in mammalian cells though stabilization of Dicer. 167 Other 

proteins such as monocyte chemoattractant protein 1-induced protein 1 (MCP1P1), was 

shown to suppress miRNA maturation by degradation of pre-miRNA molecules.168 

MCP1P1 is induced during inflammatory responses and facilitates cleavage of pre-
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miRNAs within the loop region blocking Dicier activity and inducing rapid degradation 

of the cleaved fragments.168  

Subsequent to Dicer formation of the mature miRNA duplex, one of the strands is 

loaded onto an Argonaute protein thus forming the miRNA-induced silencing complex 

(RISC).169 There are two sub-categories of Argonaute proteins, Ago and Piwi, that are 

defined by the presence of PAZ (Piwi-Argonaute-Zwille) and PIWI domains.170,171 Of the 

eight total Argonaute proteins encoded within the human genome, Argonautes 1-4 are 

within the Ago-sub-category. All four Ago proteins are able to bind a mature miRNA to 

form a RISC complex, however, only Ago2 is capable of catalytically cleaving target 

mRNAs. 170,171  

Often, Dicer cleavage will result in the release of a mature miRNA duplex. The 

strand that is loaded into miRISC is referred to as the “guide” strand while the other the 

“passenger” or star (*) strand.172 Initially, it was thought that these unloaded star strands 

were rapidly degraded, however, they too can be loaded into Argonautes and facilitate 

direct targeting and inhibition of complementary mRNAs.172,173   

Traditionally, the miRNA-Ago complex binds to the 3’ untranslated region (UTR) 

of an mRNA silences its expression. Once bound to the target mRNA, Ago2 “slices” the 

loaded mRNA after the nucleotide paired to the 10th base of the small RNA guide. While 

efficient miRNA-mediated slicing requires complementarity between guide strand and 

the mRNA, in actuality, most miRNAs only partially base pair with their target mRNA. 

Specifically, nucleotides 2-8 of the miRNA (seed sequence) are required for miRISC 

assembly and slicing. In other cases, if sufficient complementarity is lacking throughout 
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the length of the miRNA rather than direct slicing, Ago interacts with cofactors that 

deadenylate and degrade the mRNA (Figure 1.3).174 Additionally, miRNAs may also bind 

to the mRNA and block its translation into a protein, leaving the mRNA 

intact.113,170,171,175,176 

A less well understood stage in the life cycle of miRNAs is the stability of its 

mature form. The half-life of a mature miRNAs is directly related to the number of 

available targets.  When loaded in the miRISC and bound to a target mRNA, mature 

miRNAs are protected from degradation. 177 However, contrary to this, perfect base 

pairing can also lead to increased rates of miRNA decay. Upon binding with perfect 

complementarity, Ago not only slices the target mRNA but the guide strand as well. In 

addition, the 3’ end of mature miRNAs can be modified with the addition of either 

adenosines or uridines. One such instance is that of mcroRNA-122 (miR-122) and the 

cytoplasmic poly(A) polymerase GLD-2, which adds a single adenosine to the 3’ end of 

22-nt mature miR-122 resulting in a 23-nt product. The addition of this single nuclease to 

miR-122 prevents exonuclease degradation.178  
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microRNA-122: Biogenesis & Function 

Background and Overview 

In a study from 2002, Tuschl et al systematically cloned small RNAs from adult 

murine tissues. They found a number of miRNAs that exhibited high expression levels in 

certain tissues but negligible expression in others, none more so that miR-122.112 When 

aligned to known sequence databases, miR-122 was linked to a woodchuck genomic 

sequence designated hcr (gi:51212) discovered in 1989 by Moroy et al.179 In their study 

of HBV-induced liver tumors they found that most exhibited mutations or altered 

expression of known oncogenes, however, one tumor, W64, exhibited a unique 

chromosomal translocation.179 They identified that the 5’-end of an unknown gene 

recombined with c-myc, increasing its expression 50-fold.180,181The translocated segment 

aligned to a 4.5kb unspliced, polyadenylated non-coding RNA normally present in the 

woodchuck liver. They determined that this transcript had a small 37aa ORF at the 5’-end 

followed by a large 3’UTR which contained a 200-nt region upstream of the pol(A) site 

that was subjected to extensive endoclueolytic cleavage, with most of the transcript 

remaining within the nucleus. 181 As it was later determined, the small 200-nt region 

within the 3’UTR was the miR-122 hairpin.112,182  

microRNA-122 (miR-122) was one of the first microRNAs to be identified as a 

“tissue specific”, constituting 70% of all hepatic microRNAs.182 In mice, miR-122 

reaches maximum expression on embryonic day 17 (E17), at 50,000 copies per mature 

hepatocyte. Surprisingly, primary human hepatocytes were found to have 130,000 copies 

per cell while even a well differentiated (Huh-7) human hepatocellular carcinoma cell 
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line has 16,000 copies per cell. Taken together, this suggested that high miR-122 

expression is a feature of a differentiated hepatocyte.182  

miR-122 Biogenesis 

The miR-122 ncRNA gene is located on chromosome 18 in both mice and 

humans. Its transcription follows canonical miRNA RNA pol II-driven miRNA 

biogenesis pathways outlined above. The resulting ncRNA is ~4.5kb in size which is then 

processed into a 66nt pre-miR-122. While the full pri-miR-122 sequence is poorly 

conserved, the precursor hairpin and mature miR-122 has been found to be conserved in 

18 vertebrate species, including zebrafish. No known orthologs have been discovered in 

species that do not have livers (i.e. drosophila or C. elegans). 182,183  

As noted above, the expression of miR-122 sharply increases during embryonic 

liver maturation in both mice and humans, which suggested an essential role of miR-122 

in hepatic development. Xu et al. were the first to characterize a conserved binding site 

for the liver enriched transcription factors (LETFs), hepatocyte nuclear factors (HNF) 

HNF1α, HNF3β, HNF4α, and CCAAT/enhancer-binding protein (C/EBP)α within the 

promoter region and demonstrate its ability to enhance miR-122 transcription.184 They 

determined miR-122 directly targets CUTL-1, a transcription factor which inhibits 

terminal differentiation of hepatocytes.184 Subsequent work by Laudadio et al identified a 

unique role for yet another LETF member, HNF6α, in miR-122 regulation.185 This 

complex circuit, including HNF1α, HNF3β, HNF4α, HNF6α and C/EBPβ, collectively 

function as master regulators of hepatic transcriptional activity.135,186-189 Dysregulation of 

this circuit was demonstrated in HNF6α-knockout mice, which showed alterations in 
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hepatobilliary development, as well as significant decreases in miR-122 and many LETF 

components.185 

Further evidence to support this link was elucidated in the study of HCC tumors, 

which demonstrated a significant loss of multiple components of the LETF network with 

a concurrent reduction of miR-122.184 Collectively, this complex circuit functions as a 

master regulator of hepatic transcriptional activity.  

Interestingly, it was also found by that miR-122 transcription may be intricately 

involved with circadian rhythms. Gatfield et al determined that miR-122 transcription 

was regulated in a circadian manner by REV-ERBα. 190 Using REV-ERBα knockout 

mice, they demonstrated that miR-122 transcription was inhibited by REV-ERBα. While 

WT mice exhibited circadian fluctuations in pri- and pre-miR-122 levels, they found no 

change in mature miR-122. 190 This surprising finding could be due to its stability and 

long half-life maintained by the cytoplasmic poly(A) polymerase, GLD-2, which though 

the addition of an adenine to the 3’ end, increase the half-life of miR-122.191 They also 

found that miR-122 can regulate Nocturnin, a clock-regulated deadenylase which post-

transcriptionally regulates mRNAs through poly(A) tail removal, and Smarcd1 a Ppar-

beta/gamma co-activator – both essential genes involved in regulation of hepatic lipid 

metabolism.190,192 However, given that the mature levels of miR-122 are unchanged 

throughout the day, it is unclear how miR-122 may regulate these genes in the normal 

liver. It has been suggested that modifications to the miR-122 structure such as those by 

GLD-2 described above may be the functional species that regulates these targets.192 

miR-122 in the serum 
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The pursuance for non-invasive biomarkers, particularly for the liver, has been an 

active field of work. miRNAs have demonstrated the presence of miRNAs in the 

circulation, urine, saliva, and various other body fluids. 193-198 Increased miR-122 in the 

serum has been found in HCC, acetaminophen overdose, NASH, ALD, as well as HCV 

and HBV infection. 193,195,196,199-208 In many of these studies, miR-122 has been shown to 

be a more sensitive and specific marker than traditional liver enzymes tests. These 

circulating miRNAs are either found in association with RISC proteins such as GW182 

and Ago2, or within exosomes or microvessicles. 209-213  Of particular interest has been 

the presence of miR-122 in exosomes. These small 50-100 nm particles are released from 

every cell type in the body and more so during times of cellular stress. 214,215 They have 

the ability to transfer functional miRNA, mRNA and protein laden cargo to target cells 

providing novel pathway for inter-cell communication. It has been shown that in response 

to APAP and LPS that exosomes from hepatocytes can transfer miR-122 to macrophages. 

215 Furthermore, exosomes from chronically infected HCV patients can transfer 

replication-competent viral RNA, transmitting infection without a viral capsid. 199 The 

functions of miR-122 in the liver are schematically represented in Figure 1.4.  

Given its abundance and specificity in the liver, it is unsurprising that miR-122 

has diverse and pleiotropic effects on hepatic and even total body homeostasis. The first 

target of miR-122 identified was cationic amino acid transporter-1 (CAT-1). Chang et al  
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Figure	1.4:			Schematic	representation	of	key	regulatory	functions	of	miR-122	in	

hepatic	and	total	body	physiology	and	disease.	

Green arrows indicate activation or positive regulation. Red blunted lines indicate 

inhibitory function. Adapted from Bandiera et al, 2014. 216 
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found that its expression was inversely correlated with increasing expression of miR-122 

during fetal liver development. Furthermore, in the adult mouse, CAT-1 is detectible in 

nearly every tissue, but showed no discernable expression in the liver. It is key to note 

that the regulation of CAT-1 by miR-122 is uniquely complex. Upon exposure to a 

stressor, such as serum starvation the repression of CAT-1 by miR-122 can be released 

by the protein HuR. HuR serves to bind to CAT-1’s 3’UTR, causing displacement from 

the miRISC and protecting it from degradation.  

As discussed above, during hepatic development miR-122, coordinating with the 

LETFs in hepatocyte differentiation via CUTL1. The ectopic expression of miR-122 in 

vitro in isolated human and murine embryonic fetal liver and adipose-derived stem cells 

leads to differentiation and a hepatocyte phenotype. These findings correlate well in 

patients with acute liver failure, where those who survive were found to have higher 

hepatic miR-122 than non-survivors. 217 Further studies will have to be done to determine 

whether the noted increased miR-122 in surviving patients is maintaining hepatic 

function or a marker of a differentiated hepatocyte.  

While being specific to the liver, miR-122 has profound effects on total body 

homeostasis. Systemic iron levels are regulated through the peptide hormone, hepcidin, 

which is produced in the liver. Castoldi et al demonstrate that knocking down miR-122 in 

the liver using a locked-nucleic acid (LNA), mice became iron deficient and and anemic. 

They found that miR-122 regulated two key transcription factors which regulate the 

transcription of hepcidin, hemochromatosis (HFE) and hemojuvelin (HJV).218  
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As discussed above, miR-122 has also been implicated in the regulation of the 

circadian control of metabolic genes in the liver through Noctrunin and Smarcd1. These 

studies however, were not the first to discover that found that knockdown of miR-122 

could result in dramatic shifts in lipid and cholesterol metabolism. In 2005, Krutzfedt et 

al utilized a cholesterol-conjugated 2’O-methyl phosphorothioate ASO to knockdown 

miR-122 in the liver. They observed a 40% decrease in serum cholesterol and a 

coordinated decrease in genes involved in cholesterol biosynthesis.219 Their findings 

initiated a succession of studies into the effect of miR-122 on hepatic and systemic lipid 

and cholesterol metabolism. Esau at al. published another study using 2’-O’methy-

oxyethylphophorothioate ASOs in mice fed a high-fat diet which revealed reduced serum 

cholesterol and hepatic triglycerides.220 Subsequent studies utilizing various techniques 

for miRNA inhibition such as AAV-delivered tough decoys (TuDs) and locked-nucleic 

acid (LNA) anti-miRs have confirmed these findings in rodents and non-human primates 

without any off-target or toxic effects.221-223 This overwhelming evidence supported the 

claim that anti-miR-122 therapy to reduce serum triglycerides and cholesterol may be a 

potent cardio-protective therapy in patients suffering from metabolic disease.  

miR-122 in HCV  

One of the most revelatory findings of miR-122 has been its rather complicated 

role in stimulating HCV infection. HCV is a hepatotropic, sense strand RNA virus which 

chronically infects nearly 180 million people world-wide. As mentioned previously, HCV 

is a major risk factor for cirrhosis and HCC both independently and with alcohol.17,224,225  
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Its approximately 10kb positive-sense RNA genome contains a single open 

reading frame with a flanking UTRs.226 In 2005, Jopling et al discovered two miR-122 

binding sites within the 3’- and 5’-UTRs. Their study demonstrated that miR-122 base-

paring within the 5’UTR was required for viral RNA accumulation, and further that anti-

miR sequestration of miR-122 led to a loss of HCV replicative ability.227 Two studies by 

Chang et al, and Narbus et al showed that expression of miR-122 could sustain active 

viral replication in HEK-293, and HepG2 cells, which have no detectible miR-122 and 

are typically not permissive to HCV infection. 182,228,229 Further studies revealed that there 

are actually two binding sites for miR-122 in the 5’-UTR.230 When bound, miR-122 

induces conformational changes to the HCV genome revealing an internal ribosome entry 

site, thereby increasing translation of the viral RNA. The stabilization of a target mRNA 

is uncharacteristic of miRNA-mRNA binding which typically leads to degradation of the 

target mRNA. It was shown that while Ago2 associates with the miR-122-HCV genome 

complex, the miRISC-complex actually protects the mRNA from exonuclease digestion. 

231 Our lab has also shown that this stabilized complex can be released into serum within 

exosomes which can then transfer infectious viral RNA to target cells independent of a 

viral capsid. 199 

It is also key to mention that there appears to be reciprocal regulation of miR-122 

by HCV. miR-122 transcription was shown to be inhibited by interferon-beta (IFN-β). 

IFN-β, as part of the interferon system, is an integral part of a host’s response against 

viral challenge suggesting that the inhibition of miR-122 by IFNs may be a defensive 
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response to HCV infection.232 While the significance of these findings remains elusive, 

they speak to the complexity of the relationship between miR-122 and HCV infection 

Together, these findings led Lanford et al to treat HCV infected chimpanzees with 

an 8-mer anti-miR-122 LNA against the miR-122 seed region led to a 300-fold reduction 

of miR-122 and a 2-log decrease in viral RNA in the serum and liver. 222 They also noted 

reduced liver injury by serum ALT and no observable viral resistance. 222 At present, the 

anti-miR-122 LNA, also known as miravirsen, is the first miRNA-targeted drug that has 

undergone successful phase 2a clinical trials to treat HCV infection. 233  

miR-122 in HBV 

While also a hepatotropic virus, contrary to that of HCV, it has been found that 

miR-122 can inhibit HBV infection. Worldwide, there are twice as many people 

chronically infected with HBV than HCV, (350 vs 180 million) and also carries an 

increased risk of cirrhosis and HCC. Chen et al, found that transfection of a miR-122 

mimic inhibits HBV expression while anti-miR-122 lead to increased HBV production in 

vitro. The result indicates that in contrast to HCV, miR-122 actually inhibits replication 

of the hepatotropic virus HBV, suggesting that therapies that increase miR-122 may be an 

effective strategy to limit HBV replication. 234 It was determined that miR-122 down-

regulates its target cyclin G1, thereby removing the interaction between Cyclin G1 and 

p53, and allowing p53 to bind to and inhibit the enhancer elements within the HBV 

genome. 235  

In patients they found that expression in the liver is significantly decreased in 

patients with HBV infection when compared to healthy, uninfected controls and the miR-
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122 levels were negatively correlated with viral loads.235 Finally, it was shown by Song et 

al that HBV protein X protein specifically complexes with PPAR-γ and that this dimer 

inhibits the miR-122 transcription.236 

miR-122 in NASH  

As mentioned previously, the transient knockdown of miR-122 in the liver using 

ASOs has been shown to reduce serum cholesterol, implicating miR-122 in the regulation 

of cholesterol and lipid metabolism. 221 However, a dichotomy in the data emerged. One 

previous study has shown that ASO knockdown in the livers of high-fat diet fed mice 

reversed hepatic steatosis. 237 It was found that miR-122 was reduced in murine models 

of non-alcoholic steatohepatitis (NASH). To better define the causal link between NASH 

and miR-122, two groups utilized germline and liver-specific knockouts of miR-122. 

238,239  

While these knockout mice studies recapitulated the reduction of serum 

triglycerides and cholesterol seen in ASO-knockdown of miR-122, both germline and 

liver-specific knockout mice developed spontaneous, progressive steatohepatitis. 238,239  

Hsu et al, utilizing hepatocyte-specific knockouts (122LKO) determined that this was due 

to an increase in a large swath of genes associated with triglyceride synthesis such as 

Agpat1, a direct miR-122 target, mogat1, agpat3, agpat9, Ppap2a, and Ppap2c. 

Furthermore, they found up-regulation of Cidec, another miR-122 target and a protein 

that inhibits lipolysis while also enhancing triglyceride accumulation. 238  

Also finding the same phenotype of spontaneous steatosis, Tsai et al explored the 

role of microsomal triglyceride transfer protein (MTTP) which was reduced in their 
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germline miR-122 knockout (122aKO) mice. MTTP typically enhances lipoprotein 

assembly for export. As confirmation, ectopic expression MTTP reversed the reduced 

serum triglycerides and cholesterol seen in the knockout mice as well as reversed the 

NASH phenotype. However, MTTP is not a direct target of miR-122 and the mechanism 

by which it is regulated has yet to be determined. 239 

Notably, knockout mice from both groups spontaneously developed steatosis, 

inflammation and eventually progressed to liver fibrosis and HCC. 238,239 They also 

showed significantly increased infiltration of F4/80+ macrophages and CD11bhiGr1+ 

populations of immune cells producing IL-6 and TNF-α which they suggested drove 

hepatic stellate cell (HSC) activation. In addition, they proposed that the increase in 

KLF6 in HSCs, secondary to an increase in TGF-β, a miR-122 target, may play a role in 

driving fibrosis. 238 However, Hsu and colleagues suggested that this was mediated by a 

chemokine, Ccl2 (MCP-1 or macrophage chemoattractant protein 1), which they found to 

be a weak, but direct target of miR-122. 239 Interestingly, upon restoration of Mttp in 

122KO mice, they observed not only a resolution steatosis but reduced inflammation and 

fibrosis as well. 239 Therefore, these studies imply that there may be minor effects on 

stellate cells and immune cells from the loss of miR-122 in hepatocytes, their activation 

is secondary to the hepatocyte steatosis and injury. 

miR-122 in HCC 

The first paper published on the discovery of miR-122 by Chang et al. in 2004, 

showed decreased miR-122 copies in cancer cell lines. 182 It was not until 2006 that a 

survey of primary rodent and human HCCs found a reduced level of miR-122 when 
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compared to matched normal tissue. 240 A wealth of studies that followed have confirmed 

the role miR-122 as a tumor suppressor, regulator of EMT, and angiogenesis. 122,216,241,242 

In vitro experiments have also showed that ectopic expression of miR-122 can also 

sensitize tumor cells to the multi-kinase inhibitor Sorafenib and the DNA intercalating 

agent Doxorubicin. 243,244  

 However, the most direct evidence resulted from the aforementioned 122aKO 

and 122LKO mice, which not only developed progressive spontaneous steatohepatitis, 

but metastatic HCC after a year of life. Furthermore, using a potent hepatic carcinogen, 

diethylnitrosamine (DEN), 122LKO mice were found to be predisposed to pre-neoplastic 

hepatobiliary cysts as early as 8 weeks after exposure. 245 Using an AAV8-miR-122,  Hsu 

et al were able to reduce, but not negate, tumor burden in 122LKO mice. Subsequent 

human studies have shown that that reduced levels of miR-122 is correlated increased 

HCC metastasis and poorer prognosis. 16,246,247 

Mutations associated with miR-122 

There have been no known single nucleotide polymorphisms (SNPs) detected 

with the mature miR-122 sequence. However, two SNPs, rs4309483 and rs4503880, were 

detected in the 5’ regulatory region of human Mir-122 gene in patients of Han Chinese 

decent. The former SNP has been suggested to increase the risk of HCC in HBV infected 

patients. 248 The ENCODE project has also identified another SNP, rs41292412, a C to T,  

that is located on the miR-122-3p (antisense or miR-122*) strand, though its significance 

is unknown. 
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miRNA modulation and therapeutics 

As described above, many of the studies into the function of microRNAs in 

cellular processes requires modulation of miRNA abundance or function in vivo and in 

vitro. Currently there are two main classes of miRNA inhibitors; antisense 

oligonucleotides (ASOs) or miRNA sponges. Antisense oligonucleotides themselves are 

broadly characterized as a short nucleic acid sequence complimentary to their target RNA 

molecule, where in their traditional use were used to inhibit mRNA translation or 

facilitate RNase H-mediated degradation. 249 Within the classification ASOs there are 

antagomirs, locked nucleic acids (LNAs), and tiny LNAs. Antagomirs are single stranded 

RNA molecules that are fully complementary to their target miRNA. 250 Chemical 

modifications at the 2’-carbon such as additions of -O-methyl, 2’-methoxyethyl, 2’-fluoro 

(in order of increasing stability), as well as a partial phosphorothioate backbone have 

significantly increased stability. 251 Furthermore, the addition of a cholesterol moiety to 

the 3’ carbon has facilitated increased uptake of these antagomirs. 219 However, the 

greatest leap in ASO stability has been the synthesis of locked nucleic acids (LNAs). 

223,252 These modified 13-22-nt long antgomiRs contain a methane bridge connecting the 

2’-oxygen to the 4’-carbon of their ribose ring. 253 This modification maintains the C3’-

endo conformation, which promotes RNA:RNA interaction, and prevents a 

conformational change to its C2’-endo state, which does not. Given that the of the 

specificity of an antagomir is covered primarily by its seed region, it was 
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Figure	1.5:	Mechanisms	for	miRNA	modulation.		

miRNA biogenesis and therapeutic delivery. miRNA function can be inhibited by using 

chemically modified antisense oligonucleotides (ASO) such as lock nucleic acid 

(LNA), antagomirs, 2’-O-methyl typically resulting in sequestration of the target 

miRNA. To increase stability and tissue specific delivery both ASOs and liposomes 

have chemical modifications to backbone chemistry have increased stability ASOs 

while conjugating of molecules such as GalNac and PEG to liposomes and ASOs alike 

have facilitated enhanced target cell specificity. Use of ASOs, Nanoparticles, or adeno-

associated vectors (AVV) can be used for tissue-specific anti-miRNA and miRNA 

mimic delivery through modification of the outer surface of the lipid bilayer. For 

overexpression of a particular miR, miRNA mimics can be used directly however, 

delivery of a miRNA containing transgene via AAV results in specific and sustained 

mimic expression. Furthermore, depending on complementary of sense strand to target 

gene, either the target miRNA is degraded or sequestered. (b) Schematic representation 

of anti-miR-122 tough decoy (TuDs). AAVs are also capable of delivering modified 

miRNA inhibors, tough decoys (TuDs). Rather than perfect 1:1 binding to their target 

miRNA, TuDs contain a four-nucleotide insert at the Ago2 cleavage site protecting the 

TuD from nuclease cleavage. Image adopted from Xie. et al. 2012.  
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discovered that truncation of the LNA to be only 8 nucleotides long and complimentary 

to nucleotides 2-8 of the target miRNA, corresponding to its 5’seed region was sufficient 

to maintain robust, and specific inhibition. 223,254  

While LNAs have been shown to strongly and specifically inhibit their targets, 

these modalities require repeated intravenous doses leading to systemic distribution and 

uptake in multiple organ systems. As the issue of cell and organ specificity still remains, 

much work has been put into conjugation and packaging strategies for targeted delivery. 

Recently, it has been shown that the addition of a N-acetylgalactosamine (GalNac) 

conjugation results in robust delivery to hepatocytes via sub-cutaneous delivery. 255 

Alternatively, the use of liposomes and lipids, have gained attention. These particles 

consist of cationic lipid bilayers able to bind their anionic cargo resulting in a positively 

charged liposome able to bind the anionic surface of target cells. 256,257 Further, the 

addition of surface modifications such as polyethylene glycol (PEG), or peptides can 

facilitate cell or organ specific delivery. Once attached, the head groups of these lipids 

can be modified to facilitate release in either the nucleus, cytoplasm, or endosome. 258-260 

miRNA sponges, or decoys, are RNA pol II driven transcripts that produce a 

product containing multiple sites for a specific miRNA which were designed to sequester 

these target miRNAs. 261 Subsequently, miRZips and tough-decoy RNAs (TuDs) were 

developed which were transcribed either by H1 or U6 based RNA pol III promoters 

respectively, and optimized to facilitate efficient nuclear export. 261,262 Once in the 

cytoplasm, The H1-driven miRZip contained a single hairpin complimentary to the target 

miRNA leading to degradation of both target and miRZip. Like traditional miRNA 
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decoys, TuDs express a transcript with multiple perfectly complementary miRNA 

binding sites along its length, however, TuDs contain a four-nucleotide insert at the Ago2 

cleavage site protecting the TuD from nuclease cleavage (Figure 1.5b). 221,261 This 

modification allows for long-term inhibition of a target miRNA after a single treatment. 

Recently, Xie et al demonstrated that a single intravenous dose rAAV9-delivered anti-

miR-122 TuD robustly inhibited miR-122 in murine livers for over 25 weeks. 221,261,262 

Unlike that of antimiR approaches, the restoration of a miRNAs can be 

accomplished with either miRNA mimics or pri-miRNAs encoded within expression 

vectors. miRNA mimic molecules are double-stranded synthetic miRNA oligonucleotides 

that, when transfected into cells, are processed into a mature miRNA. However, their use 

in vivo is limited by their stability and inefficient delivery, requiring the use of 

nanoparticles, or liposomes. 259,263 Most effective has been the use of recombinant adeno-

associated virus (rAAV) delivery of pri-miRNA expression vectors. 238 These non-

replicating viruses have been effectively used to express genes or miRNAs in the liver. 

Through discovery and manipulation many serotypes have been found that exhibit 

varying degrees of cellular tropism and immunological memory in the population. 264,265 

While many AAVs have been discovered and engineered, with respect to the liver, 

AAV8 holds the greatest promise for use in vivo. 266-268 In fact, recent clinical trials in the 

UK using rAAV8 vectors to treat Hemophilia B deficiency has demonstrated that a single 

peripheral-vein dose can safely and effectively achieve sustained transgene expression for 

5 years after treatment. 264,265,269 Vectors can also be used to increase specificity by 

engineering  cell specific promoters that limit non-specific expression. It is key to 
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mention that the over expression of short hairpin RNA in rats has been shown to cause 

hepatotoxicity, organ failure, and death. 159 This has been associated caused by the 

saturation of exportin-5 which appears to limit miRNA production in cells to tolerable 

levels. 159,270-272 However, accurately titrating doses, optimization of the promoter, as well 

as designing transgenes to produce pri-miRNAs that more accurately mimic endongenous 

transcripts may mitigate these toxic effects.  

  



65 

 

CHAPTER 2: ALCOHOL, MIR-122 AND HIF-1ΑLPHA  

Summary 

The loss of miR-122 has been clearly demonstrated in stages of advanced NASH 

and HCC correlating with poor prognoses. However, its role in acquired, pre-neoplastic 

liver disease and specifically alcoholic liver disease, has not been explored. Previous 

studies have demonstrated the inverse correlation between miR-122 and its putative 

primary target, HIF-1α. The increase in HIF-1α due to chronic alcohol, and its role in 

ALD pathogenesis has been studied. In this chapter I offer evidence to suggest that miR-

122 is reduced in patients with alcoholic cirrhosis, and mice fed chronic alcohol. Further, 

I find that this reduction is specific for hepatocytes and not only inversely correlates with 

HIF-1α expression but that HIF-1α is directly regulated by miR-122. 
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Introduction 

Liver disease is a major cause of death in the United States and has been 

increasing in recent years. Chronic alcohol consumption accounts for nearly 50% of these 

cases and few specific therapies exist for patients. 11 While the early steatosis in ALD is 

reversible, chronic, excessive alcohol consumption is the single greatest risk factor of 

hepatocellular cancer (HCC). 14,15,273  

Alcohol-triggered hepatocyte steatosis and cell death results in the activation and 

infiltration of immune cells within the liver leading to advanced hepatic injury. The 

subsequent release of inflammatory cytokines causes further hepatocyte cell death 

resulting in a feedback mechanism, driving ALD pathogenesis. 11,14,15 The standard of 

care with steroid treatment has little benefit and recent clinical trials using pentoxifylline 

showed little efficacy. Thus, identification of novel therapeutic targets is a major need in 

ALD. 274  

Hepatic microRNAs (miRNAs) have crucial roles in maintaining total body 

homeostasis, mitochondrial function, and oncogenesis. miR-122 constitutes 70% of all 

miRNAs in mature hepatocytes, or approximately 130,000 copies per cell, with negligible 

expression in other tissues. 182 It has been found to regulate key pathways in lipid 

metabolism. Germline deletions of miR-122 display steatosis at birth, spontaneous 

progression to fibrosis, and HCC. 238 In humans, miR-122 expression inversely correlates 

with HCC survival and metastasis while miR-122 inhibition reduces HCV viremia, serum 

triglycerides, and cholesterol. 16,228,275 These observations suggest that miR-122 may have 

diverse and pleiotropic effects on hepatocytes and liver diseases warranting further 
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exploration of its role in alcoholic liver disease. Specifically, given that the loss of miR-

122 results leads to hepatic steatosis and injury patterns similar to ALD pathogenesis, I 

hypothesized that the loss of miR-122 due to alcohol may regulate ALD pathogenesis. 

Our lab and others have demonstrated the essential role of HIF-1α in driving 

hepatic steatosis and hepatic injury in high-fat diet, alcohol, and hypoxic liver injury. 

Specifically, our lab has previously determined that chronic alcohol administration in 

mice leads to an up-regulation of both HIF-1α mRNA and protein in hepatocytes, which 

dives lipogenesis. Stimuli that induce HIF-1α activity classically result in stabilization of 

the HIF-1α protein and not due to changes at the mRNA level. Briefly, during normoxia, 

HIF-1α is quickly proline hydroxylated, ubiquitinylated, and subsequently degraded by 

the proteasome. During hypoxia HIF-1α is not hydroxylated and therefore protected from 

degradation, increasing its half-life. The accumulation allows for dimerization with its 

constitutively expressed beta subunit, ARNT. The HIF-1α /ARNT complex translocates 

to the nucleus acting its target genes, driving steatosis.  

Using seed matching algorithms, I have determined that HIF-1α is a putative 

target of miR-122. I hypothesized that the increase in HIF-1α mRNA noted in chronic 

alcohol could be due to a decrease in miR-122. Furthermore, I hypothesized that miR-122 

regulates HIF-1α through canonical miRNA pathways via bindings its 3’UTR. 

In this chapter I characterize the expression patterns of miR-122 and HIF-1α in 

the livers of patients with alcoholic cirrhosis when compared to healthy controls and 

HCV-infected patients and in mice exposed to chronic alcohol. Furthermore, using HIF-
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1α 3’UTR-luciferase, my data indicates that miR-122 regulates HIF-1α though 3’UTR-

mediated miRNA silencing mechanisms. 

Methods 

Procurement of Human Specimens 

Paraffin embedded blocks and flash frozen human liver tissue was obtained form 

healthy controls, alcoholic cirrhosis, and HCV cirrhosis, were obtained through the Liver 

Tissue Cell Distribution System, Minneapolis, Minnesota, which was funded by NIH 

Contract # N01-DK-7-0004/HHSN26700700004C.  

Animal Studies 

All animals received care in compliance with protocols approved by the 

Institutional Animal Use and Care Committee (IACUC) of the University of 

Massachusetts Medical School. Wild-type (WT) mice (C57/Bl6), Alb-Cre, and HIF-

1αflox/flox
 
mice were purchased from Jackson Laboratories (Bar Harbor, ME) and 

backcrossed onto a C57/Bl6 background. 6-8 week old mice were gradually acclimated to 

a Lieber-DeCarli liquid diet with 5% ethanol (vol/vol) over a period of 1 week, then 

maintained on the 5% diet for 4 weeks (total of 5 weeks). Consumption was recorded 

daily and isocaloric amounts of a control diet (in which dextran-maltose replaced calories 

from ethanol) were dispensed to pair-fed (PF) animals. Weights were recorded weekly. 

At the conclusion of the 5-week feeding, mice were weighed, blood collected, and 

euthanized. Livers were dissected, weighed and divided into lipid nitrogen for protein and 

biochemical assays, fixed in 10% phosphate-buffered formalin for histological analysis, 
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preserved in OCT frozen section preparation solution, or soaked in RNALater (Qiagen, 

Hilden, Germany, Hilden, Germany).  

Blood was allowed to clot and serum obtained using gel-based serum separator 

tubes.  

 

Isolation of primary mouse hepatocytes and LMNCs  

Anesthetized animals were perfused by way of portal vein with saline solution, 

followed by enzymatic digestion, as previously described. 75 The hepatocytes were 

separated by centrifugation, and LMNCs were purified by centrifugation in Percoll 

gradient followed by CD45+ microbead selection using MACS LS columns (MACS). In 

vitro experiments. Primary hepatocytes were cultured in low-glucose DMEM 

supplemented with 10% fetal bovine serum, 1% Anti-Anti, 1% gentamycin, 1% insulin, 

transferrin, selenium solution. Primary hepatocytes were seeded in 6-well collagen-

coated plates (Biocoat, Becton Dickinson). Before starting stimulation experiments, 

hepatocytes were rested for 4 hours.  

 

RNA extraction and real-time PCR 

Total RNA was extracted using the Quiagen miRNeasy kit (Qiagen, Hilden, 

Germany, Hilden, Germany) according to the manufacturer’s instructions. Briefly, tissue 

samples were lysed in QIAzol Lysis reagent (Qiagen, Hilden, Germany, Hilden 

Germany), homogenized with stainless steel beads in TissueLyser II (Qiagen, Hilden, 

Germany) followed by miRNA isolation following manufacturer’s instructions and 
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DNase 1 Digest. RNA was quantified using Nanodrop 2000 (Thermo Scientific, 

Waltham, MA). Complementary DNA (cDNA) synthesis was performed by reverse 

transcription of 1 ug total RNA using the iScript Reverse Transcription Supermix (Bio-

rad, Hercules, CA). Real-time quantitative PCR was performed using Bio-Rad iTaq 

Universal SYBR Green Supermix and a CFX96 real-time detection system (Bio-Rad 

Laboratories, Foster City, CA). Primers were synthesized by IDT, Inc. The primer 

sequences are listed inTable 2.1 . Relative gene expression was calculated by the 

comparative cycle threshold (Ct) method. The expression level of target genes was 

normalized to the house-keeping gene, 18S rRNA, in each sample and the fold-change in 

the target gene expression between experimental groups was expressed as a ratio. Melt-

curve analysis was used to confirm the authenticity of the PCR products. 

 

miRNA Analysis 

Reverse transcription (30 min - 16°C; 30 min - 42°C; 5 min - 85°C) was 

performed in Eppendorf Mastercycler (Eppendorf, New York, USA) using 10 ng RNA, 

TaqMan primers and miRNA Reverse Transcription Kit (Applied Biosystems, ) followed 

by quantitative RT- in CFX96 (Bio-rad, Hercules, CA) using TaqMan Universal Probes 

Master Mix (Bio-rad, Hercules, CA).  All samples were normalized to snoRNA202, or 

U6 expression based on Normfinder (http://moma.dk/normfinder-software) analysis of 

loading control stability. hsa-miR-122-FAM, U6-FAM, and sno202-FAM primer sets 

were purchased from Applied Biosystems.  
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HIF-1α 3’UTR 

All cells were seeded into 96 well plate 24 hours ahead of Lipofectamine 3000 

(Thermo Fisher)-based transfection. HIF-1α 3’UTR-luciferase reporter (Origene) and 

with renilla luciferase plasmid were co-transfected, miR-122 mimic or scrambled mimic  

Table 2.1 qPCR and cloning primers used in this study 

Table 1: Primers used in this study  

Gene Forward Primer – 5’-3’ Reverse primer – 5’-3’ 

mTNFa CACCACCATCAAGGACTCAA AGGCAACCTGACCACTCTCC 

mMCP-1 CAGGTCCCTGTCATGCTTCT CAGGTCCCTGTCATGCTTCT 

mActa2 GTCCCAGACATCAGGGAGTAA TCGGATACTTCAGCGTCAGGA 

mCollagen1a1 GCTCCTCTTAGGGGCCAT CCACGTCTCACCATTGGG 

mHIF1a CAAGATCTCGGC GAAGCA A GGTGAGCCTCATAACAGAAGCTTT 

mHNF4 AGCTCGAGGCTCCGTAGTGTTT  GAAAATGTGCAGGTGTTGACCA  

mF4/80 TGCATCTAGCAATGGACAGC GCCTTCTGGATCCATTTGAA 

mCD68 
CCCACAGGGCAGCACAGTGGAC TCCACAGCAGAAGCTTTGGCCC 

mIL-1B CTTTGAAGTTGACGGACCC TGAGTGATACTGCCTGCCTG 

mHNF6 TTCCAGCGCATGTCGGCGCTC GGTACTAGTCCGTGGTTCTTC 

mPPAR-g GGAAGACCACTCGCATTCCTT TCGCACTTTGGTATTCTTGGAG 

m/h18s 
GTAACCCGTTGAACCCCATT CCATCCAATCGGTAGTAGCG 

hGRHL2 GAAAGTCCAGTTTCACCAGAGG GGCACTAAGGCCACTAGTCTTTT 

mGRHL2 
GGATGTGAACGAGGAGGCAAAG CTGGCAGTATGCTCTGTGGATG 

hGRHLmut GAGAAAGGGAAGTTGGGGTTCTGAGGGG TTAACGTTCCTCACGGGAAGACTG 
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 (ThermoFisher Scientific) into HEK293T cells for 36 hours, followed by Dual 

Luciferase Assay (Promega) according to manufacturer’s instruction. 

miR-122 regulation of HIF-1α 

For overexpression of miR-122, primary murine hepatocytes were isolated from 

chow fed female mice. Cells were transfected with either pre-miR-122, or pre-miR-

negative control #1 (10nM) (Ambion) using Lipofectamine RNAiMAX transfection 

reagent (ThermoFisher Scientific). To inhibit miR-122 function, primary murine 

hepatocytes were transfected with either anti-miR-122 or anti-miR-negative control #1.    

Biochemical Assays 
Serum alanine aminotransferase (ALT) levels were determined using a 

commercially available reagent (Advanced Diagnostics Inc) as described. Serum alanine 

aminotransferase (ALT) was determined using a commercially available reagent 

(Advanced Diagnostics Inc, Plainfield, NJ). 15ul of serum was mixed 1:10 with assay 

reagent diluted according to the instructions of the manufacturer, and UV absorbance at 

37 degrees Celsius was measured over three minutes. The average change in absorbance 

per minute interval is then multiplied by a conversion factor to yield ALT levels.  

 Liver triglycerides were extracted using a 5% NP-40 lysis solution buffer. 

Triglycerides were quantified using a commercially available kit (Wako Chemicals) 

followed normalization to protein amount. 

Protein concentration was determined by by BCA protein assay (ThermoFisher 

Scientific) by using 10 uL of 1:10 or serially diluted lysate and incubating in assay 

reagent for 30 minutes at 37 degrees C. Absorbance was measured at 562nm on a 96 well 
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plate using a plate reader. Concentrations were interpolated using 4-PL regression 

derived from a standard curve generated using bovine serum albumin standard (Pierce). 

 

Nuclear Extraction 

50mg of snap-frozen liver tissue was washed in 10-fold excess volume TKM-0.32 

buffer (0.32M sucrose, 50mM Tris-HCl, 25mM KCl, 5mM MgCl, 5mM PMSF), with 

protease inhibitor tablets 1 per 10 mL, (Roche) and homogenized using a hand-held 

homogenizer. Homogenates were transferred to microcentrifuge tubes and centrifuged 

(1000rpm for 10 minutes at 4 degrees C). Pelleted material was resuspended in TKM-2.0 

buffer (2M sucrose, 50mM Tris- HCl, 25mM KCl, protease inhibitor cocktail) and 

homogenized again by handheld homogenizer. Pellets were collected by centrifugation 

(14000rpm for 30 minutes at 4 degrees C) and resuspended in 500ul Buffer A (10mM 

Hepes/KOH, pH 7.9, 2mM MgCl, 1mM EDTA, 10mM KCl, 1mM DTT, 5mM PMSF, 1 

protease inhibitor tablet). Pellets were again collected by centrifugation (14000rpm for 30 

minutes at 4 degrees C) and resuspended in 50ul Buffer B (10mM Hepes/KOH pH 7.9, 

2mM MgCl, 1mM EDTA, 50mM KCl, 300mM NaCl, 2mM DTT, and 5mM PMSF with 

protease inhibitor tablets 1 per 10 mL, (Roche), 10% glycerol. Pellet was resuspended 

was sonicated at 40% duty cycle 1 second on/off cycle, frozen at -80 degrees overnight, 

and thawed with gentle agitation at 4 degrees celcius. Supernatant containing nuclear 

extract was collected after centrifugation (14000rpm for 30 minutes at 4 degrees C) and 

assayed for protein concentration.  

 



75 

 

Electrophoretic Mobility Shift Assay  

The DNA binding activity of HIF-1a was assessed by electrophoretic mobility 

shift assay as described previously (Nath B., Hepatology. 2011 May;53(5):1526-3).75 A 

consensus double-stranded Hypoxia Response Element (HRE) (Santa Cruz Biotech, CA) 

oligonucleotide was used for EMSA. End-labeling was accomplished by treatment with 

T4 kinase in the presence of [P32]ATP. Labeled oligonucleotides were purified on a 

polyacrylamide copolymer column (Bio-rad, Hercules, CA). Five micrograms of liver or 

hepatocyte nuclear protein was added to a binding reaction mixture containing 50 mM 

Tris-HCl, pH 7.5, 5 mM MgCl2, 2.5 mM EDTA, 2.5 mM DTT, 250 mM NaCl, 20% 

glycerol, 20 &g/ml BSA, 2 & poly(dI–dC) and 50,000 cpm g32P-labeled HIF-1a 

consensus oligonucleotide.  Cold competition was done by adding a 20-fold excess of 

specific unlabeled double-stranded probe to the reaction mixture. Samples were 

incubated at room temperature for 30 min. Reactions were run on a 4% polyacrylamide 

gel and the dried gel was exposed to an X-ray film at –80°C overnight. Band density was 

quantified using ImageJ64 image analysis. 

 

Histopathological analysis 

Sections of formalin-fixed, paraffin-embedded livers were stained with 

hematoxylin and eosin (H&E), or Sirius Red and assessed for histological features of 

steatosis, inflammatory cell invasion, and fibrosis. The H&E and Sirius Red stained 

sections were independently examined by a 2 pathologists, Dr. Garlick and Dr. Jin-Kyu 

Park in a blinded manner (see acknowledgments). Immunohistochemistry staining for 
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GRHL2 (Atlas antibodies, HPA004820) were performed on formalin-fixed, paraffin-

embedded livers according to the manufacturer’s instructions. ImageJ (NIH) was used for 

image analysis. 

 

Statistical Analysis  

Statistical significance between two groups was determined using two–tailed t-

test. Two-way ANOVA and Dunnett’s multiple comparison post-test were used to 

compare the means of multiple groups. Outliers were determined using ROUT method 

with a q of 1%. Data are shown as mean ± SEM and were considered statistically 

significant at P < 0.05. GraphPad Prism 6.02 (GraphPad Software Inc.) was used for 

analysis.  
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Results 

Characterization of miR-122 expression in human alcoholic cirrhosis 

The role of miR-122 in preneoplastic conditions such as alcoholic liver disease, is 

unknown. I hypothesized that alcohol may inhibit miR-122, driving the hepatic 

dysfunction. I obtained frozen liver specimens form normal controls, alcoholic cirrhosis, 

and HCV-infected patients. Demographic and clinical data are listed in (Table 2.2). The 

healthy patient control samples are age and gender matched to the alcohol and HCV 

patients. Total RNA was extracted patient liver samples and quantitative real-time PCR 

(qPCR) for miR-122 was performed using Taqman based probe system. In this and 

subsequent experiments, three small RNA species were tested as internal controls; 

sno202, U6, and RNU48. Once Ct values were obtained, the data for all samples were 

entered into NORMFINDER software to determine the most stable control. Using this 

method I found that miR-122 expression was reduced approximately 50% in livers from 

patients with alcoholic cirrhosis, when compared to HCV cirrhosis or healthy controls, 

suggesting that chronic alcohol may promote liver injury by inhibiting miR-122 (Figure 

2.1).  

Establishment of mouse model of ALD 

To dissect the specificity of the reduction of mir-122. I sought to reproduce 

human ALD in a murine model of chronic alcohol-induced liver injury. Six-to-eight 

week-old C57/Bl6 mice were acclimated to the Lieber DeCarli liquid. (Figure 2.2a) diet 

for two days. During each subsequent day, the alcohol concentration was increased by 

1%/day to a maximum of 5% vol/vol, or 36% of the total caloric intake, for  
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Table 2.2: Human Liver Samples; Demographic and Clinical Data. 

  Alcoholic Patients Hepatitis C Patients 

N 10 12 

Age, years 51 (39 - 66) 56 (41 - 69) 

Sex, Male/Total 9/10 6/12 

Race White (10/10) White (9/12), Black (1/12), Hispanic (1/12), 
American Indian or Alaskan (1/12) 

MELD 31 (22 - 40) 28 (12 - 39) 

Prothrombin Time (INR) 2.49 (1.50 - 3.24) 2.1 (1.23 - 3.18) 

Total Bilirubin (mg/dl) 5.15 (1.50 - 20.60) 3.70 (1.50 - 42.20) 

Creatinine 2.13 (1.01 - 4.04) 1.29 (0.63 - 5.34) 

AST, IU/L 41.50 (30.00 - 1425.00) 80.00 (40.00 - 286.00 ) 

ALP, IU/L 163.50 (84.00 - 326.00) 105.00 (60.00 - 219.00) 

Albumin, g/dL 3.30 (2.70 - 4.70) 2.70 (2.00 - 3.60) 

Years since abstinence 0.67 (0.083 - 2) 12 (4 - 20) 

Months since last drink 8.00 (1 - 24) 0 (0 - 240) 

Collection type Transplant (10/10) Transplant (10/10) 

Primary diagnosis Alcoholic cirrhosis (10/10) Chronic active hepatitis, type C (10/10) 

HAV, IgG+ /Tot available 4/10 7/10 

HBV core, IgG+  /Tot available 0/10 4/11 

HBV surface, IgG+  /Tot 
available 2/10 4/11 

HCV, IgG+  /Tot available 0/10 12/12 

HIV 1 and 2, IgG+  /Tot 
available 1/10 0/10 

CMV, IgG+  /Tot available 5/10 11/12 

EBV, IgG+  /Tot available 10/10 12/12 

Pathology report: Evidence of 
Dysplasia 0/10 0/10 
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Figure 2.1: Human Liver miR-122 expression. 

miR-122 expression determined by quantitative real-time PCR from the livers of healthy 

controls, alcoholic cirrhosis, and HCV cirrhosis patients. miR-122 expression is 

decreased in the livers of patients with alcoholic cirrhosis when compared to healthy 

controls and patients with HCV cirrhosis.  
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Figure 2.2: Characteristics of chronic alcohol feeding model. 

(a) Schematic representation of a five-week alcohol feeding model. Mice were gradually 

acclimated to a Lieber-DeCarli liquid diet with 5% ethanol (vol/vol) over a period of 1 

week, then maintained on the 5% diet for 4 additional weeks. Consumption was recorded 

daily and isocaloric amounts of a control diet (in which dextran-maltose replaced calories 

from ethanol) were dispensed to pair-fed (PF) animals. Weights were recorded weekly.  

Mice were (b) weighted and bleed weekly to monitor health. Alcohol-fed mice exhibited 

no weight gain during the course of the feeding while pair-fed mice consistently gained 

weight. (c) Alcohol-fed mice exhibited significant increases in serum ALT at the end of 

the five-week feeding compared to PF controls. (d) Alcohol-fed mice exhibited increased 

hepatic triglyceride accumulation.   *P < 0.05, **P<0.005, ***P<0.0005 by two-way 

Anova. 
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four additional weeks (EtOH-fed or Et). Consumption was recorded daily, and a control 

diet was dispensed to pair-fed (PF) mice substituting maltose-dextran for ethanol calories. 

Over the course of the feeding I noted consistent weight gain in PF-mice while Et-fed 

mice failed to gain any weight (Figure 2.2b).  

Upon completion of the five-week feeding, serum and livers were collected and 

analyzed for serum alanine amino transferase (ALT), a serum marker specific for hepatic 

injury. (Figure 2.2c)  Indeed, 4 weeks of chronic alcohol increased serum ALT enzyme 

activity in alcohol-fed mice when compared to PF controls Liver injury in ALD is the 

result of hepatic steatosis. To determine lipid accumulation in the liver I extracted 

triglycerides from fresh frozen tissue using a 5% NP-40 lysis solution. For normalization, 

a BCA protein assay was performed to determine protein concentration of the lysate. 

Subsequently, triglyceride assay revealed that alcohol significantly increased triglyceride 

concentration within the liver. (Figure 2.2d)  Histological examination of formalin-fixed 

paraffin embedded liver tissue was stained with hematoxylin and eosin revealed evidence 

of steatotic changes and glycogen depletion within hepatocytes in Et-fed mice. (Figure 

2.3) In contrast, pair-fed mice showed normal liver parenchyma, and no evidence of fatty 

change.  

Characterization of miR-122 expression in murine ALD  

Utilizing taqman probes specific for the mature miR, I found that that miR-122 

expression was significantly reduced in the livers of alcohol-fed mice compared to pair-

fed controls (Figure 2.4a), equivalent to that seen in the human patient samples.  
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Figure 2.3: H&E liver histology from wild-type pair- and ethanol-fed mice 

Pair-fed mice exhibit no evidence of steatosis. Ethanol-fed mice display extensive lipid 

accumulation within hepatocytes (short arrows), increased inflammatory infiltrate 

(asterisk), and depletion of glycogen stores (long arrows). Scale bars =100 µm.  
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Figure 2.4: Chronic alcohol is associated with reduced miR-122 in murine 

hepatocytes. 

miR-122 is reduced in (a) total murine livers (n=8-14) and (b) hepatocytes (n=5) of 

alcohol-fed mice when compared to pair-fed controls. CD45+ liver mononuclear cells 

(LMNCs, n=5) show 10-fold lower expression of miR-122 and is not effected by alcohol. 

*P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test (a) or two-way ANOVA (b). 
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To determine the cell specificity of the miR-122 reduction, I isolated primary 

hepatocytes and liver mononuclear cells (LMNCs) from Pair- and alcohol-fed mice. 

Briefly, mice were anesthetized, perfused with collagenase solution, livers excised, and 

single-cell suspension was differentially centrifuged to separate non-parenchymal and 

parenchymal cells. Parenchymal cells were directly lysed and RNA isolated. However, 

even with percoll gradient separation of LMNCs, given the relative enrichment of miR-

122 in hepatocytes, even slight contamination within liver could drastically effect miR-

122 expression analysis. Therefore, to further purify the immune cells, I used a MACS 

bead system to positively select for CD45+ non-parenchymal cells. qPCR revealed that 

miR-122 was selectively decreased in hepatocytes and not in CD45+ LMNCs from 

alcohol-fed mice (Figure 2.4b) when compared to pair-fed controls. Additionally, CD45+ 

LMNC expression of miR-122 is approximately 10-fold lower than that found in 

hepatocytes (Figure 2.4b). This supported our hypothesis that alcohol-induced changes in 

miR-122 in the total liver are hepatocyte-specific.  

Correlation between miR-122 and its putative target HIF-1α 

Using a miRNA target prediction algorithm, based on seed recognition, I 

identified HIF-1α as a putative target of miR-122. Our present analysis of the livers of 

alcoholic cirrhosis patients and hepatocytes of alcohol-fed mice also revealed an increase 

of HIF-1α mRNA (Figure 2.5a,b) that showed a significant inverse correlation with miR-

122 expression (Figure 2.5a,b). This correlation suggested that HIF-1α increases noted by 

alcohol may be miR-122 dependent. 
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Figure 2.5: Inverse correlation between mir-122 and HIF-1α in chronic alcohol. 

Expression of HIF-1α and correlation to miR-122 expression in (a) human livers (n=9-

12), and (b) murine hepatocytes (n=8-14). miR-122 and HIF-1α exhibit a significant 

inverse correlation in the hepatocytes of alcohol-fed mice and the liver of patients with 

alcoholic cirrhosis. *P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test or two-way 

ANOVA (n=8-14). Regression analysis determined using Spearman’s Correlation. 
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Figure 2.6: miR-122 regulates Hif-1α via 3’UTR silencing. 

(a) The effect of miR-122-5p or scrambled oligonucleotide on luciferase activity from 

pmirCHECK-transfected HEK293T cells expressing the WT (3’UTR) of HIF-1 α (n=8). 

Hif-1α mRNA expression is inhibited and enhanced in murine hepatocytes treated with 

either (c) miR-122 mimic or (d) anti-miR-122 inhibitor respectively. (n=12). (c) *P < 

0.05, **P<0.005, ***P<0.0005 by Student’s t test. 
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miR-122 regulates HIF-1α through canonical miRNA silencing mechanism 

To establish that miR-122 directly regulates HIF-1α through canonical miRNA 

pathways, I co-transfected a plasmid containing the HIF-1α 3'UTR-luciferase reporter 

(HIF-3’luc, Origene), with scrambled or miR-122 mimic into HEK293T cells. The miR-

122 mimic strongly repressed HIF-3’luc activity in a dose-dependent manner (Figure 

2.6a). As further evidence of this regulatory pathway, I found that transfection of either a 

miR-122 mimic or an inhibitor into primary murine hepatocytes results in decreased or 

increased HIF-1α mRNA, respectively (Figure 2.6b,c). 

Conclusions and Discussion 

Given the essential role of miR-122 in mediating lipid homeostasis and 

differentiation of hepatocytes, I hypothesized that chronic alcohol may modulate, and 

specifically, reduce miR-122 expression. In this chapter I sought to characterize the 

relationship between miR-122 expression and its putative target, HIF-1α, in alcoholic 

liver disease. As I hypothesized, miR-122 expression is reduced in patients with alcoholic 

cirrhosis when compared to healthy controls. However, it is key to note that the tissue 

obtained were from resected livers during transplantation due to end-stage cirrhosis -  a 

terminal stage in ALD. Additionally, reduced miR-122 was noted in a bile duct ligation 

model of liver injury and cirrhosis. Therefore, to determine if this finding was alcohol-

specific, or due to cirrhosis I obtained patient samples from cirrhotic patients also 

undergoing transplant due to end-stage cirrhosis due to chronic HCV infection. 

Importantly, the decrease in miR-122 found in alcoholic patients was not noted in HCV-

induced cirrhosis, suggesting that this decrease is alcohol specific. Although this data is 
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convincing, it has been shown that HCV utilizes miR-122 as part of its viral replication 

cycle and the virus itself, as well as immune reactions to active viral infection, have been 

known to effect miR-122 expression.  

In order to first, perform further mechanistic studies, and second, determine if the 

reduction of miR-122 occurs in the early stages of ALD in the absence of end-stage 

cirrhosis, I sought a murine model which reproduces the earlier stages of human ALD. I 

chose to utilize the Lieber DeCarli chronic alcohol model which allows mice ad libitum 

access to a liquid alcohol diet, while control mice are administered a calorie-matched 

amount. This model accurately reproduced the phenotype associated with chronic alcohol 

consumption in humans as noted by hepatic steatosis and serum ALT as well as 

decreased weight gain in alcohol-fed mice when compared to pair-fed controls. 

qPCR analysis of miR-122 and HIF-1α expression revealed that alcohol 

specifically reduced miR-122 in murine hepatocytes and inversely correlated with HIF-

1α expression-as I observed in the alcoholic-cirrhosis patient samples. In vitro assays 

knocking down and overexpressing miR-122 in the primary murine hepatocytes increased 

and decreased HIF-1α mRNA respectively. However, these studies only demonstrated an 

inverse association between miR-122 and HIF-1α, and not a causal one. Utilizing a 

luciferase reporter system with the 3’UTR of HIF-1α, I found that miR-122 regulates 

HIF-1α post-transcriptionally through canonical miRNA silencing pathways.  

These results confirmed that miR-122 directly inhibits HIF-1α expression in 

hepatocytes, and may do so in vivo.   
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CHAPTER 3: MIR-122 MEDIATES ALCOHOLIC LIVER DISEASE PATHOGENESIS 
VIA HIF-1Α IN VIVO 

Summary 

Our findings suggest that miR-122 regulates HIF-1α. I hypothesized that loss of 

miR-122 contributes to ALD. In this study, our goals were to assess; the role of miR-122 

in the pathogenesis of ALD through its regulation of HIF-1α. To determine whether the 

loss of miR-122 can mediate alcoholic liver injury through HIF-1α, I used wild-type 8-

week-old, C57/Bl6 mice or hepatocyte specific HIF-1α knockout (HIF1hepKO) mice. 

Both WT and HIF1hepKO mice were injected intravenously with AAV8 containing anti-

miR-122 TuD (TuD) to knockdown miR-122 in the liver, or scrambled (Scr) vector 

followed by a Lieber-DeCarli (LDC) alcohol diet (Et) or PF control diet for 4 weeks. 

Anti-miR-122 TuD treatment alone resulted in significant increases in liver injury (ALT), 

steatosis, inflammation, and fibrosis in PF mice compared to Scr-treated controls. The co-

administration of miR-122 TuD and alcohol resulted in a synergistic effect, further 

increasing liver injury, inflammation and fibrosis. The hepatic expression and DNA-

binding activity of HIF-1α, a miR-122 target, was increased in TuD+PF mice equivalent 

to that of alcohol feeding alone. HIF1-α activity was the highest in TuD+Et mice 

compared to all other groups. HIF-1α deficiency in hepatocytes protected mice from liver 

damage, inflammation and fibrosis induced either by alcohol or miR-122 knockdown. 

Our findings suggested miR-122 reduction in alcohol potentiates the steatosis, 

inflammation and early fibrosis seen in ALD through its downstream target HIF-1α. 
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Introduction 

In the previous chapter I demonstrated that chronic alcohol reduces miR-122 

expression in the livers, and specifically the hepatocytes, of patients with alcoholic 

cirrhosis and mice administered chronic alcohol. Furthermore, I found that not only is 

there a significant inverse association between miR-122 and HIF-1α in alcohol-fed mice, 

but HIF-1α is a direct target of miR-122. Our lab has previously reported that alcohol 

increases HIF-1α expression in hepatocytes and hepatocyte-specific HIF-1α knockout 

mice (HIF1hepKO) were protected from chronic alcohol, while transgenic mice, 

expressing degradation-resistant HIF-1α (HIF1dPA) in murine hepatocytes, had 

augmented alcohol-induced liver injury. 75. Other groups have also reported similar 

findings of steatosis and cellular injury when overexpressing HIF signaling partners or 

knocking out key elements involved in HIF degradation. Taken together, this suggests 

that the reduction in miR-122 by alcohol may directly lead to the increase of HIF-1α 

mRNA and therefore ALD pathogenesis.  

To investigate the effect of miR-122 on ALD, I required the use of a knockdown 

system that; first, would target hepatocytes specifically, and second, could maintain a 

robust knockdown of miR-122 throughout the five-week feeding. Many modalities for 

miRNA inhibition, particularly for targeting miR-122, have been shown. However, anti-

sense oligonucleotides, and LNAs lack organ specificity and the sustained inhibition 

needed for our studies. Our collaborators in the Gao lab, have developed a self-

complimentary adeno-associated virus 8 (rAAV8) vector system expressing a U6-driven 

anti-miR-122 Tough Decoy (TuD) which they have shown to have tropism for 
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hepatocytes and maintain sustained inhibition of miR-122 in murine livers after a single 

intravenous dose. 221 While their studies utilized AAV serotype 9 (AAV9), we chose to 

use serotype 8 which has been shown to have a tropism for hepatocytes, thereby 

minimizing any off-target effects in other organs or cell types. Furthermore, AAV8-

mediated gene therapy has been deemed a safe and effective vector system in humans 

following clinical trials delivering a Factor IX transgene to patients with Hemophilia B.  

I hypothesized that the reduction of miR-122, by either alcohol or AAV-mediated 

knockdown, would alleviate its inhibition of HIF-1α, driving hepatic steatosis. 

Importantly, the role of immune cells in driving steatohepatitis is a key pathogenic 

mechanism of ALD. Chronic alcohol induces a hyper-responsive state in liver immune 

cells, whereby upon stimulation by PAMPs and DAMPs, they release inflammatory 

mediators such as TNF-α and IL-1β. These cytokines, in turn, activate cell death 

pathways in hepatocytes, which due to their steatotic state, have a diminished capacity to 

endure these inflammatory insults. Therefore, I also expected that the increase in steatosis 

due to miR-122 reduction, and HIF-1α activation, in WT mice would not only induce 

increased steatosis, but also significant inflammation as well.  

As sated above, our lab has previously utilized hepatocyte specific HIF-1α 

knockout mice to demonstrate its role in ALD. To establish a causal link between HIF-

1α, miR-122, and ALD pathogenesis, I utilized these HIF1hepKO mice. Given my 

findings that miR-122 can regulate HIF-1α, I hypothesized that these knockout mice 

would not only be protected from chronic alcohol-induced steatosis and inflammation as 

previously shown, but also from miR-122 inhibition when compared to WT mice.   
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In accordance with our hypothesis, the knockdown of miR-122 in WT mice 

recapitulated the steatosis and inflammation associated with ethanol alone. Interestingly, 

the combination of miR-122-TuD and alcohol yielded an additive effect on liver injury 

and fibrosis. Furthermore, HIF1hepKO mice exhibited decreased steatosis, inflammation 

and fibrosis when compared to WT mice treated with either miR-122-TuD, alcohol, or 

their combination. I conclude that the loss of miR-122 in ALD mediates disease 

progression through its primary target, HIF-1α, and that restoration of miR-122 in 

hepatocytes may have therapeutic significance.  

Methods 

Animal Studies 

All animals received care in compliance with protocols approved by the 

Institutional Animal Use and Care Committee (IACUC) of the University of 

Massachusetts Medical School. Wild-type (WT) mice (C57/Bl6), Alb-Cre, and HIF-

1αflox/flox
 
mice were purchased from Jackson Laboratories (Bar Harbor, ME) and 

backcrossed onto a C57/Bl6 background. The HIF-1α floxed allele has been described by 

Kim et al.67  Hepatocye specific HIF-1α kncokout mice (HIF1hepKO) obtained from the 

F1 generation of a cross between HIF-1αflox/flox mice and Alb-Cre homozygous mice. 6-8 

week old mice were gradually acclimated to a Lieber-DeCarli liquid diet with 5% ethanol 

(vol/vol) over a period of 1 week, then maintained on the 5% diet for 4 weeks (total of 5 

weeks). Consumption was recorded daily and isocaloric amounts of a control diet (in 

which dextran-maltose replaced calories from ethanol) were dispensed to pair-fed (PF) 

animals. Weights were recorded weekly. At the conclusion of the 5-week feeding, mice 
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were weighed, blood collected, and euthanized. Livers were dissected, weighed and 

divided into lipid nitrogen for protein and biochemical assays, fixed in 10% phosphate-

buffered formalin for histological analysis, preserved in OCT frozen section preparation 

solution, or soaked in RNALater (Qiagen, Hilden, Germany, Hilden, Germany). Blood 

was allowed to clot and serum obtained using gel-based serum separator tubes.  

 

Isolation of primary mouse hepatocytes and LMNCs  

Anesthetized animals were perfused by way of portal vein with saline solution, 

followed by enzymatic digestion, as previously described. 75 The hepatocytes were 

separated by centrifugation. In vitro experiments. Primary hepatocytes were cultured in 

low-glucose DMEM supplemented with 10% fetal bovine serum, 1% Anti-Anti, 1% 

gentamycin, 1% insulin, transferrin, selenium solution. Primary hepatocytes were seeded 

in 6-well collagen-coated plates (Biocoat, Becton Dickinson). Before starting stimulation 

experiments, hepatocytes were rested for 4 hours.  

 

RNA extraction and real-time PCR 

Total RNA was extracted using the Quiagen miRNeasy kit (Qiagen, Hilden, 

Germany, Hilden, Germany) according to the manufacturer’s instructions. Briefly, tissue 

samples were lysed in QIAzol Lysis reagent (Qiagen, Hilden, Germany), homogenized 

with stainless steel beads in TissueLyser II (Qiagen, Hilden, Germany) followed by 

miRNA isolation following manufacturer’s instructions and DNase 1 Digest. RNA was 

quantified using Nanodrop 2000 (Thermo Scientific, Waltham, MA). Complementary 
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DNA (cDNA) synthesis was performed by reverse transcription of 1 ug total RNA using 

the iScript Reverse Transcription Supermix (Bio-rad, Hercules, CA). Real-time 

quantitative PCR was performed using Bio-Rad iTaq Universal SYBR Green Supermix 

and a CFX96 real-time detection system (Bio-Rad Laboratories). Primers were 

synthesized by IDT, Inc. Relative gene expression was calculated by the comparative 

cycle threshold (Ct) method. The expression level of target genes was normalized to the 

house-keeping gene, 18S rRNA, in each sample and the fold-change in the target gene 

expression between experimental groups was expressed as a ratio. Melt-curve analysis 

was used to confirm the authenticity of the PCR products. 

 

miRNA Analysis 

Reverse transcription (30 min - 16°C; 30 min - 42°C; 5 min - 85°C) was 

performed in Eppendorf Mastercycler (Eppendorf, New York, USA) using 10 ng RNA, 

TaqMan primers and miRNA Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA) followed by quantitative RT- in CFX96 (Bio-rad, Hercules, CA) using 

TaqMan Universal Probes Master Mix (Biorad, Hercules, CA).  All samples were 

normalized to snoRNA202, or U6 expression based on Normfinder 

(http://moma.dk/normfinder-software) analysis of loading control stability. hsa-miR-122-

FAM, U6-FAM, and sno202-FAM primer sets were purchased from Applied Biosystems 

(Foster City, CA).  

 

Construction of miR-122 antagonist and overexpression plasmids 



102 

 

The scAAV-anti-miR-122 TuD and scAAV-anti-SCR TuD constructed were 

made as previously described Xie et al., 2012.221 The BamHI fragment carrying anti-

miR-122 TuD was replaced with the pri-miR-122 sequence amplified from C57/Bl6 

mouse genome DNA to generate scAAV-pri-miR-122 construct. Mice were treated by 

tail vein injection with AAV vectors at 6 × 1011 genome copies/mouse or approximately 

3 × 1013 genome copies/kg.221 

 

Biochemical Assays 

Serum alanine aminotransferase (ALT) levels were determined using a 

commercially available reagent (Advanced Diagnostics Inc) as described. Serum alanine 

aminotransferase (ALT) was determined using a commercially available reagent 

(Advanced Diagnostics Inc, Plainfield, NJ). 15 uL of serum was mixed 1:10 with assay 

reagent diluted according to the instructions of the manufacturer, and UV absorbance at 

37 degrees Celsius was measured over three minutes. The average change in absorbance 

per minute interval is then multiplied by a conversion factor to yield ALT levels.  

 Liver triglycerides were extracted using a 5% NP-40 lysis solution buffer. 

Triglycerides were quantified using a commercially available kit (Wako Chemicals) 

followed normalization to protein amount. 

Protein concentration was determined by by BCA protein assay (ThermoFisher 

Scientific) by using 10 uL of 1:10 or serially diluted lysate and incubating in assay 

reagent for 30 minutes at 37 degrees C. Absorbance was measured at 562nm on a 96 well 
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plate using a plate reader. Concentrations were interpolated using 4-PL regression 

derived from a standard curve generated using bovine serum albumin standard (Pierce). 

 

Nuclear Extraction 

50mg of snap-frozen liver tissue was washed in 10-fold excess volume TKM-0.32 

buffer (0.32M sucrose, 50mM Tris-HCl, 25mM KCl, 5mM MgCl, 5mM PMSF), with 

protease inhibitor tablets 1 per 10 mL, (Roche) and homogenized using a hand-held 

homogenizer. Homogenates were transferred to microcentrifuge tubes and centrifuged 

(1000rpm for 10 minutes at 4 degrees C). Pelleted material was resuspended in TKM-2.0 

buffer (2M sucrose, 50mM Tris- HCl, 25mM KCl, protease inhibitor cocktail) and 

homogenized again by handheld homogenizer. Pellets were collected by centrifugation 

(14000rpm for 30 minutes at 4 degrees C) and resuspended in 500ul Buffer A (10mM 

Hepes/KOH, pH 7.9, 2mM MgCl, 1mM EDTA, 10mM KCl, 1mM DTT, 5mM PMSF, 1 

protease inhibitor tablet). Pellets were again collected by centrifugation (14000rpm for 30 

minutes at 4 degrees C) and resuspended in 50ul Buffer B (10mM Hepes/KOH pH 7.9, 

2mM MgCl, 1mM EDTA, 50mM KCl, 300mM NaCl, 2mM DTT, and 5mM PMSF with 

protease inhibitor tablets 1 per 10 mL, (Roche), 10% glycerol. Pellet was resuspended 

was sonicated at 40% duty cycle 1 second on/off cycle, frozen at -80 degrees overnight, 

and thawed with gentle agitation at 4 degrees celcius. Supernatant containing nuclear 

extract was collected after centrifugation (14000rpm for 30 minutes at 4 degrees C) and 

assayed for protein concentration.  
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Electrophoretic Mobility Shift Assay  

The DNA binding activity of HIF-1a was assessed by electrophoretic mobility 

shift assay as described previously (Nath B., Hepatology. 2011 May;53(5):1526-3).75 A 

consensus double-stranded Hypoxia Response Element (HRE) (Santa Cruz Biotech, CA) 

oligonucleotide was used for EMSA. End-labeling was accomplished by treatment with 

T4 kinase in the presence of [P32]ATP. Labeled oligonucleotides were purified on a 

polyacrylamide copolymer column (Bio-rad, Hercules, CA). Five micrograms of liver or 

hepatocyte nuclear protein was added to a binding reaction mixture containing 50 mM 

Tris-HCl, pH 7.5, 5 mM MgCl2, 2.5 mM EDTA, 2.5 mM DTT, 250 mM NaCl, 20% 

glycerol, 20 &g/ml BSA, 2 & poly(dI–dC) and 50,000 cpm g32P-labeled HIF-1a 

consensus oligonucleotide.  Cold competition was done by adding a 20-fold excess of 

specific unlabeled double-stranded probe to the reaction mixture. Samples were 

incubated at room temperature for 30 min. Reactions were run on a 4% polyacrylamide 

gel and the dried gel was exposed to an X-ray film at –80°C overnight. Band density was 

quantified using ImageJ64 image analysis. 

 

Whole Cell Lysate  

Approximately 50 mg of liver tissue was washed in ice cold PBS and 

homogenized in lysis buffer (9.5ml RIPA buffer, 1mM NaF, 2mM Na3VO4, 1 protease 

inhibitor tablet, 5mM PMSF) with stainless steel beads in TissueLyser II (Qiagen, 

Hilden, Germany, Hilden, Germany). After 10 minutes of incubation on ice, homogenates 
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were centrifuged at 14,000xg for 10 minutes at 4 degrees C. The supernatant (clarified 

whole cell lysate) was collected and stored in aliquots at -80 degrees C.  

 

ELISA 

Cytokine levels were monitored in 25 mg of liver whole cell lysates diluted in 

assay diluent following manufacturer instructions. MCP-1 and TNFa were measured by 

use of specific anti-mouse ELISA from BioLegend. IL-1β was measured by use of 

specific anti-mouse ELISA (R&D Systems) that recognizes both pro- and cleaved- IL-1β.  

 

Histopathological analysis 

Sections of formalin-fixed, paraffin-embedded livers were stained with 

hematoxylin and eosin (H&E), or Sirius Red and assessed for histological features of 

steatosis, inflammatory cell invasion, and fibrosis. The H&E and Sirius Red stained 

sections were independently examined by a 2 pathologists, Dr. Garlick and Dr. Jin-Kyu 

Park in a blinded manner (see acknowledgments).  

 

Statistical Analysis  

Statistical significance between two groups was determined using two–tailed t-

test. Two-way ANOVA and Dunnett’s multiple comparison post-test were used to 

compare the means of multiple groups. Outliers were determined using ROUT method 

with a q of 1%. Data are shown as mean ± SEM and were considered statistically 
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significant at P < 0.05. GraphPad Prism 6.02 (GraphPad Software Inc.) was used for 

analysis.  
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Results 

Characterization of miR-122 knockdown on ethanol feeding parameters in WT mice 

Previous data has suggested that self-complimentary AAV vectors require 

approximately 2-3 weeks to fully express their transgene and recover from any initial 

cytotoxicity. Therefore, I chose to administer the viral vectors to six week old mice, two-

weeks prior to the start of a five-week Liber DeCarli feeding. This timing would allow 

near full vector expression during the week-long alcohol ramp-up and ensure that all 

groups were within the eight week-old age range used for previous studies. WT mice 

were administered 6x1011 genome copies/mouse carrying either transgenes encoding a 

U6-driven, scrambled tough decoy (Scr) or anti-miR-122-TuD (anti-miR-122-TuD or 

TuD). After two weeks on chow diet, mice were randomized into either ethanol (Et) or 

pair-fed (PF) groups after a one-week acclimation period. (Figure 3.1a)  

Weights and serum was collected weekly to monitor the overall health and 

specifically time-course of liver injury of mice in each group. To avoid over-stressing and 

over-bleeding, no individual mouse had serum collected two weeks in a row (n=3-

4/group/week). Similar to our findings in chapter 2, scrambled+PF mice gained weight as 

expected, while ethanol-fed mice did not over the course of the feeding (Figure 3.1b). 

This was associated with an increase in serum ALT in the Scr+Et group (Figure 3.1c). In 

both weight gain and serum ALT, I observed similar patterns in both the miR-122-

TuD+PF goup and Scr+Et. Surprisingly, the knockdown of miR-122 with alcohol 

(TuD+Et) resulted in dramatic weight loss and increases in serum ALT throughout the  
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Figure 3.1: Characteristics of chronic alcohol feeding model. 

(a) Schematic representation of alcohol feeding model with rAAV administration. WT 

mice were treated with 6x1011 genome copies rAAV8 particles containing either 

scrambled or anti-miR-122 TuD two weeks prior to the start of a 5-week alcohol feeding. 

Mice were (b) weighted and bleed weekly to monitor health and (c) serum ALT. TuD+PF 

and TuD+Et mice demonstrated significantly decreased weight gain and increased serum 

ALT when compared to their respective scrambled controls. (d) While there was a trend 

towards increased mortality in TuD+Et mice, this was not statistically significant when 

compared to the mortality in Scr+Et mice. *P < 0.05, **P<0.005, ***P<0.0005 by two-

way Anova. 
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feeding, greater than either knockdown or alcohol alone. Some mortality was observed in 

the alcohol group of both Scr and TuD-treated mice during the 4th week of the feeding 

(Figure 3.1d). Considering the significant weight loss and increasing ALT in the TuD+Et 

group, I halted the feeding at a total of 4 weeks (28 days) total. 

In vivo regulation of HIF-1α by miR-122 

First I sought to verify that the inhibition of miR-122 was effectively maintained 

throughout our alcohol feeding model.  

In chapter 2 of this dissertation I demonstrated that HIF-1α was indeed a target of 

miR-122 in vitro. Based on the discovery that miR-122 inhibits HIF-1α in hepatocytes, I 

hypothesized that firstly, AAV-mediated reduction of miR-122 in hepatocytes will 

increase its primary target, HIF-1α, resulting in liver injury equivalent to that of alcohol 

alone. Secondly, I hypothesized that the inhibition of miR-122 alone will sensitize the 

liver alcohol-induced injury, resulting in greater hepatic injury than either alcohol or 

miR-122 inhibition alone. The rAAV8 miR-122 TuD achieved a robust and sustained 

knockdown of miR-122, in both pair-fed and alcohol-fed mice (Figure 3.2a). 

Interestingly, in TuD+Et mice, I found an even further decrease in miR-122 compared to 

TuD+PF mice (Figure 3.2a). Alcohol and knockdown of miR-122 in the livers of WT  

mice increased HIF-1α mRNA individually and additively (Figure 3.2b). To determine if 

this increase in mRNA was associated with an increase in HIF-1α activity within 

hepatocytes, a subsequent feeding was performed and at the time of sacrifice, mice were 

perfused and primary hepatocytes isolated by differential centrifugation. Hepatocyte 

nuclear extracts were obtained were obtained and assayed by electromobility shift assay 
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(EMSA) using a P32 labeled HIF-1α consensus oligonucleotdie. Our results showed that 

TuD-mediated inhibition of miR-122 resulted in increased HIF-1α DNA binding at 

baseline, equivalent to alcohol-feeding alone (Figure 3.2c). Furthermore, the combination 

of alcohol and miR-122-TuD-inhibition yielded a synergistic increase of HIF-1α mRNA 

(Figure 3.2b) and DNA-binding activity (Figure 3.2c), confirming that miR-122 indeed 

regulates HIF-1α in hepatocytes in vivo.  

miR-122 regulates alcohol induced-steatosis, inflammation, and fibrosis via HIF-1α  

Given the increase in HIF-1α mRNA and DNA binding noted when knocking 

down miR-122 in vivo, I hypothesized that HIF1hepKO mice would be protected from 

miR-122-mediated liver injury. I generated hepatocyte specific HIF-1α knockouts by 

crossing HIF-1α(flox/flox) and Alb-Cre homozygous mice. As described above these 

mice were also administered 6x1011 viral particles of either rAAV8-scrambled (Scr) or 

rAAV8-anti-miR-122-TuD (miR-122 TuD), randomized and administered an alcohol or 

pair-fed diet.  

As seen in wild-type mice, both alcohol and TuD+PF treatment in HIF1hepKO 

mice resulted in efficient knockdown of miR-122 (  



112 

 

Figure 3.3: miR-122 mediated liver injury is HIF-1α dependenta). Interestingly, I 

also noted a further 50% reduction in TuD-treated knockout mice when they were given 

alcohol. However, contrary to the findings in WT mice, HIF1hepKO mice exhibited no 

mortality or weight loss. Serum collected at the end of the feeding revealed that 

HIF1hepKO mice had significantly lower hepatic injury from either alcohol, TuD-

mediated miR-122 knockdown, or their combination when compared to wild-type mice (  
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Figure 3.3b). While these reductions were significant when compared to WT 

mice, it is notable that even HIF1hepKO had increased serum ALT when treated with a 

combination of TuD and alcohol. 

 In this and subsequent sections analysis of histological sections were scored for 

steatosis, inflammation, and fibrosis by two independent veterinary pathologists and 

myself, blinded to sample numbers, genotype, and treatments. H&E sections revealed 

that in wild-type mice, TuD-mediated inhibition of miR-122 alone resulted in a 

significant increase in and hepatic steatosis equivalent to that induced by the alcohol-diet, 

(Figure 3.4a). The combination of alcohol and miR-122-TuD treatment resulted in a 

synergistic effect, further increasing hepatic lipid accumulation which correlated with 

increasing HIF-1α expression in hepatocytes, (Figure 3.4b). Indeed, I found that 

HIF1hepKO mice were protected from steatosis induced by alcohol, TuD-mediated miR-

122 inhibition, or their combination. In order to validate and quantify the histological 

findings of lipid accumulation in the liver I performed a triglyceride assay from NP-40 

lysates, as sated in the previous chapter. This assay confirmed that alcohol significantly 

increased triglyceride concentration within the liver (Figure 3.4c). Together these data 

suggested first, that the loss of miR-122 in hepatocytes directly triggers an increase of 

HIF-1α, resulting in steatosis and hepatocyte injury. Second, alcohol further decreases 

miR-122, synergistically inducing HIF-1α and its pathogenic effect. 
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Figure 3.2: miR-122 mediates HIF-1α steatosis and liver injury through HIF-1α in 

vivo 

(a) miR-122 and (b) HIF-1α mRNA in the total livers of scrambled or miR-122-TuD 

treated mice after 5 weeks of control (PF) or alcohol (Et) diet. Alcohol (c) HIF-1α 

Electro-Mobility Shift Assay (EMSA) of hepatocyte nuclei isolated from Scr or miR-

122-TuD treated WT mice after 5 weeks of PF or Et diet. rAAV8-delviered anti-miR-

TuD effectively inhibits miR-122 expression in PF and Et-fed mice. Chronic alcohol 

further reduces miR-122 expression when compared to TuD treatment alone. The loss of 

miR-122 due to aclohol, TuD, or their combination is associated with an increase in HIF-

1α mRNA and DNA binding activity.  *P < 0.05, **P<0.005, ***P<0.0005 by two-way 

ANOVA (n=6-14).  
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Figure 3.3: miR-122 mediated liver injury is HIF-1α dependent 

(a) miR-122 expression and (b) serum ALT in the total livers of WT and HIF1hepKO 

mice administered scrambled or miR-122-TuD after 5 weeks of control (PF) or alcohol 

(Et) diet. Alcohol resulted in a 50% reduction in both WT and HIF1hepKO mice. TuD 

treatment effectively inhibited miR-122 in WT and HIF1hepKO mice, given either 

alcohol or PF diet. While the loss of miR-122 is correlates with increased serum ALT in 

Wt mice, HIF1hepKO mice are protected from liver injury due to alcohol, antimiR-122-

TuD, or their combination. *P < 0.05, **P<0.005, ***P<0.0005 by two-way ANOVA 

(n=6-14). Scale bars; 100 µm. 
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Figure 3.4: Alcohol and miR-122 mediated hepatic steatosis is HIF-1α dependent 

Histological assessment of steatosis and hepatocyte injury of (a) H&E staining of 

formalin-fixed, paraffin-embedded (FFPE) livers. (b) Scoring of histological sections for 

severity of steatosis, by veterinary pathologists blinded to group and sample number. (c) 

Quantification of hepatic triglycerides from whole-liver lysates. Pair-fed mice exhibited 

normal parenchymal morphology without fatty-changes. Alcohol and TuD-treated WT 

mice exhibited equivalent levels of steatotic changes, consistent with a chronic alcohol 

consumption. This was only slightly increased in the combination of TuD and alcohol. 

HIF1hepKO, similar to pair-fed mice exhibited no significant changes in lipid 

accumulation.  *P < 0.05, **P<0.005, ***P<0.0005 by two-way ANOVA (n=6-14). 

Long arrows = glycogen-filled hepatocytes. Asterisks=immune cells. Long arrows = 

lipid-filled hepatocytes. Scale bars: 100 µm. H&E liver histology from wild-type pair- 

and ethanol-fed mice.  
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Inflammation is an essential mediatory of ALD, and DAMPs released from 

injured hepatocytes contribute greatly to the recruitment and activation of hepatic  

immune cells. Given the extent of hepatic injury seen in miR-122-TuD, and in particular 

when the combinatorial effect with alcohol, I hypothesized there would be a cooperative 

increase in inflammatory markers. Further, that HIF1hepKO would be protected from this 

inflammation. Analysis of H&E sections and qPCR for immune cell markers revealed 

increased macrophage infiltration (CD68 and F4/80) and activation in anti-miR-122 TuD-

treated, or alcohol-fed mice (Figure 3.5a,b, Figure 3.6a)with an even greater increase in 

mice treated with both TuD and alcohol together. I also found increased levels of IL-1ß, 

MCP-1, and TNF-α protein and mRNA (Figure 3.6b-d), in the livers of alcohol and miR-

122 TuD-treated mice. HIF1hepKO mice treated with either miR-122 inhibition or 

chronic alcohol showed a reduction of inflammatory cell infiltration and activation 

compared to WT mice.  

The development of fibrosis indicates progression of ALD as a result of sustained 

hepatocyte injury, inflammation, and stellate cell activation. However, typical 5-week 

murine models fail to demonstrate significant increases in early fibrotic markers, or 

collagen deposition seen in human disease. I found modest increases in collagen 

synthesis after alcohol feeding indicated by Sirius Red staining (Figure 3.7a,b) and the 

pro-fibrogenic markers, pro-collagen-1α and Acta2 (Figure 3.7c,d). In miR-122 TuD 

mice treated with alcohol, I noted greater increases in pro-collagen-1α and Acta2 
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expression, as well as in Sirius Red staining compared to pair-fed controls. The increase 

in fibrosis in the miR-122 TuD+Et group was abrogated in the HIF1hepKO mice.  
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Figure 3.5: Alcohol and miR-122 mediated hepatic inflammation is HIF-1α 

dependent 

qPCR analysis macrophage markers (a) F/480 and (b) CD68, total liver RNA.  *P < 0.05, 

**P<0.005, ***P<0.0005 by Student’s t test or two-way ANOVA (n=6-14). Scale bars: 

100 µm. H&E liver histology from wild-type pair- and ethanol-fed mice. 
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Figure 3.6: Alcohol and miR-122 mediated hepatic inflammation is HIF-1α 

dependent 

(a) H&E stained histological sections were scored for inflammatory cell infiltration, by 

veterinary pathologists blinded to group and sample number. (b-d) ELISA and qPCR 

analysis of pro-inflammatory cytokines MCP-1, IL-1β, and TNF-α, from total liver 

lysates and total liver RNA respectively. Alcohol and TuD-treated WT mice exhibited 

equivalent levels of pro-inflammatory cytokines. The combination of TuD and alcohol 

exhibited an additive effect on hepatic inflammation. HIF1hepKO mice treated with 

either, alcohol, miR-122 TuD, or their combination exhibited no significant changes in 

expression of pro-inflammatory cytokines.  *P < 0.05, **P<0.005, ***P<0.0005 by 

Student’s t test or two-way ANOVA (n=6-14). Scale bars: 100 µm. H&E liver histology 

from wild-type pair- and ethanol-fed mice. 
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Figure 3.7: miR-122 loss mediates early fibrotic changes through through HIF-1α 

Histological assessment of fibrosis was by (a) Sirius red staining of FFPE liver sections. 

(b) Scoring of collagen deposition was performed by veterinary pathologists blinded to 

group and sample number. qPCR analysis of stellate cell activation markers (c) 

Collagen1a1 (col1a1) and (d) α-smooth muscle actin (Acta2). Treatment with either 

alcohol or miR-122-TuD alone did not induced significant collagen deposition measured 

by Sirius red staining, however the combination of these two treatments resulted in 

significant collagen deposition. This was associated with an increase in markers of 

stellate cell activation. HIF1hepKO mice exhibited no collagen deposition or induction of 

pro-fibrotic markers. *P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test or two-way 

ANOVA (n=6-14). Scale bars: 100 µm. 
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Conclusions and Discussion 

In the previous chapter, I defined a direct link between miR-122 and its primary 

target, HIF-1α, in vitro. Furthermore, I determined that chronic alcohol reduced miR-122 

in humans and in a murine model. In this chapter I sought to explore the functional effect 

of miR-122 modulation on ALD pathogenesis, in vivo. Utilizing an AAV8-delivered 

miR-122 tough decoy resulted in sustained and efficient knockdown of miR-122 in the 

livers of alcohol-fed mice. As hypothesized, this inhibition was associated with a 

proportional increase in HIF-1α mRNA and DNA binding activity.  

A common pattern emerged throughout the data. Alcohol and miR-122 

knockdown independently showed equivalent changes in direct indices of liver injury 

such as serum ALT, steatosis, inflammatory cytokines, and fibrotic markers while 

HIF1hepKO mice were protected from these effects. Furthermore, the reduction of miR-

122 in the liver with alcohol (miR-122-TuD+et), resulted in dramatic increases in hepatic 

injury, greater than treatment with either alone.  

This is identical to the phenotype our lab has previously observed using an in vivo 

degradation-resistant form of HIF-1αin murine hepatocytes (HIF1dPA). HIF1dPA mice, 

which had a higher HIF-1αexpression in hepatocytes, developed steatosis and liver injury 

without the presence of alcohol. When given alcohol, HIF1dPA mice exhibited a 

synergistic phenotype similar to that seen in miR-122-TuD+Et, having greater liver injury 

than either treatment alone, and further increasing HIF-1α mRNA expression and 

activity.   
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There are many potential reasons for this phenomenon. First, is that the further 

reduction in miR-122 seen in TuD+Et mice when compared to TuD+PF mice, allowed 

for a dose-responsive increase in HIF-1α mRNA. However, Scr+Et and TuD+Et mice 

exhibited 50% and 85% reductions in miR-122 respectively. Therefore, if the increase is 

exclusively miR-122 dependent, I would have expected there to be greater HIF-1α 

mRNA in TuD+Et mice when compared to Scr+Et mice. Second, is that the influence of 

miR-122 on HIF-1α is limited to the availability of the transcript, and that alcohol also 

influences HIF-1α transcription and activity. As described above, in the presence of 

hypoxia HIFs are post-transnationally stabilized, allowing for their accumulation and 

increased transcriptional activity. It is well established that chronic alcohol increases 

oxygen demand in the liver, and specifically, in zone 3 of the hepatic lobule. 

Furthermore, endotoxin or LPS in portal circulation is a common feature of human and 

murine models of ALD. It is therefore likely that there is a threshold by which miR-122 

increases HIF-1α mRNA and the hypoxic microenvironment within the hepatic further 

contributes to this via increased transcription and post–translational stabilization. 

However, these explanations do not account for the slight, but significant increase 

in liver injury seen in HIF1hepKO mice treated with TuD+alcohol. While, HIF1hepKO 

TuD+Et mice exhibited dramatically reduced serum ALT and steatosis with no change in 

markers of inflammation, and fibrosis when compared to WT mice or other HIF1hepKO-

treated mice, increases in ALT were noted. These findings could be due to hypoxic 

activation of HIF-2α. Similar to HIF-1α, degradation resistant HIF-2α (HIF2dPA) has 

also been shown to induce hepatic lipid accumulation. Additionally, unpublished data 
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from Barath Nath, a former MD/PhD student in the lab, showed that alcohol increased 

both HIF-1α and HIF-2α. The role of relative role of HIF-1α vs HIF-2α in hepatic 

steatosis is not completely understood. Previous studies have suggested that HIF2dPA 

mice exhibit more steatosis and liver injury when compared to HIF1dPA. It is likely that 

the dramatic increases in liver injury seen in WT mice treated with TuD+Et, could be due 

to the simultaneous activation of HIF-1α and HIF-2α, and therefore not completely 

negated in HIF1hepKO mice. However, given the extent of protection from alcohol, miR-

122 knockdown, and their combination afforded by removal of the HIF-1α allele, it 

appears that in this model of alcoholic liver disease, the influence of other factors, such as 

HIF-2α, are minimal when compared to HIF-1α. 

Finally, miR-122 has been shown to directly and indirectly regulate a complex 

network of genes involved in hepatic lipid homeostasis, hepatocyte differentiation, and 

survival pathways.  It could be that in TuD+Et mice, which resulted in 90% loss of miR-

122, in addition to the pleotropic effects of alcohol, the loss of miR-122 could still drive 

pathogenesis through pathways outside the miR-122-HIF-1α axis.  

Amidst this pattern of data, another striking finding was apparent. The deletion of 

HIF-1α in hepatocytes was sufficient to reduce the steatosis, inflammation and fibrosis 

due to alcohol, miR-122 inhibition or together. Together, these data suggest that the 

increased pro-inflammatory and pro-fibrotic state are at least partially dependent upon 

HIF-1α-mediated hepatocyte injury due to the reduction of miR-122, and that restoration 

of miR-122 may provide therapeutic benefit.  
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CHAPTER 4: THERAPEUTIC RESTORATION OF MIR-122 REVERSES ALCOHOL-
INDUCED LIVER INJURY VIA HIF-1ΑLPHA IN VIVO 

Summary 

Using AAV8 anti-miR-122 TuD based knockdown system in a murine model of 

alcoholic liver disease I demonstrated that the reduction of miR-122 due to chronic 

alcohol acts through HIF-1α upregulation. Furthermore, hepatocyte-specific HIF-1α-null 

mice were protected from this effect. In this chapter, I sought to determine whether 

therapeutic restoration of miR-122 in alcohol-fed mice could reverse hepatic injury. 

Using a similar AAV8-delivery system, I overexpressed miR-122 the livers of alcohol-

fed mice. Therapeutic restoration resulted in a significant improvement in serum ALT, 

and inflammation suggesting a protective role for miR-122 in ALD. 
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Introduction 

Alcohol-triggered hepatocyte steatosis and cell death results in the activation and 

infiltration of immune cells within the liver leading to advanced hepatic injury. The 

subsequent release of inflammatory cytokines such as TNF-α and IL-1β causes further 

hepatocyte cell death resulting in a continuous feedback loop of cellular injury, driving 

ALD pathogenesis. 11,14,15 While the etiology of ALD and abundance of evidence clearly 

indicates that abstinence is the best treatment, even with abstinence, many patients still 

progress to hepatic cirrhosis. Additionally, with a high rate of recidivism, undiagnosed 

alcohol abuse, comorbidities and an ever-increasing mortality rate, necessitates the 

development of additional medical interventions. 276 10,11  

Lifestyle changes are the cornerstone of ALD treatment. 276 Due to the significant 

calorie consumption from alcohol and diminished intestinal absorptive capabilities, 

nutritional deficiencies of macro an micronutrients are a common issue among chronic 

alcoholics. 277-279 Patients have been found to have deficiencies in protein consumption as 

well as vitamins A, D, thiamine, folate, zinc. 10,11,280,281 Gross calorie replenishment, and 

specifically, the promotion of a positive nitrogen balance has shown some efficacy in 

improving liver function and reversing metabolic syndrome, a significant comorbidity 

and contribute to disease progression. 282,283 Complimentary to nutritional deficiencies, is 

the depletion of antioxidants leading to a reduced capacity of hepatocytes to safeguard 

against reactive oxygen species. Three well studied treatments involve supplementation 

with Vitamin E, silymarin (milk thistle), and N-acetyl cysteine (NAC). Silymarin and 

NAC both function by increasing glutathione (GSH) in the liver, an essential antioxidant. 
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Together, all three have been shown to protect against lipid peroxidation and oxidative 

damage induced by free radicals in animal models of chronic alcohol. 31,284-286 287 

However, their efficacy in humans has been minimal, particularly in cases of severe 

alcoholic hepatitis. 288-292 The failure of these may be the persistence of oxidant stress 

within the liver along with other comorbidities. 

 Pharmacologically, there are two classes of therapeutics that have been explored; 

immunomodulatory and metabolic, to inhibit hepatic inflammation and reverse steatosis 

respectively. Immunosuppressive therapies first emerged 40 years ago with the use of 

corticosteroids.293 Since these initial studies, they remain the standard of care in spite of 

lackluster efficacy. 294 Subsequently, several agents have been studied to inhibit 

inflammatory pathways targeting cytokines, specifically TNF-α. One such agent tested to 

inhibit TNF-α was a phosphodiesterase (PDE) inhibitor, pentoxiphylline (PTX). 295 This 

orally bioavailable PDE inhibitor was shown to reduce the production of many pro-

inflammatory cytokines, including TNF-α.  While initial studies demonstrated reduced 

mortality at three months, subsequent studies have failed to recapitulate these robust 

findings. The use of PTX is approved for patients with severe alcoholic hepatitis. 296 

Additionally, specific anti-TNF-α therapies using monoclonal antibodies against 

(inflixamab) as well as TNF-α receptor antagonists (etanercept) have also been explored. 

297,298 However, given the essential role TNF-α has in liver regeneration and in pathogen 

defense, raised questions about its safety. 299 10 While mortality was moderately 

decreased when compared to control groups, studies were halted due to complications 

due to opportunistic infections. 10,12,300,301 
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Currently, emerging therapeutics include the use of nuclear receptor (RXR/FXR) 

agonists to reverse hepatic steatosis, IL-1β receptor antagonists to inhibit cytokine-

induced cellular damage, as well as S-adenosylmethionine supplementation to buffer 

against ROS. As with previous therapies, all have shown efficacy in animal models, and 

clinical trials are ongoing. 274,302  

Amidst scores of studies and years of potential therapies, a common theme that 

multi-targeted approaches are necessary, and further, that immunosuppressive 

monotherapy, without correction of parenchymal cell function, is insufficient to reverse 

ALD pathogenesis.  

In the previous chapters I found that hepatic miR-122 levels are 2-fold lower in 

hepatocytes of alcohol-fed mice and human alcoholic cirrhosis patients compared to 

controls. Using AAV-delivered anti-miR-122 TuDs, I have demonstrated a causal link 

between the alcohol-induced reduction of miR-122, and ALD pathogenesis via HIF-1α. 

These studies showed that the loss of miR-122 directly correlated with increasing 

steatosis, inflammation, and fibrosis. Given these findings, I hypothesized that 

therapeutically restoring miR-122 in alcohol-fed mice could reverse chronic alcohol-

induced liver injury.  

Many mechanisms have been developed for modulation of miRNAs, and 

specifically miR-122, in the liver. ASOs, LNAs, and miRNA sponges have all been 

extensively studied and modified to enhance specificity, potency, and stability. However, 

contrary to ASOs, delivery of small single-stranded or duplex miRNA mimics has proven 

difficult. These naked RNA molecules lack specificity and stability and while chemical 
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modifications can improve these parameters, the issue of TLR activation has not been 

overcome (Figure 1.5). 

Currently, two strategies for delivery have been developed; cationic lipid 

(liposomes) carriers and viral-vector based delivery systems (AAVs). These liposomes 

consist of cationic lipid bilayers complex with the anionic nucleic acid cargo, the result is 

a positively charged bilayer able to bind the anionic surface of target cells. 256,257 Further, 

the addition of surface modifications can facilitate cell or organ specific delivery or 

subcellular release in either the nucleus, cytoplasm, or endosome. 258-260 While these 

modifications can increase functional efficiency of the liposomes, their utility has not 

matched that of AAVs. 238  

Many AAV serotypes have been used to deliver transgenes to the liver, including 

AAVs 2, 8, and 9. However, AAV8 has shown to have the most selective tropism and 

least immunological memory among the population. Given this, the use of AAV8 to 

deliver Factor IX to Hemophilia B patients has successfully completed clinical trials and 

is approved for use in patients. 264,265,269 It is important to mention that the over 

expression of short hairpin RNA in rats has been shown to cause hepatotoxicity, organ 

failure and death. 159 This toxicity been associated caused by the saturation of exportin-5. 

However, it has been suggested that if the delivered transgene produces pri-miRNA 

constructs more similar to that of endogenous transcripts, this toxicity can be reduced or 

mitigated. 159,270-272 

Taking these into consideration, through my collaboration with the Gao lab, we 

modified the anti-miR-122-TuD system described in chapter 3 by replacing the TuD with  
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a pri-miR-122 insert under the control of a U6 promoter (miR-122-OX). Using an AAV8, 

mice were treated with the overexpression construct while on chronic alcohol.  The 

restoration of miR-122 effectively reduced the steatosis, inflammation and hepatic injury 

associated with chronic alcohol.  
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Methods 

Animal Studies 

All animals received care in compliance with protocols approved by the 

Institutional Animal Use and Care Committee (IACUC) of the University of 

Massachusetts Medical School. Wild-type (WT) mice (C57/Bl6), Alb-Cre, and HIF-

1αflox/flox
 
mice were purchased from Jackson Laboratories (Bar Harbor, ME) and 

backcrossed onto a C57/Bl6 background. 6-8 week old mice were gradually acclimated to 

a Lieber-DeCarli liquid diet with 5% ethanol (vol/vol) over a period of 1 week, then 

maintained on the 5% diet for 4 weeks (total of 5 weeks). Consumption was recorded 

daily and isocaloric amounts of a control diet (in which dextran-maltose replaced calories 

from ethanol) were dispensed to pair-fed (PF) animals. Weights were recorded weekly. 

At the conclusion of the 5-week feeding, mice were weighed, blood collected, and 

euthanized. Livers were dissected, weighed and divided into lipid nitrogen for protein and 

biochemical assays, fixed in 10% phosphate-buffered formalin for histological analysis, 

preserved in OCT frozen section preparation solution, or soaked in RNALater (Qiagen, 

Hilden, Germany, Hilden, Germany). Blood was allowed to clot and serum obtained 

using gel-based serum separator tubes.  

 

Isolation of primary mouse hepatocytes and LMNCs  

Anesthetized animals were perfused by way of portal vein with saline solution, 

followed by enzymatic digestion, as previously described.75 The hepatocytes were 

separated by centrifugation. In vitro experiments. Primary hepatocytes were cultured in 
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low-glucose DMEM supplemented with 10% fetal bovine serum, 1% Anti-Anti, 1% 

gentamycin, 1% insulin, transferrin, selenium solution. Primary hepatocytes were seeded 

in 6-well collagen-coated plates (Biocoat, Becton Dickinson). Before starting stimulation 

experiments, hepatocytes were rested for 4 hours.  

 

RNA extraction and real-time PCR 

Total RNA was extracted using the Quiagen miRNeasy kit (Qiagen, Hilden, 

Germany, Hilden, Germany) according to the manufacturer’s instructions. Briefly, tissue 

samples were lysed in QIAzol Lysis reagent (Qiagen, Hilden, Germany), homogenized 

with stainless steel beads in TissueLyser II (Qiagen, Hilden, Germany) followed by 

miRNA isolation following manufacturer’s instructions and DNase 1 Digest. RNA was 

quantified using Nanodrop 2000 (Thermo Scientific, Waltham, MA). Complementary 

DNA (cDNA) synthesis was performed by reverse transcription of 1 ug total RNA using 

the iScript Reverse Transcription Supermix (Bio-rad, Hercules, CA). Real-time 

quantitative PCR was performed using Bio-Rad iTaq Universal SYBR Green Supermix 

and a CFX96 real-time detection system (Bio-Rad Laboratories). Primers were 

synthesized by IDT, Inc. The primer sequences are listed in Table 2.1. Relative gene 

expression was calculated by the comparative cycle threshold (Ct) method. The 

expression level of target genes was normalized to the house-keeping gene, 18S rRNA, in 

each sample and the fold-change in the target gene expression between experimental 

groups was expressed as a ratio. Melt-curve analysis was used to confirm the authenticity 

of the PCR products. 
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miRNA Analysis 

Reverse transcription (30 min - 16°C; 30 min - 42°C; 5 min - 85°C) was 

performed in Eppendorf Mastercycler (Eppendorf, New York, USA) using 10 ng RNA, 

TaqMan primers and miRNA Reverse Transcription Kit (Applied Biosystems, Foster 

City, CA) followed by quantitative RT- in CFX96 (Bio-rad, Hercules, CA) using 

TaqMan Universal Probes Master Mix (Bio-rad, Hercules, CA).  All samples were 

normalized to snoRNA202, or U6 expression based on Normfinder 

(http://moma.dk/normfinder-software) analysis of loading control stability. hsa-miR-122-

FAM, U6-FAM, and sno202-FAM primer sets were purchased from Applied Biosystems.  

 

Construction of miR-122 antagonist and overexpression plasmids 

The scAAV-anti-miR-122 TuD and scAAV-anti-SCR TuD constructed were 

made as previously described Xie et al., 2012.221 The BamHI fragment carrying anti-

miR-122 TuD was replaced with the pri-miR-122 sequence amplified from C57/b6 

mouse genome DNA to generate scAAV-pri-miR-122 construct using primers: 

GCGGGATCCGACTGCAGTTTCAGCGTTTGG, and 

CGCGGATCCAAAAAAGACTCTAGGGCCCGACTTTACA.221 Mice were treated by 

tail vein injection with AAV vectors at 6 × 1011 genome copies/mouse or approximately 

3×1013 genome copies/kg.221 

Biochemical Assays 
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Serum alanine aminotransferase (ALT) levels were determined using a 

commercially available reagent (Advanced Diagnostics Inc) as described. Serum alanine  

aminotransferase (ALT) was determined using a commercially available reagent 

(Advanced Diagnostics Inc, Plainfield, NJ). 15ul of serum was mixed 1:10 with assay 

reagent diluted according to the instructions of the manufacturer, and UV absorbance at 

37 degrees C was measured over three minutes. The average change in absorbance per 

minute interval is then multiplied by a conversion factor to yield ALT levels.  

 Liver triglycerides were extracted using a 5% NP-40 lysis solution buffer. 

Triglycerides were quantified using a commercially available kit (Wako Chemicals) 

followed normalization to protein amount. 

Protein concentration was determined by by BCA protein assay (ThermoFisher 

Scientific) by using 10 uL of 1:10 or serially diluted lysate and incubating in assay 

reagent for 30 minutes at 37 degrees C. Absorbance was measured at 562nm on a 96 well 

plate using a plate reader. Concentrations were interpolated using 4-PL regression 

derived from a standard curve generated using bovine serum albumin standard (Pierce). 

 

Nuclear Extraction 

50mg of snap-frozen liver tissue was washed in 10-fold excess volume TKM-0.32 

buffer (0.32M sucrose, 50mM Tris-HCl, 25mM KCl, 5mM MgCl, 5mM PMSF), with 

protease inhibitor tablets 1 per 10 mL, (Roche) and homogenized using a hand-held 

homogenizer. Homogenates were transferred to microcentrifuge tubes and centrifuged 

(1000rpm for 10 minutes at 4 degrees C). Pelleted material was resuspended in TKM-2.0 
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buffer (2M sucrose, 50mM Tris- HCl, 25mM KCl, protease inhibitor cocktail) and 

homogenized again by handheld homogenizer. Pellets were collected by centrifugation 

(14000rpm for 30 minutes at 4 degrees C) and resuspended in 500ul Buffer A (10mM 

Hepes/KOH, pH 7.9, 2mM MgCl, 1mM EDTA, 10mM KCl, 1mM DTT, 5mM PMSF, 1 

protease inhibitor tablet). Pellets were again collected by centrifugation (14000rpm for 30 

minutes  at 4 degrees C) and resuspended in 50ul Buffer B (10mM Hepes/KOH pH 7.9, 

2mM MgCl, 1mM EDTA, 50mM KCl, 300mM NaCl, 2mM DTT, and 5mM PMSF with 

protease inhibitor tablets 1 per 10 mL, (Roche), 10% glycerol. Pellet was resuspended 

was sonicated at 40% duty cycle 1 second on/off cycle, frozen at -80 degrees overnight, 

and thawed with gentle agitation at 4 degrees Celsius. Supernatant containing nuclear 

extract was collected after centrifugation (14000rpm for 30 minutes  at 4 degrees C) and 

assayed for protein concentration.  

 

Electrophoretic Mobility Shift Assay  

The DNA binding activity of HIF-1a was assessed by electrophoretic mobility 

shift assay as described previously (Nath B., Hepatology. 2011 May;53(5):1526-3).75 A 

consensus double-stranded Hypoxia Response Element (HRE) (Santa Cruz Biotech, CA) 

oligonucleotide was used for EMSA. End-labeling was accomplished by treatment with 

T4 kinase in the presence of [P32]ATP. Labeled oligonucleotides were purified on a 

polyacrylamide copolymer column (Bio-rad, Hercules, CA). Five micrograms of liver or 

hepatocyte nuclear protein was added to a binding reaction mixture containing 50 mM 

Tris-HCl, pH 7.5, 5 mM MgCl2, 2.5 mM EDTA, 2.5 mM DTT, 250 mM NaCl, 20% 
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glycerol, 20 &g/ml BSA, 2 & poly(dI–dC) and 50,000 cpm g32P-labeled HIF-1a 

consensus oligonucleotide.  Cold competition was done by adding a 20-fold excess of 

specific unlabeled double-stranded probe to the reaction mixture. Samples were 

incubated at room temperature for 30 min. Reactions were run on a 4% polyacrylamide 

gel and the dried gel was exposed to an X-ray film at –80°C overnight. Band density was 

quantified using ImageJ64 image analysis. 

 

Whole Cell Lysate  

Approximately 50 mg of liver tissue was washed in ice cold PBS and 

homogenized in lysis buffer (9.5ml RIPA buffer, 1mM NaF, 2mM Na3VO4, 1 protease 

inhibitor tablet, 5mM PMSF) with stainless steel beads in TissueLyser II (Qiagen, 

Hilden, Germany, Hilden, Germany). After 10 minutes of incubation on ice, homogenates 

were centrifuged at 14,000xg for 10 minutes at 4 degrees C. The supernatant (clarified 

whole cell lysate) was collected and stored in aliquots at -80 degrees C.  

 

ELISA 

Cytokine levels were monitored in 25 mg of liver whole cell lysates diluted in 

assay diluent following manufacturer instructions. MCP-1 and TNFa were measured by 

use of specific anti-mouse ELISA from BioLegend. IL-1β was measured by use of 

specific anti-mouse ELISA (R&D Systems) that recognizes both pro- and cleaved- IL-1β.  

 

Histopathological analysis 
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Sections of formalin-fixed, paraffin-embedded livers were stained with 

hematoxylin and eosin (H&E), or Sirius Red and assessed for histological features of 

steatosis, inflammatory cell invasion, and fibrosis.  

 

Statistical Analysis  

Statistical significance between two groups was determined using two–tailed t-

test. Two-way ANOVA and Dunnett’s multiple comparison post-test were used to 

compare the means of multiple groups. Outliers were determined using ROUT method 

with a q of 1%. Data are shown as mean ± SEM and were considered statistically 

significant at P < 0.05. GraphPad Prism 6.02 (GraphPad Software Inc.) was used for 

analysis.  

Results 

To assess the therapeutic potential of miR-122 restoration on the pathogenesis of 

alcoholic liver disease, I developed an rAAV8 vector expressing miR-122 (miR-122-OX) 

or a scrambled (scr).  In a preliminary experiment, I established that wild-type alcohol-

fed mice develop significant liver injury by week 2 of the 5-week alcohol model (Figure 

4.1a) and that the rAAV8 miR-122-OX construct requires 3 weeks for full expression in 

the liver (Figure 4.1b). Therefore, I treated pair-fed and alcohol-fed mice with 6x1011 

viral particles containing Scr or miR-122-OX construct by tail-vein injection on week 

two of a five-week alcohol feeding model (Figure 4.1c).  

qPCR analysis demonstrated treatment with rAAV8-miR-122-OX effectively 

increased mature miR-122 levels in the livers of pair-fed and alcohol-treated mice 
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( 

Figure 4.2a). However, I found that in isolated hepatocytes, it appeared that the vector did 

not increase miR-122 in isolated hepatocytes in miR-122-OX+PF mice ( 

Figure 4.2b). To confirm this finding, I performed a northern blot from total RNA 

isolates from hepatocytes which showed a similar patterns of expression ( 

Figure 4.2c).  

In spite of these findings, consistent with the in vitro data presented in chapter 2 

(Figure 2.6a), in vivo overexpression of miR-122 prevented the alcohol-induced increase 

in HIF-1α mRNA and DNA binding activity (Figure 4.3a,b). Overexpression of miR-122 

in hepatocytes resulted in dramatic reductions in serum ALT (Figure 4.4a), and steatosis 

on histology and in liver triglycerides induced by alcohol (Figure 4.4b,c). Furthermore, 

miR-122-OX treatment prevented induction of inflammatory cytokines in ALD including 

TNF-α, MCP1, and IL-1ß (Figure 4.5a-c).  

Conclusions and Discussion 

Herein, I hypothesized that correction of the alcohol-induced inhibition of miR-

122 via ectopic expression could reverse liver injury in a murine model of alcoholic liver 

disease. Using an AAV8 miR-122-OX vector system developed by my collaborators in 

the Gao lab, I was able to restore miR-122 in the livers of alcohol fed mice. Furthermore, 

this restoration was associated with the reduction in multiple indices alcohol-induced 

liver injury including steatosis, serum ALT, and inflammatory markers. Taken together, 
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these data suggest that restoration of miR-122 in the liver may be a viable therapeutic 

option.  
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Figure 4.1: Design of miR-122 treatment model. 

(a) Serum ALT from week 2, of a Liber DeCarli chronic alcohol feeding model. (b) 

Secreted Gaussia Luciferase (Gluc) activity measured weekly from (n=3-5) alcohol-fed 

mice given 6x1011 viral particles by tail vein injection. Vector expression increased 

steadily week by week reaching a peak at 3 weeks post injection. (c) Schematic 

representation of rAAV8-miR-122-OX treatment model. *P < 0.05, **P<0.005, 

***P<0.0005 by Student’s t test or two-way ANOVA. 
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qPCR analysis 

of expression 

from (a) total liver and (b) hepatocyte RNA. (c) Northern blot for hepatocyte miR-122. 

U6 was used as a loading control. Data is represented as fold change relative to WT-PF 

mice. Treatment of PF and Et-fed WT mice with rAAV8 –pri-miR-122 (miR-122-OX) 

increased miR-122 expression in total livers when compared to respective PF-fed 

controls. qPCR and northern blot from hepatocyte RNA extracts revealed a reduced, but 

not statistically significant, level of miR-122 in PF+miR-122-OX mice. Alcohol-fed mice 

treated with miR-122-OX demonstrated significant increases in miR-122 in both total 

liver and hepatocytes. *P < 0.05, **P<0.005, ***P<0.0005 by two-way ANOVA. (n=5) 

Figure	4.2:	miR-122	expression	in	AAV8-miR-122-OX	treated	mice.	
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Figure 4.3: Restoration of miR-122 inhibits alcohol-induced increases of HIF-1α 

HIF-α (a) mRNA and (b) DNA binding activity in hepatocytes measured by qPCR and 

EMSA respectively. EMSA analysis was performed from hepatocyte nuclear extracts 

from PF and ET-fed mice treated with either AAV8 Scr or miR-122-OX. Ectopic 

expression of miR-122 inhibits the alcohol-induced increase of HIF-1α mRNA and DNA 

binding activity in hepatocytes. *P < 0.05, **P<0.005, ***P<0.0005 by two-way 

ANOVA. (n=5) 
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Figure 4.4: Treatment with rAAV8-miR-122-OX reverses alcohol-induced liver 

injury and steatosis 

(a) Serum ALT, (b) H&E histology and (c) hepatic triglycerides from livers of either PF- 

or Et-fed WT mice treated with rAAV8-Scr or rAAV8-miR-122-OX vectors. Restoration 

of miR-122 reduced liver injury and hepatic steatosis in alcohol-fed mice. Alcohol-fed 

mice exhibited extensive steatosis and glycogen depletion. miR-122-OX-treated PF and 

Et-fed mice exhibited no evidence of steatosis or parenchymal changes. (n=8-12) Long 

arrows = glycogen-filled hepatocytes. Asterisks=immune cells. Long arrows = lipid-filled 

hepatocytes. Scale bars; 100 µm. *P < 0.05, **P<0.005, ***P<0.0005 by two-way 

ANOVA. 
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Figure 4.5: Treatment with rAAV8-miR-122-OX reverses alcohol-induced 

inflammation 

(a-c) ELISA and qPCR analysis of pro-inflammatory cytokines MCP-1, IL-1β, and TNF-

α, from total liver lysates and and total liver RNA respectively. Et-fed mice treated with 

rAAV8-miR-122-OX vectors demonstrated reduced pro-inflammatory cytokines when 

compared to scramble treated controls.  (n=8-12) Scale bars; 100 µm. *P < 0.05, 

**P<0.005, ***P<0.0005 by two-way ANOVA. 
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Amidst the data, it was surprising to find that in hepatocytes isolated from pair-fed mice 

treated with the AAV8 miR-122 overexpression construct did not appear to have 

increased miR-122 when assessed by qPCR and northern blot. In contrast, ethanol-fed-

mice treated with the overexpression vector did indeed exhibit increased miR-122 

expression in total liver extracts and isolated hepatocytes by qPCR and northern blot 

analysis.  

As described before, saturation of exportin 5 (XPO5) during overexpression of 

shRNAs has been described. This is unlikely given that studies demonstrating saturation 

of miRNA biogenesis pathways used shRNA expression vectors on non-endogenous 

products and only noted toxicity at high vector doses (1x1012) while I used 1/2 this dose 

(6x1011).159,303 While I did not observe any mortality or increase in serum ALT in either 

pair-fed or alcohol-fed mice, this effect may have been evident given an extended time 

period.159,303 Alternatively, it may be that pair-fed mice, when treated with the AAV8 

exhibited transient hepatotoxicity due to XPO5 saturation in the three weeks between 

injection of the vector and the completion of our study. Given that liver regeneration 

studies have shown a doubling in liver mass within 48 hours after 2/3 partial hepatectomy 

studies, a transient toxicity would greatly reduce the number of hepatocytes expressing 

the miR-122 transgene but exhibit no observable defects at the time of necropsy. It has 

also been shown that kupffer cells in the liver may capable of expressing AAV8 delivered 

transgenes. While AAV8 does can transduce 90-95% hepatocytes depending on dose, it 

has been shown that macrophages may in fact be either directly infected or in their 

capacity as phagocytic cells, internalize the viral particles. 238,304-306 Therefore, KCs may 
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function as a reservoir for miR-122 transgene expression while it is lost in hepatocytes. 

Alternatively, given that no ALT or mortality was noted, a yet, undefined feedback 

mechanism for mature miR-122 levels may exist.  

Finally, one other disparity regarding this data remains unanswered; why did both 

the hepatocyte and total liver qPCR and northern blot from alcohol-fed mice treated with 

the miR-122-OX construct, appropriately reflect the increase in miR-122 when PF mice 

did not? As described before, this may be an extension of the toxicity due to XPO5 

saturation. As will be explored in the following chapter, the decrease in miR-122 

observed with alcohol is due a decrease in pri-miR-122 transcription, thereby decreasing 

the amount of pre-miR-122 requiring nuclear export via XPO5. Therefore, the 

introduction of a transgene encoding the pre-miR-122 in alcohol-fed mice would be 

below the toxic threshold allowing sustained expression in hepatocytes. 

Overall, these data demonstrate that restoration of miR-122 in hepatocytes can 

suppress the pathogenic features of ALD via inhibition of HIF-1α in vivo and indicates 

that hepatocyte-specific miR-122 delivery could be a therapeutic consideration in ALD. 
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CHAPTER 5: ALCOHOL REGULATES MIR-122 THROUGH ALTERNATIVE 
SPLICING OF GRAINYHEAD PROTEINS 

Summary 

The data presented in previous chapters clearly demonstrates that essential role of miR-

122 in maintaining hepatic normalcy and that sustained inhibition can cause an ALD-like 

phenotype. However, the question still remained as to the mechanism by which alcohol 

inhibits miR-122. The high level of miR-122 in the liver is maintained by host of 

hepatocyte specific transcription transcription factors. Recently, it has been shown that 

grainyhead-like 2 (GRHL2), a transcription factor not typically expressed in mature 

hepatocytes, could be a potential inhibitor of miR-122 expression.  In this chapter I will  

provide evidence to suggest that not only does alcohol regulate miR-122 through 

upregulation of GRHL2 in hepatocytes, but that alcohol regulates alternative splicing  

events within the grainyhead family of proteins. 
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Introduction 

The question remained as to the mechanism by which miR-122 expression is 

reduced. As shown in chapter 2, while AAV8-miR-122-TuD achieved a robust 

knockdown of miR-122 in pair-fed mice, I consistently observed a further ~50% 

reduction in miR-122 in alcohol-fed mice. Furthermore, while I have demonstrated that 

restoration of the mature form of miR-122, and HIF-1α-null mice are protected from the 

phenotype of ALD, the inhibitory effect of alcohol on miR-122 expression appeared to 

still be present. Additionally, in chapter 3, both PF and Et mice treated with the U6-

driven AAV8-miR-122-OX achieved similar mature miR-122 expression levels from 

total liver RNA. Given that the transgene encoded a large segment of the pri-miR-122 

genomic region requiring processing via endogenous miRNA biogenesis pathways, and 

suggesting that the change in promoter was able to negate this inhibitory effect therefore, 

I hypothesized that alcohol was not effecting the processing of of miR-122, rather its 

transcription. 

Many transcription factors have been shown to regulate miR-122 transcription, 

including hepatocyte nuclear factors (HNFs) 1, 3, 4, and 6.135,185,187,241 Recent studies 

have pointed to grainyhead like-2 (GRHL2), a homolog of the drosophila grainyhead 

(GRH) transcriptional regulator, as a potential repressor of miR-122 expression in hepatic 

progenitor cells during hepatobilliary differentiation.307  

GRHL2, a homolog of the Drosophila protein Grainyhead (GRH), is one of the 

three mammalian proteins within the Grainyhead-like (GRHL) family of transcription 

factors.  
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The three GRHL proteins are numbered 1-3, however they have gone by other 

names as well; GRHL1 (mammalian grainyhead, MGR, LBP-32), GRHL2 (brother of 

mammalian grainyhead, BOM), and GRHL3 (sister of mammalian grainyhead, SOM). 

Within the mammalian GRHL family, each of the three grainyhead proteins have been 

found to have tissue and developmentally distinct expression patterns. 308 309  They are 

found primarily in epithelial tissues, in organs such as epidermis, oral and olfactory 

epithelium, kidneys and urogenital tract, stomach and the digestive tract, heart and lung. 

308,310,309  

Structurally, all grainyhead proteins are remarkably similar, containing an 

evolutionarily conserved CP2 DNA binding domain flanked by an N-terminal 

transactivation domain and a C-terminal DNA binding domain. 311, 312 313 314 309 In fact, 

amino acid sequence comparison revealed that the human homologue of murine GRHL1 

to be 94% identical at the amino acid level. 315 Further, GRHL1 and GRHL2 share 90% 

sequence homology at the amino acid level, with much of the differences being within 

the N-terminal transactivation domain, linker regions, and the C-terminal dimerization 

domains. Wilanowski et al. found that while GRHLs 1 and 2 (and theoretically 3) 

function as homodimers, their activity is enhanced as heterodimers. Together, these data 

suggest that the GRHL family of proteins were derived from gene duplication events 

during evolution. 309 

The first studies in Drosophila demonstrated the essential role for GRH in 

development and specifically dorsal/ventral patterning and CNS development. 316-318 In 

mammalian systems, it appears that in mammals the pleotropic functions of GRH in 
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drosophila have been delegated amongst the three grainyhead-like proteins, though still 

central to functions within cells of epithelial origin. GRHL1 and GRHL2 have been 

shown to be essential regulators of cell-cell junctions. GRHL1 null mice exhibit 

palmoplanter keraderma, desomosomal abnormalities, skin barrier defects, and improper 

differentiation of keratinocytes. 319,320  Homozygous deletion of GRHL2 is embryonically 

lethal due to failure of neural tube closures. 321,322 321 However, autosomal recessive 

knockouts have also shown its importance in regulation of barrier function and 

keratinocyte differentiation. 319,323 While not embryonically lethal, GRHL3-null mice die 

at birth with defects in neural tube closure. Using adult specific GRHL3 knockout mice 

groups have shown the loss of GRHL3 severely impairs wound healing and skin barrier 

functions. 322 324,325 

Aside from knockout-based developmental studies, the majority of recent work 

into the function of the GRHL proteins has centered on their roles in cancer with complex 

and often conflicting results. Briefly, GRHL1 expression in neuroblastomas is associated 

with a favorable prognosis, reduced cellular proliferation, and increased xenograft growth 

in mice. 326 However, given its role in skin differentiation, GRHL1-null mice rapidly 

develop squamous cell carcinoma (SSC), through this is likely due to the lack of terminal 

differentiation at birth. 327 

Many more studies have explored the role of GRHL2 and particularly in breast 

cancer. Studies first characterized GRHL2 as a suppressor of EMT, where breast and 

colon cancer cells with increased expression exhibited reduced xenograft growth and 

expression of stem cell markers as well as increased chemosensitiviity. 328-330 
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Mechanistically, it was found that GRHL2 directly enhances E-cadherin expression while 

inhibiting ZEB1, a prominent driver of EMT. 320,331,332 However, it was also found that 

ZEB1, in response to β-catenin/TGF-β stimulation can directly repress GRHL2 indicating 

a reciprocal feedback loop. 328-331 While seemingly at odds, they are in line with the 

paradoxical effect of TGF-β in cancer progression. In the early stages TGF-β functions as 

a tumor suppressor, while in later stages it promotes growth, metastasis, and EMT. 328-330 

While these results are far from conclusive, it could be that GRHL2 expression and its 

effect on cancer is dependent on the stage of cellular differentiation.  

In addition to simple increases or decreases in expression, it has also been shown 

that GRHL undergoes alternative splicing events, dramatically changing their functional 

activity. First described in neuroblast cells in Drosophila, selective mutation of this 

isoform resulted in lethality and movement disorders, demonstrating its functional 

significance. Mechanistically, previous studies in drosophila revealed that the mutant 

protein preferentially forms heteromeric complexes with the full-length grainyhead, 

blocking the formation of grainyhead homodimers. These heteromeric complexes fail to 

activate gene expression despite the presence of one functional activation domain. 333 

This suggests that the ability of spliced of GRHL1 to homodimerise or heterodimerise 

with grainyhead family proteins may have similar functional consequences. In a seminal 

paper, Wilanowski et al discovered the presence of homologous alternatively spliced 

isoforms of mammalian GRHL proteins as well.  In their study, alignment of these 

proteins and mapping of the genomic locus revealed that the longer (p70 or full-length, 
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FL) isoform and the shorter (p49 or spliced, S) isoform contained similar core DNA-

binding and C-terminal dimerization domains but varied significantly at their N-termini (  
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Figure 5.1) Upon mapping the corresponding cDNAs to their genomic loci, they 

found that the first three coding exons corresponding to the conserved transactivation 

domain are exclusive to the FL isoform of GRHL1. Given that this region contained the 

conserved transactivation domain (TAD), they hypothesized that the spliced isoform may 

function in dominant-negative fashion similar to those found in drosophila. Indeed, 

ectopic expression of either the full-length and TAD alone in GRHL-naïve cells activated 

GRHL-responsive reporters while introduction of the spliced isoform nullified 

transcriptional activity. Further, in situ hybridization in mice and cDNA mapping of 

human tissue revealed that these GRHL1 isoforms exist in in a variety of tissues 

exhibiting independent expression. 309 

Since their discovery, there have been no reported studies characterizing the role of 

GRHL1 splicing in mammalian systems.  Recently however, Werner et al has 

demonstrated the presence and functional consequence of grainyhead-like 2 splicing in 

breast cancer. Similar to GRHL1, GRHL2 also undergoes splicing within its coding exon 

producing a N-terminal truncated protein. Interestingly, the cDNA revealed that splicing 

retained a large portion of the TAD. Due to the proximity of the start codon to the 5’ end 

of the transcript, an alternative, downstream translation start site is favored, creating the 

49 kDa spliced isoform. In their study, they found that ectopic expression of the spliced 

GRHL2 isoforms in breast cancer cell lines exerted a dominant negative effect on the 

tumor-suppressive function of endogenous GRHL2. However, as noted above, this effect 

is highly dependent on the breast cancer subtype tested. While the nuances of their work   
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Figure 5.1: Schematic representation of GRHL 1 &2 full length and spliced proteins 

Structurally, all grainyhead proteins are remarkably similar, containing an evolutionarily 

conserved CP2 DNA binding domain flanked by an N-terminal transactivation domain 

and a C-terminal DNA binding domain. The splice variants result in a truncated protein 

packing the N-terminal transactivation domain (TAD) found largely remain intact. 

Percentages indicate similarity between indicated domains between the spliced and the 

full length variants.  
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are beyond the scope of this report, suffice to say that the functional role of GRHL2 is 

nuanced and cell specific. 329  

In the liver, proteomic and immunohistochemistry screens of hepatic tissue have 

demonstrated that GRHL2 is restricted to the biliary epithelium, while GRHL1 is specific 

for hepatocytes in the normal liver. Furthermore, RNAseq data suggests that GRHL1 is 

expression is decreased 1.8-fold in a study of HCC tumor samples when compared to 

normal tissue. This decrease in GRHL1 is analogous to the 2-fold decrease in miR-122 

previously described in HCC tumor samples as well. Tanaka et al. found an association 

between a genome copy number gain of GRHL2 in tumor tissues of patients with 

recurrent HCC.334 However, it is key to note that these findings denoted increases of the 

GRHL2 genomic locus on chromosome 8, a frequent occurrence in HCC, and that 

increased copy number of GRHL2 has been shown not to translate into increased protein 

or mRNA. Furthermore, their work demonstrating that siRNA knockdown of GRHL2 

inhibits HCC tumor growth was performed in Huh-6 cells lines which lack GRHL2 

mRNA while harboring copy number gains of chromosome 8.334,335 While they went on 

to demonstrate that siRNA knockdown of GRHL2 inhibited HUH-6 (human HCC cell 

line) proliferation. However, more recent studies have shown that the HUH-6 cells used 

in this study, while having a copy number gain at the genomic locus for GRHL2, do not 

have any detectable GRHL2 transcript. The first study to define GRHL2’s function in the 

liver was done by Tanimizu, et al. They determined that GRHL2 downregulation was 

required for the development of mature hepatoblasts from neonatal cholangiocytes. 
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However, the significance of these findings or any insight into the role the grainyhead 

proteins in hepatic pathophysiology have never been described.  

Together, these studies led me to hypothesize that the loss of GRHL1, the 

predominant homolog in hepatocytes, is involved in maintaining miR-122 expression and 

its loss associated with an increase in GRHL2, due to alcohol, may epigenetically 

regulate miR-122 and ALD pathogenesis. 

Methods 

Procurement of Human Specimens 

Paraffin embedded blocks and flash frozen human liver tissue was obtained form 

healthy controls, alcoholic cirrhosis, and HCV cirrhosis, were obtained through the Liver 

Tissue Cell Distribution System, Minneapolis, Minnesota, which was funded by NIH 

Contract # N01-DK-7-0004/HHSN26700700004C.  

Animal Studies 

All animals received care in compliance with protocols approved by the 

Institutional Animal Use and Care Committee (IACUC) of the University of 

Massachusetts Medical School. Wild-type (WT) mice (C57/Bl6), Alb-Cre, and HIF-

1αflox/flox
 
mice were purchased from Jackson Laboratories (Bar Harbor, ME) and 

backcrossed onto a C57/Bl6 background. 6-8 week old mice were gradually acclimated to 

a Lieber-DeCarli liquid diet with 5% ethanol (vol/vol) over a period of 1 week, then 

maintained on the 5% diet for 4 weeks (total of 5 weeks). Consumption was recorded 

daily and isocaloric amounts of a control diet (in which dextran-maltose replaced calories 

from ethanol) were dispensed to pair-fed (PF) animals. Weights were recorded weekly. 
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At the conclusion of the 5-week feeding, mice were weighed, blood collected, and 

euthanized. Livers were dissected, weighed and divided into lipid nitrogen for protein and 

biochemical assays, fixed in 10% phosphate-buffered formalin for histological analysis, 

preserved in OCT frozen section preparation solution, or soaked in RNALater (Qiagen, 

Hilden, Germany, Hilden, Germany). Blood was allowed to clot and serum obtained 

using gel-based serum separator tubes.  

 

Isolation of primary mouse hepatocytes and LMNCs  

Anesthetized animals were perfused by way of portal vein with saline solution, 

followed by enzymatic digestion, as previously described.75 The hepatocytes were 

separated by centrifugation, Primary hepatocytes were cultured in low-glucose DMEM 

supplemented with 10% fetal bovine serum, 1% Anti-Anti, 1% gentamycin, 1% insulin, 

transferrin, selenium solution. Primary hepatocytes were seeded in 6-well collagen-

coated plates (Biocoat, Becton Dickinson). Before starting stimulation experiments, 

hepatocytes were rested for 4 hours.  

 

RNA extraction and real-time PCR 

Total RNA was extracted using the Quiagen miRNeasy kit (Qiagen, Hilden, 

Germany, Hilden, Germany) according to the manufacturer’s instructions. Briefly, tissue 

samples were lysed in QIAzol Lysis reagent (Qiagen, Hilden, Germany), homogenized 

with stainless steel beads in TissueLyser II (Qiagen, Hilden, Germany) followed by 

miRNA isolation following manufacturer’s instructions and DNase 1 Digest. RNA was 
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quantified using Nanodrop 2000 (Thermo Scientific, Waltham, MA). Complementary 

DNA (cDNA) synthesis was performed by reverse transcription of 1 ug total RNA using 

the iScript Reverse Transcription Supermix (Bio-rad, Hercules, CA). Real-time 

quantitative PCR was performed using Bio-Rad iTaq Universal SYBR Green Supermix 

and a CFX96 real-time detection system (Bio-Rad Laboratories). Primers were 

synthesized by IDT, Inc. The primer sequences are listed in chapter 1. Relative gene 

expression was calculated by the comparative cycle threshold (Ct) method. The 

expression level of target genes was normalized to the house-keeping gene, 18S rRNA, in 

each sample and the fold-change in the target gene expression between experimental 

groups was expressed as a ratio. Melt-curve analysis was used to confirm the authenticity 

of the PCR products. 

 

Pri-miRNA Analysis 

Reverse transcription was performed from total RNA as described above and 

diluted 5-fold. TaqMan primers and miRNA Reverse Transcription Kit (Applied 

Biosystems, Foster City, CA) followed by quantitative RT- in CFX96 (Bio-rad, Hercules, 

CA) using TaqMan Universal Probes Master Mix (Bio-rad, Hercules, CA). All samples 

were normalized to snoRNA202, or U6 expression based on Normfinder 

(http://moma.dk/normfinder-software) analysis of loading control stability. hsa-miR-122-

FAM, GAPDH-FAM, and mmu-miR-122-FAM primer sets were purchased from 

Applied Biosystems.  

Whole Cell Lysate  
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Approximately 50 mg of liver tissue was washed in ice cold PBS and 

homogenized in lysis buffer (9.5ml RIPA buffer, 1mM NaF, 2mM Na3VO4, 1 protease 

inhibitor tablet, 5mM PMSF) with stainless steel beads in TissueLyser II (Qiagen, 

Hilden, Germany, Hilden, Germany). After 10 minutes of incubation on ice, homogenates 

were centrifuged at 14,000xg for 10 minutes at 4 degrees C. The supernatant (clarified 

whole cell lysate) was collected and stored in aliquots at -80 degrees C.  

Western Blotting  

Approximately 10-20 ug of total liver lysate was resolved on 10% polyacrylamide 

gels and transferred overnight to nitrocellulose support. Membranes were blocked 

overnight with blocking buffer (5% bovine serum albumin in Tris-Borate-SDS with 

0.01% Tween 20) with refrigeration, and subsequently probed overnight with GRHL2 

(Atlas antibodies, HPA004898) and GRHL2 (Atlas antibodies, HPA004820) rabbit 

polyclonal antibodies. Detection was performed using an anti-rabbit horseradish-

peroxidase conjugated secondary antibody and chemiluminescent substrates. Band 

density was quantified using ImageJ64. 

Confocal microscopy – Immunofluorescence.   

Confocal images were processed as previously described. Primary hepatocytes 

were fixed, permeablized and stained O/N with either anti-GRHL2 (Atlas antibodies, 

HPA004820), or normal Rabbit IgG sc-2027 (Santa Cruz Biotechnology, Dallas, Texas). 

Actin was stained using ActinGreen 488 anti-ReadyProbes Reagent #R37110 (Molecular 

Probes, Eugene, OR). Secondary antibody used was anti-rabbit Alexa Fluor 594 #A-
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21207 (Molecular Probes, Eugene, OR). Images were acquired using Leica TCS SP5 II 

Laser Scanning Confocal Microscope.  

Immunohistochemistry 

Immunohistochemistry staining for GRHL2 (Atlas antibodies, HPA004898) and 

GRHL2 (Atlas antibodies, HPA004820) were performed on formalin-fixed, paraffin-

embedded livers according to the manufacturer’s instructions. ImageJ (NIH) was used for 

image analysis. 

Results 

Utilizing taqman probes specific for the miR-122 primary transcript (pri-miR-

122), I found that alcohol reduces pri-miR-122 expression approximately 2-fold in human 

alcoholic cirrhosis patients (Figure 5.2a) while there was no change in patients with HCV 

cirrhosis. Livers of alcohol-fed mice and specifically hepatocytes also showed a 

significant reduction in pri-miR-122 expression (Figure 5.2b) similar to the reduction of 

mature miR-122 (Figure 2.4). Furthermore, while I have demonstrated that restoration of 

the mature form of miR-122, and HIF-1α-null mice are protected from the phenotype of 

ALD, the inhibitory effect of alcohol on pri-miR-122 expression was still present (Figure 

5.2c,d). These findings led me to hypothesize that chronic alcohol specifically regulates 

miR-122 at the transcriptional level. 

The high baseline level of miR-122 in hepatocytes is maintained by many 

transcription factors including HNF4, and HNF6.185,187,236 However, none of these 

transcription factors showed changes in the livers of alcohol-fed mice compared to 

control mice that would result in reduced miR-122-transcription (  
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Figure 5.3a,b). Recent studies have identified grainyhead like-2 (GRHL2), a 

homolog of the drosophila grainyhead transcriptional regulator, as a potential repressor of 

miR-122  

expression in progenitor cells during hepatic differentiation. 307  However, the role the 

grainyhead proteins in hepatic pathophysiology is yet to be described. 

In silico analysis revealed a conserved grainyhead dimer binding site 

approximately 300 bps upstream of the miR-122 transcription start site (TSS), (Figure 

5.4a). First, I performed chromatin immunoprecipitation-qPCR (ChIP-qPCR) in HUH-7 

cells that confirmed the putative GRHL binding site in the miR-122 promoter (Figure 

5.4b).  

Immunohistochemistry (IHC) revealed that while GRHL1 staining is confined to 

hepatocytes, no clear change in staining was apparent (  
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Figure 5.5a). GRHL2 staining revealed its expression is restricted to the biliary 

epithelium in healthy controls and pair-fed mice, however, alcoholic cirrhosis patients 

and alcohol-fed mice had notably increased staining within hepatocytes (  
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Figure 5.5b). IHC for GRHL2 of FFPE and immunofluorescence also showed that 

alcohol-fed mice had increased GRHL2 staining within hepatocytes (  
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Figure 5.5, Figure 5.6a,b). Next, I sought to characterize the mRNA expression of 

GRHL1 and GRHL2 in alcoholic cirrhosis patients, and found a decrease in the full-

length GRHL1 (Figure 5.7a) and a significant increase in total GRHL2 (Figure 5.7b) 

mRNA when compared to healthy controls and HCV cirrhosis. Furthermore, this 18-fold 

increase in GRHL2 mRNA demonstrated a significant inverse correlation with miR-122 

expression in alcoholic human livers (Figure 5.7b, r2=0.6803, P<0.0001). Alcohol-fed 

mice showed a modest but statistically not significant increase in full length GRHL2 

expression (Figure 5.7c) and no change in either total or full length  

GRHL1 expression (Figure 5.7d). However, using primers specific for the spliced form, 

there appeared to be a trend towards an increase.  

Western blot from total liver lysates revealed that that while GRHL1-FL was 

decreased in alcoholic patients(Figure 5.8a), the expression of the GRHL2-FL was 

unchanged in either murine or human livers (Figure 5.8c). However, expression of the 

spliced variants of both of GRHL1 and 2, previously described in the literature as 

dominant-negative isoforms, were significantly increased in both alcohol-fed murine and 

human alcoholic cirrhosis livers (Figure 5.8a-d). These isoforms, are the result of 

alternative splicing events in exon 1 characteristic of the Grainyhead-family proteins 

which result in proteins containing the conserved C-terminal DNA binding and 

dimerization domains, but lacking N-terminal transactivation domain, thereby inhibiting 

transcriptional activity at its targeted binding sites (  
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Figure 5.1). Taken together, this led me to hypothesize that alcohol increases the 

spliced or “dominant-negative”, variants of GRHL1 and 2 in hepatocytes, allowing them 

to hetero-dimerize, and repress miR-122 expression.  
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Pri-miR-122 expression in (a) 

human livers (n=10-12), alcohol-

fed WT murine (b) livers (n=8-14) and hepatocytes (n=5). (c) Pri-miR-122 expression in 

HIF1hepKO hepatocytes from pair-fed and alcohol-fed treated with either Scr or miR-

122-TuD.(d) Pri-miR-122 expression in WT, PF or Et-fed hepatocytes treated with either 

Scr or or miR-122-OX. *P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test (n=8-12). 

  

Figure	5.2:	Chronic	alcohol	inhibits	pri-miR-122.	
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Figure 5.3: Expression of HNF-4α and HNF6β in murine livers. 

Expression of (a) HNF4α, and (b) HNF6 in the livers of PF and Et-fed mice. *P < 0.05, 

**P<0.005, ***P<0.0005 by Student’s t test (n=8-14). 



183 

 

  



184 

 

Figure 5.4: miR-122 promoter contains a conserved grainyhead binding site. 

Schematic representation of the GRHL1/2 binding site ~300 bp upstream of the TSS. (b) 

% input GRHL1 chromatin immunoprecipitation from HUH-7 cells.  
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Figure 5.5: Grainyhead-like 1 and 2 immunohistochemistry. 

Immunostaining for (a) GRHL1 and (b) GRHL2 in FFPE liver sections from healthy 

controls and alcoholic cirrhosis patients. GRHL2 histology in (a) murine and (b) human 

livers. (c) Immunostaining of FFPE liver sections from PF- and Et-fed mice. Scale bars; 

full-size=100 µm, inset=50 µm. 
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Figure 5.6: Chronic alcohol increases GRHL2 expression in murine hepatocytes. 

Immunofluorescence staining using anti-GRHL2 or normal rabbit IgG control antibody in 

primary murine hepatocytes isolated from alcohol and pair-fed mice. Scale bars; (a)7.5 

µm, (b)PF=25 µm, PF=10 µm, Et+IgG=25 µm. DAPI – Blue, GRHL2 – Red, Actin – 

Green.  
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Figure 5.7: Expression of grainyhead-like proteins in murine and human livers. 

mRNA expression of (a) GRHL1-FL and (b) Grhl2-total in the livers of patients with 

alcoholic cirrhosis, HCV cirrhosis, and healthy controls. (c) Pearson correlation between 

miR-122 expression and GRHL2 mRNA. (n=10-12) mRNA expression of murine (d) 

GRHL1-FL and spliced (S) isoforms and (e) Grhl-FL in the livers alcohol and pair-fed 

mice (n=6-14)..  *P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test.  
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To examine the inhibitory effect of the spliced isoforms on miR-122, I cloned the 

promoter region of the human miR-122 gene into an empty PGL4 luciferase plasmid 

devoid of an enhancer or promoter. Furthermore, I mutated the putative GRHL binding 

site (Figure 5.4) and created a truncated promoter which contains the essential HNF 

binding sites but is 50 bp downstream of the GRHL site. I co-transfected each promoter 

construct with either GRHL1-FL, GRHL2-FL, or the GRHL2-S alone and in combination 

into HUH-7 cells which has the highest miR-122 expression of any hepatocyte cell 

line.182 Surprisingly, GRHL1, 2, and 2-S alone or in combination all inhibit miR-122 

promoter activity equally (Figure 5.9a). Furthermore, both the truncated and the reporter 

with the of mutated putative GRHL binding site not only enhanced baseline promoter 

activity and only blocked the inhibitory effect of GRHL1-FL, and not of either GRHL2 

isoforms ((Figure 5.9a). HUH-7 cells, while having high miR-122 expression, their levels 

are nearly 10-fold lower than primary human hepatocytes. Therefore, to confirm the 

abovementioned findings, I transfected either the GRHL1-FL, 2-FL or 2-S isoforms 

independently or in combination into primary human hepatocytes. 48-hours later, total 

RNA was collected and assayed for pri-miR-122 expression. Oddly, neither GRHL1, 

GRHL2-FL, or the GRHL2-S inhibited pri-miR-122, while the combination of GRHL1 

and GRHL2/GRHL2-S both enhanced expression (Figure 5.9b). Taken together these 

data suggests that alcohol regulates miR-122 expression by selectively increasing the 

spliced form of GRHL1 and 2 in hepatocytes. 
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Conclusions and Discussion 

These data indicate that the grainyhead family of transcription factors are 

essential in the regulation of miR-122 expression. I hypothesized that chronic alcohol 

increases GRHL2 expression within hepatocytes, inhibiting miR-122 transcription. As 

expected, GRHL2 expression was induced by chronic alcohol in humans and mice and 

inhibited miR-122 promoter activity in vitro. Surprisingly, I found that chronic alcohol 

induces alternative splicing of GRHL2 and GRHL1. Previous reports have shown that 

GRHL1 is constitutively expressed in hepatocytes while GRHL2 is predominantly in 

biliary cells.335 I too find that GRHL2 expression is restricted to the biliary epithelium in 

normal livers, while GRHL2 is expressed in hepatocytes in ALD in humans and mice 

upon exposure to chronic alcohol. However, in murine hepatocytes, IHC and 

immunofluorescence staining for GRHL2 revealed that while all hepatocytes exhibited 

significantly increased staining, this was largely localized perinuclear/cytoplasmic 

staining distribution, with only a few cells showing strong nuclear staining. This is 

puzzling given that the grainyhead proteins typically exhibit constitutive nuclear 

localization and no regulators of their nuclear translocation are known.   
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Figure 5.8: Chronic alcohol induces alternative splicing of GRHL1 and GRHL2. 

Representative immunoblot for GRHL1 from (a) human (n=5) and (b) murine 

(n=5) from total liver lysate. Representative immunoblot for GRHL2 from (c) human 

(n=5) and (e) murine (n=5) from total liver lysate. β-actin was used as a loading control. 

*P < 0.05, **P<0.005, ***P<0.0005 by Student’s t test.  
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Figure 5.9: Role of grainyhead isofroms on miR-122 expression. 

(a) Firefly luciferase activity driven by either a WT, Mut (mutated GRHL site, or 

truncated human miR-122 promoter in HUH7 cells. Each promoter was co-transfected 

with human cDNA clones of either the GRHL1-FL, GRHL2-FL, or GRHL2-S alone, or 

in combination. (b) expression of pri-miR-122 in primary human hepatocytes containing 

ectopically expressed either GRHL proteins as described above. Cells were incubated for 

48 hours, then harvested for luciferase assay (a) or total RNA extracted for qPCR 

analysis(b). M= Mock, G1= GRHL1-FL, G2=GRHL2-FL, G2-S=GRHL2-Spliced. 



197 

 

  



198 

 

Interestingly, immunoblot from murine and human livers revealed that the 

increase in GRHL2 and GRHL1 corresponded to increases in their respective splice 

variants. In advanced alcoholic cirrhosis, there is switch in GRHL1 from its full-length to 

its spliced form. This appeared to support my initial hypothesis that GRHL1 activates 

miR-122 expression and that with alcohol, either the decrease in GRHL1 or the loss of its 

TAD would cause a decrease in miR-122. Consistent with previous reports and my 

hypothesis, GRHL2 significantly inhibited miR-122 promoter activity in vitro. Though it 

is key to mention that Tanimizu et al performed these miR-122 promoter assay s in 

human 293T cells using murine miR-122 promoter construct which in my hands 

exhibited little to no miR-122 promoter activity at baseline.307 Surprisingly, while 

hepatocytes have been shown to express GRHL1, the ectopic expression of GRHL1 in 

hepatocytes inhibited miR-122 promoter activity. Furthermore, removal of the putative 

consensus GRHL binding site within the miR-122 promoter enhanced baseline 

expression and removed the inhibitory effect of GRHL1 on miR-122 promoter activity. 

However, this had no effect on mitigating the inhibition due to either GRHL2 isoform. 

Furthermore, in primary human hepatocytes, it appears that neither GRHL1, nor either 

GRHL2 isoform independently effect pri-miR-122, but in combination with GRHL1, 

enhance pri-miR-122 expression.  

While I have included the data from the primary hepatocytes here, though 

experimental conditions may not have been optimal. Primary hepatocytes are known to 

rapidly de-differentiate ex vivo. I received these cells two days after their harvesting and 

the experiment was subsequently performed over the course of 60 hours, potentially 
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confounding these results. However, if the primary hepatocyte data are indeed 

representative of the effects of GRHL1 and GRHL2 on miR-122 in vivo, the disparity in 

the findings could be due to epigenetic factors such as methylation of the genomic locus 

which are frequently changed in many cancers as well as in alcohol which could affect 

GRHL2 binding. In general, alcohol leads to a hypomethylated state. This would be 

better represented in the in vitro experimental conditions using the cloned miR-122 

promoter, which by virtue of being an exogenous construct would escape methylation. 

Indeed, in these conditions I did observe a downregulation of miR-122 promoter activity 

by both GRHL1 and GRHL2. As confirmation, repeating this experiment in primary cells 

following the use of a chemical methylation inhibitor would be a prudent course of 

action. Additionally, in the case of the primary cells, I directly measured pri-miR-122 

levels while in the HUH-7 cells a luciferase reporter was used. Given that the pri-miR-

122 transcript is short-lived, and exhibits circadian oscillation, even in vitro, there may be 

diurnal variations in transcript that do not accurately reflect overall promoter activity.   

The data from HUH-7 suggests that mutation or removal of the conserved GRHL 

binding site only mitigates the effect of GRHL1 suggesting that the constitutive 

expression of GRHL1, which is naturally found in hepatocytes, exerts an inhibitory effect 

on miR-122 at baseline. Further, that mutation and truncation did not affect the role of 

GRHL2.  This suggests there may be additional binding sites more specific for GRHL2 

within the miR-122 promoter. Given that ectopic expression of GRHL2 alone and in 

combination with GRHL1 was able to inhibit promoter activity in the mutated and 

truncated promoters, it is reasonable to hypothesize that this second site is either GRHL1 
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independent, or at the very least, requires GRHL2 for binding. Indeed, in silico analysis 

determined an additional predicted heterodimer binding site ~50 bp downstream of the 

GRHL1 site within the miR-122 promoter. While this site is less favorable, in this 

synthetic system where ectopic protein expression is far greater than physiological levels, 

this site may still be activated. Further studies titrating the GRHL concentrations and 

mutation of this second site is warranted.  

It is also possible that the introduction of one or multiple versions of the GRHL 

proteins have an indirect effect on miR-122. For example, Tanimizu et al showed that 

overexpression of GRHL2 drove hepatic progenitor cells to a chonalgiocyte phenotype 

which is associated with a loss of many hepatocyte nuclear factors essential for driving 

miR-122 expression. 307 Though the exact effect of GRHL proteins on the HNF network 

is not known, the loss of these HNFs could also result in diminished promoter activity.  

Finally, a recent a study in drosophila keratinocytes has shown that GRH activity 

is regulated by ERK-dependent phosphorylation, but only in response to wound healing. 

In fact, its role during differentiation is independent of ERK and terminally differentiated 

keratinocytes exhibit “dormant” GRH constitutively present but inactive. Upon injury, 

ERK-mediated phosphorylation activates grainyhead – a required process for wound 

healing. 336 Homologous phosphorylation site have been predicted on the mammalian 

grainyheads proteins as well. In alcohol, the role of LPS-induced inflammation via TLR4, 

and MAPK/ERKs 1/2 in hepatocytes and immune cells is well characterized.94,337 

Therefore, one would hypothesize that alcohol may upregulate GRHL2 expression, 
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and/or splicing but in an inactive, or minimally active form. Upon ERK activation, 

GRHL is activity is increased, inhibiting miR-122 expression. While the in vitro system 

used in this study do not seem to require these modifications, as they inhibited miR-122 

promoter activity, forced overexpression of the grainyhead proteins may bypass these 

regulatory steps. Given the essential role of LPS/TLR4/MAPK in ALD, repeating these 

studies inflammatory mediators such as LPS or selective MAPK/ERK inhibitors would 

aid in elucidating their role.  

Overall, these results establish the role of GRHL1 and 2 is regulating miR-122 

expression in chronic alcohol. While many questions remain, further studies as outlined 

above, would aid in the understanding the role of the grainyhead proteins on hepatic 

biology and pathophysiology. 
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CHAPTER 6: FINAL SUMMARY, DISCUSSION, & FUTURE DIRECTIONS 

My work presented here demonstrates a role for miR-122 in the pathogenesis of 

alcoholic liver disease. the evidence to support this claim can be summarized as four 

particular areas. I first described that chronic alcohol inhibits miR-122 expression. 

Second, that this reduction of miR-122 directly increases its downstream target, HIF-1α, 

inducing steatosis, and augmenting alcohol-induced liver injury. Third, that restoration of 

miR-122 expression can reverse alcohol-associated pathologies in the liver. Finally, I 

supply evidence to suggest alcohol-induced dysregulation of grainyhead-like proteins 

mediates the inhibition of miR-122 (Figure 6.1).   

 

Alcohol, miR-122, and HIF-1α 

I found that hepatic miR-122 levels are 2-fold lower in hepatocytes of alcohol-fed 

mice and human alcoholic cirrhosis patients compared to controls and that this loss of 

miR-122 inversely correlates with its primary target, HIF-1α. Using an AAV8-anti-miR-

TuD system I show that in vivo inhibition of miR-122 increases HIF-1α, recapitulating 

the phenotype of ALD. Although the relationship between alcohol and HIF-1α has 

previously been described, I define a specific mechanism and pathophysiological role for 

its dysregulation via miR-122 in ALD. 75 The results presented here show that miR-122 

expression is an essential factor in maintaining hepatocyte homeostasis in alcohol by 

targeting HIF-1α. Through this mechanism, AAV8-mediated restoration of miR-122 

reduced hepatic injury via inhibiting HIF-1α after alcoholic stress indicating a role for its 

ability to reduce alcohol-associated steatosis, inflammation, and fibrosis.  
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Figure 6.1: Proposed model of findings 

The high level of miR-122 in hepatocytes constitutively inhibits HIF-1α. Exposure to 

chronic alcohol induces increased levels of the grainyhead-like 1 and 2 spliced isoforms. 

These then in turn, hetero, or homodimerize, and bind the miR-122 promoter, inhibiting 

miR-122 transcription. The loss of miR-122 relieves the inhibitory effect on HIF-1α 

which then accumulates within the hypoxic hepatocyte, driving ALD pathogenesis. The 

data in Chapter IV, suggests the presence of a GRHL1 site at -300 bp from the miR-122 

TSS that, in HUH7 cells, exert a persistent inhibitory role on miR-122 promoter activity. 

  



204 

 

 

 

  



205 

 

The reduction of miR-122 in the liver with alcohol (miR-122-TuD+et), resulted in 

dramatic increases in hepatic injury, greater than treatment with either alone. As stated 

above, the inhibition of miR-122 resulted in a baseline increase in HIF-1α, steatosis, and 

hepatocyte injury. This is identical to the phenotype we previously observed using an in 

vivo degradation resistant form of HIF-1α in murine hepatocytes (HIF1dPA). These mice, 

which had a higher HIF-1α expression, (albeit due to protein, not mRNA, stabilization) in 

hepatocytes, developed steatosis and liver injury without the presence of alcohol. When 

given alcohol, HIF1dPA mice exhibited a synergistic phenotype similar to that seen in 

miR-122-TuD+Et, having greater liver injury than either treatment alone. This 

phenomenon may be due to the further reduction in miR-122 seen in TuD+Et mice when 

compared to TuD+PF mice. 

However, while the combination of TuD treatment alone reduced miR-122 levels 

approximately 85%, greater than the 50% due to alcohol, yet resulted in an approximately 

equivalent increases in HIF-1α expression. Furthermore, TuD+Et reduced miR-122 an 

additional 50% when compared to TuD-treatment alone. This was associated with only a 

minimal increase in HIF-1α expression and activity relative to the large loss of miR-122. 

Together, this suggests that that other mechanisms may be important in regulating HIF-

1α. Previous studies have found other miRNAs, specifically, miR-155, miR-424, and 

miR-107, which directly regulate HIF-1α. 338,339 Specifically in regards to ALD, the role 

miR-155 in HIF-1α regulation is intriguing. Our lab and others have shown that miR-155 

is increased in hepatic immune cells, and hepatocytes in response to alcohol, driving 

TNF-α expression. 340-342 It stands to reason that miR-155, and other miRNAs, may also 
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contribute to the regulation of HIF-1α as well. As my current analysis stands, I have not 

assessed expression changes and the relative contribution of these or other miRNAs, and 

therefore cannot exclude them as contributing to the regulation of HIF-1α in my model. 

To this effect, it would be pertinent to perform whole a transcriptome analyses, such as 

small RNAseq experiments, from hepatocytes of PF and Et-fed mice to explore other 

miRNAs which may be contributing to HIF-1α regulation 

How does HIF-α cause steatosis? 

One question that has been left unanswered the mechanism by which HIF-1α 

drives steatosis and liver injury. The association between hypoxia inducible factors and 

lipid accumulation has been described in a variety of tissues with conflicting results.  

By simultaneously knocking out VHL with either HIF-α or HIF-2α, Rankin et al 

have described dramatically more steatosis in mice with only HIF-2α (HIF1/VHL-null) 

when compared to HIF-1α mice (HIF2/VHL-null) suggesting that in fact, it is HIF-2 

which drives steatosis. 73 However, Kim et al, using selective HIF-1dPA and HIF-2dPA 

mice, found that HIF-2 plays a minor role in hepatic lipid accumulation, rather, they 

reported increased angiogenesis in HIF2dPA mice. 67 These reports are reconcilable when 

we examine the system used by Rankin et al. Their system relied on removal of VHL, 

which blocks degradation of all hypoxia inducible factors. While they selectively deleted 

HIF-1 and HIF-2, they failed to account for HIF-3α. If, as Kim et al described, HIF-2dPA 

mice drive angiogenesis rather than steatosis, then that would suggest that the profound 

steatosis noted by Rankin et al. in their combination HIF-1/VHL knockouts was due to 

HIF-3α. 67,73 Interestingly, it has been shown that HIF-3α is inducible by HIF-1α. 343 If 



207 

 

we extrapolate these findings to the studies presented in this dissertation; where the 

combination of  miR-122 knockdown and alcohol synergistically increased HIF-1α, the 

disproportionate increase in overall liver injury could be due to the involvement of HIF-

3α.  

It is also key to mention work by Nishiyama et al, which stands in stark contrast 

to the findings in our lab. Using a similar Liber DeCarli chronic alcohol model and 

hepatocyte-specific knockout mice, they show that the up regulation of HIF-1α is 

protective in ALD. Specifically, they show that the loss of HIF-1α results in 

triglyceridemia and an up regulation of SREBP1c, a key regulator in alcohol-induced 

steatosis. Mechanistically, their they claim that in WT mice, the up regulation of HIF-1α 

due to alcohol induces the hypoxia-responsive gene DEC1, which in turn, reduces 

SREBP1c expression. Therefore, in HIFhepKO mice DEC1 is not induced causing 

worsening liver injury.76 However, while not in the liver, a study in cardiomyocytes 

expressing the HIF1dPA allele were shown to have increased lipid accumulation and 

suppressed PPARα, and enhancing PPARγ. 70 While a direct link has not been established 

for PPARα and hypoxia inducible factors, Krishnan et al has shown that that the PPARγ 

promoter contains a conserved hypoxia responsive element ~1Kb upstream of the TSS, 

within its promoter region and furthermore, mice homozygous for HIF1dPA allele 

exhibited enhanced PPARγ expression and FA uptake .71 Finally, in NAFLD,  PPAR-γ 

has been shown to directly enhance SREBP-1c transcription via binding to a PPRE 

within the SREBP-1c promoter. 48 This would suggest that the loss of miR-122 allows for 
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an accumulation HIF-1α which then directly increases PPARγ transcription, which in 

turn drives SREBP1c and hepatic steatosis.  

miR-122 in the liver 

While this is the first report to show alcohol-induced reduction in miR-122, many 

previous studies that have explored the metabolic effect of miR-122 inhibition with 

contradictory results. The first study published by Esau et al. who utilized anti-miR-122 

anti-sense-oligonucleotide (ASO) to knockdown miR-122 in the liver in a high fat diet 

(HFD) model. 344 In their report, Esau et a found that inhibition of miR-122 in the liver 

reduced steatosis in HFD-fed mice. These findings, are in sharp contrast to work by Hsu, 

et al.  whose liver-specific knockouts of miR-122-/- (122-/-LKO) developed spontaneous 

steatosis, fibrosis, and increased susceptibility to myc-induced HCC. 238 While the work I 

have presented in this dissertation supports their findings that the loss of miR-122 itself 

induces liver injury however, the  use of knockouts confounds their results. miR-122, via 

CUTL1, is required for terminal hepatocyte differentiation as well as for coordination 

through positive feedback looks with many essential HNF transcription factors. 185,345,346 

Therefore, it is difficult to extrapolate their findings to adult onset or acquired disease 

states.  

Therapeutic inhibition of miR-122 using Miravirsen or SPC3649, a Locked 

Nucleic Acid (LNA) anti-miR-122 oligo, was developed to treat HCV infection. 123,124,233 

It has been shown that miR-122 is an essential host factor for HCV replication and 

represents a therapeutic target in HCV infection. 124,199,223,347 Recently completed phase 

2a trials using Miravirsen to treat HCV infection yielded reduced HCV viral load at low 
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therapeutic concentrations, with no adverse events. 223,233 Additionally, these groups and 

others have demonstrated a cardio-protective role for miR-122 inhibition, via reduction of 

cholesterol and serum triglycerides. AAV-, ASO-, and LNA-mediated inhibition of miR-

122 have all demonstrated a decrease in serum cholesterol and triglycerides without 

hepatotoxicity. 221,223,233 While this is not in line with the findings I have presented here 

where the knockdown of miR-122 alone induced liver injury, a significant difference 

between my work and that of the above-mentioned studies are the difference in diets. In 

order to achieve a robust phenotype in our murine models of alcoholic liver disease, both 

control and alcohol-treated mice a calorie dense diet rich in fats and simple sugars. This 

added caloric stimulus may be the tipping point between anti-miR-122 therapy being 

cardioprotective or hepatotoxic. Additionally, caution is warranted as miravirsen, an anti-

HCV therapy enters phase 3 trials, as sustained inhibition of miR-122 may result in 

progressive liver injury, and a potential complication of chronic miR-122 inhibitor 

therapies.222,233  

miR-122 therapy in ALD 

In chapter IV, I utilized a rAAV8 vector to overexpress miR-122 in the livers of 

alcohol-fed mice. Through inhibition of HIF-1α, I was able to reverse steatosis, 

inflammation, and overall liver injury due to alcohol these results show that of miR-122 

expression is a key component in HIF-1α regulation and hepatocyte homeostasis. 

When first introduced, the use of viral vector gene therapy was fraught with 

skepticism and questions of safety. However, recent clinical trials in the UK using 

rAAV8 vectors to treat Hemophilia B deficiency has demonstrated that a single 
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peripheral-vein dose can safely and effectively achieve sustained transgene expression for 

16 months after treatment.264 This single dose approach provides an added benefit in 

treating patients with ALD who are frequently lost to follow-up compared to other 

miRNA therapies that require monthly dosing.111 Of note, in mice treated with rAAV8 

miR-122-OX, the degree to which we restored miR-122 was greater than anticipated; 

however, there was minimal hepatotoxicity as a result. Given that 130,000 copies of miR-

122 are in each hepatocyte, treatments that over-express miR-122 may have a large 

therapeutic window.182 However, long term studies at varying concentrations would be 

prudent in elucidating potential toxicities and off-target effects of sustained expression. 

The use of AAV systems once would preclude that patient from receiving 

additional doses due to seropositivity to the vector should the need an additional dose. 

Furthermore, in my data I noted that pair-fed hepatocytes did not achieve robust 

overexpression of miR-122 while alcohol-fed hepatocytes did. Though unlikely, this may 

be due to the observation by some of exportin 5 saturation when using U6-pol III based 

promoters causing cellular toxicity, and loss of the transgene. The use of less active and 

more selective promoters may mitigate the unwanted toxicity while retaining 

effectiveness. It is clear that further studies in mice as well as larger mammals must be 

conducted to ensure the low level of toxicity holds true.   

In these studies, I utilized scrambled sequences as controls for the TuD or miRNA 

overexpression constructs. These sequences were screened in silico against the mouse 

transcriptome to ensure that it did not target any known transcript. While unlikely, this 

does not preclude the possibility of an off-target effect by the AAV8 vector or the 
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scrambled construct via interference with an unanticipated transcript in these studies or 

future work. Therefore, it would be prudent to perform RNAseq analysis of livers from 

AAV8-scrambled, AAV8-empty vector, and PBS treated animals to be monitored for 

changes in RNA expression patterns due to the control constructs.  

While delivery of miRNA mimics is burdened with difficulty, recent advances in 

liposomal delivery systems may provide an effective delivery strategy to the liver. 

Alternatively, recent development of GalNac-conjugated ASOs which achieve surprising 

potency and specificity to the liver following sub cutaneous administration, may 

represent an alternative strategy which allows for titration of dose and ease of delivery. It 

is important to note though that studies using GalNac-conjugated nucleic acid molecules 

have only been shown with using siRNAs, not longer miRNAs. 255 While this technology 

holds much promise it remains to be seen if it can be used for miRNA therapeutics.  

Grainyhead proteins  

In Chapter V, by measuring pri-miR-122 expression, I demonstrated that chronic 

alcohol inhibits miR-122 at the transcriptional level, in patients with alcoholic cirrhosis 

and alcohol-fed mice. This suggested that miR-122 was transcriptionally repressed. 

Furthermore, this decrease in miR-122 was associated with an increased mRNA 

expression of grainyhead-like 2, a recently described transcription factor shown to inhibit 

the miR-122 promoter. IHC studies corroborated the increase in GRHL2 staining within 

hepatocytes. Additionally, western blots demonstrated that the increase associated with 

chronic alcohol of GRHL2 was that of its spliced form which does not contain a 

transactivation domain. Indeed, examination of GRHL1 which is traditionally found 
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within hepatocytes, by the same measures, revealed similar patterns of alternative 

splicing. However, in vitro studies into the role of these full length and spliced forms 

yielded conflicting results. As I have extensively discussed the results of these work in 

the discussion section of chapter V, I will focus here on the potential implications of 

grainyhead on hepatic pathophysiology.  

The exact role of GRHL2 in cancer is far from clear. However, if we accept its 

role in inhibition of miR-122, an interesting association arises. Tanimizu et al, noted that 

the gain of GRHL2 represented differentiation of hepatic progenitor cells to a 

cholangiocyte phenotype. 307 Furthermore, studies that revealed that HNF6 was a positive 

regulator of miR-122, found that overexpression of HFN6 resulted in irregular biliary cell 

morphology and hepatic tissue architecture. 189 The first studies to report increased tumor 

burden in miR-122 knockout mice using a DEN model, also noted increased biliary cyst 

formation, a precursor lesion to HCC. Our lab and others have also shown this process is 

accelerated by alcohol. 341 Furthermore, many studies have demonstrated the inverse 

correlation between miR-122 and HCC initiation, metastasis, and mortality. Therefore, if 

we consider the totality of these findings, this could suggest that the interplay between 

alcohol, GRHL2, and miR-122 regulate hepatocyte plasticity and possibly hepatic 

tumorigenesis. Little is known about the full-length or spliced isoforms of GRHL2, and 

their biological significance in hepatic pathology. Given that alcohol is the single greatest 

risk factor for HCC development, our data suggests that the alcohol-induced increase in 

GRHL2 in mature hepatocytes not only inhibits miR-122 and drives ALD pathogenesis, 

but it may represent an early epigenetic alteration promoting neoplastic changes in the 
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liver.  

In these studies, we utilized scrambled oligos as controls for the TuD or miRNA 

overexpression constructs. These sequences were screened in silico against the mouse 

transcriptome to ensure that it did not target any known transcript. While unlikely, this 

does not preclude the possibility of an off-target effect by the AAV8 vector or the 

scrambled construct via interference with an unanticipated transcript. Therefore, it would 

be prudent to perform RNAseq analysis of livers from AAV8-scrambled, AAV8-empty 

vector, and PBS treated mice to be analyzed for changes in RNA expression patterns due 

to the control constructs.  

 

Concluding remarks 

The treatment of alcoholic liver disease is a complex process involving reversal of 

parenchymal cell injury and suppression of inflammation. After 40 years of clinical trials, 

steroids remain the controversial standard of care, with no FDA-approved treatment 

available. 10 Recent clinical trials studying phosphodiesterase inhibitor (pentoxifylline) 

and anti-TNF agent (infliximab) treatments to target key inflammatory mediators in ALD 

have proven ineffective compared to placebo or failed due to the need for repeated dosing 

and constant monitoring for increased susceptibility to opportunistic infections. This is of 

particular concern in the ALD patient population which is often lost to follow-up. 

10,12,274,296 Furthermore, these trials have demonstrated that a reduction in inflammation 

without correction of parenchymal cell dysfunction is not sufficient in abating ALD 

pathogenesis in humans. 
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Based on our results, I speculate that GRHL2 may serve as a prognostic marker of 

hepatocyte differentiation or disease progression and that in vivo therapeutic correction 

of GRHL2 splicing or expression changes in ALD may be beneficial to correct miR-122 

dysregulation. However, until the role GRHL2 in liver disease is explored further, I 

propose, that downstream intervention with miR-122 restoration to treat alcoholic liver 

disease may constitute a safer, simpler, and more effective approach.  

miR-122 restoration has been considered as an HCC therapy, where its loss has 

been reported. 16,216,244,275 However, treatment at such a late stage of the ALD is difficult 

and gene therapy is often precluded due to tumor size. 238 Our data supports a potential 

novel treatment indication for miR-122 restoration, through regulation of HIF-1α, as a 

therapy in early alcoholic liver disease to prevent and reverse hepatic injury that warrants 

further exploration in the clinical setting. 
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