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represent interactions that are now negative in value, signifying that the 
interaction score was higher in the second input matrix (middle). 
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correlateMatrices.pl - performs correlation between two matrices 
 

This script can perform a correlation analysis between any two matrices.  

Only the i,j pixels that both contain valid signal as defined by the user are used to 

calculate the pearson/spearman correlation R value.  The user can choose to 

subset the cis, trans, by genomic distance, exclude 0s etc.  The output of this 

script is a plot generated by R which shows the scatter of signals between 

matrix_1 and matrix_2.  A linear regression line is drawn through the scatter and 

the correlation value is printed on the top of the plot.  The user can choose 

correlation either by the Pearson or Spearman method.   

 

Figure 6.12 | Depiction of the correlateMatrices method 
Here, two 5C matrices are being correlated.  Each dot represents a pixel position 
(i,j) within the matrix.  For each interaction, the interaction score from inputMatrix-
1 is plotted on the X axis (labeled K5) and the interaction score from inputMatrix-
2 is plotted on the Y axis (labeled GM).  This scatter plot represents the 
relationship between the two variables.  A linear regression is performed and the 
resulting fit is shown by the blue line.  An outlier removal step (0.05 percentile 
removal) is selected and the black data points are flagged as outliers and ignored 
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from all analyses (linear fit and correlation analysis).  Only the red data points are 
used.   The resulting Pearson’s R value is show on top of the plot (0.935).  
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coverageCorrect.pl - can perform coverage correction on matrix 
[balancing] 
 

This script can perform a row/col balancing on a supplied matrix.  Unlike 

the Hi-C balancing method which leverages genome-wide interaction data to 

apply the Sinkhorn-Knopp iterative balancing procedure, this script can perform 

more complicated balancing procedures which are normally reserved for non-

genome wide or 5C datasets.  This script has two main usage modes defined by 

the –cm option (correction mode).  The user can choose to either use the CIS or 

the TRANS data to infer a visibility/performance score for each row/col.  If the 

CIS mode is used, then matrix is first transformed into a z-score relative to an 

expected matrix calculated by the matrix2loess.pl script, and then the average 

of all z-score for each row/col is calculated.  If the TRANS mode is used, then the 

average signal is calculated for each row/col across the entirety of the TRANS 

space.  This average score is used a measure of how visible or how well each 

row/col performs in the experiment.  If a specific row has an average ‘high’ score 

(compared to the entire row/col distribution), then one can assume that that 

specific row/col has a technical bias which causes it to have an elevated signal 

within the experiment..  If a specific row has an average ‘low’ score (compared to 

the entire row/col distribution), then one can assume that that specific row/col 

has a technical bias which causes it to have an low signal within the experiment.  

The goal of this balancing procedure is to normalize and equalize the signal for 

each row/col within the experiment.  Each i,j interaction is corrected by the 
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product of both the row and column factor (col.f * row.f).  This method is iterative 

in nature and repeats the above steps until the procure either converges or 

meets a user-defined convergence limit.  Of course this method makes a similar 

assumption to the Hi-C balancing procedure (ICE) in that each row/col should be 

equally visible in the experiment given that region is large enough and that a 

single biological interaction can and will not alter the region wide signal.  

Normally this assumption holds true as long as the region that one is normalizing 

is at least 1-2MB in size.   For any smaller regions, any specific row/col can have 

elevated signal across the entire region as a result of a true biological signal 

(looping interaction).  In most case, it is preferred to design experiments to 

sample from at least 1-2MB of the genome and then apply the Hi-C style 

balancing procedure.   

 

Figure 6.13 | Depiction of the coverageCorrect method. 
Here, a 5C matrix is used as input to the coverageCorrect.pl script.  Correction is 
performed using correctionMode=CIS and factorMode=ZSCORE.  The resulting 
matrix has converged where the average z-score per row/col is < the 
convergence threshold (convergenceThreshold=0.05).   
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digitizePicture.pl - digitize picture into my5C matrix format 
 

This script can digitize any PNG image into a cWorld formatted matrix.  

This script can be useful for restoring an interaction matrix from a heatmap 

image. The signal of each cell, can be calculated as either the sum or mean of 

either specific color values in the RGB range or the sum, mean of all colors. 

 

Figure 6.14 | Depiction of the digitizePicture method 
Here, a 5C matrix is used as input to the digitizePicture.pl script.  Here 
colorMode=mean and thus the average R,G,B values for each pixel is calculated 
and used as the relative interaction score. The produced cWorld tsv matrix file is 
shown on the right.   
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elementPileUp.pl - pile up cData around specified list of 
'elements' 
 

This script can aggregate the interaction data around a set of genomic 

elements. This script can be useful to determine whether or not the genomic 

structure is conserved around a set of genomic elements.  For instance, if one 

were to assume that each bound CTCF protein in the genome caused a 

topologically association domain (TAD) to be formed, then if one were to 

aggregate all signal around each CTCF site, the resulting consensus structure 

should show two TAD structure on either side of the CTCF site.  This script can 

be very useful during the initial data exploration phase.  Once can ‘pileup’ the 

signal around any set of user specified elements.  The script can also apply 

distance limits or change how the signal is aggregated to help reduce artifacts 

and noise.  

 

Figure 6.15 | Depiction of the elementPileUp method 
Here, a Hi-C matrix is used as input to the elementPileUp.pl script along with a 
bed file containing the binding location of a specific protein / element.  The Hi-C 
data around is element is gather and aggregated into the resulting matrix on the 
right.    
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extractSubMatrices.pl - extract sub matrices  
 

This script can extract sub-matrices from a supplied matrix files.  Sub-

matrices can be defined either by chromosome, group (allele specification) or by 

name (5C region specification).  For instance given a supplied matrix consisting 

of all interactions between chr1, chr2 and chr3, if the user were to selected 

extraction by chr, then 9 sub-matrix files would be created.  3 CIS matrices, 

consisting of chr1xchr1, chr2xchr2 and chr3xchr3 and 6 TRANS matrices, 

chr1xchr2, chr1xchr3,chr2xchr1, chr2xchr3, chr3xchr1 and chr3xchr2.  The first 

denoted chromosome is plotted on the Y axis and the second denoted 

chromosome is denoted on the X axis.  If the user selected the –eco (extract cis 

only) option, then only the CIS matrices will be produced.  One can also subset 

the selection by genomic coordinates or by a list of genomic intervals.  This script 

is efficient in terms of both memory and speed.  Rows of the matrix are first 

written as ‘chunks’ (only those chunks that satisfy the user’s selection are written)  

Each chunk is then transposed and the procedure is repeated to achieve the 

desired result. 
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Figure 6.16 | Depiction of the extractSubMatrix method 
Here, a 3 x 3 Hi-C matrix consisting of chr14, chr15 and chr16 is used as input to 
the extractSubMatrit.pl script.  By select the –eco (extract cis only) option, only 
the CIS sub-matrices are extracted as seen on the right. 
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fillMissingData.pl - replace NAs with expected signals 
 

This script can replace missing data (NaNs) with data samples from an 

expected distribution.  The expected data distribution is calculated for each 

distinct genomic distance (distance between any two genomic loci in CIS).  A 

random drawing from the expected distribution is used to replace each NaN 

value.  This script can be useful to visualization purposes or various other custom 

analyses goals. 

 

Figure 6.17 | Depiction of the fillMatrix method 
Here, a 5C matrix is used as input to the fillMatrix.pl script.  The NaNs are filled 
from a random sampling of the distribution calculated from the LOWESS 
function. 
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generateBins.pl - create my5C formatted headers 
 

This script can generate a list of bins or genomic intervals from a list of 

fragment-level cWorld matrix headers.   
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heatmap.pl - draws heatmap PNG of matrix file 
 

This script can transform an interaction matrix into a heatmap image 

representation.  Each interaction score is linearly translated into a pixel color 

which represents the strength of the interaction.  This script has multiple options 

that can be used to fine tune the resulting heatmap image.  The –sfs (scale 

fragment size) option can be used to scale the pixel size by the row/col genomic 

loci size.  In the case of binned data (fixed-size intervals), this option has no 

effect.  In the case of fragment-level interaction data, where each row/col 

(header) corresponds to a different sized genomic interval representing the 

restriction fragment, this option would scale the pixel size in the heatmap image 

by the fragment size.  Since each pixel is the intersection of the ‘fragment’ on the 

Y axis and the ‘fragment’ on the X axis, the pixel would be a rectangle with Y1 as 

the length and X2 as the width, where Y1 is a factor which represents the row (y-

axis) fragment size and X2 is a factor which represents the column (x-axis) 

fragment size.  The –dt (drawTriangle) option can output a rotated and cropped 

‘triangle’ heatmap.  The –dd (drawDiamond) option can output a rotated 

‘diamond’ heatmap.  The –em (embed meta data) option can embed metadata 

related to the input matrix file into the resulting heatmap image.  The –dpb 

(drawPixelBorder) option can draw borders around every pixel in the heatmap.  

The –dl (drawLabel) option can write the headers for every row and column on 

the right and top of the heatmap image.  The –ocb (omitContigBorder) option can 

omit lines drawn between all contigs/chromosomes/regions in the heatmap 
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image.  The –ds (drawScore) option can write the interaction score value within 

each pixel of the matrix.  The –ps (pixelSize) option can control the x/y size of 

every cell in the heatmap image in terms of number of pixels.  The –yps (y-

pixelSize) option can control the y size of every cell in the heatmap image in 

terms of the number of pixels.  The –xps (x-pixelSize) option can control the x 

size of every cell in the heatmap image in terms of the number of pixels.  The –lt 

(logTransform) option can log transform the data before plotting in the heatmap, 

a user specified base is supplied after the –lt flag, e.g. –lt 2 is a log2 

transformation.  The –start (startColor) and –end (endColor) options are used to 

specify the range of colors (absolute value) that are to be visualized on the 

heatmap.  A start of 0 and an end of 100 would color all score between 0 and 

100, any scores outside of this range would receive either the lower bound or 

upper bound specified colors.  The –startTile (start tile) and –endTile (end tile) 

options are used to specify the range of colors (relative value) that are to be 

visualized on the heatmap.  A start of 0.25 and an end of 0.75 would color all 

score between the 25th percentile and the 75th percentile, any scores outside of 

this range would receive either the lower bound or upper bound specified colors.  

The –ebf (elementBedFile) option is a useful option to highlight specific row/cols 

that overlap a list of user specified elements.  The –sm (scale mode) option is 

used to set the auto color scaling options, --sm combined pools all CIS and 

TRANS data before determine the color scale bar, --sm separate colors the CIS 

and TRANS data separately using two distinct color scale bars.  The –pc 
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(positive color) option controls the colors to use for the positive values in the 

matrix.  –pc white,red,blue would color all positive colors from white to red to 

blue from the user specified start and end values.  Named colors as well as 

RGBA codes can be supplied.  For example white,255.0.0.0,blue would again 

color all positive colors from white to red to blue from the user specified start and 

end values.  The –nc (negative color) option does the same as the above –pc 

option but for the negative values of the interaction matrix.  The –mc (missing 

color) option controls the color to use for all missing data (e.g. NaNs).  The –t 

(transparency) option controls the transparency to use for all colors in the 

heatmap [0-255]. 

 

Figure 6.18 | Depiction of the heatmap method 
Here, an example cWorld tsv matrix file is converted into a heatmap image, 
depicted on the right.   
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insulation2tads.pl - create tad specific headers 
 

This script can in an insulation vector and a list of called boundaries 

calculated in the matrix2insulation.pl and translate them into a list of 

consecutive TADs.  Consecutive TADs are defined as the space between any 

two called TAD boundaries.  There are additional options once can employ to 

either limit the set of boundaries to use or to filter out genomic spans that contain 

missing data in the insulation vector.  The strength of each TAD is defined as the 

difference between the abs(max(insulation) – min(insulation)) for all insulation 

values within the TAD region (between two boundaries). 

 

Figure 6.19 | Depiction of the insulation2tads method 
Here, an example Hi-C matrix is used to first calculate both an insulation vector 
and a list of minima (boundaries).  The insulation vector and boundaries as used 
as input to the insulation2tads.pl script and a set of nested TADs is inferred.   
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interactionPileUp.pl - pile up cData around specified list of 
'elements' 
 

This script can ‘pile up’ or aggregate interaction data between a set of 

element:element interactions. This is useful to determine whether or not a set of 

elements have a tendency to interact in 3D space. 

 

Figure 6.20 | Depiction of the interactionPileUp method 
Here, the area surrounding a set of element:element interactions is extracted 
from an input matrix, aggregated and visualized in the two heatmaps on the right. 
The top heatmaps shows little interaction (clustering) between the elements, 
whereas the bottom heatmaps shows a much stronger (clustering) of the 
elements. 
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matrix2anchorPlot.pl - transform each row/col into 4C style 
'anchor' plot. 
 

This  script can transform an interaction matrix into 3C/4C style ‘anchor’ 

plots.  Since each row/col specifies all interactions within a specific genomic 

interval (e.g. the anchor), this script can create a plot per every row/col.  This 

script can plot the expected signal per distance and the observed signal for every 

row/col. 

 

Figure 6.21 | Depiction of the matrix2anchorPlot method 
The anchor bin/fragment is shown in orange.  The red line shows the observed 
data extracted from the input matrix.  The solid black line and dotted black line 
are from the LOWESS calculation run on the input matrix, the solid black line is 
the LOWESS mean (expected mean) and the dotted black line is the LOWESS 
stdev (expected stdev).  
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matrix2bed12.pl - transform matrix into bed12 format (track per 
row) 
 

This script can transform an interaction matrix into a bed12 format which is 

useful for visualizing a set of interactions in the UCSC genome browser.  It is 

useful to first subset or call significant interactions in the matrix before attempting 

to visualize all possible interactions in the genome browser.         

 

Figure 6.22 | Depiction of the matrix2bed12 method 
In red, a set of 5C interactions (peak called) are visualized.  
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matrix2compartment.pl - perform PCA on input matrix 
 

This script can perform a PCA analysis on a supplied input matrix.  The 

PCA analysis is primary used as a proxy measure of the compartment signal 

found in almost all interaction matrices.  Prior to running the PCA analysis, the 

input matrix is first transformed into a z-score matrix (via matrix2loess.pl).  Then 

the z-score matrix is transformed into a correlation matrix (via 

matrix2correlation.py).  The correlation matrix is then used as input to the 

sklearn.decomposition.PCA function and N components are calculated. The 

explained variance ratio of each component is output in a plot, and the 

eigenvalues of each bin along eigenvector 1 is used a measure of A or B 

compartment signal.  Eigenvector1 is filliped so that the most gene rich 

compartment (positive or negative values) is positive.  This ensures that the A 

compartment is always detected as the positive eigenvalues.  The eigenvalues 

for eigenvectors 1 – 3 are plotted and the eigenvalues for eigenvector 1 are 

output in a bedGraph file for visualization in the UCSC genome browser.  The 

positive values are colored red, and represent bins that are a member of A 

compartment (the active genomic compartment).  The negative values are 

colored blue, and represent bins that are a member of the B compartment (the 

inactive compartment).  Careful consideration must be applied this method and is 

described in detail in Chapter 4 of this thesis.  PCA analysis is not guaranteed to 

detected and describe the active and inactive compartments.  PCA analysis will 
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only detect the source of the most variation in the matrix, which sometimes can 

the two arms of the chromosome.   

 

Figure 6.23 | Depiction of the matrix2compartment method 
First (image 1), the input 3 x 3 Hi-C matrix is shown on the left.  Next (image 2) 
depicts the LOWESS calculation run on the input matrix.  Next (image 3) shows 
the z-score transformation of the input matrix.  Next (image 4) shows the 
correlation matrix of the z-score matrix.  Finally (image 5) shows the PCA 
eigenvector decomposition of the correlation matrix.    
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matrix2direction.pl - calculate directionality [tads] on matrix 
 

This script can detect the directionality of every row/col (bin) within a 

matrix.  The directionality measure, described previously [2], is a useful metric for 

detecting and summarizing TADs.  The directionality score is defined as the log2 

ration between the mean signal upstream of the bin, and the mean signal 

downstream of the bin.  Calculating the directionality index for every bin along the 

chromosome creates a directionality vector.  As one travels through the 

directionality vector and approaches a TAD boundary, the directionality index will 

rapidly shift from very positive to very negative, this transition point can be 

detected and inferred as a TAD boundary.  The amount of the shift can be used 

as a proxy measure for the boundary ‘strength’.  

 

Figure 6.24 | Depiction of the matrix2direction method 
A directionality index is calculated for every bin and visualized in the above 
vector (colored black).  
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matrix2distance.pl - cumulative reads versus distance 
 

This script can translate a matrix into a pairwise tsv file with the following 

format.  Column 1 = y-axis header, column 2 = x-axis header, column 3 = 

interaction distance between the two interacting loci.  Interaction distance is 

defined as -1 if the interaction is between two different chromosomes (TRANS) or 

the midpoint between the two genomic intervals if the intervals are binned (fixed 

sized intervals) or the closest distance if the intervals vary in size (fragment 

level).  This script also plots a useful metric, which is the cumulative signal per 

genomic distance.  This plot can be used to infer quality of a interaction matrix (or 

experiment). 
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matrix2headerBed.pl - dump matrix headers as BED file 
 

This script output a list of all matrix headers in BED format – useful for 

overlapping with other genomic element/signal tracks or integrating into the 

UCSC genome browser.  

 

Figure 6.25 | Depiction of the matrix2headerBed method 
On top (red, green and blue) is a BED track visualizing the 5C primers designed 
for an example region.   
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matrix2info.pl - get matrix info 
 

This script can be used to quickly asses various metrics contained within a 

supplied interaction matrix such as:  number of contigs, percent of cis data, 

percent of trans data, sum of matrix etc.   
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matrix2insulation.pl - calculate insulation index (TADs) of 
supplied matrix 
 

This script is used to calculate the insulation index of every row/col (bin) in 

a given interaction matrix.  This script has been previously described in detail 

[46].  Briefly, a square is slid along the diagonal of the matrix.  The size of this 

square is defined by the –is (insulation square size) option.  The aggregate signal 

is then calculated according to the –im (insulation mode) option.  This in 

essences assigns a singular value to each bin (row/col) within the matrix.  The 

average of all insulation signals is calculated, and then each insulation signal is 

translated into a log2ratio (log2(insulation.i/mean(insulation)) where insulation.i is 

the insulation value for each bin and mean(insulation) is the mean signal for all 

insulation values.  The resulting normalized insulation values are then plotted as 

a QC metric.  A proper insulation vector should look smooth and contain large 

valleys followed by peaks throughout the entire chromosome.  Valleys represent 

bins that have low interactions occurring across them.  Peaks represent bins that 

have high interactions occurring across them.  Valleys are inferred as TAD 

boundaries and peaks are inferred as the interior of a TAD.  To detect peaks and 

valleys (minima and maxima) a method similar to the zero-derivative procedure is 

used.  Briefly, the slope of the insulation vector (+/- --ids (insulation delta span)) 

is calculated.  Every zero crossing of the slop represents either a PEAK or a 

VALLEY.  Valleys are then detected and thus the TAD boundaries are called.  
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Figure 6.26 | Depiction of the matrix2insulation method 
An example insulation plot is shown.  In Black is the insulation vector.  In Blue is 
the first derivative of the insulation vector.  In red is a visualization of all zero-
crossings of the blue line (derivative).  In green are all detect minima 
(boundaries) of the insulation vector.  Gray vertical bars represent areas with no 
data (NaN).  
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matrix2insulationRange.pl - calculate insulation index over 
range of square sizes 
 

This script can calculate a series of insulation vectors for a range of –is 

(insulation square size).  For instance, the insulation vector for all squares sized 

from 40,000 bp to 4,000,000 bp.  This script is a useful metric for quantifying 

structure across various distance regimes.        

 

Figure 6.27 | Depiction of the matrix2insulationRange method 
Here all possible insulation square sizes are calculated for an example matrix.  
Each row in the above heatmap correlated with an increasing insulation square 
size, starting at the bottom at 40kb, to the top at the maximal distance in the input 
matrix.  Blue regions signify minima in the insulation vectors and can be inferred 
as regions of high insulation (boundaries).   Red regions signify regions with high 
interaction or high local compaction (areas with low insulation). 
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matrix2loess.pl - calculate the loess (expected/stdev/zScore) for 
a given matrix 
 

This script can calculate the expected and standard deviation signal for 

each distinct genomic distance contained within the input data.  Rather than 

representing the expected signal per genomic distance as a mathematical 

model/function of genomic distance x genomic signal, I instead chose to use 

LOWESS to estimate the relationship between distance and signal.  The 

LOWESS method [138] (Locally Weighted Regression: An Approach to 

Regression Analysis by Local Fitting) is a "LOcal regrESSion" technique that 

utilized linear least squares regression analysis.  LOWESS has one option which 

can drastically alter the performance of the fit, namely the ‘alpha’ parameter.  

This alpha parameter controls the amount of N closest data points to the anchor 

when performing the linear regression.  For example, given a X/Y relationship 

within X being equal to the genomic distance and Y being equal to the observed 

interaction signal and the desire to calculate an average (or expected) Y for 

every X one can utilize the LOWESS method in the following manner.  Using a 

an alpha parameter of 0.05 (or 5% of the total data points) would cause 

LOWESS to calculate a locally weighted linear regression of the 5% closest data 

points along the x axis for every distinct X value.  Traditional the tri-cubic 

weighing function is used to determine weights for every data point, however one 

could alter the weight function as needed.  LOWESS in its simplest form is quite 

sensitive to outliers, in order to remove outliers and produce a more 
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representative fit of the input data, I adapted the original LOWESS method by 

adding an two-step procedure which includes an IQR outlier filter.  This 

procedure encompassed two passes of the LOWESS algorithm through the 

entirety of data.  The first pass works as previously described, producing both a 

regression value (weighted mean and a weighted stdev) for every X (expected 

mean signal and expected stdev signal for every genomic distance).  During the 

second pass, only those Y points that fall within Q1 - 1.5 * (IQR) > Y <  Q3 + 1.5 *  

(IQR) are used in the second pass linear regression.  This additional steps 

creates a far more robust estimation of the relationship between the two 

variables.  Once the modified robust LOWESS procedure is completed, various 

transformations of the input data can be calculated, such as a z-score 

transformation.  A z-score is defined as    where x = observed data, μ = 

LOWESS mean of a specified genomic distance (X), and σ = LOWESS stdev of 

a specific genomic distance.  This z-score transformation in effect normalizes out 

the distance dependency for every interaction.  Various other metrics can be 

calculated such as the log2(observed/expected) or observed-expected.  These 

transformations are calculated and each one is output in a separate matrix file for 

further use.  One area of the LOWESS calculation that can be altered for reduce 

computation time is the fact that not every distinct X (genomic distance) needs to 

be represented in the final distribution.  By leveraging the –caf (cis approximate 

factor) one can control the precision of the LOESS calculation by either setting 

the –caf = 1, which will calculate an expected signal for every distinct X, or by 
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setting the –caf = 1000, which divides every genomic distance by 1000 and takes 

the floor.  This in essence bins or clusters the data into discrete distance bins 

which in effect reduces the number of distance X that must be used in the 

LOWESS calculation.   

 

Figure 6.28 | Depiction of the matrix2loess method 
Here an example scatter plot of interaction signal (labeled C counts) on the Y 
axis, and genomic distance on the X axis.  The solid red line is the LOWESS 
expected value (weighted mean), the dotted red line above and below the solid 
line signify the mean +/- 1 stdev.  Each black dot represent an interaction (pixel) 
in the input matrix, it’s location along the X axis signifies its genomic distance 
between the two genomic loci and its location along the Y axis signifies the 
observed interaction count.  
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matrix2pairwise.pl - transform tsv matrix into 3 column tsv file 
 

This script can translate a matrix into a pairwise tsv file with the following 

format.  Column 1 = y-axis header, column 2 = x-axis header, column 3 = 

interaction score between the two interacting loci.  This transformation and 

resulting file format can be useful for integrating with other data types or 

interacting with various plotting methods. 

 

Figure 6.29 | Depiction of the matrix2pairwise method 
Above a transformation from a cWorld tsv matrix file to a ‘pairwise’ (3 column tsv) 
file is visualized.   
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matrix2scaling.pl - transform matrix into scaling (polymer) plot 
 

This script can transform and summarize a matrix into a ‘scaling plot’.  

This plotting technique is useful for inferring the state of the polymer as the log-

transformed relationship between genomic distance and signal.  The slope of line 

represents various theoretical polymer states and can be used to infer various 

biological models.  The shape of this line can also be a useful metric in 

evaluating quality of a given experiment or similarity between biological 

replicates.  This script can take as input N matrices and each matrix can be 

summarized into a single ‘scaling’ line and plotted together for visual comparison.  

The (matrix2loess.pl) and LOWESS method are used to estimate the 

relationship between distance and signal. 

 

Figure 6.30 | Depiction of the matrix2scaling method 
Two input matrices are transformed into ‘scaling plots’ above.  One input matrix 
is show in red, the second is show in blue.  The green vertical box represents the 
regime from 500kb – 7.5MB.  The slope of each line is calculated for all points 
within the regime (green box) and is shown on the plot. 
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matrix2stacked.pl - transform matrix into stacked anchor matrix 
 

This script transforms a matrix into a ‘stacked’ matrix.  A stacked matrix is 

composed of linear stacks of each row centered on the diagonal bin.  This van be 

visualize as taking a 1 x 21 row from the matrix, centered on each diagonal bin.  

These 1x21 rows are then stacked and output in a matrix format.  This 

transformation is useful for visualizing structure relative to genomic distance, e.g. 

performing this transformation on all bins/rows that contain a gene.  

 

Figure 6.31 | Depiction of the matrix2stacked method 
Here the matrix2stacked transformation is visualized with the input matrix on the 
left, and the stacked matrix on the right.  Here only the first 2MB of interactions 
are show on the stacked matrix.   
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matrix2symmetrical.pl - transform rectangular matrix into 
symmetrical matrix 
 

This script can transform a matrix into a symmetrical matrix.  This 

operation is described as taking the union of all distinct row/col headers, 

producing a new matrix, and then filling in all available interaction data.  

Interactions between row/col headers that were not defined in the original matrix 

are replaced with a NaN signal.  This transformation can be useful when a 

symmetrical matrix is required for specific analyses (e.g. Sinkhorn-Knopp). 

 

Figure 6.32 | Depiction of the matrix2symmetrical method 
Here, the matrix2symmetrical transformation is visualized.  The input non-
symmetrical 5C matrix is show on the left, and the symmetrical form of this matrix 
is shown on the right.  For the 5C input matrix, all FOR primers are show on the 
Y axis and all REV primers are shown on the X axis.  In the symmetrical matrix, 
the union of all FOR/REV primers are shown on both axes.  All signal between 
FOR:FOR and REV:REV are inferred as NaN (gray pixels). 
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matrix2webplot.pl - draws 'web-plot' of matrix file 
 

This script can transform a matrix into a ‘webplot’ visualization.  A webplot 

consists as two vectors which represent the row and col headers in the supplied 

matrix.  The row header vector is color blue, and plotted at the top of the diagram 

from left to right, the column header vector is colored red and is plotted at the 

bottom of the diagonal from left to right.  Interactions are then visualized as lines 

between any two points along the top (row) and bottom (column) vectors.  The 

color of the line and or thickness of the line can be used as a measurement of 

signal intensity.  This can serve as an important visualization technique to 

describe genomic interactions.  Depending on how the input matrix is pre-

processed (e.g. binarized to include only the significant interactions), various 

results/biological meanings can be visualized in the webplot.   

 

Figure 6.33 | Depiction of the matrix2webplot method 
Here, the matrix2webplot transformation is visualized. All y-axis FOR primers 
(rows) are shown on the top of the webplot, visualized as small circles.  All x-axis 
REV primers (cols) are shown on the bottom of the webplot, visualized as small 
circles.  All interactions (FOR:REV) with an interaction score >= 50 are shown on 
the webplot as a solid red line. 
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primer2plates.pl - layout primers in 96-well plate format 
 

This script can quickly transform a tsv list of 5C primers (to be ordered) 

into an Invitrogen formatted plate specification order form.   
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reOrderMatrix.pl - re-order matrix by list of headers 
 

This script can re-order a matrix by a user specific list of ordered headers.  

This can be useful for clustering, or sorting an interaction matrix by any means 

desired.  This script can also be used to remove or add specific row/cols.  A user 

supplied –yohl (y ordered header list) file is used to set the ordering and 

composition of the row (y-axis) headers.  A user supplied –xohl (x ordered 

header list) file is used to set the ordering and composition of the column (x-axis) 

headers. 
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scaleMatrix.pl - normalizes matrix sum - scales to 10^6 
 

This script can scale a matrix to have a desired sum. By setting the –st 

(scaleTo) option, this script will scale all signal within the matrix to have the 

desired sum.  This transformation can be used to normalize matrices for read 

depth before further analyses/comparison.   
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singletonRemoval.pl - detect and remove singleton outliers 
 

This script can detect and remove singletons (single pixels) within a matrix 

that have a higher than expected signal. In the case of 5C experiments, it is 

impossible to detect and remove PCR blowouts during the mapping steps (since 

every chimeric ligation product is a combination of two 5C primers).  The 

sequence of these chimeric ligation products is identical in the case of distinct 

molecules or in the case of PCR duplications from a single molecule.  These 

PCR duplicates come through into the interaction matrix and can be seen as 

pixels with a higher than normal signal.   To detect and remove these 

interactions, the matrix is first transformed into a z-score matrix via the 

(matrix2loess.pl) script, and then all pixels with a z-score >= SZT are remove, 

where SZT is the user specified singleton z-score threshold.  Separate singleton 

z-score thresholds can be set for both the CIS and TRANS data to produce the 

desired filtering.  It can be extremely useful to remove all singletons early in the 

data processing steps to avoid adding noise which can obscure later downstream 

analyses.  
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Figure 6.34 | Depiction of the singletonRemoval method 
Here, the singletonRemoval method is visualized.  First the input matrix is 
transformed into a z-score matrix (via matrix2loess), then any pixel with a z-score 
>=3 is removed and set to NaN (gray pixel).    
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subsetMatrix.pl - subset matrix by distance, or by BED file (bin 
overlap) 
 

This script can subset an input matrix by various means.  --minDist and –

maxDist control the distances that are to be included in the subset matrix.  Any 

interactions with distance x which fail to satisfy minDist > x < maxDist will be set 

to NaN.  --lowerScore, --upperScore and --scoreSubsetMode control which 

interactions will be included in the subset matrix.  When –scoreSubsetMode is 

set to outer, then scores which fail to satisfy y < lowerScore or y > upperScore 

will be set to NaN.  When –scoreSubsetMode is set to inner, then scores which 

fail to satisfy lowerScore > y < upperScore will be set to NaN.  –ec (excludeCis) 

can be used to exclude all CIS data.  –et (excludeTrans) can be used to exclude 

all TRANS data.  –ebf (elementBedFile) can be used to include only those bins 

(row/col) which directly overlap the list of elements found in the supplied element 

bed file.  Multiple element bed files can be supplied to produce the desired effect.  

--yebf and --xebf can be used to subset the rows (y) and columns (x) separately 

by different element bed files.  –z (zoomCoordinate) can be used to subset only 

those bins (row/col) which overlap genomic interval.  Multiple genomic intervals 

can be supplied to produce the desired effect.  --yz and --xa can be used to 

subset the rows (y) and columns (x) separately by different genomic intervals.  

By leveraging a variety of these options, users can subset input matrices by an 
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almost unlimited means.

 

Figure 6.35 | Depiction of the subsetMatrix method 
Here an assortment of multiple selections via genomic coordinate and bed file 
overlap are visualized.  The input matrix is seen on the left and the final (subset) 
matrix is shown on the right.  
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symmetrical2seperate.pl - transform symmetrical matrix into 
non-symmetrical 
 

This script performs the inverse of (matrix2symmetrical.pl), assuming 

the transformation was originally performed on a 5C cWorld matrix file.  This 

script will place all FOR primers on the y-axis  (rows) and all REV primers on the 

x-axis (cols). 

 

Figure 6.36 | Depiction of the symmetrical2seperate method 
Here, the matrix2symmetrical transformation is visualized.  This transformation is 
the inverse of matrix2symmetrical. 
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Conclusions 
 

cWorld has become quite robust over the past few years and will only 

continue to improve with continued use and development.  cWorld has now been 

used in several high impact publications.  As further analyses and tools are 

added and become automated, the speed at which a 3C, 5C or Hi-C experiment 

can be processed, analyzed and biological significance inferred will continue to 

improve.  To continue to expand and improve the cWorld toolkit not only must 

additional tools be added, but specific protocols must be improved and adapted 

to new file formats and advanced processing techniques.    
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CHAPTER VII:  Conclusions and future directions 
 

Preface 
 

This conclusions chapter is partially adapted from a review written by 

Noam Kaplan, Job Dekker and myself entitled “The Hitchhiker’s Guide to Hi-C 

Analysis: Practical guidelines” [86], as well as the discussions sections of 

Chapter II, II, IV, V and VI. 

Introduction 
 

The genome structure field has grown exponentially over the past few 

years, mainly due to the increased availability of NGS.  Prior to NGS, less 

discriminate and more specific methods such a microscopy, FISH or even PCR-

based 3C were used to gain insights into the organization and structure of 

genomes.  In only a short period of time, NGS technologies have grown from 

yielding a few hundred thousand short reads to being able to produce billions of 

long reads in less time and for less money.  This advancement has unlocked 

cutting edge research to thousands of scientists worldwide and has driven the 

development of hundreds of genome-wide functional assays and thousands of 

computational methods to analyze this new and exciting data.   

This thesis first introduced 3C based methods (3C-Seq, 5C, Hi-C etc), and 

then applied the methods to gain insights into the relationship between genome 

structure and function in the context of two dosage compensation systems.  
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Then, insights into the long range interaction landscape of genes and enhancers 

across a panel of ENCODE cell lines was gained by leveraging a targeted 5C 

based study.  These data demonstrated and characterized a set of significant 

looping interactions between genes and enhancers, constructed a network of 

regulatory elements and provided insights into the roles of insulator proteins (e.g. 

CTCF) in the context of controlling gene expression.  During this process, 

multiple novel processing, analysis and visualization methods have been 

developed and published.  These methods aim to lower the bar needed for 

researchers to be able to perform, analyze and interpret genome structure data 

when applied to specific biological contexts.  This thesis has discussed the 

necessary considerations one should make when processing, analyzing and 

interoperating genome structural data.  This thesis has also introduced and 

discussed a set of tools for processing, manipulating, analyzing and visualizing 

genome structural data.  Taken together, the insights gained from the work 

described in this thesis have made a significant contribution to the complex 

relationship between genome structure and genome function. 

Worm Dosage Compensation 
 

The results of Chapter II  support the model that TAD structure on the X 

chromosome mediated by DCC binding to rex sites creates a 3D topology that 

acts chromosome-wide to repress gene expression. Given that changes in TAD 

boundaries occur locally, while changes in gene expression occur chromosome-
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wide, a parsimonious model posits that DCC-dependent changes in X 

chromosome structure imposed by rex–rex interactions drive the chromosome-

wide reduction in gene expression. Potential DCC-dependent nuclear positioning 

of the X chromosome might also affect gene expression, as speculated by others 

[54]. 

In summary, DCC-induced formation of TAD structure on the X 

chromosome demonstrates a striking remodeling of chromosome topology that 

reveals a central role for condensin in shaping the 3D landscape of interphase 

chromosomes. Not only does condensin compact and resolve mitotic and meiotic 

chromosomes, it acts as a key structural element to regulate gene expression. 

No other molecular complex or set of DNA binding sites is yet known to cause 

comparably strong effects on megabase-scale TAD structure in higher 

eukaryotes [55]–[57]. The new understanding of the topology of dosage-

compensated chromosomes provides fertile ground to decipher the detailed 

mechanistic relationship between higher-order chromosome structure and 

chromosome-wide regulation of gene expression. 

Mouse Dosage Compensation 
 

The study described in Chapter III reveals that the inactive X chromosome 

is a surprisingly elaborate entity, with a global partitioning into two mega-domains 

and loss of TAD organization, except at clusters of genes that are still expressed 

from the otherwise silent Xi.  TADs were previously thought to be highly stable 
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across cell generations and differentiation [2], [3], and their presence or 

maintenance not to require transcription in general.  However, our study 

demonstrates that 1) TADs can indeed be lost in some contexts (as also 

observed on mitotic chromosomes [72], although in the case of the Xi, TAD loss 

is not a transient state but is stably transmitted through cell division) and that 2) 

gene expression and/or binding of factors such as CTCF can enable their 

maintenance and/or de novo re-creation.  The findings show that gene silencing 

and loss of accessibility is accompanied by loss of structure, but that de novo 

gain of escape corresponds to re-creation of local structure, and further that 

transcription at clusters of genes coincides with TAD formation.  Together these 

findings suggest that gene expression and DNA binding factors may be the 

driving forces of TAD organization in the context of the inactive X, which is 

otherwise devoid of TADs.  The Xi may therefore represent a sequence-

independent chromosome state at the structural level, from which sequence 

specific TADs can arise.  

The reduced level of facultative escape in cells where the mega-domain 

has been deleted is intriguing.  Although escape can be quite variable even in 

normal cells, three NPC clones derived from the D9 ΔFT mutant ESC line 

showed reduced escape by RNA FISH.  These results suggest that during XCI 

the mega-domain boundary and the bipartite folding of the Xi that it induces, may 

modulate or affect the process leading to facultative escape. Constitutive 

escapees are much less affected by the boundary deletion and presumably have 
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an intrinsic capacity to override the XCI process [80].  Facultative escapees on 

the other hand are first silenced during XCI and then re-expressed ([81], [82] and 

unpublished data).  Although the mega-domain boundary region does not appear 

to interact with escapee regions in NPCs and is transcriptionally silent in NPCs, 

this region is transcribed and possibly euchromatic at the onset of XCI (MA and 

EH, unpublished observations).  Transient interaction of this region with 

facultative escape loci during differentiation may thus occur and may be sufficient 

to regulate the local amount of escape and/or re-establish TADs at escape loci 

due to its unusual chromatin status and atypical enrichment in CTCF binding 

[83].  An additional, but not mutually exclusive, model is that the boundary region 

helps position the Xi in a particular sub-nuclear location during or after XCI, that 

facilitates the establishment of a given escape pattern.  These results establish 

the Xi as a powerful model system for studying the mechanistic interrelationships 

between chromosome conformation and gene regulation, and point to a key role 

for gene activity in the establishment of chromosome structure at the level of 

TADs in the context of facultative heterochromatin. 

Landscape of gene promoters 
 

The data in Chapter V provide new insights into the landscape of 

chromatin looping.  Here, the results demonstrate that physical chromatin looping 

can bring genes and distant elements into close spatial proximity.  Besides 

generating a rich dataset reflecting specific gene-element associations, the 
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average interaction profile of TSSs with surrounding chromatin reveals several 

general principles regarding the asymmetric relationships between genomic 

distance, the order of elements, and the formation of looping interactions. The 

bias for upstream interactions may indicate that the protein complexes on many 

TSSs may be asymmetric and may preferentially interact on one side with 

enhancer-protein complexes approaching along the chromatin fiber, as would be 

proposed by the enhancer tracking model [136].  Furthermore, while these 

average looping profiles may facilitate computational prediction of long-range 

interactions throughout the genome, the fact that interactions skip genes and 

CTCF sites suggests that additional mechanisms for target selection and gene 

insulation exist.   

With further 3C technology development and increases in sequencing 

capacity, similar high-resolution studies should become feasible to map specific 

long-range interactions throughout the genome, which may uncover additional 

principles that guide chromatin looping.  Such insights will also be critical for 

interpreting genome-wide association studies that often identify regions with 

regulatory elements but not their distally located target genes.  

Practical Guidelines 
 

As discussed in chapter IV of this thesis there are many considerations 

regarding the design and analysis of genome structural projects.  Given the only 

very recent development of methods to probe the three-dimensional genome, 
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many new analysis tools and methods will be developed and enhanced in the 

coming years, however these guidelines and principles should apply to even 

variations of the original Hi-C method and may be applicable to other similar 

methods (such as ChIA-PET). 

Before starting a genome structure experiment, it is important to first, 

carefully consider the desired resolution of the data.  Depending on the 

experimental goals, one must carefully choose between either a 5C or Hi-C (or a 

hybrid capture / targeted enrichment strategy).  The space of all possible 

interactions, which is surveyed by Hi-C experiments, is very large. For example, 

consider the human genome. Using a 6-bp cutting restriction fragment, there are 

almost 106 restriction fragments, leading to an interaction space on the order of 

1012 possible pairwise interactions. Thus, achieving maximal resolution is a 

significant challenge without adequate sequencing depth.  To adequately cover a 

genome-wide Hi-C experiment at high resolution (5 kb) one may require billions if 

not tens of billions of mapped reads.  However if one is interested in only a 

specific loci of the genome (say 1 MB in length) and given the same requirement 

of high resolution (5 kb), one may only require tens of millions of reads.   

In light of this, it is crucial to establish the goals of the experiment, 

meaning whether one is most interested in either large-scale genomic 

conformations (e.g. genomic compartments) or specific small-scale interaction 

patterns (e.g. promoter-enhancer looping).  If the goal is to measure large scale 

structures, such as genomic compartments, then a lower resolution will often 
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suffice (1MB-10MB).  Here, Hi-C using a traditional 6bp-cutting enzyme could be 

used.  However, if the goal is to measure at a finer scale the very specific 

interactions of a small region, e.g. an enhancer of <500bp, then one should 

choose to use a restriction enzyme that cuts more frequently (e.g. 4bp) and a 

method that does not measure the entire genome, but instead focuses on 

exploring only a subset of the genome (i.e. 3C/4C/5C). 

In Hi-C the maximum resolution of a dataset is determined by several 

factors, first and foremost is the sequencing depth.  Given increasing amounts of 

reads, one will cover more of the interaction space and thus improve the 

resolution.   

Library complexity is another factor.  Library complexity is defined as the 

total number of unique interactions that exist in the Hi-C library.  A library with a 

low complexity level (low number of unique interactions) will saturate quickly with 

increasing sequencing depth e.g. less and less information will be gained from 

additional sequencing.  The saturation curve can be estimated from a dataset by 

plotting the cumulative number of unique interactions seen versus read depth.   

Chapter IV has also touched upon interpretations of the data type and 

methods by which one can extract biological information.  A key measurement of 

the quality of a Hi-C experiment is the percent of cis reads (e.g. the number of 

interactions between the same chromosome).  Normally the percent of reads 

which are CIS is between 60–80.  A high CIS percent is normally correlated with 

a high(er) quality Hi-C datasets.  This is for obvious reasons, assuming no 
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crosslinking and only random ligation, one would expect most of the reads to fall 

in TRANS.  This is for the sample reason that at least for human/mouse, the 

number of possible interactions in TRANS is much larger than the number of 

possible interactions in CIS.  With random ligation, the TRANS space should 

contain more reads.  Therefore in a way, the percent of reads in CIS is a proxy 

measurement for the perceived percent of random ligation occurring in an 

experiment.   

The second feature of the data is the distance-dependent decay of 

interaction frequency. In other words, interaction frequency between loci in cis 

decreases, on average, as their genomic distance increases. In the interaction 

matrix this pattern appears as a gradual decrease of interaction frequency the 

further one moves away from the diagonal. This pattern may be due to random 

movement of the chromosome, following the intuition that loci which are nearby 

in the genome will interact frequently if they move randomly in 3D space. The 

theory underlying this type of intuition is well established in the field of polymer 

physics [99], [100].  Depending on the experimental goals, one may wish to 

remove or normalize away this distance dependent decay, to then better highlight 

interactions that may be significantly higher or lower than their expected signal 

given their genomic distance.   

A third feature of the data is the genomic compartments [1]. This 

interaction pattern appears on the interaction matrix as a “checker-board”-like 

pattern consisting of alternating blocks, ~1-10 mb in size, of high and low 
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