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ABSTRACT 
 
 
 

Despite the development of effective antiretroviral treatments, there is still 

no cure for HIV-1. Major barriers to HIV-1 eradication include the diversity of 

intrapatient viral quasispecies and the establishment of reservoirs in tissue 

sanctuary sites. A better understanding of these populations is required for 

targeted treatments. While previous studies have examined the relationship 

between brain and blood or immune tissues, few have looked at and compared the 

properties of viruses from other tissue compartments. In this study, 75 full length 

HIV-1 envelopes were isolated from the frontal lobe, occipital lobe, parietal lobe, 

colon, lung, and lymph node of an HIV-1 infected subject. No envelopes could be 

amplified from the plasma or serum. Envelopes were subjected to genotypic and 

phenotypic characterization. Of the 75 envelopes, 53 were able to infect HeLa 

TZM-bl cells. The greatest proportion of non-functional envelopes was from the 

lung, a result of APOBEC-induced hypermutation. Lower frequencies of 

hypermutation were also observed in the occipital lobe and colon. Envelopes from 

regions of the brain were almost all macrophage tropic, while those from the body 

were predominantly non-macrophage tropic. All envelopes used CCR5 as a 

coreceptor. Phylogenetic analyses showed that sequences were 

compartmentalized inside the brain. These findings were also observed using 

PacBio next generation sequencing to examine 32,152 full length sequences. 

Envelopes from tissues of the body displayed greater variation in sequence length, 
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charge, and number of potential N-linked glycosylation sites in comparison to 

envelopes from tissues of the brain. Increased variation was also observed in 

IC50s for inhibition and neutralization assays using sCD4, maraviroc, b12, PG16, 

17b, and 447-52D. The increased variation observed in envelopes from tissues 

outside the brain suggests that different pressures may be influencing the evolution 

of these viruses and emphasizes the importance of further studies in these tissue 

sites.  
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CHAPTER I: INTRODUCTION 
 
 
 

1.1 HIV and AIDS 

1.1.1  Natural History and Discovery 

On June 5, 1981, the Centers for Disease Control and Prevention (CDC) 

published a report documenting Pneumocystis carinii pneumonia in five healthy, 

young men who were homosexuals (CDC, 1981; Gottlieb et al, 1981). Doctors 

discovered that these patients also suffered from cytomegalovirus and mucosal 

candidiasis infections. This was surprising given that these types of opportunistic 

infections were usually limited to individuals with known immunocompromising 

diseases. Soon additional cases were described and doctors observed that these 

individuals had impaired T cell responses (Siegal et al, 1981). Initial reports 

concluded that this was an epidemic of the gay community, however similar 

patterns of opportunistic infections and acquired immunodeficiency emerged in 

other populations, including heterosexual men, women, and children (Masur et al, 

1981; CDC, 1982a; CDC, 1982b; CDC, 1982c; CDC, 1982d; CDC, 1983). On 

September 24, 1982 the CDC called the disease Acquired Immune Deficiency 

Syndrome (AIDS) (CDC, 1982e). This was the start of a public health crisis and 

researchers began searching for the etiological agent responsible for the disease. 

Luc Montagnier’s group from the Pasteur Institute was the first to publish a 

paper describing the Lymphadenopathy-Associated Virus (LAV) as the probable 

cause of AIDS (Barre-Sinoussi et al, 1983). This was followed by papers from 
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Robert Gallo and colleagues at the National Cancer Institute describing the 

isolation of Human T-Lymphotrophic Virus type III (HTLV-III) from patients with 

AIDS (Gallo et al, 1984; Gelmann et al, 1984; Popovic et al, 1984). Soon it was 

determined that they, as well as many other groups, were describing the same 

virus, which became known as the Human Immunodeficiency Virus (HIV) (Coffin 

et al, 1986a; Coffin et al, 1986b). 

HIV is a lentivirus and a member of the Retroviridae family. Its origins can 

be traced back to West Central Africa where two viruses, HIV-1 and HIV-2, arose 

from separate zoonotic events. HIV-1 is found throughout the world and is 

responsible for the global HIV pandemic, while HIV-2 is endemic only to regions of 

West Africa. Using phylogenic analyses and archived tissue and blood samples, 

the origins of HIV-1 have been mapped to Kinshasa, formerly Leopoldville, in the 

Democratic Republic of the Congo in the early part of the 20th century, no later 

than 1933 (Zhu et al, 1998; Korber et al, 2000; Worobey et al, 2008). From there 

HIV-1 strains spread across the globe. By the 1960s HIV-1 had arrived in the 

United States, though it would take almost twenty more years to be discovered 

(Gilbert et al, 2007). 

HIV-1 is divided into four groups, which resulted from separate transmission 

events: M (Major or Main), N (New or non-M, non-O), O (Outlier), and P (Pending) 

(De Leys et al, 1990; Gurtler et al, 1994; Simon et al, 1998; Plantier et al, 2009; 

Vallari et al, 2010; Vallari et al, 2011). Genetic analyses have determined that HIV-

1 group M and N viruses originated from Simian Immunodeficiency Virus (SIV) in 
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chimpanzees (Huet et al, 1990; Gao et al, 1999; Corbet et al, 2000; Keele et al, 

2006). HIV-1 group P strains are most closely related to gorilla SIV, while the origin 

of group HIV-1 group O strains are unclear and may have come from chimpanzees 

or gorillas (Van Heuverswyn et al, 2006; Plantier et al, 2009; Takehisa et al, 2009; 

D’Arc et al, 2015). HIV-2 strains are genetically most similar to SIV from Sooty 

Mangabeys (Hirsch et al, 1989; Gao et al, 1992). 

HIV-1 Group M viruses are responsible for the majority of HIV infections in 

the world and are grouped into nine subtypes, or clades: A, B, C, D, F, G, H, J, 

and K. Each clade is genetically distinct and dominant in specific geographic 

regions (Figure 1.1). In areas where more than one clade is present, viruses can 

recombine to create circulating recombinant forms (CRFs). 

 

1.1.2  Transmission and Disease Progression 

 HIV-1 infection is acquired through three major modes of transmission: 

sexual contact, vertical transmission, or intravenous drug use. In the United States, 

approximately 63% of new infections, and 78% of new infections in men, are the 

result of men who have sex with men (MSM) (CDC, 2016). In contrast, 70% of new 

infections globally occur in sub-Saharan Africa, where the majority of infections 

arise from heterosexual sex (WHO, 2016). In about 80% of the transmissions, 

infection is established by a single viral variant. However, in the remaining cases 

two or more variants are transmitted (Keele et al, 2008). Once established, 

infection proceeds through acute, chronic, and late-stage phases (Figure 1.2).  
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 During acute infection, the HIV-1 infected individual may experience flu-like 

symptoms. There is an initial spike in plasma HIV-1 RNA copies as the virus infects 

CD4+ T cells at infection sites and in immune tissues (Zhang et al, 1999). Virus 

then spreads to gut-associated lymphoid tissue (GALT) where large numbers of 

CD4+ T cells reside, become infected, and die (Veazey et al, 1998; Douek et al, 

2003; Guadalupe et al, 2003; Brenchley et al, 2004; Li et al, 2005). Viral load drops 

to a stable setpoint during the chronic phase. At this time, the infected individual is 

asymptomatic and the virus remains latent. CD4+ T cell counts may briefly 

rebound, but eventually decline over a period of several years until the count is 

below 200 cells/mm3. At this point the infected individual has entered the late-stage 

phase and is said to have Acquired Immune Deficiency Syndrome (AIDS). Plasma 

viremia will increase and the individual will become unable to mount an immune 

response to opportunistic infections and cancers, such as Pneumocystis carinii 

pneumonia, Kaposi’s Sarcoma, and mucosal candidiasis, which will ultimately lead 

to death. 

 

1.1.3  Global Health 

 The World Health Organization (WHO) reported that in 2014 there were 

approximately 37 million people living with HIV globally, with 2 million new 

infections that year (WHO, 2016). The Foundation for AIDS Research (amfAR) 

estimates that an additional 5,753 people contract HIV each day, around 240 every 

hour, with those in developing countries and members of minority populations 
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disproportionally affected (Figure 1.3) (amfAR, 2016; WHO, 2016). The impact of 

the HIV epidemic has most severely affected sub-Saharan Africa and infections in 

this region account for the majority of new infections globally (UNAIDS, 2016). 

Despite this, there have been dramatic improvements in HIV rates with new 

infections declining 35% since 2000 and HIV-related deaths declining 42% since 

a peak in 2004 (UNAIDS, 2016). 

In efforts to continue towards the goal of ending the HIV/AIDS epidemic, the 

Joint United Nations Programme on HIV/AIDS (UNAIDS) has proposed an 

ambitious 90-90-90 plan with three objectives to be accomplished by the year 

2020: 1) 90% of infected people will know their HIV positive status, 2) 90% of 

infected people will receive antiretroviral treatment, and 3) 90% of those on 

treatment will have viral suppression (UNAIDS, 2016). Presently, it is estimated 

that 54% of those who are infected do not know they are infected and only 41% of 

those infected are receiving antiretroviral treatment (amfAR, 2016; WHO, 2016). 

 Antiretroviral treatments were established soon after the onset of the HIV 

crisis with monotherapies as the first treatments. The first drug approved by the 

Food and Drug Administration (FDA) was azidothymidine (AZT) on March 19, 1987 

(FDA, 2016a). Others soon followed. However monotherapies did not perform well, 

as rapidly replicating HIV-1 was able to acquire resistance mutations and drug 

failure and viral rebound would follow. In the mid-1990s, new reverse transcriptase 

inhibitors and protease inhibitors were discovered and for the first time 
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Figure 1.1 Global distribution of HIV-1 subtypes and circulating recombinant 

forms (CRFs) While subtype B is predominate in developed countries, subtype C 
and CRFs are more prevalent in developing countries and are responsible for the 
largest number of HIV-1 infections. (Reproduced from Tyor et al, 2013 with 
permission) 
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Figure 1.2 Course of typical HIV-1 infection During the acute phase of HIV-1 infection, 
there is an initial spike in viral RNA copies in the plasma and a decline in CD4+ T cells, 
which may be accompanied by flu-like symptoms. This is followed by the chronic phase, 
where the infected individual is asymptomatic, viral load drops to a setpoint, and the CD4+ 
T cell count may be stable for a long period before it begins to decline. Late stage infection, 
or AIDS, is defined by a CD4+ T cell count that has dropped below 200 cells/mm3. This is 
when opportunistic infections occur, resulting in a rapid decline in health and eventually 
death.  (Reproduced from An and Winkler, 2010 with permission) 
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Figure 1.3 Number of HIV cases per region Sub-Saharan Africa accounts for the 
majority of HIV infections, with approximately 70% of the total global infections. 
(Reproduced from AVERT, 2016 with no permission required) 
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administered in combination, which greatly improved treatment outcomes (Collier 

et al, 1996; D’Aquila et al, 1996; Staszewski et al, 1996). Mathematical modeling 

was used to determine that three drugs in combination would provide sufficient 

protection against drug resistance (Frost and McLean, 1994; Coffin 1995; Nowak 

et al, 1997; Stengel, 2008). Currently, the FDA has 39 medications approved for 

the treatment of HIV (FDA, 2016b; NIH, 2016). These include Nucleoside Reverse 

Transcriptase Inhibitors (NRTIs), Non-nucleoside Reverse Transcriptase Inhibitors 

(NNRTIs), Integrase Inhibitors, Protease Inhibitors, Entry Inhibitors, Fusion 

Inhibitors, Pharmacokinetic Enhancers, and Combination Drugs (FDA, 2016b; 

NIH, 2016). 

Antiretroviral treatments have improved the health and extended the 

lifespans of HIV-1 infected individuals. However a vaccine is needed to eradicate 

the virus and thus vaccine development has become a priority of global HIV 

research. However, vaccine design has been challenging and traditional methods 

have not worked (Kwong et al, 2002; Wei et al, 2003; Burton et al, 2004; Lu, 2006). 

There have been six HIV-1 vaccine phase IIb/III clinical trials, with all but one 

having no efficacy (Schiffner et al, 2013). Only RV144, known as the Thai Trial, 

experienced a modest 31.2% efficacy using a two vaccine prime boost model using 

the ALVAC HIV and AIDSVAX B/E vaccines (Rerks-Ngarm et al, 2009). A 

successful vaccine will likely require both T cell responses and the generation of 

broadly neutralizing antibodies (bnAbs). Progress has been hampered by several 

factors, including the highly glycosylated structure of the HIV-1 envelope protein, 
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which shields it from antibodies, the high diversity of HIV-1, which contributes to 

the emergence of escape mutants, and the fact that effective HIV-1 immunogens 

have not been established. 

 

1.2 Genome and Viral Proteins 

1.2.1  Genome Organization 

The HIV-1 genome is approximately 9.7 kb and consists of a positive sense 

single stranded RNA genome which is packaged as a dimer within the virion. 

(Figure 1.4). The integrated proviral DNA genome is flanked by 5’ and 3’ long 

terminal repeats (LTRs), which contain sites important for regulating viral 

transcription and the replication cycle. 

 

1.2.2 Enzymatic Proteins 

The polymerase gene (pol) encodes the three enzymatic proteins of HIV-1: 

protease (PR), reverse transcriptase (RT), and integrase (IN). Pol is synthesized 

along with Gag as Pr160gag-pol polyprotein, resulting from a ribosomal frameshift, 

which is then cleaved by protease (Jacks et al, 1988).  

Protease (PR) 

PR is responsible for the cleavage of HIV-1 polyproteins Gag-Pol (Pr160gag-pol), 

Gag (Pr55Gag), Pol, and Env (gp160) into their constituent proteins.  
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Figure 1.4 HIV-1 genome and virion structure Genome diagram depicts the 
organization of the HIV-1 genome with polyproteins and cleavage products noted. The 
locations of HIV-1 proteins are shown on the virion structure illustration. (Reproduced 
from Frankel and Young, 1998 with no permission required) 
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Reverse transcriptase (RT) 

Retroviral reverse transcriptases function to convert the viral RNA template into 

DNA (Baltimore, 1970; Mizutani et al, 1970). In HIV-1 RT accomplishes this using 

RNA-dependent DNA polymerase activity, ribonuclease H, and DNA-dependent 

DNA polymerase activity. RT has a high error rate around 3 X 10-5, which 

contributes to the diversity of HIV-1 (Preston et al, 1988; Mansky and Temin, 

1995).  

Integrase (IN) 

Integrase is involved with mediating the incorporation of HIV-1 DNA into the host 

cell genome by facilitating the formation of the pre-integration complex (PIC) and 

insertion into the target chromosomal DNA (Bushman et al, 1990). 

 

1.2.3  Structural Proteins 

 HIV-1 structural proteins include group-specific antigen (Gag) and envelope 

(Env) polyproteins and the proteins resulting from their cleavage by PR.  

Group-specific antigen (Gag) 

Gag is produced as polyprotein Pr55Gag, which is cleaved into p17 matrix (MA), 

p24 capsid (CA), p7 nucleocapsid (NC), p6, and spacer peptides SP1 and SP2 by 

protease during maturation (Gottlinger et al, 1989). Gag is membrane associated 

in part via an N-terminal myristylation signal and recruits viral RNA and proteins to 

facilitate viral budding. 
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Matrix (MA) 

MA is located at the N-terminal region of Pr55Gag and plays a role in incorporation 

of Env into virions (Dorfman et al, 1994a; Freed and Martin, 1995b; Freed, 1998; 

Kiernan et al, 1998). Following cleavage by protease, it remains associated with 

the plasma membrane in the virus particle. 

Capsid (CA) 

CA proteins surround the viral core in the virion, protecting the nucleocapsid, and 

are involved with assembly during the replication cycle (Dorfman et al, 1994b; 

Franke et al, 1994; Thali et al, 1994; Ganser-Pornillos et al, 2007). CA is involved 

in Gag oligomerization and plays a role in the uncoating process (Gamble et al, 

1996; Luban, 1996; Gamble et al, 1997). 

Nucleocapsid (NC) 

NC is associated with the genomic RNA dimer and is flanked by SP1 and SP2 in 

the Gag and Gag-Pol precursors, which allow proper processing. An important 

function of NC is facilitating the packaging of viral RNA into new virus particles by 

recognizing the packaging signal (Poznansky et al, 1991; Harrison and Lever, 

1992). NC also mediates reverse transcription (Lapadat-Tapolsky et al, 1993; 

Levin et al, 2005). 

p6 

p6 facilitates incorporation of Vpr into the virion and release of virus particles from 

the plasma membrane through interactions with the host ESCRT pathway 
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(Gottlinger et al, 1991; Paxton et al, 1993; Huang et al, 1995; Kondo et al, 1995; 

Strack et al, 2003).  

Envelope (Env) 

Env is synthesized as polyprotein gp160, which is then cleaved by host furin and 

furin-like proteases into the gp120 surface glycoprotein and gp41 transmembrane 

domain. Env interacts with the CD4 receptor and a coreceptor, typically CCR5 or 

CXCR4, to initiate membrane fusion and host cell infection (Maddon et al, 1986; 

McDougal et al, 1986; Deng et al, 1996; Feng et al, 1996; Berger et al, 1998).  

 

1.2.4  Regulatory Proteins 

Two proteins play essential regulatory roles in HIV-1 replication, trans-

activator protein (Tat) and regulator of virion expression (Rev). 

Trans-activator protein (Tat) 

Tat is an RNA binding protein that is required for replication (Feng and Holland, 

1988; Ruben et al, 1989; Roy et al, 1990). It enhances HIV-1 transcription through 

binding the trans-activation response region (TAR) on RNA stem-loops at the start 

of HIV-1 transcripts and promotes elongation of full length transcripts (Dayton et 

al, 1986; Fisher et al, 1986; Kao et al, 1987; Feinberg et al, 1991). 

Regulator of virion expression (Rev) 

Rev regulates HIV-1 protein expression by binding the Rev response element 

(RRE) on viral mRNAs and exporting them out of the nucleus (Felber et al, 1989; 
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Zapp and Green, 1989; Malim et al, 1989a; Malim et al, 1989b; Malim et al, 1990; 

Bartel et al, 1991).  

 

1.2.5  Accessory Proteins 

 HIV-1 has four accessory proteins: Vif, Vpu, Vpr, and Nef. These proteins 

were originally labeled as “accessory” because they are not required for infection 

in many cell lines. However, they have now been found to play important roles in 

HIV-1 infection in vivo. 

Virus infectivity factor (Vif) 

Vif is an HIV-1 protein that enhances infectivity and is required for replication in 

primary cells, but not all cell lines (Gabuzda et al, 1992; von Schwedler et al, 1993; 

Hoglund et al, 1994; Liu et al, 1995). Vif counteracts human apolipoprotein B 

mRNA editing enzyme catalytic polypeptide-like 3G (APOBEC3G) (Sheehy et al, 

2002; Harris et al, 2003; Lecossier et al, 2003; Mangeat et al, 2003; Zhang et al, 

2003). It does this by ubiquitin mediated targeting of APOBEC3G to the 

proteasome, which results in its subsequent degradation (Marin et al, 2003; 

Sheehy et al, 2003; Yu et al, 2003). 

Viral protein U (Vpu) 

Vpu is a membrane protein that enhances virion release from the host cell surface 

(Cohen et al, 1988; Strebel et al, 1988, Klimkait et al, 1990; Gottlinger et al, 1993). 

This is accomplished by degrading CD4 molecules, which trap Env proteins in the 
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ER, and by counteracting host cell tetherin/BST-2, which retains budding virions 

on the cell surface (Willey et al, 1992; Neil et al, 2008; Van Damme et al, 2008).   

Viral protein R (Vpr) 

Vpr is a virion-associated protein that aids in the nuclear import of HIV-1 

preintegration complexes (Cohen et al, 1990; Heinzinger et al, 1994). It is also 

involved with cell cycle arrest and replication in non-dividing cells (Jowett et al, 

1995; Rogel et al, 1995; Cohen et al, 1996). 

Negative factor (Nef) 

Nef is an HIV-1 gene that is expressed early and enhances viral infectivity (Kim et 

al, 1989; Kestler et al, 1991; Miller et al 1994). Nef decreases immune cell 

recognition of infected cells by downregulating MHC class I molecules along with 

CD4, which also enhances Env incorporation and viral budding (Garcia and Miller, 

1992; Aiken et al, 1994; Schwartz et al, 1996). In addition, the Gottlinger and 

Pizzato labs recently discovered that Nef prevents serine incorporator 3 and 5 

(serinc3 and serinc5) from being included in the HIV-1 virion and that this 

correlates with enhanced infectivity (Rosa et al, 2015; Usami et al, 2015). 

 

1.3 HIV-1 Replication Cycle 

1.3.1  Replication 

 The HIV-1 replication cycle (Figure 1.5) can be divided into early and late 

phases. During the first steps of the early phase, HIV-1 enters host cells through 

receptor binding and membrane fusion, though there is some evidence that 
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endocytosis may also play a role (Miyauchi et al, 2009). The Env polyprotein gp160 

is post translationally cleaved to surface protein gp120 and transmembrane protein 

gp41, which are non-covalently linked and are arranged in trimers on the viral 

surface (McCune et al, 1988; Lu et al, 1995). When a virus encounters a 

permissive cell, the Env trimers bind the host cell CD4 receptor through the CD4 

binding site on gp120 (Maddon et al, 1986; McDougal et al, 1986; Kwong et al, 

1998). Following engagement with the CD4 receptor, the Env undergoes a 

conformational change which allows interaction with a coreceptor (Kwong et al, 

1998; Chen et al, 2005). C-C chemokine receptor type 5 (CCR5) and C-X-C 

chemokine receptor type 4 (CXCR4) are G protein–coupled receptors (GPCRs) 

and are the two main coreceptors for HIV-1 infection (Berger et al, 1998). They are 

expressed on HIV-1 target CD4+ T cells, macrophages, and dendritic cells. The 

Env then experiences another conformational change and a fusion pore begins to 

form (Markosyan et al, 2003). During this conformational change, N-terminal 

heptad repeat 1 (HR1) and C-terminal heptad repeat 2 (HR2) of gp41 interact 

forming a stable six helix bundle structure (Chan et al, 1997; Weissenhorn et al, 

1997; Melikyan et al, 2000). Membrane fusion proceeds, allowing the viral core to 

enter the cytoplasm of the host cell. 

Once inside the host cell, the viral core goes through an uncoating process 

to expose a reverse transcription complex (RTC) consisting of viral RNA, MA, CA, 

NC, RT, IN, and Vpr. HIV-1 genomic RNA is then bound by tRNA primer Lys3 at a 

primer binding site approximately 180 nucleotides from the 5’ end to initiate 
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Figure 1.5 HIV-1 replication cycle HIV-1 binds to the host cell CD4 receptor and a 
coreceptor, usually CCR5 or CXCR4. Following membrane fusion, the viral core 
enters the cell and an uncoating process occurs. Reverse transcriptase synthesizes 
cDNA from viral RNA, which then becomes part of a pre-integration complex that is 
shuttled into the nucleus. Viral cDNA is integrated into the host cell DNA and then 
gives rise to HIV-1 proteins from unspliced genomic RNA, singly spliced mRNAs 
(ssRNA), and fully spliced mRNAs. These proteins, along with HIV genomes, are 
assembled and packaged into new virions, which bud off from the plasma membrane. 
Finally, polyproteins are cleaved by protease during the maturation process. 
(Reproduced from Peterlin and Trono, 2003 with permission) 
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DNA synthesis (Robert et al, 1990). An RNA-DNA hybrid molecule is formed, 

providing a substrate for RNase H, which then degrades the RNA strand. Finally, 

a second strand of DNA is synthesized via the RT DNA-dependent polymerase 

activity. 

 After a cDNA copy of the viral genome has been made, the pre-integration 

complex (PIC) is formed and is imported into the nucleus (Bowerman et al, 1989). 

IN facilitates the incorporation of viral DNA into the host’s genome through DNA 

cutting, joining, and repair mechanisms (Brown et al, 1987; Fujiwara and Mizuuchi, 

1988; Brown et al, 1989). The integrated HIV-1 genome, called a provirus, is now 

a permanent part of the host cell’s genome and can be replicated using host cell 

machinery. 

 The late phase of replication begins after integration and includes the 

expression of viral genes, viral budding, and maturation. Viral RNAs are exported 

to the cytoplasm, proteins are translated and trafficked to the plasma membrane 

where they are then assembled, and virus particles bud off from the cell. This 

process is completed using the endosomal sorting complex required for transport 

(ESCRT) pathway of the host cell, which is recruited by the p6 domain of the Gag 

polyprotein. After budding occurs, the Gag polyprotein is cleaved by PR during the 

maturation process. 
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1.3.2  Evolution and Diversity 

 HIV-1 has extraordinary genetic diversity based on several aspects of its 

replication cycle. HIV-1 RT lacks proofreading mechanisms and has an error rate 

of 3 x 10-5 (Preston et al, 1988; Mansky and Termin, 1995). This allows for 

mutations to arise in every replication cycle. During replication, recombination also 

occurs allowing for more genetic diversity (Jetzt et al, 2000; An and Telesnitsky, 

2002; Rhodes et al, 2003; Charpentier et al, 2006; Chen et al, 2006; Mild et al, 

2007; Zhang et al, 2010; Brown et al, 2011; Immonen et al, 2015; Sanborn et al, 

2015). Considering that an infected cell can produce between 3.5 x 103 and 2.4 x 

105 virus particles during the course of infection, it is clear how quickly genetic 

changes can accumulate (Ho et al, 1995; Wei et al, 1995; Althaus et al, 2014). 

Other factors shaping viral evolution include pressures from neutralizing 

antibodies, host restriction factors, antiretroviral drug treatment, and coinfections.  

 In a recent study examining full length genomic sequences, it was estimated 

that average nucleotide diversity was approximately 50% between HIV-1 and HIV-

2, 37.5% between HIV-1 groups, 14.7% between HIV-1 subtypes, 8.2% within a 

single subtype, and less than 1% within an individual (Li et al, 2015). However, 

these numbers could be lower or higher in specific cases. For example, the env 

gene is particularly polymorphic and viruses within a single individual can change 

over 10% of their env sequence during an HIV-1 infection (Wolinsky et al, 1996; 

Shankarappa et al, 1999). The result of this genetic diversity is that a single HIV-1 

positive individual is infected by populations of related but genetically distinct viral 
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variants called quasispecies (Goodenow et al, 1989). These quasispecies can 

have different properties, such as coreceptor use and cell tropism, discussed 

further below. 

 

1.4 HIV-1 Envelope 

 The Env glycoprotein is synthesized on the rough endoplasmic reticulum 

(RER) from a bicistronic mRNA encoding both Env and Vpu (Hunter and 

Swanstrom, 1990; Freed and Martin, 1995a). Env gp160 polyprotein is targeted to 

the RER membrane by an N-terminal signal sequence, which is cotranslationally 

cleaved. Env then remains anchored to the membrane by a hydrophobic sequence 

in the gp41 domain (Berman et al, 1988; Haffar et al, 1988). Glycosylation occurs 

during translation, adding predominately N-linked oligosaccharides, but some O-

linked oligosaccharides as well (Leonard et al, 1990; Bernstein et al, 1994). The 

gp160 polyproteins oligomerize into trimers and traffic to the Golgi where they are 

cleaved by furin and furin-like proteases into gp120 and gp41 proteins at a 

conserved K/R-X-K/R-R sequence (McCune et al, 1988; Freed et al, 1989; 

Hallenberger et al, 1992; Sen et al, 2007). The gp120 and gp41 proteins, 

associated by non-covalent interactions, are then trafficked to the plasma 

membrane where they are incorporated into virions and are essential for infectivity. 

Trimer conformation dynamics are not well understood, but trimers may adopt 

more open or closed states, or oscillate between these two, which could affect 
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receptor binding and antibody neutralization (Kwong et al, 2002; Davenport et al, 

2013; Julien et al, 2013; Lyumkis et al, 2013; Guttman et al, 2015). 

 The gp120 glycoprotein is composed of five regions of variable sequences 

(V1-V5) and five regions of comparatively constant sequences (C1-C5) (Starcich 

et al, 1986; Willey et al, 1986). Amino acids in different constant regions of gp120 

are responsible for CD4 binding (Kowalski et al, 1987; Lasky et al, 1987; Olshevsky 

et al, 1990). Crystal structures have shown CD4 making contact with gp120 at 26 

different residues (Kwong et al, 1998). The V3 loop region of gp120 confers 

coreceptor specificity (Hwang et al, 1991; Shioda et al, 1991; Cann et al, 1992). 

 The gp41 transmembrane glycoprotein plays an important role in mediating 

fusion of the viral and host cell membranes to allow the viral core to enter the host 

cell. It contains an extracellular domain with an N-terminal fusion peptide, two 

heptad repeat regions (HR1 and HR2), and a membrane proximal external region 

(MPER) (Bosch et al, 1989; Freed et al, 1990; Muñoz-Barroso et al, 1999; 

Salzwedel et al, 1999). In addition, gp41 has a transmembrane domain, which 

anchors Env in the membrane, and a long C-terminal cytoplasmic tail. 

 

1.5 Tropism 

 Initial efforts to classify HIV-1 isolates by tropism were based on the ability 

of variants to induce syncytia in T cell lines, such as MT-2 cells. Syncytia inducing 

(SI) variants were defined as T cell tropic (T-tropic) and the non-syncytia inducing 

(NSI) variants were defined as macrophage tropic (M-tropic) (Gartner et al, 1986; 
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Tersmette et al, 1988). Studies aimed at identifying potential coreceptors on 

permissive cell types found that the chemokines RANTES, MIP-1 alpha, and MIP-

1 beta could inhibit HIV-1 infection (Cocchi et al, 1995). This gave researchers 

clues that lead to the discovery of the coreceptors. The CXCR4 receptor, originally 

called LESTR or fusin, was the first to be identified and was defined as the 

predominant coreceptor for T-tropic HIV-1 variants (Feng et al, 1996). Soon after, 

it was discovered that the reason that RANTES, MIP-1 alpha, and MIP-1 beta 

inhibited infection was because they were binding to the CCR5 coreceptor and this 

was presumed to be the coreceptor for M-tropic HIV-1 variants (Deng et al, 1996).  

This, however, turned out to be an incomplete story and variants described 

as NSI on cell lines were observed forming syncytia on primary CD4+ T cells and 

replicating in MT-2 cells (Forte et al, 1994; Todd et al, 1995; Berger et al, 1998; 

Goodenow and Collman, 2006). The syncytia induction tests being used to 

categorize viral variants were performed using the MT-2 cell line, which only 

expressed the CXCR4 coreceptor and not CCR5, though this was not known at 

the time (Koot et al, 1992). Thus this test had really been a test of coreceptor use 

and not cell tropism. A new definition of tropism was proposed based on coreceptor 

use with CCR5-using variants (R5), CXCR4-using variants (X4), and dual-tropic 

variants (R5X4) (Berger et al, 1998). In addition, these variants could be defined 

as T-tropic or M-tropic. Current tropism tests now include genotype analyses using 

prediction algorithms, such as WebPSSM and Geno2Pheno (Jensen et al, 2003; 

Sing et al, 2007), that predict whether an Env uses CCR5 or CXCR4, and 
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phenotype analyses, such as testing infection on primary cells or cell lines 

expressing one or both coreceptors. 

  T-tropic R5 variants are almost always the transmitted/founder viruses in a 

new infection (Keele et al, 2008; Salazar-Gonzalez et al, 2009; Wilen et al, 2011; 

Ochsenbauer et al, 2012). Tropism may then switch during disease progression 

and X4 variants emerge in approximately 50% of patients. There is some evidence 

that R5X4 strains represent an intermediate in the evolution of X4 variants (Yi et 

al, 1999; Huang et al, 2007; Irlbeck et al, 2008). 

Coreceptor use has been mapped mainly to the V3 region of gp120 (O’Brien 

et al, 1990; Hwang et al, 1991; Shioda et al, 1991; Milich et al, 1997; Nelson et al, 

1997; Nelson et al, 2000; Hoffman et al, 2002; Jensen et al, 2003). Accordingly, 

R5- and X4-using variants have V3 loops with different properties. For example, 

X4 variants have an overall higher positive charge compared to R5 variants 

(Fouchier et al, 1992). This may be in part due to changes to basic amino acids at 

positions 11 or 25 in the V3 region, which is associated with X4 tropism (Resch et 

al, 2001).  

Once X4 variants are established in the HIV-1 population, disease 

prognosis is poor (Tersmette et al, 1989; Koot et al, 1993; Richman and Bozzette, 

1994; Connor et al, 1997; Blaak et al, 2000). The reason for a rapid decline of 

CD4+ T cells and acceleration to AIDS and death is not known. One hypothesis is 

that as variants gain the ability to use the X4 receptor, they are able to rapidly 

deplete previously non-permissive T cell populations. 



25 
 

While the T cell population expresses both R5 and X4, there is a significant 

difference in the expression of R5 and X4 in T cell subsets: memory T cells express 

both R5 and X4 and naïve T cells only express X4 (Blaak et al, 2000). This means 

that in the overall T cell population, up to 90% of the T cells may be expressing 

X4, but only 15-35% may be expressing the R5 receptor (Bleul et al, 1997; 

Berkowitz et al, 1998; de Roda Husman et al, 1999). Given the abundance of 

permissive cells, it is unclear why X4 variants do not emerge sooner during the 

course of infection. It is possible that R5 variants out compete X4 variants by 

infecting CCR5+ CD4+ T cells recruited to the sites of infection or that immune 

pressures select against X4 variants. This is supported by the observation that X4 

variants are more sensitive to CD4 binding site (CD4bs) antibodies and that they 

emerge later in disease progression when immune competence wanes (Bunnik et 

al, 2007). However, this explanation does not account for why X4 variants would 

not be transmitted and be present at earlier time points.  

 Cell tropism may also change as disease progression occurs, allowing viral 

variants within an individual to have different cell tropisms (Koyanagi et al, 1987). 

Though transmitted variants are usually T-tropic, M-tropic variants often arise and 

may predominate in some tissues. For example, R5 variants from the brain have 

higher frequency of M-tropism than R5 variants from blood and immune tissues do 

(Gorry et al, 2002; Peters et al, 2004; Peters et al, 2006; Peters et al, 2007). 

Macrophage tropism is associated with the ability to use low levels of CD4 and 

may become more prevalent in late stage infection (Li et al, 1999; Tuttle et al, 2002; 
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Gray et al, 2005; Thomas et al, 2007). Though they are often R5-using, 

macrophage tropic R5X4 and X4 variants have been isolated (Simmons et al, 

1996; Simmons et al, 1998; Yi et al, 2003; Gray et al, 2009). 

Several regions of gp120 have been implicated in the development of 

macrophage tropism, including regions flanking the CD4bs, V1V2, C2, and V4 

(Koito et al, 1994; Imamichi et al, 2002; Walter et al, 2005; Dunfee et al, 2006; 

Dunfee et al, 2007; Duenas-Decamp et al, 2009; Musich et al, 2011). Specifically, 

an asparagine at position 283, loss of an N-linked glycosylation site at 386, and an 

E153G substitution have been identified as determinants of macrophage tropism 

(Dunfee et al, 2006; Dunfee et al, 2007; Musich et al, 2011). It has also been 

observed that macrophage tropic variants isolated from brain tissue have gp120s 

with lower charges in comparison with non-macrophage variants from immune 

tissues from the same patient (Gonzalez-Perez et al, 2012). 

 

1.6 Compartmentalization 

 As discussed above, HIV-1 has extreme genetic diversity and this allows 

populations of viral quasispecies to arise with mutations that allow them to use 

different coreceptors, have different cell tropisms, develop drug resistance, and 

escape antibody neutralization, among other viral properties. Quasispecies may 

be particular to a specific tissue site, or compartment, and are said to be 

compartmentalized.  
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Compartmentalization may be the result of the availability of particular cell 

types in a specific tissue compartment, the presence or absence of antibodies 

(e.g., the brain is immune privileged), tissue specific coinfections (e.g., tuberculosis 

in the lungs), or the concentrations of antiretroviral drugs within in a tissue. Several 

studies have shown that HIV drugs do not penetrate tissues uniformly. This has 

been well documented in the brain, where drugs may be unable to cross the blood 

brain barrier (BBB), allowing the brain to potentially serve as a sanctuary site with 

continued replication despite controlled viremia in the plasma (Nowacek and 

Gendelman, 2009; Varatharajan and Thomas, 2009; Gomes et al, 2014). Recent 

studies have also shown that antiretroviral treatments can be lower in lymphatic 

tissues than blood, which similarly allows for continued replication even in patients 

on therapy (Fletcher et al, 2014; Lorenzo-Redondo et al, 2016). Yet another study 

reported that patients with undetectable viral loads in their plasma had virus 

detected in their semen and this correlated with lower semen drug concentrations 

(Lorello et al, 2009). This could have important implications for HIV-1 transmission.  

The HIV-1 Env is particularly susceptible to selection pressures due to its 

position on the virion surface, and thus exposure to antibodies, tissue 

microenvironments, and host target cells. HIV-1 envelope compartmentalization 

has been observed in peripheral blood mononuclear cells (PBMCs), brain 

tissues/cerebrospinal fluid (CSF), immune tissues, male and female genital tracts, 

lung, and possibly other tissues (reviewed in Blackard, 2012).  
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1.7 Scope of Thesis 

 The emergence of diverse populations of intrahost viral quasispecies is a 

hallmark of HIV-1 infection. Understanding how these population behave and their 

ability to evade immune responses, infect different cell types, and establish 

reservoirs is essential to producing effective antiretroviral drugs, as well the 

development of curative treatments and a vaccine. To this end, the HIV-1 envelope 

remains a critically important target. Despite this, there have been no studies to 

date looking at full length envelopes from multiple tissues from a single HIV-1 

infected individual with both genotype and phenotype characterization.  

 In this study, 75 full length envelopes were examined from the frontal lobe, 

occipital lobe, parietal lobe, colon, lung, and lymph node of an HIV-1 positive 

subject who died from end stage AIDS. Genetic studies were conducted where 

sequences were characterized based on the presence of features known to disrupt 

function (e.g., insertions, deletions, and premature stop codons) and examined for 

mutations known to change tropism (e.g., N283, loss of an N-linked glycosylation 

site at 386, E153G, changes to V3 loop, etc). In addition, length, charge, and 

number of potential N-linked glycosylation sites (PNGS) were calculated for 

specific env regions. Sequences were analyzed for hypermutation and 

recombination and assembled into phylogenetic trees to assess 

compartmentalization. Functional studies were used to characterize phenotypes 

of each Env, including functionality, coreceptor use, cell tropism, and susceptibility 

to inhibition by a panel of inhibitors and monoclonal antibodies. Finally, state of the 
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art Pacific Biosciences next generation sequencing was used to examine 

thousands of full length envs from each tissue, the first time this has been done 

with full length proviral HIV-1 env. 

 The results of this study provide new insights into HIV-1 populations in 

different tissue compartments, an area of HIV research that has not been 

adequately addressed. Analyzing these populations will provide a better 

understanding of infection in different tissues and how viral variants at these sites 

evolve differently. This could lead to more targeted drug regimens and aid in 

vaccine development. 
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CHAPTER II: MATERIALS AND METHODS 
 
 
 
2.1 HIV-1 Positive Subject and Tissues 

HIV-1 positive tissue was obtained from the National Disease Research 

Interchange (NDRI; Philadelphia, PA). Tissue was harvested postmortem and 

stored at -80°C until use. For this study, six tissues were examined from Subject 

162, along with blood plasma and serum (Table 2.1). These included three brain 

lobes (frontal lobe (FL), occipital lobe (OL), and parietal lobe (PL)), colon (C), lung 

(L), and lymph node (LN). Subject 162 died of end stage AIDS. 

 

2.2 Nucleic Acid Extraction 

DNA was harvested from tissues and cells from plasma and serum using 

the QIAamp DNA Mini Kit (QIAGEN) as described by the manufacturer’s protocol. 

DNA was eluted in 300 μl nuclease free, PCR grade water and stored at -80°C.  

 RNA was isolated from plasma and serum using the High Pure Viral RNA 

Kit (Roche), eluted in 40 µl nuclease free, PCR grade water, and stored at -80°C. 

 

2.3 PCR 

Limiting Dilution Amplification 

Nested PCR reactions were performed using limiting dilution amplification 

of HIV-1 proviral DNA. For the first PCR, outer primers RevenvA and EnvN were 

used (Table 2.2). Inner primers RevenvB_TOPO and Env-lo were used for the 
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Subject A/R/S Tissues Plasma Viral Load CD4 Count HIV Treatment

162 53/B/F

Brain - Frontal Lobe                
Brain - Occipital Lobe             
Brain - Parietal Lobe              

Colon                                             
Lung                                            

Lymph Node                          
Plasma                                       
Serum

undetectable          
(<40 copies/ml)

733 cells/μl                                
(5 months prior to 

death)

Emtricitabine 
Tenofovir       
Lopinavir        
Ritonavir           
Kaletra

Table 2.1 Subject 162 data Tissue was obtained from the National Disease Research 
Interchange (NDRI; Philadelphia, PA). A/R/S = age/race/sex. Viral load testing was performed 
at the Ann & Robert H. Lurie Children’s Hospital of Chicago. 
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Primer Use Sequence Reference

EnvN LD/RT-PCR/PacBio outer CTG CCA ATC AGG GAA GTA GCC TTG TGT Gao et al, 1996
RevenvA LD/PacBio outer TAG AGC CCT GGA AGC ATC CAG GAA G Salazar-Gonzalez et al, 2008
RevenvB_TOPO LD inner CAC CTA GGC ATC TCC TAT GGC AGG AAG AAG Clapham Lab
Env-lo LD inner GTT TCT TCC AGT CCC CCC TTT TCT TTT AAA AAG Revilla et al, 2011
SG3-up RT-PCR TAC AGT GCA GGG GAA AGA AT AATA GAC ATA ATA Revilla et al, 2011
SG3-lo RT-PCR AGA CCC AGT ACA GGC RAR AAG C Revilla et al, 2011
Vif-2fw RT-PCR TAG GGA TTA TGG AAA ACA GAT GGC AG Clapham Lab
TAT-1 RT-PCR CCT AAA CTA GAG CCC TGG AAC CAT CC Lee et al, 2000
T7* sequencing/colony screen TAA TAC GAC TCA CTA TAG GG GENEWIZ universal primer
BGHR* sequencing TAG AAG GCA CAG TCG AGG GENEWIZ universal primer
GP41F1 sequencing GAG CAG CAG GAA GCA CTA T Clapham Lab
GP41F2 sequencing TGA ATA GAG TTA GGC AGG G Clapham Lab
GP41R1 sequencing ATA GTG CTT CCT GCT GCT C Clapham Lab
GP41R1Yang sequencing AAC GAC AAA GGT GAG TAT CCC TGC CTA A Yang et al, 1999
M5 sequencing CCA ATT CCC ATA CAT TAT TGT GCC CCA GC Takehisa et al, 1998
M5R sequencing/colony screen CCA GCC GGG GCA CAA TAA TGT ATG GG Takehisa et al, 1998
GP41R2 sequencing CCC TGC CTA ACT CTA TTC A Clapham Lab
V1V2A1F sequencing CAG ATG CTA AAG CAT ATG Clapham Lab
V1V2A2F sequencing TCA AAG CCT AAA GCC ATG Clapham Lab
V1V2A3F sequencing CCC ATA CAT TAT TGT GCC Clapham Lab
V1V2A4F sequencing TCA ACT CAA CTG CTG TTA Clapham Lab
FL3F sequencing GCT GTG GAA AGA TAC CTA Clapham Lab
4VF sequencing GAC CCA GAA ATT GTA ATG C Clapham Lab
470F sequencing CTT TCA ATG TCA CCA CAG GC Clapham Lab
1200F sequencing AGT TTT AAT TGT GGA GGG G Clapham Lab
2240F sequencing GAA GAA GAA GGT GGA GAG Clapham Lab
2310F sequencing TCT AGA TCG ACC TGA AGA GC Clapham Lab
2470F sequencing TCT AGA TCG ACC TGA AGA GC Clapham Lab
2170R sequencing GGT GAG TAT CCC TGC CTA ACT C Clapham Lab
2180R sequencing CGG GTC TGA AAC GAT AAT GG Clapham Lab
2320R sequencing GGC TCT TCA GGT CGA TCT AG Clapham Lab
2850R sequencing CCT CTT GTG CTT CTA GCC AGG C Clapham Lab
PacBioF-long PacBio inner GAG CAG AAG ACA GTG GCA ATG AGA GTG A Clapham Lab
PacBioR-long PacBio inner TTG ACC ACT TGC CAC CCA TCT TAT AGC A Clapham Lab

Table 2.2 HIV-1 env primers Primers were used for limiting dilution PCR (LD), RT-PCR, to 
colony screen, for sequencing (Sanger), and PacBio sequencing. Primers marked with an 
asterisk were used for env sequencing, but were located in the pcDNA 3.1D/V5-His-TOPO 
plasmid. 
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second PCR (Table 2.2). The Phusion High-Fidelity DNA Polymerase Kit (New 

England BioLabs) was used according to the manufacturer’s protocol for 50 μl PCR 

reactions using “Phusion” thermocycler program with 40 cycles (Table 2.3). DNA 

was serially diluted to determine the concentration at which less than 30% of the 

reactions were positive. At this concentration, there is a >80% chance of PCR 

products being derived from single genomes and thus avoiding the generation of 

PCR generated recombinants during the amplification (Salazar-Gonzalez et al, 

2008). Recent studies have demonstrated that there are minimal differences 

between products of limiting dilution PCR and bulk PCR (Etemad et al, 2015). 

However, limiting dilution PCR was used to be consistent with previously used 

methods and because recombination analyses were performed. PCR reactions 

were checked for positives by running 5 μl out on a 1.0% agarose gel with 0.5 

μg/ml ethidium bromide in TAE buffer. Positive bands were approximately 3 kb, as 

determined using a 1 kb ladder for reference (New England BioLabs). 

RT-PCR 

 RT-PCR was used to amplify env from viral RNA isolated from Subject 162 

plasma and serum. SuperScript III One-Step RT-PCR System with Platinum Taq 

DNA Polymerase (Invitrogen) was used to synthesize cDNA and amplify env in a 

one-step PCR using primers SG3-up, SG3-lo, Vif2F, TAT1, and EnvN (Table 2.2) 

and the “RT-PCR” thermocyler program with 40 cycles (Table 2.3). RNA dilutions 

were used to achieve limiting dilution conditions, as described above. The second 

PCR was the same as described above, using primers RevenvB_TOPO and  
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Phusion RT-PCR

Step Temperature Time Step Temperature Time

1 98°C 30 seconds 1 42°C 60 minutes
2 98°C 10 seconds 2 94°C 2 minutes
3 70°C 30 seconds 3 94°C 20 seconds
4 72°C 1.5 minutes 4 60°C 30 seconds
5 Repeat steps 2-4 40x 5 72°C 4 minutes
6 72°C 7 minutes 6 Repeat steps 3-5 40x
7 4°C ∞ 7 72°C 10 minutes

8 4°C ∞

General PacBio

Step Temperature Time Step Temperature Time

1 95°C 5 minutes 1 95°C 1 minute
2 95°C 1 minute 2 95°C 30 seconds
3 55°C 1 minute 3 68°C 3 minutes
4 72°C 1 minute 4 Repeat steps 2-3 35x
5 Repeat steps 2-4 40x 5 70°C 10 minutes
6 72°C 7 minutes 6 4°C ∞
7 4°C ∞

Table 2.3 Thermocycler programs used for PCR Programs were used for amplifying envs 
from patient tissues (Phusion), for RT-PCR to amplify envs from plasma and serum (RT-PCR), 
for colony screening to detect env+ clones (General), and to produce amplicons for Pacific 
Biosciences sequencing (PacBio). 
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Env-lo (Table 2.2), along with the Phusion High-Fidelity DNA Polymerase Kit (New 

England BioLabs) and Phusion thermocycler program with 40 cycles (Table 2.3). 

 

2.4 Cloning 

When PCR reactions had fewer than 30% of the reactions positive, the 

positive reactions were run out on a 1.0% agarose gel with 0.8% crystal violet in 

TAE buffer. Bands were purified using the QIAquick Gel Extraction Kit (QIAGEN) 

as described by the manufacturer. PCR products were eluted in 30 μl nuclease 

free, PCR grade water and stored at -20°C until use. 

Eluted PCR products were ligated into pcDNA 3.1D/V5-His-TOPO using TA 

Expression Kit (Invitrogen). Ligation reactions were performed as directed by the 

manufacturer using the following reaction mix: 

1 μl PCR product 
1 μl pcDNA 3.1D/V5-His-TOPO vector 
1 μl salt solution 
3 μl water 
 

Ligation products were transformed into TOP10 chemically competent cells 

(Invitrogen) and then plated on LB plates with 100 μg/ml carbenicillin to select 

positive clones. 

Clones were checked for positive inserts using Go Taq Green Master Mix 

(Promega) with primers T7 and M5R (Table 2.2) using the “General” thermocycler 

program with 40 cycles (Table 2.3). PCR reactions were run on a 1.0% agarose 

gel with 0.5 μg/ml ethidium bromide in TAE buffer and compared to a 100 kb ladder 

(New England BioLabs) for confirmation of an approximately 1 kb product. 
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2.5 Sanger Sequencing 

 Positive colonies were grown in LB with 100 μg/ml ampicillin cultures 

overnight, pelleted by centrifugation, and plasmid DNA was isolated using the 

QIAprep Miniprep Kit (QIAGEN). DNA was eluted in 50 μl nuclease free, PCR 

grade water and stored at -20°C until use. 

 Each clone was sequenced in both directions using a series of primers 

directed to conserved regions of the env sequence (Table 2.2). Sanger sequencing 

was performed by GENEWIZ (South Plainfield, NJ). The first eight sequencing 

primers in Table 2.2 were used for every clone and then additional primers were 

used as needed until the DNA was sequenced completely in both directions. 

 

2.6 Sequence Analyses 

 Alignments were constructed for each envelope using SeqMan Pro 

(DNASTAR) and sequence traces were checked for quality using FinchTV 

(Geospiza). They were assembled into consensus sequences and checked 

against the BLAST databases at the National Center for Biotechnology Information 

(NBCI) and Los Alamos National Laboratory (LANL) to ensure that they were not 

generated from laboratory contamination.  

Sequences were then examined for mutations known to affect tropism (e.g., 

N283, loss of an N-linked glycosylation site at 386, E153G, changes to V3 loop, 

etc), length and charge of env regions, and changes in potential N-linked 

glycosylation sites (PNGS). PNGS were counted using the LANL N-Glycosite 
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program (Zhang et al, 2004). The WebPSSM program (Jensen et al, 2003) was 

used to predict coreceptor use for each envelope based on the amino acid 

sequence of the V3 loop. Sequences were also checked for characteristics of non-

functional envs, including insertions, deletions, and premature stop codons. 

 Sequences were analyzed for hypermutation and recombination by Thomas 

Leitner at LANL. Hypermutation was assessed using the Hypermut program (Rose 

and Korber, 2000). The Hypermut program detects G to A mutations that are likely 

the result of APOBEC3G or APOBEC3F activity of based on the context of the 

mutations in comparison to a reference sequence. Recombination was predicted 

using a hierarchical PHI test (Bruen et al, 2006; Immonen and Leitner, 2014). The 

PHI test measures the pairwise homoplasy index for sequences to predict 

recombination based on convergent mutations. 

 

2.7 Phylogenetics 

 The env sequences from each tissue were aligned in GeneDoc (Pittsburgh 

Supercomputing Center) using manual adjustments with gaps excluded. Four HIV-

1 group M subtype B reference sequences from LANL were included as well to be 

used as an outgroup:  

Ref.B.FR.83.HXB2_LAI_IIIB_BRU.K03455 
Ref.B.US.98.1058_11.AY331295 
Ref.B.NL.00.671_00T36.AY423387 
Ref.B.TH.90.BK132.AY173951 
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Maximum likelihood phylogenetic trees were then constructed using Molecular 

Evolutionary Genetics Analysis (MEGA) software version 5 (Tamura et al, 2011). 

Trees were constructed for the following regions of env: gp160, gp120, gp41, V1-

V2, V1-V5, V1, V2, V3, V4, V5, C1, C2, C3, C4, and C5. For full length env, the 

General Time Reversible Substitution Model with Gamma distribution was used 

and compartmentalization was confirmed using the Slatkin-Maddison test (Slatkin 

and Maddison, 1989). MEGA was used to select the best models for trees of 

individual env regions. In all cases, bootstrap analyses were used with 1,000 

replicates and values ≥70% were noted on the trees. 

 

2.8 Cell Culture 

 Three cell lines were used in this study:  HEK 293T cells (American Type 

Culture Collection), HeLa TZM-bl cells (NIH AIDS Reagent Program), and HeLa 

HIJ cells (Platt et al, 1998). The HEK 293T cell line is a human embryonic kidney 

cell line containing the SV40 Large T-antigen and was used for the generation of 

pseudotyped viruses, or pseudoviruses (Graham et al, 1977; DuBridge et al, 1987; 

Pear et al, 1993). HeLa TZM-bl cells are indicator cells that express high levels of 

CD4, CCR5, and CXCR4 and have HIV-inducible luciferase and β-galactosidase 

genes (Platt et al, 1998; Derdeyn et al, 2000; Wei et al, 2002; Takeuchi et al, 2008; 

Platt et al, 2009). These were used to determine pseudovirus titers and for 

inhibition and neutralization assays. HeLa HIJ cells are a HeLa cell line that 

express CD4 and CXCR4, but not CCR5, and therefore can be used to evaluate 
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CXCR4 coreceptor tropism (Kabat et al, 1994; Platt et al, 1998). Cell lines were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco) with 10% fetal 

bovine serum and 10 μg/ml gentamicin. 

 Macrophages were isolated from leuopaks (New York Biologics) using 

Ficoll separation. Following purification, cells were resuspended at 6.5 x 106 

cells/ml in DMEM with 10% human plasma and 10 ug/ml gentamicin and plated on 

150 mm non-tissue culture treated plates. Cells were incubated overnight and then 

washed with media the next day to remove non-adherent cells. Cells were allowed 

to incubate for an additional 6 days (7 days total) and then macrophages were 

replated for tropism experiments. 

 

2.9 Pseudovirus Production 

 Pseudoviruses were constructed using env+ pcDNA 3.1D/V5-His-TOPO 

plasmids, carrying patient derived env genes, and an env- pNL4.3Δenv plasmid, 

an HIV-1 clone with a premature stop codon in the env gene (Bhattacharya et al, 

2004). For each patient env, 1.25 μg of env+ plasmid and 1.25 μg of env- plasmid 

were cotransfected into 293T cells using the ProFection Mammalian Transfection 

System (Promega) as described by the manufacturer. Supernatants were 

harvested 48 hours post transfection and clarified by centrifugation. Cell free 

pseudovirus stocks were removed, aliquoted, frozen in liquid nitrogen, and stored 

at -152°C until use. 
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2.10 Viral Titer and Tropism 

 TZM-bl and HIJ cells were used to determine Env functionality and ability to 

use CXCR4 as a coreceptor, respectively. For each infectivity assay, cells were 

diluted to 4.0 x 104 cells/ml and 500 μl/well were added to 48-well plates the day 

prior to infection. The day of infection, pseudovirus stocks were thawed at room 

temperature and then serially diluted in media to yield four concentrations: stock, 

1/10, 1/100/ and 1/1000. In addition, several laboratory strains were used as 

controls. For TZM-bl infection, B33, JRFL, and JRCSF were used as positive 

controls and L411 env- plasmid and L411 env- plasmid + pSVIII plasmid were used 

as negative controls. For HIJ infection, NL4.3 was used as a positive control and 

B33, JRFL, JRCSF, L411 env- plasmid, and L411 env- plasmid + pSVIII plasmid 

were used as negative controls. 

Cells were infected by removing media and adding 100 μl of pseudovirus 

dilution. Plates were incubated for 3 hours at 37°C and then 400 μl of media were 

added to each well. Plates were incubated at 37°C for 48 hours. TZM-bl cells were 

fixed with 0.5% glutaraldehyde in phosphate-buffered saline (PBS). Cells were 

stained by rinsing twice in 1 x PBS and then adding 500 μl X-gal substrate (0.5 

mg/ml 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, 3 mM potassium 

ferrycyanide, 3 mM potassium ferrocyanide, 1 mM magnesium chloride). Plates 

were incubated at room temperature overnight and then β-galactosidase 

expressing cells were counted to determine the focus forming units (FFU)/ml of 

each pseudovirus stock. HIJ cells were fixed in cold 1:1 methanol:acetone, 
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washed, and immunostained for p24 using monoclonal antibodies 365 and 366 

(UK Centre for AIDS Research), followed by an IgG-β-galactosidase conjugate 

(Southern Biotech), and then X-gal substrate. Plates were incubated overnight at 

room temperature and FFU were counted.  

 To determine macrophage tropism, 500 μl of macrophages at 2.5 x 105 

cells/ml were plated in 48-well plates the day prior to infection. On the day of 

infection, media was removed from cells and 100 μl of 10 μg/ml DEAE dextran 

were added to each well and plates were incubated at 37°C for 30 minutes. 

Following incubation, 100 μl of serially diluted pseudovirus stocks, described 

above, were added to each well. Laboratory strains B33 and JRFL were used as 

positive controls and JRCSF, L411 env- plasmid and L411 env- plasmid + pSVIII 

plasmid were used as negative controls. Macrophages were spinoculated for 45 

minutes at 1200 rpm in a benchtop centrifuge, incubated for 3 hours at 37°C, and 

then 300 μl media were added to each well. Plates were incubated for one week, 

adding additional media as needed. Macrophages were fixed, stained, and 

counted as described above for HIJ cells. 

 For viral titer and tropism experiments, a titer of 103 FFU/ml was used as a 

cutoff to determine whether a pseudovirus was functional on TZM-bl cells or could 

infect macrophages or HIJ cells. This titer was selected because it is sufficiently 

high to use the pseudovirus for inhibition and neutralization experiments. Below 

this value, it is difficult to observe changes in infection. However, it should be noted 

that while pseudoviruses below this value are categorized as “non-functional” for 
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the purpose of this study, they may still be infectious at a lower level. Likewise, 

they may be able to infect macrophages and HIJ cells at lower levels. 

 

2.11 Inhibition and Neutralization Assays 

 Inhibition and neutralization assays were carried out as previously 

described to determine IC50 values, or the concentration of inhibitor or antibody at 

which infection is reduced by 50% (Peters et al, 2008). Two inhibitors and four 

monoclonal antibodies were tested: sCD4 (prepared in house), maraviroc (NIH 

AIDS Reagent Program), b12 (provided by Dennis Burton, The Scripps Research 

Institute), PG16 (Polymun Scientific), 17b (provided by George Lewis, Institute of 

Human Virology) and 447-52D (Polymun Scientific) (Table 2.4). Inhibitions were 

performed using HIV-1 inducible HeLa TZM-bl cells, which were diluted to 1.6 x 

105 and plated at 50 μl/well in 96-well white-sided luminometer plates the day prior 

to the assay. The day of the assay, pseudovirus stocks were thawed at room 

temperature and diluted to 8000 FFU/ml. Several laboratory strains were used as 

controls for each experiment. Vesicular Stomatitis Virus G protein (VSVG) was 

used as a resistant control for all inhibitions and neutralizations. For sCD4, 

maraviroc, and b12, JRFL and JRCSF were used as sensitive controls. For PG16, 

JRFL was used as a resistant control and JRCSF was used as a sensitive control.  

In the 17b and 447-52D neutralization experiments, NL4.3 was used as a sensitive 

control and JRFL and JRSCF were used as resistant controls.  
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Eleven twofold serial dilutions were used for each inhibitor or antibody along 

with a media only, no inhibitor/antibody sample (Table 2.4). For each well of 

maraviroc inhibition, 25 μl serially diluted maraviroc were added to each well and 

incubated for 30 minutes at 37°C. Then 25 μl (200 FFU) pseudovirus were added 

to each well. For each well of inhibition or neutralization with sCD4, b12, PG16, 

17b, and 447-52D, 25 μl (200 FFU) pseudovirus and 25 μl serially diluted inhibitor 

or antibody were combined, incubated for 1 hour at 37°C, and then added to TZM-

bl cells. Plates were incubated at 37°C overnight and media was changed in the 

morning. The following day, media was removed via aspiration, 100 μl media 

without phenol red was added to each well and infection was detected with a 

luciferase readout using Beta-Glo (Promega). To each well, 100 μl Beta-Glo were 

added and plates were incubated at room temperature in the dark for 30 minutes. 

Plates were read using a BioTek Clarity luminometer (Winooski, VT) to obtain 

Relative Light Units (RLU). 

 

2.12 Next Generation Sequencing 

 Full length envs were amplified for Pacific Biosciences (PacBio) next 

generation sequencing. DNA was isolated from tissues as described above and a 

nested PCR approach was used to amplify a 2.6 kb product. Outer primers 

RevenvA and EnvN and inner primers PacBioF-long and PacBioR-long were used 

(Table 2.2). The Advantage 2 PCR Kit (Clontech) was used as described in the 

manufacturer’s protocol for 50 μl reactions. The thermocylcer program “PacBio” 
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was used with 35 cycles (Table 2.3). PCR products were cleaned up by running 

them out on a 2% E-Gel EX Agarose Gel (ThermoFisher Scientific) and purified 

with a QIAquick Gel Extraction Kit (QIAGEN). PCR products were eluted in 50 μl 

nuclease free, PCR grade water. Samples were sent to the Deep Sequencing Core 

Labs at the University of Massachusetts Medical School for sequencing using the 

PacBio RS II instrument. One SMRT Cell was analyzed for DNA from each tissue 

with 6-hour collection times.  

Bioinformatics analyses were performed by Bioinfoexperts, LLC 

(Thibodaux, LA). The V3 loop nucleic acid sequences were isolated and aligned 

using Geneious software version 9 (Kearse et al, 2012) and Gene Cutter (Los 

Alamos National Laboratory), respectively. Any V3 amino acid sequence 

containing an ambiguous position was removed from the alignment. Tropism 

prediction was performed using WebPSSM (Jensen et al, 2003) and the x4r5 

matrix. A python script was generated to randomly select 250 sequences from 

each tissue. Maximum likelihood phylogenies were generated with phyML 

(Guindon et al, 2010) using the HKY85 substitution model, the NNI tree 

improvement method, and the approximate likelihood ratio test (Anisimova and 

Gascuel, 2006).  A midpoint rooted tree was graphed and colored according to 

tissue type using FigTree software (http://tree.bio.ed.ac.uk/software/figtree/).  
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CHAPTER III: GENETIC CHARACTERIZATION OF HIV-1 ENVELOPES FROM 
TISSUES OF AN HIV-1 INFECTED SUBJECT 

 
 
 
3.1 Introduction 

A number of studies have addressed the diversity of HIV-1 env 

quasispecies. However one caveat of these studies is that they often look at only 

a particular region of the env (e.g., V1-V2 or V3), which may not be representative 

of the overall env sequence and may not be sufficient to infer phenotypes. 

Furthermore, these studies typically only examine a few tissue sites, such as brain, 

immune tissue, and plasma. In the first part of this study, envs were amplified from 

multiple tissues of an HIV-1 positive subject. They were then compared for 

compartmentalization, sequence variation, length, charge, possible N-linked 

glycosylation sites (PNGS), hypermutation, and recombination. 

Previous studies have shown genetic compartmentalization in the brain 

compared to plasma and immune tissue, but there is limited data on 

compartmentalization in other tissues (Wong et al, 1997; van’t Wout et al, 1998; 

Wang et al, 2001; Caragounis et al, 2007; Schnell et al, 2010; Gonzalez-Perez et 

al, 2012; Sturdevant et al, 2015). Similarly, studies have been conducted to 

examine the overall charge of env regions, but they have been restricted to only a 

few tissue compartments. Nevertheless, it has been reported that CCR5-using 

envelopes carried an increased overall positive charge as disease progressed 

(Repits et al, 2008; Seclen et al, 2011; Gonzalez-Perez et al, 2012). In AIDS 

patients with neurological complications, envelopes in immune tissue carried a 
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higher positive charge in the V1-V5 region compared to those in brain tissue 

(Gonzalez-Perez et al, 2012). 

 Mutations in the HIV-1 genome can impact quasispecies diversity. These 

include mutations that result in amino acid substitutions as well as loss or addition 

of PNGS. Together with insertions and deletions, they play an important role in 

diversity and phenotypes of viral variants. Several groups have examined the 

relationship between sequence length and PNGS and disease progression. These 

studies have found that variants with shorter V1-V2 lengths and less PNGS may 

be selected for at transmission, but that length expanded and number of PNGS 

increased over the course of infection (Pollakis et al, 2001; Derdeyn et al, 2004; 

Chohan et al, 2005; Sagar et al, 2006; Liu et al, 2008; Curlin et al, 2010; Huang et 

al, 2012; Wang et al, 2013; Pollakis et al, 2015). 

HIV-1 diversity can also be affected by human restriction factors, aimed at 

protecting host cells. Hypermutation resulting from the activity of APOBEC3G and 

F results in defective virus. Vif protects HIV-1 from APOBEC activity by inducing 

its degradation (Sheehy et al, 2002). However, in cells that express higher 

amounts of APOBEC or following a vif mutation, hypermutation can result 

(Lecossier et al, 2003). Previous studies have shown that APOBEC genes are 

differentially expressed in tissue compartments and that this can result in different 

levels of hypermutation (Koning et al, 2009; Refsland et al, 2010; Fourati et al, 

2014).  
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Finally, recombination has been shown to increase genetic diversity in HIV-

1 populations and increase the rate of evolution (Jetzt et al, 2000; An and 

Telesartsky, 2002; Rhodes et al, 2003; Charpentier et al, 2006; Chen et al, 2006; 

Mild et al, 2007; Zhang et al, 2010; Brown et al, 2011; Immonen et al, 2015; 

Sanborn et al, 2015).  

To effectively treat HIV-1 and develop a vaccine, it is essential to 

understand its genetic variability and how this may be different in tissue 

compartments. This study represents the first time that full length env sequences 

have been amplified and analyzed from multiple tissue sites within an infected 

individual. In addition, all of the envelopes were functionally characterized, which 

is discussed in Chapter IV. 

 

3.2 Results 

3.2.1 Envelopes were amplified from all tissues except for plasma and serum 
 

Limiting dilution PCR was used to amplify full length envelopes from proviral 

DNA at end point dilution from frontal lobe, occipital lobe, parietal lobe, colon, lung, 

and lymph node tissues, as well as from residual cellular material in plasma and 

serum of Subject 162 (Table 2.1). Envelopes were successfully amplified from all 

tissues, except plasma and serum, and used for further analyses (Table 3.1). 

Envelopes were named as follows: number of the PCR reaction – number of the 

PCR tube – number of the clone that was sequenced. A total of 8 envelopes were  
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Tissue Envelope Tissue Envelope

Brain - Frontal Lobe (FL) Lung (L)
8 envelopes 17-53-4 29 envelopes 6-10-1

52-19-3 7-7-16
53-30-5 7-20-1
53-53-3 7-22-1
65-15-1 7-34-15
68-59-1 7-38-3
70-14-2 7-43-5
74-14-2 8-3-6

Brain - Occipital Lobe (OL) 8-8-1
10 envelopes 19-94-2 58-1-2

19-108-2 58-7-4
52-59-21 58-13-1
54-32-6 58-15-1
75-28-2 59-12-1
76-35-5 59-51-1
76-59-4 98-11-1
76-72-1 98-22-1
86-131-1 98-36-1
86-167-2 98-51-1

Brain - Parietal Lobe (PL) 98-59-1
5 envelopes 51-77-2 98-60-2

52-79-17 99-35-2
49-74-1 101-12-2
83-34-4 101-23-1
88-68-2 101-25-1

Colon (C) 101-35-1
11 envelopes 2-2-1 101-54-1

3-1-4 101-60-1
3-4-2 101-66-1
4-3-1 Lymph Node (LN)
4-5-1 12 envelopes 17-84-1
4-8-1 17-89-1
4-13-2 56-13-4
4-15-2 56-43-7
4-22-1 56-57-2
4-38-12 56-67-3
4-39-3 62-16-1

62-30-1
62-37-6
62-41-3
62-43-1
62-47-1

Table 3.1 Subject 162 HIV-1 envelopes isolated from different tissues HIV-
1 envs were isolated from three brain regions (frontal lobe, occipital lobe, and 
parietal lobe), colon, lung, and lymph node using nested PCR and DNA at 
limiting dilution.  
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isolated from frontal lobe, 10 from occipital lobe, 5 from parietal lobe, 11 from colon, 

29 from lung, and 12 from lymph node for a total of 75 envelopes. Additional PCR 

reactions were performed to amplify smaller envelope regions (e.g., V1-V5 and 

V3) from plasma and serum proviral DNA, but attempts were not successful. 

However it was possible to amplify the human CCR5 gene (data not shown), 

suggesting that there was DNA in the samples, but proviral DNA was not present 

or had a very low copy number. Unfortunately, enriched white cells from blood 

were not available.  

For plasma and serum, RT-PCR was used to amplify full length envelopes 

from viral RNA. However, no envelopes were isolated from either of these 

samples. As with the proviral DNA samples, subsequent attempts to PCR amplify 

smaller envelope regions from the plasma and serum were unsuccessful. Plasma 

and serum samples were analyzed for viral load by the Infectious Disease 

Laboratory at the Children’s Hospital of Chicago using Abbott RealTime HIV-1 

RNA PCR. For both samples, viral load was undetectable with <40 copies/ml 

(Table 2.1). Subject 162 was on HAART (Table 2.1) and appears to have had well 

controlled viral replication at death. 

 

3.2.2 No mutations were observed that have previously been associated with 
macrophage tropism or CXCR4 use 
 
 Sequences were examined for the presence of mutations associated with 

changes in coreceptor use or macrophage tropism. For example, the presence of 

either an arginine or lysine at residues 11 or 25 of the V3 loop is associated with 
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CXCR4 use, while the loss of an asparagine at N283, the glycan at N386 or an 

E153G substitution have been associated with changes in macrophage tropism 

(Peters et al, 2004; Dunfee et al, 2006; Dunfee et al, 2007; Duenas-Decamp et al, 

2009; Musich et al, 2012). None of these were observed in any of the 75 

sequences. There were some insertions/deletions observed, but they were not so 

large that they would clearly disrupt function. However many sequences, 

particularly in envs derived from the lung, had numerous premature stop codons. 

These may render the Env non-functional. All Envs were tested for functionality, 

discussed in Chapter IV. 

 There were many other polymorphisms that resulted in amino acid changes. 

None of these appeared to correlate exclusively with a particular tissue or 

phenotype, discussed in Chapter IV. For example, when neutralization by PG16 

monoclonal antibody was tested, it was discovered that K130E was present in 

many envelopes that were resistant to neutralization. However there were also a 

number of envelopes with the K130E mutation that were sensitive to PG16. 

 

3.2.3 Sequences were compartmentalized in brain tissue 

Full length envelope gp160 sequences were isolated from frontal lobe, 

occipital lobe, parietal lobe, colon, lung, and lymph node (Table 3.1). The 53 

functional sequences (assessed in Chapter IV) were used to construct a maximum 

likelihood phylogenetic tree (Figure 3.1) using Molecular Evolutionary Genetics  
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Figure 3.1 Phylogenetic analysis of Subject 162 gp160 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal lobe), 
colon, lung, and lymph node. Four unrelated reference sequences were used as an 
outgroup. A maximum likelihood tree was constructed using MEGA version 5 for functional 
HIV-1 envs. Bootstrap vaues ≥70% are noted at branch points. Sequences from the brain 
regions are tightly compartmentalized. Compartmentalization was confirmed using the 
Slatkin-Maddison test with P < 0.001. Scale bar shows nucleotide substitutions per site.  
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Analysis (MEGA) version 5 software (Tamura et al, 2011). The tree was rooted 

using four unrelated clade B reference sequences. Genetic compartmentalization 

was observed between envelopes isolated from brain tissues and tissues from the 

body. Compartmentalization was confirmed using the Slatkin-Maddison test with 

P < 0.001. 

Phylogenetic trees were also constructed for regions of the envelope: 

gp120, gp41, V1-V2, V1-V5, C1, C2, C3, C4, C5, V1, V2, V3, V4, and V5 (Appendix 

A). MEGA software was used to calculate mean genetic distances for each tree 

(Figure 3.2). The V1 and V5 regions had the greatest evolutionary divergence, 

while the C5 region had the least. The V3 loop was also highly conserved among 

tissues within the brain and in the periphery. This is consistent with previous 

observations, as it is known that all V regions except for the V3 loop have 

hypervariable sequences (Los Alamos National Laboratory, 2016). 

 

3.2.4 Length of envelope regions did not differ significantly between 
different tissue sites 

 
Functional envelopes were compared to determine if envelopes from 

different tissue compartments differed in the length of V1-V2 or V1-V5 (Figures 3.3 

- 3.6). The length of the V1-V2 loops was more variable in peripheral tissues 

compared to those in brain. However, no significant differences were observed, 

when values were analyzed by unpaired, two-tailed t tests using GraphPad Prism 

software. 
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3.2.5 V1-V2 and V1-V5 net charges had greater variability in tissues from the 
body than in brain tissues 
 

Net charges of V1-V2 and V1-V5 regions were calculated using the The 

European Molecular Biology Open Software Suite (EMBOSS) Pepstats program 

to count charged amino acids (Figures 3.7 - 3.10). Overall charges in V1-V2 and 

V1-V5 regions were more variable in envelopes derived from colon, lung, and 

lymph node compared to those in brain tissues. However, only a few envelopes 

from colon and lung carried a higher positive charge. 

Using GraphPad Prism for unpaired, two-tailed t tests, it was determined 

that overall differences in V1-V2 and V1-V5 charges between envelopes present 

in brain tissues (frontal lobe, occipital lobe, and parietal lobe) and in tissues of the 

body (colon, lung, and lymph node) were not significant (Figures 3.8B and 3.10B). 

Nevertheless, significant differences were noted in V1-V2 charge between the 

following brain and body tissues, FL:OL, FL:C, FL:LN, OL:PL, PL:LN, as well as 

between C:L (Figure 3.7B). However, there was no consistent trend of higher 

charged envelopes in body tissues compared to brain tissues. Differences in the 

charges of the longer V1-V5 region were statistically significant between FL:OL, 

FL:LN, OL:PL, and PL:LN (Figure 3.9B). It was observed that there was much 

more variability in charges of envelope regions outside the brain than in the brain 

for both V1-V2 and V1-V5 regions, as shown by the means and standard 

deviations for each compartment (Figures 3.7C and 3.9C). 
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Figure 3.2 Evolutionary divergence of HIV-1 envs by region MEGA version 
5 software was used to calculate the mean distance (A) and evolutionary 
divergence (B) for each env region based on the number of base substitutions 
per site.  
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Figure 3.3 V1-V2 lengths of HIV-1 envs from different tissues A) V1-V2 
amino acid sequence lengths were calculated for each env and plotted using 
GraphPad Prism. B) An unpaired, two-tailed t test was used to test for statistical 
difference in the mean between the env populations in each tissue 
compartment. An asterisk denotes that t test could not be performed because 
the samples in both tissues had the same values. C) Mean and standard 
deviation are given to show the spread of the data range for the envs from each 
tissue compartment. 
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Figure 3.4 V1-V2 lengths of HIV-1 envs from the brain and body A) V1-V2 
amino acid sequence lengths were calculated for each env in the brain and 
body and plotted using GraphPad Prism. B) An unpaired, two-tailed t test was 
used to test for statistical difference in the mean between the env populations 
of the brain and body. C) Mean and standard deviation are given to show the 
spread of the data range for the envs from each compartment. 
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Figure 3.5 V1-V5 lengths of HIV-1 envs from different tissues A) V1-V5 
amino acid sequence lengths were calculated for each env and plotted using 
GraphPad Prism. B) An unpaired, two-tailed t test was used to test for statistical 
difference in the mean between the env populations in each tissue 
compartment. An asterisk denotes that t test could not be performed because 
the samples in both tissues had the same values. C) Mean and standard 
deviation are given to show the spread of the data range for the envs from each 
tissue compartment. 
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Figure 3.6 V1-V5 lengths of HIV-1 envs from the brain and body A) V1-V5 
amino acid sequence lengths were calculated for each env in the brain and 
body and plotted using GraphPad Prism. B) An unpaired, two-tailed t test was 
used to test for statistical difference in the mean between the env populations 
of the brain and body. C) Mean and standard deviation are given to show the 
spread of the data range for the envs from each compartment. 
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Figure 3.7 V1-V2 net charges of HIV-1 envs from different tissues A) V1-
V2 amino acid net charges were calculated for each env and plotted using 
GraphPad Prism. B) An unpaired, two-tailed t test was used to test for statistical 
difference in the mean between the env populations in each tissue 
compartment. Statistically significant values are shown in red. C) Mean and 
standard deviation are given to show the spread of the data range for the envs 

from each tissue compartment. 
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Figure 3.8 V1-V2 net charges of HIV-1 envs from the brain and body A) 

V1-V2 amino acid net charges were calculated for each env in the brain and 
body and plotted using GraphPad Prism. B) An unpaired, two-tailed t test was 
used to test for statistical difference in the mean between the env populations 
of the brain and body. C) Mean and standard deviation are given to show the 
spread of the data range for the envs from each compartment. 
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Figure 3.9 V1-V5 net charges of HIV-1 envs from different tissues A) V1-
V5 amino acid net charges were calculated for each env and plotted using 
GraphPad Prism. B) An unpaired, two-tailed t test was used to test for statistical 
difference in the mean between the env populations in each tissue 
compartment. Statistically significant values are shown in red. C) Mean and 
standard deviation are given to show the spread of the data range for the envs 

from each tissue compartment. 
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Figure 3.10 V1-V5 net charges of HIV-1 envs from the brain and body A) 

V1-V5 amino acid net charges were calculated for each env in the brain and 
body and plotted using GraphPad Prism. B) An unpaired, two-tailed t test was 
used to test for statistical difference in the mean between the env populations 
of the brain and body. C) Mean and standard deviation are given to show the 
spread of the data range for the envs from each compartment. 
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3.2.6 Average number of predicted N-linked glycosylation sites was more 
variable in tissue compartments outside the brain 
 

The low concentration of antibodies present inside the brain compartment 

may result in the evolution of envelopes with fewer glycans and an altered glycan 

shield. Potential N-linked glycosylation sites (PNGS) were predicted for functional 

envelope sequences using the Los Alamos National Laboratory N-Glycosite 

program for the V1-V5 region (Figures 3.11 and 3.12) and the full length envelope 

(Figures 3.13 and 3.14). Unpaired, two-tailed t tests were performed using 

GraphPad Prism. For the V1-V5 region, significant differences were found between 

FL:OL, OL:PL, and OL:LN (Figure 3.11B). For the envelope, significant differences 

were observed for FL:OL, FL:L, FL:LN, and OL:PL (Figure 3.13B). While regions 

outside of the brain had more variability (Figures 3.12C and 3.14C) in the number 

of PNGS than regions within the brain, these differences were not statistically 

significant (Figures 3.12B and 3.14B). 

 

3.2.7 The lung compartment had a higher frequency of hypermutated 
envelopes than other tissues 
 

All 75 envelope sequences were analyzed for hypermutation by Thomas 

Leitner at Los Alamos National Laboratory using the Hypermut program (Rose and 

Korber, 2000). A phylogenetic tree was constructed showing 19 envelope 

sequences in 5 lineages with hypermutation (Figure 3.15). Hypermutated 

sequences came from occipital lobe, colon, and lung. However the majority, 15 out 

of 19 envelopes, were from lung tissue. All of the envelopes with hypermutated 
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sequences were non-functional and unable to mediate infection of HeLa TZM-bl 

cells, as described in Chapter IV. 

 

3.2.8 Recombination was extensive in all tissue compartments 

 Sequences were analyzed for potential recombination by Thomas Leitner 

at Los Alamos National Laboratory using a hierarchical PHI test (Bruen et al, 2006; 

Immonen and Leitner, 2014). Hypermutated sequences were not assessed for 

recombination and are removed from the counts below. Out of 56 remaining 

sequences, 39 were the product of recombination events (Figure 3.15). Of the non-

hypermutated sequences, this includes 6 out of 8 frontal lobe sequences, 7 out of 

7 occipital lobe sequences, 3 out of 5 parietal lobe sequences, 9 out of 10 colon 

sequences, 9 out of 14 lung sequences, and 5 out of 12 lymph node sequences. 

As discussed in Chapter IV, the majority of the recombinant sequences, 37 of the 

39, were functional. 

 

3.2.9 PacBio sequencing  

 A total of 32,152 sequences were generated from the parietal lobe, colon, 

lung, and lymph node of Subject 162 using PacBio sequencing (Table 3.2). 

Specifically, 13,791 were from the parietal lobe, 8,263 were from the colon, 66 

were from the lung, and 10,032 were from the lymph node. PacBio sequencing 

was not performed for the frontal lobe or occipital lobe because it was not possible 

to amplify sufficient amounts of PCR product. For each sequence, the V3 loop was 
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analyzed to predict coreceptor use using WebPSSM (University of Washington). 

All of the sequences were predicted to use CCR5 (Table 3.2). 

 To create phylogenetic trees, 250 random sequences were selected for 

each tissue. For lung, all 66 were used. A maximum likelihood tree was 

constructed, showing compartmentalization within the brain, as well as the colon 

(Figure 3.16). Sequences from the lung and lymph node were mixed. 

 

3.3 Discussion 

 Subject 162 was an HIV-1 positive patient who died of complications from 

end stage AIDS. Despite this, it was difficult to amplify proviral DNA from patient 

tissue samples. Some tissues were more challenging than others, with 

plasma/serum and tissues of the brain being the most difficult. In the end, no envs 

were isolated from the plasma or serum. After many attempts to amplify viral RNA 

and proviral DNA, plasma and serum samples were sent out for viral load testing. 

It was discovered that neither sample had detectable viral loads. This would be 

expected in a subject that was on antiretroviral treatment with well controlled 

viremia. However this subject died from end stage AIDS, which is typically 

characterized by a spike in viral RNA copies in the plasma (Figure 1.2). It is unclear 

why a subject at this stage of HIV-1 infection would not have detectable viral loads. 

It is possible that the patient’s current drug regimen was effective at reducing the 

viral load in blood even though severe immune deficiencies led to their death.  
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Figure 3.11 V1-V5 potential N-linked glycosylation sites (PNGS) of HIV-1 

envs from different tissues A) V1-V5 PNGS were calculated for each env 
using N-Glycosite (LANL) and plotted using GraphPad Prism. B) An unpaired, 
two-tailed t test was used to test for statistical difference in the mean between 
the env populations in each tissue compartment. Statistically significant values 
are shown in red. C) Mean and standard deviation are given to show the spread 
of the data range for the envs from each tissue compartment. 
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Figure 3.12 V1-V5 potential N-linked glycosylation sites (PNGS) of HIV-1 

envs from the brain and body A) V1-V5 PNGS were calculated for each env 
in the brain and body using N-Glycosite (LANL) and plotted using GraphPad 
Prism. B) An unpaired, two-tailed t test was used to test for statistical difference 
in the mean between the env populations of the brain and body. C) Mean and 
standard deviation are given to show the spread of the data range for the envs 

from each compartment. 
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Figure 3.13 Env potential N-linked glycosylation sites of HIV-1 envs from 

different tissues A) Env PNGS were calculated for each env using N-
Glycosite (LANL) and plotted using GraphPad Prism. B) An unpaired, two-
tailed t test was used to test for statistical difference in the mean between the 
env populations in each tissue compartment. Statistically significant values are 
shown in red. C) Mean and standard deviation are given to show the spread of 
the data range for the envs from each tissue compartment. 
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Figure 3.14 Env potential N-linked glycosylation sites of HIV-1 envs from 

the brain and body A) Env PNGS were calculated for each env in the brain 
and body using N-Glycosite (LANL) and plotted using GraphPad Prism. B) An 
unpaired, two-tailed t test was used to test for statistical difference in the mean 
between the env populations of the brain and body. C) Mean and standard 
deviation are given to show the spread of the data range for the envs from each 
compartment. 
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Figure 3.15 Hypermutation and recombination of gp160 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal lobe), 
colon, lung, and lymph node. Four unrelated reference sequences were used as an 
outgroup. A maximum likelihood tree was constructed using MEGA version 5 for all 75 HIV-
1 envs. Bootstrap values ≥70% are noted at branch points. Hypermutation was assessed 
using the LANL Hypermut program and is shown by orange crosses (Rose and Korber, 
2000). Sequences were analyzed for potential recombination using a hierarchical PHI test 
(Bruen et al, 2006; Immonen and Leitner, 2014). Recombinants are shown by purple 
diamonds. Scale bar shows nucleotide substitutions per site. 
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Tissue
Total 

Sequences

Number Percent Number Percent
Parietal Lobe 13,791 13,791 100 0 0
Colon 8,263 8,263 100 0 0
Lung 66 66 100 0 0
Lymph Node 10,032 10,032 100 0 0
Total 32,152 32,152 100 0 0

CCR5-using CXCR4-using

Table 3.2 Subject 162 PacBio sequencing results The V3 loop nucleic acid sequences for 
all sequences in each data set were isolated using Geneious software version 9 (Kearse et al, 
2012). Gene Cutter (Los Alamos National Laboratory) was used to codon align and translate 
sequences. The sequencing approach resulted in some gapped positions, so any V3 amino 
acid sequence containing an ambiguous position was removed from the alignment. Tropism 
prediction was performed using WebPSSM (Jensen et al, 2003) and the x4r5 matrix. 
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Figure 3.16 Phylogenetic analysis of Subject 162 PacBio sequences A python script 
was generated to randomly select 250 sequences from each tissue. Due to the small 
number of sequences generated, all lung sequences were used. Maximum likelihood 
phylogenies were generated with phyML (Guindon et al, 2010) using the HKY85 substitution 
model, the NNI tree improvement method, and the approximate likelihood ratio test 
(Anisimova and Gascuel, 2006).  Tree was graphed and colored according to tissue type 
using FigTree software (http://tree.bio.ed.ac.uk/software/figtree/). Tree was midpoint 
rooted. Branch support is shown on the scale to the left, with red indicating branches with 
very high support. 
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Alternatively, plasma and serum samples may not have been handled optimally 

during tissue harvesting or shipment and RNA could have been degraded.  

While it was also difficult to isolate envs from brain tissue, this was not 

surprising. It has previously been reported that viral loads are low in the brain 

tissues of neurologically normal subjects (Bell et al, 1993; Donaldson et al, 1994; 

McCrossan et al, 2006). Subject 162 did not have a diagnosis of any neurological 

disorders and therefore was considered neurologically normal. Regardless, 24 

envs were isolated from brain tissues, along with 51 from other tissues (Table 3.1). 

 Tissues from the brain harbored envs that were compartmentalized from 

those in colon, lung, and lymph node. However, envs from these latter tissue sites 

were not. This compartmentalization was observed in full length env sequences, 

but not in all individual env regions (e.g., V3 loop). Evolutionary diversity was 

greatest in the V1 and V5 env regions (Figure 3.2), while other regions were more 

homogeneous. This is an important observation considering that many previous 

studies looked at only specific regions the of env sequences and in some cases 

concluded that there was no evidence of compartmentalization (Ince et al, 2009; 

Imamichi et al, 2011). For Subject 162, specific env regions including the V3 loop 

were nearly identical inside and outside the brain. This highlights the importance 

of examining full length env for studies of compartmentalization and viral diversity. 

 Sequence analysis revealed many mutations in env sequences, though 

none have been previously attributed to changes in macrophage tropism. An 

asparagine at position 283 and loss of an N-linked glycosylation site at 386 have 
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been shown to be associated with macrophage tropic brain variants in subjects 

with HIV-Associated Dementia (HAD) (Dunfee et al, 2006; Dunfee et al, 2007). An 

E153G mutation has also been shown to be a determinant of macrophage tropism 

in a pediatric subject with neurological complications (Musich et al, 2012). However 

none of the sequences had any of these mutations.  

 Few statistically significant differences were observed for the means of env 

length, charge, or number of PNGS, as determined using unpaired, two-tailed t 

tests. However, there was a clear difference in the variation of the range of values 

for env length, charge, and number of PNGS. In all cases, values for brain regions 

(frontal lobe, occipital lobe, and parietal lobe) were limited to a very narrow set of 

values. Interestingly, OL envs had a PNGS that was not present in FL or PL envs, 

as well as a lower net charge.  

In contrast, env length, charge, and number of PNGS from colon, lung, and 

lymph node were much more varied. Several studies on V1-V2 length and PNGS 

have suggested that shorter V1-V2 regions and fewer PNGS are characteristic of 

transmitted variants and early infection (Pollakis et al, 2001; Derdeyn et al, 2004; 

Chohan et al, 2005; Sagar et al, 2006; Liu et al, 2008; Curlin et al, 2010; Huang et 

al, 2012; Wang et al, 2012; Pollakis et al, 2015). One hypothesis is that this could 

be due to fewer immune pressures early in infection, and thus less need for 

variation and protection by PNGS. However this does not explain how these 

variants would be present in an individual later during the course of infection such 

that they could be transmitted to others. In addition, brain envs did appear to be 



76 
 

slightly shorter and have fewer PNGS, though this was not statistically significant. 

This is consistent with previous findings, as it is likely brain envs would also not be 

subjected to as severe immune pressures as envs in tissues of the body would.  

 Recombination was widespread in all tissues types and did not affect the 

function of the Envs, as discussed in Chapter IV (Figure 3.15). On the other hand, 

predicted rates of hypermutation were varied between different tissue types 

(Figure 3.15). It was noted during sequence analysis that many of the sequences 

contained premature stop codons. Upon further inspection, it was discovered that 

these were almost entirely G to A mutations, a signature of APOBEC activity 

(reviewed in Refsland and Harris, 2013). When these sequences were analyzed 

using the Hypermut program, it was confirmed that these mutations were 

consistent with APOBEC activity. Three tissues had hypermutation: the occipital 

lobe, colon, and lung. The majority, 15 out of 19 hypermutated sequences, were 

from lung. Interestingly, studies have shown that the lung has high levels of 

APOBEC expression (Koning et al, 2009; Refsland et al, 2010; Fourati et al, 2014). 

However other sites, including immune tissues, have also been shown to express 

APOBEC but did not have a high level of hypermutation in this study. 

PacBio sequencing data provided a first look at a large number of env 

sequences from multiple tissue sites. However, this data is preliminary and thus 

limited conclusions can be drawn from it. A major obstacle of this study was that 

no established protocol for data analysis existed prior to beginning this work. 
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Collaborators continue to develop a pipeline for analysis and this project remains 

in progress. 

Based on preliminary data, the phylogenetic tree from PacBio sequences 

showed similar compartmentalization as was observed using PCR amplified 

clones (Figures 3.1 and 3.16). One difference was that colon sequences appeared 

much more compartmentalized on the tree of PacBio sequences. It is not clear 

why this would be, but may be the result of low proviral load in the tissues sampled. 

Thus only a small number of variants were sampled for PacBio seqeuncing, 

resulting in many of the same sequences. It is also possible that the there were 

just too few PCR clones to see compartmentalization in the colon. Several small 

groups of colon sequences did cluster together on the PCR clone tree, but only 11 

envs were examined, in comparison to 250 on the PacBio sequence tree. 

Compartmentalization may have become more clear if additional PCR clone 

sequences were added to the tree. It is not known why so few sequences were 

generated from the lung tissue. PacBio sequencing may be repeated for this 

tissue. 

In summary, it is clear that envs outside of the brain are much more diverse 

than envs inside the brain. Though envs from the body were not genetically 

compartmentalized from one another, they did have differences in length, charge, 

number of PNGS, and rates of hypermutation. This may indicate that different 

tissue microenvironments result in unique viral variants, which could be explored 

further in future studies. 
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Envelopes from within the brain tissues were in an immune privileged site, 

with fewer permissive cell types. Accordingly, envs in the brain faced fewer and 

less diverse evolutionary pressures, resulting in more constrained sequences. In 

Chapter IV these Envs were tested for phenotypes to determine if they were 

similarly influenced by evolution in distinct tissue compartments. 
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CHAPTER IV: FUNCTIONAL CHARACTERIZATION OF HIV-1 ENVELOPES 
FROM TISSUES OF AN HIV-1 INFECTED SUBJECT 

 
  
 
4.1 Introduction 

 In the first part of this study, discussed in Chapter III, 75 full length envs 

were amplified from six different tissue compartments and compared for genotypic 

variation. In this second part, these Envs were expressed on pseudoviruses and 

subjected to functional assays to compare phenotypic variation. Similar to previous 

genotypic studies, phenotypic studies have been limited to few tissue types and 

thus do not adequately address quasispecies variation within an infected 

individual. Here, Envs were characterized by their functionality, cell tropism, 

coreceptor use, and susceptibility to neutralization by inhibitors and monoclonal 

antibodies. 

 Coreceptor use and tropism have been previously studied in some tissues, 

such as the brain, immune tissues, and plasma, as reviewed in Chapter I. These 

studies have shown that T cell tropic R5-using variants are typically transmitted, 

but may evolve to use X4 or infect macrophages as disease progresses (Keele et 

al, 2008; Salazar-Gonzalez et al, 2009; Wilen et al, 2011; Ochsenbauer et al, 

2012). Previous studies have also shown that Envs from the brain were 

macrophage tropic and those outside the brain were predominantly, but not 

always, non-macrophage tropic (Gorry et al, 2001; Peters et al, 2004; Gonzalez-

Perez et al, 2012). 
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To further characterize envelope phenotypes and gain insight into possible 

structural differences between envelopes from different tissues, pseudoviruses 

were subjected to inhibition assays using sCD4 and maraviroc, and neutralization 

assays with monoclonal antibodies b12, PG16, 17b, and 447-52D. These reagents 

were selected to provide information on whether the trimer was closed or open, 

the V3 loop was exposed or occluded, and to further probe the extent that the CD4 

binding site was exposed.  

 These functional studies provide new insight into phenotypic differences in 

quasispecies from various tissue compartments. The results of this study will aid 

in the understanding of how viral variants may evolve differently due to distinct 

tissue specific pressures. 

 

4.2 Results 

4.2.1 Most envelopes were able to infect HeLa TZM-bl cells 

All envelopes isolated were tested for functionality based on the ability of 

Env+ pseudoviruses to infect HeLa TZM-bl cells (Figures 4.1 – 4.4). Infectivity was 

evaluated by titrating Env+ pseudoviruses and counting FFUs. Infectivity titers of 

>103 FFU/ml were considered sufficiently functional for further study, explained 

further in Chapter II. For brain, 100% of frontal lobe envelopes (8/8), 70% of 

occipital lobe envelopes (7/10), and 80% of parietal lobe envelopes (4/5) were 

functional. Outside brain, 91% of colon envelopes (10/11), 45% of lung envelopes 

(13/29), and 92% of lymph node envelopes (11/12) were also functional. 
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Figure 4.1 TZM-bl and macrophage titers of Envs from the brain Envs 
derived from the brain tissues (frontal lobe, occipital lobe, and parietal lobe) of 
Subject 162 were made into pseudoviruses and tested for their ability to infect 
TZM-bl cells and macrophages. Laboratory strains B33, JRFL, and JRCSF 
were used as controls. B33 and JRFL were functional and macrophage tropic 
controls. JRCSF was a functional and non-macrophage tropic control. The 
L411 env- plasmid and L411 env- plasmid + pSVIII plasmid were used as 
negative controls. The red line shows the cut off titer value for an Env to be 
considered functional on TZM-bl cells or macrophage tropic. 
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Figure 4.2 TZM-bl and macrophage titers of Envs from the colon Envs 
derived from the colon tissue of Subject 162 were made into pseudoviruses 
and tested for their ability to infect TZM-bl cells and macrophages. Laboratory 
strains B33, JRFL, and JRCSF were used as controls. B33 and JRFL were 
functional and macrophage tropic controls. JRCSF was a functional and non-
macrophage tropic control. The L411 env- plasmid and L411 env- plasmid + 
pSVIII plasmid were used as negative controls.  The red line shows the cut off 
titer value for an Env to be considered functional on TZM-bl cells or 
macrophage tropic. 
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Figure 4.3 TZM-bl and macrophage titers of Envs from the lung Envs 
derived from the lung tissue of Subject 162 were made into pseudoviruses and 
tested for their ability to infect TZM-bl cells and macrophages. Laboratory 
strains B33, JRFL, and JRCSF were used as controls. B33 and JRFL were 
functional and macrophage tropic controls. JRCSF was a functional and non-
macrophage tropic control. The L411 env- plasmid and L411 env- plasmid + 
pSVIII plasmid were used as negative controls. The red line shows the cut off 
titer value for an Env to be considered functional on TZM-bl cells or 
macrophage tropic. 
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Figure 4.4 TZM-bl and macrophage titers of Envs from the lymph node 

Envs derived from the lymph node tissue of Subject 162 were made into 
pseudoviruses and tested for their ability to infect TZM-bl cells and 
macrophages. Laboratory strains B33, JRFL, and JRCSF were used as 
controls. B33 and JRFL were functional and macrophage tropic controls. 
JRCSF was a functional and non-macrophage tropic control. The L411 env- 
plasmid and L411 env- plasmid + pSVIII plasmid were used as negative 
controls. The red line shows the cut off titer value for an Env to be considered 
functional on TZM-bl cells or macrophage tropic. 
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4.2.2 All envelopes amplified used CCR5 and could not use CXCR4 

Coreceptor use was predicted for all envelopes using the WebPSSM 

program (University of Washington). This program utilizes an algorithm that 

predicts coreceptor use from V3 loop sequences (Jensen et al, 2003). All 

envelopes were predicted to use CCR5 as a coreceptor. All shared similar charges 

and carried amino acids S and A at positions 11 and 25, respectively. 

Functional pseudoviruses were able to infect HeLa TZM-bl cells, which 

express both CCR5 and CXCR4 coreceptors (Figures 4.1 – 4.4). However none 

of the functional pseudoviruses were able to infect HeLa HIJ cells which express 

CD4 and CXCR4 but not CCR5 (not shown). This is consistent with the WebPSSM 

prediction that all envelopes use CCR5 as a coreceptor and rules out the possibility 

that they could have been dual-tropic. 

 

4.2.3 Brain derived envelopes were macrophage tropic while envelopes 
from tissues from the body were not 
 

All pseudoviruses were tested for macrophage tropism on donor 

macrophages (Figures 4.1 – 4.4). All pseudoviruses constructed with envelopes 

derived from brain tissues were able to infect macrophages, with the exception of 

one occipital lobe envelope: 86-167-2. Conversely, only one pseudovirus with an 

envelope from tissue outside of the brain, 8-3-6 from the lung, was able to infect 

macrophages. All other envelopes from colon, lung, and lymph node were non-

macrophage tropic. 
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4.2.4 Sensitivity to entry inhibitors and neutralizing monoclonal antibodies 

sCD4 

 Consistent with previous studies, pseudoviruses prepared from envelopes 

from all three regions of the brain were inhibited at very low concentrations of sCD4 

(Figures 4.5 and 4.6). In contrast, Envs from colon, lung, and lymph node varied 

in their sensitivity to sCD4, with colon Envs significantly more sensitive compared 

to those from lung and lymph node.  

 The difference in sensitivity to sCD4 between tissues from the brain (frontal 

lobe, occipital lobe, and parietal lobe) and the body (colon, lung, and lymph node) 

was also found to be highly significant (P < 0.0001) (Figure 4.6B). Highly significant 

differences were also noted for sCD4 sensitivity between FL:C, FL:L, FL:LN, OL:C, 

OL:L, OL:LN, PL:L, PL:LN, C:L, and C:LN (Figure 4.5B). Together these data are 

consistent with distinct selective pressures in brain and colon compared to lung 

and lymph node that influence the exposure of the CD4bs or the capacity of Envs 

to respond to CD4 binding.  

Maraviroc 

 Maraviroc is an entry inhibitor that acts as a CCR5 antagonist and strongly 

inhibits entry of CCR5-using viral variants (Dorr et al, 2005; Wood and Armour, 

2005). Maraviroc strongly inhibited most of the pseudoviruses (Figures 4.7 and 

4.8). Envs from the lymph node were inhibited with IC50s ranging from 3.81-50.00 

ng/ml. One colon Env, 4-38-12, was highly resistant with an IC50 >100 ng/ml. All 

other pseudoviruses were inhibited at low concentrations of maraviroc, with IC50s 
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between 2.35 and 21.88 ng/ml. These results do not indicate dramatic tissue 

dependent variation in CCR5 use. A significant difference was observed only 

between L:LN using an unpaired, two-tailed t test (Figure 4.7B). 

b12 

 The b12 monoclonal antibody epitope maps to a region overlapping the 

CD4 binding site on gp120 (Burton et al, 1991; Barbas et al, 1992; Burton et al, 

1994; Roben et al, 1994). Previous studies have shown that the majority of clade 

B macrophage tropic CCR5-using envelopes are sensitive to b12, while only a 

fraction of non-macrophage tropic envelopes are (Peters et al. 2008; Dunfee et al, 

2009; O’Connell et al, 2013). For many of these latter envelopes, the b12 epitope 

is occluded within the trimer. Here, most Env+ pseudoviruses with envelopes from 

brain and other tissues were resistant or had IC50s in a narrow range of b12 

concentrations of 35 - 50 μg/ml (Figures 4.9 and 4.10).  However, several 

envelopes from lung and lymph node, and one from frontal lobe, were highly 

sensitive. Using an unpaired, two-tailed t test, a significant difference was 

observed between C:LN, but not with any other tissues or between the brain and 

body (Figures 4.9B and 4.10B). These data are not consistent with previous 

studies that mainly used Envs derived from subjects with dementia (Peters et al, 

2008; Dunfee et al, 2009; Gonzalez-Perez et al, 2012). 

PG16 

 The PG16 antibody recognizes a glycosylation and trimer dependent 

conformational epitope at the apex of the trimer association domain (Walker et al, 
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2009; Doores and Burton, 2010). PG16 neutralized all pseudoviruses with brain 

envelopes at low concentrations (~0.01 μg/ml). Pseudoviruses with envelopes 

from other tissues were either strongly neutralized or strongly resistant (Figures 

4.11 and 4.12). The resistance of these latter envelopes was not due to the 

absence of either of the critical N-linked glycosylation sites at N156 and N160 

(McLellan et al, 2011; Julien et al, 2013; Wang et al, 2013). 

 A statistically significant difference was observed between IC50s of tissues 

from the brain (frontal lobe, occipital lobe, and parietal lobe) and tissues from the 

body (colon, lung, and lymph node) using an unpaired two-tailed t test in GraphPad 

Prism (Figure 4.12B).  Specific tissues were also compared and it was found that 

only frontal lobe and colon had a statistically significant difference (Figure 4.11B). 

However, differences between other tissues had P values that approached 

significance (~0.05). 

17b 

 The 17b antibody recognizes a CD4-induced epitope that overlaps the 

coreceptor binding site (Thali et al, 1993; Wyatt et al, 1995; Trkola et al, 1996; 

Kwong et al, 1998; Sullivan et al, 1998; Wyatt et al, 1998). 17b neutralizes several 

T cell line adapted laboratory isolates but does not usually neutralize primary HIV-

1 strains. Almost all pseudoviruses were resistant to 17b neutralization with IC50s 

>50 μg/ml, the highest concentration used in this experiment (Figure 4.13 and 

4.14). Only 58-13-1 from the lung and 62-30-1 from the lymph node showed some 

sensitivity, but with high IC50s at 33.17 μg/ml and 38.14 μg/ml, respectively. 
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447-52D 

 The 447-52D antibody recognizes the KSIHIGPGRAF epitope of the V3 

region of the HIV-1 envelope with the GPGR motif especially critical (Gorny et al, 

1992; Gorny et al, 1993; Conley et al, 1994; Zolla-Pazner et al, 1995; Gorny et al, 

1997; Binley et al, 2004; Stanfield et al, 2004; Krachmarov et al, 2006; Burke et al, 

2009; Hioe et al, 2010). Sequence analysis showed that all envs had the 447-52D 

epitope. Despite this, only one pseudovirus was inhibited: 8-3-6 from the lung. All 

other pseudoviruses were strongly resistant to neutralization by 447-52D, even at 

the highest concentration of 50 μg/ml (Figures 4.15 and 4.16). There was no 

difference between envelopes from different tissue compartments. These data 

indicate that the V3 loop crown was occluded within the trimer association domain 

for all envelopes except 8-3-6 from lung. 

 

4.3 Discussion 

 In this second part of the study, HIV-1 envs that were isolated and 

genotypically characterized in Chapter III were prepared as Env+ pseudoviruses 

to test their phenotypes. Once pseudoviruses were made, they were first tested on 

TZM-bl cells to determine whether or not they were functional. Due to the high rate 

of mutation in HIV-1, some envs acquire mutations that render the Env 

glycoprotein non-infectious. TZM-bl cells are a permissive cell line that expresses  
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Figure 4.5 sCD4 inhibition of HIV-1 Envs from different tissues A) Each 
Env was tested for sensitivity to inhibition by sCD4. IC50s were calculated and 
plotted using GraphPad Prism. Laboratory strains JRFL and JRCSF were used 
as sCD4 sensitive controls. Vesicular Stomatitis Virus G protein (VSVG) was 
used as a sCD4 resistant control. B) An unpaired, two-tailed t test was used to 
test for statistical difference in the mean between the Env populations in each 
tissue compartment. Statistically significant values are shown in red. C) Mean 
and standard deviation are given to show the spread of the data range for the 
Envs from each tissue compartment. 
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Figure 4.6 sCD4 inhibition of HIV-1 Envs from the brain and body A) Each 
Env in the brain and body was tested for sensitivity to inhibition by sCD4. IC50s 
were calculated and plotted using GraphPad Prism. Laboratory strains JRFL 
and JRCSF were used as sCD4 sensitive controls. Vesicular Stomatitis Virus 
G protein (VSVG) was used as a sCD4 resistant control. B) An unpaired, two-
tailed t test was used to test for statistical difference in the mean between the 
Env populations of the brain and body. Statistically significant values are shown 
in red. C) Mean and standard deviation are given to show the spread of the 
data range for the Envs from each compartment. 
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Figure 4.7 Maraviroc inhibition of HIV-1 Envs from different tissues A) 

Each Env was tested for sensitivity to inhibition by maraviroc. IC50s were 
calculated and plotted using GraphPad Prism. Laboratory strains JRFL and 
JRCSF were used as maraviroc sensitive controls. Vesicular Stomatitis Virus 
G protein (VSVG) was used as a maraviroc resistant control. B) An unpaired, 
two-tailed t test was used to test for statistical difference in the mean between 
the Env populations in each tissue compartment. Statistically significant values 
are shown in red. C) Mean and standard deviation are given to show the spread 
of the data range for the Envs from each tissue compartment. 
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Figure 4.8 Maraviroc inhibition of HIV-1 Envs from the brain and body A) 

Each Env in the brain and body was tested for sensitivity to inhibition by 
maraviroc. IC50s were calculated and plotted using GraphPad Prism. 
Laboratory strains JRFL and JRCSF were used as maraviroc sensitive 
controls. Vesicular Stomatitis Virus G protein (VSVG) was used as a maraviroc 
resistant control.  B) An unpaired, two-tailed t test was used to test for statistical 
difference in the mean between the Env populations of the brain and body. C) 

Mean and standard deviation are given to show the spread of the data range 
for the Envs from each compartment. 
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Figure 4.9 b12 neutralization of HIV-1 Envs from different tissues A) Each 
Env was tested for sensitivity to neutralization by b12. IC50s were calculated 
and plotted using GraphPad Prism. Laboratory strains JRFL and JRCSF were 
used as b12 sensitive controls. Vesicular Stomatitis Virus G protein (VSVG) 
was used as a b12 resistant control. B) An unpaired, two-tailed t test was used 
to test for statistical difference in the mean between the Env populations in 
each tissue compartment. Statistically significant values are shown in red. C) 

Mean and standard deviation are given to show the spread of the data range 
for the Envs from each tissue compartment. 
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Figure 4.10 b12 neutralization of HIV-1 Envs from the brain and body A) 

Each Env in the brain and body was tested for sensitivity to neutralization by 
b12. IC50s were calculated and plotted using GraphPad Prism. Laboratory 
strains JRFL and JRCSF were used as b12 sensitive controls. Vesicular 
Stomatitis Virus G protein (VSVG) was used as a b12 resistant control. B) An 
unpaired, two-tailed t test was used to test for statistical difference in the mean 
between the Env populations of the brain and body. C) Mean and standard 
deviation are given to show the spread of the data range for the Envs from each 
compartment. 
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Figure 4.11 PG16 neutralization of HIV-1 Envs from different tissues A) 

Each Env was tested for sensitivity to neutralization by PG16. IC50s were 
calculated and plotted using GraphPad Prism. Laboratory strain JRCSF was 
used as a PG16 sensitive control. Laboratory strain JRFL and Vesicular 
Stomatitis Virus G protein (VSVG) were used as PG16 resistant controls. B) 

An unpaired, two-tailed t test was used to test for statistical difference in the 
mean between the Env populations in each tissue compartment. Statistically 
significant values are shown in red. An asterisk denotes that t test could not be 
performed because the samples in both tissues had the same values. C) Mean 
and standard deviation are given to show the spread of the data range for the 
Envs from each tissue compartment. 
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Figure 4.12 PG16 neutralization of HIV-1 Envs from the brain and body A) 

Each Env in the brain and body was tested for sensitivity to neutralization by 
PG16. IC50s were calculated and plotted using GraphPad Prism. Laboratory 
strain JRCSF was used as a PG16 sensitive control. Laboratory strain JRFL 
and Vesicular Stomatitis Virus G protein (VSVG) were used as PG16 resistant 
controls. B) An unpaired, two-tailed t test was used to test for statistical 
difference in the mean between the Env populations of the brain and body. 
Statistically significant values are shown in red. C) Mean and standard 
deviation are given to show the spread of the data range for the Envs from each 
compartment. 

 



98 
 

 

 

 

 

 

 

 

 

 

Figure 4.13 17b neutralization of HIV-1 Envs from different tissues A) Each 
Env was tested for sensitivity to neutralization by 17b. IC50s were calculated 
and plotted using GraphPad Prism. Laboratory strain NL4.3 was used as a 17b 
sensitive control. Laboratory strains JRFL and JRCSF and Vesicular Stomatitis 
Virus G protein (VSVG) were used as 17b resistant controls. B) An unpaired, 
two-tailed t test was used to test for statistical difference in the mean between 
the Env populations in each tissue compartment. An asterisk denotes that t test 
could not be performed because the samples in both tissues had the same 
values. C) Mean and standard deviation are given to show the spread of the 
data range for the Envs from each tissue compartment. 
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Figure 4.14 17b neutralization of HIV-1 Envs from the brain and body A) 

Each Env in the brain and body was tested for sensitivity to neutralization by 
17b. IC50s were calculated and plotted using GraphPad Prism. Laboratory 
strain NL4.3 was used as a 17b sensitive control. Laboratory strains JRFL and 
JRCSF and Vesicular Stomatitis Virus G protein (VSVG) were used as 17b 
resistant controls. B) An unpaired, two-tailed t test was used to test for 
statistical difference in the mean between the Env populations of the brain and 
body. C) Mean and standard deviation are given to show the spread of the data 
range for the Envs from each compartment. 
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Figure 4.15 447-52D neutralization of HIV-1 Envs from different tissues A) 

Each Env was tested for sensitivity to neutralization by 447-52D. IC50s were 
calculated and plotted using GraphPad Prism. Laboratory strain NL4.3 was 
used as a 447-52D sensitive control. Laboratory strains JRFL and JRCSF and 
Vesicular Stomatitis Virus G protein (VSVG) were used as 447-52D resistant 
controls. B) An unpaired, two-tailed t test was used to test for statistical 
difference in the mean between the Env populations in each tissue 
compartment. An asterisk denotes that t test could not be performed because 
the samples in both tissues had the same values. C) Mean and standard 
deviation are given to show the spread of the data range for the Envs from each 
tissue compartment. 
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Figure 4.16 447-52D neutralization of HIV-1 Envs from the brain and body 

A) Each Env in the brain and body was tested for sensitivity to neutralization 
by 447-52D. IC50s were calculated and plotted using GraphPad Prism. 
Laboratory strain NL4.3 was used as a 447-52D sensitive control. Laboratory 
strains JRFL and JRCSF and Vesicular Stomatitis Virus G protein (VSVG) were 
used as 447-52D resistant controls.  B) An unpaired, two-tailed t test was used 
to test for statistical difference in the mean between the Env populations of the 
brain and body. C) Mean and standard deviation are given to show the spread 
of the data range for the Envs from each compartment. 

 



102 
 

the CD4 receptor, as well as both the CCR5 and CXCR4 coreceptors, so 

pseudoviruses with functional Envs should be able to infect them. Most of the Envs 

were functional, as assessed by their ability to infect TZM-bl cells (Figures 4.1 - 

4.4). However 22 out of 75 were non-functional, with a disproportionate number 

coming from the lung. A total of 29 envelopes were amplified from the lung and 16, 

or 55%, were non-functional. Only 6 of the non-functional Envs were from other 

tissues. When lung env sequences were examined, as described in Chapter III, it 

was clear why they were non-functional. The envs derived from lung tissue had far 

higher rates of hypermutation than envs from other tissues. In fact, all but one of 

the non-functional envelopes from lung were the result of hypermutation, probably 

due to APOBEC activity. The remaining non-functional envelopes were non-

functional due to hypermutation along with premature stop codons. 

 Of the functional Envs, all of them used CCR5 as a coreceptor. This was 

not surprising since this was predicted based on sequence using the WebPSSM 

program (Jensen et al, 2003). Envs from brain tissues were able to infect 

macrophages, consistent with previous findings (Gorry et al, 2001; Peters et al, 

2004; Gonzalez-Perez et al, 2012). This was not due to the presence of known 

determinants, such as N283, loss of an N-linked glycosylation site at 386, or 

E153G. Only one Env from the colon, lung, or lymph node was macrophage tropic, 

8-3-6 from the lung, although several others also conferred low level infection. 

Previous studies have described macrophage tropic HIV-1 variants in the lung and 

suggested that the lung may serve as a reservoir (Clarke et al, 1990; Jambo et al, 
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2014). The 8-3-6 env did not have the same mutations observed in brain derived 

macrophage tropic envs and did not cluster with these sequences on the 

phylogenetic tree (Figure 3.1). It is therefore likely that macrophage tropism 

evolved independently in the brain and in the lung compartments. 

 The functional Envs were also tested for their sensitivity to sCD4 and 

maraviroc inhibitors, as well as a panel of monoclonal antibodies. It has been 

shown previously that sCD4 inhibition is correlated with macrophage tropism and 

suggests a trimer conformation with increased exposure of the CD4bs, although 

an enhanced interaction with CD4 is also possible (Peters et al, 2008; Gonzalez-

Perez et al, 2012; O’Connell et al, 2013). Subject 162 macrophage tropic Envs 

were sensitive to sCD4 inhibition, consistent with these findings. However, there 

were also a number of non-macrophage tropic Envs from the colon, lung, and 

lymph node that were also sensitive to sCD4. In these tissues a range of IC50 

values were observed, whereas with Envs from brain regions, inhibition occurred 

at a very low concentration of sCD4 for all Envs. An enhanced Env:CD4 interaction 

for Env trimers is presumably required for infection of resident macrophages of the 

brain, which express lower levels of CD4 compared to T cells (Lee et al, 1999; 

Bannert et al, 2000; Mori et al, 2000). In addition, Envs would also not need to be 

as tightly closed to protect from neutralizing antibodies as those outside brain, 

since the concentration of antibodies in the brain tissues is low (Triguero et al, 

1989; Kuang et al, 2004). It’s not known why a range of resistant and sensitive 

phenotypes were present in the colon, lung, and lymph node tissues. Env trimers 
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in these tissues are more susceptible to immune pressures, so it is logical that they 

would remain in a more closed conformation to protect the CD4bs. It is possible 

that in this end stage AIDS subject, the immune system was failing and the 

resulting reduced immune pressure allowed for more open trimers to emerge and 

possibly the appearance of macrophage tropic variants. Macrophage tropic 

variants often do arise late in disease progression (Li et al, 1999; Tuttle et al, 2002; 

Gray et al, 2005; Thomas et al, 2007). Perhaps these more open, but not 

macrophage tropic, variants represent an intermediate phenotype in these tissue 

compartments, as recently suggested by work from the Swanstrom Lab (Arrildt et 

al, 2015). 

 Almost all Envs were inhibited by maraviroc, which is a strong inhibitor of 

R5-using HIV-1 variants. All of the Envs from this subject were shown to use the 

R5 coreceptor. Only one Env, 4-38-12 from the colon, was highly resistant. 

However, several from lymph node were modestly resistant, consistent with an 

enhanced Env:CCR5 interaction late in disease (Gorry et al, 2002; Reeves et al, 

2002; Karlsson et al, 2004; Reeves et al, 2004; Gray et al, 2005; Repits et al, 2005; 

Repits et al, 2008; Etemad et al, 2009). Envs that can use the X4 coreceptor are 

resistant to maraviroc. However 4-38-12 was shown to use R5 both based on 

envelope sequence predictions and its inability to infect HeLa HIJ cells via CXCR4. 

It is possible that this Env can use an alternative coreceptor for entry that was not 

tested. Alternatively, some CCR5-using Envs are resistant to maraviroc. This may 

be due to enhanced affinity for CCR5 or the ability to use maraviroc-occupied 
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CCR5 (Westby et al, 2007; Agrawal-Gamse et al, 2009; Pfaff et al, 2010; Tilton et 

al, 2010).  

 The b12 antibody overlaps the CD4 binding site and sensitivity has been 

associated with R5 macrophage tropism (Peters et al, 2008; Dunfee et al, 2009; 

O’Connell et al, 2013). In Subject 162, this was not the case. The majority of Envs 

were resistant to neutralization by b12 regardless of whether or not they were 

macrophage tropic. A few highly sensitive Envs were observed from the frontal 

lobe, lung, and lymph node. Neutralization by PG16 is dependent on Env 

glycosylation and conformation. PNGS at N156 and N160 have been shown to 

play a role in PG16 recognition (McLellan et al, 2011; Julien et al, 2013; Wang et 

al, 2013). All Envs had these PNGS and most were highly sensitive to PG16 

neutralization. The frontal lobe, occipital lobe, and parietal lobe Envs were all 

neutralized at very low PG16 concentrations. Envs from the colon, lung, and lymph 

node compartments were either very resistant or very sensitive to neutralization, 

without any intermediate phenotypes. While no known mutations associated with 

PG16 resistance were observed, resistant envelopes had a K130E mutation. 

However several envelopes that were sensitive to PG16 also had this mutation, so 

this alone cannot be sufficient to confer resistance.  

 Using the final two antibodies, 17b and 447-52D, no differences were 

observed between different tissues compartments. All Envs were resistant to 

neutralization with 17b, which recognizes a CD4-induced epitope. Similarly, all 

Envs were resistant to neutralization by 447-52D, which recognizes a 
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KSIHIGPGRAF epitope of the V3 loop. While all envelopes had this sequence, 

none of them were sensitive, indicating that the epitope was occluded within the 

structure. Only one Env, 8-3-6 from the lung, showed moderate sensitivity to 

neutralization by 447-52D. Interestingly, this Env is also macrophage tropic and 

sensitive to inhibition with sCD4. This suggests that this Env trimer has a more 

open conformation where the V3 loop and CD4bs are more exposed, thus helping 

to explain its ability to use low levels of CD4 to infect macrophages as well as its 

susceptibility to sCD4. 

 Chapter III investigated the genotypic differences in envs derived from 

different tissues of an HIV-1 positive individual. It was observed that envs from 

tissues within the brain were very similar in their sequences and properties, while 

envs from other regions of the body had much more varied characteristics. Here, 

these same Envs were examined for their phenotypes and a similar outcome was 

observed. Envs from regions of the brain behaved almost identically in all 

functional tests, while those from tissues of the body had a wide range of 

phenotypes. This again highlights the differences in these tissues and the 

evolutionary pressures that contribute to Env evolution. Envs in the brain must 

adapt to use low CD4 on the resident macrophages of the brain. However, they 

may be under less pressure from interaction with antibodies. Conversely, Envs in 

the body must evolve to avoid antibody neutralization but have access to several 

permissive cell types, allowing for more diversity in phenotypes. Studying these 
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different functional characteristics will aid in the understanding of viral 

quasispecies populations. 
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CHAPTER V: GENERAL DISCUSSION 
 
 
 

5.1 Summary 

 In this study, full length HIV-1 envelopes were characterized in three 

different ways: by genotypic properties, through functional phenotypes, and using 

next generation sequencing. These envs were derived from the frontal lobe, 

occipital lobe, parietal lobe, colon, lung, and lymph node of an HIV-1 infected 

subject who died from end stage AIDS. This is the first study in which envelopes 

from an individual patient have been so extensively characterized. In addition, this 

is the first study to use Pacific Biosciences next generation sequencing to study 

full length proviral HIV-1 envs. 

 The first part of this study, discussed in Chapter III, used limiting dilution 

nested PCR to amplify full length HIV-1 envs from each tissue. These envs were 

examined for mutations known to affect tropism, length, charge, PNGS, 

hypermutation, and recombination. The env sequences were assembled into a 

phylogenetic tree and assessed for compartmentalization. The envs isolated from 

brain tissues (frontal lobe, occipital lobe, and parietal lobe) were very 

homogeneous in all areas. However, envs from tissues of the body (colon, lung, 

and lymph node) were very diverse in their genotypes. 

 The same outcome was observed in the second part of this study, 

discussed in Chapter IV. The Envs from each tissue were incorporated into 

pseudoviruses to examine functionality, coreceptor use, macrophage tropism, and 
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sensitivity to sCD4 and maraviroc inhibitors and neutralization by b12, PG16, 17b, 

and 447-52D monoclonal antibodies. Envs derived from tissues of the brain were 

similar in all phenotypes tested, while Envs from tissues of the body were more 

varied in their phenotypes. 

  

5.2 Future Studies 

The results of this study provide the first picture of how HIV-1 variants may 

evolve differently at various tissue sites within an infected individual. Additional 

studies could further elucidate the variation observed in different tissue 

compartments and help decipher the role this plays in disease progression. 

Structural differences could explain changes in tropism or sensitivity to 

inhibitors and antibodies. Modeling programs could be used to predict structural 

changes of Envs based on sequences or structures could be examined using X-

ray crystallography or Cryo-EM. Structural studies may reveal that some Envs are 

more open, such as those from the brain or 8-3-6 from the lung, allowing them to 

infect macrophages and be inhibited by sCD4. This could be supported by 

experiments to test envelope affinity for receptors, inhibitors, and antibodies.  

None of the mutations known to change tropism (e.g., N283, loss of an N-

linked glycosylation site at 386, and E153G) were observed. However there were 

other mutations throughout the env sequence, some of which were more frequent 

in a specific tissue compartment. In the case of the brain, it is possible that these 

mutations could be involved in macrophage tropism. To test this possibility, an 
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extensive mutagenesis study could be conducted in which all of the mutations that 

were specific to the brain tissues were introduced to envs from peripheral tissues 

with closely related sequences to see if they confer macrophage tropism. Likewise, 

it may be possible to determine what mutations are responsible for the differences 

observed in the inhibition and neutralization assays. 

PacBio studies are ongoing and will be used to further examine env 

sequences in each tissue and will investigate whether tissue specific signature 

sequences and characteristics exist. In addition, time rooted phylogenetic trees will 

be constructed to determine which tissues may have been infected first and the 

migration patterns of viral variants throughout the body.  

Finally, it would be useful to conduct further studies in additional subjects. 

A major limitation of this study is that it only examines one subject. It would be 

useful to determine if the observations are specific to Subject 162 or if they are 

common to all HIV-1 infected subjects. If possible, it would be helpful to work with 

a cohort where more information was available on the subject and their history. If 

a cohort could be established, additional questions could be asked as well. For 

example, how do these genotypes and phenotypes change over time? This is 

difficult to study in humans, as it is challenging or impossible to take longitudinal 

samples from some tissue sites. Thus previous longitudinal studies have been 

limited to few tissues compartments (Churchill et al, 2004; Schnell et al, 2010; Bull 

et al, 2013; Sturdevant et al, 2015; Vazquez-Santiago et al, 2015). It would be 

useful to know how quasispecies populations change over time within an 
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individual. The studies presented here could be expanded by modifying sampling 

methods to include biopsy where appropriate (e.g., colon and lymph node), 

bronchial lavage for lungs, and cerebrospinal fluid for brain. 

 

5.3 Conclusions 

This study added to the understanding of HIV-1 quasispecies populations 

by characterizing envelopes from multiple tissues within a single HIV-1 infected 

subject by both genotype and phenotype, which had not been done in any previous 

study. This is the most comprehensive study of HIV-1 envelope characteristics to 

date. It is clear in this subject that HIV-1 envelopes within the frontal lobe, occipital 

lobe, and parietal lobe of the brain have very low diversity. Envelopes from colon, 

lung, and lymph node peripheral tissues are much more diverse in both their 

genotypes and phenotypes. This diversity varied across the env sequence, 

highlighting the importance of studying full length env. Better understanding of viral 

quasispecies populations may aid in developing vaccines by defining new targets 

as well as promote discovery of curative treatments by describing populations in 

potential HIV-1 reservoir sites. 
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APPENDIX A: PHYLOGENETIC TREES FOR CHAPTER III 
 
 
 
 The following appendix contains phylogenetic trees for different env regions 

for Subject 162. Methods were followed as described in Chapter II to construct 

trees for gp120, gp41, V1-V2, V1-V5, C1, C2, C3, C4, C5, V1, V2, V3, V4, and V5. 

These phylogenetic trees were discussed in Chapter III and used to calculate 

evolutionary divergence (Figure 3.2).  
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Figure A.1 Phylogenetic analysis of Subject 162 gp120 sequences Full length HIV-
1 envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env gp120 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.2 Phylogenetic analysis of Subject 162 gp41 sequences Full length HIV-
1 envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env gp41 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.3 Phylogenetic analysis of Subject 162 V1-V2 sequences Full length HIV-
1 envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env V1-V2 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.4 Phylogenetic analysis of Subject 162 V1-V5 sequences Full length HIV-
1 envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env V1-V5 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.5 Phylogenetic analysis of Subject 162 C1 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env C1 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.7 Phylogenetic analysis of Subject 162 C3 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env C3 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.8 Phylogenetic analysis of Subject 162 C4 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env C4 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.9 Phylogenetic analysis of Subject 162 C5 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env C5 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.10 Phylogenetic analysis of Subject 162 V1 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env V1 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.11 Phylogenetic analysis of Subject 162 V2 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env V2 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.12 Phylogenetic analysis of Subject 162 V3 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env V3 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.13 Phylogenetic analysis of Subject 162 V4 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env V4 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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Figure A.14 Phylogenetic analysis of Subject 162 V5 sequences Full length HIV-1 
envs were amplified from three brain regions (frontal lobe, occipital lobe, and parietal 
lobe), colon, lung, and lymph node. Four unrelated reference sequences were used as 
an outgroup. A maximum likelihood tree was constructed using MEGA version 5 for 
functional HIV-1 env V5 regions. Bootstrap vaues ≥70% are noted at branch points. 
Scale bar shows nucleotide substitutions per site. 
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APPENDIX B: ANALYSIS OF AN HIV-1 INFECTED SUBJECT WITH TWO 
DISTINCT VIRAL POPULATIONS 

 
 
 

Introduction 

 Previous chapters describe the characterization of HIV-1 envelopes derived 

from multiple tissues of Subject 162, an HIV-1 infected subject who died from end 

stage AIDS and was neurologically normal. Initial study plans included an 

additional subject, Subject 123, who also died of end stage AIDS, but had HIV-

Associated Dementia (HAD). However preliminary sequence analyses revealed 

distinct, seemingly unrelated viral populations. These populations could not be 

directly compared for tissue specific genotypic and phenotypic changes because 

they may not have originated from the same viral variant. These populations were 

characterized to determine if they were the result of contamination or if Subject 

123 was infected with two viral variants. 

 

Methods 

All methods were followed as described in Chapter II with additional methods 

described below. 

 

Subject 123 

HIV-1 positive tissue was obtained from the National Disease Research 

Interchange (NDRI; Philadelphia, PA). Tissue was harvested postmortem and 

stored at -80°C until use. Seven tissues were examined from Subject 123 (Table 
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A.1). These included three brain lobes (frontal lobe (FL), occipital lobe (OL), and 

parietal lobe (PL)), blood cells (BC), colon (C), lung (L), and lymph node (LN). 

Subject 123 died of end stage AIDS. 

 

Short Tandem Repeat Analysis 

Short Tandem Repeat (STR) Analysis (reviewed in Gettings et al, 2015) 

was performed by Jonathan Ball’s laboratory at the University of Nottingham 

(Nottingham, UK). STR Analysis examines the number of repeats at specific loci 

in the human genome known to have varying numbers of repeats in different 

individuals. By examining several different STR loci, it can be determined with high 

probability whether or not different DNA samples came from the same person. The 

lab was sent ten coded DNA samples from the tissues of three different subjects. 

The number of subjects and tissues was not disclosed to the lab. The TH01, vWA, 

and D21S11 loci were examined using STR Analysis and then each DNA sample 

was assigned to a profile based on which DNA samples were believed to have 

come from the same subject. 

 

Next Generation Sequencing 

 Methods for Pacific Biosciences (PacBio) sequencing were followed as 

described in Chapter II. The only change made for Subject 123 was that nested 

PCR was performed with a first PCR of 12 cycles, followed by a second PCR of 

35 cycles. 



129 
 

Results 

Envelopes were isolated from all tissues of Subject 123 

 Envelopes were isolated from Subject 123 frontal lobe, occipital lobe, 

parietal lobe, blood cells, colon, lung, and lymph node using limiting dilution PCR 

(Table A.2). In total, 31 envs were amplified: 14 from the frontal lobe, 1 from the 

occipital lobe, 1 from the parietal lobe, 1 from blood cells, 3 from colon, 9 from 

lung, and 2 from lymph node. 

 

Subject 123 envs were compartmentalized in brain and body tissues 

 All 31 full length env sequences were used to construct a maximum 

likelihood phylogenetic tree using Molecular Evolutionary Genetics Analysis 

(MEGA) 5 software (Tamura et al, 2011). Compartmentalization was observed 

between tissues of the brain and tissues of the body (Figure A.15).  

 

Sequences from brain and body envs were very different 

 Sequence alignments revealed that env sequences from the brain and body 

were substantially different and possibly not related. Alignment of the V3 loop 

region shows the extreme variability between the viral populations derived from 

tissues of the brain and tissues of the body (Figure A.16). 
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Subject A/R/S Tissues Plasma Viral Load CD4 Count HIV Treatment

123 43/C/M

Brain - Frontal Lobe                
Brain - Occipital Lobe             
Brain - Parietal Lobe              

Colon                                             
Lung                                            

Lymph Node                          
Blood Cells                                    

<75 copies/ml            
(7 months prior to 

death)
not available                             

Viread                   
Norvir                  
Ziagen                 
Aptivis             

Isentress         
Intelence    

Table A.1 Subject 123 data Tissue was obtained from the National Disease Research 
Interchange (NDRI; Philadelphia, PA). A/R/S = age/race/sex. 
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Tissue Envelope Tissue Envelope

Brain - Frontal Lobe (FL) Blood Cells (BC)
14 envelopes 33-2-2 1 envelope 103-5-1

33-10-5 Colon (C)
33-25-3 3 envelopes 26-5-3
35-11-3 26-4-1
35-15-4 23-69-1
35-20-1 Lung (L)
35-21-2 9 envelopes 10-22-2
35-22-1 10-23-1
35-28-4 10-27-3
35-31-2 10-29-2
35-35-1 10-32-1
35-47-1 10-40-4
35-49-1 10-45-5
35-79-1 12-39-17

Brain - Occipital Lobe (OL) 12-44-10
1 envelope 19-26 Lymph Node (LN)

Brain - Parietal Lobe (PL)  2 envelopes 16-38-2
1 envelope 20-32-1 34-26-4

Table A.2 Subject 123 HIV-1 envelopes isolated from different tissues HIV-
1 envs were isolated from three brain regions (frontal lobe, occipital lobe, and 
parietal lobe), blood cells, colon, lung, and lymph node using nested PCR and 
DNA at limiting dilution.  
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Figure A.15 Phylogenetic analysis of Subject 123 gp160 sequences Full 
length HIV-1 envs were amplified from three brain regions (frontal lobe, 
occipital lobe, and parietal lobe), blood cells, colon, lung, and lymph node. Four 
unrelated reference sequences were used as an outgroup. A maximum 
likelihood tree was constructed using MEGA version 5 for functional HIV-1 
envs. Bootstrap vaues ≥70% are noted at branch points. Scale bar shows 
nucleotide substitutions per site. 



133 
 

 

 

 

 

 

 

 

 

 

 

 

Figure A.16 Alignment of Subject 123 V3 loop sequences V3 loop 
sequences were aligned using GeneDoc (Pittsburgh Supercomputing Center). 
Sequences from the brain (frontal lobe, occipital lobe, and parietal lobe) were 
compared to sequences from the body (blood cells, colon, lung, and lymph 
node). 
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Envs from the brain were predicted to use CCR5 and Envs from the body 

were predicted to use CXCR4 

  
V3 loop sequences were used to predict coreceptor use using the 

WebPSSM program (University of Washington; Jensen et al, 2003) based on V3 

net charge and amino acids at postions 11 and 25, which are known to play a role 

in coreceptor use (Table A.3). An increased net charge or an arginine or lysine at 

position 11 or 25 have been correlated with a switch to use the CXCR4 coreceptor. 

The WebPSSM program also compares envs to known and functional tested 

CCR5-using and CXCR4-using variants. All envelopes from brain tissues were 

predicted to use CCR5, while all envelopes from tissues of the body were predicted 

to use CXCR4 (Table A.3). Envelopes from the brain had a lower net charge 

around 4 and S and D at amino acid positions 11 and 25, respectively. However 

envelopes from the tissues of the body had a net charge around 6 with R at amino 

acid position 11 and E at amino acid position 25. 

 

Different env populations in the brain and body tissues were from the same 

subject 

 
 To rule out the possibility of laboratory contamination or accidentally 

switching tissues with another subject, Subject 123 tissues were examined using 

STR Analysis to determine if they came from the same person. STR Analysis 

confirmed that tissues from Subject 123 had the same STR profile and therefore 

were from the same subject (Table A.4). 
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Tissue
Genotype 

11/25

Average 

Net Charge

Predicted 

Coreceptor

Frontal Lobe SD 4 CCR5
Occipital Lobe SD 4 CCR5
Parietal Lobe SD 4 CCR5
Blood Cells RE 6 CXCR4
Colon RE 6 CXCR4
Lung RE 6 CXCR4
Lymph Node RE 6 CXCR4

Table A.3 Predicted coreceptor use for Subject 123 Envs WebPSSM 
(University of Washington) was used to determine amino acid genotype at 
positions 11 and 25 of the V3 loop, calculate the net charge, and predict 
coreceptor use. 
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Pacific Biosciences sequencing revealed low levels of mixing between 
CCR5- and CXCR4-using variants 
 

 Pacific Biosciences (PacBio) next generation sequencing was used to 

examine several thousand sequences from Subject 123 (Table A.5). In total, 

44,630 full length env sequnces were generated: 3,702 from the frontal lobe, 

12,625 from the occipital lobe, 12,834 from the parietal lobe, 4,474 from the blood 

cells, 202 from the colon, 7,099 from the lung, and 3,694 from the lymph node.  

Phylogenetic trees were assembled from 250 randomly selected sequences 

from each tissue (Figure A.17). Trees showed tight compartmentalization of envs 

from tissues of the brain (frontal lobe, occipital lobe, and parietal lobe) and from 

tissues of the body (blood cells, colon, lung, and lymph node). The majority of brain 

derived envelopes were predicted to use CCR5 as a coreceptor, while most of the 

body derived envelopes were predicted to use CXCR4 as a coreceptor (Table A.5). 

However interestingly, a small number of CXCR4-using variants were detected in 

the brain and CCR5-using variants were detected in each of the body tissues 

(Table A.5; Figure A.17). 

 

Discussion 

 Subject 123 had two distinct viral populations that did not appear to be 

related. This was observed in the complete segregation of populations from the 

brain and body on the phylogenetic tree (Figure A.15), as well as by comparing 

sequence alignments of the V3 loop (Figure A.16). STR Analysis was used to  
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Subject Tissue Profile

123 Frontal Lobe A
123 Occipital Lobe A
123 Parietal Lobe A
123 Lymph Node A
123 Lung A
162 Frontal Lobe B
162 Lung B
162 Colon B
124 Frontal Lobe C
124 Lung C

Table A.4 Short Tandem Repeat (STR) Analysis STR Analysis was 
performed on ten DNA samples from three subjects for three different loci. It 
was determined that the DNA samples could be categorized into three profiles, 
A, B, and C, and that these corresponded to the DNA samples from the three 
different subjects. 
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Tissue
Total 

Sequences

Number Percent Number Percent
Frontal Lobe 3,702 3,702 100 0 0
Occipital Lobe 12,625 12,625 100 0 0
Parietal Lobe 12,834 12,831 99.98 3 0.02
Blood Cells 4,474 104 2.32 4,370 97.68
Colon 202 68 33.66 134 66.33
Lung 7,099 14 0.20 7,085 99.80
Lymph Node 3,694 101 2.73 3,593 97.27
Total 44,630 29,445 65.98 15,185 34.02

CCR5-using CXCR4-using

Table A.5 Subject 123 PacBio sequencing results The V3 loop nucleic acid sequences for 
all sequences in each data set were isolated using Geneious software version 9 (Kearse et al, 
2012). Gene Cutter (Los Alamos National Laboratory) was used to codon align and translate 
sequences. The sequencing approach resulted in some gapped positions, so any V3 amino 
acid sequence containing an ambiguous position was removed from the alignment. Tropism 
prediction was performed using WebPSSM (Jensen et al, 2003) and the x4r5 matrix. 
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Figure A.17 Phylogenetic analysis of Subject 123 PacBio sequences A 
python script was generated to randomly select 250 sequences from each tissue. 
Due to the small number of sequences generated, all colon sequences were 
used. Maximum likelihood phylogenies were generated with phyML (Guindon et 
al, 2010) using the HKY85 substitution model, the NNI tree improvement method, 
and the approximate likelihood ratio test (Anisimova and Gascuel, 2006).  Trees 
were graphed and colored according to tissue type (A) and predicted coreceptor 
usage (B) using FigTree software (http://tree.bio.ed.ac.uk/software/figtree/). 
Trees were midpoint rooted. Branch support is shown on the scale to the left, 
with red indicating branches with very high support. 
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confirm that all tissue samples did actually come from the same subject (Table 

A.4). It was therefore possible that Subject 123 had dual infection. This may arise 

as a result of coinfection or superinfection. Coinfection occurs when a subject is 

infected with more than one viral variant at the same time and both variants 

establish infection. Alternatively, Subject 123 may have been superinfected with a 

second variant after an initial infection event, with both variants establishing viral 

populations. It is also possible that the two populations originated from a single 

viral variant that acquired many mutations and became highly compartmentalized 

due to different selection pressures in the tissues of the brain and the body. 

Previous studies have shown that this level of diversity can be possible (Lin et al, 

2012). 

 Though sequences from the tissues of the brain and the body were tightly 

compartmentalized, preliminary results from PacBio sequencing data showed low 

levels of CXCR4-using variants in the brain and CCR5-using variants in the body. 

PacBio studies are ongoing, as a pipeline for analysis had to be developed for this 

project. Future studies will examine whether recombination occurred between 

CXCR4-using and CCR5-using variants and will include additional phylogenetic 

analyses, such as constructing time rooted trees to investigate which tissues 

became infected first and how viral variants may have trafficked throughout the 

body. In addition, future studies will include phenotypic analyses to look at tropism 

(coreceptor use and macrophage tropism). 
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