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ABSTRACT 
 

Over the last decade, development and application of a set of molecular 

genomic approaches based on the chromosome conformation capture method 

(3C), combined with increasingly powerful imaging approaches have enabled 

high resolution and genome-wide analysis of the spatial organization of 

chromosomes. The aim of this thesis is two-fold; 1), to provide guidelines for 

analyzing and interpreting data obtained from genome-wide 3C methods such as 

Hi-C and 3C-seq and 2), to leverage the 3C technology to solve genome 

function, structure, assembly, development and dosage problems across a broad 

range of organisms and disease models.  

First, through the introduction of cWorld, a toolkit for manipulating genome 

structure data, I accelerate the pace at which *C experiments can be performed, 

analyzed and biological insights inferred.  Next I discuss a set of practical 

guidelines one should consider while planning an experiment to study the 

structure of the genome, a simple workflow for data processing unique to *C data 

and a set of considerations one should be aware of while attempting to gain 

insights from the data. 

Next, I apply these guidelines and leverage the cWorld toolkit in the 

context of two dosage compensation systems.  The first is a worm condensin 

mutant which shows a reduction in dosage compensation in the hermaphrodite X 

chromosomes.  The second is an allele-specific study consisting of genome wide 
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Hi-C, RNA-Seq and ATAC-Seq which can measure the state of the active (Xa) 

and inactive (Xi) X chromosome. Finally I turn to studying specific gene – 

enhancer looping interactions across a panel of ENCODE cell-lines.   

These studies, when taken together, further our understanding of how 

genome structure relates to genome function. 
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CHAPTER I:   Introduction 
 

Preface 
 

This introduction is adapted from the manuscripts and discussions 

contained in chapters II, III, IV, V and VI of this thesis.  

Introduction 
 

The human genome consists of over 3 billion nucleotides and is contained 

within 23 pairs of chromosomes.  If the chromosomes were aligned end to end 

and the DNA stretched, the genome would measure roughly 2 meters long.  Yet 

the genome is not only contained within, but functions within a sphere smaller 

than one tenth the thickness of a human hair (10 micron).  This suggests that the 

genome cannot exist as a simple one-dimensional polymer; instead the genome 

must fold into a complex compact three-dimensional structure while maintaining 

the ability to function in all capacities. 

It is increasingly appreciated that a full understanding of how 

chromosomes perform their many functions (e.g. express genes, replicate and 

faithfully segregate during mitosis) requires a detailed knowledge of their spatial 

organization.   It has been described [1] that chromosomes are packaged into 

two distinct chromatin compartments, namely the A and B compartments.  



 
 
 

22 

Genomic compartments have been found to be correlated with chromatin state, 

including DNA accessibility, gene density, replication timing, GC content and 

histone marks [1]. Thus, DNA belonging to the A-type compartment are 

interpreted as active, euchromatic regions while DNA belonging to the B-type 

compartment are interpreted as inactive, heterochromatic regions.  Genomic 

compartments have been found to have high-plasticity, such that they change in 

different cell-types and biological condition, matching large scale changes in 

gene activity.  Further, recent evidence suggests chromosomes appear to be 

folded as a hierarchy of nested chromosomal domains [1]–[6], and these are also 

thought to be involved in regulating genes, e.g. by limiting enhancer-promoter 

interactions to only those that can occur within a single chromosomal domain [7]–

[11].  Topologically Associating Domains (TADs) represent evolutionarily 

conserved sub-megabase self-interacting domains.  TADs have also been 

proposed to consist of multi-kilobase looping associations between regulatory 

and structural elements [7], [12].  It has been hypothesized that TAD organization 

can provide a micro-regulatory environment for each gene, thus enriching 

interactions with specific elements and depleting interactions with other (further 

away) genomic elements, which can significantly reduce the complexity of the 

regulatory network.  Also, genes can be controlled by a network of regulatory 

elements, such as enhancers, which can be located hundreds of kilobases away 

from their promoter.  In fact, a given enhancer’s target gene is not always the 

closest possible gene, the target of the enhancer can be up to a megabase 
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away, effectively ignoring the large set of proximal genes [13].   It is now 

understood that such regulation often involves physical chromatin looping 

between the enhancer and the promoter [13]–[19]. Together, these recent 

discoveries of chromosome folding have provided important insights into the 

nature of long-range gene regulation and the mechanisms underlying gene 

expression dynamics and genome function as a whole. 

Methods to study the 3D genome 
 

Indiscriminate methods such as microscopy or FISH can study the 

physical structure of genome, but have difficulty measuring multiple discrete 

contacts simultaneously.  The Chromosome Conformation Capture (3C) method 

was the first method to capture and measure the structure of the entire genome 

in an unbiased manner [20] (Figure 1.1).  3C has since been further developed 

into various  derivatives including 4C, 5C and Hi-C [21], [22], [23].  These 

methods use 3C as the core methodology by which they capture genomic 

interactions. The methods differ only in the actual technique by which the 

captured interactions are detected and measured, e.g. by PCR in 3C and by 

unbiased deep sequencing in Hi-C and 3C-seq.  Though the 3C method does 

capture genome-wide data, it was not until the era of deep sequencing came 

about that one was able to survey all genome wide interactions in a single 

experiment, as is the case in Hi-C and 3C-seq. 
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In 3C, cells are cross-linked using formaldehyde, lysed and the chromatin 

is then digested with a restriction enzyme of choice (typically any 4-cutter HindIII 

or EcoRI).  The chromatin is then extracted and the restriction fragments are 

ligated.  The crosslinks are then reversed, proteins are degraded and DNA is 

purified.  The newly generated chimeric DNA ligation products represent pairwise 

interactions and can then be analyzed by a variety of down-stream methods.   

The Hi-C method includes one additional step that introduces a  

biotinylated nucleotide at the ligation junction that enables specific enrichment of 

the ligated DNA [1].  This has the important advantage in that it prevents 

sequencing DNA molecules that do not contain such junctions and are thus not 

informative. In 3C-seq one employs the classical 3C protocol and often a more 

frequently cutting enzyme (e.g. DpnII) followed by intra-molecular ligation without 

biotin incorporation [4].  The ligated DNA is then directly sequenced to identify 

pairwise chromatin interactions genome-wide.  The 3C-seq methodology 

sequences all molecules including un-ligated molecules which can complicate 

the processing / filtering steps and can reduce the percentage of informative 

reads.  However experimental strategies exist to minimize uninformative (un-

ligated, self-ligated etc.), such as optimized crosslinked, digestion and ligation 

coupled with a larger size selection (less shearing) which results in larger 

molecule size (~1000 bp) and a larger percentage of informative reads. 

Applications 
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3C methods have been applied to many different biological questions and 

contexts.  This thesis will focus on the application of genome structure methods 

in the context of furthering the understanding of gene regulation.  Chapter II and 

III will focus on dosage compensation, both in C. elegans (worm) and Mus 

musculus (mouse).  Chapter V will focus on specific long-range looping 

interactions between genes and enhancers across a panel of ENCODE cell lines.  

Chapter IV will discuss a set a core guidelines one should follow to successfully 

complete a genome structure (3C, 5C, Hi-C) study, from initial conception 

through data analysis and data interpretation.  It will also outline considerations 

one should be aware of when interpreting data produced by the 3C methods and 

discuss high-level analysis methods used to extract biological meaning from 

genome structure datasets.  Finally, Chapter VI aims to expand the available 

tools and methodologies one can employ to process, filter, analyze and visualize 

genome wide structural data through the introduction and discussion of the 

cWorld toolbox.   

Long range gene regulation 
 

The vast non-coding portion of the human genome is awash in functional 

elements and disease-causing regulatory variants.  The relationships between 

the genomic positions and order of regulatory elements and their impact on distal 

target genes remain unknown.  Genes and distal elements can come together 

through looping to form higher order chromatin structures involved in gene 
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regulation [24].  Mapping of these structures allows placing loci in three-

dimensional context to reveal long-range and possibly functional relationships.  

Chapter V applies chromosome conformation capture carbon copy, 5C [23], to 

comprehensively interrogate interactions between transcription start sites (TSSs) 

and distal elements in 1% of the human genome representing the ENCODE Pilot 

regions [25].  5C maps were generated for GM12878, K562, HeLa-S3 and H1-

hES cells and results were integrated with other data from the ENCODE 

consortium (NCP0004) [26].  We discovered >1,000 long-range interactions in 

each cell line.  In differentiated cells, interactions occurred preferentially between 

active promoters and distal elements that are enriched for chromatin features 

that are hallmarks of regulatory elements.  In contrast, in H1-hES cells looping 

was not correlated with gene expression and often involved elements resembling 

poised enhancers.  Looping interactions are related to the relative genomic 

positions of the elements and display directionality.  First, Transcription Start 

Sites (TSSs) interact more frequently with enhancer-like and CTCF-bound 

elements located upstream than downstream, with a pronounced preference for 

elements located 100-200 Kb upstream.  Second, only ~8% of interactions are 

with the nearest gene, and some skip as many as 20 genes.  Third, in contrast to 

current insulator models, CTCF-bound elements do not block long-range 

interactions, implying that many of these sites do not demarcate physically 

insulated gene domains.  Finally, interactions form complex long-range 

interaction networks.  These analyses provide new insights into the links between 
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linear genome sequence, three-dimensional chromatin architecture and gene 

regulation.  

Sex Determination and Dosage 
 
 The vast majority of multi-cellular species/organisms have two or more 

sexes (males, females, hermaphrodites etc.).  A recurring / shared system is the 

XY sex-determination system which is found in humans, most mammals, some 

insects and some plants [27].  Humans and mouse define males as having one X 

and one Y chromosome (or simply having a Y) and females as having two X 

chromosomes (or simply lacking a Y).  Worms define males as XO (one X 

chromosome) and hermaphrodites as having two X chromosomes.  In human 

and mouse, sexual reproduction occurs between a male and female, each 

contributing a single copy of each of their chromosomes (23 in human, 20 in 

mouse) to produce offspring.  In worms, hermaphrodites can choose to either 

self-fertilize or to mate with a male worm to produce offspring.  In the case of 

self-fertilization, the progeny is genetically identical to the parent, whereas when 

a hermaphrodite and male mate, the progeny contains a single copy of each 

chromosome from each of the two parents. 

Dosage compensation 
 

  Chromosomes contain genes, which when expressed produce RNA, 

some of which can be translated into proteins, the workforce of the cell.  In the 

case of female human/mouse, having two copies of the X chromosome (XX) 
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would produce two doses of all X-chromosome genes.  In the case of 

human/mouse males, there would only be a single dose of all X-chromosome 

genes, since they only have a single copy of the X chromosome (XY).  This 

dosage imbalance between the sexes must be corrected to ensure that each of 

the sexes receive exactly the same gene dose across the sex chromosomes (XX 

and XY).  To ensure the dose of all X chromosome genes is balanced between 

the sexes, one of the two female X chromosomes is randomly inactivated during 

development and thus will produce mostly no RNA and protein.  The result is a 

single dose of most X chromosome genes in both females and males [27].   

In worms, the hermaphrodite animal has two X chromosomes and thus a 

theoretical double dose of all X-linked genes.  The male has the single X and 

thus a theoretical single dose of X linked genes.  In contrast to the random 

inactivation solution for human/mouse, the worm instead, down-regulates the 

expression for both of the two female X chromosomes by one half, yielding a 

total dosage of 1 for hermaphrodites (X*0.5 + X*0.5 = 1X) and males (X*1 = 1X) 

[27].  Fly (drosophila) employs yet another creative solution to the dosage 

problem.  In fly, the single male X chromosome is up-regulated by 2 fold to 

produce two doses of the single male X chromosome (2*X = 2X) which is equal 

to the two doses of the female’s two X chromosomes (1*X + 1*X = 2X) [27]–[29] 

C. Elegans dosage compensation  
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The three-dimensional organization of a genome plays a critical role in 

regulating gene expression, yet little is known about the machinery and 

mechanisms that determine higher-order chromosome structure. The dosage 

compensation complex (DCC), a condensin complex, binds to both 

hermaphrodite X chromosomes via sequence-specific recruitment elements on X 

(rex sites) to reduce chromosome-wide gene expression by half [30]–[34]. Most 

DCC condensin subunits also act in other condensin complexes to control the 

compaction and resolution of all mitotic and meiotic chromosomes [32], [33]. 

Thus an obvious hypothesis would be that the DCC complex alters the structure 

of the worm X chromosomes which in turn can modulate gene expressed down 

by one half. This thesis will demonstrate a DCC-dependent structural difference 

for the two X chromosomes in hermaphrodite worms which coincides with a 

marked difference in gene expression. 

To compare the molecular topology of X chromosomes and autosomes in 

C. elegans, we generated genome-wide chromatin interaction maps from mixed-

stage embryos using a modified chromosome conformation capture (Hi-C) 

protocol combining conventional chromosome conformation capture (3C) with 

paired-end sequencing [4], [20], [35].  To assess whether the DCC controls the 

spatial organization of hermaphrodite X chromosomes, we generated chromatin 

interaction maps for a dosage-compensation-defective mutant in which the XX-

specific DCC recruitment factor SDC-2 was depleted, severely reducing DCC 
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binding to X [30], [31], [36] (Figure 2.8 a) and elevating X chromosome gene 

expression (see below). 

Since the hermaphrodite worm has two genetically identical X 

chromosomes, it is difficult to assign sequencing reads to one of the two X 

homologous chromosomes.  Therefore we chose to pool the reads from the two 

X homologous chromosomes into a single X chromosome consensus structure.  

This strategy is employed for almost all genome-wide assays using NGS data 

(Chip-Seq, RNA-Seq, ATAC-Seq etc.) and the assumption that the two 

homologous chromosomes have a mostly similar genomic landscape and 

structure is correct as previously described in many allele-specific studies. 

The mouse X chromosome 
 

Important new insights into the 3D organization of mammalian 

chromosomes have come from recently developed and applied chromosome 

conformation capture approaches.  These studies have revealed a hierarchy of 

structural organization spanning several genomic length scales, from multi-

megabase ‘A/B’ compartments defined by blocks of chromatin that correlate with 

chromatin activity states, to topologically associating domains (TADs) which 

represent evolutionarily conserved sub-megabase self-interacting domains to 

multi-kilobase looping associations between regulatory and structural elements 

[7], [12].  This recent understanding of chromosome folding has provided 
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important insights into the nature of long-range gene regulation and the 

mechanisms underlying gene expression dynamics.  

However, less is known about the structure and organization of 

heterochromatin.  To what extent does chromosome folding, TAD organization 

and long range looping differ in the context of a heterochromatic state? A classic 

example of facultative heterochromatin is the inactive X chromosome (Xi) in 

female mammals, which is condensed and organized into a distinct silent nuclear 

compartment.  During early female development, X-chromosome inactivation 

(XCI) is triggered by up-regulation of the long non-coding Xist RNA from one of 

the two X chromosomes.  Xist RNA coats the chromosome in cis and, via its A-

repeat region [37], [38], induces transcriptional silencing of almost all of the 

~1073 genes on the X.  Interestingly, some genes (constitutive escapees) avoid 

this silencing in most cell types while others (facultative escapees) become 

reactivated from the Xi only in specific contexts [39]. The underlying 

mechanism(s) for both facultative and constitutive escape are not known. A role 

for Xist RNA in reshaping the organization of the entire Xi has been proposed 

[40], [41], with escape genes being excluded from the Xist-coated domain. 

However, the exact architecture of the Xi, for both its silent and expressed 

regions, is still unclear.  Based on DNA FISH, the human Xi is a rather 

homogeneous structure with an overall compaction that is about 1.2-fold higher 

than that of the active X chromosome (Xa) [42]–[44].  Recent chromosome 

conformation capture approaches have pointed to some intriguing features of the 
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3D folding of the Xi, including formation of large mega-domains along the human 

Xi [45], and long-range associations between loci that escape inactivation and 

become expressed on the mouse Xi [41].  However detailed insights into the 

global molecular architecture of the Xi remain far from complete, due in part to 

the lack of chromosome-wide, high resolution, allele specific information.  To this 

end, we have investigated the structure, chromatin accessibility and expression 

status of the Xi using allele-specific Hi-C, ATAC-Seq and RNA-Seq methods in 

embryonic stem cells (ESCs) and clonal neural progenitor cells (NPCs) both 

derived from a highly polymorphic (Cast x 129) F1 mouse. This F1 mouse cross 

contains 19,722,473 SNPs, averaging 1 SNP every ~140 bases which enables 

higher resolution analysis of allele-specific chromatin states and three-

dimensional conformation than that previously performed in human cells (~10-

fold higher SNP density) [45]. 

This thesis will demonstrate that the Xi lacks typical autosomal features 

such as active/inactive compartments and topologically associating domains 

(TADs), except around a small number of genes that escape XCI and remain 

expressed.  Escaping genes form TADs and retain DNA accessibility at 

promoter-proximal and CTCF binding sites, indicating that these loci can avoid 

Xist-mediated erasure of chromosomal structure.  We further show that gene-

silencing competent Xist RNA is sufficient to induce segregation of the Xi into two 

‘mega-domains’ separated by a boundary that includes the DXZ4 

macrosatellite.  Deletion of this boundary prior to XCI results in fusion of the 
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mega-domains and altered patterns of escape that correlate with changes in TAD 

structure following differentiation and XCI. Our results suggest a critical role for 

the boundary locus and Xist RNA in shaping the structure of the Xi and 

modulating escape from XCI.  Our findings also point to roles of transcription and 

CTCF binding in TAD formation in the context of facultative heterochromatin. 

Practical guidelines for genome structure studies 
 

Over the last decade, development and application of a set of molecular 

genomic approaches based on the chromosome conformation capture method 

(3C), combined with increasingly powerful imaging approaches have enabled 

high resolution and genome-wide analysis of the spatial organization of 

chromosomes.  The aim of this thesis is to provide guidelines for analyzing and 

interpreting data obtained with genome-wide 3C methods such as Hi-C and 3C-

seq that rely on deep sequencing to detect and quantify pairwise chromatin 

interactions genome-wide.   

The chromosome conformation capture methodology (3C) is now widely 

used to map chromatin interaction within regions of interest and across the 

genome.  Chromatin interaction data can then be interpreted to gain insights into 

the spatial organization of chromatin, e.g. the presence of chromatin loops and 

chromosomal domains.  This thesis will discuss methods and considerations that 

are important for using deep sequencing data to build bias-free genome-wide 

chromatin interaction maps. Then I will touch on several approaches to analyze 
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such maps, including identification of patterns in the data that reflect different 

types of chromosome structural features and their biological interpretations. 

Development and application of computation tools: cWorld 
 

This thesis will also introduce and discuss a set of tools for processing, 

manipulating, analyzing, visualizing and integrating genome structure datasets 

with other widely used genome-wide functional assays.   The thesis will discuss 

guidelines for analyzing genome-wide chromatin interaction maps generated by 

Hi-C, but many of these considerations also apply to 3C-seq data or other 

genome structural datasets.   First I will discuss the steps required to obtain high-

quality unbiased interaction maps. Then, I will discuss analysis and interpretation 

of the interaction maps. Finally I will introduce and discuss a set of publically 

available perl, python and R scripts for manipulating genome structure data and 

all of the necessary assumptions and normalizations that must be considered to 

properly interpret this new data-type.  

Concluding Remarks 
 

Chapters II and III aim to expand the understanding of dosage 

compensation through the use of Hi-C, RNA-Seq, ATAC-Seq and Chip-Seq data.  

These chapters will demonstrate a unique structural organization that both the 

dosage compensated worm and mouse X chromosomes employ to facilitate 

tighter gene regulation of the X-linked genes.   Chapter V will demonstrate the 

effectiveness of the 5C methodology in the context of mapping gene – enhancer 
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looping interactions across a panel of ENCODE cells lines.  From the data 

generated in 1% of the genome, the long-range interaction landscape of gene 

promoters can be inferred. This chapter will also provide insights into the 

complex network of gene regulation and begin to characterize and map specific 

functional long range looping interactions that control gene expression.  Chapter 

IV will discuss guidelines to use when designing, executing and interpreting 

genome structure data.  And finally chapter VI will introduce cWorld, a set of 

computation tools for manipulating genome structure data.      
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Figures 

 

Figure 1.1 | Depiction of the *C method 
Schematic of the 3C method and it’s various derivatives. 
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CHAPTER II: Condensin-driven remodeling of X 
chromosome topology during dosage compensation 
 

Preface 
 

This research chapter encompassed work published in Nature, by Emily 

Crane, Qian Bian, Rachel Patton MCcord, Bryan R Lajoie, Bayly Wheeler, Ed J. 

Ralston, Saturo Uzawa, Job Dekker, and Barbara J. Meyer.  The publication is 

entitled  “Condensin-driven remodelling of X chromosome topology during 

dosage compensation,” Nature, vol. 523, no. 7559, pp. 240–244, Jun. 2015. [46] 

Abstract 
 

The three-dimensional organization of a genome plays a critical role in 

regulating gene expression, yet little is known about the machinery and 

mechanisms that determine higher-order chromosome structure [6], [8]. Here we 

perform genome-wide chromosome conformation capture analysis, fluorescent in 

situ hybridization (FISH), and RNA-Seq to obtain comprehensive three-

dimensional (3D) maps of the Caenorhabditis elegans genome and to dissect X 

chromosome dosage compensation, which balances gene expression between 

XX hermaphrodites and XO males. The dosage compensation complex (DCC), a 

condensin complex, binds to both hermaphrodite X chromosomes via sequence-

specific recruitment elements on X (rex sites) to reduce chromosome-wide gene 

expression by half [30]–[34]. Most DCC condensin subunits also act in other 
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condensin complexes to control the compaction and resolution of all mitotic and 

meiotic chromosomes [32], [33]. By comparing chromosome structure in wild-

type and DCC-defective embryos, we show that the DCC remodels 

hermaphrodite X chromosomes into a sex-specific spatial conformation distinct 

from autosomes. Dosage-compensated X chromosomes consist of self-

interacting domains ( 1 Mb) resembling mammalian topologically associating 

domains (TADs) [2], [3]. TADs on X chromosomes have stronger boundaries and 

more regular spacing than on autosomes. Many TAD boundaries on X 

chromosomes coincide with the highest-affinity rex sites and become diminished 

or lost in DCC-defective mutants, thereby converting the topology of X to a 

conformation resembling autosomes. Rex sites engage in DCC-dependent long-

range interactions, with the most frequent interactions occurring between rex 

sites at DCC-dependent TAD boundaries. These results imply that the DCC 

reshapes the topology of X chromosomes by forming new TAD boundaries and 

reinforcing weak boundaries through interactions between its highest-affinity 

binding sites. As this model predicts, deletion of an endogenous rex site at a 

DCC-dependent TAD boundary using CRISPR/Cas9 greatly diminished the 

boundary. Thus, the DCC imposes a distinct higher-order structure onto X 

chromosomes while regulating gene expression chromosome-wide. 

Introduction 
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To compare the molecular topology of X chromosomes and autosomes in 

C. elegans, we generated genome-wide chromatin interaction maps from mixed-

stage embryos using a modified chromosome conformation capture (Hi-C) 

protocol combining conventional chromosome conformation capture (3C) with 

paired-end sequencing [4], [20], [35] (Figure 2.1, Figure 2.2 and Methods). 

Interaction data, binned at both 10 kb and 50 kb intervals, revealed features 

observed in other organisms. Interactions occur most frequently in cis and decay 

with genomic distance (Figure 2.2 and Methods). Chromosome compartments 

comparable to active A and inactive B compartments [35], [47] are formed 

(Figure 2.2, Figure 2.3, Figure 2.4, Figure 2.5). Compartments at the left end of 

the X chromosome and both ends of autosomes align with binding domains for 

lamin [48], lamin-associated protein LEM-2 (Figure 2.3, Figure 2.4, Figure 2.5) 

[49], and the H3K9me3 inactive chromatin mark [50], suggesting their similarity to 

inactive B compartments of mammals. 

Chromatin interaction maps also revealed self-interacting domains (~1 

Mb), predominantly on X chromosomes. These domains are visible as diamonds 

along the interaction maps (Figure 2.1 a, d) and resemble TADs of mammalian 

and fly chromosomes [2]–[4]. To quantify TADs, we devised an approach of 

assigning an ‘insulation score’ to genomic intervals along the chromosome. The 

score reflects the aggregate of interactions occurring across each interval. 

Minima of the insulation profile denote areas of high insulation we classified as 

TAD boundaries (Methods, Figure 2.1, Figure 2.6 a and Figure 2.7 a, b). 
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The insulation profile of the X chromosome stands out compared to those 

of autosomes. The insulation signal amplitude is larger on the X chromosome 

(Figure 2.1 a, d and Figure 2.7 d), implying TAD boundaries are stronger. Also, 

TAD boundaries on the X chromosome are more abundant and regularly spaced 

(Figure 2.7 d). 

Results 
 

To assess whether the DCC controls the spatial organization of 

hermaphrodite X chromosomes, we generated chromatin interaction maps for a 

dosage-compensation-defective mutant (DC mutant; Figure 2.1, Figure 2.2, 

Figure 2.6, Figure 2.6, Figure 2.3, Figure 2.4, Figure 2.5) in which the XX-

specific DCC recruitment factor SDC-2 was depleted, severely reducing DCC 

binding to X [30], [31], [36] (Figure 2.8 a) and elevating X chromosome gene 

expression (see below). The insulation profile of the X chromosome, but not 

autosomes, was greatly changed (Figure 2.1 b, e, Figure 2.2, Figure 2.6, 

Figure 2.6, Figure 2.3, Figure 2.4, Figure 2.5). Of a total of 17 TAD boundaries 

on the X chromosome, 5 were eliminated and 3 severely reduced in insulation. 

TAD boundary strength and spacing on the X chromosome in DC mutants 

resembled that of autosomes (Figure 2.7 d). 

To characterize this transformation in conformation, we calculated the 

difference between chromatin interaction maps of wild-type and DC mutant 

embryos after converting the interaction data into genomic-distance-normalized 
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Z-scores. In DC mutants, interactions on X increased across TAD boundaries but 

decreased within TADs, revealing a DCC-dependent remodeling of X 

chromosome structure (Figure 2.1 c, Figure 2.2, Figure 2.6, Figure 2.7, and 

Figure 2.4). Weakening of TAD boundaries is expected to cause chromosome-

wide changes in chromatin interactions. The largest changes in insulation on X 

occurred at TAD boundaries. Autosomes appeared unaffected (Figure 2.1 c, f, 

Figure 2.8 a, Figure 2.2, Figure 2.6, Figure 2.7, Figure 2.8, Figure 2.5). 

TAD boundaries on the X chromosome are enriched for the highest DCC-

occupied rex sites [30], [31], [51] (Figure 2.8 a and Figure 2.9 d). About 50% of 

all TAD boundaries and 90% of changed ones overlap the top 25 rex sites, a 

correlation higher than expected at random (Figure 2.9 d). In DC mutants, the 

largest insulation losses occurred in regions overlapping the strongest rex sites 

(Figure 2.8 a). These results imply the DCC plays a direct role in defining TADs 

by binding to rex sites to mediate formation of TAD boundaries. In contrast, 

genomic features such as highly occupied targets (HOT) sites [52] do not govern 

TADs (Supplementary Table 2). 

Two TAD boundaries on X that overlap rex sites in the LEM-2 B-like 

compartment were not greatly reduced in DC mutants (Figure 2.1 and Figure 

2.8 a and Figure 2.4 e). Although the DCC exerts a dominant influence on TAD 

formation, other forces act on the X chromosome to form TADs, as on 

autosomes. 
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To confirm the DCC-dependent topology of the X chromosome, we 

visualized TADs using quantitative 3D fluorescent in situ hybridization (FISH) in 

wild-type XX embryos and embryos lacking DCC binding on X: male XO and DC-

mutant XX (Figure 2.8 b–e). We imaged fluorescent probes that tiled 500 kb 

regions within TADs or flanking TAD boundaries. Probe overlap was quantified 

by analyzing the distribution of Pearson’s correlation coefficients between FISH 

signals from pairwise probe combinations8. 

As expected for TADs in wild-type embryos, two adjacent probes within a 

TAD on either X chromosomes or autosomes overlapped to a greater extent than 

two adjacent probes on either side of a TAD boundary (Figure 2.8 b–e and 

Figure 2.10 a–d). For DCC-dependent TAD boundaries on X including rex-47, 

rex-32 and rex-8, adjacent probes flanking TAD boundaries overlapped and co-

localized more in embryos lacking DCC binding than in wild-type XX embryos 

(Figure 2.8 c, d and Figure 2.10 8b). In contrast, the DCC-independent TAD 

boundaries on the X chromosome and autosomes did not change (Figure 2.8 e 

and Figure 2.10 c, d). FISH analysis also confirmed that some DCC-dependent 

TAD boundaries were eliminated (rex-47), and others reduced (rex-32) in DC 

mutants and XO males (Figure 2.8 c, d), showing that the DCC alters X 

chromosome structure by strengthening pre-existing TAD boundaries and 

creating new ones. 

Robust correlation between rex sites, DCC-dependent TAD boundaries, 

and regions of greatest insulation loss in DC mutants (Figure 2.8 a, Figure 2.9 d 
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and Supplementary Table 2) led us to test whether rex sites interact in a DCC-

dependent manner. We found rex–rex interactions to be among the most 

prominent interactions on the X chromosome by comparing the ranking (Figure 

2.9 a) and cumulative distribution (Figure 2.11 a, b) of Z-scores for rex 

interactions with those for all other X chromosome interactions. In DC mutants, 

rex–rex interactions decreased more than any of the 1,000 random sets of X 

chromosome interactions (Figure 2.11 a, c and Figure 2.9 b, c, e). These 

observations support the hypothesis that DCC binding at rex sites facilitates rex–

rex interactions. 

The rex–rex interaction frequency was directly related to the level of DCC 

occupancy at rex sites, as shown by 3D profiles of Hi-C interaction frequencies 

made for pairwise combinations of 10 kb bins overlapping either the top 25 DCC-

occupied rex sites or all 64 rex sites (Figure 2.8 a and 2.11 d, Figure 2.9 f and 

Supplementary Table 2). Interactions for the top 25 rex sites exceeded those for 

all rex sites. 

The correlation between rex-interaction strength and DCC occupancy was 

reinforced by contrasting results with dependent on X (dox) sites. The DCC 

spreads to these lower affinity dox sites located in promoters of highly expressed 

genes once recruited to X by rex sites [30], [31]. Dox sites showed no substantial 

interactions in 3D plots (Figure 2.9 g). 

The strongest rex–rex interactions occurred between rex sites at DCC-

dependent TAD boundaries on the X chromosome (Figure 2.11 e). Weaker rex–
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rex interactions also occur within TADs. In DC mutants, rex interactions within 

TADs and between TAD boundaries diminished to the level of non-rex 

interactions (Figure 2.11 e). For autosomes, in contrast, interactions between 

TAD boundaries were not greater than interactions within TADs, and neither set 

of interactions changed in DC mutants (Figure 2.11 e and Figure 2.9 h). These 

results suggest that DCC-dependent interactions between rex sites at TAD 

boundaries contribute more to boundary formation on X than rex interactions 

within TADs, although DCC-dependent rex interactions within TADs might 

contribute to TAD integrity. 

Visualization of Hi-C interaction data via Circos plots shows that almost all 

rex sites engage in one or multiple strong DCC-dependent interactions with other 

rex sites, particularly at adjacent TAD boundaries (Figure 2.11 f, g). Together, 

our findings reinforce the model that rex sites contribute to TAD formation by 

recruiting the DCC and facilitating DCC-dependent looping interactions between 

rex sites at TAD boundaries. In contrast, TAD boundaries on autosomes do not 

appear to result from looping interactions between boundaries (Figure 2.11 e, 

right panel and Figure 2.9 h), suggesting that different strategies govern, in 

part, the formation of DCC-dependent and autosomal TADs. 

The model that rex interactions play a critical role in establishing and 

reinforcing TAD boundaries makes specific predictions. First, rex interactions 

identified by Hi-C should be evident by FISH. Second, deletion of a strong rex 
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site from a DCC-dependent TAD boundary should reduce or eliminate the 

boundary. Both predictions were verified by the data. 

To confirm DCC-dependent rex–rex interactions and further assess X-

chromosome topology, we devised a FISH assay using 3–6 kb probes to quantify 

the spatial separation between two sites (Methods and Figure 2.12). We 

compared distances between loci in XX embryos with (wild-type) and without (DC 

mutant) DCC binding on the X chromosome to quantify the level and DCC-

dependence of interactions. We also compared distances in XO embryos with 

and without DCC binding on the X chromosome to quantify DCC-dependent 

interactions that occur between loci on the same chromosome (Figure 2.12 

legend). Hi-C analysis did not distinguish between interactions within the same 

chromosome or across homologous chromosomes.  

FISH analysis confirmed all categories of interactions shown by Hi-C: (1) 

strong DCC-dependent interactions between rex sites at DCC-dependent TAD 

boundaries (rex-32 to rex-23, rex-47 to rex-8, and rex-23 to rex-14); (2) strong 

DCC-dependent interactions between X loci lacking DCC binding (Xnb1 to Xnb2 

and Xnb7 to Xnb8 (nb, not bound)); (3) strong DCC-independent interactions 

between loci on X (Xnb3 to Xnb4) or I (Inb1 to Inb2) that lacked DCC binding; 

and (4) weak DCC-independent interactions between distant loci on X (Xnb5 to 

Xnb6) or I (Inb3 to Inb4) that lack DCC binding (Figure 2.12 b–g and Figure 

2.13 a–f, i–k). FISH and Hi-C results agreed, for both the strength and DCC-

dependence of interactions (Figure 2.13 g, h). 
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The only discrepancy occurred for distantly spaced rex loci (rex-1 to rex-8 

(6.7 Mb); rex-32 to rex-8 (8.1 Mb)), which showed greater DCC-dependent 

spatial proximity by FISH analysis than predicted by Hi-C (Figure 2.13 l, m). 

Loss of sensitivity in our Hi-C data for sites separated by .5 Mb may account for 

the difference. 

Both FISH and Hi-C experiments showed that the DCC-dependent 

topology of the X chromosome brings many distant, non-rex sites into close 

proximity. If the DCC compacted the X chromosome uniformly, pairs of non-rex 

loci separated by similar distances should exhibit comparable levels of DCC-

dependent interactions. However, they did not. For example, two pairs of non-rex 

loci (Xnb1 and Xnb2 (1 Mb); Xnb7 and Xnb8 (1.4 Mb)) showed strong DCC-

dependent interactions (Figure 2.12 e and Figure 2.13 g, h, k), but the non-rex 

loci Xnb3 and Xnb4 (1.6 Mb) showed strong DCC-independent interactions 

(Figure 2.12 f). Thus, the DCC affects the overall topology of the X chromosome 

but does not cause uniform compaction across the X chromosome. 

To test whether DCC-dependent interactions between rex sites create 

TAD boundaries, we deleted the endogenous rex-47 site from a DCC-dependent 

TAD boundary using genome editing with CRISPR/Cas9 (Figure 2.10 e, f) and 

assayed TAD structure with FISH (Figure 2.11 h). Chromatin 

immunoprecipitation followed by quantitative polymerase chain reaction (ChIP–

qPCR) showed the deleted rex locus (rex-47 D) lacked DCC binding (Figure 

2.10 g). The TAD boundary was greatly diminished, as predicted (Figure 2.11 h). 
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For FISH probes flanking the rex-47 TAD boundary, overlap was increased in 

rex-47 D and DC mutant embryos over that in wild-type embryos. In contrast, 

overlap was not statistically different between rex-47 D and DC mutant embryos. 

Thus, the DCC plays a key role in inducing and reinforcing TAD boundaries on X 

by mediating long-range interactions between its highest-affinity rex sites. 

We explored the relationship between TAD structure and gene 

expression. Our prior work showed the DCC acts at a distance to repress gene 

expression [30], [31], [53], suggesting that a unique, DCC-dependent X-

chromosome structure might mediate chromosome-wide gene repression, as 

supported by our Hi-C and FISH data. We assessed whether the structure of 

individual TADs affects gene expression locally or whether the chromosome-wide 

topology created from TADs regulates gene expression globally. Both RNA-Seq 

data derived from embryo preparations used for Hi-C analysis and GRO-Seq 

data from independent embryo preparations support the latter hypothesis for the 

following reasons. 

First, in wild-type embryos, genes at TAD boundaries were not expressed 

at significantly different levels from genes within TADs, for either chromosome X 

(Figure 2.14 b and Figure 2.15 a, d) or chromosome I (Figure 2.14 f). Second, 

although the X chromosome is organized into DCC-dependent TADs in wild-type 

animals, no similarly coordinated block of genes exhibited elevated expression in 

DC mutants (Figure 2.14 a). That is, the changes in expression were not 

significantly different for X-linked genes within TADs, at all TAD boundaries, at 
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changed TAD boundaries, or within regions of changed insulation (Figure 2.14 c, 

d and Figure 2.15 b, c, e–i). Similarly, DC mutations did not alter gene 

expression on chromosome I in any discernible pattern (Figure 2.14 e, g, h and 

Figure 2.15 g–i). 

Conclusions 
 

Our results support the model that TAD structure on the X chromosome 

mediated by DCC binding to rex sites creates a 3D topology that acts 

chromosome-wide to repress gene expression. Given that changes in TAD 

boundaries occur locally, while changes in gene expression occur chromosome-

wide, a parsimonious model posits that DCC-dependent changes in X 

chromosome structure imposed by rex–rex interactions drive the chromosome-

wide reduction in gene expression. Potential DCC-dependent nuclear positioning 

of the X chromosome might also affect gene expression, as speculated by others 

[54]. 

In summary, DCC-induced formation of TAD structure on the X 

chromosome demonstrates a striking remodeling of chromosome topology that 

reveals a central role for condensin in shaping the 3D landscape of interphase 

chromosomes. Not only does condensin compact and resolve mitotic and meiotic 

chromosomes, it acts as a key structural element to regulate gene expression. 

No other molecular complex or set of DNA binding sites is yet known to cause 

comparably strong effects on megabase-scale TAD structure in higher 
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eukaryotes [55]–[57]. Our new understanding of the topology of dosage-

compensated chromosomes provides fertile ground to decipher the detailed 

mechanistic relationship between higher-order chromosome structure and 

chromosome-wide regulation of gene expression. 

 
Supplementary Information is available in the online version of the paper. 
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Figures 

 
 

Figure 2.1 | DCC modulates spatial organization of X chromosomes. 
a, b, d, e, Chromatin interaction maps binned at 10 kb resolution show 
interactions 0–4 Mb apart on chromosomes X and I in wild-type and DC mutant 
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embryos. Plots (black) show insulation profiles. Minima (green lines) reflect TAD 
boundaries. Darker green indicates stronger boundary. c, f, Blue–red Z-score 
difference maps binned at 50 kb resolution for X and I show increased (orange–
red) and decreased (blue) chromatin interactions between mutant and wild-type 
embryos. Differential insulation plots (red) show insulation changes between 
mutant and wild-type embryos. 
  



 
 
 

52 

 

Figure 2.2 | Genome-wide chromatin interaction maps for wild-type or DC 
mutant embryos and genome-wide difference chromatin interaction map. 
a, b, Genome-wide chromatin interaction maps for wild-type embryos (a) and DC 
mutant embryos (b) from Hi-C data of two biological replicates pooled and binned 
at 50 kb and corrected with ICE. c, f, Scatter plots comparing normalized 
interactions between pairs of 50 kb bins in the two biological replicates from wild-
type embryos (c) or DC mutant embryos (f) (both excluding x 5 y diagonal). A 
strong correlation between biological replicates is shown for wild-type embryos 
(Pearson’s correlation coefficient 5 0.9854) and for DC mutant embryos 
(Pearson’s correlation coefficient 5 0.9919). d, g, Overall interaction frequency 
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decays with increasing genomic distance in wild-type embryos (d) and in DC 
mutant embryos (g). e, h, Cumulative reads versus linear genomic distance in 
wild-type embryos (e) and in DC mutant embryos (h). i, Genome-wide difference 
chromatin interaction map. Shown is the 50 kb binned heatmap depicting the Z-
score difference between wild-type and DC mutant embryos (see Methods for Z-
score difference calculation). The most apparent differences are on the X 
chromosome: blue signal within TADs (loss of intra-TAD interactions) and red 
signal between TADs (gain of inter-TAD interactions). 
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Figure 2.3 | Compartment and insulation analysis for chromosome I in wild-
type embryos and DC mutant embryos.  
a, ICE corrected chromatin interaction maps are shown for wild-type embryos 
and DC mutant embryos for both 10 kb binned and 50 kb binned data across 
replicate 1, replicate 2, and the combined replicates. b, Insulation profiles are 
shown for each biological replicate (replicate 1, orange line; replicate 2, blue line) 
for 50 kb and 10 kb binned data in wild-type embryos and DC mutant embryos. 
Insulation profiles are calculated using a 500 kb 3 500 kb insulation square (10 
bins 3 10 bins for the 50 kb binned Hi-C data, and 50 bins 3 50 bins for the 10 kb 
binned Hi-C data). The insulation profiles are consistent across replicates. Green 
tick marks, TAD boundaries identified using combined replicate data. c, 
Differential insulation plots derived from the insulation profiles calculated above 
(50 kb binned and 10 kb binned Hi-C data). d, 50kb binned heatmap depicting 
the difference in chromatin interactions expressed as the difference in Z-scores 
between wild-type and DC mutant. e, Plot showing the compartment analysis 
calculated using the 50 kb binned wild-type Hi-C data. A/B compartment profile 
was determined by principle component analysis. First Eigen Vector value 
representing compartments (black) is plotted along the chromosome, revealing 
three zones for each autosome: two outer sections and the middle third of the 



 
 
 

55 

chromosome. Positive Eigen1 signals represent the B (inactive compartment) 
and negative Eigen1 signals represent the A (active compartment). The 
compartments at chromosome ends display increased interactions with each 
other, both in cis and in trans (see Figure 2.2 a). Also shown is the average 
binding of the lamin-associated protein LEM-2 along the chromosomes (grey). 
Overall compartmentalization correlates with LEM-2 binding, showing that 
compartments at both ends of chromosome I are located near the nuclear 
periphery. 
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Figure 2.4 | Compartment and insulation analysis for chromosome X in 
wild-type embryos and DC mutant embryos.  
a–e, See legend to Figure. 2.3. In e, only two compartments are observed for 
chromosome X, compared to three for chromosome I. Overall 
compartmentalization correlates with LEM-2 binding, showing that the 
compartment at the left end of chromosome X is located near the nuclear 
periphery. 
  



 
 
 

57 

 

Figure 2.5 | Compartment and insulation analysis for chromosomes II, III, IV 
and V in wild-type embryos and DC mutant embryos.  
a–d, Chromosome II. e–h, Chromosome III. i–l, Chromosome IV. m–p, 
Chromosome V. a, e, i, m, Insulation profiles for each biological replicate 
(replicate 1, orange line; replicate 2, blue line) for 50 kb or 10 kb binned Hi-C 
data in wild-type embryos and DC mutant embryos. Green lines, TAD boundaries 
identified from combined replicate data. b, f, j, n, Differential insulation plots 
made from insulation profiles (50 kb binned or 10 kb binned Hi-C data). c, g, k, o, 
Plots show chromosome compartment analysis calculated with 50 kb binned 
data. Average binding of the lamin-associated protein LEM-2 is shown along the 
chromosomes (grey). Compartmentalization correlates with LEM-2 binding; 
compartments at both ends of autosomes are near the nuclear periphery. d, h, l, 
p, Heatmaps (50 kb bins) show differences in chromatin interactions as the 
differences in Z-scores (DC mutant minus wild-type embryos).   



 
 
 

58 

 
 

Figure 2.6 | Insulation profile calculation parameters and boundary calling.  
a, Cartoon shows approach for calculating the insulation profile. A square is slid 
along each diagonal bin of the interaction matrix to aggregate the amount of 
interactions that occur across each bin (up to a specified distance upstream and 
downstream of the bin). Bins with a high insulation effect (for example, at a TAD 
boundary) have a low insulation score (as measured by the insulation square). 
Bins with low insulation or boundary activity (for example, in the middle of a TAD) 
have a high insulation score. Minima along the insulation profile are potential 



 
 
 

59 

TAD boundaries. b, c, Heatmaps of chromosome X and chromosome I represent 
the insulation profiles calculated using insulation square sizes ranging from 10 kb 
to 1 Mb. At the 100 kb scale, weak boundaries are observed on the X 
chromosome and autosomes, but they are generally not changed in DC mutants. 
These boundaries cannot be detected at larger scales, meaning they do not 
insulate over distances beyond ~100 kb (see e). These smaller scale structures 
may represent sub-TAD domains not correlated with dosage compensation. 
Boundaries called using a 500 kb insulation square represent TAD boundaries 
that define domains observed in chromosome-wide interaction maps of the X 
chromosome at 10 kb resolution. These boundaries are used in this paper 
(Figure 2.1) and insulate over the larger distances defining the Mb-sized TADs. 
Boundaries on the X chromosome are the strongest and are DC dependent. d–f, 
Pile up plots depict aggregate (mean) Hi-C 10kb Z-score data centered on 
specified ‘anchors’ (for example, rex sites, boundaries, changed boundaries). d, 
Pile up plots centered on all rex sites or top 25 rex sites in wild-type and DC 
mutant. e, Pile up plots centered on all boundaries called using insulation 
squares of 100 kb (left) or 500 kb (right) for chromosome X and chromosome I in 
wild-type and DC mutant. f, Pile up plots using boundaries called with a 500 kb 
insulation square, centered (left) on the single 10 kb bin at the midpoint of all 8 
changed boundaries or (right) on all seven 10 kb bins within changed 
boundaries. 
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Figure 2.7 | TAD boundary analysis.  
a, Insulation/delta plot of the 10 kb binned wild-type sample combined replicate 
chromosome X Hi-C data calculated using a 500-kb insulation square size. The 
insulation profile is depicted in black. In red, the ‘delta’ vector is depicted. It is 
derived from the insulation vector using a 200 kb delta window (see insulation 
methods). The ‘delta’ vector is used to facilitate the detection of the 
valleys/minima along the insulation profile. b, Cartoon example showing how the 
delta vector is calculated from the insulation data vector. For each bin (reference 
point) the average insulation differences are calculated between all points up to 
100 kb left of the reference point relative to the reference point. The same is 
repeated for all points up to 100 kb right of the reference point. The delta value is 
then defined as the difference between the mean (left difference) and mean (right 
difference). c, Bar plot shows the distribution of distances between boundary 
calls obtained with biological replicate Hi-C data across all chromosomes. Dotted 
vertical line indicates that 630 kb was chosen for boundary definition, as it was 
the window in which the majority of replicate boundary calls (.80%) overlap. d, 
Boxplots compare boundary strength (left) and spacing (right) in wild-type versus 
DC mutant embryos. Wild-type boundary strength on chromosome X (defined as 
the distance from the insulation minimum to the largest neighboring maximum in 
the insulation profile) is higher than the DC mutant chromosome X boundary 
strength (P 5 0.024) and higher than the boundary strength on wild-type 
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autosomes (P 5 0.03). TAD boundary strength on autosomes does not change in 
the DC mutant compared to the wild type (P 5 0.979). Boundaries on 
chromosome X have less variance in spacing (interquartile range (IQR) 5 253 kb) 
compared to the DC mutant (IQR 5 525 kb) embryos. DC mutant X chromosome 
boundary spacing is more similar to the boundary spacing on the autosomes in 
wild-type embryos (IQR 5 625 kb) and DC mutant embryos (IQR 5 550 kb). 
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Figure 2.8 | FISH shows DCC-dependent TAD boundaries at high-affinity 
rex sites.  
a, High DCC occupancy correlates with TAD boundaries lost or reduced upon 
DCC depletion. Top, ChIP-Seq profiles of DCC subunit SDC-3 in wild-type (red) 
and DC mutant (green) embryos. The y axis, reads per million (RPM) normalized 
to IgG control. Middle, insulation profiles of wild-type (red) and DC mutant 
(green) embryos. Bottom, insulation difference plot for wild-type insulation profile 
subtracted from DC mutant profile. Black lines, TAD boundary locations. Blue 
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dots, boundaries with insulation changes .0.1 between wild-type and DC mutant 
embryos. Red lines, locations of 25 highest DCC-occupied rex sites. Cyan bars, 
sites with the largest insulation loss. b, Confocal images of embryonic nuclei of 
various genotypes stained with a DNA intercalating dye (blue) and 500 kb FISH 
probes around the rex-47 TAD boundary. c, d, e, Quantification of FISH probe 
co-localization confirms DCC-dependent and DCC-independent boundaries 
found by Hi-C. Box plots, distribution of Pearson’s correlation coefficients 
between pairwise combinations of FISH probes within (blue) or across (orange) 
TADs. Boxes, middle 50% of coefficients. Center bars, median (M) coefficients. 
n, total number of nuclei. Asterisks of same color specify data compared using 
one-tailed Mann–Whitney U-test. NS, not significant. 
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Figure 2.9 | rex sites are enriched at TAD boundaries and in top Hi-C 
interactions.  
a, Tick plots rank the interaction Z-scores for the top 25 highest-affinity rex sites 
(black) among all other 10 kb bin Hi-C interactions on chromosome X (light blue). 
Bottom plot amplifies top 2,000 interactions. Density of black ticks (left) shows 
strong enrichment of rex–rex interactions among the most significant 
chromosome X interactions. b, Tick plots rank the Z-score differences (DC 
mutant minus wild-type embryos) for interactions between the top 25 rex sites 
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among all other differences on chromosome X. Bottom plot amplifies top 2,000 
changes. c, Quantification of Z-score differences for top 2,000 changes in (b). d, 
Bar graphs depict overlap between chromosome X TAD boundaries and rex 
sites. Three sets of TAD boundaries are shown: all 17 boundaries; 8 boundaries 
with an insulation change (DC mutant minus wild-type) .0.1; 5 boundaries 
present in wild-type embryos but absent in DC mutants. Overlap is calculated for 
the entire set of rex sites or just the top 25 rex sites. Percent of boundaries that 
overlap rex sites (left). Percent of rex sites that overlap each set of boundaries 
(right). Red bars, same sets of overlaps were calculated with 1,000 random sets 
of rex site positions along chromosome X. Average overlap and standard 
deviation are shown. No randomized set had as much overlap as the true rex set 
(P, 0.001). e, Cumulative comparison of Z-score differences for rex interactions 
and for 1,000 randomized sets of non-rex interactions (same number as in rex 
set). These rex or non-rex interactions had Z-scores .4in wild-type embryos. rex 
interactions are reduced more in DC mutants than other similarly strong 
chromosome X interactions (P 5 0.037; rex-interaction differences were 
significantly more reduced (KS test) than random interaction sets for 963 of 1,000 
cases). f, 3D plots of Hi-C interaction profiles (normalized read counts) around 
top 25 rex sites for 2 Hi-C replicates of wild-type embryos or DC mutants. g, 3D 
plots of interactions between dox sites in wild-type embryos and DC mutants 
show no interaction peak. h, Cumulative plots show no difference in DC mutants 
for the distribution of autosomal Hi-C interaction Z-scores (10 kb bins) in TADs or 
at boundaries. 
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Figure 2.10 | Visualization and disruption of TAD boundaries.  
a–d, Visualization of DCC-dependent TAD boundaries in single cells confirms Hi-
C analysis. a, Representative confocal images of embryonic nuclei of different 
genotypes stained with a DNA intercalating dye (blue) and FISH probes 
surrounding rex-32. Scale bar, 1 mm. b, Quantification of co-localization between 
FISH probes flanking rex-8 (see Figure 2.8 a) in XX and XO embryos confirms 
the DCC-dependent boundary identified by Hi-C. Because TADs on either side of 
rex-8 are small, we could only use one 500 kb FISH probe for each TAD. c, 
Quantification of co-localization between FISH probes for a TAD boundary on 
chromosome I (dashed line in d) in XX and XO embryos confirms the DCC-
independent boundary identified by Hi-C. b, c, Box plots show the distribution of 
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Pearson’s correlation coefficients between pairwise combinations of FISH 
probes. Boxes represent the middle 50% of coefficients, and the central bar 
within indicates the median coefficients (M). N, total number of nuclei. P values 
derived using the one-tailed Mann–Whitney U-test are shown below each graph. 
NS, not significant. d, Insulation difference plot of chromosome I for DC mutant 
insulation profile minus wild-type insulation profile. e–g, Deletion of endogenous 
rex-47 by Cas9 disrupts DCC binding and TAD boundary formation. e, Schematic 
illustration of the sgRNA–Cas9 complex interacting with the rex-47 target 
sequence. f, Cas9-mediated deletion of rex-47. Top, diagram showing the 
location of DCC binding motifs within rex-47 (red bars) and Cas9-induced double 
strand break (arrow). Middle, diagram of the double-stranded repair template 
containing two, 500 bp homology arms and an NcoI restriction site. Bottom, after 
precise homology-directed repair, a 419 bp region containing all DCC binding 
motifs was deleted and replaced with NcoI. g, Loss of DCC binding at 
endogenous locus carrying the rex-47 deletion. DCC binding at three, 100 bp 
regions located upstream (a), within (b) or downstream (c) of the 419 bp deletion 
was examined using ChIP–qPCR. Histogram shows the ChIP–qPCR signal for 
DCC components DPY-27 or SDC-3 at target regions relative to the level at 
region b in wild-type embryos. 
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Figure 2.11 | Strong DCC-dependent interactions occur between high-
affinity rex sites at TAD boundaries.  
a, Cumulative distribution of Hi-C Z-scores for interactions between 10 kb bins 
with rex sites or with other X chromosome interactions in wild-type or DC mutant 
embryos. Interactions .4 Mb were excluded from panels a–e. P values are 
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corrected for multiple testing. In wild-type embryos, rex–rex interactions are 
stronger than all other X chromosome interactions (P, 2 3 10216; two-sided KS 
test) and stronger than rex–rex interactions in DC mutants (P 5 1.5 3 1029; 
Wilcoxon signed rank test). b, Distributions of Hi-C Z-scores show that rex–rex 
interactions are stronger than non-rex interactions (P, 2 3 10216; two-sided KS 
test) or rex to non-rex interactions (P 5 1.7 3 10214; two-sided KS test). c, 
Distributions of Z-score differences (DC mutant minus wild-type) show that rex–
rex interactions decrease more than any of 1,000 random sets of non-rex 
interactions of equal number (P, 0.001). d, Average Hi-C interaction profiles 
(normalized read counts) around pairs of top 25 rex sites or all known rex sites, 
in wild-type and DC mutant embryos. rex sites are centered at 0. e, Distributions 
of Hi-C Z-scores for interactions between bins with rex or non-rex sites at TAD 
boundaries or within TADs of wild-type (left) or DC mutant (middle) embryos. rex 
sites interact more at TAD boundaries than in TADs (P 5 0.0025). These sets of 
interactions are not different in DC mutants (P 5 0.348). Interactions at TAD 
boundaries or within TADs on autosomes (right). f, Circos plots depict all rex–rex 
interactions (Z-score .2, colored line) in 50 kb bins in wild-type embryos. 
Concentric circles show insulation difference plot (black and grey), wild-type TAD 
boundaries (green boxes), and rex sites (black lines, strongest sites named). g, 
rex–rex interactions in f that are retained in DC mutants. h, Deletion of rex-47 
disrupts TAD boundary. Box plots of Pearson’s correlation coefficients for FISH 
probe combinations in wild-type, rex-47 D, and DC mutant. Probe overlap across 
TAD boundary increased in rex-47 D vs. wild-type (P, 0.01 ANOVA) but was not 
different in rex-47 D vs. DC mutants (P 5 NS, ANOVA). Probe overlap in TAD 
was not different in 3 strains (P 5 0.075, ANOVA). 
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Figure 2.12 | Quantitative FISH shows DCC-dependent association of rex 
sites in single cells.  
a, Representative embryonic nuclei show variability in spacing of FISH probes 
(red, green) targeting two rex sites. b–g, Quantification of the 3D distance 
between FISH probes in embryos of different genotypes. DCC binding to the 
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single X chromosome of XO embryos was achieved using an XO lethal (xol-1) 
mutation, which activates sdc-2, the XX-specific trigger of DCC assembly20. 
Total number of nuclei is given in Figure 2.13 a–f. b–d, Pairs of rex sites at DCC-
dependent TAD boundaries of varying genomic separation. e, A pair of sites on 
the X chromosome that lack DCC binding sites within 100 kb but have DCC-
dependent Hi-C interactions. f, g, Loci on chromosome X and chromosome I that 
lack DCC binding sites within 80–90 kb and display DCC-independent Hi-C 
interactions. b–g, Distances between FISH spots were binned in 300 nm intervals 
and represented in relative frequency histograms. Schematic above each 
histogram depicts the locations of FISH probes (arrows), their genomic 
separation (red text), and the location of all rex sites (red bars) or sites lacking 
DCC binding (black). The DCC dependence or independence of the 
corresponding Hi-C interactions is indicated above the histogram (grey).  P 
values comparing genotypes were calculated using the chi-square test to 
compare the 0–300 nm bin with 301–2,700 nm bins. The 0–300 nm bin contains 
FISH probes considered co-localized, because probes, 300 nm apart always 
overlap visually, while probes 700 nm apart appear only adjacent to each other. 
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Figure 2.13 | Quantitative FISH shows that rex sites co-localize more 
frequently if the DCC is bound to chromosome X.  
a–f, Data from histograms in Figure 2.12 b–g shown as cumulative plots. Number 
of nuclei and embryos (parentheses) assayed are shown (also for i–m). Distance 
between loci (red) and DCC dependence or independence of Hi-C interactions 
(black) are shown. P values (chi-squared test) compare values in the 0–300 nm 
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bin to those in 301–2,700 nm bins. Same statistical analysis for (i–m). g, 
Correlation between DCC-dependent Hi-C interactions and DCC-dependent 
FISH co-localization. y axis, difference between wild-type and DC mutant Hi-C 
observed interaction frequency at 50 kb resolution. Higher number shows greater 
DCC-dependence. x axis shows two categories defined by FISH: sites with 
unchanged co-localization frequency in DC mutant (DCC-independent) (left); 
sites with less frequent co-localization in a DC mutant (DCC-dependent) (right). 
Red dotted line, cutoff for calling a Hi-C interaction ‘changed’ between the wild 
type and DC mutant. h, Scatter plot shows correlation between Hi-C and FISH 
data. y axis, Hi-C observed interaction frequency in 50 kb bins. x axis, 
percentage co-localization (that is, 300 nm bin) by FISH. R 5 0.77 for all 
comparisons; R 5 0.9 if the rex-47–rex-8 interaction is omitted. i–m, Histograms 
show quantification of 3D distances between two FISH probes. i, j, Distant loci on 
chromosome X or chromosome I with weak Hi-C interactions. k, DCC-dependent 
interaction between X sites lacking DCC binding. l–m, DCC-dependent 
interactions between distant rex sites. 
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Figure 2.14 | DCC-dependent TADs influence global rather than local gene 
expression. 
a, Insulation changes and TAD boundaries are compared to median fold-
changes in expression (10 kb bins across chromosome X) between wild-type and 
DC mutant embryos. a–h, No discernible pattern was detected between mutant-
induced changes in expression and gene locations relative to TADs or TAD 
boundaries. b, Box plots show comparison of expression levels for X 
chromosome genes within or outside TAD boundaries in wild-type embryos. 
Expression levels, normalized read number per kilobase of gene length. c, Box 
plots show expression changes for X chromosome genes within or outside TAD 
boundaries. d, Comparison of expression changes (DC mutant/wild-type) for X 
chromosome gene sets with greater insulation scores in wild-type embryos (grey 
domains in a) versus in DC mutants (black domains in a).  e–h, Same as a–d but 
for genes on chromosome I. P values for b–d and f–h, Mann–Whitney U-test; no 
significant P values withstood multiple testing correction. NS, not significant. a, c, 
d, e, g, h, Lowest-expressed genes (bottom 10%) were removed from analyses. 
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Figure 2.15 | DCC-dependent TADs influence global rather than local gene 
expression. Gene expression analysis was assayed using RNA-Seq or 
GRO-Seq, as indicated.  
a, b, Boxplots depict expression levels for wild-type or DC mutant embryos 
assayed by RNA-Seq for chromosome X genes at changed TAD boundaries, 
unchanged TAD boundaries, all TAD boundaries or genes not at TAD 
boundaries. Expression levels are given as normalized read number per kilobase 
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of gene length. c, Boxplots depict the fold change in expression assayed by 
RNA-Seq between wild-type embryos and DC mutant embryos for genes at 
changed TAD boundaries, unchanged TAD boundaries, all TAD boundaries or 
genes not at boundaries. The lowest-expressing genes (bottom 10%) were 
removed from analysis. d–f, As in a–c, but assayed by GRO-Seq with gene 
expression levels given as fragments per kilobase of transcript per million 
mapped reads (FPKM). For a–f, P values were calculated using the Mann–
Whitney U-test; significance did not withstand multiple testing correction. g, h, 
Boxplots depict the fold change in the gene expression between wild-type and 
DC mutant embryos based on RNA-Seq or GRO-Seq for chromosome X and 
chromosome I. Each box has genes from one TAD on chromosome X (left) or 
chromosome I (right). Lowest-expressing genes (bottom 10%) were removed 
from analysis. No discernible pattern was evident for expression changes versus 
gene location. i, Boxplots depict the fold change in chromosome X gene 
expression between wild-type embryos and DC mutant embryos relative to the 
distance from the TAD boundary. Each box contains genes in 10 kb bins 
radiating out from the center of each TAD boundary. The lowest-expressing 
genes (bottom 10%) were removed from analysis. No discernible pattern to the 
gene expression changes exists, as assayed by RNA-Seq (left) or GRO-Seq 
(right). Weak significance and lack of concordance between RNA-Seq and GRO-
Seq data suggest no biologically relevant correlation between TAD boundaries 
and local regulation of gene expression.  
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Table 2.1 | Hi-C Statistics 



 
 
 

78 
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Methods 
 

Nematode strains. The strains used in this study are as follows. Wild-type: 

TY125, N2 Bristol, XX. Dosage compensation mutants: sdc-2 (y93, RNAi) X (XX 

strain used in all experiments requiring a DC mutant strain, except those listed 

below using TY2222 or TY1996); TY1996, szT1/sdc-2(y74) unc-3(e151) X (XX 

DC mutant in Figures 2.8 b–e, 2.11 h and 2.12 b–f and Figure 2.13 a–e, i); 

TY2222, her-1(hvly101) V; xol-1(y9) sdc-2(y74) unc-9(e101) X (XX DC mutant 

used only in Figure 2.13 j); TY0810, sdc-2(y93) X (XX strain used to create sdc-2 

(y93, RNAi) XX embryos); TY0525, him-8(e1489) IV; xol-1(9) X (used for XX and 

XO DCC bound). Strain to generate XO males lacking DCC binding: CB1489, 

him-8(e1489) IV (used for XO DCC not bound). 

Sample size 
 

No statistical methods were used to predetermine sample size. ChIP-Seq, 

RNA-Seq and chromosome conformation capture. To obtain wild-type control 

embryos, wild-type N2 worms were grown at 20 uC on NG agar plates with 

concentrated HB101 bacteria. For DC mutant embryos, 10 ml of packed 

synchronous sdc-2(y93) L1 worms were placed onto 10 cm RNAi plates (NG 

agar with 1 mM IPTG and 100 mg/ml Carbenicillin) seeded with 2–3 ml of 

concentrated HT115 (DE3) bacteria carrying the Ahringer feeding library plasmid 
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[58] expressing the coding region of sdc-2. The RNAi plates were incubated at 25 

uC overnight before L1 larvae were added. 

Immunofluorescence and FISH analysis 
 

Animals were grown at 20 uConNG agar plates seeded with OP50 grown 

in Luria Broth (LB). The worms were grown at 20 uC until gravid adults, then 

dissected for their embryos and stained as described below. 

Antibodies 
 

Rat polyclonal SDC-3 (PEM4A) antibodies were made against amino 

acids 1067-1340 of SDC-3 fused to GST. Rabbit polyclonal antibodies against 

DPY-27 (rb699) and SDC-3 (rb1079) were as described previously [51], [59]. 

Mouse monoclonal Mab414 antibody (1 mg ml21) was obtained from Abcam 

(ab24609). Normal rabbit IgG (400 mgml21) was from Santa Cruz Biotechnology 

(sc-2027). Rabbit polyclonal LMN-1 antibody (500 mg ml21) was from SDIX 

(3853.00.02) ChIP-Seq library creation and analysis. Libraries were made and 

analysed from one batch of wild-type embryos (data consistent with all previously 

wild-type published ChIP-Seq data [53]) and two biological replicates of sdc-

2(y93, RNAi) embryos as described previously [53]. 

Modified Hi-C embryo isolation and crosslinking 
 

Worms of appropriate genotype, either wild-type worms (two biological 

replicates) or sdc-2(y93, RNAi) (two biological replicates), were grown until 

gravid adults. The worms were collected and bleached to release the embryos 
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and remove the carcasses. Following bleaching, embryos were centrifuged for, 

45 s at 1,500–1,800 rpm and washed 3 times in 13 M9 buffer to remove bleach 

solution. An equal volume of 13 M9 was added to the embryos and they were 

frozen in 1 ml aliquots and stored at 280 uC. The frozen embryos were thawed 

on ice and supplemented with 1 mM PMSF and 5 mM DTT. The embryos were 

then washed once in 50 ml formaldehyde solution (13 M9 solution with 2% (v/v) 

formaldehyde, Polysciences 18814-20). Embryos were cross-linked in 50 ml of 

formaldehyde solution for 30 min at room temperature while shaking. Following 

crosslinking, embryos were washed once with 50 ml of 100 mM Tris-HCl, pH 7.5, 

followed by two 50 ml washes of 13 M9. The embryos were then washed once in 

lysis buffer (10 mM Tris-HCl, pH 8.0, 10 mM NaCl and 0.2% (v/v) Igepal CA-630 

(Sigma I8896)) supplemented with 5 mM DTT, 1 mM PMSF, 0.1% (v/v) protease 

inhibitors (EMD 539134) and 0.5 mM EGTA. To obtain extract, embryos were 

dounced 10 times using the large pestle (Kontes 2 ml glass dounce, Spectrum 

985-44182; clearance 0.076–0.127 mm), and then 10 times using the small 

pestle (clearance 0.01–0.069 mm). All douncing steps were performed on ice. 

The dounced extract was spun for 5 min at 100g at 4 uC, and the supernatant 

was saved. The pellet was re-suspended in 750 ml of supplemented lysis buffer 

and dounced again. This procedure was repeated 7–10 times. After each spin, a 

9 ml aliquot was taken from the supernatant, mixed with 1 mlof10ngml DAPI and 

visualized under a microscope. All supernatants containing only nuclei, and not 

broken carcasses, were combined. An aliquot of the combined supernatant was 
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stained with DAPI and the nuclei were counted using a haemocytometer, and 

then spun down for 5 min at 2,000g at 4 uC. The nuclei were re-suspended in the 

appropriate volume of 1.253 DpnII buffer (NEB B0543S) to create a Hi-C library 

as described below. 

Modified Hi-C library preparation 
 

The Hi-C libraries were made as described below. The protocol was 

based on a 3C library preparation followed by modifications [4], [60], [61]. 

Approximately 1.5 3 108 C. elegans nuclei were pipetted into 5–10 1.7 ml tubes 

and re-suspended in 300 ml of 1.253 DpnII buffer. 38 ml of 1% (w/v) SDS was 

added per tube and the tubes were incubated at 65 uC for 10 min. After the 

addition of 34 ml of 20% (v/v) Triton X-100, the tubes were incubated at 37 uC for 

1 h, shaking at 1,000 rpm. 30 ml (1,500 U) of DpnII (NEB R0543M) were added 

to each tube, and they were incubated overnight at 37 uC while rocking. 26 ml of 

20% (w/v) SDS was added to each tube and they were incubated at 65 uC for 20 

min, shaking at 1,000 rpm. The reaction was then added to 7.6 ml of ligation 

master mix (745 ml of 10% Triton X-100, 745 ml of 10X T4 ligation buffer (500 

mM Tris-HCl, pH 7.5, 100 mMMgCl2, 100 mMDTT), 80 mlof 10 mg ml21 BSA, 80 

ml of 100 mM ATP, and 5.96 ml water). 100 ml (100 U) T4 DNA ligase 

(Invitrogen 15224-025) was added and the reactions were incubated for 4 h at 16 

uC. After incubation 50 mlof10mgml21 proteinase K was added and the tubes 

were further incubated at 65 uC overnight. The next day, 50 mlof 10 mg ml21 
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proteinase K was added to the reactions, and they were incubated at 65 uC for 

an additional 2 h. 2 ml of RNaseA (1 mg ml21) was added to each sample and 

incubated for 30 min at 37 uC. The ligated DNA was then phenol-chloroform 

extracted and ethanol precipitated overnight. DNA was pelleted at 14,000g for 30 

min at 4 uC, and then washed twice with 70% ethanol and air-dried. The DNA 

pellets from all Hi-C reactions were combined and dissolved in a total of 500 mlof 

13 TE buffer, pH 8.0. Excess salt was removed from the samples via 

centrifugation using a filter unit (AMICON Ultra Centrifugal Filter Unit – 0.5 ml 30 

kDa) following the manufacture’s instruction. Briefly, the samples were spun at 

18,000g for 10 min to reduce the volume to 40–50 ml. Flow through was 

discarded and 450 mlof13 TE, pH 8.0 buffer was added to each unit and spun as 

before. This wash step was repeated at least 5 times. The volume of the eluate 

was adjusted to 100 ml with water. The concentration of DNA was determined 

and 10 mg of the Hi-C library was resuspended in 100 ml of water. AMPure 

beads, supplied as a suspension of magnetic beads in a PEG solution (Beckman 

Coulter, A63880), were used to remove large DNA fragments (.10 kb), following 

the protocol provided by the manufacturer. Specifically, for the first DNA 

selection, 35 mlof AMPure beads were added to the 100 ml of DNA. The 

supernatant was kept and the beads, which bind only large DNA molecules 

under these PEG conditions, were discarded. To then remove smaller fragments, 

65 ml of AMPure beads were added to the supernatant and the beads, which 

bind all DNA molecules greater than 100 bp due to the greater PEG 
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concentration, were kept and washed with 70%ethanol. The DNA was eluted 

from the beads in 100 ml of 10 mM Tris-HCl, pH 8.5. The eluted DNA was then 

adjusted to 125 ml with 13 TE, pH 8.0 and sheared to 500–1,000 bp using a 

Covaris S2 (Covaris, 520045) in micro tubes with the following settings: duty 

cycle, 5%; intensity, 3; cycles/burst, 200; time, 65 s. The sheared DNA was then 

size selected for fragments larger than, 100 bp using AMPure beads and eluted 

in 34 ml of water. The DNA was quantified and 500 ng was used to make a 

paired-end Illumina sequencing library following the standard protocol (PE-930–

1001), with the exception that we size selected 500–600 bp at the gel excision 

step before adding adapters for sequencing. The library was sequenced using 

100 bp paired end reads with a HiSeq2500 s machine. 

Read mapping/binning/ICE correction 
 

Iterative mapping and error correction of the chromatin interaction data 

were performed as previously described [62]. Supplementary Table 1 

summarizes the mapping results and lists the different categories of DNA 

molecules encountered in the libraries. We obtained around 70 million valid pairs 

that represent chromatin interactions per replicate. The frequency of redundant 

read pairs, due to PCR amplification were found to be below, 5% and were 

removed. The number of Hi-C interactions mapped to sequences belonging to 

homologous chromosomes (both intra-chromosomal (cis) and inter-homologue 

(trans) interactions) was much higher than the interactions mapped to non-
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homologous chromosomes (inter-chromosomal (trans) interactions). Assuming 

that inter-homologue interactions (trans) are as frequent as non-homologous 

inter-chromosomal interactions (trans), we estimate that 80–90% of interactions 

mapped to the same chromosomes are intra-chromosomal (cis) interactions, with 

DC mutants (90%) higher than wild type (.85%). Whether this difference reflects 

a biological phenomenon or is due to technical differences is currently not known. 

Conversion of interaction data into Z-scores eliminates this difference (see 

below). 

The data were binned at both 10 kb and 50 kb non-overlapping genomic 

intervals. Binned data were normalized for intrinsic biases such as differences in 

number of restriction fragments within bins using the previously developed ICE 

method29. To normalize for differences in read depth of different data sets we 

summed the entire genome-wide binned ICE-corrected interaction matrix, 

excluding the diagonal (x 5 y) bins. We then transformed each interaction into a 

fraction of the matrix sum (minus diagonal x 5 y bins). Each fraction was then 

multiplied by 1,000,000. Biological replicates were highly correlated (Pearson’s 

correlation coefficients .0.98 for 50 kb binned data excluding short-range 

interactions up to 50 kb). The correlations between biological replicates were 

higher than those between the wild type and DC mutant. Overall these numbers 

indicate that the modified Hi-C procedure was reproducible and performed as 

expected. For most analyses sequence reads obtained for biological replicates 
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were pooled and ICE-corrected as described above to create a combined 

replicate data set. 

At 10 kb resolution, very long-range interactions are not sampled deeply 

enough to provide robust and reliable data. Therefore, we truncated the 10 kb 

binned data to include only cis interaction pairs separated by 4 Mb or less in 

linear genomic distance. This distance cutoff was chosen based on the 

observation that beyond this point, both wild-type and DC mutant data sets have 

no observed reads in more than 50% of bin–bin interactions. In addition to 

limiting the dynamic range of interaction counts at these large distances, this high 

frequency of un-sampled interactions beyond 4 Mb causes a dramatic collapse in 

the standard deviation of the overall chromatin interaction decay over distance, 

making the LOWESS expected and Z-score calculations beyond 4 Mb unreliable. 

For 50 kb bins, all distances were included in analyses, because the coverage of 

cis interaction pairs never dropped below 50% for any distance at this resolution. 

TAD calling (insulation square analysis). To calculate the ‘insulation’ score 

of each bin in the 10 kb binned Hi-C data, we calculated the average number of 

interactions that occurred across each bin. This can be visualized by sliding a 

500 kb 3 500 kb (50 bins 3 50 bins) (Figures 2.6 and 2.7) square along the matrix 

diagonal, and aggregating all signal within the square. The mean signal within 

the square was then assigned to the 10 kb diagonal bin and this procedure was 

then repeated for all 10 kb diagonal bins. For any bins within 500 kb of the matrix 

start/end, an insulation score was not assigned, as the 500 kb 3 500 kb insulation 
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square would extend beyond the matrix bounds. The insulation score was then 

normalized relative to all of the insulation scores across each chromosome by 

calculating the log2 ratio of each bin’s insulation score and the mean of all 

insulation scores. Valleys/minima along the normalized insulation score vector 

represent loci of reduced Hi-C interactions that occur across the bin. These 

valleys/minima are interpreted as TAD boundaries or areas of high local 

insulation. The valleys/minima were detected as follows: first, a delta vector was 

calculated to approximate the slope of the normalized insulation vector. The delta 

vector is defined as the difference between the amount of insulation change 100 

kb to the left of the central bin and 100 kb to the right of the central bin (relative to 

the central bin) (Figure 2.7 a, b). The delta vector crosses the horizontal 0 at all 

peaks and all valleys. All bins where the delta vector crosses 0 were extracted. 

Zero-crossings occurring at peaks were removed, and the remaining zero-

crossings, all occurring at potential valleys were passed through a boundary 

strength filter. The boundary strength was defined as the difference in the delta 

vector between the local maximum to the left and local minimum to the right of 

the boundary bin. All boundaries with a boundary strength < 0.1 were removed. 

This method in practice is very similar to the widely used zero-derivative method 

for detecting peaks/valleys in various signal vectors. 

The precision with which we could define a boundary was determined by 

comparing boundary calls across biological replicates (Figure 2.7 c). The final 

boundary zones were defined as 630 kb around the pooled replicate insulation 
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minima bins (70 kb total) because most (.80%) replicate boundary calls 

overlapped within this window. Wild-type and DC mutant insulation profiles were 

compared by subtracting the wild-type insulation profile from the DC mutant 

insulation profile. We compared the insulation profiles and boundary calls 

resulting from a full range of alternative insulation square sizes (Figure 2.6 b, c). 

We find that a 500 kb square size captures best the major robust boundaries that 

change in the DC mutant. In contrast, boundaries detected by a 100 kb insulation 

square, for example, only affect interactions within a few bins of the boundary 

rather than insulating larger genomic regions from one another and do not 

change in the DC mutant (Figure 2.6 e). 

Code availability 
 

Code for Hi-C read mapping and processing is based on the published 

ICE method [62]. The code to calculate insulation profiles is publicly available at 

(https://github.com/blajoie/crane-nature-2015). 

Z-score calculation 
 

We modelled the overall chromatin interaction decay with distance using a 

modified LOWESS method (alpha 5 0.5%, ignore zeros, IQR filter), as described 

previously [63]. LOWESS calculates the weighted-average and weighted-

standard deviation for every genomic distance by leveraging all data genome-

wide. We transformed interaction data into a Z-score by calculating :(( observed 

signal – LOWESS-average)/LOWESS-stdev). Observed signals with a count of 0 
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were excluded from the Z-score transformation. By expressing inter-action data 

as Z-scores, we corrected for minor differences in the overall decay with genomic 

distance that can vary slightly between samples. 

To calculate the difference between the wild-type and DC mutant Hi-C 

data, we calculated the difference between the combined replicate DC mutant Z-

score data and the combined replicate wild-type Z-score data (DC mutant Z-

score minus wild-type Z-score). (Figure 2.1 c, f, Figure 2.1, Figure 2.3, Figure 

2.4 and Figure 2.5). 

Compartment analysis and comparison to LEM-2 associated domains. 

The presence and locations of A/B-compartments can be quantified using 

principle component analysis, where the largest eigenvector typically represents 

the compartment profile [35], [47], [62]. Applying this approach to 50 kb binned 

interaction data, we determined the positions of such preferentially associating 

compartments along each C. elegans chromosome (Figures 2.3 e, 2.4 e and 2.5 

c, g, k, o). Compartment positions quantified in this manner closely align with the 

large sub-chromosomal domains that are visible in the chromatin interaction 

maps. 

 LEM-2 binding data15 (log2 ratio of ChIP signal over input) were lifted 

from the ce4 genome assembly to the ce10 assembly, and data were averaged 

in 50 kb bins. These bins correspond exactly to the coordinates of the binned 

chromatin inter-action data. Binned LEM-2 binding data were then plotted along 
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each chromosome, and compared to the compartment profiles (Figures 2.3 e; 

2.4 e and 2.5 c, g, k, o). 

3D plots 
 

To test for elevated levels of interaction between certain classes of sites in 

the genome, we constructed 3D plots. For each plot, a list was first made of all 

10 kb bins meeting desired criteria: containing any rex or predicted rex (Prex) site 

(Figure 2.11 d), containing a rex or Prex site in the top 25 by ChIP-Seq signal 

(Figure 2.11 d and Figure 2.9 f), or containing any dox site (Figure 2.9 g). Prex 

sites are defined as those with very strong ChIP-Seq signal that was greatly 

diminished in sdc-2 mutants. Unlike rex sites, which also have these properties, 

Prex sites have not been tested for autonomous DCC recruitment in vivo through 

an array assay4. Next, sub-matrices of wild-type or DC mutant interactions were 

prepared for all possible pairs of bins in this list, extending 50 kb away from the 

central bin in all directions. Pairs of bins that were separated by less than 100 kb 

were excluded so that no sub-matrices would overlap the whole-chromosome 

interaction matrix diagonal (interactions within the same bin). All pairwise sub-

matrices were then averaged together and the values plotted in 3D. If sub-

matrices stretched past the end of the chromosome or overlapped bins with no 

data (un-mappable sequence, etc.), only the part of the sub-matrix containing 

data was included in the average. Cumulative plot randomization. To assess the 

significance of the decrease in Z-scores observed for the set of rex–rex 
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interactions, we selected 1,000 random sets of 785 interactions (Figure 2.11 c 

and Figure 2.9 e). These random interaction sets were thus the same size as 

the rex–rex interaction set. The P value represents the fraction of the 1,000 

randomized interaction sets that changed more from wild-type to DC mutant than 

the rex–rex set (according to the KS test statistic). Circos plots. Plots were 

generated using the Circos package to highlight the strength of various sets of 

rex–rex interactions in wild-type and DC mutant at 50 kb resolution. A Z-score 

threshold of 2 was selected and interactions were colored and given line 

thickness proportional to their Z-score. Z-scores greater than 8 were determined 

to correspond to ‘singleton’ outlier interactions and were excluded. 

TAD FISH 
 

FISH probes covering 400–500 kb genomic regions were prepared using 

pooled fosmids (BioScience LifeSciences), as described previously 8.1mg DNA 

was labelled with Alexa-488, Alexa-594, Alexa-555 or Alexa-647 using FISH Tag 

DNA Kit (Invitrogen). The genomic locations of tested regions are listed as 

follows: Probe1, chromosome X, 9.05–9.45 Mb; Probe2, chromosome X, 9.5–9.9 

Mb; Probe3, chromosome X, 9.95–10.35 Mb; Probe4, chromosome X, 2.0–2.5 

Mb; Probe5, chromosome X, 2.5–3.0 Mb; Probe6, chromosome X, 3.0–3.5 Mb; 

Probe7, chromosome X, 11.2–11.7 Mb; Probe8, chromosome X, 11.7–12.3 Mb; 

Probe9, chromosome X, 12.3–12.8 Mb; Probe10, chromosome X, 10.6–11.1 Mb; 

Probe11, chromosome X, 11.1–11.6 Mb; Probe12, chromosome I, 4.1–4.6 Mb; 
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Probe13, chromosome I, 4.6–5.1 Mb; Probe14, chromosome I, 5.1–5.6 Mb; and 

Probe15, chromosome X, 3.5–4.1 Mb FISH procedure. C. elegans embryos were 

obtained by dissecting gravid N2, him-8(e1489) or szT1/sdc-2(y74) unc-3(e151) 

adults in 13 ml of water on poly-lysine coated slides. A coverslip was added on 

top of the dissected worms, and the slides were then frozen in liquid nitrogen for 

at least 1 min. Coverslips were cracked off, and the samples were dehydrated in 

95% ethanol for at least 10 min. 35 ml of fix (2% (v/v) paraformaldehyde in egg 

buffer (25 mM HEPES, pH 7.3, 118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM 

MgCl2) was added and slides were incubated in a humid chamber for 5.5 min. 

Slides were washed 3 times for 10 min with 13 PBS-T (0.5% Triton X-100 in 13 

PBS) at room temperature. Excess 13 PBS-T was then removed and 15 ml of 

hybridization solution (30% (v/v) formamide, 33 SSC, 10%dextran sulphate) 

containing approximately 50 ng of each FISH probe was added. Hybridization 

was performed in a temperature-controlled slide chamber (Bio-Rad ALD0211 

Alpha Unit Block Assembly). The following FISH program was typically run 

overnight: 90 uC for 5 min, 0.5 uC per second to 50 uC, 50 uC for 1 min, 0.5 uC 

per second to 45 uC, 45 uC for 1 min, 0.5 uC per second to 40 uC, 40 uC for 1 

min, 0.5 uC per second to 38 uC, 38 uC for 1 min, 0.5 uC per second to 37 uC, 

37 uC overnight. Slides were then washed at 39 uC as follows: 3 times for 10 min 

with 30%(v/v) formamide in 23 SSC, 3 times for 10 min with 20% (v/v) formamide 

in 23 SSC, 3 times for 5 min with 10% (v/v) formamide in 23 SSC, 3 times for 5 

min with 23 SSC, and 3 times for 1 min with 13 SSC. Slides were then washed 3 
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times for 10 min in 13 PBS-T. For N2 embryos, the slides were mounted in 

Prolong Gold antifade reagent (Invitrogen, P36934) containing DAPI (1 ng ml21). 

For him-8(e1489) and sdc-2(y74) embryos, immunostaining with SDC-3 antibody 

was performed following FISH to determine the sex and/or genotype of embryos 

as described below. 

Immunofluorescence 
 

Excess 13 PBS-T was removed and 35 ml of primary antibody (rat anti-

SDC-3 antibody, 1:400) were added. Samples were incubated in a humid 

chamber for 6 h to overnight. Slides were washed 3 times for 10 min with 13 

PBS-T at room temperature and then incubated in secondary antibody (Alexa-

Fluor-647 goat anti-rat antibody (Invitrogen), 1:250) for 6 h to overnight. Slides 

were then washed 3 times for 10 min with 13 PBS-T at room temperature and 

then mounted. 

Microscopy and co-localization analysis 
 

Embryos were imaged on a Leica TCS SP8 microscope using 633, 1.4 NA 

objective lenses. The scanning settings for SP8 were: 1,024 3 1,024 pixels frame 

size, 51.5 nm pixel size, 3.5 zoom factor, 400 Hz scanning speed and 83.9 nm 

step size for z sections. Image deconvolution was performed using Huygens 

Professional Software. 

After deconvolution, the homozygous sdc-2(y74) unc-3(e151) XX embryos 

were determined based on the lack of SDC-3 staining on the X chromosomes 
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and their sex was further confirmed by examining the number of X-chromosome 

FISH signals. For all genotypes, embryos between 200-cell and 400-cell stages 

which match the developmental stage of Hi-C samples were selected for further 

analysis. 

The deconvolved image stacks of embryos were manually segmented 

based on DAPI staining using Priism software [64]. FISH signals in individual 

embryos were thresholded to make the total signals from each probe occupy 

equal volume. The center-of-mass coordinates for the FISH signals from the 

probe in the middle of the probe set were determined using a built-in find points 

function in Priism. Regions of equal volume were then created around the FISH 

signals to encompass the entire sets of FISH signals on the same chromosomes 

using a Python script. Pearson’s correlation coefficients between pairs of FISH 

probes were then calculated: the more the two probes overlap, the higher the 

correlation coefficient. 3D quantitative FISH for measuring the interaction 

frequency between genomic loci. 

FISH experimental design 
 

To examine the DCC dependence of interactions between genomic loci, 

and to distinguish between inter-homologue (trans) and intra-chromosomal (cis) 

interactions, we performed the 3D FISH analysis in both XX and the XO embryos 

in which the DCC was bound or not bound to X chromosomes. For these 

experiments, we acquired confocal images of embryos hybridized with FISH 
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probes to two genomic loci and also stained with lamin (LMN-1) antibody and 

DAPI to help segment the nuclei. Newly developed soft-ware was used to 

measure the 3D distance between FISH probes automatically. 

To assay XO embryos having DCC binding on the X chromosome, we 

per-formed the experiments using xol-1(y9); him-8(e1489) animals. These 

animals carried a deletion of the master switch gene (xol-1) that inhibits DCC 

binding to X chromosomes of XO embryos. DCC association with the X 

chromosome kills XO animals by the L1 larval stage. To enrich for XO male 

embryos in our experiments, we used mutation in him-8 (high incidence of 

males), which elevated the frequency of male progeny in a hermaphrodite brood 

from 0.02% to 37%. The XX embryos deficient in DCC binding were obtained 

from szT1/sdc-2(y74) unc-3(e151) animals, as described above. 

 To measure the distance between FISH foci in z stacks of confocal 

images, we developed software (Mets and Meyer, unpublished) that identified 

foci automatically, assigned foci to appropriate nuclei, and quantified the distance 

between foci in 3D space, thereby permitting the unbiased quantification of 

probe-interaction frequency. The quantification involved several steps. Each 

FISH spot was center fitted, and its location was recorded in x, y and z. For all 

nuclei, distances between all combinations of red and green FISH spots were 

calculated using a distance quantification algorithm that employs LMN-1 and 

DAPI co-staining to segment the nuclei. In XX embryos, four FISH spots (two red 

and two green) were generally apparent for X-linked probes in each nucleus, 
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corresponding to the hybridization of both probes to their target sites on both 

homologous chromosomes. To eliminate the bias in our calculations for 

interactions caused by the inclusion of distances between probes on different 

chromosomes, we used only the shortest of the four possible distances between 

red and green probes in each nucleus for X-linked loci in XX embryos and for 

autosomal loci in all embryos. 

We segmented the distances into 300 nm bins and plotted the relative 

contribution of each bin to the total number of measured distances. The limit of 

resolution of the confocal microscope is, 200 nm in x and y, making 300 nm a 

reasonable choice for the smallest bin. Furthermore, probes spaced ,260 nm 

apart appear overlapping by visual inspection, and probes spaced ,700 nm apart 

appear adjacent, indicating that the smallest bin size (300 nm) represents a 

degree of overlap that would be consider co-localized. Chi-square tests 

comparing the number of FISH pairs within 0–300 nm to those within 301–2,700 

nm were used to assess the similarity of data sets from different classes of 

embryos. The unbinned data were also represented in cumulative plots (Figure 

2.13 a–f). Preparation of FISH probes. Primers were created to amplify 3–6 kb 

sequences of DNA corresponding to each site. 1 mg of the probe DNA was 

labelled using the FISH tag DNA Red Kit (Molecular Probes, F32949) or the 

FISH tag DNA Green Kit (Molecular Probes, F32947) according to the 

manufacturer’s protocol, with the following exceptions: the DNaseI was diluted 

1:1,000, and the labelled probes were eluted in 10 ml but then diluted 1:10 for 
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use in staining. Primers to make the probes are listed below: rex-23 F 

(gcccattcaacccattgtcc); rex-23 R (gcactcgcatattccaaaacg); rex-32 

(cgcagctggccgttaaatg); rex-32 R (cattgcaggtgcgttcacaac); rex-47 F (ccgaaa 

cacaacaacaatgc); rex-47 R (agactggcgaagaggaacaa); rex-8 F 

(tgtgatgcaagccagagttgg); rex-8 R (cattgagccgaatttccaaagg); rex-14 F 

(ttgcagttgcgaaagaaatg); rex-14 R (tttttgaggagatcgggatg); rex-1 F 

(ctcaagagctgcgaagtgc); rex-1 R (aaagttcaacgaccagaatgc); Xnb1 F 

(tcgaatgacctcaagcactg); Xnb1 R (tcaccactgaaatcggcata); Xnb2 F 

(aaaacgcggtgaaacgatac); Xnb2 R (gttttcctctccccaacaca); Xnb3 F 

(gtatgcacacgcctcaaaaa); Xnb3 R (ttggaatctctcaccggagt); Xnb4 F 

(atggtaggacgttccgtttg); Xnb4 R (aatccagccctctggttttc); Xnb5 F 

(atttgcttgggcattaaacg); Xnb5 R (ttcaatgaagagacgcgatg); Xnb6 F 

(ccgtttttggcaatgaactt); Xnb6 R agaggatggtttggacgttg); Xnb7 F 

(gagcgacgattctgtcttcc); Xnb7 R (cgtcatgtccattttgcttg); Xnb8 F 

(atcgtgccaagacctattcg); Xnb8 R (ttttcgcatttcctgcttct); Inb1 F 

(aaaggaccctccccctaact); Inb1 R (tccatgcctacttgcctacc); Inb2 F 

(caggcgagcattctaccact); Inb2 R (ccggaaagagcattgattgt); Inb3 F 

(gcactgcaattgccaaccag); Inb3 R (ttcaaagacactcctcccatcc); Inb4 F 

(attgccgctaacccaagtgc); and Inb4 R (tccaacgccaacaaaactcc). 

Combined FISH and immunofluorescence procedure  
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FISH followed by immunofluorescence was performed as described in the 

previous section. 5–10 ng (0.5–1 ml of 1:10 dilution) of each FISH probe was 

used for hybridization. For immuno-fluorescence, primary antibodies were 

applied at the following dilutions in 13 PBS-T: rat anti-SDC-3, 1:400; rabbit LMN-

1, 1:400. Secondary Alexa-Fluor-555 donkey anti-rabbit and Alexa-Fluor-647 

donkey anti-rat antibodies (Invitrogen) were used at a 1:200 dilution. 

Microscopy and image analysis 
  

Embryos were imaged on a Leica TCS SP2 AOBS confocal microscope or 

a Leica TCS SP8 microscope using 633, 1.4 NA objective lenses. The scanning 

settings for SP2 were: 1,024 3 1,024 pixels frame size, 46.5 nm pixel size, 5.0 

zoom factor, 400 Hz scanning speed and 81 nm step size for z sections. The 

scanning settings for SP8 were as described in the previous section. The images 

were then deconvolved using Huygens Professional with the appropriate 

settings. The images were visualized and processed in Priism. The embryos 

were first cut out from the background using the edit polygon and cut mask 

function. Then the DAPI and LMN-1 channels were blurred using the 3D Filter 

Function to make the nuclear signal continuous and thus allow for the nuclei to 

be accurately segmented. This protocol permits each nucleus to be counted as 

one spot by the find points function. A new processed image was made by dis-

carding the z sections in the top and bottom 10% of the image, and by 

substituting the new blurred channels for those in the original image. The find 
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points function was then used to count and record the local center of mass 

(LCOM) of each nucleus and each FISH spot in x, y and z using user-defined 

threshold values. The data for the location of the nuclei and the FISH, along with 

the processed image are processed using the software described in FISH 

experimental design section above. 

rex-47 deletion 
  

 Expression vectors for both codon-optimized Cas9 and sgRNA (Peft-

3::cas9-SV40_NLS::tbb-2 39 UTR and PU6::unc-119_sgRNA [65] were obtained 

from Addgene. To enhance the expression and assembly of sgRNA, the sgRNA 

vector was modified by introducing an A-U flip in the sgRNA stem loop and 

extending the Cas9 binding hairpin [66]. To clone the protospacer sequence for 

the sgRNA targeting rex-47 (59-GTAGTCACACCGAATTGATA-39), the modified 

sgRNA vector was PCR amplified using primers GTAGTCACACCGAAT 

TGATAGTTTAAGAGCTATGCTGGAAACAGCATAG and AACAGCTATG 

ACCATGATTACGCCAAGCTTCACAGCCGACTATGTTTGGCGTCGAG or 

GACGTTGTAAAACGACGGCCAGTGAATTCCTCCAAGAACTCGTACAAA 

AATGCTCTGAAG and TATCAATTCGGTGTGACTACAAACATTTAGATT 

TGCAATTCAATTATATAG to generate two fragments with overlapping 

protospacer sequences. The two PCR products were then inserted into the 

sgRNA vector backbone generated by EcoRI/HindIII digestion using a previously 

described Gibson Assembly protocol [67]. To clone the repair template for 
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making the 419 bp rex-47 deletion, two 500 bp homology arms flanking the target 

region were PCR amplified from C. elegans genomic DNA using primers 

ACGACG TTGTAAAACGACGGCCAGTGAATTCGACGTGTCGAAATTTTCAG 

and TTGAATTATTGACCATGGCAGACAGAGCGTAACGAGTAAT or ACGC 

TCTGTCTGCCATGGTCAATAATTCAATGCAATGAAG and CTATGACC 

ATGATTACGCCAAGCTTAATAATAAACTTCCATAAGA. The homology arms 

and the sgRNA vector backbone were assembled using Gibson Assembly. The 

resulting repair template contains an NcoI restriction site between the homology 

arms, which facilitates the identification of desired mutations. 

Cas9-mediated mutagenesis and mutant screening 
 

To generate Cas9-mediated heritable rex-47 deletion, DNA microinjection 

was performed according to standard protocols. The Cas9 expression vector, 

sgRNA expression vector, repair template and two co-injection markers: pCFJ90 

(Pmyo-2::mCherry) and pCFJ104 (Pmyo-3::mCherry) were mixed and injected 

into the germline of 34 N2 young adults at the following concentrations: Cas9 (50 

ng ml21), sgRNA (200 ng ml21), repair template (50 ng ml21), pCFJ90 (2.5 ng 

ml21) and pCFJ104 (5 ng ml21). Three days post-injection, 269 F1 s expressing 

both Pmyo-2::mCherry and Pmyo-3::mCherry markers were cloned into liquid 

culture in 96-well plates and propagated at 20 uC as described previously [68]. 

Worms from each well were lysed and PCR amplified using primers 

CCGAAACACAACAACAATGC and TGGTA GCCGTATGCACAGTT. We 
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identified 8 deletion mutants from the 269 F1s (3%) based on the size of PCR 

products. These deletions were further verified by NcoI digestion of the PCR 

fragments. The progeny of the F1s carrying the rex-47 deletion alleles were then 

cloned into a new set of wells for the identification of homozygote mutants. PCR 

products from the homozygote mutants were sequenced to verify the precision of 

the deletions. 

ChIP–qPCR. Wild-type and rex-47 deletion embryos were obtained as 

described earlier. Input and ChIP samples using rabbit anti-DPY-27 or rabbit anti-

SDC-3 antibody were prepared according to previously published protocols20. 

Three pairs of qPCR primers 

(ACTTTGCAAGAGTATGTAGTGAA/ACGAGTAATACTT TGAGCATACTT, 

TACGGCTACCAATCTTGTAA/TCTGTATCTCTAATCC CTAATAGT and 

TGTGACTACTTGCCCAATAAA/TATCTCTCCCTTCGCC TAAA) were used to 

amplify three, 100 bp regions located upstream, down-stream or within the rex-47 

deletion region, respectively. qPCR was performed using iQ SYBR Green 

Supermix (Bio-Rad, 170-8880) on a CFX384 Touch Real-Time PCR Detection 

System (Bio-Rad). 

FISH analysis of rex-47 deletion strain 
 

The legend for Figure 2.11 h provides the quantification for three-way 

comparisons of FISH probe co-localization among wild-type, DC mutant, and rex-

47 deletion strains. For two-way comparisons using the one-tailed Mann–
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Whitney U-test, the rex-47 deletion strain differed significantly from the wild-type 

strain (P, 1025) for probes on each side of the TAD boundary, and the rex-47 

deletion strain was not statistically different from the DC mutant strain (P 5 NS), 

as expected. 

RNA-Seq library creation 
  

Embryos of appropriate genotype, four total wild-type biological replicates 

(two from the Hi-C biological replicates) and three total sdc-2 (y93, RNAi) 

biological replicates (two from the Hi-C biological replicates), were isolated 

following the procedures above and frozen at 280 uCin13 M9 buffer. RNA was 

extracted using a protocol described previously [69], except that 10 mlofa 20 mg 

ml glycogen solution was used as a carrier. Libraries were prepared from 10 mg 

of total RNA. PolyA RNA was purified using the Dynabeads mRNA purification kit 

(Ambion) and fragmented using Fragmentation Reagent (Ambion). First strand 

cDNA was synthesized from polyA RNA using the SuperScript III Reverse 

Transcriptase Kit with random primers (Life Technologies). Second strand cDNA 

synthesis was performed using Second Strand Synthesis buffer, DNA Pol I, and 

RNase H (Life Technologies). cDNA libraries were prepared for sequencing 

using the mRNA TruSeq protocol (Illumina). 

Gene expression analysis 
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Libraries were sequenced with Illumina’s HiSeq2000 platform. Reads were 

required to have passed the CASAVA 1.8 quality filtering to be considered 

further. To remove and trim reads containing the sequencing barcodes, we used 

cutadapt version 0.9.5 (http://code.google.com/p/cutadapt/). Reads were aligned 

to the transcriptome using GSNAP [70] version 2012-01-11. Uniquely mapping 

reads were assigned to genes using HTSeq version 0.5.4p3 using the union 

mode. Gene expression levels and changes in gene expression were determined 

by analysis with DESeq [71]. Gene expression analysis were conducted both 

with these RNA-Seq data sets and published GRO-Seq data sets [53]20. For 

each chromosome, scatter plots analysed the log2 of the median fold-change in 

gene expression (DC-mutant expression/wild-type expression) calculated for 

each 10 kb bin along the chromosome versus the change in insulation score for 

that bin in wild-type versus DC mutant embryos. No significant correlation was 

found between the change in gene expression and the change in insulation 

score: for chromosomes I, II and X, R 5 0.04; for chromosome III and IV, R 5 

0.00; for chromosome V, R 5 0.03. 
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CHAPTER III:  Structural organization of the 
inactive X chromosome 
 

Preface 
 

This research chapter encompassed work performed by Luca Giorgetti, 

Bryan R. Lajoie, Ava C. Carter, Mikael Attia, Ye Zhan, Jin Xu, Chong Jian Chen, 

Noam Kaplan, Howard Y. Chang, Edith Heard, and Job Dekker.  The manuscript 

is currently being revised at Nature (as of 02/2016).  

Abstract 
X-chromosome inactivation (XCI) entails a massive structural 

reorganization of the inactive X (Xi).  However the molecular architecture of the 

Xi is unknown.  Here we show that the Xi lacks typical autosomal features such 

as active/inactive compartments and topologically associating domains (TADs), 

except around a small number of genes that escape XCI and remain 

expressed.  Escaping genes form TADs and retain DNA accessibility at 

promoter-proximal and CTCF binding sites, indicating that these loci can avoid 

Xist-mediated erasure of chromosomal structure.  We further show that gene-

silencing competent Xist RNA is sufficient to induce segregation of the Xi into two 

‘mega-domains’ separated by a boundary that includes the DXZ4 

macrosatellite.  Deletion of this boundary prior to XCI results in fusion of the 

mega-domains and altered patterns of escape that correlate with changes in TAD 

structure following differentiation and XCI . Our results suggest a critical role for 
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the boundary locus and Xist RNA in shaping the structure of the Xi and 

modulating escape from XCI.  Our findings also point to roles of transcription and 

CTCF binding in TAD formation in the context of facultative heterochromatin. 

Introduction 
 

Important new insights into the 3D organization of mammalian 

chromosomes have come from recent chromosome conformation capture 

approaches.  These studies have revealed a hierarchy of structural organization 

spanning several genomic length scales, from multi-megabase ‘A/B’ 

compartments defined by blocks of chromatin that correlate with chromatin 

activity states, to topologically associating domains (TADs) which represent 

evolutionarily conserved sub-megabase self-interacting domains to multi-kilobase 

looping associations between regulatory and structural elements [7], [12].  This 

recent understanding of chromosome folding has provided important insights into 

the nature of long-range gene regulation and the mechanisms underlying gene 

expression dynamics.  

However, less is known about the structure and organization of 

heterochromatin.  To what extent does chromosome folding, TAD organization 

and long range looping differ in the context of a heterochromatic state? A classic 

example of facultative heterochromatin is the inactive X chromosome (Xi) in 

female mammals, which is condensed and organized into a distinct silent nuclear 

compartment.  During early female development, X-chromosome inactivation 
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(XCI) is triggered by up-regulation of the long non-coding Xist RNA from one of 

the two X chromosomes.  Xist RNA coats the chromosome in cis and, via its A-

repeat region [37], [38], induces transcriptional silencing of almost all of the 

~1073 genes on the X.  Interestingly, some genes (constitutive escapees) avoid 

this silencing in most cell types while others (facultative escapees) become 

reactivated from the Xi only in specific contexts [39]. The underlying 

mechanism(s) for both facultative and constitutive escape are not known. A role 

for Xist RNA in reshaping the organization of the entire Xi has been proposed 

[40], [41], with escape genes being excluded from the Xist-coated domain. 

However, the exact architecture of the Xi, for both its silent and expressed 

regions, is still unclear.  Based on DNA FISH, the human Xi is a rather 

homogeneous structure with an overall compaction that is about 1.2-fold higher 

than that of the active X chromosome (Xa) [42]–[44].  Recent chromosome 

conformation capture approaches have pointed to some intriguing features of the 

3D folding of the Xi, including formation of large mega-domains along the human 

Xi [45], and long-range associations between loci that escape inactivation and 

become expressed on the mouse Xi [41].  However detailed insights into the 

global molecular architecture of the Xi remain far from complete, due in part to 

the lack of chromosome-wide, high resolution, allele specific information.  To this 

end, we have investigated the structure, chromatin accessibility and expression 

status of the Xi using allele-specific Hi-C, ATAC-Seq and RNA-Seq methods in 

embryonic stem cells (ESCs) and clonal neural progenitor cells (NPCs) both 
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derived from a highly polymorphic (Cast x 129) F1 mouse. This F1 mouse cross 

contains 19,722,473 SNPs, averaging 1 snp every ~140 bases which enables 

higher resolution analysis of allele-specific chromatin states and three-

dimensional conformation than that previously performed in human cells (~10-

fold higher SNP density) [45]. 

Results 
 

Organization of the inactive X 
 

In ESCs, prior to XCI, allele-specific Hi-C analysis revealed that 

autosomes as well as both active X chromosomes display prominent 

active/inactive (A/B) compartmentalization, quantified by eigenvector 

decomposition [1], [62], and TAD structure, quantified by insulation analysis [46] 

(Figure 3.1 a-b, Figure 3.2).  In NPCs that were clonally derived from the same 

ESCs, compartments and TADs were similarly detected on autosomes and the 

active X chromosome. However striking differences were observed for the 

inactive X.  First, TADs are largely absent on the Xi, as readily observed by 

visual inspection of the Hi-C interaction maps (Figure 3.1 a).  To quantify the 

presence of TADs we calculated an insulation score (the number of interactions 

occurring across each bin) along the entire length of the chromosome [46].  TAD 

boundaries display low insulation scores (few interactions occurring across 

bin/boundary), while loci located within TADs display high insulation scores 

(many interactions occurring within TADs, across bin).  The variance in insulation 
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scores along the chromosome is a quantitative measure of the presence of TADs 

[72], with large variance indicating a strong TAD signature.  In NPCs we detected 

an overall 2-3 fold decrease in the interquartile range (IQR) of the insulation 

score along the entire Xi as compared to the Xa (Figure 3.1 a and Figure 3.3), 

as well as marked differences in the pattern of local fluctuations in insulation 

scores, contrary to what is observed when comparing the two Xa’s in ESCs or 

autosomes in ESCs and NPCs (Figure 3.4).  Secondly, the Xi does not display 

A/B compartments typically observed across the rest of the genome (autosomes 

and the Xa) (Figure 3.1 b).  Rather, the Xi is partitioned into two massive 

domains of preferential interactions, spanning approximately 73 and 93 

megabases, and separated by a region of approximately ~120-200kb that 

includes the DXZ4 macrosatellite locus [73], [74].  Thus, the mouse Xi has an 

unusual conformation characterized by the presence of two mega-domains, 

consistent with a previous study on the human Xi [45], and extensive loss of TAD 

structures and compartments as also shown by previous 5C work [3] as well as a 

recent Hi-C study [75].  Importantly, these previous studies did not investigate the 

precise nature of this unusual architecture nor its implications for X-chromosome 

inactivation and escape. Whether and how any of these Xi-specific structural 

properties are involved in regulating gene expression remains unknown. 

To investigate the degree to which the Xi-specific mega-domains 

uncovered by Hi-C correspond to two spatially segregated chromosomal 

domains in single cells, we designed a DNA FISH assay using three probe sets 
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(a, b, and c; labeled with Atto448/green or Atto550/red dyes), each spanning 

consecutive 18-Mb regions (Figure 3.1 c).  We then performed FISH to assess 

the overlap between probe sets located in the same mega-domain (a-b) or 

located on either side of the mega-domain boundary (b-c).  Xist RNA FISH was 

simultaneously performed to distinguish the inactive from the active X.  Visual 

inspection and quantification of fluorescent images (Figure 3.5 a) revealed a 

significantly higher overlap between regions within the same mega-domain 

(probes a-b) on the Xi but not on the Xa (Figure 3.1 c-d and Figure 3.5 b), in 

agreement with the Hi-C data showing increased contact frequencies within 

mega-domains specifically (Figure 3.1 c).  In contrast, regions on either side of 

the mega-domain boundary (probe sets b-c) showed a significantly lower overlap 

on the Xi, and no difference with the Xa (Figure 3.1 c). Similar results were 

obtained in astrocytes derived from the NPCs, and also using an independent 

NPC clone in which the Cast rather than the 129 X chromosome was inactivated, 

showing that either the 129 or cast X chromosome can display the presence of 

the boundary/mega-domains when inactivated (Figure 3.5 c).  These data 

demonstrate that the Xi is spatially segregated into two mega-domains at the 

single-cell level and confirm the presence of a physically insulating boundary 

region on the Xi that is present both in stem cells (NPCs) and differentiated cells 

(astrocytes). 

The above analyses also indicated significant chromatin compaction within 

each of the two mega-domains on the Xi compared to the Xa.  To investigate this 
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further, we quantified the volumes of DNA FISH signals from single probe sets a, 

b and c by two independent means.  First, by using threshold-independent 

gyration tensor analysis (Figure 3.5 d) to estimate the gyration radius of FISH 

signals, we detected mildly but statistically significant larger gyration radii on the 

Xa than on the Xi (9% gyration volume difference on average, Figure 3.5 

e).  Second, we performed segmentation-based volume estimation analysis at 

multiple grayscale threshold intensities to measure the maximal 3D extension of 

FISH signals at each threshold (Figure 3.5 f).  We found 25% larger maximal 

volumes on the Xa than on the Xi, with Xa signals being larger than those on Xi 

in the majority of cells (Figure 3.5 f) for a wide range of thresholds.  Hence, 

contiguous regions within each mega-domain on the Xi appear to be slightly, but 

significantly more compact than homologous regions on the Xa, consistent with 

previous observations on the human Xi [42].  We also noted that individual 18-Mb 

regions within each mega-domain appeared more spherical than corresponding 

Xa regions (single probes a, b and c, Figure 3.1 d and Figure 3.5 e). However 

when considering composite signals from probes extending across the mega-

domain boundary on the Xi, signals from the two mega-domains were clearly 

spatially segregated in the majority of cells (Figure 3.1 c, probes b-c), generating 

overall FISH signals that were more elongated than those from equally sized 

regions within the same mega-domain (Figure 3.1 c, probe sets a-b).  The 

mouse Xi is thus very differently organized when compared to its active homolog, 
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being partitioned into two large, spatially distinct regions of increased chromatin 

compaction.  

Clustered genes that escape silencing are embedded in TADs 
 

As a striking exception to the general absence of sub-megabase structure 

on the Xi within each mega-domain, Hi-C analysis revealed the presence of a 

small number of residual chromosome domains (see Figure 3.1 a, arrow in the 

bottom panel) that resemble TADs and stand out as regions of increased self-

interactions.  In order to investigate whether these TAD-like structures 

correspond to hotspots of biological activity on the otherwise inert Xi, we 

performed ATAC-Seq to identify all accessible, active elements on the Xi, and 

compared the data to Hi-C and previously published allele-specific RNA-Seq 

data produced on the same ESC and NPC clonal lines [76]. 

Upon differentiation (XCI) of ESCs into NPCs, RNA-Seq and ATAC-Seq 

profiles reflected a global loss of activity on the inactive X (Figure 3.6 a).  Of the 

genes covered by ≥ 1 SNP, we could detect 87 expressed genes on the Xi, as 

opposed to 314 on the Xa by RNA-Seq (expressed defined as ≥ 3 

RPKM).  Concordantly we found 224 ATAC-Seq peaks on the Xi compared to 

825 on the Xa (covered by ≥ 1 SNP), indicating a massive loss of active genomic 

elements on the Xi.  As expected, the majority of the ATAC-Seq peaks on the Xi 

in NPCs fall near the X inactivation center (Xic) (from which Xist is specifically 

expressed only on the Xi), the pseudoautosomal region (PAR, expressed from 
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both Xi and Xa), and at the promoters of genes that escape X inactivation, as 

identified by RNA-Seq (constitutive and facultative escapees, expressed from 

both Xi and Xa) (Figure 3.6 a).  Strikingly, we noted that accessible sites on the 

Xi (based on ATAC-Seq) often lie within the Xi-specific TADs observed by Hi-

C.  Furthermore, the degree of local structure on the Xi was correlated with the 

number of transcribed loci in a particular chromosomal region, as shown in 

Figure 3.6 b by three examples: a dense cluster of 19 facultative escapees that 

include the Mecp2 gene which shows a clear ~800kb TAD; part of the Xic region 

including Xist, with slightly increased interactions extending over a ~250 kb 

region 5’ to the Xist promoter, in contrast to the homologous region on the Xa 

where Xist’s promoter lies in a well-defined ~500kb TAD; and a region of 5 

escapees including the constitutive escapee Kdm5c (also known as Jarid1c), 

which lies adjacent to the facultative escapee Huwe1, which shows a prominent 

~500 kb TAD. 

We next analyzed the correlation between TAD structure, allele-specific 

expression [76] and allele-specific chromatin accessibility for each gene along 

the Xi, and found that genes located in regions with prominent TAD structure 

(high insulation scores) are correlated with elevated levels of chromatin 

accessibility and gene expression on the Xi (Figure 3.6 c).  Moreover, genes that 

escape XCI (expressed on Xi) are located in regions with significantly higher 

insulation scores (indicative of prominent TAD structure) (Figure 3.6 d) as 

compared to silenced genes.  We did not detect a significant difference in 
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insulation scores for the corresponding sets of loci on the Xa (Figure 3.6 

e).  Similar results were obtained for ATAC-Seq signal at expressed versus 

silenced genes on the Xi (Figure 3.7 a).  Importantly, the TAD-like structures 

detected on the Xi at expressed regions do not necessarily correspond to 

equivalent TADs on the Xa.  This indicates that TAD structure is strictly related to 

gene expression status on the Xi, unlike TADs on the Xa which are present 

irrespective of expression status.  

Interestingly, whereas on the Xa, only ~35% of ATAC-Seq peaks are 

promoter-proximal (< 5kb from promoters), on the Xi, more than half (51%) of 

accessible sites are promoter-proximal (p = 1.38 e-5; Figure 3.6 f).  This 

indicates that escape from XCI is more often regulated at promoters or very 

proximal transcription factor binding sites.  Almost all of the promoter-proximal 

and the largest class of promoter-distal (>5kb) ATAC-Seq peaks on Xi were 

found at CTCF binding sites (Figure 3.7 b), indicating that CTCF may play a role 

in escape from XCI.  This may be related to the recent finding that loss of 

cohesin along the Xi, often co-located with CTCF, leads to loss of TADs [75], and 

indicates that escape from Xist-driven chromosome structure erasure may 

involve CTCF binding to facilitate TAD formation [56], [57], [77] and escape from 

silencing. 

We also found that escapee loci on the Xi tend to interact with each other 

over long distances in cis, and even across the mega-domain boundary, 

consistent with a previous report based on 4C [41] (Figure 3.6 g).  This implies 
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that transcribed TAD-like regions on an otherwise heterochromatic X tend to 

associate together and could be related to the general phenomenon that active 

regions cluster together in (active) A-like compartments.  In conclusion, our 

investigation of the molecular architecture, chromatin accessibility and 

transcriptional status across the heterochromatic Xi reveal a surprisingly complex 

organization with genes expressed from the Xi being embedded in TAD-like 

structures, tending to display chromatin accessibility that is often at or near their 

promoters and being engaged in long-range associations with one another. 

Structural and transcriptional role of the mega-domain boundary locus on 
the Xi 
 

We next explored the role of the DXZ4-containing boundary in the 

formation of the Xi mega-domains, and its implications for Xi structure and 

expression.  For this we used a CRISPR/Cas9-based strategy to generate a 200-

kb deletion of the boundary region (ΔFT), encompassing the DXZ4 macrosatellite 

repeat and unique flanking DNA from only the 129 allele in ESCs (Figure 3.8 a, 

Figure 3.2 b and Figure 3.9 a).  When this ΔFT ESC line (D9) was differentiated 

into NPCs, Xist RNA coating of one of the two X chromosomes was induced as 

usual and we were able to derive multiple clonal NPCs in which the 129 (ΔFT) X 

chromosome was the inactive X.  Hi-C was performed on one of these clones 

(D9B2) and visual inspection of the data revealed a massive reorganization of 

the ΔFT NPC Xi, compared to the WT NPC Xi, with the two mega-domains fusing 

into one single domain encompassing the entire chromosome (Figure 3.8 b).  As 
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expected, the Cast Xa chromosome in ΔFT NPCs showed no observable 

differences when compared to the Cast Xa in WT NPCs (Figure 3.10 7a). To 

further validate our results, we again employed a FISH strategy (see above) to 

assess boundary formation and chromatin compaction.  Loci on either side of the 

deleted boundary (probes b and c) overlap significantly more on the ΔFT Xi when 

compared to the normal Xi (Figure 3.8 c-d), consistent with the Hi-C data 

(Figure 3.8 d) and confirming that the two mega-domains had fused into a single 

chromosome-wide entity.  We also assessed chromatin compaction and found 

that similar to the WT Xi, the ΔFT Xi showed increased chromatin compaction 

when compared to the Xa (significantly higher overlap of probes a and b, Figure 

3.8 c-d).  Thus the deletion of the mega-domain boundary results in increased 

intermingling between the two mega-domains of the WT Xi, but does not appear 

to change the overall chromatin compaction of the inactive X chromosome. 

To assess the conformation of the ΔFT Xi in more detail and to determine 

whether the massive structural reorganization of the ΔFT Xi is accompanied by 

any functional changes, we also performed ATAC-Seq and RNA-Seq in the same 

mutant NPC clone (D9B2) for which Hi-C was performed.  We could detect 29 

expressed genes on the ΔFT Xi, as opposed to 313 expressed genes on the ΔFT 

Xa by RNA-Seq (expressed defined as ≥ 3 RPKM), whereas the WT NPC had 87 

and 314 expressed genes on the Xi and Xa respectively.  Surprisingly, we found 

that transcription and chromatin accessibility were lost at many locations along 

the ΔFT Xi (Figure 3.11 a) and notably at NPC-specific facultative escape genes 
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such as the Mecp2-containing gene cluster (Figure 3.11 b, left). On the other 

hand, transcription and open chromatin were maintained on the ΔFT mutant for 

genes that are constitutively expressed from the Xi such as Xist (Figure 3.11 b, 

center) and Jarid1c (Figure 3.11 b, right).  All (6 out of 6) constitutive escapee 

genes (5) found to be expressed from the wild-type Xi including Jarid1c, were still 

expressed from the ΔFT Xi, whereas only 21 out of the 87 facultative escapees 

(~24%) still showed some expression (≥ 3 RPKM) from the ΔFT Xi (Table 3.1). 

RNA FISH confirmed loss of transcription at facultative escapees and continued 

expression from the constitutive escape genes (Figure 3.11 c and Figure 3.9 b-

c).  These results were confirmed in two additional independent NPC clones 

(D9C7 and D9A3) derived from the ΔFT mutant ESC line although in one clone 

some facultative escape of some genes could still be detected (Figure 3.9 

d).  Strikingly, in the D9B2 NPC clone analyzed by Hi-C, TAD-like structures 

were also lost where transcription and chromatin accessibility were lost, but 

maintained at constitutive escape genes where expression is maintained (Figure 

3.11 b).  In particular, in the region including Jarid1c, 4 of the 5 facultative 

escape genes such as Huwe1 and Smc1a became silenced on the ΔFT Xi, and 

this was paralleled by loss of TAD-like structure (Figure 3.6 b) despite the fact 

that the constitutive escapee Jarid1c remains expressed.  X chromosome-wide 

comparisons in the ΔFT D9B2 NPCs showed strong correlations between the 

loss of escapee expression, loss of chromatin accessibility and reduction in TAD 

signal (Figure 3.11 d).  Furthermore, although the massive restructuring of the Xi 
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in the ΔFT mutant leads to greater overall intermingling of the previously 

segregated mega-domains (Figure 3.8 b), which might be expected to increase 

long-range interactions between regions that escape XCI, we find that most of 

the specific long range interactions between the 87 WT Xi escapee genes are 

lost on the ΔFT Xi in D9B2 NPC cells  (Figure 3.11 e).  Further no spatial 

clustering between the 29 ΔFT Xi expressed genes (escapees) is detected on 

the ΔFT Xi.  This loss coincides with loss of expression and loss of TAD 

structures, indicating that very long range interactions between escapees on the 

WT Xi are indeed closely linked to expression status. 

As an intriguing exception to the widespread loss of facultative expression 

on the ΔFT Xi, we noticed that seven genes that were silenced on the wild-type 

Xi were now found to be expressed on the ΔFT Xi in the D9B2 clone (Table 

3.1).  These de novo escapees do not occur in clusters and do not appear to be 

highly accessible by ATAC-Seq (Figure 3.10 b), and thus are not expected to lie 

within strong TAD-like regions. Inspection of Hi-C maps showed a mild increase 

in local structure at some of these loci when compared to the wild-type Xi, more 

so for the most highly expressed of them such as Maged1 and Eda2r (Figure 

3.10 b), leading to an amount of local structure that is comparable to that seen 

for Xist and Jarid1c on the Xi (Figure 3.8 b and Figure 3.11 b).  This result 

reveals that in clones where alternative sets of isolated genes escape silencing, 

corresponding mild amounts of local structure emerge. In addition, we found that 

the amount of local chromosome structure tends to increase at and around 
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genes whose transcription level and accessibility increases on the ΔFT Xi as 

compared to the WT Xi, which include de novo escapees, but also a subset of 

the escapees whose expression level is increased (Figure 3.11 d). Thus, it 

appears that there is no fixed set of loci that consistently maintains TAD 

organization and expression in different clones, and that the presence and level 

of transcription is correlated with increased local structure. Further, our data 

suggest that the mega-domain boundary modulates the number and identity of 

facultative escapees.   

When chromatin accessibility changes were assessed in more detail on 

the Xi in the D9B2 clones, of the 224 ATAC-Seq peaks that could be assigned 

allelically to the Xi, 139 were found to be lost in the ΔFT mutant (Figure 3.11 f, 

left panel).  The set of accessible sites lost in ΔFT NPCs are enriched for 

promoter-proximal sites with 64% falling within 5kb of a TSS (Figure 3.11 

g).  93% of these promoter-proximal sites contain a CTCF binding site, an 

enrichment compared to distal sites (>5kb from a TSS), comprised of 64% CTCF 

binding sites plus p300 binding sites, H3K27Ac sites, and other TF binding sites 

(Figure 3.11 f right panel).  These CTCF sites are located closer to the TSSs of 

escape genes than sites that do not change in the ΔFT NPCs (Figure 3.11 

h).  These results again point to a role for CTCF in regulating escape from XCI. 

Formation of mega-domains depends on gene-silencing competent Xist 
RNA  
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To investigate whether Xist RNA itself can induce the bipartite folding of 

the Xi, we induced Xist expression from one X chromosome in female ESCs 

carrying a tetracycline-inducible promoter at the endogenous Xist locus (TX1072) 

[78] (Figure 3.12 a), which has previously been shown to lead to gene silencing 

on the Xist-coated X chromosome.  RNA/DNA FISH experiments as in Figure 

3.6 and Figure 3.11 revealed that the Xist-coated chromosome becomes 

partitioned in two domains separated at the DXZ4-containing region upon Xist 

RNA coating (Figure 3.12 b-c), although the strength of the boundary appears to 

be somewhat reduced as compared to NPCs.  Thus, coating by the Xist mRNA is 

sufficient to induce formation of two mega-domains on the X chromosome.  To 

determine whether this is due to gene silencing or to an independent 

architectural role of Xist, we performed the same experiment in cells carrying a 

wild-type or mutant form of the Xist RNA deleted for its A-repeat region, which is 

no longer able to induce gene silencing, but is still competent for Xist RNA 

coating and exclusion of RNA PolII [40].  For this we used previously 

characterized male ESC lines carrying tetracycline-inducible wild-type Xist [79], 

or mutant Xist (J1:XistΔA) [37] (Figure 3.12 d and Figure 3.9 g). Whereas wild-

type Xist induction led to boundary formation at the DXZ4-containing region, the 

A-repeat mutant did not, indicating that gene silencing is in fact required for the 

establishment of the two mega-domains (Figure 3.12 e-f).  Because the A-repeat 

is required for the interaction of a small subset of Xist-binding proteins [37], these 

results also suggest that one or more of these factors could initiate Xi-specific 
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changes in higher-order chromosome folding upon Xist coating, followed by 

further events during differentiation.  It has recently been proposed that the Xist 

RNA might bind to and thus somehow repel cohesin [75], which mostly binds 

DNA associated with CTCF.  However cohesin and CTCF were not identified in 

other studies that identified Xist RNA protein partners, in particular those 

associated with the A-repeat motif [38].  Thus the precise mechanisms by which 

A-repeat containing Xist RNA induces global restructuring of the chromosome it 

coats remain open questions but our results suggest that Xist’s gene silencing 

function may be tightly linked to its structural role.  

Conclusion 
 

Our study reveals that the inactive X chromosome is a surprisingly 

elaborate entity, with a global partitioning into two mega-domains and loss of 

TAD organization, except at clusters of genes that are still expressed from the 

otherwise silent Xi.  TADs were previously thought to be highly stable across cell 

generations and differentiation [2], [3], and their presence or maintenance not to 

require transcription in general.  However our study demonstrates that 1) TADs 

can indeed be lost in some contexts (as also observed on mitotic chromosomes 

[72], although in the case of the Xi, TAD loss is not a transient state but is stably 

transmitted through cell division) and that 2) gene expression and/or binding of 

factors such as CTCF can enable their maintenance and/or de novo re-creation.  

Our findings show that gene silencing and loss of accessibility is accompanied by 
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loss of structure, but that de novo gain of escape corresponds to re-creation of 

local structure, and further that transcription at clusters of genes coincides with 

TAD formation.  Together these findings suggest that gene expression and DNA 

binding factors may be driving forces of TAD organization in the context of the 

inactive X, which is otherwise devoid of TADs.  The Xi may therefore represent a 

sequence-independent chromosome state at the structural level, from which 

sequence specific TADs can arise.  

The reduced level of facultative escape in cells where the mega-domain 

has been deleted is intriguing.  Although escape can be quite variable even in 

normal cells, three NPC clones derived from the D9 ΔFT mutant ESC line 

showed reduced escape by RNA FISH (Figure 3.9 d).  These results suggest 

that during XCI the mega-domain boundary and the bipartite folding of the Xi that 

it induces, may modulate or affect the process leading to facultative escape. 

Constitutive escapees are much less affected by the boundary deletion and 

presumably have an intrinsic capacity to override the XCI process 

[80].  Facultative escapees on the other hand are first silenced during XCI and 

then re-expressed ([81], [82] and unpublished data).  Although the mega-domain 

boundary region does not appear to interact with escapee regions in NPCs and is 

transcriptionally silent in NPCs, this region is transcribed and possibly 

euchromatic at the onset of XCI (MA and EH, unpublished 

observations).  Transient interaction of this region with facultative escape loci 

during differentiation may thus occur and may be sufficient to regulate the local 
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amount of escape and/or re-establish TADs at escape loci due to its unusual 

chromatin status (Figure 3.12 g) and atypical enrichment in CTCF binding 

[83].  An additional, but not mutually exclusive model is that the boundary region 

helps position the Xi in a particular sub-nuclear location during or after XCI, that 

facilitates the establishment of a given escape pattern.  These results establish 

the Xi as a powerful model system for studying the mechanistic interrelationships 

between chromosome conformation and gene regulation, and point to a key role 

for gene activity in the establishment of chromosome structure at the level of 

TADs in the context of facultative heterochromatin. 
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Figures 

Figure 3.1 | The distinct conformation of the Xi, Xa and autosomes. 
a, Allele-specific Hi-C contact maps for chromosome X in ESCs and NPCs at 
500-kb resolution (top), and for a ~40-Mb region centered around the DXZ4-
containing locus at 40-kb resolution (bottom). The insulation score is plotted at 
the bottom of each 40-Mb heatmap. Purple shaded areas indicate the IQR range 
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of insulation scores along the chromosome to illustrate the reduced insulation 
scores along Xi, indicative of a loss of TAD structure. Black arrow: position of the 
residual TAD in the 40-Mb region. Red arrow: position of DXZ4. b, Compartment 
profiles of chromosome X in ESCs and NPCs. The first eigenvector (PC1) of 
each allele-specific Hi-C contact map, obtained with Principal Component 
Analysis, is shown, together with the difference in chromosome-wide insulation 
score between the 129 and Cast allele.  A/B-compartments are evident in ESCs 
and NPCs along both Xa (Red and Blue signal), whereas first eigenvector 
corresponds to the two mega-domains for the Xi in NPCs.  In ESCs both Xa 
display comparable insulation profiles (difference is close to zero along the 
chromosome), whereas in NPCs large differences are observed (difference in 
insulation fluctuates along the chromosome). Grey areas indicate regions with 
low SNP density that were excluded from analysis. c, Top: Scheme of the DNA 
FISH probe sets (a-b: inside the same mega-domain, b-c: across the boundary). 
Bottom: Loci detected by probe set a-b are more interacting than b-c both in Hi-C 
(left) and in 3D-DNA FISH (right).  * denotes p<8e-17 in a Wilcoxon’s rank sum 
test corrected with Bonferroni for multiple hypothesis testing. d, DNA FISH 
signals from probe set a-b are more overlapping and spherical on the Xi than on 
the Xa, whereas signals from b-c show a clear partitioning on the Xi into two 
separate domains. 
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Figure 3.2 | Experimental Design 
a, Schematic of hybrid mouse strains used for all experiments.  b, Scheme 
outlining differentiation of ESCs to NPCs and picking of clones.  Scheme 
outlining CRISPR deletion of the mega-domain boundary in ESC, differentiation 
to NPC and the picking of clones.  c, Schematic of Hi-C library generation.  d, 
Schematic of the Hi-C Alignment Strategy.  PE reads are aligned to a ‘diploid’ 
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genome consisting of 22 chromosomes from Cast, and 22 chromosomes from 
129 (1-19 X,Y,M).  The interaction row shows all possible PE read combinations 
between the 129, Cast and Ambiguous genomes.  e, Schematic showing the re-
assignment of certain ‘cis’ interactions.  PE reads where one side uniquely 
aligned to an allele and the other side aligned equally to both alleles (AMB), were 
re-classified as an allelic reads, only if both reads aligned to the same 
chromosome (cis).  f, Cartoon explaining the re-assignment of 129:amb or 
cast:amb cis interactions.  g, Scheme for ATAC-Seq library preparation.  h, 
Scheme for allele-specific ATAC-Seq data analysis 
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Figure 3.3 | chrX 
a, Hi-C data, insulation scores, and the difference in insulation scores (129-cast) 
are shown for ESC (GUR.2d), NPC (GEI.72b) and mutant NPC (D9B2/B129T3) 
for both alleles (Cast and 129) for chrX.  Large dips in the insulation vector are 
found at TAD boundaries.  Peaks in the insulation vector are found towards the 
center of each TAD.  The insulation difference plot highlights areas of differential 
TAD structure between the alleles (many differences as compared to the allelic 
differences along autosomes). 
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Figure 3.4 | chr13 
a, Hi-C data, insulation scores, and the difference in insulation scores (129-cast) 
are shown for ESC (GUR.2d), NPC (GEI.72b) and mutant NPC (D9B2/B129T3) 
for both alleles (Cast and 129) for chr13.  Large dips in the insulation vector are 
found at TAD boundaries.  Peaks in the insulation vector are found towards the 
center of each TAD.  The insulation difference plot highlights areas of differential 
TAD structure between the alleles (rare). 
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Figure 3.5 | DNA / RNA FISH 
a, Top left panel: Scheme of the procedure used to quantify Pearson 
correlation.  A background is generated for each xy plane in a three-dimensional 
z-stack by morphological opening the image with a circle of 5 pixels in radius, 
and subtracted from it.  Pearson correlation between red and green pixel 
intensities is measured inside a fixed-size region of 40x40x20 pixels (5.16 x 5.16 
x 4 µm) centered on each FISH signal. To demonstrate that background 
subtraction does not impact on the measured correlations, we show here a line-
scan of 10 µm across a typical DNA FISH signal (top right panel).  The shape of 
the signals along the line scan, as well as their relative intensities, is not affected 
by background subtraction (bottom).  b, In more than 80% of nuclei in NPCs, 
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Pearson correlations is higher on the Xi than on the Xa. Shown is NPC clone C2 
(the same where Hi-C was performed).  c, Same quantification as in Figure 1c 
(and panel b) for an independent NPC clone (E1) where the active X is on the 
129 allele and the inactive X on the Cast, and in astrocytes derived from NPC 
clone C2.  d, Scheme of the gyration tensor based analysis of FISH volumes 
(see methods).  e, Left panel: Gyration radii of DNA FISH signals from probes a, 
b and c. Probe b was used in combination with both probes a and c separately in 
two independent experiments. Statistical significance was assessed by 
Wilcoxon’s rank sum test (*=p<0.05, **=p<1e-5). The mean gyration radii for Xa 
and Xi signals are indicated by dotted lines as a guide for the eye. Right panel: 
representative images of probe a, showing smaller size and increased roundness 
of the Xi signals.  f, Left panel: scheme of the thresholding-based method for 
volume quantification. Thirty increasing threshold levels were imposed, starting 
from the residual grayscale background level surrounding the signal, up to the 
minimum between the red and green channel grayscale maxima. For each of 
these thresholds we determined the number of voxels in each channel, where the 
grayscale intensity was higher than the threshold.  Center panel: The fraction of 
cells where the Xa signal is larger than the Xi is between 60% and 80% in the 
entire threshold range. Right panel: in a wide range of thresholds, the volume of 
Xa signals is approximately 25% bigger than Xi signals.  Results are shown here 
for probes a and b; the same holds for probe c (not shown). 
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Figure 3.6 | Integrating expression, chromatin accessibility and chromatin 
conformation along the Xi. 
a, X-Chromosome-wide ATAC-Seq and RNA-Seq in ESCs and NPCs.  ATAC 
shows signal for ambiguous, 129- and Cast-specific reads in ESCs and 
NPCs.  RNA-Seq shows total signal as well as expressed gene calls.  ATAC-Seq 
shows global loss of chromatin accessibility and expression on the Xi, except at 
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specific locations (pink boxes) that mostly overlap with escape genes. Dotted 
line: mega-domain boundary.  Bottom: location of regions shown in panel b. 
Position of constitutive escapees was adapted from ref. [39]. b, The size and 
strength of residual TAD-like structures on the Xi correlates with the genomic 
extent of residual transcription and chromatin accessibility, as exemplified by 
allele-specific Hi-C, RNA-Seq and ATAC-Seq in the Mecp2, Xist and Jarid1c 
(Kdm5c) regions. Hi-C data are shown at 40-kb resolution. * = Tsix expression in 
ESC, manually indicated. c, Integrative analysis of Hi-C insulation (TAD 
structure), ATAC-Seq d-score, ATAC-Seq read counts, and RNA-Seq 
RPKM.  Each row is a gene/promoter. All heatmaps are sorted by insulation 
score, highest to lowest (strongest-to-weakest TAD signal). Regions with 
elevated TAD structure harbor promoters that are expressed and accessible on 
the Xi. ATAC d-scores are calculated by comparing Xi vs. Xa ATAC-Seq peaks 
within gene promoters.  d, The 87 Xi expressed genes (escapees) fall within 
regions with higher insulation scores on the Xi as compared to the 567 Xi 
silenced genes (KS test p-value = 4.44e-16). e, The 87 Xi expressed genes 
(escapees) and the 567 Xi silenced genes have similar insulation scores on the 
Xa.  (KS test p-value = 0.43114). f, ATAC-Seq peaks on the Xi tend to be closer 
to TSSs (within 5kb) than peaks on autosomes and the Xa.  g, Interaction pile up 
map showing mean interaction signal for all pairwise combinations of the 87 WT 
NPC Xi Escapees on the Xa and Xi.  Escape genes tend to contact one another 
in 3D space on the Xi.  
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Figure 3.7 | ATAC peaks 
a, Escape genes on the Xi (as determined by RNA-Seq) fall within regions with 
high ATAC-Seq signal (KS test p-value < 2.2 e -16).  b, Pie charts showing the 
distribution of peaks that escape XCI vs. the peaks that are unique to the 
Xa.  Peaks are classified into those that are promoter-proximal (within 5kb of 
TSS) and distal (>5kb from TSS).  Annotations are based on binding sites 
identified by ChIP-Seq [84], [85]. 
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Figure 3.8 | Deletion of the boundary between Xi mega-domains leads to 
loss of bipartite folding. 
a, Scheme of the 200-kb mega-domain frontier deletion (ΔFT) encompassing the 
DXZ4 macrosatellite. A sgRNA targeting a 129-specific SNP was used to 
generate a deletion specifically on the 129 X chromosome. Black arrow: position 
of the residual TAD in the 40-Mb region. Red arrow: position of DXZ4.  B, 
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Relative allele-specific Hi-C contact probability maps for chromosome X in wild-
type and ΔFT NPCs at 100-kb resolution (top), and for a 40-Mb region centered 
around the DXZ4 position at 40-kb resolution (bottom). Insulation score is plotted 
at the bottom of each 40-Mb heatmap. Shaded areas indicate the range of 
insulation scores along the chromosome.  c, Top: Scheme of the DNA FISH 
probe sets (a-b: inside the same mega-domain, b-c: across the boundary). 
Bottom: Loci detected by probe set b-c are more interacting in the ΔFT than in 
the wild-type Xi both in Hi-C (left) and in 3D-DNA FISH (right), showing loss of 
mega-domain boundary. * denotes p<2e-4 and ** p<1e-5 in a Wilcoxon’s rank 
sum test corrected with Bonferroni for multiple hypothesis testing.  d, Sample 
RNA/DNA FISH images showing that signals from probe set b-c are more 
overlapping on the ΔFT Xi than on the wild-type Xi. 
  



 
 
 

137 

 

 

Figure 3.9 | Deletion Strategy and mutant RNA FISH 
a, Scheme of the strategy used to delete the mega-domain boundary region in 
ESCs and to derive ΔFT NPCs.  b, RNA FISH against constitutive and facultative 
escapees confirms RNA-Seq and ATAC-Seq results.  Top: The positions of BAC 
probes (RP23-328M22 and RP23-436K) are shown relative to the escape genes 
that they span. Colored gene names correspond to transcripts that were detected 
with specific fosmid probes. Bottom: sample RNA FISH images showing that 
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expression of facultative (Mecp2 and BAC probes) but not constitutive (Jarid1c) 
escapees is lost on the ΔFT Xi.  c, Quantification of the RNA FISH experiment in 
panel b.  d, Quantification of the same RNA FISH experiment as in panel b 
including two additional mutant NPC clonal cell lines. WT and Δ1 bars represent 
the same data as in panel c.  e, Cumulative plots TAD strength of the expressed 
versus the silences genes on Cast and 129 chromosomes for all three samples 
(ESC, NPC, ΔFT).  Escapee genes on the Xi chromosomes (NPC 129, ΔFT NPC 
129) show higher insulation scores as compared to silenced genes.  f, RNA FISH 
against G6pdx and a group of genes recognized by the RP23-436K BAC (see 
panel b) showing that expression of X-linked genes is lost upon induction of wild-
type but not A-repeat mutant Xist in male ESCs. TXY and J1:XistΔA were treated 
with doxycycline for two days. 
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Figure 3.10 | WT and MT insulation 
a, Hi-C data, insulation scores, and the difference in insulation scores are shown 
to compare the WT Xi (NPC 129) and the ΔFT NPC 129).  (Top) shows the Cast 
allele (Xa) for both samples.  (Bottom) shows the 129 allele (Xi) for both 
samples.  Large dips in the insulation vector are indicative of TAD 
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boundaries.  Peaks in the insulation vector are found towards the center of each 
TAD.  The insulation difference plot highlights areas of differential TAD structure 
between the WT and ΔFT NPCs.  B, Zoom in of 3 regions centered on novel 
escapees identified on the ΔFT NPC Xi.  Left, Mid1ip1; Center, Maged1; Right, 
Eda2r.   
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Figure 3.11 | Deletion of the mega-domain boundary region results in 
altered facultative escape profiles on the Xi. 
a, Chromosome-wide ATAC-Seq signal generated with ambiguous, 129- and 
Cast-specific reads in WT NPC and ΔFT NPC, showing global loss of chromatin 
accessibility on the ΔFT Xi except at the XIC and constitutive escape genes.  b, 
Zoomed in view of three regions on the ΔFT Xi showing Hi-C interactions, RNA-
Seq and ATAC-Seq signal.  Regions from left to right show the cluster of escape 
genes proximal to the deletion region containing Mecp2, the Xic, and the region 
encompassing Jarid1c.  ATAC-Seq from WT NPCs is included for reference 
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(previously shown in Figure 2). Also shown in the left panel is the position of the 
BAC probe (RP23 436K3) used for the RNA FISH experiment in panel c. c, RNA 
FISH with a fosmid probe hybridizing to Mecp2 and a BAC probe spanning 13 of 
its neighboring facultative escape genes (see panel b).  d, Integrative analysis 
shows correlation between loss of TAD structure in ΔFT NPCs with loss of 
accessibility (ATAC) and loss of expression (RPKM).  Plotted is the difference in 
insulation (NPC - ΔFT NPC) in the 40kb region overlapping the promoter of each 
gene, NPC ATAC counts, ΔFT NPC ATAC counts, NPC-ΔFT NPC ATAC 
difference, NPC RPKM, ΔFT NPC RPKM and NPC - ΔFT NPC RPKM 
difference.  ATAC counts are extracted from the promoter of each gene (+/- 
500bp from TSS).  e, Interaction pile up map showing mean interaction signal in 
ΔFT NPCs for all pairwise combinations of the (87) WT NPC Xi Escapees and 
the (29) ΔFT NPC Xi escapees.  f, Left panel: Quantification of ATAC-Seq peaks 
in WT and ΔFT NPCs on the Xi.  Of 224 Xi peaks in WT, 139 are lost in the 
mutant.  Right panel: ChIP-Seq annotation of ATAC-Seq peaks lost in ΔFT 
NPCs.  Peaks are divided into those that are within 5kb of a TSS (blues) and 
those that are >5kb from a TSS (oranges).  g, Histogram showing the distance of 
ATAC-Seq peaks that are lost and those that do not change upon deletion of the 
mega-domain boundary to TSSs.  Peaks are quantified within 5kb of the nearest 
TSS and >5kb from the nearest TSS.  h, Plot showing the distance (log10) of 
CTCF peaks that are lost in ΔFT NPCs, that do not change in ΔFT NPCs, and 
those on the Xa from TSSs of escape genes. 
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Figure 3.12 | Xist-mediated silencing is sufficient to generate a boundary at 
DXZ4 in undifferentiated ESC. 
a, Schematic representation of TX1072 female ESC in which Xist expression can 
be induced via a tetracycline-responsive promoter at the endogenous Xist locus.  
b, RNA/DNA FISH as in Figures 1 and 3 was performed in TX1072 cells treated 
for three days with doxycycline.  Probes a-b overlap more on the Xist-coated 
than on the wild-type X chromosome, whereas signals from b-c show lower 
overlap and partitioning of the Xist-coated chromosome into two separate 
domains. * denotes p<1e-7 in a Wilcoxon’s rank sum test corrected with 
Bonferroni for multiple hypothesis testing.  c, Sample RNA/DNA FISH images 
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from the experiment in panel b.  d, Schematic representation of TXY and 
J1:XistΔA male cell lines, carrying a tetracycline-inducible wild-type and A-repeat 
mutant Xist, respectively, at the endogenous Xist locus.  e, RNA/DNA FISH 
shows increased overlap of probes a-b on the Xist-coated X chromosome in the 
wild-type, but not the A-repeat mutant cells. Probes b-c show lower overlap 
(indistinguishable from the non-Xist coated chromosomes in cells where Xist 
expression was not induced upon doxycycline treatment). * denotes p<0.05 in a 
Wilcoxon’s rank sum test corrected with Bonferroni for multiple hypothesis 
testing.  f, Sample RNA/DNA FISH images from the experiment in panel e.  g, 
Model of mega-domain boundary-mediated control of chromosome folding and 
facultative escape. Xist coating causes gene silencing and leads to chromosome-
wide conformational changes, including formation of mega-domains, overall 
compaction of chromosome folding, and loss of TADs.  Further during 
differentiation, transient interactions with the mega-domain boundary may occur 
and result in facultative escape and re-establishment of TADs at facultative 
escape loci. 
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Table 3.1 | RNA-Seq Table for all genes (available only via GEO due to size). 
Table containing all relevant RNA-Seq data for all locations (genes) along the X 
chromosome.  The table columns are as follows:  1, xloc; 2, chr; 3, start; 4, end; 
5, gene; 6, B129T3__129S1__category; 7, B129T3__129S1__pval; 8, 
B129T3__129S1__reads; 9, B129T3__129S1__rpkm; 10, 
B129T3__129S1__status; 11, B129T3__CAST__category; 12, 
B129T3__CAST__pval; 13, B129T3__CAST__reads; 14, 
B129T3__CAST__rpkm; 15, B129T3__CAST__status; 16, 
GEI.72b__129S1__category; 17, GEI.72b__129S1__pval; 18, 
GEI.72b__129S1__reads; 19, GEI.72b__129S1__rpkm; 20, 
GEI.72b__129S1__status; 21, GEI.72b__CAST__category; 22, 
GEI.72b__CAST__pval; 23, GEI.72b__CAST__reads; 24, 
GEI.72b__CAST__rpkm; 25, GEI.72b__CAST__status; 26, 
GUR.2d__129S1__category; 27, GUR.2d__129S1__pval; 28, 
GUR.2d__129S1__reads; 29, GUR.2d__129S1__rpkm; 30, 
GUR.2d__129S1__status; 31, GUR.2d__CAST__category; 32, 
GUR.2d__CAST__pval; 33, GUR.2d__CAST__reads; 34, 
GUR.2d__CAST__rpkm; 35, GUR.2d__CAST__status.  xloc is a numerical ID for 
each gene location.  chr is the chromosome.  start is the start position of the 
gene.  end is the end position of the gene. (for positions, start<end, not re-
oriented by strand) gene is the gene name.  The remaining columns are broken 
down into groups of 5 per sample, per allele.   NNNN is the sample name.  ESC 
= GUR.2d; WT NPC = GEI.72b; ΔFT NPC = B129T3 (D9B2).  XXXX is the allele, 
129 for the 129S1 allele, CAST for the Cast allele.  The five columns are: 
NNNN__XXXX_category, category assignment of expression 
(bi,mono,biased,na, see ref 20) NNNN__XXXX__pval, p-value of the allelic 
assignment.  NNNN__XXXX__reads, number of allelic 
reads.  NNNN__XXXX__rpkm, RPKM value for the allelic gene. 
NNNN__XXXX__status, expression status of the gene, expressed or 
silenced.  We defined expressed as ≥ 3 RPKM. 
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Cell Culture 
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The hybrid mouse ES cell line F121.6 (129Sv-Cast/EiJ), a gift from Prof. 

Joost Gribnau, was grown on mitomycin C-inactivated MEFs in ES cell media 

containing 15% FBS (Gibco), 10-4M ß-mercaptoethanol (Sigma), 1000U/ml of 

leukaemia inhibitory factor (LIF, Chemicon). 

Boundary Deletion 
 

  To generate the boundary region deletion, 5X106 ESCs were 

transfected with 5µg each of two plasmids (pX459) each expressing Cas9 and a 

chimeric guide RNA (gRNA1: CATGTTTGAGCATGGAAACCCGG, 

chrX:72823838-72823860; gRNA2: GGGTTATGGCGGTCGGTTCCTGG, 

chrX:73025513-73025535). Subcloning of ESC was made by limiting dilution. 

Cells were treated for 24 hours with puromycin.  As soon as visible, single 

colonies were picked under a microscope to be screened for deletion by PCR 

(forward primer: CGTAGACGCGGCAGTAGTTT, reverse primer: 

ACATAAACTCCTTTTCAGGACCA). To identify the targeted allele, we 

performed a PCR using primers (F:CTGTCCAAATGGAGGTGCTT R:C 

CTAGGTCCGCTCTCTATCG) that amplify a 203-bp amplicon specifically on the 

WT allele, which contains a SNP (rs29035891).  After amplification, PCR 

products were gel-purified and sequenced using the forward or reverse primer 

used for PCR.  Clones positive carrying the deletion were expanded and 

differentiated into NPC as previously described (20) and subcloned by limiting 

dilution. NPC lines were maintained in N2B27 medium supplement with EGF and 



 
 
 

148 

FGF (10ng/ml each), on 0.1% gelatin-coated flasks.  Clones carrying the 

boundary deletion on the inactive X were identified by RNA FISH against Xist 

with the p510 plasmid probe and DNA FISH with a BAC hybridizing inside the 

deleted region (RP23-299L1). 

Hi-C Read Mapping / Binning / ICE correction 
 

Hi-C was performed as previously described (13, 15).  To obtain allele-

specific Hi-C interaction maps in female ESCs (XacastXa129) and a derived clonal 

NPC line (XacastXi129) (Methods; Extended Data Figure 1) (20), we first 

constructed an allelic genome using the reference mm9 genome and all 

19,722,473 SNPs.  The allelic (Cast and 129) genomes were then combined to 

create a reference diploid genome (consisting of 44 chromosomes; 1-19 

X,Y,M).  All reads were aligned to the diploid genome (as described in ref. [86]), 

thus allowing for a competitive mapping strategy between the two alleles.  All 

reads were trimmed to 50bp and then aligned using the novoCraft novoalign (v 

3.02.00) software package.  Reads were aligned using the following options (-r 

all 5 -R 30 -q 2 -n 50, minimumReadDistance=5). The best alignment was 

selected from the list of the top 5 alignments.  The alignment was considered 

unique (allelic), if it’s alignment score was ≥ 5 from the 2nd best alignment score 

(alignment score taken from the ZQ tag).  Reads that aligned uniquely to an 

allele were classified as allelic (either Cast or 129) whereas reads that aligned to 

both alleles equally (≤ 5 distance) were classified as ambiguous (AMB) 
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(Extended Data Figure 1d).  Uniquely aligned Hi-C interactions between loci 

located on the same chromosome were assigned to a specific parental 

chromosome in cis when at least one of the two reads contained a diagnostic 

SNP, and the other either contained a SNP from the same allele, or mapped to 

both alleles [87].  We obtained the following paired-end read counts: For ESC 

(GUR.2d), a total of 401,684,614 interactions could be aligned, 372,272,389 of 

which were unique (after PCR duplicate filter), and 95,650,438 of which could be 

placed to either the Cast or 129 allele (25.69%).  For NPC (GEI.72b), a total of 

277,440,656 interactions could be aligned, 253,254,798 of which were unique 

(after PCR duplicate filter), and 82,323,031 of which could be placed to either the 

Cast or 129 allele (32.51%).  For ΔFT NPC (D9B2/B129T3), a total of 

229,331,123 interactions could be aligned, 222,941,525 of which were unique 

(after PCR duplicate filter), and 85,331,870 of which could be placed to either the 

Cast or 129 allele (38.28%).  The difference in percent of reads assignable to 

either allele is likely due to differences in the percent of cis interactions found in 

each sample (biological or technical variation). The 82-95 million read depth 

supported generation of allele-specific chromatin interaction maps at multiple 

resolutions (10 Mb, 2.5 Mb, 1 Mb, 500 kb, 250 kb, 100 kb, and 40 kb). 

Biological replicates were highly correlated.  Pearson’s correlation 

coefficients for 500kb data on chrX were as follows: EHSNP-

mF1216__R1R2__chrX-129S1, 0.992331; EHSNP-mF1216__R1R2__chrX-cast, 

0.990373; EHSNP-mNPe-deltaRF__R1R2__chrX-129S1, 0.976562; EHSNP-
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mNPe-deltaRF__R1R2__chrX-cast, 0.983614; EHSNP-mNPe__R1R2__chrX-

129S1, 0.990976; EHSNP-mNPe__R1R2__chrX-cast, 0.995202; Autosomes 

showed similar correlation values.  Overall these numbers indicate that the 

produced Hi-C data was of high quality and well correlated between biological 

replicates.  We pooled all biological replicates into a single Hi-C data set per 

sample and subsequently used the pooled data for all analyses. 

Iterative mapping and error filtering/iterative correction (IC) of the 

chromatin interaction data were performed as previously described [62], [86].  IC 

was performed on the diploid (44 chromosomes) (replicate pooled) genome-wide 

matrix for all resolutions. 

Hi-C SNP density filter 
 

To remove potential biases in the Hi-C data related to the density of SNPs 

in each bin, we calculated the number of SNPs residing in each genomic interval 

(bin) for all Hi-C bins across all bin sizes.   We then calculated the median 

number of SNPs per bin, and produced a minimum required SNP density cutoff 

defined as the (median - 1.5 * IQR).  Any bins with less SNP than the cutoff were 

removed from all analyses.  The SNP density cutoffs used for each bin size were: 

40 kb, 43 SNPs; 100 kb, 216 SNPs; 250 kb, 776.5 SNPs; 500kb, 1767.25 

SNPs.  The non SNP density filtered data was only used for visualization 

purposes (figure heatmaps).  For all intents and purposes, we refer to IC Hi-C as 

data that has been IC’d and run through the snp-density filter. 
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Compartment analysis 
 

The presence and location of the A/B-compartments were calculated as 

previously described (14).  Compartments were derived from the 250 kb IC Hi-C 

data for each chromosome separately using the CIS maps for each sample / 

allele (Fig 1).  The code used to generate the compartments (PC1 from PCA 

analysis) will be publically available on github following publication 

(matrix2compartment.pl).  Compartments were generated all default options 

except the (cis alpha) option, set to (-ca 0.005). 

Insulation and Boundary calculation 
 

TAD structure (insulation/boundaries) was defined via the insulation 

method as previously described with minor modifications (14).  The code used to 

calculate the insulation score will be publically available on github following 

publication (matrix2insulation.pl).  Insulation vectors were detected using the 

following options: (-is 480000 -ids 320000 -im iqrMean -nt 0 -ss 160000 -yb 1.5 -

nt 0 -bmoe 0).  The output of the insulation script is a vector of insulation scores, 

and a list of minima along the insulation vector (inferred as TAD 

boundaries).  The TAD boundaries were not used in this study. 

Interaction Pile Up Maps 
 

Interaction pile up maps were constructed from all pairwise interactions 

between either the list of (87) WT NPC Xi Escapees or the (29) ΔFT NPC Xi 
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escapees.  Using the 40 kb Hi-C data, a 2 MB window centered around each 

pairwise interaction (pixel) was taken (25 bins in each direction, yielding 51 x 51 

sub-matrix).  Any resulting sub-megabase which overlapped the (y=x) diagonal in 

the matrix was excluded from the analysis (effectively excluding all interactions < 

2 MB).  All sub-matrices were then averaged to produce the final (mean) pile up 

map.  A strong signal at the center suggests that the elements used tend to 

contact one another in 3D space. 

The Xi is as accessible and detectable in Hi-C as Xa and autosomes 
 

The number of RAW reads observed for both the Xa and Xi were very 

similar for all chromosomes thus demonstrating that the Xi is simply not less 

accessible/visible to the Hi-C methodology.  ESC-chrX-129S1, 1,118,327; ESC-

chrX-Cast, 1,104,709; NPC-chrX-129S1, 1,147,072; NPC-chrX-Cast, 1,148,128; 

ΔFTNPC-chrX-129S1, 1,314,476; ΔFTNPC-chrX-Cast, 1,288,802.  Bias in read 

directional due to partial digestion is typically observed up to ~10kb. For 

interactions between fragments separated by over 10kb this bias is negligible, 

indicating at least one digestion even occurring between them in every cell. This 

genomic distance is therefore a measure for digestion efficiency (13). For both 

the Xa and the Xi this genomic distance is ~6-10 kb, indicating that digestion 

efficiency of chromatin on the Xa and Xi are comparable.  Thus, the unique 

conformation of Xi does not affect Hi-C analysis, as was also found for 

condensed mitotic chromosomes (15). 
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RNA and 3D-DNA FISH 
 

FISH was performed as previously described [88]. ESCs and NPCs were 

cultured on gelatin-coated coverslips #1.5 (1 mm) and fixed in 3% 

paraformaldehyde for 10 min at RT.  Cells were permeabilized on ice for 5 min in 

1X PBS, 0.5%Triton X-100 and 2 mM Vanadyl-ribonucleoside complex (VRC,a 

New England Biolabs), and coverslips were stored in 70% EtOH at −20°C. Prior 

to FISH, samples were dehydrated through an ethanol series (80%, 95%, 100% 

twice) and air-dried briefly.  For RNA FISH, cells were directly hybridized with 

denatured probes. For DNA FISH, samples were first denatured in 50% 

formamide / 2X SSC (pH = 7.3) at 80°C for 37 (ESC) and 35 (NPC) min, 

immediately placed on ice and washed two times with ice-cold 2X SSC.  After 

overnight hybridization at 37°C for RNA FISH or 42°C for DNA FISH, coverslips 

were washed at 42°C for RNA or 45°C for DNA, three times for 5 min in 50% 

formamide / 2X SSC at pH = 7.3 and three times for 5 min in 2X SSC.  Nuclei 

were counterstained with 0.2 mg/ml DAPI (2 mg/ml for structured illumination 

microscopy), further washed two times for 5 min in 2X SSC at RT and finally 

mounted with 90% glycerol, 0.1X PBS, 0.1% p-phenylenediamine at pH9 

(Sigma). 

 

RNA FISH probes 
 

We used the p510 plasmid coupled with Cy5 to detect Xist. For RNA FISH 

on escape genes, we used the following BAC and fosmid probes: RP23-436K3, 
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RP23-328M22, RP24-436K3, WI1-1269O10 (Mecp2), RP24-157H12 (Huwe1), 

RP23-13D21 (G6pdx),  RP24-148H21 (Jarid1c). 

DNA FISH probes 
 

In experiments to detect mega-domain boundary, fluorescent 

oligonucleotides (average length 45 bp, 5’-modified with Atto 448 or Atto 550, 

average density: one oligo every 3 kb) were obtained from MYcroarray Inc (Ann 

Arbor MI, USA). Oligos were designed to tile the following consecutive 18-Mb 

regions: chrX:35’000’000-53’000’000, chrX:53’000’000- 72’000’000, and 

chrX:72’000’000-90’000’000.  To detect the DXZ4 region we used the RP23-

299L1 BAC. 

Imaging and quantification of 3D-DNA FISH 
 

Three-dimensional image stacks (200 nm distance between consecutive 

xy planes) were acquired on a DeltaVision Core wide-field microscope (Applied 

Precision) equipped with a CoolSNAP HQ2 camera operated at 2X binning, and 

a 100X PlanApo oil immersion objective (the effective pixel size was 129x129 

nm). Xi signals were identified via the presence of an Xist mRNA cloud in the far-

red channel (p510-Cy5 probe). Pearson correlation between red and green 

signals was calculated using custom-made ImageJ macros as follows. After 

subtracting the background from each xy plane (generated by morphological 

opening the image with a circle of 5 pixels in radius), Pearson correlation 

between red and green pixel intensities was measured inside a fixed-size region 
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of 40x40x20 pixels (5.16 x 5.16 x 4 µm3) centered on each FISH signal. 

Significance of Xi vs Xa differences in correlation was assessed by Wilcoxon’s 

rank sum test. Random nuclear positions were used to estimate the background 

correlation that could be observed due to non-specific probe hybridization.  

The gyration tensor of an image is defined as 𝑆𝑆𝑎𝑎𝑎𝑎 = ∑ 𝐼𝐼𝑘𝑘(𝑟𝑟𝑎𝑎𝑘𝑘 − 𝑟𝑟𝑎𝑎𝐶𝐶𝐶𝐶)(𝑟𝑟𝑏𝑏𝑘𝑘 −𝑘𝑘

𝑟𝑟𝑏𝑏𝐶𝐶𝐶𝐶) /∑ 𝐼𝐼𝑘𝑘𝑘𝑘 , where k is an index running over voxels, 𝐼𝐼𝑘𝑘 is the grayscale intensity 

of voxel k, and 𝑟𝑟𝑎𝑎𝑘𝑘 and 𝑟𝑟𝑎𝑎𝐶𝐶𝐶𝐶 are the a-th components (x,y, or z) of the xyz position 

of voxel k, and of the center of mass of the image, respectively. The gyration 

tensor was valuated in a region of interest of 3.8 x 3.8 x 4 µm3 centered on each 

FISH signal and the gyration radius was calculated as 𝑅𝑅𝑔𝑔 = �𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3 where 

𝜆𝜆1,2,3 are the eignevalues of 𝑆𝑆𝑎𝑎𝑎𝑎.  

RNA-Seq 
 

RNA-Seq data for the ESC (GUR.2d) and NPC (GEI.72b) was obtained 

from previously published work [76](20).  RNA-Seq data for the mutant NPC 

(D9B2/B129T3) was obtained and processed as previously described (20). 

RNA-Seq ‘Expressed/Escapee’ classification 
 

The allelic RPKM values were derived for each gene by splitting the 

RPKM value by the 129 ratio.  129 RPKM = (RPKM * 129 ratio); Cast RPKM = 

(RPKM * (1 - 129 ratio)); Any gene with an allelic RPKM value ≥ 3 RPMK was 
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classified as being expressed.  Any gene expressed on the Xi was classified as 

being an escapee. 

ATAC-Seq 
 

ATAC-Seq library preparation was performed exactly as previously 

described [89].  Sequencing was carried out on an Illumina NextSeq 500 

generating 2 x 75 bp paired-end reads.  Libraries were sequenced to a depth of 

25-35 million reads per sample.  Reads were trimmed using CutAdapt and 

aligned using Bowtie2.  Reads were aligned to a custom 129/CastEiJ genome in 

which SNP sites were replaced by “N.”  52-58% of reads per line contained “N”s 

and were assigned to the 129 or Cast allele based on the identity of the base at 

that location.  Reads containing non-concordant SNPs were rare and were 

discarded.  Reads not containing SNP sites were included in overall peaks but 

not were excluded from allele-specific tracks.  ATAC-Seq Peaks were called 

using MACS2 with no shifting model. 

Assigning allele-specific ATAC-Seq peaks 
 

For each ATAC-Seq peak, all N-containing reads were counted and 

assigned to 129 or Cast alleles based on SNP at the N-containing position.  For 

each peak, a d-score was calculated as a measure of allelic imbalance 

[90].  Briefly, for a given peak the d-score was calculated as the ratio of 129 

reads to total number of reads -1/2.  A peak with a d-score ≥0.3 was assigned as 

a 129-specific peak.  A peak with a d-score ≤-0.3 was assigned as a Cast-
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specific peak.  Any peak with a d-score >-0.3 was assigned as a peak in 129 

(monoallelic or biallelic).  Any peak with a d-score <+0.3 was assigned as a peak 

in Cast (monoallelic or biallelic). 

Annotating ATAC-Seq peaks using ChIP-Seq data 
 

ATAC-Seq peaks were annotated using existing published ChIP-Seq 

datasets.  CTCF ChIP-Seq came from whole female mouse brain [91].  Called 

CTCF binding sites were used and extended +/-300 bp before overlapping with 

ATAC-Seq peaks.  H3K27Ac and p300 ChIP-Seq are from mouse NPCs 

[85].  For H3K27Ac and p300 ChIP-Seq data, peaks were called using MACS2 

and then overlapped with ATAC-Seq peak locations. 

Integrating Hi-C, ATAC-Seq, and RNA-Seq data 
 

Integrative analysis of Hi-C insulation (TAD structure), ATAC-Seq d-score, 

ATAC-Seq counts, and RNA-Seq RPKM was performed as follows.  A promoter 

region was defined for each gene as +/- 500 bp from the TSS.  ATAC peaks were 

assigned to a gene if they overlapped with the promoter region.  In the event that 

> 1 ATAC peak overlapped with the promoter, the closer ATAC peak was 

chosen.  An ATAC count of 0 was assigned to each promoter, if it did not contain 

an ATAC peak.  If the ATAC allelic counts overlapping the promoter were < 10, 

then the ATAC count was set to “NA”. The 40-kb bin overlapping the promoter 

region was used to display the insulation and insulation-difference value.   ATAC 

d-scores are calculated by comparing Xi vs. Xa ATAC-Seq (-0.5=Xa-specific, 
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0=biallelic and 0.5=129-specific signals).  For ATAC-Seq data, d-score was 

calculated as described above [90].  Briefly, the d-score for a given peak is 

calculated as d = Xi/Ni -½ where Xi is the number of reads coming from the 129 

genome and Ni is the total number of reads covering that peak. 
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CHAPTER IV:  The Hitchhiker’s Guide to Hi-C 
Analysis: Practical guidelines 
 

Preface 
 

This research chapter encompassed work published in Methods by Bryan 

R. Lajoie, Noam Kaplan and Job Dekker.  The publication is entitled, “The 

Hitchhiker’s guide to Hi-C analysis: practical guidelines”, Methods, vol. 72, pp. 

65–75, Jan. 2015, entitled  [86]  

Abstract 
 

Over the last decade, development and application of a set of molecular 

genomic approaches based on the chromosome conformation capture method 

(3C), combined with increasingly powerful imaging approaches have enabled 

high resolution and genome-wide analysis of the spatial organization of 

chromosomes.  The aim of this paper is to provide guidelines for analyzing and 

interpreting data obtained with genome-wide 3C methods such as Hi-C and 3C-

seq that rely on deep sequencing to detect and quantify pairwise chromatin 

interactions genome-wide.   

The 3D genome 
 

The human genome consists of over 3 billion nucleotides and is contained 

within 23 pairs of chromosomes.  If the chromosomes were aligned end to end 

and the DNA stretched, the genome would measure roughly 2 meters long.  Yet 
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the genome functions within a sphere smaller than a tenth of the thickness of a 

human hair (10 micron).  This suggests that the genome does not exist as a 

simple one-dimensional polymer; instead the genome folds in a complex 

compact three-dimensional structure. 

It is increasingly appreciated that a full understanding of how 

chromosomes perform their many functions, e.g. express genes, replicate and 

faithfully segregate during mitosis, requires a detailed knowledge of their spatial 

organization.  For instance, genes can be controlled by regulatory elements such 

as enhancers that can be located hundreds of Kb from their promoter.  It is now 

understood that such regulation often involves chromatin looping between the 

enhancer and the promoter [13]–[19]. Further, recent evidence suggests 

chromosomes appear to be folded as a hierarchy of nested chromosomal 

domains [1]–[6], and these are also thought to be involved in regulating genes, 

e.g. by limiting enhancer-promoter interactions to only those that can occur within 

a single chromosomal domain [7]–[11] . 

The chromosome conformation capture methodology (3C) is now widely 

used to map chromatin interaction within regions of interest and across the 

genome.  Chromatin interaction data can then be interpreted to gain insights into 

the spatial organization of chromatin, e.g. the presence of chromatin loops and 

chromosomal domains.  The various 3C-based methods have been described 

extensively before and are not discussed here in detail [92], [93]. We first discuss 

methods and considerations that are important for using deep sequencing data to 
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build bias-free genome-wide chromatin interaction maps.  We then describe 

several approaches to analyze such maps, including identification of patterns in 

the data that reflect different types of chromosome structural features and their 

biological interpretations. 

Methods to study the 3D genome 
 

Indiscriminate methods such as microscopy or FISH can study the 3D 

genome, but have difficulty pinpointing the exact points of contact as well as 

measuring multiple discrete contacts simultaneously.  The Chromosome 

Conformation Capture (3C) method was the first method to capture and measure 

all possible contacts of the 3D genome in an unbiased manner [20].  3C has 

since been further developed into various other derivatives including 4C [21], [22]  

and 5C [23].  These methods use 3C as the core methodology by which they 

capture genomic interactions. They differ in the actual method by which the 

captured interactions are detected, e.g. by PCR in 3C and by unbiased deep 

sequencing in Hi-C and 3C-seq.  Though the 3C method does capture genome-

wide data, it was not until the era of deep sequencing came about that one was 

able to survey all genome wide interactions in a single experiment, as in Hi-C 

and 3C-seq. 

In 3C, cells are cross-linked using formaldehyde, lysed and the chromatin 

is then digested with a restriction enzyme of choice (typically HindIII or EcoRI).  

The chromatin is then extracted and the restriction fragments are ligated under 
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very dilute conditions to favor intra-molecular ligation over inter-molecular 

ligation.  The crosslinks are then reversed, proteins are degraded and DNA is 

purified.  The newly generated chimeric DNA ligation products represent pairwise 

interactions and can then be analyzed by a variety of down-stream methods.   

Currently, there are two 3C-based methods to obtain genome-wide 

chromatin interaction data: Hi-C and 3C-seq.  In the Hi-C protocol one includes a 

step to introduce biotinylated nucleotides at ligation junctions which enables 

specific purification of these junctions [1].  This has the important advantage that 

it prevents sequencing DNA molecules that do not contain such junctions and are 

thus not informative. In 3C-seq one employs the classical 3C protocol and often a 

more frequently cutting enzyme (e.g. DpnII) followed by intra-molecular ligation 

without biotin incorporation [4].  The ligated DNA is then directly sequenced to 

identify pairwise chromatin interactions genome-wide.  The 3C-seq methodology 

sequences all molecules including un-ligated molecules which can complicate 

the processing / filtering steps and can reduce the percentage of usable reads.  

However experimental techniques exist to help minimize uninformative (un-

ligated, self-ligated etc.)  

Hi-C products 
 

Here we discuss guidelines for analyzing genome-wide chromatin 

interaction maps generated by Hi-C, but many of these considerations also apply 

to 3C-seq data. We first discuss the steps required to obtain high-quality 
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unbiased interaction maps. Then, we discuss analysis and interpretation of the 

interaction maps.  

Hi-C data resolution 
 

The space of all possible interactions, which is surveyed by Hi-C 

experiments, is very large. For example, consider the human genome. Using a 6-

bp cutting restriction fragment, there are almost 106 restriction fragments, leading 

to an interaction space on the order of 1012 possible pairwise interactions. Thus, 

achieving maximal resolution is a significant challenge. 

In light of this, it is crucial to establish the goals of the experiment, 

meaning whether one is most interested in either large-scale genomic 

conformations (e.g. genomic compartments) or specific small-scale interaction 

patterns (e.g. promoter-enhancer looping). 

If the goal is to measure large scale structures, such as genomic 

compartments, then a lower resolution will often suffice (1MB-10MB).  Here, Hi-C 

using a traditional 6bp-cutting enzyme could be used.  However if the goal is to 

measure at a finer scale the very specific interactions of a small region, e.g. an 

enhancer of <500bp, then one should choose to use a restriction enzyme that 

cuts more frequently (e.g. 4bp) and a method that does not measure the entire 

genome, but instead focuses on exploring only a subset of the genome (i.e. 

3C/4C/5C). 
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In Hi-C the maximum resolution of a dataset is determined by several 

factors, first and foremost is the sequencing depth.  Given increasing amounts of 

reads, one will cover more of the interaction space and thus improve the 

resolution.   

Library complexity is another factor.  Library complexity is defined as the 

total number of unique interactions that exist in the Hi-C library.  A library with a 

low complexity level (low number of unique interactions) will saturate quickly with 

increasing sequencing depth e.g. less and less information will be gained from 

additional sequencing.  The saturation curve can be estimated from a dataset by 

plotting the cumulative number of unique interactions seen versus read depth.   

In our experience, given an adequately complex Hi-C dataset for the 

human genome and roughly 100 million mapped / valid junction reads, one could 

expect to achieve close to a 40kb data resolution.  Data below 40kb may be 

usable, though it will suffer from a high level of noise. 

Computational considerations 
 

Hi-C data produced by deep sequencing is no different than other 

genome-wide deep sequencing datasets.  The data starts out as genomic reads 

in the traditional FASTQ file format (containing a DNA read string and a phred 

quality (QV) score string).   Hi-C libraries are traditionally sequenced using 

paired-end technology, where a single read is produced from each end of the 

molecule.  However Hi-C ligation products can also be sequencing using single 
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end reads, assuming reads are sufficiently long to cover both parts of the hybrid 

molecule and are handled appropriately during the mapping steps. 

Processing Hi-C data mainly has requirements in terms of storage and 

computing power. The data storage requirements for Hi-C datasets are almost 

solely driven by the sequencing depth needed and the size of the raw FASTQ 

files.  The processed Hi-C data will normally be order(s) of magnitude smaller 

than the size of the FASTQ files.  It is easy to parallelize the steps needed to 

map the reads to the genome, and thus achieve a significant speedup in the Hi-C 

processing steps. The necessary Hi-C-specific filtering and processing steps are 

independent and can therefore also be parallelized. 

The average Hi-C datasets produces roughly 100GB in FASTQ files (100-

200 million reads), and 50GB in processed data files.  The fastQ files take up the 

bulk of the size.  All files can be compressed to save on file size. 

Hi-C workflow 
 

Here we describe the major steps needed to process a Hi-C dataset 

(Figure 4.1): 

1. Read Mapping 

2. Fragment Assignment 

3. Fragment Filtering 

4. Binning 

5. Bin Level Filtering 
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6. Balancing 

 

Read Mapping 
 

Reads are aligned using standard read alignment software (i.e. bowtie 

[94]) to the genome of interest.  Any aligner can be used for mapping Hi-C reads 

- the goal is to simply find a unique alignment for each read.  Hi-C data is no 

different than other high-throughput deep sequencing experiments in terms of the 

mapping logic required.  Even though Hi-C data is traditionally sequenced using 

paired-end reads, the reads are not mapped using the paired-end mode of most 

aligners.  The paired-end mode for most aligners assumes that the ends of a 

single continuous genomic fragment are being sequenced, and the distance 

between these two ends is known (following the shearing size distribution).  

Since the insert size of the Hi-C ligation product can be anywhere from 1bp to 

hundreds of megabases (in terms of linear genome distance), it is difficult to use 

most paired-end alignment modes.  One straightforward solution is to simply map 

each side of the paired end read separately/independently using a traditional 

alignment procedure.  

Read Mapping – Iterative Mapping Strategy 
 

Following the Hi-C method, ligation junctions of varying sizes are created 

(Figure 4.2 a).  The molecules are then sheared down to the desired size range 

(normally ~300bp +/- 100bp). Hi-C data is traditionally sequenced using the 
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paired end sequencing approach.  Since ‘C’ interactions are simply chimeric 

ligation products, of two distinct genomic fragments joined at the middle, it makes 

most sense to sequence the ends of the molecule (to identify the two pairs in the 

ligation product).  However, one could also read the molecule in its entirety and 

then computationally separate/identify the two distinct genomic fragments (similar 

to how RNA splicing is processed).  

Searching for the actual junction is possible, but the junction site is not 

guaranteed to fall within the paired end reads. For example, given a 300bp Hi-C 

ligation product where the junction site is located at position 150 (in the center) of 

the molecule, if one were to perform a traditional 50 base-pair paired end 

sequencing, only the 50 bases on each end would be sequenced. No information 

would be known regarding the 200 internal bases of this molecule.  So it would 

be uninformative to first search for the junction site and then split the reads into 

two, since the junction site does not exist in the sequencing data.  Instead we 

favor an iterative mapping approach to solve this problem [62] (Figure 4.2 b).  

This approach does not need to explicitly detect the junction site to uniquely map 

the two sequences in the Hi-C ligation product.  The idea is to attempt to map as 

short a sequence as possible before the sequence reaches the junction site.  

Reads are first truncated to 25bp starting at the 5’ end and mapped to the 

genome.  Reads that do not uniquely map the genome are extended by an 

additional 5bp and then re-mapped.  This process is repeated until either all 

reads uniquely map or until the read is extended to its entirety.   Only paired end 
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reads in which each side can be uniquely aligned are kept.  All other paired end 

reads are discarded. 

Fragment assignment 
 

For each mapped read, the genomic alignment location is assigned to one 

of the restriction fragments.  The mapped read is assigned to a single restriction 

fragment according to its 5’ mapped position.  Mapped read positions should fall 

close to a restriction site, and no further than the maximal molecule length away.  

Reads that align more than the maximal molecule length away from the closest 

restriction enzyme are the result of either non-canonical enzyme activity or 

random physical breakage of the chromatin.  It has been shown that these reads 

produce informative Hi-C interactions, and thus are not discriminated against 

[62].  Once each read has been assigned to a restriction fragment, filtering must 

be applied to discard any technical noise in the dataset. 

Fragment-level filtering 
 

After assigning each of the paired-end reads to single fragments, it is 

necessary to perform some basic filtering (Figure 4.3).  The following scenarios 

are possible: 

1. The read pair falls within the same restriction fragment. 

2. The read pair falls within separate restriction fragments. 

If the paired reads map to the same fragment, it can represent either an un-

ligated fragment (“dangling end”) or a ligated, circularized fragment (“self-circle”).  
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Each of these two cases is considered non-informative, and should therefore be 

removed.    

After removing same-fragment pairs, the remaining pairs are filtered to 

remove any redundant (identical) PCR artifacts.  PCR duplicates can be detected 

by either sharing the exact same paired-end sequence, or by sharing the exact 

same 5’ alignment positions of the pair. 

Binning 
 

The maximal resolution of a Hi-C dataset is determined by the restriction 

enzyme used.  Normally, a Hi-C dataset is not sequenced deep enough to 

support this maximal data resolution, as it is not yet cost-effective to obtain a 

sufficient number of reads.  Instead, the data can be binned into various fixed 

genomic interval sizes, to aggregate data and smooth out noise.  Hi-C restriction 

fragments are assigned to bins by their midpoint coordinate. Binning the Hi-C 

data reduces the complexity and number of possible genome wide interactions 

which in turn increases the signal to noise ratio. Data is typically binned into sizes 

ranging from 40kb to 1MB.  All bin-bin interactions are simply aggregated by 

taking the sum, though one could use other methods to aggregate the signal.  A 

single Hi-C dataset can be binned into multiple bin sizes, as each bin size can be 

used for different analysis goals.  Following the binning, the data can be stored in 

a fixed-size symmetrical matrix format, though this file format may not be optimal 
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for storing large Hi-C datasets since the number of the matrix entries can be 

much larger than the number of reads. 

Bin-level filtering 
 

Prior to matrix balancing, it is necessary to remove any bins from the 

dataset that have either very noisy or too low of signal.    These bins normally are 

found in genomic spans with low mappability or high repeat content, such as 

around telomeres and centromeres.  Since these bins suffer from such a high 

noise level, it is useful to remove them rather than attempting to correct them for 

technical biases (see below).  Various methods can be used to detect these bin 

outliers. Current methods detect rows/columns with low signal by looking at their 

sum compared to the sum of all rows/columns.  Outliers can be detected by 

percentile cutoff (e.g. removing the bottom 1% of rows/columns), or by using the 

variance as a measure of noise.  Similarly, outlier pairwise interactions can be 

detected by a percentile-based filter (such as removing the top 0.5% of data 

points).  In some instances, a single bin-bin point interaction can have a level of 

reads orders of magnitude higher than one would expect.  The outliers can be 

the result of a strong PCR bias and it is useful to remove them rather than 

attempting to correct the signal. 

Balancing 
 

Hi-C data can contain many different biases, some of known origin and 

others from an unknown origin.  While it can be possible to correct each bias 
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explicitly [95], [96], it can be quite difficult to know each and every bias.  We 

therefore favor an implicit bias correction approach, which we refer to as 

balancing (elsewhere known as iterative correction [62]).  The balancing 

procedure is based on the Sinkhorn-Knopp balancing algorithm [97].  This 

procedure attempts to balance the matrix by equalizing the sum of every 

row/column in the matrix.  The procedure is based on the assumption that, since 

we are interrogating the entire interaction space, every fragment/bin should be 

observed approximately the same number of times in the experiment (interpreted 

as the sum of the genome-wide row/column in the interaction matrix).  The 

algorithm iteratively alternates between two steps until convergence. First, each 

row is divided by its mean. Then, each column is divided by its mean. This 

process is guaranteed to converge.  Both explicit bias correction and Sinkhorn-

Knopp balancing yield comparable results [62]. 

Analysis and interpretation of Hi-C data 
 

Following the mapping, filtering and bias-correction of the Hi-C data, we 

are left with a binned, genome-wide interaction matrix, where each entry reflects 

an interaction frequency between two genomic loci. The measured interaction 

frequencies are unscaled, in the sense that they cannot be directly translated into 

an actual fraction of cells. Extraction of relevant biological knowledge from this 

interaction matrix is one of the major challenges of Hi-C data analysis. This 
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includes differentiating biological signal from noise, identification of interaction 

patterns and interpretation of these patterns.  

There are a number of factors that complicate this analysis. First, we have 

to consider the fact that we are measuring interaction frequencies over a 

population of cells (Figure 4.4). This is critical in terms of data interpretation 

since, when we consider an interaction pattern consisting of multiple pairs of loci, 

we cannot tell whether such interactions will co-occur simultaneously in a single 

cell. Accordingly, observing a “smooth” interaction matrix that shows little 

position-specific structure does not rule out the existence of structure in the 

underlying genomes - it simply means that if such structures exist, they are not 

consistent between cells. Second, most of the patterns are given procedural 

definitions rather than explicit definitions. In other words, rather than formally 

define what a specific interaction pattern looks like and search for it in the 

interaction matrix, interaction patterns are defined as the output of some method. 

As a result, it is difficult to evaluate the validity of a method or compare methods 

aimed at identifying the same type of interaction pattern. Third, different types of 

interaction patterns co-exist and overlap each other. Given that in many cases 

we lack an explicit definition of these patterns, as mentioned above, it can be 

difficult to disentangle different types of interaction patterns. In practice, many of 

the current approaches analyze each interaction pattern separately under a 

simplifying assumption of independence, i.e. by assuming that either the effect of 

other patterns is negligible or that the other patterns can be normalized out of the 
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data. Finally, we cannot assume ergodicity of interaction frequencies. In other 

words, frequencies in the cell population cannot necessarily be interpreted as 

frequencies in time (Figure 4.5). For example, an interaction which occurs in a 

small fraction of cells and thus produces weak signal in Hi-C cannot be 

concluded to necessarily be an unstable interaction. Alternatively, any 

assumption of ergodicity should be made consciously. 

Several different types of interaction patterns have been observed in 

interaction maps. These patterns vary in scale, from genome-wide patterns to 

point interactions between loci, and in their ubiquity, from constant between 

different species to condition-specific. Due to the speculative nature of biological 

interpretation of interaction patterns and the aforementioned complications, it is 

often useful to separate the process of pattern identification from the process of 

pattern interpretation. Here we focus mostly on pattern identification, but also 

briefly discuss common interpretations of each pattern. 

We focus on 5 types of patterns typically observed in mammalian 

genomes. For each pattern, we discuss how it is defined, how it looks visually in 

the interaction matrix, how it can be identified computationally and how it can be 

interpreted. 

1. Cis/trans interaction ratio 

2. Distance-dependent interaction frequency 

3. Genomic compartments 

4. Topological domains 
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5. Point interactions 

While we outline possible approaches for independent analysis of each 

type of pattern, there exist alternative approaches for explicitly considering 

multiple patterns simultaneously [4]. Finally, as with any approach, we advise not 

to apply the proposed techniques blindly, but rather critically and always evaluate 

the data visually. Indeed, other interaction patterns, which we do not discuss 

here, have also been observed including patterns resulting from circular 

chromosomes and centromere clustering [98]. Such patterns may require careful 

consideration and the application of specially-tailored methods. Alternatively, 

methods can be derived given a specific biological question, for example, 

whether a given set of genes interact more frequently than expected by random. 

Following our discussion of individual patterns, we discuss reconstruction 

of 3d structures from Hi-C data, application of Hi-C data to problems in genome 

assembly. 

Cis/trans interaction ratio 
 

The strongest interaction patterns which are observed in Hi-C maps are 

genome-level patterns [1]. By genome-level we mean that the patterns are not 

locus-specific, but instead reflect average genome-wide trends. Two genome-

level patterns have consistently been observed in Hi-C data in various species 

and cell-types. 
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The first pattern is a higher interaction frequency, on average, of pairs of 

loci which reside on the same chromosome (i.e. in cis) than loci which reside on 

different chromosomes (i.e. in trans). In a genome-wide interaction matrix, this 

pattern appears as square blocks, of high interaction centered along the diagonal 

and matching individual chromosomes (Figure 4.6). The pattern is likely due, at 

least in part, to a phenomenon known as chromosome territories, where 

chromosomes are physically separated and occupy a distinct volume in the 

nucleus. Since this pattern is largely constant across cell types and species, it is 

typically less useful for studying aspects that are specific to the given biological 

system. However, this fact makes this pattern a useful proxy for evaluating the 

quality of the data. If noise in the matrix, due to factors such as random 

background ligation, is expected to affect both cis and trans interactions similarly, 

a noisier experiment will result in a lower ratio between cis and trans interactions. 

Thus, it is common to use this simple statistic (i.e. the ratio between the mean cis 

interaction frequency and the mean trans interaction frequency) to quantify this 

pattern. Typical values for the cis/trans ratio in high quality experiments are in the 

range 40-60. While this interaction pattern is typically dominant, the statistic can 

be affected by other local large-scale patterns such as inter-chromosomal 

centromeric interactions, so it is advisable to substitute the mean with robust 

statistics for estimating the global cis and trans interaction frequencies. 

Distance-dependent interaction frequency 
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The second genome-level interaction pattern is a distance-dependent 

decay of interaction frequency (Figure 4.7). In other words, interaction frequency 

between loci in cis decreases, on average, as their genomic distance increases. 

In the interaction matrix this pattern appears as a gradual decrease of interaction 

frequency the further one moves away from the diagonal. This pattern may be 

due to random movement of the chromosome, following the intuition that loci 

which are nearby in the genome will interact frequently if they move randomly in 

3D space. The theory underlying this type of intuition is well established in the 

field of polymer physics [99], [100]. Many basic models of general polymers in 

polymer physics predict a distance-dependent decay of interaction frequency, 

where the simplest model, known as the ideal chain, is equivalent to a random 

walk in 3d space. A central aspect of all these models is that they characterize 

polymers as distributions, rather than single structures, inherently accounting for 

randomness and structural variability. Specific models are thus characterized by 

statistical properties such as the mean interaction probability for a pair of loci 

separated by a given distance. Thus, by estimating the distance-dependent 

interaction frequency from our data, which is derived from a population of cells, 

we can ask which polymer models are consistent with the observed pattern. For 

example, the distance-dependent interaction frequency of an ideal chain is 

expected to have the form of the power-law decay pinteraction(x,y) = Z*dist(x,y)-1.5. 

In fact, this specific decay matches the distance-dependent interaction frequency 

observed in yeast. 
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Analysis of distance-dependent interaction frequency is typically 

performed using one of two methods. The first method is discrete binning. With 

this method, we bin all interaction frequencies according to their genomic 

distance, and calculate the average of each bin. The second method is 

interpolation. With this method, we fit some continuous function to the data and 

use this function to represent it. In some cases, binning may be used as a 

preliminary step for fitting a continuous function. Due to the fact that many 

polymer models predict a power-law decay, it is helpful to plot the resulting decay 

function on a log-log plot so that power-law decays will appear linear. However, it 

is important to perform the calculation of the decay function on the initial data, not 

on the log-transformed data due to theoretical considerations [101]. For related 

reasons, it is advisable to use logarithmic-sized bins if using the binning scheme, 

e.g. such that each bin will be double the size of the previous bin.  

While it is convenient if the observed distance-dependent interaction 

frequency matches what is expected by a simple polymer model, this is often not 

the case. However, it can still be useful to examine a more complicated decay 

function, since it could provide some insight, such as different regimes of decay 

at different genomic length scales (Figure 4.6). This can, in turn, promote the 

development of more complex polymer models that reproduce the observed 

pattern. It is important, though, to realize the limitations of this type of analysis. 

Hi-C data incorporates several different types of patterns, some of which are 

locus-specific and will thus not be reproduced by these types of models which do 
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not include locus-specific constraints. Additionally, some of these local patterns 

could affect the shape of the decay function. Finally, even if a Hi-C map contains 

no locus-specific interaction patterns and is consistent with some polymer model, 

it is not sufficient by itself to conclude that the model is correct, since other 

polymer models could potentially produce the same decay function. Ultimately, 

what matters is how useful such a model is for gaining biological insight and 

whether it can produce testable hypotheses. 

Genomic compartments 
 

Next, we consider interaction patterns which are position-specific. The 

largest-scale position-specific interaction pattern is known as genomic 

compartments [1]. This interaction pattern appears on the interaction matrix as a 

“checker-board”-like pattern consisting of alternating blocks, ~1-10 mb in size, of 

high and low interaction frequency (Figure 4.8). This interaction pattern can be 

explained by a simple underlying phenomenon where chromosomes are 

composed of two types of genomic regions that alternate along the length of 

chromosomes and where the interaction frequencies between two regions of the 

same type tend to be higher than interaction frequencies between regions of 

different types. We refer to these two types as A and B compartments [1]. 

While this interaction pattern is intuitive, its current definition is procedural 

- the genomic compartments are usually considered to be given by the first 

principal component of the interaction matrix. The reasoning for this definition is 
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as follows. Imagine each bin in the 1d genome is assigned a number c(x) 

quantifying whether it belongs to A (positive value) or B (negative value). Now, 

we decide that the interaction frequency between two loci x,y is c(x)c(y). Note 

that this formulation is sufficient to reproduce a checkerboard pattern: when the 

types of x,y are the same, their signs will be the same and will yield a positive 

interaction frequency, and when their types are different their signs will be 

different, resulting in a negative interaction frequency. Thus, given an interaction 

matrix, we are given all interaction frequencies and want to find the compartment 

c(x) of each position. It turns out that the first principal component found by a 

Principal Component Analysis can be viewed as finding the optimal values of c(x) 

such that difference between the observed interaction frequencies and c(x)c(y) is 

minimal (mean squared error is minimized). Thus, if the compartment pattern is 

sufficiently strong, this procedure should find it. Alternatively, one could use any 

standard clustering approach, such as k-means, to cluster the rows of the 

interaction matrix into two clusters. 

Genomic compartments have been found to be correlated with chromatin 

state, including DNA accessibility, gene density, replication timing, GC content 

and histone marks [1]. Thus, A-type compartments are interpreted as 

euchromatic regions while B compartments as heterochromatic regions. 

Genomic compartments have been found to have high-plasticity, such that they 

change in different cell-types and biological condition, matching large scale 

changes in gene activity. Individual compartment blocks tend to be on the order 
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of 1-10 Mb in length, and are thus easy to extract even in experiments with very 

low sampling. Finally, it is important that while compartment signal is strong and 

easy to observe in large bins, the interaction frequencies at individual positions 

that have the same compartment type are quite low. Thus, given that Hi-C 

measures a population average, it is likely that this pattern reflects a general, 

highly stochastic, tendency of compartments to interact, rather than a set of 

deterministic interactions specified by individual loci. 

Topological domains 
 

While genomic compartments are useful for understanding general 

organization principles of the genome, many biological processes occur at a 

smaller scale. Specifically, enhancer-promoter interactions that underlie gene 

regulation in metazoans often take place at sub-Mb distances. Recently, 3C-

based techniques have revealed the existence of sub-Mb structures that are 

referred to as topologically associating domains or TADs [2]–[5]. TADs are 

contiguous regions in which loci tend to interact much more with each other than 

with loci outside the region. In the interaction matrix TADs appear as square 

blocks of elevated interaction frequency centered on the diagonal (Figure 4.9). 

However, the definition of TADs is complicated by the fact that actual interaction 

patterns are complex and contain multiple hierarchies of overlapping block-like 

structures, as assessed by visual inspection of chromatin interaction maps. 

Nonetheless, given some definition of TADs, these domains have been shown to 
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be associated with gene-regulatory features and it is hypothesized that TADs 

specify elementary regulatory micro-environments in which promoters interact 

with enhancers [7], [102], [103]. In addition, TAD-like structures of various sizes 

have been observed in species ranging from mammals to bacteria [2]–[5], [104]. 

As hinted above, TADs are also defined procedurally (i.e. as the output of 

a given method). We outline two such methods for identifying TADs. Both 

methods take the following approach: First, they summarize the TAD signal using 

some statistic, such that TAD signal is converted into a 1d profile along the 

genome. Then, they use the 1d profile to identify potential boundaries between 

TADs and produce a set of discrete non-overlapping TADs. It is important to note 

that while these methods provide a useful heuristic for quantifying some of the 

TAD-level patterns, they do not provide an actual predictive model, or point to 

physical processes that drive domain formation. Without an explicit definition of 

TADs, these methods are difficult to compare and evaluate critically. However, it 

is clear that a discrete set of non-overlapping regions is only a first approximation 

and likely a significant oversimplification of the interaction patterns which are 

observed in the data. 

An approach by Dixon et al. [2] uses the following statistic: for each bin, 

we calculate the difference between its average upstream interactions and its 

average downstream interactions (within some genomic range). This difference is 

then transformed into a chi-squared statistic and the resulting value is referred to 

as the directionality index. At the boundaries of TADs, we expect to see a sharp 
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change in the directionality index. Boundaries are then associated with each 

other using a Hidden Markov Model. Alternatively, others have simply used the 

ratio between average upstream and average downstream interactions [72]. 

An alternative approach is to calculate for each bin the average of 

interaction frequencies crossing over it (within some genomic range). This is 

referred to as the insulation score. We expect that this value will be lower at TAD 

boundaries. Then one can use standard techniques to find local minima and use 

those as boundaries, and define regions between consecutive boundaries to be 

TADs. 

The block-like structure of TADs clearly indicates elevated interaction 

frequency within a TAD. However, given that we measure a population average 

and the observed intricate hierarchies of such structures, interpretation of TADs 

is not straight-forward. It has been proposed that TAD-like structure may be 

driven at least in part by looping interactions between loci located within them 

[105] or by supercoiled plectonemes [104], [106]. Additionally, some genomic 

features such as CTCF and cohesin binding have been shown to be enriched at 

TAD boundaries [2], [11]. It remains unclear what physical structures TADs 

exactly represent and how they are specified in the genome. 

Point interactions 
 

The final type of interaction pattern we discuss is point interactions. While 

TADs may be relevant for constraining promoter-enhancer interactions, the 
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actual regulatory interactions are probably of much smaller scale. Ultimately, 

protein-mediated interactions of two localized genomic elements, e.g. enhancers 

and promoters, which are typically up to a kb in length, can activate the 

expression of a gene. Given sufficient resolution, we expect such point 

interactions to appear as a local enrichment in contact probability. 

As with some of the other interaction patterns, current approaches for 

finding point interactions do not provide an explicit model of what a point 

interaction should look like. Instead, these approaches try to find outliers which 

show higher interaction frequency than expected, where the background model 

may consist of other previously mentioned interaction patterns [13], [14], [107]. 

Typically, the background model consists only of the strongest signal, namely the 

distance-decay function, but other patterns such as TADs can be incorporated as 

well. Given a background model, we can then test the significance of individual 

pairwise interactions. The resulting set of significant high outliers would then 

need to be corrected for multiple testing. It is important to note that without an 

explicit model of point interactions, it may be difficult to distinguish between real 

point interactions and experimental noise. Thus, it may be helpful to provide 

additional evidence including analysis of biological replicates, and from 

alternative methods as to the validity of such interactions (e.g. by showing 

enrichment for enhancers and promoters).  

While the biological interpretation of point interactions seems to be 

straightforward, it is important to consider what such methods find. If we look for 
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interactions that have a higher interaction frequency then what is expected given 

their distance, we are not evaluating their absolute interaction frequency. For 

example, consider two loci which are nearby in the genomic sequence, and are 

thus expected to interact very frequently. Such interactions may be functional 

and biologically important, but they may not be have a much higher interaction 

frequency than expected by distance, and thus may not be found to be point 

interactions.  Similarly, the expected interaction frequency for loci that are 

separated by large genomic distances is very low.  As a result even a small 

increase in their interaction frequency can make their interaction statistically 

significant even though their absolute interaction frequency is still low, implying it 

occurs in only few cells. Thus, careful biological evaluation is always in order for 

interpreting any statistical approach to identifying point interactions. 

Structure reconstruction and polymer modeling 
 

Given that Hi-C measures an aspect of the 3D structure of the genome, it 

is natural to ask whether we can use Hi-C data to infer the underlying 3D 

structures. In fact, Hi-C maps are reminiscent of 2D NMR spectrum maps used to 

infer 3D protein structure with great accuracy. However it is important to realize 

that there are important differences between protein structure and genome 

structure that dramatically complicate inference of the genome structure. First, 

inference of protein structures incorporates knowledge of protein physics and the 

underlying sequence. There are strong constraints on what conformations are 
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physically possible and there is a relatively good understanding of the physics of 

various intramolecular interactions.  On the other hand, knowledge of chromatin 

physics is limited and chromatin structure is much less constrained than protein 

structure. Second, chromatin fibers are much longer than proteins, in the sense 

the length of a chromosome may be as much as 105-106 times larger than the 

smallest structures of interest in the chromosome. Thirdly and most importantly, 

chromatin structure is much more variable than protein structure, yet we observe 

only the population average. In fact, it is debatable whether it is even useful to 

infer a single average “consensus structure”, given the highly-stochastic nature of 

the genome structure. 

With these limitations in mind, we consider 2 general approaches to 

structure inference from Hi-C data: 

1) Consensus structure. These methods essentially ignore the fact that 

structure is variable across the population and try to find a 3D structure 

that is as consistent as possible with the 3d interaction matrix [98], [108]–

[112]. Most methods follow some form of multidimensional scaling, 

formalized as seeking 3D coordinates for all loci such that their pairwise 

distances are as consistent as possible with the observed interaction 

frequencies. These approaches require making assumptions on how 

interaction frequency of loci is related to their spatial distance. 

2) Ensemble of structures. These methods typically try to create a set of 

structures such that the either the average distances or the contact 
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probability between every two loci are consistent with the observed 

interaction frequencies [105], [109], [113]. While this approach resembles 

the actual biology more closely, allowing for multiple structures makes the 

problem even less constrained. In other words, there are likely many 

different ensembles of structures that could explain a given interaction Hi-

C matrix. Additionally, such an ensemble of structures may be difficult to 

interpret. 

Once again, the utility of such models will be measured by whether they 

can give biological insight and make useful predictions. 

Genome rearrangements and genome assembly 
 

Typically, Hi-C data is mapped to a known high-quality genome sequence 

and is used to answer questions regarding the 3D organization of genomes. 

However, it has recently been shown in a number of studies that Hi-C data can 

be useful to learn about the 1D arrangement of the genome sequence and thus 

solve a number of outstanding problems in the field of genome assembly [87], 

[114]–[117]. Ironically, the recent major advancement of DNA-sequencing 

technologies has caused a decrease in the quality of genome assemblies due to 

the use of short reads. Thus, genomes assembled from short-read data consist 

of huge sets of contigs (~100000 contigs for Gb-scale genomes), which cannot 

be grouped and ordered with this type of data. However, by mapping Hi-C data to 

a set of contigs, we gain interaction frequency data over very large genomic 
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distances. We can then exploit a number of universal principles relating 1d 

structure to 3d structure in order to associate and order contigs in linear genome. 

We refer to this set of approaches as DNA triangulation, due to their use of 

multiple lines of long-range evidence (i.e. Hi-C interactions) to resolve genomic 

positions. 

We list these principles and how they can be used: 

1. Interactions of loci located in different nuclei are less frequent than those in 

the same nucleus. This principle seems obvious, but has important 

implications. In microbiome studies, which analyze large mixed populations of 

different species, high-throughput sequencing typically yields a large set of 

contigs, yet it is difficult to establish which contigs belong to the same 

genome. Using Hi-C data, we can determine that if two contigs interact 

frequently in 3D they are likely to belong to the same genome with high 

probability [116], [117]. 

2. Interactions of loci located on different chromosomes are less frequent than 

those in the same chromosome. As discussed above, this pattern is both 

strong and ubiquitous. When performing de novo genome scaffolding, we can 

thus use Hi-C data to determine that contigs that interact frequently are likely 

to belong to the same chromosome [114], [115]. Additionally, since 

homologous chromosomes are also separated into distinct territories, this 

principle can be used to perform haplotype phasing. A Hi-C paired-end read 
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that maps to one SNP on each side is much more likely to come from the 

same chromosome than from the homologous chromosome [87]. 

3. Interactions of loci located far from each other along a chromosome are less 

frequent than loci that are near each other. Using Hi-C data, we can arrange 

contigs which belong to the same chromosome such that strongly interaction 

contigs are positioned next to each other [114], [115]. 

While the goal of these techniques is not necessarily to learn about the 3D 

structure of the genome, it is clear that they are widely useful. When indeed such 

techniques will be adopted, they may offer large amounts of Hi-C data as an 

important side benefit. However, if one’s goal is to use Hi-C for DNA 

triangulation, it could be useful to carefully consider some of the experimental 

design and analysis choices. For example, locus-specific interaction patterns are 

important for studying the biology of genome structure but could pose problems 

for DNA triangulation. Pooling different cell types, computationally or 

experimentally, could average out some cell-specific interaction patterns. 
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Figures 
 

 

Figure 4.1 | Flow chart for processing Hi-C Data. 
Reads are first mapped using the iterative mapping approach for paired end 
reads.  Only paired end reads where both ends map uniquely are kept, all others 
are discarded.  Mapped reads are then assigned to a restriction fragment, and 
fragment-fragment interactions are assembled. Fragment level filtering is applied.  
Un-ligated fragments and self-ligated fragments are removed. Optional strand-
specific filters are applied.  PCR duplicates are removed.  Data is then binned.  
Bin-level filtering is then applied.  Outlier bin-bin point interactions (2D) are 
removed.  Outlier bins (1D row/cols) are removed. 
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Figure 4.2 | Mapping and filtering 
a, Following the Hi-C method, fragments are ligated.  Hi-C junctions are then 
sheared and sequenced.  Hi-C junctions can be sequenced by using either 
paired-end sequencing or single-end sequencing.  * - Here a Hi-C junction is 
incapable of being sequenced by a 100bp single end run, as the read does not 
extend past the junction into the second fragment.  Should the read length 
increase, then the sequenced read would cross the junction.  b, Iterative mapping 
approach for aligning paired-end Hi-C reads.  In gray, from top to bottom 
above/below each read, the mapping iterations are shown as the read is 
extended and re-mapped.  Iterative mapping concludes when either the read is 
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uniquely aligned, or the maximal read length is reached.  The number of 
iterations is a factor of mappability and the location of the junction.  c, After 
mapping, the paired reads can either map to a single fragment, or to different 
fragments.  Reads mapping to a single fragment are considered uninformative. 
Self-ligations and un-ligated fragments are classified by the read strand.  Inward 
pointing reads are considered un-ligated fragments (“dangling ends”).  Outward 
pointing reads are classified as self-ligated fragments (“self-circles”) as they form 
circular products.  Same-strand reads are classified as “error pairs” as these 
products are a result of either a mis-mapping, random break, or an incorrect 
genome assembly.  Reads mapping to different fragments are used to assemble 
the Hi-C dataset.  All strand combinations are possible and are expected to be 
observed in equal proportions (25% per combination).  However, inward and 
outward pairs could be the result of un-digested restriction sites, and then 
processed as either self-ligated or un-ligated products.  Imbalance in the relative 
proportions of the strand combinations, could suggest the need for additional 
filtering. 
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Figure 4.3 | Hi-C interaction matrix for 3 chromosomes. 
On the left, raw Hi-C data.  On the right, filtered and balanced Hi-C data.  The 
arrows below the heatmaps mark bins (rows/cols) that are filtered.  Following the 
balancing procedure, the sum of each row/col is equal.  This results in an overall 
smoother heatmap. 
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Figure 4.4 | Averaging effects in Hi-C data. 
In this toy example, a square interaction pattern is apparent in the top interaction 
matrices representing subpopulations, yet its location varies. The final Hi-C 
interaction matrix, which consists of the average of all subpopulations, does not 
show the square interaction pattern, and shows a pattern that is not present in 
individual subpopulations.  
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Figure 4.5 | Ergodicity in Hi-C. 
This toy example follows, over time, the interaction of two loci in a population of 4 
cells. Each row represents a time point and each column represents a cell. In the 
non-ergodic population (left), the interaction is maintained in the same cell over 
all time points. In the ergodic population (right), the interaction appears in 
different cells, such that its frequency in time is equal to its frequency in the 
population (both are 0.25). In Hi-C, which measures a single time point (i.e. a 
row) in a population of cells, the ergodic and non-ergodic cases are 
indistinguishable. 
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Figure 4.6 | CIS / TRANS ratio. 
A Hi-C interaction matrix (shown on 3 chromosomes for simplicity). Sample cis 
(intra-chromosome) and trans (inter-chromosome) regions are highlighted. 
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Figure 4.7 | Distance-dependent interaction frequency.  
Shown are distance-dependent interaction frequency curves for metaphase and 
unsynchronized HeLa Hi-C from [35]. Note the slope change in the metaphase 
data which occurs at 10 Mb (indicated by the black arrow). Thus, loci separated 
by fewer than 10 Mb interact frequently, whereas loci separated by more than 
10 Mb rarely interact. This information has been incorporated into polymer 
models of mitotic chromosomes.  
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Figure 4.8 | Genomic compartments.  
Top: Hi-C interaction matrix (shown on 3 chromosomes for simplicity) along with 
the calculated compartment value (first principal component; shown as 
alternating red-blue track next to the matrix). Below: outer product of the first 
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principal component with itself yields a rank-1 reconstruction of the interaction 
matrix. 
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Figure 4.9 | Topologically associating domains (TADs).  
A 45-degree rotated interaction matrix shows TAD patterns in a 4 Mb region. 
Below, the directionality index and insulation score are shown together with the 
called non-overlapping set of TADs. Data was taken from Dixon et al. [2].   
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CHAPTER V:  The long-range interaction 
landscape of gene promoters 
Preface 
 

This research chapter encompassed work published in Nature by Amartya 

Sanyal, Bryan Lajoie, Gaurav Jain, Job Dekker.  The publication is entitled, “The 

long-range interaction landscape of gene promoters”, Nature, vol. 489, no. 7414, 

pp. 109–13, Sep. 2012. 

Introduction 
 

The vast non-coding portion of the human genome is awash in functional 

elements and disease-causing regulatory variants.  The relationships between 

the genomic positions and order of regulatory elements and their impact on distal 

target genes remain unknown.  Genes and distal elements can come together 

through looping to form higher order chromatin structures involved in gene 

regulation [24].  Mapping of these structures allows placing loci in three-

dimensional context to reveal long-range and possibly functional relationships.  

Here we have applied chromosome conformation capture carbon copy, 5C [23], 

to comprehensively interrogate interactions between transcription start sites 

(TSSs) and distal elements in 1% of the human genome representing the 

ENCODE Pilot regions [25].  5C maps were generated for GM12878, K562, 

HeLa-S3 and H1-hES cells and results were integrated with other data from the 

ENCODE consortium (NCP0004) [26].  We discovered >1,000 long-range 
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interactions in each cell line.  In differentiated cells, interactions occurred 

preferentially between active promoters and distal elements that are enriched for 

chromatin features that are hallmarks of regulatory elements.  In contrast, in H1-

hES cells looping was not correlated with gene expression and often involved 

elements resembling poised enhancers.  Looping interactions are related to the 

relative genomic positions of the elements and display directionality.  First, TSSs 

interact more frequently with enhancer-like and CTCF-bound elements located 

upstream than downstream, with a pronounced preference for elements located 

100-200 Kb upstream.  Second, only ~8% of interactions are with the nearest 

gene, and some skip as many as 20 genes.  Third, in contrast to current insulator 

models, CTCF-bound elements do not block long-range interactions, implying 

that many of these sites do not demarcate physically insulated gene domains.  

Finally, interactions form complex long-range interaction networks.  These 

analyses provide new insights into the links between linear genome sequence, 

three-dimensional chromatin architecture and gene regulation.  

Spatial proximity and specific long-range interactions between genomic 

elements can be detected using 3C-based methods [20].  Previous studies have 

been limited to analysis of single loci [20]–[22], [118], to interactions that involve 

a single protein of interest [119] or to analysis of genome-wide folding of 

chromosomes at a resolution that cannot detect specific looping interactions 

between genes and functional elements [1].  To overcome these limitations we 

had developed 3C-Carbon Copy technology (5C) [23].  5C is a high-throughput 
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adaption of 3C and employs pools of Reverse and Forward 5C primers to detect 

long-range interactions between two targeted sets of genomic loci, e.g. 

promoters and distal gene regulatory elements.  By targeting a specific part of 

the genome 5C facilitates detection of interactions at single restriction fragment 

resolution.  

Results 
 

To start to define principles of long-range gene regulation in the human 

genome we have employed 5C to systematically map interactions between 

promoters and distal elements throughout the 44 ENCODE pilot project regions 

representing 1% (30 Mb, Supplementary Table 1) of the genome in four cell lines 

(Figure 5.1 a).  The ENCODE regions, ranging in size from 500 Kb to 1.9 Mb, 

were selected for comprehensive annotation by the ENCODE pilot project [120].  

Here we analyzed interactions between 628 TSS-containing restriction fragments 

and 4,535 “distal” restriction fragments covering the ENCODE pilot regions 

(Figure 5.1 a; Supplementary Tables 2 and 3, see supplementary methods). 

5C libraries were generated for 2 biological replicates of GM12878, K562, 

HeLa-S3 and H1-hES cells (Supplemental Table 4-6).  These cell lines are 

extensively annotated by the ENCODE consortium [25].  5C interaction 

frequencies measured between ENCODE regions located on different 

chromosomes were used to quantify minor variations in interaction detection 

efficiencies, due to technical biases related to 5C primer efficiency, restriction 
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fragment length and digestion efficiency.  5C interaction frequencies were then 

corrected for these biases (Supplementary Methods; Supplementary Data File).  

An example of a 5C long-range interaction map representing TSS-distal 

fragment interactions along and between 14 ENCODE pilot regions (ENm001-

ENm014) (Figure 5.1 b).  5C detects known general features of spatial 

chromatin organization.  First, interactions within the same ENCODE region are 

more frequent than those between different ENCODE regions.  Within one 

ENCODE region interaction frequencies are generally higher for pairs of loci 

located closer together in the linear genome, as is apparent from strong signals 

along the diagonal of the heatmap (Figure 5.1 c).  This inverse relationship 

between genomic distance and interaction frequency is as expected for a flexible 

chromatin fiber [20], [121].  Second, interactions between ENCODE regions that 

are located on the same chromosome are more frequent than interactions 

between regions located on different chromosomes (arrow in Figure 5.1 b).  

This is consistent with 4C and Hi-C analyses [21], [35] and is due to the 

formation of spatially separated chromosome territories.   

5C datasets were analyzed to identify TSS-distal fragment pairs that 

interact more frequently than expected indicating they are relatively close in 

space.  For each dataset we determined the average relationship between 

interaction frequency and genomic distance (solid red line in Figure 5.1 d).  We 

defined this as the expected interaction frequency.  Next we identified 

interactions that occur significantly more frequent than expected for loci 
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separated by a corresponding genomic distance by transforming 5C signals into 

a z-score (FDR=1%, Supplementary Methods).  

 Our analysis correctly identified known interactions between TSSs and 

their cognate distal regulatory elements, providing validation of the approach.  As 

an example, (Figure 5.1 d) shows the 5C interaction profile in K562 cells for a 

TSS located in the beta-globin locus.  We previously found that this TSS, for an 

intergenic transcript located just downstream of the gamma-globin genes [122], 

displayed prominent looping interactions with the distal Locus Control Region in 

K562 cells [23].  Our analysis accurately detected these looping interactions 

(HS3, 4, 5).  We detected additional known long-range interactions with DNAse I 

hypersensitive sites (DHSs) near distal CTCF-bound elements (3’HS1 and HS-

111) [19], [23], [123].  In K562 cells we also detected the known interactions 

between the alpha-globin genes and three distal regulatory elements including 

the alpha-globin enhancer HS40, and two CTCF-bound elements (HS46 and 

HS10), located 40, 46 and 10 Kb upstream of the genes respectively (Figure 5.2, 

[18], [124]).  The importance of these distal elements in regulating globin gene 

expression through looping has been extensively documented.  None of these 

looping interactions in the globin loci were detected in GM12878, HeLa-S3 or H1-

hES cells indicating that 5C reliably identifies known cell-type specific functional 

interactions between TSSs and their distal regulatory elements.  Furthermore, 

our set of significant long-range 5C interactions is correlated with TSS-distal DHS 

pairs predicted to be functionally connected based on their highly correlated 
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activity across a large panel of cell lines (P < 10-13, one-sided Mann-Whitney 

test [125]), providing independent validation of their biological significance.  

In each cell line we identified large numbers of statistically significant TSS-

distal fragment interactions, of which 50-60% were observed in only one of the 

four cell lines (Figure 5.3 a).  These data point to intricate cell type specific three-

dimensional folding of chromatin.  Many previous studies have shown that 3C-

based assays detect specific and functional interactions between TSSs and their 

distal gene regulatory elements [118].  In addition the assay will detect 

“structural” interactions, e.g. close spatial proximity as a result of other nearby 

specific looping interactions (bystander interactions) or overall higher order 

folding of the chromatin fiber.  To determine which looping interactions involved 

distal sites that displayed specific chromatin features associated with functional 

elements we compared our data with datasets generated by the ENCODE 

consortium (Figure 5.3 b; Supplementary Table 7).  We find that looping 

interactions in all four cell lines are significantly enriched for distal fragments that 

are bound by CTCF, a protein known to mediate DNA looping [126], contain 

open chromatin (as determined by FAIRE [127] or DHS mapping, and/or histones 

with modifications associated with active functional elements (H3K4me1, 

H3K4me2, H3K4me3).  In GM12878, K562 and HeLa-S3 cells interactions are 

also enriched for H3K9ac and H3K27ac, but are not enriched or significantly 

depleted for H3K27me3, a mark typically associated with inactive or closed 

chromatin.  Interestingly, the opposite pattern was observed in H1-hES cells 
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where there is no significant enrichment in H3K9ac or H3K27ac, but rather 

enrichment for H3K27me3.  These combinations of marks are associated with 

different types of regulatory elements, e.g. active enhancers and poised 

enhancers respectively [128], [129], which suggests that different classes of 

elements are involved in long-range interactions in H1-hES cells as compared to 

the three other cell types. 

To gain more insights into the types of elements present in the distal 

looping fragments we made use of genome-wide and cell-line specific 

segmentation analyses that identified seven distinct chromatin states based on 

histone modifications, the presence of DHSs and the localization of proteins such 

as RNA polymerase II and CTCF ([130]; Figure 5.3 b).  These states are 1) 

“Enhancer” (E), 2) “Weak Enhancer” (WE), 3) “TSS”, 4) “Predicted Promoter 

Flanking regions” (PF), 5) “Insulator element” (CTCF), 6) “Predicted Repressed 

region” (R) and 7) “Predicted Transcribed region” (T)).  The ENCODE consortium 

tested sets of the E elements in enhancer assays and confirmed that >50% 

display enhancer activity [26].  However, it is important to point out that the 

segmentation analysis only identifies elements that resemble states associated 

with enhancers and promoter proximal elements, but do not unequivocally 

identify the function of these sites, or identify all functional elements.  We find 

that looping interactions are significantly enriched for distal fragments that 

contain E, WE and CTCF elements, and the actively transcribed chromatin state 

(“T”), but are depleted for the repressed chromatin state (“R”).  We note that 
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some distal looping fragments contain elements classified as “TSS” or “PF”, even 

though they do not contain TSSs as defined by the GENCODE v7 annotation  

[131].  Possibly, these chromatin states are not can be found at some distance 

from TSSs, or merely resemble promoters in chromatin state.  We conclude that 

5C identified significant looping interactions between TSSs and distal elements 

that display hallmarks of functional elements. 

Next, we used the 7-way segmentation data to categorize looping 

interactions into four broader functional groups (Figure 5.3 c, Figure 5.4, 

Supplementary Data File):  those that involve a distal fragment that contains a 

putative enhancer (“E”: E or WE); an element associated with promoters (“P”: 

TSS or PF), or a CTCF-bound element (CTCF).  The final class contains 

interactions with distal fragments that do not contain any of these three types of 

elements (“U”: unclassified), although they often do contain individual features 

such as DHSs.  

We find that TSS-E and TSS-P interactions are more cell type specific 

than TSS-CTCF interactions: in case of the former two categories the ratio of 

interactions that is seen in only one cell line vs more than one cell line is ~4:1, 

whereas it is ~1:1 for the latter (Figure 5.4).  Next, we determined whether 

looping of a TSS to any of the four categories of chromatin states is correlated 

with transcription.  We used CAGE expression data for the four cell lines [132] to 

assign an expression level to each TSS.  In GM12878, K562 and HeLa-3 cells 

we find that looping interactions with elements containing enhancer-like E 
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elements are significantly enriched for those that involve expressed TSSs 

(Figure 5.5).  Similarly, the set of TSSs that interact with fragments containing E-

elements were significantly more highly expressed compared to TSSs that do not 

interact with E-elements (Figure 5.3 d).  Interestingly, this is not the case for H1-

hES cells where no significant correlation with expression status or level was 

observed (Figure 5.5).  We note that the E-class of elements in H1-hES cells 

differs from the E-class in the other three cells lines: it is characterized by high 

levels of the repressive mark H3K27me3 [130], as has been observed for poised 

enhancers.  Therefore, it is possible that the E-class in H1-hES cells represents 

at least in part poised enhancers that do not yet activate gene expression [128], 

[129].  Interactions with other classes of elements (CTCF, P, and Unclassified) 

are in some cell lines, but not all, significantly enriched for actively expressed 

genes (Figure 5.5).   

Our comprehensive dataset allowed us to determine the distribution of up- 

and downstream looping interactions.  We aligned all TSSs and calculated the 

average number of interactions that a TSS has with each class of distal element 

at increasing genomic distances up and downstream of the TSS.  (Figure 5.6 a) 

shows the resulting average long-range interaction profile across all four cell 

lines (similar results were obtained when each of the cell lines was analyzed 

separately (Figure 5.7).  Several striking results are obtained. First, we find 

larger numbers of looping interactions with E, P and CTCF-bound elements 

upstream of the TSS as compared to downstream (bias of 4:1, up to 20:1).  The 
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bias for upstream interactions reveals an unanticipated directionality in long-

range interactions with TSSs.  This may indicate the presence of topological 

constraints imposed by the mechanism by which such interactions regulate target 

promoters.  No such bias was observed for the set of unclassified elements, or 

for the complete set of interrogated interactions (Figure 5.6 a).  Again, H1-hES 

cells were different and no directional bias was observed for interactions with any 

class of long-range interactions.  Second, in all four cell lines the highest density 

of long-range interactions with E, P and CTCF-bound elements was observed 

with elements located 100-200 Kb upstream of the TSS.  Interestingly, previous 

analyses showed that conserved non-coding elements are also often found 

within similar distances of target genes [133].  Third, when we analyzed 

expressed TSSs and non-expressed TSSs separately we find that both have a 

similar interaction profile but that expressed TSSs tend to have more 

interactions, especially with the E, P and CTCF classes.  We cannot rule out that 

some TSSs classified as non-expressed based on the absence of CAGE tags 

are actually expressed at low levels.  In addition, expressed and non-expressed 

TSSs differ in their overall 5C profile.  5C signals are lower around active TSSs 

as compared to non-expressed TSSs (Figure 5.6 b).  This has been observed 

before for the FMR1 gene [121].  One interpretation is that there is a different 

topological chromatin conformation so that expressed TSSs interact less with 

their flanking chromatin and instead associate more with distal regulatory 

elements located farther away.  Consistently, we find that expressed TSSs not 
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only display more looping interactions (Figure 5.6 a), but that longer-range 

looping interactions also occur more frequently in the population as indicated by 

higher 5C scores as compared to non-expressed TSS (Figure 5.6 b). 

Next we explored whether the relative order of elements in the genome 

affects which long-range interactions occur.  It is often assumed that distal 

elements such as enhancers target the nearest TSS.  We find that only ~8% of 

the looping interactions are between an element and the nearest TSS (Figure 

5.6 c).  This number goes up to 24% when only active TSSs are included.  

Similarly, 27% of the distal elements have an interaction with the nearest TSS, 

and 48% of elements have interactions with the nearest expressed TSS. Thus, 

when predicting TSS-distal element interactions, picking the nearest (active) 

gene is often not correct. 

It has been suggested that CTCF sites located between an enhancer and 

a TSS may prevent enhancer-promoter interactions [126], [134].  To specifically 

address this question we determined how frequently we identified long-range 

interactions between a TSS and a distal element that skip over a site bound by 

CTCF.  We find that ~80% of long-range interactions are unimpeded by the 

presence of one or more CTCF-bound sites in the corresponding cell line (Figure 

5.6 d).  Thus the mere presence of a CTCF-bound site does not block physical 

long-range interactions.  Possibly, additional factors need to be recruited to 

CTCF-bound sites to obtain insulator activity, as has been shown in Drosophila 

[135]. 
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The large numbers of long-range interactions we discovered suggest that 

distal elements and TSSs are each engaged in multiple long-range interactions.  

To characterize this phenomenon in more detail we determined the degree of 

TSS and distal fragments.  We find that ~50% of TSSs display one or more long-

range interactions with some interacting with as many as 20 distal fragments 

(Figure 5.8 a).  Expressed TSSs interact with slightly more elements as 

compared to non-expressed TSSs (for GM12878 mean is 1.84 vs 1.35; or 3.79 

vs 3.20 when including only those TSS with at least one interaction).  Again, H1-

hES cells are the exception where non-expressed TSSs displayed a slightly 

higher number of long-range interactions (Figure 5.9).  Out of all distal fragments 

interrogated, ~10% interact with one or more TSS, with some interacting with 

more than 10 (mean 0.22; or 2.14 when including only those distal fragments 

with at least one interaction).  The degree distribution of the four categories of 

distal elements were very similar, although we note that E-elements had a 

slightly lower degree (interacted with fewer TSSs on average) as compared to 

CTCF-bound elements (Figure 5.9).  

(Figure 5.8 b and c) show examples of the complex long-range 

interaction networks formed by TSSs and distal elements.  It is unlikely that these 

interactions can all occur at the same time in the same cell, which implies 

significant cell-to-cell variation.  The network of long-range interactions in the 

HoxA locus (ENm010) in H1-hES cells is particularly interesting (Figure 5.8 c).  

We find that many of the HoxA genes interact with an upstream distal fragment 
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that contains a CTCF-bound element and two E-elements.  These E-elements 

contain peaks in binding of Suz12, which is a component of the repressive PRC2 

complex that binds genes poised for activation [136].  Thus, these interactions 

appear to be between mostly inactive HoxA genes and distal elements that are 

bound by silencing complexes.  This example reinforces our observations in H1-

hES cells that long-range interactions are enriched for H3K27me3 (Figure 5.3 b), 

and that looping to E elements is not correlated with expression (Figure 5.5). 

Thus, it appears that H1-hES cells display a unique category of long-range 

interactions between inactive genes and distal poised or silencing elements. 

Conclusions 
 

Overall, our data provide new insights into the landscape of chromatin 

looping that bring genes and distant elements in close spatial proximity.  Besides 

generating a rich dataset reflecting specific gene-element associations, the 

average interaction profile of TSSs with surrounding chromatin reveals several 

general principles regarding the asymmetric relationships between genomic 

distance, the order of elements, and the formation of looping interactions. The 

bias for upstream interactions may indicate that the protein complexes on many 

TSSs may be asymmetric and may preferentially interact on one side with 

enhancer-protein complexes approaching along the chromatin fiber, as would be 

proposed by the enhancer tracking model [136].  Furthermore, while these 

average looping profiles may facilitate computational prediction of long-range 
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interactions throughout the genome, the fact that interactions skip genes and 

CTCF sites suggests that additional mechanisms for target selection and gene 

insulation exist.   

With further 3C technology development and increases in sequencing 

capacity, similar high-resolution studies should become feasible to map specific 

long-range interactions throughout the genome, which may uncover additional 

principles that guide chromatin looping.  Such insights will also be critical for 

interpreting genome-wide association studies that often identify regions with 

regulatory elements but not their distally located target genes.  
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Figures  
 

 

Figure 5.1 | A synopsis of 5C approach to identify long-range looping 
interactions in ENCODE Pilot regions. 
 a, 5C design. To interrogate long-range interactions between TSSs and distal 
elements we used the my5C toolbox 32 to design Reverse primers for HindIII 
restriction fragments in the ENCODE regions that contains a TSS (red fragments; 
according the Gencode-v7 annotation (GRCP01123) and Forward primers for all 
other ‘distal’ restriction fragments (blue fragments). b, Heatmap of all interrogated 
TSS-distal fragment interactions in 14 ENCODE regions (ENm001-014) in K562 
cells. Fragments are displayed in their genomic order.  Each dark rectangular 
area in the heatmap denotes interactions within a single ENCODE region while 
remaining areas denote interactions between regions. ENCODE regions that are 
near each other on the same chromosome show a higher interaction frequency 
(arrow) than regions that were on different chromosomes. c, Detailed heatmap of 
interactions of a single ENCODE region (ENm009: β-globin) from b. Interaction 
frequencies are generally higher for fragments that are located near each other in 
the genome (strong signal along the diagonal of the heatmap). The orange 
rectangle shows the 5C interaction profile of a single TSS (γ-δ globin) across the 
ENm009 region. d, Interaction profile of γ-δ globin (vertical orange bar) across 
ENm009 (hg19; chr11:4774421-5776011) based on 5C signal illustrating the 
peak calling method for 5C data. The solid red line shows the expected 
interaction level (LOWESS line, Supplemental Methods) along the genomic 
coordinates and dashed red lines above and below indicate LOWESS ± 1 
standard deviation. The expected interaction profile demonstrates that contact 
probability decreases with genomic distance.  5C signals that are significantly 
higher than expected in both biological replicates (green circles, False Discovery 
Rate = 1%) are considered as looping interactions between the γ-δ globin and 
the corresponding distal fragment. Interactions that are significantly higher than 
expected in only one replicate (blue circles) are not considered as 5C looping 
interaction.  5C peak calling accurately detects the known long-range interactions 
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of γ-δ globin to HS-3,4,5 and -111 and several additional DHS and CTCF sites 
(labeled). 
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Figure 5.2 | Interaction profile of α-globin genes across ENm008 region in 
α-globin expressing (K562) and non-expressing cells.   
5C interaction profile of reverse fragment (vertical orange bar) containing TSS of 
α- globin genes (HBA1, HBA2, HBM) vs interrogated distal fragments in ENm008 
(hg19; chr16:60002-559999) region. The solid red line shows the expected 
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interaction profile (LOWESS line) along ENm008 genomic coordinates and 
dashed red lines above and below indicates LOWESS ± 1 standard deviation.  
The 5C signals that are significantly higher than expected in two biological 
replicates (green circles) are considered as long range looping interactions 
between α- globin and the corresponding distal fragments. The blue circles 
denote interactions higher than expected in only one replicate (not considered as 
looping interactions). In α-globin expressing K562 cells (ON), our 5C peak calling 
method accurately detects the known long-range interactions between the α-
globin and its enhancer HS40 and the CTCF-containing HS46 and HS10 
hypersensitive sites (indicated in top panel). These interactions are absent in 
cells (GM12878, HeLa-S3 and H1-hESC) where α-globin is not expressed (OFF). 
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Figure 5.3 | Distribution of looping interactions across cell types and their 
relationship with chromatin features and gene expression.  
a, Venn diagram showing the number of unique and overlapping looping 
interactions across four cell types (GM12878, K562, HeLa-S3 and H1-hESC). b, 
Heatmap showing the enrichment/depletion of different chromatin/histone marks 
and features in looping fragments compared to all interrogated fragments based 
on genome-wide datasets from ENCODE consortium (Supplemental Table 7) in 
four cell types. Various genome tracks include Open Chromatin: UW DHS, Duke 
DHS and UNC-FAIRE (formaldehyde assisted identification of regulatory 
elements);  Active Marks: Broad Histone H3K4me1/2/3, H4K20me1, H3K27ac, 
H3K9ac; CTCF: Broad CTCF ChIP peaks; Inactive Mark: Broad Histone 
H3K27me3 and; 7 way segmentation: categories based on HMM prediction 
analysis for indicated cells - E (predicted enhancer), WE (predicted weak 
enhancer or open chromatin cis regulatory element), TSS (predicted promoter 
region including TSS), PF (predicted promoter flanking region), CTCF (CTCF-
enriched element), R (predicted repressed or low activity region) and T (predicted 
transcribed region).  We further grouped segmentation categories E and WE into 
“E-class”, TSS and PF into “P-class”, and R and T into “Broad Marks (spread at 
Kb length scale)”. The color scale represents the fold enrichment (red) or 
depletion (blue). The numbers listed inside each box represent p-values of the 
significant enrichment/depletion for that mark while NS denotes p-values that are 
not significant. The p-values are calculated based on two-tailed hypergeometric 
test and corrected for multiple testing using Bonferroni. c, Venn diagram showing 
the number of unique and overlapping looping distal fragments (left) and looping 
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interactions (right) among 4 functional groups in GM12878 cells.  Distal 
fragments are classified into 4 non-exclusive groups based on the 7-way 
segmentation.  Similarly, TSS - distal fragment interactions are classified based 
on the functional grouping of the distal fragments to which TSS is looping. The 
four functional groups are E-class (yellow; E + WE), P-class (magenta; TSS + 
PF), CTCF (cyan; CTCF enriched elements) and Unclassified (grey; interactions 
that do not belong to E-, P- or CTCF groups).  d, Relationship between looping 
interactions of a particular group and gene expression in GM12878 cells. Pie 
charts showing percentages and numbers of expressed/non-expressed TSSs 
looping or not looping to a particular group (E-, P-, CTCF or Unclassified; colored 
as in c) of distal fragments (top panel).  TSSs with a CAGE value greater that 
zero are deemed expressed.  Significant enrichment for expressed TSSs in the 
looping or non-looping categories are indicated on top (hypergeometric test; 
phyper<0.05).  Significant differences in expression levels between TSS in the 
looping vs the non-looping category is indicated on the left (Wilcoxon signed-rank 
test; pWilcoxon<0.05). 
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Figure 5.4 | Distribution of looping interactions across cell types and 
functional groups. 
a, Venn diagrams showing the unique and overlapping looping distal fragments 
(top) and looping TSSs (bottom) across four cell types (GM12878, K562, HeLa-
S3 and H1-hESC). b, As described in figure 2c, looping interactions are classified 
into E-class (yellow), P-class (light magenta), CTCF (cyan) and Unclassified 
(grey) groups.  Venn diagrams showing the distribution of looping distal 
fragments (above) and looping interactions (below) among the four groups in 
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K562, HeLa-S3 and H1-hES cells. c, Venn diagrams showing the distributions of 
looping distal fragments (top), TSSs (TSS) (middle) and looping interactions 
(bottom) across different cell types in each of the E-class, P-class, CTCF and 
Unclassified groups. 
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Figure 5.5 | Correlation between looping interactions to a particular groups 
and gene expression in different cell types.   
As in figure 2d, CAGE expression data are used to assign expressions for each 
TSS in K562, HeLa-S3 and H1-hES cells. TSS with RIKEN CAGE value >0 is 
considered as expressed. Different groups are represented as: E-class (yellow), 
P-class (magenta), CTCF (cyan) and Unclassified (grey). a, The top row of pie 
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charts in each panel under “interactions” indicates the percentages/numbers of 
TSS- distal fragment interactions of a particular functional group (E-, P-, CTCF or 
Unclassified) in which looping TSSs are expressed (dark color) or not expressed 
(light color). The bottom row in each panel of pie charts shows the 
percentages/numbers of expressed (dark color) and not expressed (light color) 
TSSs for all interrogated but non-looping TSS-distal fragment interactions of a 
particular group. Significant enrichment for expressed TSSs in the looping or 
non-looping categories are indicated on top (hypergeometric test; phyper<0.05).  
b, The top row in each panel of pie charts under “TSS” indicates percentages 
and numbers of expressed/non-expressed TSSs looping or not looping to a 
particular group (E-, P-, CTCF or Unclassified; colored as in c) of distal fragments 
(top panel).  TSSs with a CAGE value greater that zero are deemed expressed. 
Significant enrichment for expressed TSSs in the looping or non-looping 
categories are indicated on top (hypergeometric test; phyper<0.05). Significant 
differences in expression levels between TSS in the looping vs the non-looping 
category is indicated on the left (Wilcoxon signed-rank test; pWilcoxon<0.05). 
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Figure 5.6 | Average looping landscape of TSSs to distal fragments.  
a, Composite profile of average number of group-specific looping interactions 
upstream and downstream of TSSs based on combined 5C interaction data from 
the four cell lines. Each group is represented by different colors. The top panel 
shows the average looping profiles of all TSSs (left), of expressed TSSs (CAGE 
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value of >0, middle) and of non-expressed TSSs (CAGE value = 0; right).  The 
bottom set of plots shows the corresponding profiles of all interrogated TSS-distal 
element interactions (left), of expressed TSSs (middle) and of non-expressed 
TSSs (right). All the interaction data for a particular group for all four cell lines are 
binned with a sliding window of 150 Kb with step size of 5 Kb and the interactions 
values normalized by the number of TSSs. b, Composite profile of average 5C 
looping signal upstream and downstream of TSS based on combined 5C looping 
signals from four cell lines. The signals were normalized by the number of TSSs. 
The top panel represents the average 5C signal for statistically significant loops 
for TSSs that are expressed (dark red) and not expressed (light red). The bottom 
panel represents the average 5C signal for all interrogated interactions for TSSs 
that are expressed (dark red) and not expressed (light red). c, Histogram 
showing the number of distal fragments that are involved in looping with their 
target promoters skipping 0,1,2,…, 25 (and above) TSSs (data for all four cell line 
combined). All the values above 24 in the x-axis are added and grouped as 25+. 
d, Histogram showing the number of looping interactions that skip over  0, 1, 
2,…, 25 (and above) CTCF-bound elements (based on 7 way segmentation) 
between the distal fragments and their target TSS (data for all four cell line 
combined). All the values above 24 in the x-axis are added and grouped as 25+. 
  



 
 
 

227 

 

Figure 5.7 | Average TSS-distal fragment looping landscape in different cell 
lines.  
Composite profiles of average number of group-specific looping interactions 
upstream and downstream of TSSs for each of the four cell lines. Each group is 
represented by different colors: E-class – yellow, P-class – magenta, CTCF – 
cyan and Unclassified – grey.  In each panel the top row shows the average 
looping profiles of all TSSs (left), of expressed TSSs (CAGE value of >0, middle) 
and of non-expressed TSSs (CAGE value = 0; right) with each of the four groups 
of distal elements.  The bottom row of each panel shows plots with the 
corresponding profiles of all interrogated TSS-distal element interactions (left), of 
expressed TSSs (middle) and of non-expressed TSSs (right). All the interaction 
data for a particular group is binned with a sliding window of 150 Kb with step 
size of 5 Kb and the interactions values normalized by the number of TSSs. 
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Figure 5.8 | Degree distribution and networks of TSS-distal fragments 
looping interactions.  
a, Histogram showing the number of TSSs (left, red) or distal fragments (middle, 
blue) in percentages that are involved in 0, 1, 2,…., 10 (and above) looping 
interactions (degree, x-axis) with distal fragments and TSSs respectively in 
GM12878 cells.  All the values for degrees that are >9 are added and grouped 
under degree 10+. The dark red bars represent the percentages of looping TSSs 
that are expressed (CAGE expression value >0) while light red bars represent 
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the percentages of looping TSSs that are not expressed. Inset: the difference in 
percentages between looping TSSs that are expressed and not expressed for 
each degree is shown. The right panel: degree distribution for each functional 
group of distal fragments. The average (mean, µ) degrees for TSSs and distal 
fragments are indicated. The first value is the mean degree considering all the 
TSS/distal fragments (looping + non-looping) while the second value is the mean 
degree of looping TSS/distal fragments (excluding degree = zero).  b, Webplot 
showing the long-range looping interactions in ENr132 region in K562 cells. The 
interrogated distal fragments (blue circle) and the TSS (red circle) are positioned 
according to genomic coordinates and the Gencode v7 gene annotation is 
indicated. The size of the red circles denotes if that TSS is expressed (big circle, 
CAGE value >0) or not expressed (small circle). The thin grey lines show all the 
possible interactions that were interrogated. The colored lines show significant 
looping interactions between TSSs and distal fragments of a particular group. c, 
Webplot showing the looping interactions of the HOXA (ENm010) region in H1-
hES cells. 
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Figure 5.9 | Degree distribution of looping interactions of TSS and distal 
fragments in K562, HeLa-S3 and H1-hESC.  
Histogram showing the number of TSSs (left, red) or distal fragments (middle, 
blue) in percentages that are involved in 0, 1, 2,..., 10 (and above) number of 
looping interactions (degree, x-axis) with distal fragments and TSSs respectively 
in K562 (top panel), HeLa-S3 (middle panel) and H1-hES cells (bottom panel). All 
the values in degrees that are >9 are grouped and included in the category with 
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degree 10+. The red bars represent the percentages of looping TSSs that are 
expressed (CAGE expression value >0) while light red bars represent the 
percentages of looping TSSs that are not expressed in the corresponding cell 
line. The difference of percentages between looping TSSs that are expressed 
and not expressed (red bar minus light red bar) for each degree is shown (inset). 
The right panel shows the degree distribution for each group of distal fragments. 
The average (mean, µ) degree for TSSs and distal fragments are indicated. The 
first value is the mean degree considering all the TSS/distal fragments (looping + 
non-looping) while the second value is the mean degree of looping TSS/distal 
fragments (degree greater than zero).   
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Methods 
 

5C was performed using two pools of 5C primers, one for ENm001 

through ENm014 and ENr313, and one pool for all 30 randomly picked ENCODE 

regions (ENr111-ENr334)  11 (Supplementary Table 2 and 3).  5C libraries (two 

biological replicates per cell line) were sequenced on an Illumina GAII platform 

and sequence reads were mapped using Novoalign (http://www.novocraft.com), 

as described [124].  Raw mapped reads for each experiment will be submitted to 

GEO.  Statistically significant pair-wise interactions were identified 

(Supplementary Methods) by converting each 5C signal into a z-score using the 

average 5C signal distribution versus genomic distance as a background 

estimate.  Significant interactions (1%FDR) observed in both replicates were 

considered looping interactions.  5C looping interactions were compared to a 

variety of genome-wide data sets generated by the ENCODE consortium 

(Supplementary Table 7). 

Tissue culture 
 

GM12878 lymphoblastoid cells were procured from Coriell Cell 

Repositories and grown in RPMI 1640 medium supplemented with 2mM L-

glutamine, 15% fetal bovine serum (FBS) and antibiotic (1% Pen-Strep).  K562 

(CCL-243), a CML cell line and HeLa-S3 (CCL2.2), a cervical carcinoma cell line 

were obtained from American Type Culture Collection (ATCC).  K562 cells were 

cultured in similar media as GM12878 except with 10% FBS while HeLa-S3 cells 
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were maintained in ATCC recommended F-12K Medium (Kaighn's Modification 

of Ham's F-12 Medium) with 10% FBS and 1% Pen-Strep.  H1-hES cells are 

human male embryonic stem cells and formaldehyde crosslinked cells were 

distributed by Cellular Dynamics International, Madison WI to individual labs that 

were part of the ENCODE project consortium. The culture densities and 

conditions were maintained as per recommendations of the repositories.   

Formaldehyde crosslinking 
 

For suspension cells (GM12878, K562) cells a total of 1X10^8 freshly 

growing cells were centrifuged at 100Xg for 5 minutes.  Cell pellets were 

resuspended in 45 mL of respective growth medium in a 50 mL Falcon tube.  

Cells were fixed by addition of 1.25 mL of 37% formaldehyde (final concentration 

of formaldehyde 1%).  The cell suspension was gently mixed by inverting the 

tube up and down 4-6 times at room temperature and the tubes was rotated on 

an end-to-end shaker for exactly 10 minutes.  Crosslinking was stopped by 

addition of 3M glycine (final concentration 125 mM) and cell suspensions were 

incubated at room temp for 15 minutes using an end-to-end shaker.  The 

crosslinked cells were then pelleted at 100Xg for 5 minutes and the cell pellet 

was stored at -80°C. For HeLa-S3, the adherent cells were first trypsinized and 

then the crosslinking was performed as described above.  Cross-linked H1-hES 

cells were obtained from Cellular Dynamics International. 
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5C analysis  
 

5C analysis was carried out as previously described 1,2 for the 44 

ENCODE Pilot regions (ENCODE Manual – ENm and ENCODE Random – Enr).  

The chromosomal position and coordinates of the regions as per the Feb 2009 

GRCh37/hg19 human genome assembly are enlisted in (supplemental table S1). 

The 5C experiment is designed to interrogate looping interactions between 

HindIII fragments containing transcription start sites (TSS) and any other HindIII 

restriction fragment (“distal fragments”) in the ENCODE Pilot regions.   

5C primer design 
 

5C primers were designed at HindIII restriction sites (AAGCTT) using 5C 

primer design tools previously developed and made available online at My5C 

website (http://my5C.umassmed.edu) 3. Reverse 5C primers were designed for 

HindIII restriction fragments overlapping a known TSS from GENCODE 

transcripts, or overlapping a start site as experimentally determined by CAGE 

Tag data of the ENCODE pilot project (Supplemental Table ST2).  Forward 5C 

primers were designed for remaining of the HindIII restriction fragments 

(Supplemental Table ST3).  For ENCODE regions that do not contain any TSS 

(ENr112, ENr113, ENr311 and ENr313) we employed an alternative primer 

design.  For these regions an alternating design of forward and reverse 5C 

primers was used in which forward and reverse primers are designed for 

alternating restriction fragments 1.  Primers were excluded for highly repetitive 
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sequences that prevented the design of a sufficiently unique 5C primer.  Primers 

settings were as described before 2: U-BLAST: 3; S-BLAST: 130: 15-MER: 1320; 

MIN_FSIZE: 40; MAX_FSIZE: 50000; OPT_TM: 65; OPT_PSIZE: 40.  The 5C 

primers contained up to 40 bases that were specific for the corresponding 

restriction fragment.  If a shorter sequence was sufficient to obtain a predicted 

annealing temperature of 65°C, that shorter sequence was used, and random 

sequence was added to make a total of 40 bases.  All the 5C primers have an 

extension of universal tail sequences, at the 5’ end for Forward 5C primers, and 

at the 3’ end of Reverse 5C primers.  DNA sequence of the universal tails of 

forward primers was 5′-CCTCTCTATGGGCAGTCGGTGAT-3′; DNA sequence 

for the universal tails of reverse primers was 5′-

AGAGAATGAGGAACCCGGGGCAG-3′.  A six base barcode was included 

between the specific sequence of the primers and the universal tail to aid in 

mapping of the high throughput short sequencing reads.  The length of each 

primer was 69 bases.  In total, 981 reverse primers and 5,321 forward primers 

were designed (corresponding to ~77.1% (6,302/8,174) of all HindIII fragments in 

the 44 ENCODE regions). 

Generation of 5C libraries 
 

3C was performed with HindIII restriction enzyme as previously described 

2,4 for GM12878, K562, HeLa-S3 and H1-hES cells separately with two biological 

replicates for each cell line.  The 3C libraries were then interrogated by 5C.  The 
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44 ENCODE regions were analyzed in two groups using two separate 5C primer 

pools.  The first group (ENm) contained the manually picked ENCODE regions 

ENm001-014, and ENr313.  The second group (ENr) contained the 30 randomly 

picked ENCODE regions.  The two 5C primer pools were made by pooling 5C 

primers for interrogating long-range interactions in the two groups of ENCODE 

regions.  In these pools each primer was present at a final concentration of 

0.5fmol/µL. 

The primer pool for the ENm group contained a total of 3,150 primers (476 

reverse 5C primers and 2674 forward 5C primers).  This primer pool allows 

interrogation of a total of 1,272,824 interactions. Of these, 83,427 interactions 

were between fragments that were both located in the same ENCODE region. 

The primer pool for the ENr group contained a total of 3,152 primers (505 reverse 

5C primers and 2647 forward 5C primers).  This primer pool allows interrogation 

of a total of 1,336,735 interactions. Of these, 34,859 interactions were between 

fragments that were both located in the same ENCODE region. 

5C was performed in 10-15 reactions each containing an amount of 3C 

library that represents 200,000 genome equivalents and 0.5 fmol of each primer. 

The multiplex annealing reaction was performed overnight at 55 °C.  Pairs of 

annealed 5C primers were ligated at the same temperature using Taq DNA 

ligase for 1 hour.  Ligated 5C primer pairs, which represent a specific ligation 

junction in the 3C library and thus a long-range interaction between the two 

corresponding loci, were then amplified using 28 cycles of PCR with universal tail 
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primers that recognize the common tails of the 5C forward and reverse primers.  

At least four separate amplification reactions were carried out for each 10-15 

annealing reactions described above and all the PCR products were pooled 

together.  This pool constitutes the 5C library. The libraries were concentrated 

using Qiaquick PCR purification kit and 3′-A tailing reaction was done using 

dATP and Taq DNA polymerase in presence of 1X standard Taq buffer (NEB) at 

72ºC for 30 minutes. 

 To facilitate Illumina paired end DNA sequence analysis of 5C libraries, 

Illumina paired end adapter oligos (Illumina, San Diego, CA) were ligated to the 

5C library using the Illumina PE protocol.  The linkered 5C library was then 

amplified by PCR (17 or 18 cycles, with Phusion High Fidelity DNA polymerase) 

using Illumina PCR primer PE 1.0 and 2.0. The 5C library gel purified and 

sequenced on the Illumina GA2 platform generating 36 base paired end reads.    

5C read mapping 
 

Sequencing data was obtained from an Illumina GAIIx machine and was 

processed through a custom pipeline to map and assemble 5C interactions.  We 

used thirty six (36) base-pair paired end reads to sequence all 5C libraries.  Due 

to sequencing efficiency some 5C libraries were re-sequenced as many as 10 

times to obtain the required read depth for our analysis.   

The fastQ files were taken directly from the Illumina GAIIx and fed into our 

in-house 5C mapping pipeline.  Each side of the paired end read was 
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independently mapped to a pseudo-genome of all possible 5C primer sequences 

using the novoalign mapping algorithm (V2.05 http://novocraft.com).  The default 

alignment settings for novoalign were used.  After mapping, if both of the paired 

end reads could be uniquely mapped to a 5C primer, a 5C interaction was 

assembled.  Invalid interactions between the same primer or between primers of 

the same type were removed as these would represent a mapping artifact or an 

issue with the 5C technique.  The number of invalid interactions detected across 

all libraries was < 0.01%, which would be expected if solely due to random 

mapping errors.   

Statistics regarding the 5C library quality, mapping efficiency etc. can be 

found in (supplemental table ST4).  Since it is only necessary to map the paired 

end reads to the list of all possible 5C primers rather than to the entire genome, a 

higher percentage of mapped/usable reads can be achieved.  We find that > 90% 

of all paired reads (after Illumina chastity filtering) can be uniquely mapped to a 

single 5C interaction.  For libraries where more than one lane was used to 

achieve adequate sequence depth, the interactions from each lane were 

summed to produce the complete 5C interaction dataset.  A table summarizing 

the read depth of each 5C library can be found in (supplemental table ST5).  

Pearson correlation coefficients between the biological replicates can be found in 

(supplemental table ST6).   

Detection bias correction 
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5C experiments involve a number of steps that can locally differ in 

efficiency, thereby introducing biases in efficiency of detection of pairs of 

interactions.  These biases could affect the efficiency of cross-linking, the 

efficiency of restriction digestion (related to cross-linking efficiency), the efficiency 

of ligation (related to fragment size), the efficiency of 5C primers (related to 

annealing and PCR amplification) and finally the efficiency of DNA sequencing 

(related to base composition).  All these potential biases, several of which are 

common to other approaches such as chromatin immunoprecipitation (e.g. cross-

linking efficiency, PCR amplification, base-composition dependent sequencing 

efficiency), will impact the overall efficiency with which long-range interactions for 

a given locus (restriction fragment) can be detected.  To determine this overall 

efficiency of interaction detection we have developed the following general 

strategy.  To determine overall interaction detection efficiency for a given 

restriction fragment we analyzed the large set of inter-chromosomal interactions 

that are detected for each fragment.  We then defined the overall efficiency of 

inter-chromosomal interaction detection for a given fragment as the ratio of the 

average inter-chromosomal signal obtained with that fragment and the average 

inter-chromosomal signal of all fragments.  We then corrected the frequency of 

each interrogated long-range intra-chromosomal interaction using a correction 

factor that is the product of the overall efficiency of inter-chromosomal interaction 

detection for the two interacting fragments.   
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This procedure will correct for any of the biases in detectability of 

interactions for a given locus, as listed above, and will also adjust for copy 

number variation of a locus, which can vary in transformed cell lines such as 

K562 and HeLa S3 cells, as these factors will also affect the level of inter-

chromosomal interactions.   

Detailed Primer Filtering 
 

To approximate the relative 5C signal of each restriction fragment 

interrogated in the experiment we first calculated the average 5C signal for all 

trans interactions (interactions between different chromosomes).  To remove any 

extreme outliers from the mean calculation, e.g. due to primer failure, we first 

filtered down the distribution of 5C signals in trans for each restriction fragment 

by removing all signals beyond the mean +/- three (3) standard deviations.  After 

calculating the filtered mean for each restriction fragment in trans, we calculated 

the global mean of all inter-chromosomal interaction frequencies.  We then 

calculated a correction factor for each restriction fragment that would normalize 

its set of trans interactions to the entire set.  Once the correction factors were 

calculated, we then calculated the mean and standard deviation correction factor 

and flagged any restriction fragments requiring a correction value beyond the 

mean +/- 1.654 standard deviations.  Fragments with a correction factor outside 

of this limit were flagged for removal since their trans signal is too above/below 

the expected signal by chance.  Here, we assume that any variation in 5C signals 
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detected within the trans space is due to experimental factors, differing primer 

efficiencies, ligation efficiencies etc. 

Detailed Primer Correction 
 

Once the outlier fragments are removed from the 5C dataset, we repeat 

the above described steps to calculate the primer correction values required to 

normalize the 5C signals for the remaining restriction fragments.   Then, for each 

5C interaction within an ENCODE region in the dataset, we use the product of 

the correction factors from the two restrictions fragments  involved in the 

interaction as the final correction factor to apply to the 5C signal.  5C signals are 

then either increased or decreased by the correction factor to correct for varying 

signals from the fragments visibility in the trans interaction space. 

Peak calling 
 

To detect significant looping interactions from background looping 

interactions we developed an in-house “5C peak calling” algorithm.  We chose to 

call peaks in each 5C biological replicate separately and then take only the peaks 

that intersect across replicates as our final list of significant looping interactions. 

5C signals represent the three-dimensional contact probabilities between 

pairs of loci.  This relationship inversely scaled with genomic distance.  To 

properly control for the varying genomic distances tested in the 5C dataset, we 

first determined the relationship of 5C signals over genomic distance.  Using a 

LOWESS smoothing algorithm we find the weighted average and weighted 
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standard deviation of all 5C signals across the range of all interrogated genomic 

distances.  We used the traditional tri-cubic weighting function and an alpha 

parameter of (0.01) to average the closest 1% of the 5C signals around each 

genomic distance.  We assume the large majority of interactions are not 

significant looping interactions and thus we interpret this weighted average as the 

expected 5C signal for any given genomic distance.  The 5C signals are then 

transformed into a z-score by calculating the (obs-exp/stdev).  Where the (obs) 

value is the detected 5C signal for a specific interaction, (exp) is the calculated 

weighted average of 5C signals for a specific genomic distance and (stdev) is the 

calculated weighted standard deviation of 5C signals for a specific genomic 

distance.  Once the z-scores have been calculated, the distribution of z-scores 

are fit to a Weibull distribution.  We find that the distribution of z-scores fits to the 

Weibull distribution with a R2 value of > 0.939 for all cell-lines.  P-values can then 

be mapped to each z-score and then also transformed into q-values for FDR 

analysis.  The ‘qvalue’ package from R (qvalue.cal [siggenes]) was used to 

compute the q-values for the given set of p-values determined from the fit to the 

Weibull distribution. Using an FDR cutoff of 1%, we select all 5C interactions with 

a q-value <= 0.01.  We then take the intersection of all significant looping 

interactions across the two biological replicates as our final list of 5C looping 

interactions. 

Fragment Annotation 
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To annotate the interrogated restriction fragments, a variety of ENCODE 

datasets were used to check for overlap with our list of restriction fragments.  A 

list of all utilized ENCODE datasets can be found in (supplemental table ST7). 
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CHAPTER VI:  cWorld – a toolbox for 
manipulating genome structure data 
 

Preface 
 

This chapter contains a description of unpublished work encompassing a 

git repositories containing code written in python, perl, R which has been used to 

process, filter, normalize, analyze, visualize, integrate and manipulate all 3C, 5C 

and Hi-C data contained in this thesis.  This toolbox is a result of countless 

collaborations and discussions with others.  The code has grown exponentially in 

both its usefulness and robustness over the years.  My goal is to first describe 

the toolbox in terms of its design and expected usage and then describe the 

various algorithms and methods that each particular function utilizes. 

Introduction 
 
 

cWorld first started as a collection of perl scripts, used to quickly 

manipulate genome structure data (e.g. 5C).  The code was published and made 

publically available in the form of a web tool (http://my5C.umassmed.ed) [137].  It 

soon grew to include various visualization methods, analysis methods (peak 

calling, normalization, etc.) and integration methods (UCSC, bed files etc.) and 

as such outgrew its implementation as a web tool.   

cWorld at its core contains a perl module (cWorld.pm) and a collection of 

action-based scripts that each perform a distinct manipulation of the data.  
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cWorld has grown to also include a python module and a series of scripts to 

perform specific functions.  cWorld is slowly beginning to transition to a python 

environment to make use of both a hd5f file format implementation and to make 

use of numpy, a scientific computing package that is specialized for N-

dimensional matrix operations.   

cWorld file format 
 

Since the introduction of 3C and 5C a new datatype was created.  In order 

to standardize the file format to contain this 2D interaction data, cWorld and 

my5C introduced a standard in the field as to how to represent and store 2D 

genome structure data.  This standard has been adopted by others and has 

helped to increase the usability of the datatype and development of additional 

tools and analysis packages. In the basic form, the 2D interaction data can be 

represented by a text formatted, tab delimited file (tsv).  The key here is to add 

the specific row and column headers which represent the genomic loci of each 

particular row/column.  This file format is visualized in (Figure 6.1).  The headers 

of each specific row/col must be in a specific format that cWorld can read and 

understand.  The basic structure of each header is as follows: 

lociName|assembly|coordinates 

lociName is any name that can describe the genomic loci encompassed by the 

row/col.  assembly is a UCSC formatted assembly name (e.g. hg18, hg19, mm9, 

sacCer3, dm3 etc.).  coordinates is a UCSC formatted genomic coordinate 
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string that encompasses the genomic interval of the row/col (e.g. chr4:50000-

150000, chrX:72000000-74000000, etc.).  Each header must be unique from one 

another, except in the case of a symmetrical matrix.  In this case, the header may 

be repeated on both the X and Y axis.  A further level of details allows one to 

encode additional information into the headers, such as information relative to a 

5C primer, or a specific allele of a chromosome.  For instance the following 5C 

row/col header, 5C_195_ENm009_REV_249|hg18|chr11:5598207-5605246 

encodes information about the 5C design, 5C region, 5C primer type, 5C primer 

number, assembly, and genomic coordinates of the primer/fragment location. 

Should the lociName contain 4 underscores and start with “5C”, then the cWorld 

module will use the second field as the 5C specific region ID (195), the third field 

as the 5C specific region name (ENm009), the fourth field as the 5C specific 

primer type (REV) and the fifth field as the 5C specific primer/fragment number 

(249).  This additional information can have implications in specific tools and the 

user can select specific ways to handle this additional information (e.g. such as 

defining cis/trans as either on different physical chromosomes, or between 

different 5C regions).  To encode allele information into the chromosome, one 

can add the following token to the coordinates field, e.g. 62232|mm9-cast-

129s1|chrX-129S1:16640001-16680000.  In this header, the lociName is 62232, 

an index relative to the genome-wide bin number.  The assembly is mm9-cast-

129s1 signifying that the genome is mm9 (mouse) but also a diploid genome of 

the cast and 129s1 strains.  The chromosome location is  chrX-
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129S1:16640001-16680000.  Here the allele (parental genome) is encoded into 

the chromosome name.  chrX-129S1 signifies that this bin, row/col represents 

data from the 129S1 allele on chrX at genome interval 16640001-16680000.  By 

leveraging allele information into the headers of the cWorld matrix, various 

analyses can now be performed in an allele specific manner. 

cWorld functions 
 

cWorld.pm contains 82 private and public sub routines.  These sub-

routines are utilized by all of the action-based scripts and together represent the 

API that one can use to interface with the library.   

cWorld logic flow 
 

The normal logical flow is as follows:  A user starts with an interaction 

matrix in the cWorld tsv file format, denoted $inputMatrix.  First the user would 

pass the $inputMatrix to the getMatrixObject() function, this function first 

validates that the matrix is intact and in the correct file format, then it returns 

various objects such as a list of the headers, missing row/cols, number of NANs 

in the matrix, number of 0S, whether the matrix is symmetrical or not, the number 

of contigs/chromomes, indices into the matrix/headers for all chr/contig/region 

breakpoints and so on and so forth.  All of these data structures are 

encompassed within the $matrixObject data structure.  The reason 

getMatrixObject validates and returns this many objects is to pre-process and 

memoize as many useful metrics about the matrix as possible.  This memoization 
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helps to speed up later steps and allow assumptions about data integrity and 

matrix structure. 

After the user has received a $matrixObject representing their matrix file, 

various other functions can be called with the $matrixObject and the 

$inputMatrix, such as getData() which returns a 2dimensional hash object 

containing the signal within each i,j pixel within the matrix, normally denoted 

$matrix.  cWorld utilizes a spare data storage implementation, meaning the 

signal for every pixel, (i,j coordinate) is not stored.  During the initial 

getMatrixObject() call, cWorld make a decision whether it is more efficient to omit 

the 0s or the NaNs from an input matrix.  Depending on the type of data (5C, 

HiC), binned or not binned, raw or iced etc., the number of NaNs and 0s can 

different and potentially represent over 50% of the entire matrix.  By omitting to 

store these values, memory usage can be dramatically reduced and these 

omitted values can then be inferred later when performing analysis or writing 

output data.   

With both the $matrixObject and $matrix in hand most all of the analysis 

can be performed.  Existing data structures may be created and memoized to 

reduce redundant computation and can be added to the $matrixObject for 

continued processing.  

cWorld scripts 
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The cWorld toolbox contains over 43 different scripts which can perform a 

set of standard function calls in a particular sequence in order to perform a 

specific analysis or transformation of the input data.  The collection of scripts is 

hosted on github (https://github.com/blajoie/cWorld-dekker).  These scripts can 

perform functions such as transforming a matrix file into a heatmap png image, 

binning an interaction matrix into fixed size genomic intervals, subset a matrix by 

genomic coordinates or by a user-defined element (BED) file and so on and so 

forth.  These scripts are built in a modular nature and specialize in a singular 

transformation of the data.  By creating a ‘pipeline’ that calls multiples scripts in a 

specific sequential order, a user can perform complicated multi-stage analyses.  

Complicated procedures such as peak calling, significant difference detection 

between N samples, outlier filtering and data normalization can be performed in 

the above manner.  I will now describe the various scripts, their intended usage 

and expected output.  
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addMatrixHeaders.pl - add headers to a matrix txt file 
 

This script can add headers to a matrix txt file.  This is useful for 

interaction matrices that are produced without embedded row/col headers and or 

converting from a python 2D list/np.array data structure. 

 

Figure 6.1 | Schematic depicting cWorld tsv file format 
y-axis headers, x-axis header and the data matrix can be seen.  Lines that start 
with a # are comment lines and are ignored by cWorld. 
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aggregateBED.pl - sliding window aggregate of BED5 data 
 

This script can perform a sliding window genomic interval binning on an 

input bed/bedGraph file.  For example, if a user supplies a read-level signal file 

for a chip-Seq experiment, this script can bin/summarize the data into fixed size 

genomic intervals that the user defined via the --wsize,--wstep and --wmode 

options.  The user can also select the signal aggregation method (mean, min, 

max, sum, median, iqrMean etc.).  The user can also make choices regarding 

whether to include/exclude 0s single.  This script is useful for binning external 1D 

data tracks into the same intervals as 5C or Hi-C data. 

 

Figure 6.2 | Depiction of the aggregateBed method 
Above, a tag level ATAC-Seq bedGraph track for chrX in mm9 is binned into 
fixed sized non-overlapping genomic intervals using the sum aggregation.  
Binsize=40000, binstep=1, binmode=sum.  
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anchorPurge.pl - filters out row/col from C data matrix file 
 

This script can detect and remove outlier row/cols from a matrix.  The 

outliers can be defined by various use-selectable methods.  In the simplest case, 

outlier row/cols are detected by the sum of each row/col.  Row/cols (anchors) can 

be removed if their sum is on the tails of the distribution of all row/col sums.  This 

in effect would remove row/cols with either too low or too high of signal captured 

across the entire matrix.  The tails of the distribution can be defined by various 

means but again in the simplest form the script will utilize a percentile based 

threshold.  The user can also opt for a IQR based outlier threshold, which 

defaults to Q1 - 1.5 x (IQR), or above Q3 + 1.5 x  (IQR).  This metric is favored 

as it is more robust to various distribution shapes.  After the row/col are detected, 

all signal within the row/col is set to “NA”, the string used to signify missing or 

unavailable data within the matrix.   

 

Figure 6.3 | Depiction of the anchorPurge method 
The input matrix (raw 5C matrix) is on the left, and the resulting matrix from 
(anchorPurge.pl) is on the right.  Here outlier row/cols are detected and then 
removed (removed row/cols show in gray).  
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applyCorrection.pl - apply correction to factor - external factors 
 

This script can apply a set of externally-calculated correction factors to a 

given matrix.  The correction factors can be applied by either of the two methods 

described in correctMatrix.pl. 

 

Figure 6.4 | Depiction of the apply correction method 
The input matrix (raw 5C matrix) is on the left, and the resulting matrix from 
(applyCorrection.pl) is on the right.  Here a set of externally calculation correction 
factors for each row/col were supplied and the pixel (i,j) adjustment was applied 
using the ‘zscore’ method. 
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binMatrix.pl - bin/aggregate matrix into fixed sized intervals 
 

This script can bin a supplied matrix into fixed size genomic intervals.  

This script is useful for binning fragment-level data (3C, 5C, Hi-C) into larger 

genomic intervals to reduce noise and increase signal by reducing the resolution 

of the data.  The user can also select the signal aggregation method (mean, min, 

max, sum, median, iqrMean etc.).  The available aggregation methods are 

described in the function listStats(). The user can also make choices regarding 

whether to include/exclude 0s single.  Normally if the number of 0s in a given 

matrix is > 50%, then one should bin the data into large intervals with the goal of 

reducing the percentage of ‘0’ interactions.   

 

Figure 6.5 | Depiction of the binMatrix method 
The input matrix (raw 5C matrix) is on the left, and the resulting matrix from 
(binMatrix.pl) is on the right.  Here the fragment-level 5C matrix was binned using 
binsize=30000, binstep=10, binmode=median. 
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changeMatrixHeaders.pl - replace matrix row/col headers 
 

This script can alter the headers of a supplied matrix file.  This is can be 

useful to embed additional information (such as allele or tad definitions) into a 

matrix file.  This script expected a *map file, which is a two column tsv file 

containing in column 1 the original header (found in the matrix) and in column 2 

the new header that is to be replaced.  

 

Figure 6.6 | Depiction of the changeMatrixHeaders method 
The input matrix (raw 5C matrix) is on the left, and the resulting matrix from 
(changeMatrixHeaders.pl) is on the right.  Here the headers of each row/col have 
been changed, since the headers have only changed by name, the resulting data 
matrix is unaltered. 
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collapseMatrix.pl - collapse matrix by (chr,name,group), sum 
signal 
 

This script can collapse and aggregate the signal of a matrix by various 

means.  For instance, if the user select the collapse by chromosome, then all 

signal within that chromosome can be aggregated (e.g. summed).  If a genome 

wide matrix binned at 500kb is supplied and the user chooses to collapse by 

chromosome using the sum aggregation option, then all signal between each 

chrxchr combination will be summed.  The resulting matrix will then be a NxN 

matrix where N is the number of chromosomes and each i,j pixel in the matrix 

represents the sum of all signal between chromosome.i and chromosome.j.  This 

visualization is useful for looking at global chromosome-chromosome 

associations (e.g. the chromosomes containing the rDNA). 

 

Figure 6.7 | Depiction of the collapseMatrix method 
The input matrix (3 x 3 Hi-C matrix) is on the left, and the resulting matrix(s) from 
(collapseMatrix.pl) follow.  Here a 500kb binned matrix, depicting chr14, chr15 
and chr16 is used as input to the collapseMatrix.pl method.  CollapseMatrix.pl 
first sums all signal per each of the 9 possible chr x chr cells, and then performs 
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a normalization for chromosome length. The final heatmap on the right shows the 
enrichment/depletion of interaction between each of the chromosomes. 
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column2matrix.pl - turn list (3 tab) file into matrix 
 

This script takes as input a 3 column tab delimited text file (tsv) and turns 

it into an interaction matrix.  The format is as follows:  column1 = row header 

name.  column2 = col header name.  column3 = signal value.  The matrix can 

then be constructed by first assembling a N1 x N2 matrix where N1 = number of 

distance row headers, and N2 = number of distinct col headers.  Then the signal 

value (column 3) will be placed into the matrix at the combined of header.y and 

header.x.  There are additional options to choose to include 0s or NaNs, or 

whether or not the matrix should be constructed in a symmetrical manner.  If 

symmetrical is selected, the rows and cols will consist of the union of all distinct 

headers found in columns 1 and 2 of the input tsv fie. 

 

Figure 6.8 | Depiction of the column2matrix method. 
The input ‘pairwise’ file (3 column tsv file) is on the left, and the resulting matrix 
from (column2matrix) is on the right.  Here the matrix and resulting heatmap is 
displayed after the ‘pairwise’ (3 column tsv file) is transformed into a cWorld 
formatted matrix file. 
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combineMatrices.pl - combine matrices 
[sum,mean,median,min,max] 
 

This script can combine an N number of input matrices.  This can be 

useful for combined interaction matrices from biological replicates or samples of 

similar type, or even for various other analyses goals (pooling samples for 

average/consensus structure). Similar to other scripts, the user can specify the 

aggregation method as described in listStats(). 

 

Figure 6.9 | Depiction of the combineMatrices method 
Two input matrices are displayed on the left (between the ‘+’ symbol). These two 
matrices are summed via the combineMatrices.pl method and the resulting 
summed matrix is displayed on the right.  Here combineMode=sum is used. 
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compareInsulation.pl - compare insulation vector - calculate 
difference 
 

This script can compare insulation vectors calculated from the 

matrix2insulation.pl script.  By comparing insulation vectors one can deduce 

and assess structural changes between two samples.  Since insulation signal is 

already in log-space, this script simply calculated the subtraction between the 

two vectors and outputs by data files and files formatted into bed and bedGraph 

format for visualization. 

 

Figure 6.10 | Depiction of the compareInsulation method 
Here two insulation vectors (not shown) are being compared via the 
compareInsulation.pl script.  The resulting difference vector (red) displays area 
where the two insulation vector differ.  The minima along this vector signify lost or 
weakened boundaries in one of the input insulation vectors compared to the 
other.  
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compareMatrices.pl - performs comparison between two 
matrices 
 

This script can perform a comparison between any two matrices.  The 

user can select the comparison method, such as [log2ratio, add, sum, mean, 

subtract, divide, multiply, min, max, deconvolve].  Log2ratio is the most common 

method to use when comparing two matrices as it can highly signal that is either 

higher or lower in the either sample.  This script can properly handle 0s and 

NaNs that may differ between the two matrices.   The deconvolved method is a 

useful mode that can be used to sample from a single matrix, and then subtract 

away the sampled signal.  For instance, given two samples A and B.  If A is an 

untreated control sample, and B is a treated sample within a 30% treatment 

efficiency.  To create a matrix that contains only the sample that results from the 

treatment, one could very simply subtract away 70% of the A sample from the B 

sample.  This could then create a new matrix that contains only the signal from 

the treatment in B.  Of course this method is only an approximation but it can still 

serve a useful purpose during initial data exploration. 

 

Figure 6.11 | Depiction of the compareMatrices method. 
Two input matrices are displayed on the left (between the ‘-’ symbol). The second 
matrix is subtracted away from the first matrix, and the resulting ‘difference’ 
matrix is displayed on the right.  Here compareMode=subtract.  The blue pixels 
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represent interactions that are now negative in value, signifying that the 
interaction score was higher in the second input matrix (middle). 
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correlateMatrices.pl - performs correlation between two matrices 
 

This script can perform a correlation analysis between any two matrices.  

Only the i,j pixels that both contain valid signal as defined by the user are used to 

calculate the pearson/spearman correlation R value.  The user can choose to 

subset the cis, trans, by genomic distance, exclude 0s etc.  The output of this 

script is a plot generated by R which shows the scatter of signals between 

matrix_1 and matrix_2.  A linear regression line is drawn through the scatter and 

the correlation value is printed on the top of the plot.  The user can choose 

correlation either by the Pearson or Spearman method.   

 

Figure 6.12 | Depiction of the correlateMatrices method 
Here, two 5C matrices are being correlated.  Each dot represents a pixel position 
(i,j) within the matrix.  For each interaction, the interaction score from inputMatrix-
1 is plotted on the X axis (labeled K5) and the interaction score from inputMatrix-
2 is plotted on the Y axis (labeled GM).  This scatter plot represents the 
relationship between the two variables.  A linear regression is performed and the 
resulting fit is shown by the blue line.  An outlier removal step (0.05 percentile 
removal) is selected and the black data points are flagged as outliers and ignored 
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from all analyses (linear fit and correlation analysis).  Only the red data points are 
used.   The resulting Pearson’s R value is show on top of the plot (0.935).  
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coverageCorrect.pl - can perform coverage correction on matrix 
[balancing] 
 

This script can perform a row/col balancing on a supplied matrix.  Unlike 

the Hi-C balancing method which leverages genome-wide interaction data to 

apply the Sinkhorn-Knopp iterative balancing procedure, this script can perform 

more complicated balancing procedures which are normally reserved for non-

genome wide or 5C datasets.  This script has two main usage modes defined by 

the –cm option (correction mode).  The user can choose to either use the CIS or 

the TRANS data to infer a visibility/performance score for each row/col.  If the 

CIS mode is used, then matrix is first transformed into a z-score relative to an 

expected matrix calculated by the matrix2loess.pl script, and then the average 

of all z-score for each row/col is calculated.  If the TRANS mode is used, then the 

average signal is calculated for each row/col across the entirety of the TRANS 

space.  This average score is used a measure of how visible or how well each 

row/col performs in the experiment.  If a specific row has an average ‘high’ score 

(compared to the entire row/col distribution), then one can assume that that 

specific row/col has a technical bias which causes it to have an elevated signal 

within the experiment..  If a specific row has an average ‘low’ score (compared to 

the entire row/col distribution), then one can assume that that specific row/col 

has a technical bias which causes it to have an low signal within the experiment.  

The goal of this balancing procedure is to normalize and equalize the signal for 

each row/col within the experiment.  Each i,j interaction is corrected by the 
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product of both the row and column factor (col.f * row.f).  This method is iterative 

in nature and repeats the above steps until the procure either converges or 

meets a user-defined convergence limit.  Of course this method makes a similar 

assumption to the Hi-C balancing procedure (ICE) in that each row/col should be 

equally visible in the experiment given that region is large enough and that a 

single biological interaction can and will not alter the region wide signal.  

Normally this assumption holds true as long as the region that one is normalizing 

is at least 1-2MB in size.   For any smaller regions, any specific row/col can have 

elevated signal across the entire region as a result of a true biological signal 

(looping interaction).  In most case, it is preferred to design experiments to 

sample from at least 1-2MB of the genome and then apply the Hi-C style 

balancing procedure.   

 

Figure 6.13 | Depiction of the coverageCorrect method. 
Here, a 5C matrix is used as input to the coverageCorrect.pl script.  Correction is 
performed using correctionMode=CIS and factorMode=ZSCORE.  The resulting 
matrix has converged where the average z-score per row/col is < the 
convergence threshold (convergenceThreshold=0.05).   
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digitizePicture.pl - digitize picture into my5C matrix format 
 

This script can digitize any PNG image into a cWorld formatted matrix.  

This script can be useful for restoring an interaction matrix from a heatmap 

image. The signal of each cell, can be calculated as either the sum or mean of 

either specific color values in the RGB range or the sum, mean of all colors. 

 

Figure 6.14 | Depiction of the digitizePicture method 
Here, a 5C matrix is used as input to the digitizePicture.pl script.  Here 
colorMode=mean and thus the average R,G,B values for each pixel is calculated 
and used as the relative interaction score. The produced cWorld tsv matrix file is 
shown on the right.   
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elementPileUp.pl - pile up cData around specified list of 
'elements' 
 

This script can aggregate the interaction data around a set of genomic 

elements. This script can be useful to determine whether or not the genomic 

structure is conserved around a set of genomic elements.  For instance, if one 

were to assume that each bound CTCF protein in the genome caused a 

topologically association domain (TAD) to be formed, then if one were to 

aggregate all signal around each CTCF site, the resulting consensus structure 

should show two TAD structure on either side of the CTCF site.  This script can 

be very useful during the initial data exploration phase.  Once can ‘pileup’ the 

signal around any set of user specified elements.  The script can also apply 

distance limits or change how the signal is aggregated to help reduce artifacts 

and noise.  

 

Figure 6.15 | Depiction of the elementPileUp method 
Here, a Hi-C matrix is used as input to the elementPileUp.pl script along with a 
bed file containing the binding location of a specific protein / element.  The Hi-C 
data around is element is gather and aggregated into the resulting matrix on the 
right.    
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extractSubMatrices.pl - extract sub matrices  
 

This script can extract sub-matrices from a supplied matrix files.  Sub-

matrices can be defined either by chromosome, group (allele specification) or by 

name (5C region specification).  For instance given a supplied matrix consisting 

of all interactions between chr1, chr2 and chr3, if the user were to selected 

extraction by chr, then 9 sub-matrix files would be created.  3 CIS matrices, 

consisting of chr1xchr1, chr2xchr2 and chr3xchr3 and 6 TRANS matrices, 

chr1xchr2, chr1xchr3,chr2xchr1, chr2xchr3, chr3xchr1 and chr3xchr2.  The first 

denoted chromosome is plotted on the Y axis and the second denoted 

chromosome is denoted on the X axis.  If the user selected the –eco (extract cis 

only) option, then only the CIS matrices will be produced.  One can also subset 

the selection by genomic coordinates or by a list of genomic intervals.  This script 

is efficient in terms of both memory and speed.  Rows of the matrix are first 

written as ‘chunks’ (only those chunks that satisfy the user’s selection are written)  

Each chunk is then transposed and the procedure is repeated to achieve the 

desired result. 
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Figure 6.16 | Depiction of the extractSubMatrix method 
Here, a 3 x 3 Hi-C matrix consisting of chr14, chr15 and chr16 is used as input to 
the extractSubMatrit.pl script.  By select the –eco (extract cis only) option, only 
the CIS sub-matrices are extracted as seen on the right. 
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fillMissingData.pl - replace NAs with expected signals 
 

This script can replace missing data (NaNs) with data samples from an 

expected distribution.  The expected data distribution is calculated for each 

distinct genomic distance (distance between any two genomic loci in CIS).  A 

random drawing from the expected distribution is used to replace each NaN 

value.  This script can be useful to visualization purposes or various other custom 

analyses goals. 

 

Figure 6.17 | Depiction of the fillMatrix method 
Here, a 5C matrix is used as input to the fillMatrix.pl script.  The NaNs are filled 
from a random sampling of the distribution calculated from the LOWESS 
function. 
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generateBins.pl - create my5C formatted headers 
 

This script can generate a list of bins or genomic intervals from a list of 

fragment-level cWorld matrix headers.   
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heatmap.pl - draws heatmap PNG of matrix file 
 

This script can transform an interaction matrix into a heatmap image 

representation.  Each interaction score is linearly translated into a pixel color 

which represents the strength of the interaction.  This script has multiple options 

that can be used to fine tune the resulting heatmap image.  The –sfs (scale 

fragment size) option can be used to scale the pixel size by the row/col genomic 

loci size.  In the case of binned data (fixed-size intervals), this option has no 

effect.  In the case of fragment-level interaction data, where each row/col 

(header) corresponds to a different sized genomic interval representing the 

restriction fragment, this option would scale the pixel size in the heatmap image 

by the fragment size.  Since each pixel is the intersection of the ‘fragment’ on the 

Y axis and the ‘fragment’ on the X axis, the pixel would be a rectangle with Y1 as 

the length and X2 as the width, where Y1 is a factor which represents the row (y-

axis) fragment size and X2 is a factor which represents the column (x-axis) 

fragment size.  The –dt (drawTriangle) option can output a rotated and cropped 

‘triangle’ heatmap.  The –dd (drawDiamond) option can output a rotated 

‘diamond’ heatmap.  The –em (embed meta data) option can embed metadata 

related to the input matrix file into the resulting heatmap image.  The –dpb 

(drawPixelBorder) option can draw borders around every pixel in the heatmap.  

The –dl (drawLabel) option can write the headers for every row and column on 

the right and top of the heatmap image.  The –ocb (omitContigBorder) option can 

omit lines drawn between all contigs/chromosomes/regions in the heatmap 
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image.  The –ds (drawScore) option can write the interaction score value within 

each pixel of the matrix.  The –ps (pixelSize) option can control the x/y size of 

every cell in the heatmap image in terms of number of pixels.  The –yps (y-

pixelSize) option can control the y size of every cell in the heatmap image in 

terms of the number of pixels.  The –xps (x-pixelSize) option can control the x 

size of every cell in the heatmap image in terms of the number of pixels.  The –lt 

(logTransform) option can log transform the data before plotting in the heatmap, 

a user specified base is supplied after the –lt flag, e.g. –lt 2 is a log2 

transformation.  The –start (startColor) and –end (endColor) options are used to 

specify the range of colors (absolute value) that are to be visualized on the 

heatmap.  A start of 0 and an end of 100 would color all score between 0 and 

100, any scores outside of this range would receive either the lower bound or 

upper bound specified colors.  The –startTile (start tile) and –endTile (end tile) 

options are used to specify the range of colors (relative value) that are to be 

visualized on the heatmap.  A start of 0.25 and an end of 0.75 would color all 

score between the 25th percentile and the 75th percentile, any scores outside of 

this range would receive either the lower bound or upper bound specified colors.  

The –ebf (elementBedFile) option is a useful option to highlight specific row/cols 

that overlap a list of user specified elements.  The –sm (scale mode) option is 

used to set the auto color scaling options, --sm combined pools all CIS and 

TRANS data before determine the color scale bar, --sm separate colors the CIS 

and TRANS data separately using two distinct color scale bars.  The –pc 
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(positive color) option controls the colors to use for the positive values in the 

matrix.  –pc white,red,blue would color all positive colors from white to red to 

blue from the user specified start and end values.  Named colors as well as 

RGBA codes can be supplied.  For example white,255.0.0.0,blue would again 

color all positive colors from white to red to blue from the user specified start and 

end values.  The –nc (negative color) option does the same as the above –pc 

option but for the negative values of the interaction matrix.  The –mc (missing 

color) option controls the color to use for all missing data (e.g. NaNs).  The –t 

(transparency) option controls the transparency to use for all colors in the 

heatmap [0-255]. 

 

Figure 6.18 | Depiction of the heatmap method 
Here, an example cWorld tsv matrix file is converted into a heatmap image, 
depicted on the right.   
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insulation2tads.pl - create tad specific headers 
 

This script can in an insulation vector and a list of called boundaries 

calculated in the matrix2insulation.pl and translate them into a list of 

consecutive TADs.  Consecutive TADs are defined as the space between any 

two called TAD boundaries.  There are additional options once can employ to 

either limit the set of boundaries to use or to filter out genomic spans that contain 

missing data in the insulation vector.  The strength of each TAD is defined as the 

difference between the abs(max(insulation) – min(insulation)) for all insulation 

values within the TAD region (between two boundaries). 

 

Figure 6.19 | Depiction of the insulation2tads method 
Here, an example Hi-C matrix is used to first calculate both an insulation vector 
and a list of minima (boundaries).  The insulation vector and boundaries as used 
as input to the insulation2tads.pl script and a set of nested TADs is inferred.   
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interactionPileUp.pl - pile up cData around specified list of 
'elements' 
 

This script can ‘pile up’ or aggregate interaction data between a set of 

element:element interactions. This is useful to determine whether or not a set of 

elements have a tendency to interact in 3D space. 

 

Figure 6.20 | Depiction of the interactionPileUp method 
Here, the area surrounding a set of element:element interactions is extracted 
from an input matrix, aggregated and visualized in the two heatmaps on the right. 
The top heatmaps shows little interaction (clustering) between the elements, 
whereas the bottom heatmaps shows a much stronger (clustering) of the 
elements. 
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matrix2anchorPlot.pl - transform each row/col into 4C style 
'anchor' plot. 
 

This  script can transform an interaction matrix into 3C/4C style ‘anchor’ 

plots.  Since each row/col specifies all interactions within a specific genomic 

interval (e.g. the anchor), this script can create a plot per every row/col.  This 

script can plot the expected signal per distance and the observed signal for every 

row/col. 

 

Figure 6.21 | Depiction of the matrix2anchorPlot method 
The anchor bin/fragment is shown in orange.  The red line shows the observed 
data extracted from the input matrix.  The solid black line and dotted black line 
are from the LOWESS calculation run on the input matrix, the solid black line is 
the LOWESS mean (expected mean) and the dotted black line is the LOWESS 
stdev (expected stdev).  
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matrix2bed12.pl - transform matrix into bed12 format (track per 
row) 
 

This script can transform an interaction matrix into a bed12 format which is 

useful for visualizing a set of interactions in the UCSC genome browser.  It is 

useful to first subset or call significant interactions in the matrix before attempting 

to visualize all possible interactions in the genome browser.         

 

Figure 6.22 | Depiction of the matrix2bed12 method 
In red, a set of 5C interactions (peak called) are visualized.  
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matrix2compartment.pl - perform PCA on input matrix 
 

This script can perform a PCA analysis on a supplied input matrix.  The 

PCA analysis is primary used as a proxy measure of the compartment signal 

found in almost all interaction matrices.  Prior to running the PCA analysis, the 

input matrix is first transformed into a z-score matrix (via matrix2loess.pl).  Then 

the z-score matrix is transformed into a correlation matrix (via 

matrix2correlation.py).  The correlation matrix is then used as input to the 

sklearn.decomposition.PCA function and N components are calculated. The 

explained variance ratio of each component is output in a plot, and the 

eigenvalues of each bin along eigenvector 1 is used a measure of A or B 

compartment signal.  Eigenvector1 is filliped so that the most gene rich 

compartment (positive or negative values) is positive.  This ensures that the A 

compartment is always detected as the positive eigenvalues.  The eigenvalues 

for eigenvectors 1 – 3 are plotted and the eigenvalues for eigenvector 1 are 

output in a bedGraph file for visualization in the UCSC genome browser.  The 

positive values are colored red, and represent bins that are a member of A 

compartment (the active genomic compartment).  The negative values are 

colored blue, and represent bins that are a member of the B compartment (the 

inactive compartment).  Careful consideration must be applied this method and is 

described in detail in Chapter 4 of this thesis.  PCA analysis is not guaranteed to 

detected and describe the active and inactive compartments.  PCA analysis will 
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only detect the source of the most variation in the matrix, which sometimes can 

the two arms of the chromosome.   

 

Figure 6.23 | Depiction of the matrix2compartment method 
First (image 1), the input 3 x 3 Hi-C matrix is shown on the left.  Next (image 2) 
depicts the LOWESS calculation run on the input matrix.  Next (image 3) shows 
the z-score transformation of the input matrix.  Next (image 4) shows the 
correlation matrix of the z-score matrix.  Finally (image 5) shows the PCA 
eigenvector decomposition of the correlation matrix.    
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matrix2direction.pl - calculate directionality [tads] on matrix 
 

This script can detect the directionality of every row/col (bin) within a 

matrix.  The directionality measure, described previously [2], is a useful metric for 

detecting and summarizing TADs.  The directionality score is defined as the log2 

ration between the mean signal upstream of the bin, and the mean signal 

downstream of the bin.  Calculating the directionality index for every bin along the 

chromosome creates a directionality vector.  As one travels through the 

directionality vector and approaches a TAD boundary, the directionality index will 

rapidly shift from very positive to very negative, this transition point can be 

detected and inferred as a TAD boundary.  The amount of the shift can be used 

as a proxy measure for the boundary ‘strength’.  

 

Figure 6.24 | Depiction of the matrix2direction method 
A directionality index is calculated for every bin and visualized in the above 
vector (colored black).  
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matrix2distance.pl - cumulative reads versus distance 
 

This script can translate a matrix into a pairwise tsv file with the following 

format.  Column 1 = y-axis header, column 2 = x-axis header, column 3 = 

interaction distance between the two interacting loci.  Interaction distance is 

defined as -1 if the interaction is between two different chromosomes (TRANS) or 

the midpoint between the two genomic intervals if the intervals are binned (fixed 

sized intervals) or the closest distance if the intervals vary in size (fragment 

level).  This script also plots a useful metric, which is the cumulative signal per 

genomic distance.  This plot can be used to infer quality of a interaction matrix (or 

experiment). 

  



 
 
 

285 

matrix2headerBed.pl - dump matrix headers as BED file 
 

This script output a list of all matrix headers in BED format – useful for 

overlapping with other genomic element/signal tracks or integrating into the 

UCSC genome browser.  

 

Figure 6.25 | Depiction of the matrix2headerBed method 
On top (red, green and blue) is a BED track visualizing the 5C primers designed 
for an example region.   



 
 
 

286 

matrix2info.pl - get matrix info 
 

This script can be used to quickly asses various metrics contained within a 

supplied interaction matrix such as:  number of contigs, percent of cis data, 

percent of trans data, sum of matrix etc.   
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matrix2insulation.pl - calculate insulation index (TADs) of 
supplied matrix 
 

This script is used to calculate the insulation index of every row/col (bin) in 

a given interaction matrix.  This script has been previously described in detail 

[46].  Briefly, a square is slid along the diagonal of the matrix.  The size of this 

square is defined by the –is (insulation square size) option.  The aggregate signal 

is then calculated according to the –im (insulation mode) option.  This in 

essences assigns a singular value to each bin (row/col) within the matrix.  The 

average of all insulation signals is calculated, and then each insulation signal is 

translated into a log2ratio (log2(insulation.i/mean(insulation)) where insulation.i is 

the insulation value for each bin and mean(insulation) is the mean signal for all 

insulation values.  The resulting normalized insulation values are then plotted as 

a QC metric.  A proper insulation vector should look smooth and contain large 

valleys followed by peaks throughout the entire chromosome.  Valleys represent 

bins that have low interactions occurring across them.  Peaks represent bins that 

have high interactions occurring across them.  Valleys are inferred as TAD 

boundaries and peaks are inferred as the interior of a TAD.  To detect peaks and 

valleys (minima and maxima) a method similar to the zero-derivative procedure is 

used.  Briefly, the slope of the insulation vector (+/- --ids (insulation delta span)) 

is calculated.  Every zero crossing of the slop represents either a PEAK or a 

VALLEY.  Valleys are then detected and thus the TAD boundaries are called.  
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Figure 6.26 | Depiction of the matrix2insulation method 
An example insulation plot is shown.  In Black is the insulation vector.  In Blue is 
the first derivative of the insulation vector.  In red is a visualization of all zero-
crossings of the blue line (derivative).  In green are all detect minima 
(boundaries) of the insulation vector.  Gray vertical bars represent areas with no 
data (NaN).  
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matrix2insulationRange.pl - calculate insulation index over 
range of square sizes 
 

This script can calculate a series of insulation vectors for a range of –is 

(insulation square size).  For instance, the insulation vector for all squares sized 

from 40,000 bp to 4,000,000 bp.  This script is a useful metric for quantifying 

structure across various distance regimes.        

 

Figure 6.27 | Depiction of the matrix2insulationRange method 
Here all possible insulation square sizes are calculated for an example matrix.  
Each row in the above heatmap correlated with an increasing insulation square 
size, starting at the bottom at 40kb, to the top at the maximal distance in the input 
matrix.  Blue regions signify minima in the insulation vectors and can be inferred 
as regions of high insulation (boundaries).   Red regions signify regions with high 
interaction or high local compaction (areas with low insulation). 
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matrix2loess.pl - calculate the loess (expected/stdev/zScore) for 
a given matrix 
 

This script can calculate the expected and standard deviation signal for 

each distinct genomic distance contained within the input data.  Rather than 

representing the expected signal per genomic distance as a mathematical 

model/function of genomic distance x genomic signal, I instead chose to use 

LOWESS to estimate the relationship between distance and signal.  The 

LOWESS method [138] (Locally Weighted Regression: An Approach to 

Regression Analysis by Local Fitting) is a "LOcal regrESSion" technique that 

utilized linear least squares regression analysis.  LOWESS has one option which 

can drastically alter the performance of the fit, namely the ‘alpha’ parameter.  

This alpha parameter controls the amount of N closest data points to the anchor 

when performing the linear regression.  For example, given a X/Y relationship 

within X being equal to the genomic distance and Y being equal to the observed 

interaction signal and the desire to calculate an average (or expected) Y for 

every X one can utilize the LOWESS method in the following manner.  Using a 

an alpha parameter of 0.05 (or 5% of the total data points) would cause 

LOWESS to calculate a locally weighted linear regression of the 5% closest data 

points along the x axis for every distinct X value.  Traditional the tri-cubic 

weighing function is used to determine weights for every data point, however one 

could alter the weight function as needed.  LOWESS in its simplest form is quite 

sensitive to outliers, in order to remove outliers and produce a more 
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representative fit of the input data, I adapted the original LOWESS method by 

adding an two-step procedure which includes an IQR outlier filter.  This 

procedure encompassed two passes of the LOWESS algorithm through the 

entirety of data.  The first pass works as previously described, producing both a 

regression value (weighted mean and a weighted stdev) for every X (expected 

mean signal and expected stdev signal for every genomic distance).  During the 

second pass, only those Y points that fall within Q1 - 1.5 * (IQR) > Y <  Q3 + 1.5 *  

(IQR) are used in the second pass linear regression.  This additional steps 

creates a far more robust estimation of the relationship between the two 

variables.  Once the modified robust LOWESS procedure is completed, various 

transformations of the input data can be calculated, such as a z-score 

transformation.  A z-score is defined as    where x = observed data, μ = 

LOWESS mean of a specified genomic distance (X), and σ = LOWESS stdev of 

a specific genomic distance.  This z-score transformation in effect normalizes out 

the distance dependency for every interaction.  Various other metrics can be 

calculated such as the log2(observed/expected) or observed-expected.  These 

transformations are calculated and each one is output in a separate matrix file for 

further use.  One area of the LOWESS calculation that can be altered for reduce 

computation time is the fact that not every distinct X (genomic distance) needs to 

be represented in the final distribution.  By leveraging the –caf (cis approximate 

factor) one can control the precision of the LOESS calculation by either setting 

the –caf = 1, which will calculate an expected signal for every distinct X, or by 



 
 
 

292 

setting the –caf = 1000, which divides every genomic distance by 1000 and takes 

the floor.  This in essence bins or clusters the data into discrete distance bins 

which in effect reduces the number of distance X that must be used in the 

LOWESS calculation.   

 

Figure 6.28 | Depiction of the matrix2loess method 
Here an example scatter plot of interaction signal (labeled C counts) on the Y 
axis, and genomic distance on the X axis.  The solid red line is the LOWESS 
expected value (weighted mean), the dotted red line above and below the solid 
line signify the mean +/- 1 stdev.  Each black dot represent an interaction (pixel) 
in the input matrix, it’s location along the X axis signifies its genomic distance 
between the two genomic loci and its location along the Y axis signifies the 
observed interaction count.  
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matrix2pairwise.pl - transform tsv matrix into 3 column tsv file 
 

This script can translate a matrix into a pairwise tsv file with the following 

format.  Column 1 = y-axis header, column 2 = x-axis header, column 3 = 

interaction score between the two interacting loci.  This transformation and 

resulting file format can be useful for integrating with other data types or 

interacting with various plotting methods. 

 

Figure 6.29 | Depiction of the matrix2pairwise method 
Above a transformation from a cWorld tsv matrix file to a ‘pairwise’ (3 column tsv) 
file is visualized.   
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matrix2scaling.pl - transform matrix into scaling (polymer) plot 
 

This script can transform and summarize a matrix into a ‘scaling plot’.  

This plotting technique is useful for inferring the state of the polymer as the log-

transformed relationship between genomic distance and signal.  The slope of line 

represents various theoretical polymer states and can be used to infer various 

biological models.  The shape of this line can also be a useful metric in 

evaluating quality of a given experiment or similarity between biological 

replicates.  This script can take as input N matrices and each matrix can be 

summarized into a single ‘scaling’ line and plotted together for visual comparison.  

The (matrix2loess.pl) and LOWESS method are used to estimate the 

relationship between distance and signal. 

 

Figure 6.30 | Depiction of the matrix2scaling method 
Two input matrices are transformed into ‘scaling plots’ above.  One input matrix 
is show in red, the second is show in blue.  The green vertical box represents the 
regime from 500kb – 7.5MB.  The slope of each line is calculated for all points 
within the regime (green box) and is shown on the plot. 
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matrix2stacked.pl - transform matrix into stacked anchor matrix 
 

This script transforms a matrix into a ‘stacked’ matrix.  A stacked matrix is 

composed of linear stacks of each row centered on the diagonal bin.  This van be 

visualize as taking a 1 x 21 row from the matrix, centered on each diagonal bin.  

These 1x21 rows are then stacked and output in a matrix format.  This 

transformation is useful for visualizing structure relative to genomic distance, e.g. 

performing this transformation on all bins/rows that contain a gene.  

 

Figure 6.31 | Depiction of the matrix2stacked method 
Here the matrix2stacked transformation is visualized with the input matrix on the 
left, and the stacked matrix on the right.  Here only the first 2MB of interactions 
are show on the stacked matrix.   
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matrix2symmetrical.pl - transform rectangular matrix into 
symmetrical matrix 
 

This script can transform a matrix into a symmetrical matrix.  This 

operation is described as taking the union of all distinct row/col headers, 

producing a new matrix, and then filling in all available interaction data.  

Interactions between row/col headers that were not defined in the original matrix 

are replaced with a NaN signal.  This transformation can be useful when a 

symmetrical matrix is required for specific analyses (e.g. Sinkhorn-Knopp). 

 

Figure 6.32 | Depiction of the matrix2symmetrical method 
Here, the matrix2symmetrical transformation is visualized.  The input non-
symmetrical 5C matrix is show on the left, and the symmetrical form of this matrix 
is shown on the right.  For the 5C input matrix, all FOR primers are show on the 
Y axis and all REV primers are shown on the X axis.  In the symmetrical matrix, 
the union of all FOR/REV primers are shown on both axes.  All signal between 
FOR:FOR and REV:REV are inferred as NaN (gray pixels). 
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matrix2webplot.pl - draws 'web-plot' of matrix file 
 

This script can transform a matrix into a ‘webplot’ visualization.  A webplot 

consists as two vectors which represent the row and col headers in the supplied 

matrix.  The row header vector is color blue, and plotted at the top of the diagram 

from left to right, the column header vector is colored red and is plotted at the 

bottom of the diagonal from left to right.  Interactions are then visualized as lines 

between any two points along the top (row) and bottom (column) vectors.  The 

color of the line and or thickness of the line can be used as a measurement of 

signal intensity.  This can serve as an important visualization technique to 

describe genomic interactions.  Depending on how the input matrix is pre-

processed (e.g. binarized to include only the significant interactions), various 

results/biological meanings can be visualized in the webplot.   

 

Figure 6.33 | Depiction of the matrix2webplot method 
Here, the matrix2webplot transformation is visualized. All y-axis FOR primers 
(rows) are shown on the top of the webplot, visualized as small circles.  All x-axis 
REV primers (cols) are shown on the bottom of the webplot, visualized as small 
circles.  All interactions (FOR:REV) with an interaction score >= 50 are shown on 
the webplot as a solid red line. 
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primer2plates.pl - layout primers in 96-well plate format 
 

This script can quickly transform a tsv list of 5C primers (to be ordered) 

into an Invitrogen formatted plate specification order form.   
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reOrderMatrix.pl - re-order matrix by list of headers 
 

This script can re-order a matrix by a user specific list of ordered headers.  

This can be useful for clustering, or sorting an interaction matrix by any means 

desired.  This script can also be used to remove or add specific row/cols.  A user 

supplied –yohl (y ordered header list) file is used to set the ordering and 

composition of the row (y-axis) headers.  A user supplied –xohl (x ordered 

header list) file is used to set the ordering and composition of the column (x-axis) 

headers. 
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scaleMatrix.pl - normalizes matrix sum - scales to 10^6 
 

This script can scale a matrix to have a desired sum. By setting the –st 

(scaleTo) option, this script will scale all signal within the matrix to have the 

desired sum.  This transformation can be used to normalize matrices for read 

depth before further analyses/comparison.   
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singletonRemoval.pl - detect and remove singleton outliers 
 

This script can detect and remove singletons (single pixels) within a matrix 

that have a higher than expected signal. In the case of 5C experiments, it is 

impossible to detect and remove PCR blowouts during the mapping steps (since 

every chimeric ligation product is a combination of two 5C primers).  The 

sequence of these chimeric ligation products is identical in the case of distinct 

molecules or in the case of PCR duplications from a single molecule.  These 

PCR duplicates come through into the interaction matrix and can be seen as 

pixels with a higher than normal signal.   To detect and remove these 

interactions, the matrix is first transformed into a z-score matrix via the 

(matrix2loess.pl) script, and then all pixels with a z-score >= SZT are remove, 

where SZT is the user specified singleton z-score threshold.  Separate singleton 

z-score thresholds can be set for both the CIS and TRANS data to produce the 

desired filtering.  It can be extremely useful to remove all singletons early in the 

data processing steps to avoid adding noise which can obscure later downstream 

analyses.  
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Figure 6.34 | Depiction of the singletonRemoval method 
Here, the singletonRemoval method is visualized.  First the input matrix is 
transformed into a z-score matrix (via matrix2loess), then any pixel with a z-score 
>=3 is removed and set to NaN (gray pixel).    
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subsetMatrix.pl - subset matrix by distance, or by BED file (bin 
overlap) 
 

This script can subset an input matrix by various means.  --minDist and –

maxDist control the distances that are to be included in the subset matrix.  Any 

interactions with distance x which fail to satisfy minDist > x < maxDist will be set 

to NaN.  --lowerScore, --upperScore and --scoreSubsetMode control which 

interactions will be included in the subset matrix.  When –scoreSubsetMode is 

set to outer, then scores which fail to satisfy y < lowerScore or y > upperScore 

will be set to NaN.  When –scoreSubsetMode is set to inner, then scores which 

fail to satisfy lowerScore > y < upperScore will be set to NaN.  –ec (excludeCis) 

can be used to exclude all CIS data.  –et (excludeTrans) can be used to exclude 

all TRANS data.  –ebf (elementBedFile) can be used to include only those bins 

(row/col) which directly overlap the list of elements found in the supplied element 

bed file.  Multiple element bed files can be supplied to produce the desired effect.  

--yebf and --xebf can be used to subset the rows (y) and columns (x) separately 

by different element bed files.  –z (zoomCoordinate) can be used to subset only 

those bins (row/col) which overlap genomic interval.  Multiple genomic intervals 

can be supplied to produce the desired effect.  --yz and --xa can be used to 

subset the rows (y) and columns (x) separately by different genomic intervals.  

By leveraging a variety of these options, users can subset input matrices by an 
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almost unlimited means.

 

Figure 6.35 | Depiction of the subsetMatrix method 
Here an assortment of multiple selections via genomic coordinate and bed file 
overlap are visualized.  The input matrix is seen on the left and the final (subset) 
matrix is shown on the right.  
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symmetrical2seperate.pl - transform symmetrical matrix into 
non-symmetrical 
 

This script performs the inverse of (matrix2symmetrical.pl), assuming 

the transformation was originally performed on a 5C cWorld matrix file.  This 

script will place all FOR primers on the y-axis  (rows) and all REV primers on the 

x-axis (cols). 

 

Figure 6.36 | Depiction of the symmetrical2seperate method 
Here, the matrix2symmetrical transformation is visualized.  This transformation is 
the inverse of matrix2symmetrical. 
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Conclusions 
 

cWorld has become quite robust over the past few years and will only 

continue to improve with continued use and development.  cWorld has now been 

used in several high impact publications.  As further analyses and tools are 

added and become automated, the speed at which a 3C, 5C or Hi-C experiment 

can be processed, analyzed and biological significance inferred will continue to 

improve.  To continue to expand and improve the cWorld toolkit not only must 

additional tools be added, but specific protocols must be improved and adapted 

to new file formats and advanced processing techniques.    
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CHAPTER VII:  Conclusions and future directions 
 

Preface 
 

This conclusions chapter is partially adapted from a review written by 

Noam Kaplan, Job Dekker and myself entitled “The Hitchhiker’s Guide to Hi-C 

Analysis: Practical guidelines” [86], as well as the discussions sections of 

Chapter II, II, IV, V and VI. 

Introduction 
 

The genome structure field has grown exponentially over the past few 

years, mainly due to the increased availability of NGS.  Prior to NGS, less 

discriminate and more specific methods such a microscopy, FISH or even PCR-

based 3C were used to gain insights into the organization and structure of 

genomes.  In only a short period of time, NGS technologies have grown from 

yielding a few hundred thousand short reads to being able to produce billions of 

long reads in less time and for less money.  This advancement has unlocked 

cutting edge research to thousands of scientists worldwide and has driven the 

development of hundreds of genome-wide functional assays and thousands of 

computational methods to analyze this new and exciting data.   

This thesis first introduced 3C based methods (3C-Seq, 5C, Hi-C etc), and 

then applied the methods to gain insights into the relationship between genome 

structure and function in the context of two dosage compensation systems.  
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Then, insights into the long range interaction landscape of genes and enhancers 

across a panel of ENCODE cell lines was gained by leveraging a targeted 5C 

based study.  These data demonstrated and characterized a set of significant 

looping interactions between genes and enhancers, constructed a network of 

regulatory elements and provided insights into the roles of insulator proteins (e.g. 

CTCF) in the context of controlling gene expression.  During this process, 

multiple novel processing, analysis and visualization methods have been 

developed and published.  These methods aim to lower the bar needed for 

researchers to be able to perform, analyze and interpret genome structure data 

when applied to specific biological contexts.  This thesis has discussed the 

necessary considerations one should make when processing, analyzing and 

interoperating genome structural data.  This thesis has also introduced and 

discussed a set of tools for processing, manipulating, analyzing and visualizing 

genome structural data.  Taken together, the insights gained from the work 

described in this thesis have made a significant contribution to the complex 

relationship between genome structure and genome function. 

Worm Dosage Compensation 
 

The results of Chapter II  support the model that TAD structure on the X 

chromosome mediated by DCC binding to rex sites creates a 3D topology that 

acts chromosome-wide to repress gene expression. Given that changes in TAD 

boundaries occur locally, while changes in gene expression occur chromosome-
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wide, a parsimonious model posits that DCC-dependent changes in X 

chromosome structure imposed by rex–rex interactions drive the chromosome-

wide reduction in gene expression. Potential DCC-dependent nuclear positioning 

of the X chromosome might also affect gene expression, as speculated by others 

[54]. 

In summary, DCC-induced formation of TAD structure on the X 

chromosome demonstrates a striking remodeling of chromosome topology that 

reveals a central role for condensin in shaping the 3D landscape of interphase 

chromosomes. Not only does condensin compact and resolve mitotic and meiotic 

chromosomes, it acts as a key structural element to regulate gene expression. 

No other molecular complex or set of DNA binding sites is yet known to cause 

comparably strong effects on megabase-scale TAD structure in higher 

eukaryotes [55]–[57]. The new understanding of the topology of dosage-

compensated chromosomes provides fertile ground to decipher the detailed 

mechanistic relationship between higher-order chromosome structure and 

chromosome-wide regulation of gene expression. 

Mouse Dosage Compensation 
 

The study described in Chapter III reveals that the inactive X chromosome 

is a surprisingly elaborate entity, with a global partitioning into two mega-domains 

and loss of TAD organization, except at clusters of genes that are still expressed 

from the otherwise silent Xi.  TADs were previously thought to be highly stable 
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across cell generations and differentiation [2], [3], and their presence or 

maintenance not to require transcription in general.  However, our study 

demonstrates that 1) TADs can indeed be lost in some contexts (as also 

observed on mitotic chromosomes [72], although in the case of the Xi, TAD loss 

is not a transient state but is stably transmitted through cell division) and that 2) 

gene expression and/or binding of factors such as CTCF can enable their 

maintenance and/or de novo re-creation.  The findings show that gene silencing 

and loss of accessibility is accompanied by loss of structure, but that de novo 

gain of escape corresponds to re-creation of local structure, and further that 

transcription at clusters of genes coincides with TAD formation.  Together these 

findings suggest that gene expression and DNA binding factors may be the 

driving forces of TAD organization in the context of the inactive X, which is 

otherwise devoid of TADs.  The Xi may therefore represent a sequence-

independent chromosome state at the structural level, from which sequence 

specific TADs can arise.  

The reduced level of facultative escape in cells where the mega-domain 

has been deleted is intriguing.  Although escape can be quite variable even in 

normal cells, three NPC clones derived from the D9 ΔFT mutant ESC line 

showed reduced escape by RNA FISH.  These results suggest that during XCI 

the mega-domain boundary and the bipartite folding of the Xi that it induces, may 

modulate or affect the process leading to facultative escape. Constitutive 

escapees are much less affected by the boundary deletion and presumably have 
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an intrinsic capacity to override the XCI process [80].  Facultative escapees on 

the other hand are first silenced during XCI and then re-expressed ([81], [82] and 

unpublished data).  Although the mega-domain boundary region does not appear 

to interact with escapee regions in NPCs and is transcriptionally silent in NPCs, 

this region is transcribed and possibly euchromatic at the onset of XCI (MA and 

EH, unpublished observations).  Transient interaction of this region with 

facultative escape loci during differentiation may thus occur and may be sufficient 

to regulate the local amount of escape and/or re-establish TADs at escape loci 

due to its unusual chromatin status and atypical enrichment in CTCF binding 

[83].  An additional, but not mutually exclusive, model is that the boundary region 

helps position the Xi in a particular sub-nuclear location during or after XCI, that 

facilitates the establishment of a given escape pattern.  These results establish 

the Xi as a powerful model system for studying the mechanistic interrelationships 

between chromosome conformation and gene regulation, and point to a key role 

for gene activity in the establishment of chromosome structure at the level of 

TADs in the context of facultative heterochromatin. 

Landscape of gene promoters 
 

The data in Chapter V provide new insights into the landscape of 

chromatin looping.  Here, the results demonstrate that physical chromatin looping 

can bring genes and distant elements into close spatial proximity.  Besides 

generating a rich dataset reflecting specific gene-element associations, the 
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average interaction profile of TSSs with surrounding chromatin reveals several 

general principles regarding the asymmetric relationships between genomic 

distance, the order of elements, and the formation of looping interactions. The 

bias for upstream interactions may indicate that the protein complexes on many 

TSSs may be asymmetric and may preferentially interact on one side with 

enhancer-protein complexes approaching along the chromatin fiber, as would be 

proposed by the enhancer tracking model [136].  Furthermore, while these 

average looping profiles may facilitate computational prediction of long-range 

interactions throughout the genome, the fact that interactions skip genes and 

CTCF sites suggests that additional mechanisms for target selection and gene 

insulation exist.   

With further 3C technology development and increases in sequencing 

capacity, similar high-resolution studies should become feasible to map specific 

long-range interactions throughout the genome, which may uncover additional 

principles that guide chromatin looping.  Such insights will also be critical for 

interpreting genome-wide association studies that often identify regions with 

regulatory elements but not their distally located target genes.  

Practical Guidelines 
 

As discussed in chapter IV of this thesis there are many considerations 

regarding the design and analysis of genome structural projects.  Given the only 

very recent development of methods to probe the three-dimensional genome, 
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many new analysis tools and methods will be developed and enhanced in the 

coming years, however these guidelines and principles should apply to even 

variations of the original Hi-C method and may be applicable to other similar 

methods (such as ChIA-PET). 

Before starting a genome structure experiment, it is important to first, 

carefully consider the desired resolution of the data.  Depending on the 

experimental goals, one must carefully choose between either a 5C or Hi-C (or a 

hybrid capture / targeted enrichment strategy).  The space of all possible 

interactions, which is surveyed by Hi-C experiments, is very large. For example, 

consider the human genome. Using a 6-bp cutting restriction fragment, there are 

almost 106 restriction fragments, leading to an interaction space on the order of 

1012 possible pairwise interactions. Thus, achieving maximal resolution is a 

significant challenge without adequate sequencing depth.  To adequately cover a 

genome-wide Hi-C experiment at high resolution (5 kb) one may require billions if 

not tens of billions of mapped reads.  However if one is interested in only a 

specific loci of the genome (say 1 MB in length) and given the same requirement 

of high resolution (5 kb), one may only require tens of millions of reads.   

In light of this, it is crucial to establish the goals of the experiment, 

meaning whether one is most interested in either large-scale genomic 

conformations (e.g. genomic compartments) or specific small-scale interaction 

patterns (e.g. promoter-enhancer looping).  If the goal is to measure large scale 

structures, such as genomic compartments, then a lower resolution will often 
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suffice (1MB-10MB).  Here, Hi-C using a traditional 6bp-cutting enzyme could be 

used.  However, if the goal is to measure at a finer scale the very specific 

interactions of a small region, e.g. an enhancer of <500bp, then one should 

choose to use a restriction enzyme that cuts more frequently (e.g. 4bp) and a 

method that does not measure the entire genome, but instead focuses on 

exploring only a subset of the genome (i.e. 3C/4C/5C). 

In Hi-C the maximum resolution of a dataset is determined by several 

factors, first and foremost is the sequencing depth.  Given increasing amounts of 

reads, one will cover more of the interaction space and thus improve the 

resolution.   

Library complexity is another factor.  Library complexity is defined as the 

total number of unique interactions that exist in the Hi-C library.  A library with a 

low complexity level (low number of unique interactions) will saturate quickly with 

increasing sequencing depth e.g. less and less information will be gained from 

additional sequencing.  The saturation curve can be estimated from a dataset by 

plotting the cumulative number of unique interactions seen versus read depth.   

Chapter IV has also touched upon interpretations of the data type and 

methods by which one can extract biological information.  A key measurement of 

the quality of a Hi-C experiment is the percent of cis reads (e.g. the number of 

interactions between the same chromosome).  Normally the percent of reads 

which are CIS is between 60–80.  A high CIS percent is normally correlated with 

a high(er) quality Hi-C datasets.  This is for obvious reasons, assuming no 
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crosslinking and only random ligation, one would expect most of the reads to fall 

in TRANS.  This is for the sample reason that at least for human/mouse, the 

number of possible interactions in TRANS is much larger than the number of 

possible interactions in CIS.  With random ligation, the TRANS space should 

contain more reads.  Therefore in a way, the percent of reads in CIS is a proxy 

measurement for the perceived percent of random ligation occurring in an 

experiment.   

The second feature of the data is the distance-dependent decay of 

interaction frequency. In other words, interaction frequency between loci in cis 

decreases, on average, as their genomic distance increases. In the interaction 

matrix this pattern appears as a gradual decrease of interaction frequency the 

further one moves away from the diagonal. This pattern may be due to random 

movement of the chromosome, following the intuition that loci which are nearby 

in the genome will interact frequently if they move randomly in 3D space. The 

theory underlying this type of intuition is well established in the field of polymer 

physics [99], [100].  Depending on the experimental goals, one may wish to 

remove or normalize away this distance dependent decay, to then better highlight 

interactions that may be significantly higher or lower than their expected signal 

given their genomic distance.   

A third feature of the data is the genomic compartments [1]. This 

interaction pattern appears on the interaction matrix as a “checker-board”-like 

pattern consisting of alternating blocks, ~1-10 mb in size, of high and low 
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interaction frequency. This interaction pattern can be explained by a simple 

underlying phenomenon where chromosomes are composed of two types of 

genomic regions that alternate along the length of chromosomes and where the 

interaction frequencies between two regions of the same type tend to be higher 

than interaction frequencies between regions of different types. We refer to these 

two types as A and B compartments [1]. 

Analysis and characterization of the genomic compartments can highlight 

regions of either an active or inactive state.  Changes in the compartments 

between two samples can uncover large scale differences between the 

expression state of the samples.  One can use this very simple comparison to 

quickly pinpoint regions that may show quite different expression levels between 

the genes contains within the regions of compartment difference.   

A fourth feature of the data are the topologically associations domains 

(TADs)  While genomic compartments are useful for understanding general 

organization principles of the genome, many biological processes occur at a 

smaller scale. Specifically, enhancer-promoter interactions that underlie gene 

regulation in metazoans often take place at sub-Mb distances. Recently, 3C-

based techniques have revealed the existence of sub-Mb structures that are 

referred to as topologically associating domains or TADs [2]–[5]. TADs are 

contiguous regions in which loci tend to interact much more with each other than 

with loci outside the region. In the interaction matrix TADs appear as square 

blocks of elevated interaction frequency centered on the diagonal. These 
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domains have been shown to be associated with gene-regulatory features and it 

is hypothesized that TADs specify elementary regulatory micro-environments in 

which promoters interact with enhancers [7], [102], [103]. In addition, TAD-like 

structures of various sizes have been observed in species ranging from 

mammals to bacteria [2]–[5], [104]. 

The block-like structure of TADs clearly indicates elevated interaction 

frequency within a TAD. However, given that we measure a population average 

and the observed intricate hierarchies of such structures, interpretation of TADs 

is not straight-forward. It has been proposed that TAD-like structure may be 

driven at least in part by looping interactions between loci located within them 

[105] or by supercoiled plectonemes [104], [106]. Additionally, some genomic 

features such as CTCF and cohesin binding have been shown to be enriched at 

TAD boundaries [2], [11]. It remains unclear what physical structures TADs 

exactly represent and how they are specified in the genome. 

The fifth and final feature of the interaction matrix is a point interaction. 

While TADs may be relevant for constraining promoter-enhancer interactions, the 

actual regulatory interactions are probably of much smaller scale. Ultimately, 

protein-mediated interactions of two localized genomic elements, e.g. enhancers 

and promoters, which are typically up to a kb in length, can activate the 

expression of a gene. Given sufficient resolution, we expect such point 

interactions to appear as a local enrichment in contact probability.  Point 

interactions have been discussed extensively in Chapter V of this thesis. Hi-C 
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methods currently do not support a high enough resolution (< 1 kb) that would be 

necessary to detect and annotation functional point interactions between say a 

promoter and an enhancer.  With added sequencing depth coupled with 

enrichment strategies (5C, hybrid capture), one can focus the sequencing power 

on a subset of the genome and thus increase the resolution.  

cWorld 
 

cWorld has become quite robust over the past few years and will only 

continue to improve with continued use and development.  cWorld has now been 

used in several high impact publications.  As further analyses and tools are 

added and become automated, the speed at which a 3C, 5C or Hi-C experiment 

can be processed, analyzed and biological significance inferred will continue to 

improve.  To continue to expand and improve the cWorld toolkit not only must 

additional tools be added, but specific algorithms must be improved and adapted 

to new file formats and advanced processing techniques.  One specific focus is 

on the hdf5 file format that has been recently adapted to store Hi-C data.  This 

file format features a hierarchical chunked storage scheme which allows rapid 

retrieval of specific data chunks.  The user has control of the chunking strategy 

and can be fined tuned to fulfill the user’s exact needs.  All chunks are stored on 

disk and the entire matrix is never required to be loaded into memory.  Interaction 

with the matrix object is completely abstract to the user via the h5py library in 

python.  However, one can take advantage of the internal file structure to process 
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the matrix chunk by chunk to limit the amount of time needed reading the disk.  

Each chunk can be loaded to memory, or even an entire stripe (multiple rows) 

can be loaded into memory and processed at the same time.  A further feature of 

the hdf5 file format and the h5py library is its multi-read, single write 

implementation.  This means that the hdf5 file can be accessed in parallel and 

computation can be sped up by using multiple cores/threads.  Quite a few scripts 

have now been re-worked and re-factored in python with knowledge of the hdf5 

data format to achieve incredibly efficient time and space cost.  As cWorld 

continues to grow, it will need to move most of its heavy computation to a python 

environment with access to the hdf5 data file.  Specific aspects of cWorld will not 

benefit largely from moving to python or having access to the hdf5 file, as these 

transformations are simple in nature and would not necessarily benefit from or be 

capable of being parallelized.   

cWorld can handle matrices up to 30000x30000 in size.  Since cWorld 

utilizes a dynamic sparse matrix storage format, the memory footprint does not 

necessarily scale with matrix size, instead it scales with the number of observed 

data points (excluding 0s or NaNs).  With additional memory, cWorld could grow 

to handle matrices up to 100,000 x 100,000 in size.  When necessary, cWorld will 

avoid storing the entire matrix file in memory.  Instead only sub-sections of the 

matrices, or slices along the diagonal can be extracted and loaded into memory.  

With further development of the hdf5 file format, one could imagine chunking and 

storing the matrix not only by square n x n chunks, but instead in row, or column 
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or even diagonal ‘chunks’.  This could give the user rapid access into even more 

complicate transformations or slices from the supplied matrix file/object. 

cWorld has served mainly as a platform to rapidly prototype and develop 

new methods aimed to infer biological function from genome structure data, 

usually stored in a matrix format.  Even though cWorld has been designed in a 

modular fashion and abstraction has been a general theme throughout the entire 

code base, it could benefit from a major re-working or even a migration to python.  

TADs and gene expression 
 

Throughout my thesis work, my research has provided insights into the 

mechanisms of dosage compensation across two species. It has also become 

more clear that the specific structure of a chromosome is highly correlated the 

functional output of that chromosome.  However, this connection is only a 

correlation, it has not yet been demonstrated whether TAD structure can cause 

function or function can create TAD structure.  Experiments to further elucidate 

this relationship are underway now.  By manipulating the genome elements that 

control and define a TAD and or experimenting with ways to control or shut down 

expression, insights into the relationship between structure and function can be 

gained. 

In the case of the worm dosage compensation, the two hermaphrodite X 

chromosomes which are down-regulated by one half, seem to be highly 

structured and packaged into multiple MB sizes TADs along the entire length of 
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the chromosome.  When binding and the resulting function of the DCC complex 

is disrupted, the two hermaphrodite X chromosomes regain 1 full dose of X 

chromosome genes each (increase expression by 1 fold) and lose their 

prominent TAD structure.  These results suggests that TADs must act as a sort 

of local insulator, insulating a gene to only the enhancers that are contained with 

the gene’s TAD.  If this process is tightly controlled, this could have the net effect 

of lowering a genes total output/expression.  If a gene is allowed to sample all 

enhancers within the genome, then proper tight regulation of that gene may be 

distributed.  Having a tightly regulated micro neighborhood of enhancers for each 

gene could facilitate tighter control of gene expression.  

In the case of the mouse dosage compensation, one of the X 

chromosomes is inactivated and packaged into heterochromatin, whereas the 

other X chromosomes remains active and packaged just as the other autosomes 

are.   The active X chromosome still shows prominent TAD structure and strong 

compartment signal, suggestive of normal gene expression and regulation.  The 

inactive X chromosome is packaged into two massive domains (~90 Mb).  Why 

the X chromosome is compacted into two chromatin domains instead of one is 

unknown.  The two domains could be the result of a tethering of the boundary 

region to the nuclear periphery; however, further experimental evidence would be 

required to either rule this hypothesis as correct or false.   

Future Directions 
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In the future, I predict that genome structure experiments will become just 

as common as RNA-Seq or Chip-Seq is today.  In fact, given how rapidly new 

methods such as ATAC-Seq have grown in popularity, I suspect that this may 

happen sooner than most would think.  Using ATAC-Seq as an example, ATAC-

Seq signal contains protein/TF specific footprint patterns.  This means that given 

enough depth, from a single ATAC-Seq experiment, one can detect all 

accessible regions of the DNA, and from the footprint patterns, one could infer 

physical binding of a multitude of proteins/TFs.  This sort of assay which can infer 

multiple layers of additional information from a single experiment will be the 

future.  Hi-C could serve as such an assay.  Hi-C can be used to better assemble 

genomes.  From ordering contigs, scaffolding, detecting translocations or 

breakpoints, measuring copy number variations or structural variants, detecting 

chromosome territories, measuring genome wide active and inactive 

compartments, detecting sets of nested TAD structures, detecting co-expressed 

clusters of genes or transcription factories, characterizing gene – enhancer 

looping interactions and so on and so forth.  From a single Hi-C experiment, 

currently a wealth of information can be extracted.  However, one must not forget 

that the genome structure field is still in it’s infancy, the amount of data that can 

be extracted or inferred will continue to grow and multiply as the years pass.  Hi-

C may become the go-to method for assembling cancer patient genomes.  One 

could also envision using Hi-C data to infer gene expression.  Given adequate 

high-resolution (< 1kb), one could imagine that expressed genes may have a 
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unique topology or structure compared to inactive genes.  From this observed 

structural difference, one could infer expression status.  Or the same could hold 

true for protein / TF binding.  Do specific proteins or TFs have a unique local 

topology or organization relative to other TFs?  Is the neighboring DNA altered in 

any way?  If so – this information could ultimately be used to infer TF binding.  

Once again, HI-C allows us to extract a wealth of information from a single 

genome wide experiment. 

Given the advancement and availability of longer and longer reads (now 

up to 30kb via PacBio Sciences) or even up to 100kb via virtual long read 

technologies such as those offered by 10X Genomics or Illumina’s Moleculo 

technology, one could envision developing a Hi-C variant which aims to capture 

multiple interactions in a single molecule.  From this molecule, one could then 

detect a set of hundreds or even possibly thousands of DNA fragments that from 

a single cell, were all co-localized, co-occurring interactions.  This added layer of 

information could be used to detect mutually exclusive or co-occurring events, 

both of which are currently masked given Hi-C’s population average data. 

One could also imagine devising a Hi-C variant which could track the 

progression of interactions.  By this I mean given a single loci in the genome, 

measuring all other loci that it samples (in 3D space) through time.  By leveraging 

clever, unique barcode delivery techniques over time, and constructing large 

concatemers of ligations junctions, it may be possible to capture interaction 

events through time.  This would mean that one can now measure the dynamics 
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of interactions through various biological processes such as mitosis, 

differentiation, gene expression, external stimuli and so on and so forth.   

The Hi-C method could also benefit from mixing data from many different 

variations of the method.  For instance, normally one would use a 6-bp cutting 

restriction enzyme to fragment the DNA prior to ligation to capture interacting 

DNA fragments.  When instead a 4-bp cutting enzyme is used, a marked 

increase in the number of local (< 1MB) interactions is observed.  Does the same 

hold true for other digestion strategies?  Can the depth of data per genomic 

distance be altered simply by varying the digestion?  If so, one could imagine 

performing multiple Hi-C experiments across a range of digestion levels and then 

computationally combining the data.  This could potentially reduce the amount of 

reads needs for maximal resolution of a given datasets.  To explain further, a 4-

bp cutting enzyme may have 80% of all sequencing reads for all interactions <= 

5MB.   A 6-bp cutting enzyme may have 80% of all sequencing reads for all 

interactions <= 50MB.  A 8-bp cutting enzyme may have a 80% of all sequencing 

reads for all interactions <= 200MB.  By leveraging this observation and pursuing 

this further, one can imagine focusing the sequencing power on a specific 

distance regime.  Then, depending on the goals of the experiment, the 

researcher could optimally target the regions of highest interest. 

Hi-C can also benefit from additional controls or spike-ins to better 

measure the efficiencies of cross-linking, digestion, ligation etc.  Without the 



 
 
 

325 

proper controls, it is difficult to conclude a biological mechanism for the observed 

data over a simple technical artifact.  

Conclusion 
 

In conclusion, this thesis has attempted to make the case for the 

usefulness of studying the genome structure in the context of many different 

cellular functions.  As the genome structure field continues to mature and grow, 

additional insights will be gained and this information will be leveraged to better 

understand and tease apart complex biological systems.  This thesis has also 

attempted to outline and make clear a set of practical guidelines that one should 

follow when working with genome structure data.  This thesis has also introduced 

the cWorld toolkit, a set of computation tools that implement the aforementioned 

guidelines and give users a set of powerful computational methods to process, 

analyze, visualize and infer biological meaning from genome structure data.  

Given the modular design of the cWorld toolkit, it is difficult to describe all 

possible workflows and or techniques one could employ to process genome 

structure data.  By leveraging both the set of guidelines and the very modular / 

abstract design of the cWorld toolkit, custom analyses can be performed, which 

can help to demonstrate the usefulness of this new datatype.   

And finally, as the cost of NGS continues to decrease, the ability to obtain 

billions, if not tens, or even hundreds of billions of paired end sequencing reads 

will become possible.  This new level of sequencing depth, will unlock the ability 
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to have extremely high resolution (possibly down to the single base pair) which I 

expect, will reveal an even further layer of genome organization and it’s 

implications on genome function.  
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