
 

JUN KINASES IN HEMATOPOIESIS, AND VASCULAR DEVELOPMENT AND 
FUNCTION 

   
 
 
 

A Dissertation Presented 
 

By 
 

Kasmir Ramo 
 
 
 
 
 
 

Submitted to the Faculty of 
 

the University of Massachusetts Graduate School of Biomedical Sciences, 
Worcester 

 
in partial fulfillment of the requirements for the degree of 

 
 
 
 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 
 
 
 
 

July 6, 2015 
 

MD/PHD PROGRAM 



 

JUN KINASES IN HEMATOPOIESIS, AND VASCULAR DEVELOPMENT AND 
FUNCTION 

 
 

A Dissertation Presented By 
 

Kasmir Ramo 
 
 

The signatures of the Dissertation Defense Committee 
signify completion and approval as to style and content of the Dissertation. 

 
_____________________________________ 

 

Roger J. Davis, Ph.D., Thesis Advisor 
 

_____________________________________ 
 

Michael Brehm, Ph.D., Member of Committee 
 

_____________________________________ 
 
 

Lucio Castilla, Ph.D., Member of Committee 
 

_____________________________________ 
 

John F. Keaney, M.D., Member of Committee 
 

_____________________________________ 
 

Joseph Loscalzo, M.D., PhD., Member of Committee 
 

 
The signature of the Chair of the Committee signifies that 

the written dissertation meets the requirements of the Dissertation Committee. 
 

_____________________________________ 
 

Gregory Pazour, Ph.D., Chair of Committee 
 

The signature of the Dean of the Graduate School of Biomedical Sciences 
signifies that the student has met all graduation requirements of the school. 

 
_____________________________________ 

 

Anthony Carruthers, Ph.D. 
Dean of the Graduate School of Biomedical Sciences 

 
MD/PHD PROGRAM 

July 6, 2015 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Kasmir Ramo 

2015 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                                                                                                                                                         

 

iv 

 Acknowledgements  

I would first like to thank my advisor, Dr. Roger J. Davis for giving me the 
opportunity to explore diverse areas of biology in his laboratory and for providing 
scientific guidance and support during my PhD studies presented in this 
dissertation. 
 
I would also like to thank past and present members of our lab for useful 
discussions and great friendship; particularly my bench mate, good friend and 
fierce table tennis competitor, Santiago Vernia.  
 
Tammy Barrett, Julie Cavanagh and Kathy Gemme provided much helpful 
technical and administrative assistance, and I am greatly appreciative.  
 
I would like to thank the members of my Thesis Research Advisory Committee, 
Drs. Michael Brehm, Lucio Castilla, John Keaney and Gregory Pazour for their 
advice and suggestions. I would also like to express my gratitude to Dr. Joseph 
Loscalzo for his time and willingness to participate as my outside examiner. 
 
I would like to particularly acknowledge Dr. John Keaney and members of his lab 
for embarking with us on an exciting project that has lead to the identification of 
important aspects of vascular biology. 
 
My mother, father and brother provide unwavering support in anything I do. My 
parents interrupted their lives in Albania to bring my brother and I to the land of 
opportunity. I can only hope that my endeavors do justice to their sacrifices. I 
would also like to thank my uncle and his family for making our transition to the 
US, easy, and for their continued support. My beautiful and smart girlfriend 
Sharanya Iyengar has the ability to make everything better. Thank you all so 
much! 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                                                                                                                                                         

 

v 

Abstract 
 

Arterial occlusive diseases are major causes of morbidity and mortality in 

industrialized countries and represent a huge economic burden. The extent of the 

native collateral circulation is an important determinant of blood perfusion 

restoration and therefore the severity of tissue damage and functional impairment 

that ensues following arterial occlusion. Understanding the mechanisms 

responsible for collateral artery development may provide avenues for 

therapeutic intervention. Here, we identify a critical requirement for mixed lineage 

kinase (MLK) – cJun-NH2-terminal kinase (JNK) signaling in vascular 

morphogenesis and native collateral artery development. We demonstrate that 

Mlk2-/-Mlk3-/- mice or mice with compound JNK-deficiency in the vascular 

endothelium display abnormal collateral arteries, which are unable to restore 

blood perfusion following arterial occlusion, leading to severe tissue necrosis in 

animal models of femoral and coronary artery occlusion. Employing constitutive 

and inducible conditional deletion strategies, we demonstrate that endothelial 

JNK acts during the embryonic development of collateral arteries to ensure 

proper patterning and maturation, but is dispensable for angiogenic and 

arteriogenic responses in adult mice. During developmental vascular 

morphogenesis, MLK – JNK signaling is required for suppression of excessive 

sprouting angiogenesis likely via JNK-dependent regulation of Dll4 expression 

and Notch signaling. This function of JNK may underlie its critical requirement for 

native collateral artery formation. Thus, this study introduces MLK – JNK 
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signaling as a major regulator of vascular development. 

 

In contrast, we find that JNK in hematopoietic cells, which are thought to share a 

common mesodermally-derived precursor with endothelial cells, is cell-

autonomously dispensable for normal hematopoietic development and 

hematopoietic stem cell self-renewal, illustrating the highly context dependent 

function of JNK.  
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cJUN NH2-TERMINAL KINASES (JNK) 

JNK belongs to the group of stress and mitogen activated protein kinases 

(MAPK) that mediate pleiotropic cellular responses to diverse environmental 

stimuli.1 

MAPK Signal Transduction 

Cells respond to environmental stimuli by activating diverse signal transduction 

cascades that sense, process and relay outside information into the cell in order 

to generate appropriate biological responses. Among the many signaling 

pathways that cooperate in this process, the family of mitogen activated protein 

kinases (MAPK) encompasses groups of signal transduction pathways that are 

highly conserved and play important pleiotropic roles in many biological 

processes.1-3 These signaling pathways are regulated through three-tiered kinase 

signaling cascades whereby a MAPK is activated through phosphorylation by a 

MAPK kinase (MAPKK, MKK or MAP2K), which is, in turn, activated through 

phosphorylation by a MAPKK kinase (MAPKKK or MAP3K; Figure I.1).1 In 

mammals, three groups of MAPK have been identified and include the 

extracellular regulated kinases (ERK), the p38 kinases and the cJun NH2-

terminal kinases (JNK), also known as stress-activated protein kinases (SAPK). 

Each MAPK is activated by dual phosphorylation of a tripeptide motif (Thr-Glu-

Tyr for ERK, Thr-Gly-Tyr for p38 and Thr-Pro-Tyr for JNK).1,4 The specific 

MAP2K that phosphorylate each MAPK have been well characterized. Thus, 
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MKK1, 2 and 5 phosphorylate ERK, MKK3 and 6 phosphorylate p38 (with some 

contribution from MKK4) and MKK4 and MKK7 phosphorylate JNK.1,2 However, 

the situation is much more complex with regard to the specific MAP3K that 

participate in the activation of different MAPK pathways in specific contexts in 

vivo. Particularly for p38 and JNK, the MAP3K that have been implicated in their 

activation include over a dozen members from heterogeneous families. For 

example, the MEK kinases (MEKK 1-4), the transforming growth factor (TGF)-β-

activated kinase 1 (TAK1), the tumor progression locus-2 (TPL-2), the apoptosis 

stimulating kinases (ASK1 and 2) and the mixed-lineage kinase group (MLK1-4, 

DLK and LZK) have all been shown to activate JNK or its upstream activators 

MKK4 and/or MKK7 in overexpression or in vitro kinase assays.1,2 However, the 

relevance of these MAP3K as physiologic regulators of the JNK pathway has 

only been established for a few members.  

One example is illustrated by the MAP3K, MLK2 and MLK3, for which 

biochemical and genetic data in primary cells and mice has confirmed their 

physiologically important role for JNK activation by tumor necrosis factor (TNF) 

as well as JNK activation mediated by saturated fatty acids.5,6 In contrast, MLK3 

was found to be dispensable for JNK activation by some stress stimuli, including 

ultraviolet light (UV), Anisomycin or Ceramide and by some growth factors such 

as platelet-derived growth factor (PDGF) or epidermal growth factor (EGF).7 

These studies illustrate two important points regarding MAP3K. First, they 

demonstrate that there is functional redundancy between different MAP3K family 
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members. Thus, combined disruption of both Mlk2 plus Mlk3 results in greater 

defects in JNK activation by TNF than disruption of Mlk3 alone.5 Second, they 

demonstrate the existence of some degree of specificity of particular MAP3K 

members for certain stimuli. These characteristics of MAP3K may provide 

avenues for targeted modulation of the MAPK signaling pathways for therapeutic 

benefit.  

JNK structure, regulation and function 

In mammals, the JNK group of MAPK includes proteins encoded by three 

separate genes.1 Jnk1 and Jnk2 are ubiquitously expressed, whereas Jnk3 

displays a much more restricted pattern of expression confined largely to the 

brain, heart and testis.1 Alternative splicing of the messenger RNA (mRNA) 

transcripts from the three Jnk genes generates ten different Jnk isoforms (Figure 

I.2).3 One alternative splicing site involves selection of one of two alternative 

exons that encode part of the kinase domain. This splice site is restricted to Jnk1 

and Jnk2, and gives rise to JNK isoforms with different substrate binding 

specificities. The second splice site at the COOH-terminus of the protein results 

in proteins that differ by 42 or 43 amino acids.3 

 

Although functional differences between different Jnk isoforms from the same 

gene transcript have not yet been characterized, significant functional 

redundancy exists between Jnk isoforms from different gene transcripts. This is 

illustrated by the analysis of mice with genetic ablation of different Jnk genes. 
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Thus, mice with disruption of single Jnk genes are viable and appear 

morphologically normal, however combined disruption of both Jnk1 plus Jnk2 

results in embryonic lethality at midgestation due to neural tube closure defects.8 

Tissue specific roles for the ubiquitously expressed Jnk1 and Jnk2 genes have 

also been reported,9 but this may reflect the particular isoform distribution profile 

from each gene transcript rather than bona fide differences between Jnk1 and 

Jnk2 isoforms.  

 

As described above, JNK is fully activated through phosphorylation by the 

upstream MAP2 kinases MKK4 and MKK7. Both kinases can activate JNK by 

dual phosphorylation on Thr and Tyr residues, however some degree of 

specificity is conferred via activation of MKK4 or MKK7 by MAP3K in different 

contexts. For example, stimulation by various cytokines preferentially activates 

MKK7, whereas some environmental stress stimuli primarily activate MKK4.10 

 

Additional layers of regulation of the JNK signaling pathway are afforded by 

Ser/Thr phosphatases, Tyr phosphatases or dual specificity phosphatases that 

can dephosphorylate and inactivate JNK.1 Furthermore, scaffold proteins 

including JNK-interacting protein (JIP1, 2 and 3) have been identified that 

organize MAPK modules incorporating a MAP3K, a MAP2K and a MAPK, thus 

facilitating their interaction leading to modulation of MAPK activity.1   
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Upon activation, JNK phosphorylates Ser/Thr-Pro motifs on numerous proteins 

that include transcription factors and cytoplasmic proteins. JNK phosphorylates 

several members of the activator protein 1 (AP-1) transcription factor complex, 

including cJun, JunB and activating transcription factor 2 (ATF2).1 Indeed, JNK1 

was molecularly cloned as a protein kinase, activated by UV and Ha-Ras, that 

binds and phosphorylates the activation domain of cJun.11 JNK-mediated 

phosphorylation of cJun on Ser-63 and Ser-73 promotes the transcriptional 

activity of the AP-1 transcription complex resulting in gene expression changes 

that often underlie the multitude of biological processes that are regulated by 

JNK, including its role in cancer and metabolism.12,13 In addition, JNK has been 

reported to phosphorylate a number of cytoplasmic targets. These include p53, 

cMyc, and Itch, several B-cell CLL/lymphoma 2 (BCL-2)-family members, 

including the anti-apoptotic factors BCL-2, BCL-XL and myeloid cell leukemia 

(MCL-1), and the pro-apoptotic factors BCL-2-interacting mediator of cell death 

(BIM), BCL-2-modifying factor (BMF), BH3-interacting domain death agonist 

(BID) and BCL2-associated agonist of cell death (BAD), among other 

cytoplasmic proteins.1,12 Thus, through its effects on gene transcription and direct 

phosphorylation of cytoplasmic proteins, JNK affects many biological processes 

from apoptosis and cell survival to embryonic development, inflammation, 

metabolism and cancer. 
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Role of JNK in cell death and survival 

The role of JNK in cell death and survival is complex and highly context 

dependent. The time course of JNK activation appears to have a significant 

impact.14 Thus, in mouse embryonic fibroblasts (MEF), sustained JNK activation 

by TNF, particularly in the context of nuclear factor (NF)-κB inhibition can induce 

apoptosis, whereas transient JNK activation is required for cell survival.14 

Treatment of cells with TNF causes a biphasic JNK activation response. The 

early phase of JNK activation is robust and appears to signal a JunD-dependent 

survival response that also requires cooperation with the NF-κB and AKT 

pathways.14,15 This response is thought to involve AP-1-mediated enhancement 

of anti-apoptotic gene expression by NF-κB and AKT signaling.2 The late phase 

of JNK activation appears to contribute to cell death when pro-survival signaling 

by NF-κB is inhibited.16 This role of JNK may be mediated by its ability to 

promote TNF-induced production of reactive oxygen species (ROS).17,18  

 

In hepatocytes, another mechanism proposed for a JNK1-dependent TNF-

induced increase in cell death is the ability of JNK1 to phosphorylate and activate 

the E3 ubiquitin ligase Itch.19 This was shown to promote apoptosis via Itch-

mediated ubiquitination and proteasomal degradation of the NF-κB-induced anti-

apoptotic protein c-FLIP, an inhibitor of caspase-8. Because Itch phosphorylation 

is reversible, the authors proposed that sustained JNK activity was required to 

maintain pro-apoptotic signaling in this context.19 



                                                                                                                                                                                                                                                                         

 

8 

 

JNK may also promote cell death by mediating induction of the mitochondrial 

apoptotic pathway.1,12 Indeed, compound deficiency of Jnk1 plus Jnk2 or Mkk4 

plus Mkk7 in MEF causes defects in the stress-induced apoptosis response in 

these cells.10,20 This may be due to alterations in the release of mitochondrial 

pro-apoptotic factors, including cytochrome c, that have been attributed to the 

ability of JNK to phosphorylate and either inhibit or activate the function of 

various BCL-2 family members.1,12 

 

MCL-1 is one such pro-survival factor that may function by binding to and 

sequestering the pro-apoptotic factor BAK in an inactive complex.21 JNK 

phosphorylates MCL-1 priming it for phosphorylation by glycogen synthase 

kinase 3 (GSK3), an event that promotes stress-induced MCL-1 proteasomal 

degradation.22 Thus, JNK-mediated MCL-1 degradation may allow the pro-

apoptotic function of BAK to proceed unhindered. JNK may also promote the 

function of other pro-apoptotic BCL-2 family members, including BIM and BMF by 

direct phosphorylation.1,12  

 

As the above discussion illustrates, stress-induced JNK activity, in general, has 

been associated with promotion of apoptosis and cell death with the exception 

that early transient JNK activation may contribute to cell survival.14 Additional 

evidence exists implicating JNK in survival responses. This role of JNK is 



                                                                                                                                                                                                                                                                         

 

9 

supported by studies showing that survival signals transduced by integrin 

engagement in fibroblasts following growth factor removal are mediated by a 

Ras/Rac1/PAK1/MKK4/JNK signaling pathway.23 Furthermore, survival signals 

during in vitro or in vivo BCR-ABL transformation of B lymphoblasts may be 

mediated by JNK1-dependent Bcl2 expression as defective transformation of 

Jnk1-/- lymphoblasts was associated with reduced Bcl2 expression, and 

transgenic restoration of Bcl2 levels rescued the defective transformation of Jnk1-

/- lymphoblasts.24 Perhaps the most compelling evidence supporting a role for 

JNK in cell survival comes form the analysis of compound mutant Jnk1−/−Jnk2−/− 

embryos, which exhibit defects in apoptosis in certain regions of the hindbrain 

during embryonic development.8 Interestingly, regions of the forebrain showed 

increased apoptosis.8 Thus, JNK may mediate both pro-survival and pro-

apoptotic responses during embryonic development depending on the specific 

cell types and likely developmental timing.    

Role of JNK during embryonic development 

The essential function of JNK during embryogenesis is underscored by the early 

embryonic death of compound mutant Jnk1−/−Jnk2−/− mouse embryos.8 This is 

likely in part due to the aforementioned perturbations in apoptotic responses in 

the developing brain that contribute to defective nervous system morphogenesis 

and exencephaly.8 In addition to its role in cell death and survival, JNK has 

important functions in cell and tissue morphogenesis via its effects on the actin 

cytoskeleton, cell polarity and cell migration. Some of the functions of JNK in cell 
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and tissue morphogenesis are evolutionarily conserved. In Drosophila 

melanogaster, JNK is required for dorsal closure, a major morphogenetic process 

whereby lateral epithelia from the two sides of the embryo come together to seal 

a dorsal hole.25 This process depends on actin cytoskeleton rearrangements that 

drive epithelial sheet movements and has many parallels with the neural tube 

closure process in vertebrates.25 In the absence of JNK, dorsal closure does not 

proceed normally resulting in a dorsal open phenotype. Two transcriptional 

targets of JNK, the TGF-β-related factor and BMP4 ortholog, Decapentaplegic 

(Dpp), and the dual specificity phosphatase, Puckered (Puc), whose expression 

is absent in JNK mutants, are required for proper dorsal closure 

morphogenesis.25 JNK also regulates convergent extension movements during 

gastrulation both in Drosophila and Xenopus.26 The process of convergence 

extension involves a series of highly coordinated movements that contribute to 

the formation of the body axis.26 JNK regulates this process through its 

involvement in the non-canonical Wnt/planar cell polarity (PCP) pathway.26,27  

 

Furthermore, in mice, in addition to its role in neural tube closure, JNK is also 

important for a number of other morphogenetic processes. The presence of one 

allele of Jnk2 in Jnk1-/-Jnk2+/- mice overcomes the embryonic death of Jnk1-/-

Jnk2-/- mice and allows the study of additional processes during mouse 

embryonic development.28,29 Jnk1-/-Jnk2+/- mice display defects in epithelial 

development in the skin, intestines and lung as well as optic fissure and eyelid 
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closure defects.28,29 Perturbations in epidermal growth factor (EGF) expression 

and EGF receptor function may underlie the eyelid closure defects in Jnk1-/-

Jnk2+/- mice,28 while the optic fissure closure defects were attributed to a JNK-

dependent decrease in bone morphogenetic protein 4 (BMP4, an ortholog of 

Drosophila Dpp) expression in the retina.29 Thus, JNK intersects with a number 

of signaling pathways to regulate developmental processes important for 

morphogenesis and maturation of various tissues and organs.  

 
 
THE VASCULAR SYSTEM 
 

Evolutionary History of the Blood Circulatory System 

The rise of multicellular organisms required a system that would overcome the 

time-distance constraints of diffusion and allow efficient gas exchange, 

distribution of necessary factors and removal of metabolic waste products from 

all cells of the organism. In all, but the most primitive metazoans, these vital 

tasks are facilitated by the circulatory system, an interconnected network of 

chambers and channels that permeates virtually all tissues bringing necessary 

factors within a few microns from all cells in organisms as small as mites and as 

large as whales.30 

Circulatory systems can be classified as open, found in arthropods (e.g. insects 

and crustaceans) and non-cephalopod mollusks (e.g. snails, slugs and clams) or 

closed, present in all other metazoans.30 Open circulatory systems consist of a 
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contractile heart and major vessels that open into the body cavity (or hemocoel), 

which is lined by the basal surface of tissue cells. Blood (called hemolymph) 

empties from the major supply vessels and heart into the hemocoel, where it 

bathes all organs. In this case, there is no physical separation and thus no 

distinction between hemolymph and interstitial/extracellular fluid. By contrast, in 

closed circulatory systems, blood remains inside channels and chambers and is 

physically separated from the interstitial fluid and tissue cells. Exchange of 

gases, nutrients and other factors between blood, the interstitium and tissue cells 

in this case occurs in capillary plexi, specialized, thin walled regions of the 

circulatory system network that facilitate diffusion.30 

The closed circulatory system of invertebrates consists of channels that are lined 

by the extracellular matrix of basement membranes of tissue epithelia. 

Vertebrates, on the other hand, have blood vessels that are lined by 

endothelium, a specialized monolayer of mesodermally derived cells with apico-

basal polarity. Intercellular junctions define the boundary between the apical side 

facing the lumen of vessels from the basolateral side which rests on a basement 

membrane surrounding all vessels.  

Development of the Circulatory System 

The cardiovascular system is essential for the development and survival of the 

organism and is the first system that forms during organogenesis.31 In 

vertebrates, vascular development starts with the emergence of angioblasts from 
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the primitive streak, which in mice occurs around embryonic day (E) 

7.5.  Angioblasts are fetal liver kinase 1 [FLK-1, also known as kinase insert 

domain receptor (KDR) or vascular endothelial growth factor receptor (VEGFR)-

2, the major receptor for VEGF-A] positive, Brachyury positive mesodermal 

precursors that migrate to the extra embryonic yolk sac, where they coalesce to 

form a network that includes clusters known as blood islands.31-33 The inner cells 

within blood islands will give rise to primitive hematopoietic precursors that 

initiate erythropoiesis. The outer cells of blood islands are endothelial cells that 

form the extra embryonic vasculature. Concurrently, in the embryo proper, 

angioblasts aggregate to form primitive vascular cords and plexi, a process 

known as vasculogenesis. These primitive vascular structures will subsequently 

lumenize and form the dorsal aorta and cardinal vein, which join the primitive 

heart tube creating the basis for the future circulatory system.31-33 

 

Following formation of primary plexi via vasculogenesis in the yolk sac and 

embryo, the vasculature continues to expand via sprouting of new vessels from 

these preexisting plexi, a process known as angiogenesis. Thus, while initial 

vessels form via direct differentiation of precursors into endothelial cells, most of 

the embryonic vasculature expands via sprouting, migration, and proliferation of 

existing endothelial cells.34  
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The retinal vasculature as a model for studying sprouting angiogenesis 

Many of the detailed aspects of the angiogenic sprouting process have been 

studied during the postnatal development of the retinal vasculature in mice.35 

This system offers unique advantages for exploring the intricate cellular and often 

molecular mechanisms of vascular development as it allows detailed analysis of 

sprouting angiogenesis in a relatively easily accessible tissue that is avascular at 

birth. Vascularization of the retina in mice occurs in the first few weeks of 

postnatal life. Extension of the retinal vascular plexus proceeds initially (P0 to 

~P9) on the inner surface of the retina in a highly stereotypic fashion from the 

center of the retina towards the periphery in two dimensions (Figure I.3) This 

enables high-resolution analysis of many cellular and molecular aspects of 

sprouting angiogenesis, including tip/stalk cell specification, extension of filopodia 

and formation of endothelial cell-to-cell junctions as well as vascular progression, 

branching morphogenesis, and maturation processes such as vascular pruning 

and mural cell recruitment.36 

 

Sprouting angiogenesis – an interplay of tips and stalks 

Angiogenesis starts when endothelial cells within the wall of existing vessels 

receive the appropriate signals from the extracellular environment, acquire high 

migratory ability and emerge (or sprout) away from the main body of a vessel 

while maintaining contact with other endothelial cells lining the vessel. Sprouting 

endothelial cells are called tip cells. They are highly motile cells with low 
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proliferative capacity that elaborate numerous filopodia and guide the extension 

of the newly forming vascular plexus. Endothelial cells trailing tip cells are 

referred to as stalk cells. They have fewer filopodia and low migratory, but high 

proliferative capacity and form the stalk (or body) of the growing nascent 

vessel.37-39      

At the growing edge of the vascular plexus, filopodia and other protrusions of tip 

cells in close proximity often encounter each other and appear to fuse together, 

forming a bridge-like structure that may represent the beginning of the formation 

of a new tubule that will subsequently incorporate endothelial cell bodies, 

lumenize and become a new addition to the developing plexus. The emergence 

of new endothelial cell sprouts from the body of the nascent tubule will result in a 

new round of sprouting, fusion, bridge formation and tubulogenesis, ensuring 

further extension of the developing plexus. Thus, the formation of an initial 

immature vascular network involves multiple rounds of sprouting and 

tubulogenesis. VEGF signaling is at the core of this angiogenic sprouting 

processes.37-39     

 

VEGF – VEGFR signaling 

VEGF-VEGFR signaling is critical for many aspects of the angiogenic sprouting 

process. In mammals, three VEGFRs (VEGFR1 [also known as fms-related 

tyrosine kinase 1 (FLT1), VEGFR2 and VEGFR3 [also known as FLT4]) and five 

VEGFR ligands, VEGF-A, B, C, D and placenta growth factor (PLGF) have been 
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identified.40 Further complexity in this signaling system is added by the existence 

of multiple splice variants of the different receptors and ligands. These ligands 

and receptors, and the ligand-receptor complexes that they form have been 

demonstrated to display both common and unique signaling properties that affect 

a multitude of processes during vascular development.40 This is accomplished 

via the interaction of activated VEGFRs with numerous components of a variety 

of other signaling pathways, leading to the modulation of their signaling output, 

and thus, the regulation of various processes, including endothelial cell 

proliferation, survival and migration as well as regulation of cell-to-(cell or 

extracellular matrix) adhesion and vascular permeability. VEGFRs belong to the 

superfamily of receptor tyrosine kinases. Upon binding VEGF ligands, VEGFRs 

undergo homo or heterodimerization and autophosphorylation at various tyrosine 

(Y) residues that facilitate interaction with a variety of proteins resulting in 

activation of signaling pathways including PI3K / AKT and PI3K / Rac1, and Ras / 

MEK / ERK, among others.40 In contrast to VEGFR2, which has high kinase 

activity, VEGFR1 displays strong binding to VEGF ligands, but has low kinase 

activity and is thought to antagonize the function of VEGFR2 by competing for 

VEGF ligands. Soluble forms of VEGFR1 have also been identified and act as a 

sink for VEGF, contributing to the regulation of VEGF bioavailability.40 The most 

studied and best understood of the VEGF–VEGFR signaling interactions is that 

between VEGF-A and VEGFR2.  
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VEGF – VEGFR signaling drives sprouting angiogenesis 

In the retina, VEGF-A is produced in part by an astrocytic network in the initially 

avascular retina and forms a chemoatractive gradient that guides the extension 

of the developing vascular plexus, while ensuring endothelial cell survival, 

proliferation and migration.37-39 Specifically, VEGF-A signaling via VEGR2 guides 

the migration of endothelial tip cells into a new sprout and stimulates extension of 

filopodia from these cells without stimulating proliferation.41 VEGF-A – VEGFR2 

signaling in stalk cells, however, stimulates their proliferation. This response is 

dependent on the concentration of VEGF-A. Thus, VEGF-A – VEGFR2 signaling 

mediates different cellular responses in distinct endothelial cell populations within 

the developing vascular plexus.41 How does the same VEGF signaling pathway 

specify distinct cell fates and responses in endothelial cells that are in physical 

contact and interacting with each other? These distinct responses in neighboring 

endothelial cells are largely defined by VEGF-mediated regulation of Notch 

signaling. 

 

Notch signaling  

(Refer to Figure I.4) 

In mammals, four receptors (Notch1-4) that interact with five canonical Notch 

ligands, namely Delta-like1 (Dll1), Delta-like3 (Dll3), Delta-like4 (Dll4), Jagged1 

(Jag1) and Jagged2 (Jag2) collectively referred to as DSL (after the invertebrate 

Delta and Serrate/Lag2 proteins) have been identified.37-39 Notch receptors and 
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their DSL ligands are transmembrane proteins that contain extracellular domains 

with numerous epidermal growth factor (EGF) repeats.37-39 Therefore, canonical 

Notch signaling requires direct physical contact between the cell expressing the 

ligand and that expressing the receptor.   

 

Notch receptors are synthesized as single polypeptide precursors, which 

following fucosylation by the enzyme Protein O-fucosyl transferase (POFUT1), 

undergo cleavage by the protease Furin in the trans-Golgi network generating 

the non-covalently linked Notch extracellular and intracellular domains (NECD 

and NICD, respectively). Upon ligand binding, Notch receptors undergo two 

additional proteolytic cleavage events. First, the NECD is cleaved at the juxta-

membrane region by a member of the a disintegrin and metalloprotease (ADAM) 

family and trans-endocytosed coupled to the ligand. Second, due to NECD 

cleavage and/or protein conformational changes imparted by NECD endocytosis 

into the ligand-presenting cell, the remaining Notch subunit becomes susceptible 

and is cleaved by γ-secretase within the transmembrane region, thus, releasing 

the NICD from the membrane. NICD translocates into the nucleus where it 

interacts with the transcription factor RBP-J (also known as CSL, named after 

mammalian CBF1, Drosophila Su(H), and Caenorhabditis elegans LAG1), 

displaces corepressors and forms a transcription complex that includes the 

coactivator Mastermind-like (Maml) and histone acetyltransferases (e.g. P300) 

driving transcription of Notch target genes such as the basic helix-loop-helix 
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(bHLH) proteins Hairy/Enhancer of Split (Hes) and Hes-related proteins (Hey).37-

39  

 

In addition to POFUT1-mediated fucosylation and sequential cleavage events, 

this pathway is regulated by a number of other receptor and ligand modifications. 

Thus, Notch receptors can be further glycosylated on several EGF repeats by 

Fringe glycosyltransferases (3 in mammals, Lunatic Fringe [LFNG], Manic Fringe 

[MFNG] and Radical Fringe [RFNG]), a modification that potentiates pathway 

activation by Delta-like ligands. Furthermore, the NICD can be ubiquitinated by 

the HECT domain E3 ligases Suppressor of deltex [Su(dx)] and Neural precursor 

cell expressed, developmentally down-regulated 4 (NEDD4) leading to Notch 

degradation and inhibition of signaling. In contrast, ubiquitination by the ring 

finger E3 ligase Deltex can antagonize Su(dx) and lead to either enhanced or 

decreased Notch signaling depending on the organism and cell type.37-39 

 

Largely via unknown mechanisms, ubiquitination of DSL ligands by the E3 

ligases Neuralized (Neurl) and Mind bomb (Mib) is important for ligand activation, 

and interaction with the ubiquitin-binding protein Epsin is required for full Notch 

pathway activity.37-39 

 

Collectively, these multiple and diverse layers of regulation ensure tight control of 

Notch signaling output as both decreased and enhanced pathway activity can 
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have dramatic consequences on cell fate specification, tissue morphogenesis 

and organismal survival.   

     

VEGF and Dll4 – Notch signaling interactions specify tip/stalk cell selection and 

vascular morphogeneis 

In the vascular endothelium, Notch signaling is crucial for tip/stalk cell 

specification, vascular morphogenesis and arterial identity. Endothelial cells 

express Notch receptors 1, 2 and 4, and the ligands Dll1, Dll4 and Jag1.37-39 

During sprouting angiogenesis, hypoxia and VEGF signaling upregulate Dll4 

expression in tip cells leading to increased Notch signaling in adjacent cells.37-39 

Enhanced Notch signaling in endothelial cells results in downregulation of 

VEGFR242,43 and VEGFR344 (and reportedly upregulation of VEGFR1),43 and 

thus, reduced VEGF responsiveness and suppression of sprouting activity, 

including decreased migration capacity and reduced numbers of filopodia; 

effectively defining them as stalk cells. In addition to VEGF signaling, Dll4 

expression is also positively controlled by Notch signaling.37,45 This suggests that 

the identity of endothelial cells as tips and stalks is not static, but highly dynamic. 

Indeed, it is thought that endothelial cells constantly compete for the tip cell 

position through the interaction of VEGF and Notch signaling.45 A balance 

between formation of new tip cells that guide the extension of the vascular plexus 

and stalk cells that proliferate and enable the growth of the tubular network must 

be established in order to maintain normal vascular patterning.  
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Perturbations in Notch signaling in endothelial cells result in dramatically altered 

vascular morphogenesis. Specifically, loss of Dll4,46 Notch1,46 LFNG,47 RBP-

J48,49 or chemical inhibition of γ-secretase with N-[N-(3,5–Difluorophenacetyl- L-

alanyl)]-S-phenylglycine t-butyl ester (DAPT)46 leads to reduced Notch signaling 

in endothelial cells and results in excessive sprouting angiogenesis, increased  

branching and density, and abnormal vascular patterning. In contrast, transgenic 

NICD overexpression50 or loss of Jag147 (which has weak signaling capacity, 

competes with Dll4 for Notch receptors and has pro-angiogenic functions)47 

results in decreased sprouting, branching and vascular density.   

Sprouting angiogenic processes driven by VEGF and Notch signaling initially 

result in formation of immature vascular networks lined only by endothelium. 

These pathways and their interaction with many others, including the ephrin-Eph 

receptor pathway, the transforming growth factor (TGF)-β pathway, the Wnt – β-

catenin pathway, the Slit – roundabout (Robo) pathway and the angiopoietin 

(Ang) – TIE pathway also play important roles in the continued patterning, 

remodeling and maturation of the vasculature.51-56 These processes include 

stabilization of intercellular junctions, branching, tubulogenesis, pruning of 

excess vessels and recruitment of supporting mural cells including pericytes and 

smooth muscle cells resulting in the formation of mature hierarchical networks; 

and upon further specialization, the formation of distinct arteries, veins and 

capillaries that have unique structural and functional characteristics.51-56 
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General Characteristics of the Circulatory System 

Vessels are tubular structures with walls composed of layers (or tunics). The 

luminal side of all vessels is lined by a monolayer of endothelial cells that is 

supported on the basal side by the basement membrane, an extracellular matrix 

layer consisting mostly of collagen and laminin. Capillary walls are lined only by 

endothelium, the basement membrane and interspersed pericytes that are 

located on the abluminal side. Arteries and veins have a more complex structure 

encompassing three distinct tunics. The endothelial/basement membrane layer 

constitutes the tunica intima. Encircling the tunica intima are several concentric 

layers of smooth muscle cells and elastic fibers that make up the tunica media. 

The media varies in thickness between arteries and veins as well as the size of 

the vessel. Arteries have thicker tunica medias with more smooth muscle and 

elastic fibers compared to veins. A third layer, the tunica externa, surrounds the 

media and is composed of fibroblasts interspersed within a matrix of connective 

tissue. 

 

By definition, arteries are vessels that take blood away from the heart and 

distribute it to peripheral tissues; in contrast, veins bring blood back to the heart. 

Thus, the arterial system is a high-pressure system as it is immediately 

downstream of the pumping action of the heart, and hence has evolved structural 

characteristics that allow it to not only withstand high pressures, but also regulate 

arterial pressure by altering lumen diameter via selective contraction and dilation 
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of the vascular wall. As large arteries travel towards peripheral tissues, they 

branch extensively into smaller caliber arteries and arterioles, progressively 

losing smooth muscle cell coverage. Small arterioles continue into capillary beds, 

where exchange of gas, nutrients, numerous other factors and metabolic waste 

products between blood and the extracellular fluid occurs. Capillaries merge to 

form postcapillary venules, which join larger venules that start to reacquire 

smooth muscle cell coverage. Venules join larger veins that eventually return 

blood to the heart, completing the systemic circulatory loop.  

 

In addition to the typical arrangement (artery>arteriole>capillary>venule>vein) 

described above, many, if not all tissues and organs, including skeletal muscle, 

heart, brain, skin and intestine display an alternative arrangement of arteries and 

arterioles consisting of direct artery-to-artery or arteriole-to-arteriole 

interconnection without an intervening capillary bed. These vessels are called 

collaterals.57,58 

 

Importance of the Collateral Circulation 

Collateral arteries interconnect adjacent arterial trees (Figure I.5). Normally, there 

is little blood flowing through collateral arteries due to the lack of a pressure 

gradient between the two ends of the vessel and their relatively narrow lumen.58 

The function of collateral vessels under normal physiological conditions remains 

unclear, however, their vital importance during vasoocclusive disease, including 
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myocardial infarction, stroke and peripheral artery disease has been 

demonstrated in numerous human studies and experimental animal models.59-63 

During certain pathological states, atherosclerotic and/or thromboembolic events 

can result in partial or complete occlusion of one or more arteries. The ensuing 

ischemia and hypoxia in tissues supplied by the occluded artery can have major 

detrimental consequences on the health and function of the affected tissue or 

organ. If blood flow, and therefore nutrients and oxygen are not restored within a 

short period of time, irreversible necrotic damage will ensue. In these 

circumstances, the native (pre-existing) collateral circulation can provide an 

alternative route for blood flow restoration to the affected region from an adjacent 

artery (Figure I.5), thus reestablishing tissue homeostasis and limiting ischemic 

damage.58  

 

Native Collateral Artery Development 

Few studies, almost exclusively from the Faber group, have traced the formation 

of native collateral arteries during ontogeny. These studies have focused on the 

development of leptomeningeal (or pial) collaterals that interconnect the medial, 

anterior and posterior cerebral artery trees in the brain and have provided 

evidence that these collaterals form during embryonic development starting 

~E13.5 as sprout-like extensions of endothelial cells from arterioles of existing 

cerebral artery trees.61 These nascent vessels appear to course above the pial 

capillary plexus and fuse with an arteriole from an adjacent arterial tree.61 By 
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E15.5 a portion of these collaterals have acquired expression of the arterial 

marker EphrinB2.64 Pial collateral density peaks ~E18.5 and is followed by 

extensive remodeling, maturation and pruning that continues postnatally, 

achieving adult form and density by P21.64 The process of collateral artery 

formation during embryonic development has been termed collaterogenesis.57,65     

 

There is extensive variability in the extent (i.e., number and size) of the native 

collateral circulation both in humans66-73 and between different mouse strains74-76, 

which correlates negatively with the magnitude of tissue damage following 

arterial occlusion. For example, the C57BL/6 is a strain that displays large 

collaterals and high collateral artery density; in contrast the BALB/c strain has 

fewer, smaller collaterals.74-76 In models of arterial occlusion, including femoral 

artery (FA)74,75 and medial cerebral artery (MCA)76 ligation, C57BL/6 mice show 

lower reductions in blood flow, faster and higher blood flow restoration and 

therefore milder ischemic sequelae compared to the BALB/c strain. Both genetic 

and environmental factors are thought to contribute to the variability in the extent 

of the collateral circulation, and some of the specific genetic determinants that 

influence native collateral artery development are beginning to be uncovered.  

 

Early clues regarding one of these genetic factors came from differential gene 

expression analysis between the C57BL/6 and BALB/c strains of mice.64,74 The 

higher number and size of pial collaterals in C57BL/6 mice correlated with higher 
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expression of VEGF-A in the collateral zone of this strain compared to that of the 

low collateral BALB/c strain.64,74 Subsequent studies utilizing VEGFlo/+, VEGFhi/+, 

VEGFR1+/- and VEGFR2+/- mice provided further evidence of the intimate 

involvement of the VEGF signaling pathway in native collateral artery 

development.61,77   

 

Several other studies have identified additional proteins that affect formation of 

the native collateral circulation including, endothelial nitric oxide synthase 

(eNOS),62 prolyl hydroxylase domain-containing protein 2 (PHD2),78 chloride 

intracellular channel 4 (CLIC4),65 platelet-endothelial cell adhesion molecule 1 

(PECAM1),79 gap junction protein connexin37 (Cx37),80,81 and the Notch ligand 

Dll4.82 Furthermore, genetic linkage analysis of F2 progeny from C57BL/6 x 

BALB/c crosses has identified quantitative trait loci (QTL) for collateral density 

and diameter.83-85 One QTL on chromosome 7 in mice appears to account for the 

majority of the collateral differences between these two strains.83,85 This QTL, 

originally named Candq1, has recently been refined from 27 to 0.737 Mb with full 

retention of the effect and is now designated as determinant of collateral extent 1 

(Dce1).85 Introgression of Dce1 into BALB/c restores collateral extent and 

rescues blood perfusion in models of FA and MCA occlusion in this low collateral 

strain to levels approaching those present in C57BL/6 mice.85 Interestingly, Dce1 

introgression into BALB/c restores pial collateral extent more efficiently (85% of 

C57BL/6) than muscle collaterals (55% of C57BL/6)85 suggesting that collateral 
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formation in different tissues is regulated by both common and distinct 

mechanisms. Clearly, much remains to be uncovered about the factors, signaling 

pathways and mechanisms that determine native collateral artery formation.    

 

Arteriogenesis 

In contrast to the paucity of studies on the mechanisms that drive native 

collateral artery development, arteriogenesis, the process of outward remodeling 

of narrow preexisting collaterals into functional conduits upon vascular occlusion, 

is a much more scrutinized process. This is in part likely due to smaller technical 

challenges, but most importantly propelled by the realization that enhancing 

arteriogenesis may provide better therapeutic benefit in vascular occlusive 

diseases compared to enhancing angiogenesis, which has been the goal of 

numerous failed clinical trials.86  

 

Angiogenesis is driven largely by ischemia and hypoxia, leading to stabilization of 

hypoxia inducible factors that drive expression of numerous hypoxia responsive 

genes including VEGF. As described above, VEGF binding to its receptors 

VEGFR1 and 2 on endothelial cells stimulates migration and proliferation of 

these cells from existing vessels initiating the formation of new capillary 

networks.85,87 While angiogenesis may provide some improvement in blood flow 

distribution, it cannot functionally replace an occluded artery because the 
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addition of small high resistance vessels increases the overall resistance of the 

vascular bed distal to the occluded artery limiting blood flow restoration.88 Thus, 

in the setting of vascular occlusion, only muscular collateral arteries are able to 

supply sufficient blood flow to prevent severe ischemia and its consequences.89 

Unlike angiogenesis, arteriogenesis does not require ischemia or hypoxia and 

can occur spatially and temporally dissociated from them.89,90 Following vascular 

stenosis or occlusion, preexisting collateral arteries undergo extensive growth 

and remodeling that harnesses their full potential at restoring blood perfusion 

downstream of an occlusion.91 Some of the mechanisms that mediate 

arteriogenic remodeling of collateral arteries will be discussed next. 

 

Flow-mediated biomechanical forces initiate arteriogenesis  

Arteriogenesis in the setting of vascular occlusion is thought to be initiated by 

biomechanical forces91-93 and requires the coordinated interaction of several cell 

types including endothelial cells, smooth muscle cells (SMC), 

monocyte/macrophages, neurons and likely other cell types.78,94,95 Vascular 

occlusion redirects blood flow to preexisting collaterals resulting in increased fluid 

shear stress (FSS) over the endothelial surface, as well as in increased 

longitudinal, circumferential and radial wall stress due to the elevated pressure 

within the collateral network.89,91 The endothelium and SMCs can sense these 
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physical changes and undergo molecular and morphological alterations that 

underlie collateral artery remodeling.  

 

Substantial evidence exists implicating FSS as an important early trigger for 

arteriogenesis.91,96 Increases in FSS stimulate the activity of endothelial nitric 

oxide synthase (eNOS) resulting in enhanced generation of nitric oxide (NO) that 

mediates smooth muscle cell relaxation and vascular dilation in an attempt to 

accommodate the increase in blood flow. Vascular dilation causes increased 

circumferential wall stress that, along with NO, directly contributes to smooth 

muscle cell proliferation and hypertrophy resulting in increased thickness of the 

tunica media, which is one of the most important aspects of the arteriogenic 

remodeling process. The critical importance of NO in arterial remodeling has 

been demonstrated by several studies utilizing eNOS-deficient mice that show 

markedly reduced arteriogenesis and increased collateral artery 

rarefaction.62,94,97 Inducible nitric oxide (iNOS) synthase has also been implicated 

in the arteriogenic process,98 although its role is much less well understood.  

 

Furthermore, the endothelium responds to increased FSS by acquiring an 

activated phenotype that involves cytoskeletal changes, but perhaps most 

significantly, up-regulation of numerous chemoattractants and cell surface 

adhesion molecules.91,99 Monocyte chemoattractant protein 1 (MCP-1, encoded 

by Ccl2) is one of the most important factors that has been shown to play a major 
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role during arteriogenesis following vascular occlusion.100,101 Both activated 

endothelial cells as well as SMCs produce and secrete MCP-1 setting up a 

strong chemoattractive gradient for monocytes. These adhere to the endothelial 

surface via interaction with selectins and adhesion molecules including 

intercellular adhesion molecule (ICAM-1 and 2) as well as vascular cell adhesion 

molecule 1 (VCAM-1) on the endothelial surface. Upon migration to the 

perivascular region, recruited monocytes differentiate into macrophages that 

secrete various matrix metalloproteases, which orchestrate extracellular matrix 

degradation that facilitates the arterial remodeling process. In addition, 

monocytes/macrophages produce numerous cytokines and growth factors that 

stimulate proliferation and migration of both endothelial and smooth muscle 

cells.89,102  

 

Role of macrophages in arteriogenesis 

Numerous lines of evidence support the crucial importance of the role of 

monocyte/macrophages and their secreted factors in arteriogenesis. Both blood 

monocyte levels and their recruitment to growing collaterals have been shown to 

affect collateral artery growth.63,103 Thus, chemically modulating blood monocyte 

levels correlates with the extent of collateral growth103 and impaired monocyte 

recruitment in Ccr2-/- mice results in decreased arteriogenesis.63 In contrast, 
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MCP-1 administration to the region of growing collaterals augments monocyte 

recruitment and enhances arteriogenesis.101,104  

 

The specific macrophage differentiation state appears to be particularly important 

as wound-healing/pro-angiogenic “M2-like” macrophages characterized by their 

higher expression of M2-type genes including Tie2, Arg1, Cxcr4, Ccr2, Hgf, 

Pdgfb, Nrp1, Mmp2, Cxcl12 (also known as Sdf1) and Tgfb appear to promote 

enhanced collateral artery remodeling not only in models of arterial occlusion, but 

also developmentally.78 Thus, Phd2 haplodeficiency in myeloid cells results in an 

overabundance of M2-like macrophages in pericollateral regions that is 

associated with increased collateral artery number and size at baseline and 

enhanced collateral artery growth in models of arterial occlusion.78 This was 

attributed to increased NF-κB activity in Phd2+/- macrophages that was 

hypothesized to drive a pro-arteriogenic transcriptional program including 

upregulation of Pdgfb and Sdf1. These were in turn shown to promote SMC 

migration and growth in vitro.78 A subsequent study from the same group linked 

Phd2 downregulation in macrophages to increased expression of the 

angiopoietin (ANG) receptor TIE2.105  They reported a feed-forward loop whereby 

increased ANG1 in the setting of vascular occlusion acts via TIE2 to 

downregulate Phd2, allowing enhanced NF-κB signaling and increased Tie2 

expression in macrophages, which was shown to be required for macrophage 

skewing to the proarteriogenic phenotype. Using a Herpes Simplex virus 
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thymidine kinase-gancyclovir cell suicide system, they demonstrated that TIE2-

expressing monocyte/macrophages (TEM) were indeed required for collateral 

artery growth. These data were complemented by a translational study that 

demonstrated increased numbers of TEM in the blood of patients with critical 

limb ischemia.106 TEM abundance was reduced following revascularization or 

amputation. These studies support the possibility that TEM may be relevant to 

collateral artery remodeling in humans as well as in mice.  

 

Role of growth factors in arteriogenesis 

As mentioned above, macrophages promote arteriogenesis, in part, via 

production of various chemokines and growth factors. These factors contribute to 

collateral artery remodeling via either one or both of the following mechanisms: 

(1) providing a feed forward stimulus for recruitment, survival and activation of 

additional monocytes; (2) by directly acting on endothelial and smooth muscle 

cells altering their migratory and proliferative capacity. 

 

GM-CSF and G-CSF 

Granulocyte/monocyte colony stimulating factor (GM-CSF) and G-CSF promote 

myeloid cell recruitment, proliferation and survival. Following promising results in 

augmenting arteriogenesis and blood perfusion in animal models of vascular 

occlusion,107,108 GM-CSF and G-CSF were tested in clinical trials in patients with 
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coronary artery or peripheral artery disease, however their beneficial effects in 

humans have been modest and equivocal.59,109-111 The differences in response 

between animal models and humans may be due to intrinsic biological 

differences between humans and other animals or due to factor doses selected, 

treatment regimens, patient selection, outcome measures and sensitivity of 

techniques used to measure response. Additional, better-designed studies may 

be required to definitively determine the therapeutic potential of these factors.86   

 

Fibroblast growth factors 

Other growth factors including different members of the fibroblast growth factor 

(FGF) family as well as placental growth factor (PlGF), platelet derived growth 

factor B (PDGFB) and VEGF have been shown to participate in the growth and 

remodeling of collateral arteries in the experimental setting.112,113 

 

Initial studies suggested that macrophage secreted FGFs may augment 

arteriogenesis and improve collateral artery flow114-116 likely via their ability to 

stimulate both endothelial and SMC migration and proliferation.117 FGFs may 

also act via cooperation with other growth factor systems by upregulating 

expression or promoting the action of VEGF, PDGFB, hepatocyte growth factor 

and MCP-1.113 The story is, however, quite complex as Fgf1-/-, Fgf2-/- or double 

Fgf1 plus Fgf2 knockout mice show little phenotypic vascular defects.118-120 

Additionally, clinical trials aimed at therapeutic angiogenesis in patients with 
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ischemic disease have shown little therapeutic efficacy of any single growth 

factor delivery from this family,121 pointing to the significant redundancy in the 

FGF system and indicating the need for combinatorial strategies with factors from 

the same family or combination of growth factors from different families. Thus, 

understanding the intricate details and differences in the action of various growth 

factors may lead to better therapeutic strategies.    

 

VEGF-A 

In this respect, despite the disappointing outcome of clinical trials utilizing VEGF 

at improving therapeutic angiogenesis in ischemic diseases,122 much research 

has continued to focus on understanding the arteriogenic potential of the 

VEGF/VEGFR signaling pathway.94 Numerous experimental studies in mice 

support an important role for this pathway in arteriogenesis in the setting of 

vascular occlusion.77,94,123,124 However, given this pathway’s unquestionable 

pleiotropic functions during developmental angiogenesis, specification of arterial 

identity and arterial branching morphogenesis94,125 as well as in formation of 

native collateral arteries,61,77 it is often difficult to separate whether the results 

obtained in genetically modified mice with perturbation of this pathway are due to 

developmentally-derived differences in the formation of the vasculature or 

whether VEGF signaling indeed plays a role during remodeling of collateral 

arteries in adult animals in the setting of vascular occlusion. This distinction may 

be important for the design of therapeutic modalities as well as for the 
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interpretation of the outcome of clinical trials aimed at modulating this pathway in 

patients with vaso-occlusive disease. 

 

Studies have reported the involvement of VEGF signaling during both 

developmental and adult arteriogenesis. A recent study demonstrated the 

existence of a chemokine-coupled β2 integrin-induced Rac2-Myosin 9 (Myh9) 

interaction that leads to nuclear-to-cytosolic translocation of the RNA-binding 

protein HuR and VEGF-A mRNA stabilization.123 Thus, mice with myeloid-

specific disruption of Myh9 show reduced VEGF-A expression in macrophages 

and have blunted arteriogenic responses in adulthood following femoral artery 

occlusion, but do not display measurable defects in developmental angiogenesis, 

arteriogenesis or collateral artery formation.123 These are surprising, but 

interesting findings that may truly reflect intrinsic biological differences between 

developmental and adult vascular biology. However, as the authors point out, 

these observations could be due to the timing of deletion of Myh9. Additionally, 

these findings may reflect differences in vascular development in different tissues 

since developmental vascular processes in this study were examined in the 

retina, kidney and brain, whereas adult arteriogenesis was analyzed in hindlimb 

skeletal muscle. 

 

Other studies have analyzed the mechanisms of VEGF-VEGFR2 signaling in 

endothelial cells and its importance in arteriogenesis. A critical outcome of this 
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signaling is phosphorylation and activation of the mitogen-activated protein 

kinases ERK1 and 2, which mediate endothelial cell proliferation, migration and 

tube formation and are required for vascular development and arterial branching 

morphogenesis.94 In arterial endothelial cells, VEGF-VEGFR2 mediated ERK 

phosphorylation requires VEGFR2 endocytosis and trafficking through the 

endosomal compartment, a process that is regulated in part by the VEGF and 

semaphorin non-tyrosine kinase receptor Neuropilin 1 (Nrp1) and its interaction 

with synectin and myosin-VI.124,126,127 Thus, VEGF-A binding to VEGFR2 leads to 

receptor dimerization and autophosphorylation at Y1175, an event that is required 

for subsequent ERK phosphorylation.128 Following VEGF-A binding, dimerization 

and autophosphorylation, VEGFR2 undergoes clathrin-dependent endocytosis in 

a complex that includes Nrp1, synectin and myosin-VI.94 In this complex the 

function of Nrp1, which contains a PDZ-binding domain is to facilitate interaction 

with the PDZ domain-containing protein synectin. This, in turn, interacts with the 

actin-based molecular motor myosin-VI to promote trafficking of the VEGFR2 

receptor complex from clathrin-coated pits to early endosome antigen 1+ 

(EEA1+) endosomes.94,129 Delayed trafficking of the VEGFR2 receptor complex 

in synectin or myosin-VI knockout mice126 or in knockin mice, in which Nrp1 lacks 

the cytoplasmic PDZ-binding domain124 results in reduced ERK phosphorylation 

and decreased developmental and reportedly adult arteriogenesis; although 

formal demonstration of the effects on adult arteriogenesis would require 

disruption of these components using inducible systems in adult mice. The 
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decreased ERK phosphorylation, when VEGFR2 trafficking to EEA1+ 

endosomes is delayed, has been attributed to phosphotyrosine phosphatase 1b 

(PTP1b)-mediated dephosphorylation of VEGFR2 at Y1175,94,130 which serves as 

a binding site for PLCγ and subsequent activation of Raf1/MEK/ERK 

signaling.128,131 Indeed, ERK phosphorylation is enhanced in PTP1b-deficient 

endothelial cells, and endothelial specific conditional deletion of Ptpn1 (encoding 

PTP1b) in adult mice results in enhanced arteriogenesis and improved blood 

perfusion restoration in a model of femoral artery occlusion.130  

 

Role of JNK in the vasculature 

JNK has been implicated in angiogenic responses and other aspects of vascular 

biology. Studies have reported that treatment of human endothelial cells in 

culture with VEGF causes JNK activation that may be important for tube 

formation in vitro.132,133 Using siRNA knockdown approaches in bovine aortic 

endothelial cells, one study reported that the chemokine stromal cell-derived 

factor-1α (SDF-1α, also known as CXCL12) causes selective phosphorylation of 

JNK3, but not JNK1 or JNK2, and that JNK3 was important for cell migration and 

tube formation in vitro.134 Induction of JNK3 phosphorylation by SDF-1α was 

attributed to SDF-1α-stimulated endothelial nitric oxide synthase (eNOS) 

activation leading to nitric oxide-mediated nitrosylation and inactivation of MAPK 

phosphatase 7 (MKP7).134 
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Two in vivo studies employing whole body Jnk1-/- mice or chemical inhibition of 

JNK have reported a positive regulatory role for JNK in pathological ocular 

neovascularization in a model of retinopathy of prematurity (ROP)135 and in a 

model of laser-induced choroidal neovascularization (CNV).136 One study 

showed that hypoxia activates JNK in macrophages in vitro leading to JNK-

dependent positive regulation of VEGF expression in these cells.135 Jnk1-/- mice 

exhibited decreased VEGF expression in retinas during the development of 

retinopathy and this was proposed to contribute to decreased retinal 

neovascularization in the ROP model.135 In the second study, decreased 

apoptosis in the choroid of Jnk1-/- mice following laser-induced injury was 

reported to lead to decreased macrophage recruitment, decreased VEGF 

secretion in choroidal tissues and decreased CNV size.136 

 

Two other studies have reported results that appear contradictory to those 

above. An earlier study reported a negative regulatory role for JNK1 in 

angiogenesis.137 This study showed that treatment of human endothelial cells 

with the potent natural angiogenesis inhibitor Thromobospondin-1 (TSP-1) 

activates JNK in a CD36 (a TSP-1 receptor)-dependent manner. JNK1 was then 

shown to mediate the antiangiogenic action of TSP-1 by demonstrating that TSP-

1 inhibition of basic FGF-induced corneal neovascularization in vivo or VEGF-

induced angiogenic sprouting in a corneal assay in vitro was impaired in corneas 

from Jnk1-/- mice.137 A recent study showed that increased JNK3 expression in 
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endothelial cells expressing a mutant form of EphrinB2 (lacking tyrosine residues 

important for signaling) mediates increased endothelial cell death.138 

Consequently, this study reported that Jnk3-/- mice display reduced regression 

and thus, increased branching and density of the hyaloid vasculature (a vascular 

network in the eye that in mice is present at birth and regresses in the early 

postnatal period).138   

 

Furthermore, numerous studies have implicated JNK in the response of 

endothelial cells to flow and flow-induced shear stress.139-144 Thus, acute 

exposure of endothelial cells to disturbed flow causes JNK activation that 

promotes endothelial cell inflammatory responses, including NF-κB activation, 

that have important roles in promoting regional development of atherosclerosis in 

the arterial vasculature.139,140 In contrast, exposure of the arterial endothelium to 

sustained laminar shear stress results in gene expression changes, including 

upregulation of the transcription factor KLF2, that lead to inhibition of JNK 

signaling, decreased expression of adhesion molecules on the endothelial 

surface, and decreased endothelial inflammation leading to endothelial 

normalization and protection from atherosclerosis.139,141,144 The role of JNK in 

transducing flow-induced shear stress responses during arteriogenesis has not, 

however, been explored.  
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HEMATOPOIESIS 

Hematopoiesis is the process of blood cell production.145 During embryogenesis, 

hematopoiesis occurs spatially and temporally in intimate association with 

vascular development. Indeed, hematopoietic and endothelial cells are thought to 

arise from a common precursor.33  

 

Hematopoietic and Vascular Endothelial Cells Share Common Origins  

Although still somewhat controversial, the existence of the hemangioblast, a 

common mesodermally-derived progenitor that gives rise to both hematopoietic 

and endothelial cells has been reported by several studies.33 Hematopoietic cells 

first appear within the blood islands of the extra-embryonic yolk sac in close 

apposition to endothelial cells.31,33 This association as well as the sharing of 

various markers between hematopoietic and endothelial cells and the impairment 

of both the hematopoietic and vascular systems in mutants, such as the Flk-1-/- 

mice,146 has lead to the hypothesis of the hemangioblast. Lineage tracing studies 

have provided support for a common origin between hematopoietic and 

endothelial cells, yet, definitive direct evidence that a single cell divides 

asymmetrically to form an endothelial and a blood cell in vivo is lacking.33  

Hematopoietic stem cell emergence 

During development, blood production occurs at several different sites. These 

include the yolk sac, a region surrounding the aorta called aorta-gonad 
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mesonephros (AGM), the placenta, the fetal liver and ultimately the bone 

marrow.33  In mammals, the first wave of hematopoiesis occurs in the yolk sac, is 

termed “primitive” and generates erythroid cells that are necessary for 

oxygenation of the rapidly developing embryo.33  Cells with myeloid 

characteristics are also generated at this stage.147 However, whether 

hematopoietic stem cells (HSCs) are present in the yolk sac remains 

controversial.148 HSCs are defined functionally as cells that are capable of 

generating all blood cells and that undergo self-renewing divisions, whereby a 

single cell generates daughter cells with the same characteristics and potential 

as the original cell.33   Definitive HSCs (dHSCs) with engrafting potential are first 

detected in the AGM ~E10.5 and are thought to bud off from specialized 

endothelial cells lining the aorta termed hemogenic endothelial cells.149 The 

placenta has also been shown to contain dHSCs, although it is unclear whether 

these arise de novo or colonize the placenta via the circulation.150,151 By E11.5 

HSCs have colonized the fetal liver and subsequently, the thymus, spleen and 

ultimately the bone marrow, which is the primary site of adult hematopoiesis.33      

The hematopoietic hierarchy 

HSCs stand at the top of the hematopoietic hierarchy (Figure I.6).145 They have 

definitive replication potential and are maintained in a quiescent state with a 

small number of HSCs cycling at any one time. Theoretically, HSCs can undergo 

three types of cell divisions: (1) symmetrical, giving rise to two daughter HSCs 

with the same characteristics and potential of the original cell; (2) asymmetrical 
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division, generating a daughter HSC plus a more differentiated cell with reduced 

self-renewal potential (often termed short-term HSC [ST-HSC]); and (3) 

symmetrical division resulting in the production of two ST-HSCs.33,152 ST-HSCs 

proceed down the differentiation hierarchy to successively generate more 

differentiated progenitors that will ultimately produce mature blood cells. Thus, 

ST-HSCs give rise to multipotent progenitors (MPPs) that retain multilineage 

differentiation potential, but lack self-renewal capacity. MPPs can produce both 

common myeloid progenitors (CMPs) and common lymphoid progenitors (CLPs). 

CLPs are the source of committed precursors that will generate B and T cells, 

whereas CMPs give rise to megakaryocyte/erythrocyte progenitors (MEPs) and 

granulocyte/macrophage progenitors (GMPs). Neutrophils, eosinophils, 

basophils, mast cells, dendritic cells and monocyte/macrophages arise from 

GMP-derived precursors.33       

 

Methods of stem and progenitor cell identification and functional characterization 

Immunolabeling of surface markers coupled with multicolor flow cytometry 

approaches affords the identification and isolation of stem, progenitor and mature 

hematopoietic cell populations with high purity.153 In adult mice, all HSC activity is 

contained within the Lineage-/low, Sca1+, cKit+ (LSK) population of bone marrow 

cells.153 This population is highly heterogeneous, and more specific stem and 

progenitor cell populations can be further defined by the utilization of additional 

cell surface markers.153 Indeed current methods allow identification of bone 
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marrow cell populations in which one out of two cells is a functionally confirmed 

HSC (i.e., engrafts and gives long term multilineage reconstitution in lethally 

irradiated mice).154 This is remarkable given that HSCs comprise only < 0.01% of 

bone marrow cells.153 In vivo functional characterization of stem and progenitor 

populations involves their transplantation into irradiated mice and analysis of 

blood production in recipient mice over time.155 HSCs are the only cells capable 

of conferring long term (> 4 months) multilineage reconstitution when 

transplanted into lethally irradiated mice, yet HSCs have definitive replication 

potential. The competitive serial bone marrow transplantation assay remains the 

most rigorous test for determining HSC function and self-renewal capacity. In this 

assay, as HSCs are transferred from one recipient to the next, they are 

repeatedly forced to cycle in order to repopulate the BM niches of the new 

recipient and maintain hematopoiesis. During this process, HSCs with lower self-

renewal potential will be lost earlier than HSCs with higher self-renewal potential, 

thus maintenance of multilineage blood production in recipient mice over long 

periods in multiple recipient mice can be used to infer HSC self-renewal 

capacity.155-157 

 

Role of JNK in hematopoietic cells 

JNK has been implicated in hematopoietic cell development and function in 

various contexts. JNK is activated by exposure of cells to various cytokines as 
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well as antigen or ligand binding to immune cell receptors, including T and B cell 

receptors, and toll like receptors.158 Studies employing single Jnk1-/- or Jnk2-/- 

mice or transgenic mice expressing a dominant negative JNK1 protein have 

demonstrated that JNK is not required for lymphocyte development, but may play 

a role during negative selection of thymocytes by mediating apoptotic responses 

to T cell receptor engagement.158-160 JNK has also been reported to affect 

differentiation, activation and proliferation of mature T cells. Thus, JNK1 appears 

to be required for appropriate effector T cell differentiation.161 CD4+ precursor 

cells undergo differentiation into type 1 or type 2 T helper (TH) cells that mediate 

differential immune responses. Jnk1-/- T cells exhibit enhanced production of TH2 

cytokines, undergo hyperproliferation and differentiate preferentially into TH2 

cells.161 Additionally, Jnk2-/- mice display defects in differentiation of CD4+ 

precursor cells into TH1, but not TH2 cells. Defective TH1 differentiation in Jnk2-/- 

mice has been attributed to impaired production of interferon (IFN)-γ production 

during the early stages of differentiation and can be rescued by exogenous IFN-

γ.162 In contrast to T cells, neither JNK1 nor JNK2 has been reported to contribute 

to normal B cell function including proliferation/survival or antibody production, 

despite JNK activation in B cells by various stimuli, including B cell receptor 

ligation.158 However, a positive regulatory role for JNK1 in B lymphoblast survival 

in the context of BCR-ABL transformation has been reported.24  
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JNK is activated in macrophages by inflammatory cytokines, lipopolysaccharide 

(LPS) and other stimuli.5,163,164 An important function of JNK2, but not JNK1, in 

the uptake and degradation of modified lipoproteins and foam cell formation has 

been reported and explains the protection of Jnk2-/-ApoE-/- from 

atherosclerosis.165 Mechanistically, it was demonstrated that JNK2 in 

macrophages phosphorylates scavenger receptor A (SR-A), an event that is 

required for receptor/lipoprotein complex internalization and formation of foam 

cells,165 which are critical mediators of the atherosclerotic process.166 JNK in 

macrophages has also been reported to be important for IFN-γ or LPS-induced 

pro-inflammatory cytokine expression in vitro and high fat diet-induced pro-

inflammatory macrophage polarization and inflammation in vivo.163 

 

In addition to its role in immune cell differentiation and function, the JNK signaling 

pathway has also been implicated in normal hematopoietic cell survival. Thus, 

the MAP3K, TAK1, which can mediate JNK activation by inflammatory cytokines, 

is critical for hematopoietic cell survival.167 Tak1-/- mice die during 

embryogenesis.168,169 Inducible conditional deletion of Tak1 in adult mice using a 

Mx1-Cre system results in lethality within 10 days of polyI:C administration due to 

bone marrow and liver failure resulting from massive apoptotic death of 

hematopoietic cells and hepatocytes.167 Apoptosis was confirmed in 

hematopoietic stem/progenitor cells (LSK cells), and the cell-autonomous 

requirement of TAK1 for hematopoietic cell survival was demonstrated in 
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transplantation experiments.167 A recent study investigated the role of JNK in 

hematopoietic stem and progenitor cell development in whole body JNK 

knockout mice and reported that Jnk2-/- and Jnk1+/-Jnk2-/- but not Jnk1-/- mice 

exhibited increased progenitor cell apoptosis and decreased numbers of HSCs 

and progenitors in the bone marrow.170 Thus, JNK may have important functions 

in hematopoietic development.  
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RATIONALE AND OBJECTIVES 

As illustrated above, in response to diverse extracellular stimuli, JNK 

phosphorylates numerous transcription factors and cytoplasmic proteins altering 

gene expression programs and regulating a multitude of biological processes that 

affect cellular, tissue and organismal physiology. JNK is ubiquitously expressed 

and exists in multiple isoforms, which may have distinct roles or may contribute 

to functional diversity via cell or tissue specific distribution profiles. However, 

often, JNK isoforms display high functional redundancy requiring careful 

interpretation of results from studies that employ disruption of distinct JNK 

isoform subsets. Standard whole body knockout mouse models disrupting 

individual or combinations of JNK genes have provided important insight into the 

pleiotropic functions of JNK in mammalian physiology. However, these studies 

have been limited by the early embryonic death of compound Jnk1-/-Jnk2-/- mice. 

The generation of conditional JNK alleles, combined with tissue specific 

constitutive and inducible Cre technology, now, affords more intimate dissection 

of tissue specific functions of JNK in mice with compound disruption of multiple or 

all JNK isoforms.  

 

Although JNK has been implicated in vascular and, more specifically, endothelial 

cell biology, both pro and anti-angiogenic functions have been reported. These 

results may stem from differential functions of specific JNK isoforms or JNK 

isoform profiles in different tissues that may affect the same biological process 
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differently. Furthermore, these studies have been focused specifically on the role 

of JNK in pathological angiogenesis or in vitro systems, which have some 

benefits, but also significant limitations. Therefore, studies that utilize multiple 

model systems that dissect different aspects of vascular biology and employ 

genetically modified mice with compound disruption of multiple or all JNK 

isoforms in specific cell types are required to definitively characterize the function 

of JNK in vascular biology. The purpose of the study presented in Chapter II was 

to provide critical and conclusive insights into the role of JNK in endothelial cell-

mediated vascular development and function.  

 

Additionally, given the intimate relationship both developmentally and physically 

between endothelial and hematopoietic cells as well as the numerous lines of 

evidence linking JNK to the regulation of immune cell gene expression, cytokine 

production, and hematopoietic cell survival and function, we aimed to generate 

and utilize previously uncharacterized mouse models with compound 

hematopoietic cell specific disruption of JNK in order to analyze its function in 

normal hematopoietic development and HSC self-renewal. These data are 

presented in Chapter III.    
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Figure I.1 MAP kinase signal transduction.  
 
Numerous mitogen activated protein kinase kinase kinases (MAP KKK) have 
been identified. Upon activation by a multitude of stimuli, MAP KKK 
phosphorylate and activate MAP kinase kinases (MAP KK). Four MAP KK are 
shown that mediate phosphorylation and activation of the MAP kinases, p38 and 
JNK. MKK4 and MKK7 mediate activation of JNK, while MKK3 and MKK6 
activate p38. MKK4 may also activate p38. Similar signaling cascades lead to 
activation of the ERK group of MAP kinases (not depicted). Upon activation, MAP 
K phosphorylate numerous substrates.  
    
Image taken from Davis, R.J. Signal transduction by the JNK group of MAP 
kinases. Cell 103, 239-252 (2000).
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Figure I.2 JNK isoforms.  
 
The c-Jun NH2-terminal kinase (JNK) is a serine / threonine kinase containing 11 
kinase subdomains (I-XI). JNK is fully activated upon phosphorylation of two 
critical residues (threonine (T) 183 and tyrosine (Y) 185) indicated by red arrows. 
Ten total JNK isoforms are generated by alternative splicing of the three Jnk 
genes (Jnk1, Jnk2 and Jnk3). One alternative splicing site located between 
subdomains IX and X (indicated by the shaded regions) involves selection of one 
of two alternative exons that encode part of the kinase domain. This splice site is 
restricted to Jnk1 and Jnk2, and gives rise to JNK isoforms with different 
substrate binding specificities. The second splice site at the COOH-terminus of 
the protein results in proteins that differ by 42 or 43 amino acids, indicated by the 
hatched regions. The functional role of these isoforms is not known.  
 
Image taken from Manning, AM and Davis, RJ. Nat Rev Drug Discov. 
2003;2(7):554-65.
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Figure I.3 Early postnatal development of the retinal vasculature as a model 
for studying sprouting angiogenesis.  
 
At birth (postnatal day [P] 0) the retina is avascular. Formation of the superficial 
retinal vascular plexus occurs in the first few days of postnatal life from the center 
of the retina towards the periphery. This highly stereotypic process initially occurs 
in two dimensions on the inner surface of the retina, which can be flatmounted as 
shown and allows for detailed microscopic analysis of many aspects of the 
sprouting angiogenic process.  
 
Image taken from Stahl, A., Connor, K.M., Sapieha, P., Chen, J., Dennison, R.J., 
Krah, N.M., Seaward, M.R., Willett, K.L., Aderman, C.M., Guerin, K.I., Hua, J., 
Lofqvist, C., Hellstrom, A. & Smith, L.E. The mouse retina as an angiogenesis 
model. Invest Ophthalmol Vis Sci 51, 2813-2826 (2010).



55



56 

Figure I.4 Notch signaling.  
 
Refer to the Notch Signaling section of the introduction for a detailed description 
of the pathway. 
 
Image taken from Roca, C. & Adams, R.H. Regulation of vascular 
morphogenesis by Notch signaling. Genes Dev 21, 2511-2524 (2007).
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Figure I.5 Collateral arteries.  
 
Collateral arteries interconnect adjacent arterial trees. Collaterals have narrow 
lumens and experience bi-directional flow. Following arterial occlusion more 
blood flow is redirected through these alternative routes. Increased proximal and 
decreased distal pressure results in unidirectional flow through collaterals in the 
setting of arterial occlusion. Collateral arteries remodel outwardly increasing in 
diameter.
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Figure I.6 The hematopoietic hierarchy. 
 
Hematopoietic stem cells (HSC) stand at the top of the hematopoietic hierarchy 
and give rise to all blood cells. The lineage-, Sca-1+, cKit+ (LSK) population of 
bone marrow cells is enriched in long-term (LT)-HSC, short-term (ST)-HSC and 
multipotent progenitors. LT-HSCs and ST-HSCs can undergo self-renewing 
divisions or can give rise to more differentiated progenitors, which will produce 
lineage specific progenitors such as the common lymphoid progenitors (CLP) 
that will lead to the generation of precursors for B, T and natural killer (NK) cells. 
Common myeloid progenitors (CMP) give rise to granulocyte/macrophage 
progenitors (GMP) and megakaryocyte/erythrocyte progenitors. GMPs generate 
granulocytes and macrophages, while MEPs generate platelets and erythrocytes.  
 
Image taken from Blank, U., Karlsson, G. & Karlsson, S. Signaling pathways 
governing stem-cell fate. Blood 111, 492-503 (2008).
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Chapter II 
 

Endothelial MLK – JNK Signaling Regulates Vascular 
Morphogenesis and is Critically Required for Native 

Collateral Artery Development 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                                                                                                                                                         

 

62 

Abstract 

 

Arterial occlusive diseases are major causes of morbidity and mortality. Blood 

flow to the affected tissue must be restored quickly if viability and function are to 

be preserved. Collaterals are artery-to-artery or arteriole-to-arteriole 

interconnections that can bypass an occlusion by providing an alternative route 

for blood flow to the affected tissue. The increased flow and shear stress initiate 

processes that result in the remodeling (arteriogenesis) of these vessels into 

efficient conductance arteries. Here we report that the mixed-lineage kinase 

(MLK) pathway activates cJun NH2-terminal kinase (JNK) in endothelial cells. 

Disruption of Mlk2/3 or Jnk1/2 genes caused severe blockade of blood flow and 

failure to recover in the femoral artery ligation model of hindlimb ischemia 

because of abnormal collateral arteries. We show that the MLK-JNK pathway is 

essential for patterning and maturation of collateral arteries during development, 

but this pathway is not required for angiogenesis or arteriogenesis in adults. JNK 

in endothelial cells promotes Delta-like 4-induced Notch signaling and 

suppresses excessive sprouting angiogenesis during development. This function 

of the MLK-JNK pathway contributes to normal formation of native collateral 

arteries. The MLK-JNK pathway is therefore a key regulatory mechanism for 

vascular development. These data highlight the crucial importance of the 

collateral circulation in the response to arterial occlusive diseases. 
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Introduction 

 

Arterial occlusion, the common denominator in ischemic stroke, myocardial 

infarction and peripheral artery disease, blocks blood flow and can result in 

severe tissue ischemia and necrosis. To prevent loss of tissue viability and 

function, blood flow to the affected tissue must be restored quickly. Collaterals 

are natural artery-to-artery or arteriole-to-arteriole interconnections that can 

bypass an occlusion by providing an alternative route for blood flow to the 

affected tissue, thus, restoring tissue homeostasis and limiting tissue 

damage.57,58,60,94,171,172 Indeed, clinical outcome in patients with arterial occlusion 

depends on the presence of an adequate collateral circulation68,172 and animal 

models of arterial occlusion provide strong evidence for the critical importance of 

the extent of the native (pre-existing) collateral circulation in restoring blood 

perfusion and limiting ischemic sequelae following arterial occlusion.65,75,101,104,173  

 

Important characteristics of the collateral circulation include collateral artery 

number and size,60,76,174 but also collateral artery connectivity patterns and 

functional adaptation to changes in blood flow.82 Furthermore, collateral artery 

structural adaptations are also essential for adequate blood flow restoration. 

Following arterial occlusion more blood flow is diverted to the collateral 

circulation and the increased flow and shear stress in collateral arteries initiates a 

number of processes that result in the outward remodeling (arteriogenesis) of 
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these vessels into efficient conductance arteries that allow increased blood flow. 

Collateral artery remodeling includes endothelial cell activation and proliferation, 

monocyte/macrophage recruitment and smooth muscle cell proliferation, all of 

which contribute to increased collateral artery diameter, including increased 

thickness of the tunica media. These structural and functional adaptations are, 

however, likely to depend heavily on the presence of an adequate native 

collateral circulation prior to vascular occlusion.58,88,89,91,94 

 

Little is known about the cellular and morphogenetic processes, or about the 

molecular factors and mechanisms that contribute to native collateral artery 

formation. A small number of studies, largely focused on the formation of the 

leptomenengial (or pial) collateral arteries in the brain, have provided significant 

insight.61,64,77,84 In mice, pial collaterals are established during embryonic 

development with some remodeling and maturation continuing postnatally.61,64 

The process of native collateral artery formation during embryogenesis has been 

termed collaterogenesis. The molecular factors or signaling pathways that have 

been reported to contribute to native collateral artery formation include, platelet-

endothelial cell adhesion molecule 1 (PECAM1),79 gap junction protein, 

connexin37 (Cx37),80,81 prolyl hydroxylase domain-containing protein 2 (PHD2),78 

endothelial nitric oxide synthase (eNOS),62 chloride intracellular channel 4 

(CLIC4),65 Synectin95, NF-κB signaling,175 VEGF signaling,61,74 and Dll4 – Notch 

signaling.82 In addition to affecting native collateral artery formation, many of 
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these factors are known modulators of developmental angiogenesis (i.e., the 

process of new vessel formation from existing vasculature) and vascular 

morphogenesis, suggesting that the patterning of initial vascular networks may 

affect their subsequent remodeling and maturation, and formation of native 

collateral arteries.  VEGF and Dll4 – Notch signaling play critical roles in 

endothelial cell survival, proliferation and migration, and therefore, regulate 

developmental sprouting angiogenesis and vascular morphogenesis.37,54,125 They 

are also critical for formation of the native collateral circulation.82 

 

cJun-NH2 terminal kinases (JNK) are members of the stress and mitogen 

activated protein kinase (MAPK) family that are activated by diverse 

environmental stimuli, including cytokines, growth factors and flow-mediated 

shear stress.1,12,139-144 Three Jnk genes encode for transcripts that are 

alternatively spliced, generating 10 different JNK isoforms with high functional 

redundancy.1,3 JNK1 and JNK2 isoforms are ubiquitously expressed, whereas 

expression of JNK3 isoforms is restricted to brain, heart, testes1,3 and possibly 

endothelial cells.134 Signaling cascades involving one (or more) of a dozen MAPK 

kinase kinases (MAP3K) and one of two (or both) MAPK kinases (MAP2K) 

mediate JNK phosphorylation and activation. JNK phosphorylates numerous 

substrates, some of which are components of the activator protein complex 1 

(AP-1) that regulates expression of many genes. In this manner, JNK regulates 

various gene expression programs and mediates diverse cellular responses in 
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different cell types.1 

JNK has been implicated in both pro and anti-angiogenic responses in vivo.136,137 

These studies have used whole body Jnk1-/- mice in pathologic models of 

angiogenesis and thus have significant limitations. The role of other JNK 

isoforms and the specific cell types in which JNK is important for vascular biology 

as well as the role of JNK in physiologic vascular development and function 

remain outstanding questions.  

 

Here, we employ compound mutant mice with constituitive and inducible 

endothelial-specific disruption of all JNK isoforms in combination with various 

model systems to explore the role of endothelial JNK in various aspects of 

vascular biology. We find that JNK regulates Dll4 – Notch signaling in endothelial 

cells and identify a critical role for mixed lineage kinase (MLK) – JNK signaling in 

vascular morphogenesis and native collateral artery development.  
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Results 

 

Generation and initial characterization of mice with targeted ablation of 

all JNK isoforms in the vascular endothelium 

To examine the role of endothelial JNK in vascular development and function, we 

crossed mice with conditional alleles of Jnk to mice expressing 

a constitutively active cre recombinase (Cre) driven by the vascular endothelium 

cadherin (also known as Cdh5) promoter176 to generate mice with vascular 

endothelium specific compound deficiency of JNK1 plus JNK2 (E2KO, Cdh5Cre+ 

Jnk1LoxP/LoxP Jnk2LoxP/LoxP) or JNK1 plus JNK2 plus JNK3 (E3KO, Cdh5-Cre+ 

Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/-). Control mice included Cre+ (EWT, Cdh5-Cre+ 

Jnk1+/+ Jnk2+/+ and ECtrl, Cdh5-Cre+ Jnk1+/+ Jnk2+/+ Jnk3-/- respectively) mice as 

well as respective Cre- littermates (EfCtrl, Cdh5-Cre- Jnk1LoxP/LoxP Jnk2LoxP/LoxP and 

Cdh5-Cre- Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/-). Immunoblot analysis of lysates from 

purified (Supplementary Figure II.1D and E) lung endothelial cells from E3KO mice 

revealed a robust reduction in JNK protein levels in these cells (Figure II.1A). 

E2KO and E3KO mice used in this study developed normally and were healthy and 

fertile (see also the Methods section). We found no differences in body weight at 

birth and postnatal (P) day 6 (Supplementary Figure II.1A). Adult E2KO and E3KO 

mice were slightly smaller than control mice, but continued to gain weight 

indistinguishably from control mice (Supplementary Figure II.1B and C). 
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Endothelial (EC) and hematopoietic (HC) cells are thought to share a common 

precursor, the hemangioblast,33  and it has been reported that the Cdh5 promoter 

is active in a subset of HC.176  Indeed, polymerase chain reaction (PCR) analysis 

of bone marrow, spleen or blood from E3KO mice detected a low level of 

recombination of Jnk alleles (Supplementary Figure II.2B). However, importantly, 

immunoblot analysis showed no detectable reduction in JNK protein levels in any 

of the hematopoietic tissues from E3KO mice (Supplementary Figure II.2A). 

Furthermore, complete blood cell analysis of E3KO mice showed no major 

perturbation of any of the indices measured (Supplementary Figure II.2C). Flow 

cytometry analysis demonstrated no significant differences in the frequency of 

myeloid, B, T cells or T cell subsets in the blood of E3KO mice (Supplementary 

Figure II.2D). Finally, competitive bone marrow transplantation experiments 

indicated no significant differences in the number and function of hematopoietic 

stem/progenitor cells from E3KO mice (Supplementary Figure II.2E). These 

experiments indicate that E3KO mice have a normal hematopoietic system. 

Collectively, these data indicate that E3KO mice represent an appropriate model 

for studying the function of JNK in the vascular endothelium. 

 

JNK in the vascular endothelium is dispensable for angiogenic responses in adult 

mice 

JNK1 has recently been reported to be an important mediator of pathologic 

angiogenesis in a laser-induced model of choroidal neovascularization (CNV),136 
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however the cell type(s) in which JNK activity is responsible for this effect remain 

unknown. We examined how JNK in vascular EC affects angiogenic responses. 

JNK deficient EC formed cord like structures comparably to control EC in a tube 

formation assay in matrigel  (Supplementary Figure II.3A). Additionally, collagen 

embedded and VEGF stimulated aortic ring explants from E2KO or E3KO mice 

produced similar numbers of microvessels compared to aortic rings from control 

mice (Supplementary Figure II.3B). Consistent with these findings, we found no 

differences in the number of EC incorporating 5-ethynyl-2-deoxyuridine (Edu) or 

staining for the proliferation marker Ki-67 (Supplementary Figure II.3C and D) 

demonstrating that proliferation is not altered in JNK deficient EC. Furthermore, 

JNK deficient EC showed no defects in migration in an in vitro wound closure 

assay (Supplementary Figure II.3E).  

 

To assess the role of endothelial JNK in vivo, we examined two models of 

angiogenesis. First, we employed a laser-induced CNV mouse model in which 

laser-induced injury in the back of the eye initiates an inflammatory, pro-

angiogenic cascade that stimulates sprouting of new vessels from the choroid. 

Confocal imaging and quantification of CNV size in whole mount preparations 

revealed no significant differences between E3KO and control mice 

(Supplementary Figure II.4A and B). Second, we examined tumor angiogenesis. 

Subcutaneous injection of B16F10 melanoma cells into the flanks of E2KO or 

E3KO mice produced tumors comparable to those in control mice (Supplementary 
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Figure II.4C and D). Quantification of vascular density within tumors revealed 

only minor non-significant differences between tumors from E3KO and control mice 

(Supplementary Figure II.4E and F). In agreement with these data, JNK in 

endothelial cells was not activated by either hypoxia or VEGF (Supplementary 

Figure II.5A and B), and hypoxia responses and VEGF signaling were 

unimpaired in JNK-deficient endothelial cells (Supplementary Figure II.5C-E). 

Thus, JNK in the vascular endothelium is, dispensable for hypoxia and VEGF-

driven angiogenic responses in adult mice. 

 

Endothelial JNK deficiency results in enhanced blockade of blood perfusion and 

severe ischemic injury in models of arterial occlusion 

To examine the role of JNK in other aspects of vascular biology and function, we 

turned to a model of experimental arterial occlusion. Femoral artery ligation (FAL) 

causes hypoxia in the calf muscles stimulating angiogenesis; whereas the 

proximal adductor muscles experience little or no decrease in oxygen and 

nutrient supply due to an abundance of preexisting collateral arteries90 (Figure 

II.1B)  

 

We ligated the femoral artery (FA) between the proximal caudal femoral artery 

(PCFA) and the popliteal artery (PA, Figure II.1B),177 a very mild version of this 

model. Following occlusion, laser Doppler imaging revealed an ~80% decrease 

in blood perfusion in the ligated limbs of control mice and blood perfusion was 
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restored to ~60% of the contralateral limbs by day 3 (Figure II.1C and D). In 

striking contrast, even in this mild version of the model, most E3KO mice showed 

complete blockade of blood flow to the limbs following occlusion (Figure II.1C 

and D) leading to severe necrosis of the paws (Figure II.1E) with over 70% of 

mice developing "autoamputation" of the ligated limb (Figure II.1F and G). 

Control mice showed almost no signs of ischemia and only minor movement 

impairments (Figure II.1E-G). Ligation of the FA more proximally at its origin gave 

the same result (Supplementary Figure II.6A and B). It is worth noting that, to our 

knowledge, the severity of the blood perfusion defect in E3KO mice appears to be 

more profound than that of any other genetically modified mouse reported thus 

far. 

 

A similar model of coronary artery occlusion in the heart resulted in significantly 

higher mortality of E3KO mice compared to control mice (Supplementary Figure 

II.6C and D), suggesting that the vascular defects resulting in enhanced blood 

perfusion blockade upon arterial occlusion are not confined to the hindlimb.    

 

Following FAL, blood perfusion blockade and restoration in single Jnk1-/- 

or   Jnk2-/- mice was comparable to WT mice (Supplementary Figure II.6E) 

indicating that JNK1 isoforms and JNK2 isoforms are functionally redundant for 

the process(es) that govern blood perfusion blockade/restoration following 

FAL. E2KO mice, which lack both JNK1 plus JNK2 in the endothelium, performed 
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similarly to E3KO mice (Supplementary Figure II.6F), ruling out a required role for 

JNK3 in the severe phenotype observed in E3KO mice. Of note, we do not detect 

Jnk3 mRNA expression in lung endothelial cells from WT or E2KO mice under 

conditions in which Jnk3 expression is readily detectable in brain tissues. 

Together, these data demonstrate that JNK1 plus JNK2 in the vascular 

endothelium are critically required for the process(es) that determine the extent 

of blood perfusion blockade and/or restoration following occlusion of a major 

artery. 

 

In contrast, JNK in hematopoietic or skeletal muscle cells was dispensable for 

these process(es) because compound JNK1 plus JNK2 deficiency in all 

hematopoietic (Vav1-Cre, H2KO), myeloid (Lyz2-Cre, Φ2KO) or skeletal muscle 

(Ckm-Cre, M2KO) cells had no effect on blood perfusion blockade/restoration or 

ischemic damage following FAL (Figure II.1H-J). 

 

JNK in the vascular endothelium is necessary for proper patterning and 

connectivity of collateral arteries 

Analysis of functional cardiovascular parameters, including blood pressure and 

heart rate in Jnk1-/-, Jnk2-/- or E3KO mice revealed no major JNK-dependent 

perturbations (Supplementary Figure II.7A and B). Echocardiographic analysis 

showed normal cardiac function in E3KO mice (Supplementary Figure II.7C). 

Furthermore, contraction and endothelium-dependent relaxation responses in 
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aortic explants from E3KO mice were comparable to control mice (Supplementary 

Figure II.7D). These data indicated that the severe defect in blood perfusion in 

E3KO mice following FAL is unlikely to be due to overall cardiovascular 

dysfunction or defective vasodilatory responses in these mice. 

 

Much of the blood supply to the limb, particularly in the first few days following 

FAL, is provided by preexisting collateral arteries in the adductor muscles. The 

early and severe blood perfusion blockade in E3KO mice following FAL indicated a 

defect in these arteries and prompted their analysis. While multiple collateral 

arteries course through the adductor muscles at various depths, two highly 

stereotypic arteries (gracilis collaterals) stretch along the gracilis muscle in the 

medial aspect of the thigh (Figure II.1B). Their superficial location affords reliable 

visualization on wholemount preparations following intravascular Microfil 

perfusion and tissue clearing. 

 

In the unligated limbs of control mice, gracilis collaterals were easily identified as 

two lumenized continuous arteries that connected the PCFA to the saphenous 

artery (SA) (Figure II.2A, Unligated). Gracilis collaterals expanded radially by day 

4 following FAL (Figure II.2A, Ligated). In contrast, these arteries were highly 

abnormal in the unligated limbs of E3KO mice. In these mice, arteries emerged 

from both the PCFA and the SA (Figure II.2A), but they were thinner than in 

control mice (Figure II.2A-C) and branched off into multiple smaller vessels 
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forming a disorganized network instead of the continuous larger and very distinct 

collateral arteries that were observed in control mice (Figure II.2A-C). Micro-

computed tomography (µCT) analysis following intravascular contrast injection 

confirmed reduced collateral artery size and continuity in the limbs of E3KO mice 

(Figure II.2D). 

 

The mRNA abundance of endothelial cell specific markers Cdh5 and Pecam1 

was not altered in the adductor muscles and was significantly higher in the calf 

muscles of the unligated limbs of E3KO mice compared to control mice (Figure 

II.2E and Supplementary Figure II.8A) indicating that overall muscle 

vascularization was not reduced in E3KO mice. Following FAL, the mRNA 

abundance of endothelial cell specific markers was further increased in the 

muscles of E3KO mice compared to control mice (Figure II.2E and Supplementary 

Figure II.8A) likely due to enhanced angiogenesis resulting from higher levels of 

hypoxia. Indeed, expression of the hypoxia responsive gene, Glut1, was induced 

significantly higher in the adductor and calf muscles of E3KO mice compared to 

control mice (Figure II.2F).  

 

We also found no significant differences in the mRNA abundance of the 

macrophage marker Emr1 in the hindlimb muscles of E3KO mice compared to 

control mice (Supplementary Figure II.8B), suggesting no impairment in 

monocyte recruitment in E3KO mice.  
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Thus, although endothelial JNK appears to be dispensable 

for angiogenic responses in adult mice, it is critically required for proper 

patterning, connectivity and/or maturation of the collateral circulation. E3KO mice 

have highly abnormal collateral arteries that fail to provide an adequate 

alternative route for blood flow upon FAL, resulting in severe blood perfusion 

blockade that leads to extensive necrosis of the occluded limbs. 

 

The MLK group of MAP3Ks contributes to endothelial JNK activity and is 

important for proper native collateral artery development 

We explored additional molecular components within the MAPK signaling 

network that may mediate JNK activation during vascular development. The 

MAP2Ks, MKK4 and MKK7, have been clearly defined to directly phosphorylate 

and activate JNK.1 However, the role of individual MAP3Ks in mediating JNK 

activation in particular contexts in vivo is unclear. The MLK group of MAP3Ks has 

been shown to mediate TNF-induced JNK activation in a Rac1/Cdc42-dependent 

manner.5,178 Given the crucial role of Rac1/Cdc42 Rho family GTPases in 

endothelial cell cytoskeletal rearrangement and vascular development, we 

explored whether MLKs might mediate JNK activation important for vascular 

development in vivo.  

 

Of the four members of the MLK group of kinases,179 Mlk2 and Mlk3 were the two 

most highly expressed in endothelial cells (Figure II.3A). Mlk2-/-Mlk3-/- endothelial 
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cells displayed reduced bFGF-induced JNK activity as demonstrated by 

decreased cJun phosphorylation levels compared to WT endothelial cells (Figure 

II.3B). Therefore, we subjected Mlk2-/-Mlk3-/- double knockout mice to FAL to test 

if they would phenocopy the defects observed in endothelial JNK-deficient mice.  

 

Indeed, upon FAL, Mlk2-/-Mlk3-/- mice showed significantly more pronounced 

blood perfusion reduction compared to WT mice and almost no blood perfusion 

restoration by day 3 post FAL (Figure II.3C and D). Similarly to E2KO and E3KO 

mice, all Mlk2-/-Ml3-/- mice showed necrotic damage of the toes and paws of the 

ligated limb (Figure II.3E-G). Microphil perfusion analysis revealed abnormal 

gracilis collateral artery patterning in Mlk2-/-Mlk3-/- mice (Figure II.3H). Thus, 

these data strongly support the existence of an in vivo MLK/JNK signaling axis 

that is crucial for proper native collateral artery development. 

 

JNK in the vascular endothelium is dispensable for arteriogenic responses in 

adult mice 

The severe defect in preexisting collateral arteries in Mlk2-/-Mlk3-/- and E3KO mice 

prevented analysis of the role of endothelial JNK signaling in arteriogenesis in 

adult mice. We, therefore, employed the Cdh5(PAC)-CreERT2 driver line180 

to  generate mice, iE3KO (Cdh5(PAC)-CreERT2 Jnk1LoxP/LoxPJnk2LoxP/LoxPJnk3-/-) in 

which disruption of floxed alleles of JNK could be specifically induced in the 

vascular endothelium by tamoxifen administration at a desired time. We 
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administered tamoxifen to these mice as well as to appropriate Cre+ control 

(iECtrl, Cdh5(PAC)-CreERT2 Jnk1+/+Jnk2+/+Jnk3-/-) and Cre- (EfCtrl, 

Jnk1LoxP/LoxPJnk2LoxP/LoxPJnk3-/-) littermate mice at 6-8 weeks of age (a time when 

the native collateral circulation has been fully established) and following a 

recovery period, subjected them to FAL (Figure II.4A). JNK protein levels in 

purified endothelial cells from iE3KO mice were robustly diminished (Figure II.4B), 

however, in contrast to E3KO mice, blood perfusion blockade in iE3KO mice 

following FAL was similar to control mice, and there were no significant 

differences in blood perfusion recovery over 28 days (Figure II.4C). Intravascular 

Microfil perfusion analysis revealed a normal collateral circulation in 

the unligated limbs of iE3KO mice and these arteries remodeled similarly to those 

of control mice following FAL (Figure II.4D). These data, together with those from 

constitutive E3KO mice, demonstrate that endothelial JNK is dispensable 

for arteriogenic responses in adult mice, but is required for the proper formation 

of collateral arteries at an early time during development. Indeed, iE3KO mice in 

which recombination of floxed alleles of JNK was induced early during embryonic 

development by administering tamoxifen to pregnant females at 12.5 days post 

coitus (dpc) (Figure II.4E) and materials and methods) displayed significantly 

more severe blood perfusion reduction following FAL compared to littermate 

control mice (Figure II.4F). The severity of the blood perfusion blockade in this 

case was not as pronounced as that in constitutive E3KO mice because of highly 

variable recombination efficiency as demonstrated by analysis of Cdh5(PAC)-
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CreERT2, Rosa26-mT/mG (EmTmG) double transgenic reporter mice that were 

subjected to the same tamoxifen treatment protocol (Figure II.4G). 

 

Endothelial MLK/JNK signaling is critically required for muscle collaterogenesis 

during embryonic development 

Prior studies have described the development of the pial collateral circulation, 

which interconnects the distal branches of the middle cerebral and the anterior 

cerebral arteries. However, a detailed analysis of the formation of collateral 

arteries in muscle during ontogeny has not been reported. We, therefore, 

developed several immunofluorescence and 1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindocarbocyanine Perchlorate (Dil) perfusion protocols and 

generated genetic reporter mice to label the vasculature in order to trace the 

development of muscle collaterals at various stages of development in whole-

mount preparations of adductor muscles. 

 

At P6 and P0 in control mice, gracilis collaterals appeared fully formed 

connecting the PCFA to the SA (Figure II.5A and B). They were lumenized as 

evidenced by Dil perfusion analysis (Figure II.5A and B) and were fully covered 

by smooth muscle cells at P6 (Figure II.5A, SMA), but not P0 (Figure II.5B, 

SMA). In contrast, gracilis collaterals in E3KO mice had not properly formed at 

either P6 or P0 (Figure II.5A and B). Individual vessels did emerge from both 

the PCFA and the SA, but instead of interconnecting to form true collaterals, 
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these vessels branched off into multiple smaller caliber vessels (Figure II.5A and 

B, Dil Perfusion) that lacked smooth muscle coverage even at P6 (Figure II.5A, 

SMA) and appeared to enter the capillary circulation (Figure II.5A and B, Dil 

Perfusion). Similarly, analysis of the abdominal muscle arterial circulation in P0 

pups revealed numerous arteriolar arcades (direct arteriole-to-arteriole 

interconnections) in control mice (Figure II.5C), but this type of arterial 

arrangement was almost entirely absent in E3KO mice. Instead, E3KO mice 

displayed a tree like arterial pattern with very few direct artery-to-artery 

interconnections (Figure II.5C). 

 

Analysis of gracilis collaterals in adductor muscles and arteriolar arcades in 

abdominal muscles from P6 Mlk2-/-Mlk3-/- mice revealed defects similar to those 

observed in E3KO mice supporting a MLK/JNK signaling axis crucial for collateral 

artery formation (Figure II.6A and B). 

 

To understand how the defects in collateral artery patterning/maturation in E3KO 

mice may have arisen, we analyzed the vasculature in whole mount preparations 

of adductor muscles during embryonic life. In control mice at embryonic day 

(E)16.5, large caliber vessels including the FA/SA and PCFA were established in 

their typical positions (Figure II.5D and E) as observed in postnatal mice. 

However, distinct vessels directly interconnecting the PCFA to the SA had not 

been fully established at this time and the gracilis muscle region where collateral 
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arteries are present in postnatal mice was, for the most part, covered by a 

capillary plexus (Figure II.5D and E). Larger, more prominent vessels staining 

more intensely for iB4 could be distinguished to emerge from the PCFA and the 

SA (Figure II.5E, arrowheads), but instead of running the entire course of 

the gracilis muscle length as distinct collaterals, they branched off and entered 

the capillary plexus (Figure II.5E). Thus, it appears that gracilis collateral arteries 

form through a plexus intermediate, whereby certain vessels within the plexus 

undergo extensive remodeling and maturation into distinct arteries that 

interconnect the PCFA to the SA. This process of maturation appears to start at 

the two distal ends, where the future gracilis collaterals emerge from the PCFA 

and the SA and continues toward the middle of the muscle - a pattern of 

remodeling that likely reflects and is driven by the blood flow characteristics 

through these vessels. 

 

Large caliber vessels in E16.5 E3KO adductor muscles were similar to those in 

control mice, however, the capillary network between the PCFA and the SA 

displayed a hyperbranched and more disorganized arrangement of vessels with 

more pronounced thickness variation and that appeared to elaborate more 

filopodia (Figure II.5D and E). These observations suggested that the 

pronounced defects in collateral artery patterning/maturation in E3KO mice may 

arise due to defective sprouting angiogenesis that initially generates 

a hyperbranched, denser and more chaotically organized plexus that later fails to 
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remodel properly. 

 

Endothelial JNK deficiency results in abnormal sprouting angiogenesis during 

retinal vascular development 

To explore the role of endothelial JNK in sprouting angiogenesis in more detail, 

we analyzed retinal vascular development during the early postnatal period as 

this represents a well-characterized system that allows high-resolution analysis 

of sprouting angiogenesis in a developing vascular plexus that initially extends 

from the center towards the periphery of the retina in two dimensions.35,38 

Analysis of retinal flatmounts from P6 E3KO and E2KO mice revealed significantly 

reduced radial extension of the vascular plexus toward the periphery of the retina 

(Figure II.7A-C, L and Supplementary Figure II.9A-C and L). Closer examination 

showed higher vascular density in the region of the growing angiogenic front of 

E3KO and E2KO retinas compared to retinas from respective littermate control mice 

(Figure II.7D-G, H, J, M and Supplementary Figure II.9D-G, H, J, M). Regions of 

higher vascular density were particularly prominent adjacent to veins. Vascular 

extension in the retina occurs through the coordinated interaction, migration and 

proliferation of endothelial tip and stalk cells as well as non-endothelial cells 

including pericytes that help stabilize the vascular plexus.37 We found no 

differences in vessel pericyte coverage (Supplementary Figure II.10), however 

the E3KO and E2KO angiogenic front displayed significantly more tip cells (Figure 

II.7H, J yellow asterisks, N and Supplementary Figure II.9H, J yellow asterisks, 
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N). Additionally, JNK deficient tip cells exhibited more filopodia (Figure II.7I, K red 

dots, O and Supplementary Figure II.9I, K red dots, O). All retinal vascular 

defects observed in E3KO and E2KO mice were phenocopied in Mlk2-/-Mlk3-/- mice 

(Figure II.8) confirming a MLK/JNK signaling axis critical for restraining excessive 

endothelial cell sprouting during developmental angiogenesis.  

 

Reduced DLL4 – Notch signaling may contribute to the vascular morphogenetic 

defects of endothelial JNK deficient mice 

Endothelial cell hypersprouting in the absence of MLK/JNK signaling provides a 

basis for the defective cellular process that likely underlies abnormal patterning 

and maturation of collateral arteries in E3KO and Mlk2-/-Mlk3-/- mice. To begin to 

understand the molecular mechanisms that contribute to these cellular defects, 

we analyzed gene expression in isolated primary endothelial cells from control 

and E3KO mice by RNA sequencing (RNA Seq). JNK-deficient endothelial cells 

displayed altered gene expression compared to control cells. Of the ~1x104 

genes that were expressed (Fragments Per Kilobase of exon per Million 

fragments mapped  [FPKM] >2) in endothelial cells, 781 genes were significantly 

differentially expressed (log2 fold change ≤ -0.5 or ≥ +0.5; q ≤ 0.05) in E3KO vs. 

ECtrl and EfCtrl endothelial cells. Approximately similar numbers of genes were 

upregulated or downregulated (Figure II.9A). Gene ontology analysis of the group 

of differentially expressed genes identified significant enrichment in genes 

involved in several biological processes including mitosis/cell division/cell cycle, 



                                                                                                                                                                                                                                                                         

 

83 

and vascular development and morphogenesis (Figure II.9B).  

 

Differentially expressed genes related to mitosis/cell division/cell cycle identified 

by the gene ontology analysis are presented as a heat map in Figure II.9C; 

however, because we have not detected alterations in proliferation of JNK-

deficient endothelial cells (Supplementary Figure II.3C and D), these changes 

may not be biologically relevant. 

  

We additionally surveyed ~200 genes with known or putative roles in vascular 

development and function and identified 64 significantly differentially expressed 

genes in E3KO vs. ECtrl and EfCtrl endothelial cells, including those revealed by the 

gene ontology analysis. These genes, grouped in several categories, are 

presented as a heatmap in Figure II.9D. Several of these gene expression 

changes could contribute to the vascular defects observed in the absence of 

endothelial JNK signaling and the potential relevance of some is further 

considered in Chapter IV below.  

 

RNA Seq analysis revealed significant perturbations in Notch pathway gene 

expression, including downregulation of the Notch ligand and target gene Dll4 as 

well as the glycosyltransferase Lunatic Fringe (Lfng) and the Notch target gene 

Hey1 (Figure II.9D). We focused on Notch signaling as this represents a pathway 

that plays major roles during developmental angiogenesis, in particular tip/stalk 
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cell specification and endothelial cell sprouting.37 Indeed, the hypersprouting 

defects observed in E3KO and Mlk2-/-Mlk3-/- mice appear to closely resemble 

those previously reported in mice with reduced Dll4/Notch signaling,43,46,47 

including Lfng-/- mice.47 Additionally, Dll4+/- mice display perturbations in collateral 

artery formation82 and along with Notch1+/- mice181 show reduced recovery of 

blood perfusion in models of vascular occlusion.  

 

We confirmed decreased expression of Dll4 and other Notch pathway genes by 

quantitative RT-PCR analysis of mRNA from independent preparations of E3KO 

and control endothelial cells (Figure II.10A). Additionally, we verified reduced Dll4 

protein expression in E3KO endothelial cells compared to control cells by 

immunofluorescence analysis (Figure II.10B). VEGF stimulation is known to 

induce Dll4 expression and Notch signaling. Treatment of endothelial cell 

cultures with VEGF-A lead to increased abundance of Dll4 protein and Notch1 

intracellular domain (NICD) in control cells and reduced levels of both in E3KO 

cells (Figure II.10C). We also found that, similar to VEGF-A, basic fibroblast 

growth factor (bFGF) treatment caused increased Dll4 and NICD levels in 

endothelial cells (Figure II.10D). This response was suppressed in E3KO cells 

(Figure II.10D). Interestingly, in contrast to VEGF-A, bFGF induced marked JNK 

activation and cJun phosphorylation in endothelial cells (Figure II.10D). Thus, 

multiple stimuli may regulate Dll4 levels and Notch signaling in vivo during 

sprouting angiogenesis and some of these intersect with JNK signaling. 
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To provide in vivo evidence for the Dll4-Notch signaling perturbations detected in 

E3KO endothelial cells, we performed immunofluorescence analysis for Dll4 on P6 

retinas. This analysis revealed significantly reduced Dll4 immunostaining at the 

angiogenic front of retinas from E3KO mice compared to retinas from littermate 

control mice (Figure II.10E), suggesting that reduced Dll4-Notch signaling in the 

endothelium of E3KO mice may contribute to the endothelial cell hypersprouting 

observed in these mice.  

 

Thus, JNK may modulate Notch signaling in endothelial cells in vivo by regulating 

Dll4 expression leading to suppression of excessive sprouting angiogenesis and 

ensuring normal vascular morphogenesis. This function of JNK may be important 

for its critical role in ensuring proper formation and maturation of native collateral 

arteries and suppression of ischemic damage following arterial occlusion (Figure 

II.11). 
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Discussion 

 

Formation of properly organized vascular networks is essential for function and 

requires the coordinated interaction of numerous factors and signaling pathways 

that regulate diverse cellular processes. VEGF signaling promotes endothelial 

cell survival, proliferation and motility, while Dll4–Notch signaling suppresses 

some of the effects of VEGF in part by regulating VEGFR 

expression.34,37,39,41,45,46 Thus, the cooperation of VEGF and Notch signaling 

specifies unique endothelial cell phenotypes including highly motile tip cells that 

extend numerous filopodia and trailing stalk cells with low motility that form the 

lumen of nascent tubules. The proper specification and interplay of tip and stalk 

cells is essential for the orchestration of sprouting angiogenesis that mediates 

expansion of vascular networks.34,37,39,41,45,46 This study identifies a MLK – JNK 

signaling pathway that regulates tip cell identity, and filopodia dynamics, in part, 

likely via JNK-dependent regulation of Dll4 expression. Thus, Mlk2-/-Mlk3-/- mice 

or mice with compound endothelial-specific JNK-deficiency display excessive 

sprouting angiogenesis in the retina that is marked by an increased number of 

tips and filopodia, and increased vascular density and is associated with 

decreased Dll4 expression at the angiogenic front of endothelial JNK-deficient 

mice (Figure II.11). 

The hypersprouting defects during developmental sprouting angiogenesis in the 

absence of MLK – JNK signaling may underlie the critical requirement of this 
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signaling pathway for native collateral artery formation. This is supported by our 

analysis of adductor muscle vasculature in Mlk2-/-Mlk3-/- and endothelial-specific 

JNK-deficient mice at various stages of development.  

 

Analysis of muscle collateral artery formation during ontogeny has been 

hampered by technical difficulties. We have generated reporter mice in 

conjunction with compound endothelial-specific conditional deletion of JNK 

isoforms and have adapted and optimized Dil perfusion and immunofluorescence 

protocols that have allowed us to visualize several aspects of the vascular 

morphogenetic processes involved in collateral artery formation during ontogeny 

as well as their perturbations in mice that lack JNK signaling in the endothelium. 

The observations from this analysis lead us to propose a model of collateral 

artery formation in hindlimb adductor muscles that may have features that are 

distinctly different from those described for pial collateral artery formation in the 

brain.61 Thus, our analysis suggests that gracilis collaterals are not formed in 

isolation as distinct sprouts from existing arteries, but may arise through selection 

and maturation of vessels within a pre-formed capillary network that separates 

adjacent arteries. Preliminary analysis suggests that the sites where these 

collaterals form may be dictated by the presence of nerve fibers coursing through 

the gracilis muscle (Supplementary Figure II.11). Presumably, factors secreted 

from these fibers may guide the selection and maturation of vessels in close 

proximity. Additionally, our observation that the maturation of gracilis collaterals 
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appears to start where these vessels emerge from the parent arteries and 

continues towards the middle of the collateral vessels suggests that the 

maturation of gracilis collaterals may also be driven by the blood flow 

characteristics through these vessels.182 

 

At E16.5 when collaterals in control mice have not fully formed, the capillary 

plexus between adjacent arteries in mice with endothelial JNK deficiency 

appears denser and more chaotically organized than that in control mice. High 

variation in vessel thickness and increased numbers of filopodia are also evident 

in the JNK-deficient vasculature. These perturbations appear to mirror those 

seen in the retinal vasculature of Mlk2-/-Mlk3-/- and E3KO mice suggesting that 

similar mechanisms are involved. These morphogenetic defects are likely to 

contribute to the defective maturation of collateral arteries that are observed at 

later developmental timepoints in mice with disrupted MLK – JNK signaling.  

 

At P6 we observed that collateral vessels in control mice were invested with 

smooth muscle cells throughout their length effectively defining them as collateral 

arteries. In contrast, the analogous vessels in the gracilis muscle of Mlk2-/-Mlk3-/- 

and E3KO mice lacked continuous smooth muscle cell coverage suggesting that 

smooth muscle cell recruitment might be defective in these mice. However, at 

P0, smooth muscle cell coverage was absent in control mice, yet continuous and 

distinct gracilis collateral vessels interconnecting the PCFA to the SA were fully 
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formed. In contrast, the analogous vessels in the gracilis muscle of E3KO mice 

were also defective (branching extensively into smaller vessels that entered the 

capillary circulation) at P0, indicating that defective smooth muscle coverage is 

not likely to be a primary defect in these mice, but may occur subsequent to 

defective primary plexus formation. 

 

Our data indicate that the morphogenetic defects in the JNK-deficient capillary 

network arise due to excessive endothelial cell sprouting and that reduced Dll4 – 

Notch signaling may be a significant contributor. This idea is supported by prior 

studies that have investigated the function of Dll4 – Notch signaling during 

sprouting angiogenesis and collateral artery formation. Thus, various Notch loss 

of function mouse models, including loss of Dll4,46 Notch1,46 Lfng,47 RBP-J48,49 or 

chemical inhibition of γ-secretase with N-[N-(3,5–Difluorophenacetyl- L-alanyl)]-S-

phenylglycine t-butyl ester (DAPT)46, exhibit excessive endothelial cell sprouting 

during the postnatal development of the retinal vasculature. Furthermore, Dll4+/- 

mice show increased pial collateral artery branching that is not associated with 

decreased infarct size following medial cerebral artery occlusion, suggesting that 

these vessels, although more numerous, are functionally defective and do not 

result in improved blood perfusion.82 Dll4+/- mice also display defects in blood 

perfusion restoration following FAL,82 however collateral arteries were not 

specifically analyzed in the hindlimb adductor muscles in that study. Micro-CT 

angiography of the occluded hindlimb vasculature revealed significantly 
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decreased arteriolar numbers in the calf muscles of Dll4+/- mice compared to 

control mice,82 but this could have resulted from impaired contrast perfusion due 

to defective collateral artery patterning in the adductor muscles. A more direct 

analysis of the native collateral arteries in the adductors of Dll4+/- mice using 

methods similar to those employed in our study would help clarify the role of Dll4 

in native collateral artery formation.     

 

The collateral artery defects observed in Mlk2-/-Mlk3-/- and E3KO mice in the early 

postnatal period continue into adulthood and underlie the severe blood perfusion 

blockade and exuberant necrosis that follows shortly after FAL in these mice 

(Figure II.11). The severity of the blood perfusion defect and limb necrosis in 

Mlk2-/-Mlk3-/- and E3KO is remarkable and unprecedented, particularly because we 

performed very mild versions of the FAL model that involved only ligation of the 

femoral artery without excision. Despite this, all Mlk2-/-Mlk3-/- and E3KO mice 

develop paw necrosis and over 70% of E3KO mice undergo complete 

autoamputation of the paw on the ligated limb highlighting the critical importance 

of MLK – JNK signaling in native collateral artery development and the essential 

role of pre-existing collaterals in restoring blood perfusion following arterial 

occlusion.  

 

In contrast to its critical function in native collateral artery formation during 

embryonic development, we find that endothelial JNK is dispensable for 
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arteriogenic remodeling in adult mice in the setting of arterial occlusion (at least 

in our mild version of the model). We were able to uncouple the role of JNK in 

these two processes by employing an inducible conditional deletion strategy that 

allowed us to induce JNK ablation from the endothelium in adult mice at a time 

when native collateral arteries are fully established. Indeed, endothelial JNK 

disruption in adult mice had no effect on collateral artery remodeling or blood 

perfusion restoration following FAL. This is consistent with the lack of 

perturbations in the proliferation capacity of JNK-deficient endothelial cells, the 

absence of endothelial cell-dependent recruitment of monocyte/macrophages in 

E3KO mice and the absence of major defects in angiogenic responses in adult 

E3KO mice. Remarkably, though not unexpectedly, inducing deletion of JNK 

during embryogenesis by administering tamoxifen to pregnant mothers at 12.5 

dpc lead to significantly enhanced blood perfusion reduction following arterial 

occlusion compared to control mice, once again pointing to an essential role for 

endothelial JNK in developmental vascular morphogenesis and native collateral 

formation, but not in adult angiogenic and arteriogenic responses in models of 

pathological vascularization.  

 

Although not precise due to differences in ligation protocols, comparison of the 

blood perfusion reduction, the ischemic damage and functional impairment 

following FAL in Mlk2-/-Mlk3-/- and E3KO mice with those reported in Notch loss of 

function mice indicates that loss of MLK – JNK signaling results in more severe 
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defects suggesting that mechanism(s) in addition to reduced Dll4 – Notch 

signaling may be contributing to the collateral artery defects in E3KO mice. Indeed, 

RNA-Seq analysis revealed additional gene expression changes in E3KO 

endothelial cells compared to control cells that may play a role.  

 

In summary, our study provides insight into the mechanism that controls 

formation of muscle collateral arteries, which are critically important for the 

response to arterial occlusive disease. Muscle collaterals provide an alternate 

route for blood flow and serve to protect against ischemic tissue damage.  We 

show that the MLK-JNK pathway is required for collateral artery development and 

patterning, but is not required for angiogenesis or arteriogenesis in adults.  The 

MLK-JNK pathway plays a key role in Notch-regulated angiogenic sprouting 

during capillary plexus formation and remodeling that leads to the development 

of the muscle collateral arteries. Defects in the MLK-JNK pathway result in the 

loss of muscle collateral circulation, profoundly suppressing protective responses 

to arterial occlusion (Figure II.11).  
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Experimental Procedures 

 

Mice 

We have previously described Jnk1LoxP/LoxP, Jnk2LoxP/LoxP, Jnk1-/-, Jnk2-/-, Jnk3-/-, 

ΦKO mice (Lyz2-Cre+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP), ΦWT mice (Lyz2-Cre+ Jnk1+/+ 

Jnk2+/+), and Mlk2-/- Mlk3-/- mice5,161-163183,184. C57BL/6J mice (Stock# 000664), 

B6.SJL-Ptprca Pepcb/BoyJ mice (Stock# 002014), B6.FVB-Tg(Cdh5-cre)7Mlia/J 

mice (Stock# 006137)176, B6.Cg-Tg(Vav1-cre)A2Kio/J mice (Stock# 008610)185, 

B6.FVB(129S4)Tg(Ckmm-cre)5Khn/J mice (Stock# 006475)186, and B6.129(Cg)-

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (also known as Rosa26mTmG) mice 

(Stock# 007676)187 were obtained from The Jackson Laboratories. Cdh5(PAC)-

CreERT2 mice180 were provided by Prof. Ralf H. Adams. We generated the 

following mice: 

E3KO (Cdh5-Cre+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/-) 

EfCtrl (Cdh5-Cre- Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/-) 

ECtrl (Cdh5-Cre+ Jnk1+/+ Jnk2+/+ Jnk3-/-)  

E2KO (Cdh5Cre+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP) 

ELoxP (Cdh5-Cre- Jnk1LoxP/LoxP Jnk2LoxP/LoxP) 

EWT (Cdh5-Cre+ Jnk1+/+ Jnk2+/+) 

E2KO:mTmG (Cdh5-Cre+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP Rosa26mTmG) 

EmTmG (Cdh5-Cre+ Rosa26mTmG)  

iE3KO (Cdh5(PAC)-CreERT2+Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/-) 
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iEfCtrl (Cdh5(PAC)-CreERT2- Jnk1LoxP/LoxP Jnk2LoxP/LoxP Jnk3-/-) 

iECtrl (Cdh5(PAC)-CreERT2+ Jnk1+/+ Jnk2+/+ Jnk3-/-) 

iE2KO:mTmG (Cdh5(PAC)-CreERT2+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP Rosa26mTmG) 

ELoxP:mTmG (Cdh5(PAC)-CreERT2- Jnk1LoxP/LoxP Jnk2LoxP/LoxP Rosa26mTmG) 

iEmTmG (Cdh5(PAC)-CreERT2+ Jnk1+/+ Jnk2+/+ Rosa26mTmG) 

H2KO (Vav1-Cre+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP) 

HLoxP (Vav1-Cre- Jnk1LoxP/LoxP Jnk2LoxP/LoxP) 

HWT (Vav1-Cre+ Jnk1+/+ Jnk2+/+) 

M2KO (Ckm-Cre+ Jnk1LoxP/LoxP Jnk2LoxP/LoxP) 

MWT (Ckm-Cre+ Jnk1+/+ Jnk2+/+) 

All mice used in this study were backcrossed (≥ ten generations) to the C57BL/6J 

strain. The mice were housed in a specific pathogen-free (SPF) facility accredited 

by the American Association for Laboratory Animal Care. The animal studies 

were approved by the Institutional Animal Care and Use Committees of the 

University of Massachusetts Medical School, Tufts University School of Medicine, 

and Brigham and Women’s Hospital.   

 

Some E2KO and E3KO mice develop tooth abnormalities. We are currently 

investigating this phenotype. Only mice with normal teeth were used for 

experiments in this study. 
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Genotyping 

PCR assays with genomic DNA and the amplimers                                               

5’-TTACTGACCGTACACCAAATTTGCCTGC-3’ and  

5’-CCTGGCAGCGATCGCTATTTTCCATGAGTG-3’ were used to detect the 

Cre+ allele (450 bp). The amplimers 5’CCTCAGGAAGAAAGGGCTTATTTC-3’ 

and 5’-GAACCACTGTTCCAATTTCCATCC-3’ detected the Jnk1+ allele (1,550 

bp), the Jnk1LoxP allele (1,095 bp), and the Jnk1Δ allele (395 bp). The amplimers 

5’-GTTTTGTAAAGGGAGCCGAC-3’ and  

5’-CCTGACTACTGAGCCTGGTTTCTC-3’ were used to detect the Jnk2+ allele 

(224 bp) and the Jnk2LoxP allele (264 bp). The amplimers  

5’-GGAATGTTTGGTCCTTTAG-3’, 5’-GCTATTCAGAGTTAAGTG-3’, and  

5’-TTCATTCTAAGCTCAGACTC-3’ were used to detect the Jnk2LoxP allele (560 

bp) and the Jnk2Δ allele (400 bp). The amplimers  

5’-CCTGCTTCTCAGAAACACCCTTC-3’,  

5’-CGTAATCTTGTCACAGAAATCCCATAC-3’ and  

5’-CTCCAGACTGCCTTGGGAAAA-3’ were used to detect the Jnk3+ allele (437 

bp) and the Jnk3- allele (250 bp). The amplimers  

5’-CTCTGCTGCCTCCTGGCTTCT-3’, 5’-CGAGGCGGATCACAAGCAATA-3’ 

and 5’-TCAATGGGCGGGGGTCGTT-3’ were used to detect the mTmG allele 

(250 bp) and the WT allele (330 bp). The amplimers  

5’-CCTGGTTCTCACTGGGACAACAG-3’, 5’-GTCACATCCACTTTCCTGGGC-3’, 

and 5’-CGCCTTCTATCGCCTTCTTGA-3’ detected the Mlk2+ allele (500 bp) and 
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the Mlk2- allele (600 bp).  The amplimers 5’-AGCAAACTCCGAGCAAGGGAC-3’, 

5’-GGCTAAACCAGAACTCAAGCGTG-3’, and  

5’-GTAGAAGGTGGCGCGAAGGG-3’ were used to detect the Mlk3+ allele (160 

bp) and the Mlk3- allele (280 bp). 

 

Tamoxifen Treatments 

Tamoxifen (Sigma) was dissolved in 2% ethanol 98% sunflower seed oil (Sigma) 

and 1 mg/mouse was administered intraperitoneally (ip) 5 times on alternate 

days to 6-8 week old male mice. To induce cre activity during embryonic 

development pregnant females received 3 mg of tamoxifen once via oral gavage 

at 12.5 days post coitus (dpc). For these experiments, we used Cre- females that 

had been crossed to Cre+ males to avoid induction of Cre activity and 

recombination in the pregnant females. Pups were delivered by C-section at ~ 

19.5 dpc and transferred to foster mothers.    

 

Femoral Artery Ligation Model and Laser Doppler Imaging 

Unilateral femoral artery ligation and laser Doppler imaging was performed using 

10-14 week old male mice as previously described188,189 with the following 

modifications. Two ligation protocols were performed. In one protocol we ligated 

the femoral artery at its origin. The second protocol involved ligation of the 

femoral artery between the proximal caudal femoral artery and 

the popliteal artery as well as ligation of the superficial epigastric artery. The 
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second ligation schema allows for more blood flow to be diverted to the 

gracilis collateral circulation. Quantitative scores for ischemia and movement 

post-FAL were performed as described74. 

 

Congenic B16F10 Tumor Model 

One million congenic B16F10 melanoma cells (CRL-6475, ATCC) were injected 

subcutaneously on both flanks of mice. Tumors were harvested 2 weeks later, 

weighed, imaged on a Zeiss Stereo Discovery.V12 stereomicroscope, fixed in 

4% PFA overnight at 4oC, dehydrated sequentially in 15% and 30% sucrose 

solutions, imbedded in Optical Cutting Temperature (OCT), frozen 

and cryosectioned at 10 µm thickness. Sections were allowed to dry at room 

temperature, rehydrated in PBS, blocked and permeabilized in 10% normal goat 

serum, 0.1% TritonX-100 in PBS for 1 hr at RT and incubated with primary 

antibodies, mouse anti-smooth muscle actin (1:500, Sigma) and rat anti-CD31 

(1:50, BD Biosciences) in 1% BSA PBS for 2 hrs at RT. Sections were washed 3 

x 5 minutes each with PBS and incubated with Alexa Fluor 546-goat anti mouse 

and Alexa Fluor 488-goat anti rat antibodies in 1% BSA PBS for 1 hr at RT. 

Following washing as above, DNA was stained with DAPI, sections mounted in 

FluoromountG (Southern Biotech) and imaged on a TCS SP2 Leica confocal 

microscope. 
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Laser-Induced CNV Model 

Choroidal neovascularization was induced in mice using a 532 nm laser as 

previously described.190 Four laser spots/eye were applied and eyes were 

harvested 7 days post-lasering, fixed in 4%PFA at 4oC overnight and eyecups 

dissected and subjected to wholemount immunofluorescence. 

 

Aortic Ring Assay 

The aortic ring assay was performed in collagen as previously described.191 

 

Blood Pressure and Heart Rate 

Blood pressure and heart rate measurements were done on 10-14 week old male 

mice using a noninvasive computerized tail cuff system (BP-2000, VisiTech 

Systems). Mice were trained for 1 week, and then systolic and diastolic blood 

pressure and heart rate were recorded as the mean of at least 16 successful 

measurements over 1 week. 

 

Measurement of Arterial Contraction / Relaxation Responses 

Aortas were harvested from mice, flushed and cleaned of periaortic fat as 

described191, cut into 2 mm long rings and equilibrated in Opti-MEM containing 

penicillin/streptomycin overnight at 37oC. Contraction and relaxation responses 

were measured using a 6-mL vessel myograph (Danish Myo Technology) as 

previously described188 with the following modifications. Arterial contraction in 
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response to increasing doses of phenylephrine (Phe) was recorded and 

expressed as percent of maximum contraction obtained in response to incubation 

in K-PSS (60 mM potassium-containing physiologic salt solution [mM: NaCl 130, 

KCl 4.7, KHPO4 1.18, MgSO4 1.17, CaCl2 1.6, NaHCO3 14.9, dextrose 5.5, 

CaNa2/EDTA 0.03]). Vasorelaxation in response to increasing doses of 

acetylcholine was recorded following pre-contraction with Phe (10-6 M). 

 

Coronary Artery Ligation Model 

Myocardial infarction studies were done at the Partners Cardiovascular 

Physiology Core at Brigham and Women’s Hospital as previously 

described.192,193 Briefly, adult male mice were anesthetized by IP injection of a 

mixture of ketamine (40 mg/kg) and xylazine (10 mg/kg), intubated, and 

mechanically ventilated. Following thoracotomy, the pericardium was removed, 

and the proximal left coronary artery was permanently occluded with an 

intramural stitch. 

 

Echocardiography 

Echocardiography (Vevo 2100, VisualSonics Inc.) was performed at the Partners 

Cardiovascular Physiology Core at Brigham and Women’s Hospital as previously 

described.193 Two-dimensional and M-mode echocardiographic images were 

obtained from lightly sedated (1% isoflurane in oxygen) mice and recorded. M-

mode images were obtained from the parasternal short-axis view at the level of 
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the papillary muscles and used for measurements. 

 

Microfil and Bismuth/Gelatin Perfusions 

Deeply anesthetized (100 mg/kg ketamine and 20 mg/kg xylazine) and 

heparinized (400 U) mice underwent thoracotomy, the right atrium was severed 

and mice were maximally vasodilated by infusing, via the left ventricle, 30 ml 

normal saline containing 1 g/l adenosine, 4 mg/l papaverine and 100 µg/ml 

heparin followed by 15 ml 2% formalin and ~0.5 ml uncatalyzed blue Microfil to 

help visualize the abdominal aorta during cannulation. Mice were then transected 

just below the diaphragm, the abdominal aorta was cannulated (Mc-28, Braintree 

Scientific) and the vasculature perfused with ~3 ml undiluted catalyzed Microfil or 

10 ml of a warm 50% Bismuth (prepared as described194)/7% gelatin in normal 

saline mixture with the aid of a syringe gun (IGSET-3510, Medco). The aorta and 

vena cava were then clamped and the perfusate allowed to polymerize for at 

least an hour at 4oC before the hindlimbs were harvested, the skin removed and 

the limbs placed in 10% formalin. 

 

µCT Analysis 

Hindlimbs were scanned in air aligned axially on a Scanco µCT 40 at 70kVp, 

114µA and a resolution of 10µm. The region of interest  (ROI) included the entire 

hindlimb. To obtain the bone/vasculature overlay image, a contour around the 

entire ROI was utilized and segmented to include all soft and hard tissue. A 



                                                                                                                                                                                                                                                                         

 

101 

second contour of the same ROI with the bone removed was also performed and 

segmented. The segmentation parameters included the values 0.8 Gauss sigma, 

1.0 Gauss support, and a threshold of 212-1000 (density range of 500mg of 

HA/cm3). The two segmented files were overlaid using Scanco’s IPL 

Transparency program and a false color image of the resulting file was created 

using the 3D Display program. 

 

Dil Perfusions 

The Dil solution was prepared as previously described195, with addition of a 

filtration step through a 40 µm filter to remove large undissolved particles. P0 or 

P6 pups were euthanized by Isofluorane inhalation, decapitated and immediately 

perfused via the left ventricle with 3 or 5 ml respectively of Dil solution using a 10 

ml syringe and 27 gauge needle and/or the thoracic aorta using a micro cannula 

(Mc-28, Braintree Scientific). Pups were then rinsed with PBS and fixed/stored in 

4% paraformaldehyde (PFA) at 4oC until dissected. 

 

Dissections 

Eyes were fixed in 4% PFA for 1 hr at RT or 4oC overnight and retinas 

were dissected as previously described.36 For immunofluorescence or to 

visualize GFP, decapitated E16.5 and P0 pups were rinsed in PBS, whereas P6 

pups were perfused with PBS via the left ventricle and all were fixed in 4% PFA 

at 4oC overnight. Working under a stereomicroscope, pups were transected 
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below the diaphragm and a midsagital incision was performed to separate the 

two hindlimbs and the associated abdominal musculature. The skin and 

associated adipose tissue was carefully removed and the abdominal muscles 

isolated via incisions at their attachment to the pelvis and vertebral column. The 

entire medial surface of the hindlimb adductor muscles was harvested en 

block via careful dissection 1-2 mm around the saphenous, femoral and proximal 

caudal femoral arteries. Muscle tissues were then either cleared sequentially 

(70% and 90% glycerol/PBS, at least 5 hrs each) and mounted in 

90% glycerol/PBS for direct visualization of GFP or Dil or processed for 

immunofluorescence analysis. The medial surface of adductor muscles of fixed 

and dehydrated (70 and 100% ethanol) Microfil-perfused hindlimbs from adult 

mice was dissected similarly; muscles were cleared in methyl salicylate (Sigma) 

and imaged on a Zeiss Stereo Discovery.V12 stereomicroscope. 

 

Whole Mount Tissue Lectin and Immunofluorescence Staining 

Muscles were blocked and permeabilized in 1% BSA, 0.5% TritonX-100 PBS 

overnight at 4oC. Tissues were equilibrated by washing 3 x 10 minutes each with 

Pblec buffer (1% Triton X-100, 1 mM CaCl2, 1 mM MgCl2, and 1 mM MnCl2 in 

PBS pH 6.8) and incubated with biotinylated Griffonia Simplifolica isolectin B4 

(iB4, 1:25, Vector Labs) in Pblec buffer. Antibodies were diluted in 1% BSA, 1% 

normal donkey serum (NDS), 1% TritonX-100 PBS and muscle samples were 

incubated in antibody solution for two days at 4oC. We used the following primary 
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antibodies: FITC-conjugated smooth muscle actin (1:500, Sigma), goat anti-

endomucin (1:100, R&D Systems) and mouse anti-Neurofilament-M (2H3; 

Developmental Studies Hybridoma Bank). Following primary detection, samples 

were washed 3 x 20 minutes each with 0.5% BSA, 0.5% TritonX-100 PBS at 

room temperature (RT) and incubated with Alexa Fluor-488-conjugated 

streptavidin (1:100) and/or Alexa Fluor-546-conjugated donkey anti-goat or 

donkey anti-mouse antibodies (1:200, Invitrogen) in 1% BSA, 1% NDS, 1% 

TritonX-100 PBS overnight at 4oC. Samples were washed 3 x 20 minutes each 

with 0.5% BSA, 0.5% TritonX-100 PBS and once with PBS at RT and then 

cleared sequentially (70% and 90% glycerol/PBS, at least 5 hrs each) and 

mounted in 90% glycerol/PBS.  

 

Whole mount retina36 and (RPE/choroid/sclera)190 staining was performed as 

previously described. Samples were stained with biotinylated or Alexa Fluor-488- 

conjugated iB4 (1:25), rabbit anti-NG2 (1:200, Millipore), or goat anti-DLL4 

(1:100, R&D Systems). Fluorescence detection was performed using Alexa 

Fluor-488-conjugated streptavidin, Alexa Fluor-546 or 633-conjugated secondary 

antibodies and Alexa Fluor 546-conjugated Phalloidin (Invitrogen). DNA was 

stained with 1 µM 4,6'-diamidino-2-phenylindole (DAPI) or 10 µg/ml Hoechst 

(both from Invitrogen) in PBS for 10 minutes at RT and retinas and 

(RPE/choroid/sclera) were mounted in FluoromountG (Southern Biotech). 

 



                                                                                                                                                                                                                                                                         

 

104 

Microscopy and Image Analysis 

Whole mount muscle and retinal vasculature imaging was done on a Zeiss 

stereomicroscope or a TCS SP2 Leica confocal microscope. Maximum projection 

confocal images of the adductor muscle vasculature were generated from z-

stacks (30-300 µm, 1-10 µm step size depending on specimen size, staining and 

objective used) acquired starting at the medial surface of the adductor muscle 

specimens. To visualize large areas of the vasculature on the confocal 

microscope, a tile-scanning technique was employed whereby multiple 

overlapping (20-30% overlap) maximum projection images were acquired with a 

10x or 20x objective and a composite image was constructed by arraying the 

individual images in Photoshop. Quantification of vascularized area in whole 

mount retinas was done from fluorescence stereomicroscopic images using ZEN 

software (Zeiss). Retinal angiogenic front vascular density, endothelial sprouts 

and filopodia were quantified using ImageJ and maximum projection confocal 

images acquired with a 10x, 20x and 63x objective respectively. 

 

Histological Analysis of Muscle 

Anesthetized mice were perfusion cleared and vasodilated by infusing, via the 

left ventricle, 20 ml normal saline containing 1 g/l adenosine, 4 mg/l papaverine 

and 100 µg/ml heparin followed by 10 ml 2% formalin. The skin was removed 

and entire hindlimbs were emersion fixed in 10% formalin for 24 hrs. Calf and 

adductor muscles were dissected en block from fixed hindlimbs, dehydrated and 
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embedded in paraffin. Cross sections (7 µm) were prepared and subjected to 

antigen retrieval using 1x antigen unmasking solution (Vector Labs). The 

sections were blocked and permeabilized in 10% normal goat serum, 0.1% Triton 

X-100 in PBS for (RT, 1 hr) and incubated with Alexa Fluor 488-conjugated 

IsolectinB4 (1:25, Vector Labs) and primary antibodies, mouse anti-smooth 

muscle actin (1:500, Sigma) and rat anti-CD31 (1:50, BD Biosciences) in 1% 

BSA in PBS (RT, 2 hr). Sections were washed 3 x 5 minutes each with PBS and 

incubated with Alexa Fluor 546-goat anti mouse and Alexa Fluor 488-goat anti rat 

antibodies in 1% BSA PBS for 1 hr at RT. Following washing as above, DNA was 

stained with DAPI, sections mounted in FluoromountG (Southern Biotech) and 

imaged on a TCS SP2 Leica confocal microscope. 

 

Murine Lung Endothelial Cells (MLEC) 

Lungs were harvested aseptically, rinsed in Dulbecco's modified eagle 

medium (DMEM), cut into small pieces and digested in collagenase 1.7 mg/ml for 

1hr at 37oC. Lung digests were further triturated by pipetting repeatedly through a 

10 ml pipette fitted with a 1 ml pipette tip, passed through a 40 µm filter and the 

cell suspensions were cultured for 2 days in gelatin-coated plates in MLEC 

medium containing 20% fetal bovine serum, 38% DMEM 38% Ham's F-12 with 

100 µg/mL endothelial cell growth supplement (ECGS, Biomedical 

Technologies), 4 mmol/L L-glutamine, 100 µg/mL heparin, and 

penicillin/streptomycin. Endothelial cells were isolated by selection with rat anti-
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mouse intercellular adhesion molecule 2 (ICAM2) antibody (BD Biosciences)-

coupled sheep anti-rat magnetic beads (Invitrogen), cultured for an additional 3-4 

days and a second selection was done as above. Following an additional 2 days 

in culture, cells were used for experiments. Endothelial purity was confirmed by 

staining live cells with 1,1'-dioctadecyl - 3,3,3',3'-tetramethyl-indocarbocyanine 

perchlorate acetylated low-density lipoprotein (BT-902, Biomedical Technologies) 

according to the manufacturer’s recommendations or anti-Cdh5 antibodies 

(Biolegend or BD Biosciences). For the 5-ethynyl-2'-deoxyuridine (EdU) 

incorporation assay, cell cultures were incubated in the presence of 10 µM EdU 

for 6 hours and processed for detection of EdU incorporation using the Click-iT® 

EdU Alexa Fluor® 488 Imaging Kit (Invitrogen) according to the manufacturers 

instructions. Immunofluorescence analysis was done on cells fixed with 4% PFA 

at RT for 15 minutes. Following 3 washes with PBS, cells were incubated in 

permeabilization/blocking buffer (10% normal goat serum (NGS) or NDS 

(depending on the species of secondary antibody used), 0.1% TritonX-100) for 1 

hr at RT, then incubated with primary antibodies including PE-conjugated rat anti-

Ki-67 (1:200, eBioscience), mouse anti-α-tubulin (1:500, Sigma), rat anti-Cdh5 

(1:50, BD Biosciences) and goat anti-Dll4 (1:100, R&D Systems) in 1% BSA, 

0.1% TritonX-100 overnight at 4oC. Following 3 x 10 minute washes with PBS, 

cells were incubated with the appropriate Alexa Fluor- 488, 546 or 633-

conjugated secondary antibodies (1:200, Invitrogen) for 2 hrs at RT. Cells were 

washed 3 x 10 minutes each with PBS, DNA was stained with 4,6'-diamidino-2-
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phenylindole (DAPI) or Hoechst (1 µM, Invitrogen), cells were mounted in 

FluoromountG (Southern Biotech) and imaged on a TCS SP2 Leica confocal 

microscope. 

 

Tube Formation Assay in Matrigel 

Primary MLECs (1x105 cells) in 0.5% FBS DMEM/F12 were seeded in 8 well 

chamberslides (BD Biosciences) layered with 300 µl polymerized growth factor 

reduced matrigel (BD Biosciences) and incubated at 37oC for 8 hrs. Tubular 

networks were imaged on a Zeiss inverted microscope.     

 

Migration Assay 

Confluent monolayers of primary MLECs in 96 well plates were simultaneously 

scratched using a 96-pin wound making tool (WoundMakerTM, Essen 

Bioscience), rinsed twice with media and wound closure was monitored by 

automated live cell imaging on an IncuCyte ZOOM system (Essen Bioscience) 

using a 10x objective. The area between the edges of the wound in images taken 

at different time intervals was quantified using ImageJ. 

 

Immunoblot Analysis 

Cell extracts were prepared using Triton lysis buffer (20 mM Tris at pH 7.4, 1% 

Triton X-100, 10% glycerol, 137 mM NaCl, 2 mM EDTA, 25 mM β-

glycerophosphate, 1 mM sodium orthovanadate, 
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1 mM phenylmethylsulfonylfluoride, 10 mg/mL of aprotinin and leupeptin). 

Extracts (20-50 µg of protein) were examined by protein immunoblot analysis by 

probing with antibodies to JNK (R&D Systems or Pharmigen), pJNK, pERK, 

ERK, cleaved Notch1 (Cell Signaling), Dll4 (R&D Systems), GAPDH (Santa 

Cruz) and αTubulin (Sigma). Immune complexes were detected using the 

Odyssey infrared imaging system (LI-COR Biosciences). 

 

RNA Isolation 

To isolate RNA from tissues, mice were perfusion cleared with PBS via the left 

ventricle. Hindlimb adductor and calf skeletal muscles were harvested en block, 

snap frozen in liquid nitrogen, pulverized on a cryoPREPTM impactor (Covaris), 

RNA extracted with TRIzol® (Life Technologies) and purified using the RNeasy 

kit (Qiagen). RNA from cells and other tissues homogenized in RLT buffer was 

isolated using the RNeasy kit. 

 

RT-PCR 

Complementary (c) DNA was prepared using The High Capacity Reverse 

Transcription Kit (Life Technologies). The expression of mRNA was examined by 

quantitative PCR analysis using a Quantstudio PCR system (Life Technologies). 

TaqMan® assays were used to quantify Cdh5 (Mm00486938_m1), Dll4 

(Mm00444619_m1), Emr1 (Mm00802529_m1), Hes1 (Mm01342805_m1), Hey1 

(Mm00468865_m1), Lfng (Mm00456128_m1), Pecam1 (Mm01242584_m1), 
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Slc2a1 (Mm00441480_m1) and Vegfa (Mm01281449_m1). The relative mRNA 

expression was normalized by measurement of the amount of 18S RNA in each 

sample using TaqMan® assays (catalog number 4308329; Life Technologies). 

 

RNA-Sequencing 

RNA was isolated using the RNeasy kit (Qiagen). RNA quality (RIN > 9) was 

verified using a Bioanalyzer 2100 System (Agilent Technologies). Total RNA 

(10µg) from independent MLEC isolations (lungs from 4 mice per isolation) was 

used for the preparation of each RNA-seq library by following the manufacturer’s 

instructions (Illumina). Three independent libraries were examined for each 

condition. The cDNA libraries were sequenced by Illumina Hi-Seq with a paired-

end 40-bp format. Reads from each sample were aligned to the mouse genome 

(UCSC genome browser mm10 build) using TopHat2.196 The average number of 

aligned reads per library was > 20,000,000. Endothelial cell gene expression was 

quantitated as fragments per kilobase of exon model per million mapped 

fragments (FPKM) using Cufflinks.197 Differentially expressed genes were 

identified using the Cufflinks tools Cuffmerge and Cuffdiff. Gene ontology was 

examined by Kyoto Encyclopedia of Genes and Genome (KEGG) pathway 

analysis198 with the Database for Annotation, Visualization and Integrated 

Discovery (DAVID).199 
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Transplantations 

Bone marrow (BM) was harvested by flushing tibias and femurs from at least 

three 10-12 week old mice with ice cold PBS. Erythrocytes were lysed by 

incubating the BM in ACK lysing buffer (Life Technologies). BM cells were 

then resuspended in PBS and passed through a 100 µm filter. Cells were 

counted and mixtures of test BM cells from the indicated genotypes were 

prepared by mixing test BM cells expressing the CD45.2 allele with competitor 

BM cells from B6.SJL-PtprcaPepcb/BoyJ mice expressing the CD45.1 allele at a 

20 test:80 competitor cell ratio. 1x106 total BM cells were intravenously injected 

via the tail vein into lethally irradiated (11 Gy) 10-12 week old CD45.1/CD45.2 

heterozygous female mice. Transplanted mice were maintained on antibiotic 

water for the first two weeks post transplantation. Blood was harvested via 

the retroorbital sinus using heparinized capillary tubes and EDTA-coated vials at 

5 and 20 weeks post transplantation and subjected to flow cytometry analysis. 

 

Complete blood cell (CBC) analysis.  

CBC analysis was done using a HemaTrue hematology analyzer (Heska) by the 

Department of Animal Medicine, University of Massachusetts Medical School 

 

Flow Cytometry 

Blood was washed in PBS, stained with live/dead fixable blue dead cell staining 

kit (Invitrogen), washed in PBS and blocked in 2% FBS-PBS 0.02% 
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sodium azide plus Fc-block (Anti-CD16/32 antibody 1:200, BD Biosciences). 

Surface antigens were detected by incubation for 30 min at 4oC with conjugated 

antibodies including CD45.1-Pacific Blue, CD45.2-FITC, CD3e-APC, CD19-APC-

H7, CD11b-PE (BD Biosciences) and GR1-Alexa Fluor 700 (Biolegend). 

Following washing with 2% FBS-PBS 0.02% sodium azide, red cells were lysed 

and leukocytes fixed by incubating in lyse/fix solution (BD Biosciences). Cells 

were washed with PBS and analyzed on an LSR-II cytometer (Becton 

Dickenson). Data were processed using FlowJo Software (Tree Star). 

 

Statistical Analysis 

Differences between groups were examined for statistical significance with an 

unpaired Student's test with equal variance or a log-rank (Mantel-Cox) test for 

determining significance of Kaplan-Meier survival curves. 
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Figure II.1 Enhanced blood perfusion blockade and severe ischemic injury 
in endothelial JNK-deficient mice upon arterial occlusion.  
 
A) Immunoblot analysis reveals robust reduction in JNK protein abundance in 
purified lung endothelial cells from E3KO mice. Lysates were also examined with 
antibodies to GAPDH.  
 
B) Simplified diagram of the medial aspect of the mouse hindlimb skeletal muscle 
vasculature. The common femoral artery (FA) and its main branches (proximal 
caudal femoral artery [PCFA], popliteal artery [PA] and saphenous artery [SA]) 
supply blood to the proximal and distal hindlimb. Ligation of the FA plus the 
superficial epigastric artery (SEA) as indicated, leads to reduced blood flow to the 
distal hindlimb, while flow through the PCFA and gracillis collaterals is enhanced. 
  
C) Representative laser Doppler images showing blood perfusion (high perfusion 
red, no perfusion dark blue) in the hindlimbs of control and E3KO mice prior (Pre-
FAL) and on days 1 and 3 post ligation.  
 
D) Quantitation of Doppler signals shows significantly enhanced blood perfusion 
blockade following ligation and no recovery 3 days after ligation in E3KO mice 
compared to control mice (mean ± SEM; n = ~7-10 mice per group).  
 
E) E3KO mice undergo severe necrosis of the paws following ligation (Lig.). Paws 
of ligated limbs from control mice never display necrosis. Images are 
representative of paws from ~7-10 mice per group. Unlig. = contralateral 
unligated limb.  
 
F and G) All E3KO mice display paw necrosis with over 70% undergoing complete 
autoamputation of the paw. Ligated limbs of control mice show almost no signs of 
ischemia (F) and only minor movement impairment 4 days post FAL (G), (~7-10 
mice per group).  
 
H - J) Quantification of limb blood perfusion by laser Doppler imaging showing no 
significant differences in blood perfusion blockade and restoration over 28 days 
following FAL between control mice and mice that lack JNK1 plus JNK2 in all 
hematopoietic cells (H2KO, H), in myeloid cells (Φ2KO, I) or skeletal muscle cells 
(M2KO, J) (mean ± SEM; n = ~5-10 mice per group).
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Figure II.2 Endothelial JNK-deficient mice display abnormal native 
collateral arteries.  
 
A) Whole mount preparations of the medial surface of Microfil filled adductor 
muscle vasculature from unligated and 4 days post-ligation limbs showing thin 
and abnormally organized gracillis collateral vessels in the unligated limbs and 
poor Microfil filling of the vasculature in the ligated limbs of E3KO mice. Unligated 
limbs from control mice display distinctly thicker gracillis collateral arteries directly 
interconnecting the PCFA to the SA. These vessels remodel outwardly, 
increasing in diameter and becoming more tortuous 4 days post-ligation. Images 
are representative of at least 5 mice per group.  
 
B and C) Immunofluorescence for smooth muscle actin (SMA) and CD31/iB4 on 
cross sections of adductor muscles. Quantification of artery diameter (C) from 
SMA immunofluorescence images confirms reduced size of gracillis collaterals in 
the unligated limbs of E3KO mice (mean ± SEM; n = ~10-12 gracillis collaterals 
from 5 mice per group).  
 
D) Micro-CT analysis of contrast (Bismuth/gelatin) filled hindlimb vasculature 
illustrates defects in artery size and connectivity in the adductor muscle region of 
E3KO hindlimbs. Images are representative of 7-8 mice analyzed per group.  
 
E and F) Taqman gene expression analysis quantitating the mRNA abundance of 
the endothelial cell specific marker Cdh5 (E) and the hypoxia responsive gene 
Slc2a1 (F) on day 4 post FAL (mean ± SEM; n = ~7-8 mice per group). 
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Figure II.3 Abnormal native collateral arteries, and enhanced blood 
perfusion blockade and ischemic injury in Mlk2-/-Mlk3-/- mice upon arterial 
occlusion.  
 
A) Gene expression analysis (from mouse endothelial cell RNA Seq analysis) of 
the four members of the MLK group showing highest expression of Mlk2 and 
Mlk3 in endothelial cells (mean FPKM [fragments per kilobase of transcript per 
million mapped reads] ± SEM; n = 6 endothelial cell libraries).  
 
B) Immunoblot analysis reveals reduced bFGF-induced phosphorylation of the 
JNK substrate cJun in Mlk2-/-Mlk3-/- endothelial cells compared to WT endothelial 
cells indicating reduced JNK activity in Mlk2-/-Mlk3-/- endothelial cells. Lysates 
were also examined with antibodies to cJun, JNK, Cdh5 and GAPDH. 
  
C) Representative laser Doppler images showing blood perfusion (high perfusion 
red, no perfusion dark blue) in the hindlimbs of WT and Mlk2-/-Mlk3-/- mice prior 
(Pre-FAL) and on days 1 and 3 post ligation.  
 
D) Quantitation of Doppler signals shows significantly enhanced blood perfusion 
blockade following ligation and no recovery 3 days after ligation in Mlk2-/-Mlk3-/- 
mice compared to WT mice (mean ± SEM; n = 7 mice per group).  
 
E) Mlk2-/-Mlk3-/- mice undergo severe necrosis of the paws following ligation 
(Lig.). Paws of ligated limbs from WT mice never display necrosis. Images are 
representative of paws from 9 mice per group. Unlig. = contralateral unligated 
limb.  
 
F and G) All Mlk2-/-Mlk3-/- mice display digit/paw necrosis and severe movement 
impairment. Ligated limbs of WT mice show minor signs of ischemia (F) and only 
minor movement impairment 4 days post FAL (G), (9 mice per group).  
 
H) Whole mount preparations of the medial surface of Microfil filled adductor 
muscle vasculature from unligated and 4 days post-ligation limbs showing thin 
and abnormally organized gracillis collateral vessels in the unligated limbs and 
poor Microfil filling of the vasculature in the ligated limbs of Mlk2-/-Mlk3-/- mice. 
Limbs from control mice display distinctly thicker gracillis collateral arteries 
directly interconnecting the PCFA to the SA. These vessels remodel outwardly, 
increasing in diameter and becoming more tortuous 4 days post-ligation. Images 
are representative of at least 6 mice per group. 
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Figure II.4 Endothelial JNK is dispensable for arteriogenic responses in 
adult mice. 
 
A) Diagram illustrating the timeline of tamoxifen administration to induce 
disruption of floxed Jnk alleles in the endothelium of adult mice. FAL was 
performed as described in Fig. I.1B.  
 
B) Immunoblot analysis of lysates from purified lung endothelial cells confirming 
robust reduction in JNK protein abundance in cells from iE3KO mice at least 8 
weeks post tamoxifen administration. Lysates were also examined with 
antibodies to α-Tubulin. Data are representative of two independent endothelial 
cell isolations per group (2-3 mice used / each cell preparation).  
 
C) Laser Doppler quantification of limb blood perfusion showing no significant 
differences in blood perfusion blockade and recovery over 28 days post arterial 
ligation in iE3KO mice compared to Cre+ control (iECtrl) or Cre- litermate (EfCtrl) mice 
(mean ± SEM; n = ~5-10 mice per group).  
 
D) Microfil perfusion analysis of adductor muscle vasculature showing normal 
gracillis collateral arteries in the unligated limbs of iE3KO mice and similar 
collateral artery remodeling to that in control mice 28 days post-ligation. Images 
are representative of ~5-8 mice per group).   
 
E) Diagram illustrating the timeline of tamoxifen treatment to induce 
recombination of Jnk alleles during embryonic development, delivery of pups by 
C-section, rearing of pups by foster mothers and femoral artery ligation 
experiment.  
 
F) Laser Doppler quantification of limb blood perfusion showing significantly 
enhanced blood perfusion reduction in iE3KO adult mice in which mosaic deletion 
of JNK in the endothelium was induced during embryonic development (mean ± 
SEM; n = ~5-6 mice per group). 
 
G) Confocal imaging of adductor muscle vasculature of three iEmTmG embryos 
harvested from a pregnant female that was treated with tamoxifen at 12.5 dpc 
demonstrates highly variable mosaic recombination in the endothelium. The data 
presented are representative of six mice examined. 
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Figure II.5 Endothelial JNK deficiency results in altered collateral artery 
patterning during ontogeny 
 
A) Confocal microscopy analysis of whole mount adductor muscle vasculature 
reveals distinct gracillis collateral arteries interconnecting the PCFA to the SA in P6 
control mice. At this stage, gracillis collaterals are fully invested with smooth muscle 
cells throughout their length as demonstrated by smooth muscle acting (SMA, green) 
immunofluorescence. Analysis of adductor muscle vasculature in P6 E3KO mice 
shows smooth muscle cell covered vessels emerging from both the PCFA and the 
SA, however continuous SMA signal interconnecting the PCFA to the SA is not 
observed. Adductors from at least 7 mice per group were analyzed. Intravascular Dil 
(red) perfusion analysis demonstrates distinct gracillis collaterals interconnecting the 
PCFA to the SA in control mice. Vessels emerging from the PCFA and the SA in 
E3KO mice do not fully interconnect. Instead, they branch off into smaller vessels that 
appear to enter the capillary circulation. Note that Dil perfusion exclusively labels the 
arterial and capillary vasculature, but not veins. Adductors from at least 5 mice per 
group were analyzed.  
 
B) Dil perfusion in control mice at P0 reveals gracillis collaterals as distinct vessels 
interconnecting the PCFA to the SA. At this stage these vessels lack extensive 
smooth muscle coverage. In P0 E3KO mice, vessels emerging from the PCFA and the 
SA do not form distinct interconnecting collaterals, but branch extensively and enter 
the capillary circulation. Adductors from at least 5 mice per group were analyzed.  
 
C) Stereomicroscopic imaging of Dil perfused abdominal muscle arterial vasculature 
at P0 reveals numerous arteriole-to-arteriole arcades in control mice (red arrows). 
The abdominal muscle arterial vasculature of E3KO mice shows very few arteriole-to-
arteriole interconnections. Quantification reveals significantly reduced arteriolar 
arcade numbers in E3KO mice compared to littermate control mice (mean ± SEM; n = 
abdominal muscles from 3 mice per group).   
 
D) Confocal imaging analysis of the vasculature by direct GFP visualization in whole 
mount adductor muscle preparations from control (ECtrl mTmG) and E2KO mTmG E16.5 
embryos showing incomplete remodeling of collateral vessels at this stage. The 
gracillis muscle capillary plexus of E2KO mTmG embryos appears more chaotically 
organized compared to that of control embryos. High magnification images show 
increased branching, higher vessel thickness variation and more filopodia in the 
capillary plexus of E2KO mTmG embryos. Images are representative of adductors from 
~3-4 mice per group. 
 
E) Confocal imaging of E16.5 adductor muscle vasculature immunostained for   
Endomucin (Emcn, red) and isolectinB4 (iB4, green) reveals a denser capillary 
plexus with higher vessel thickness variation in the gracillis collateral region of 
adductors from E3KO mice compared to littermate control mice. Images are 
representative of adductors from ~3-5 mice per group. 
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Figure II.6 Mlk2-/-Mlk3-/- mice phenocopy the defects in native collateral 
artery formation of endothelial JNK deficient mice at P6  
 
A) Confocal microscopy analysis of wholemount adductor muscle vasculature 
immunostained for smooth muscle actin (SMA, green) reveals abnormal gracillis 
collateral arteries in Mlk2-/-Mlk3-/- mice marked by absence of continuous SMA 
signal interconnecting the PCFA to the SA. Endomucin staining labels the 
capillary and venous, but not the arterial vasculature. Adductors from 5 mice per 
group were analyzed.  
 
B) Stereomicroscopic imaging of SMA immunostained abdominal muscle 
vasculature at P6 reveals numerous arteriole-to-arteriole arcades in WT mice 
(red arrows). The abdominal muscle vasculature of Mlk2-/-Mlk3-/- mice shows very 
few arteriole-to-arteriole interconnections. Quantification reveals significantly 
reduced arteriolar arcade numbers in Mlk2-/-Mlk3-/- mice compared to WT mice 
(mean ± SEM; n = abdominal muscles from 5 mice per group).   
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Figure II.7 Abnormal retinal vascular development marked by excessive 
sprouting in endothelial JNK-deficient mice 
 
A-C) Representative examples of whole mount retina iB4 immunofluorescence 
showing reduced vascular extension in P6 E3KO retinas (B and C) compared to 
littermate control retinas (A).  
 
D-K) Closer examination reveals increased vascular density (D-G and H and J), 
increased tip cell numbers (yellow asterisks in H and J) and more filopodia (red 
dots in I and K) at the vascular front region of E3KO retinas compared to littermate 
control retinas.  
 
L-O) Quantitative analysis of vascularized retinal area (L), vascular density within 
angiogenic front regions indicated in E and G (M), tip cell number (N) and 
filopodia (O) demonstrates that differences between E3KO and littermate control 
mice are statistically significant (mean ± SEM; n = ~17-31 retinas from at least 12 
mice per group for quantification of vascular extension; n = ~6-10 retinas from at 
least 5 mice per group for quantification of the other parameters - multiple 
confocal images per retina were quantified and averaged).   
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Figure II.8 Abnormal retinal vascular development marked by excessive 
sprouting in Mlk2-/-Mlk3-/- mice 
 
A-C) Representative examples of whole mount retina iB4 immunofluorescence 
showing reduced vascular extension in P6 Mlk2-/-Mlk3-/- retinas (B and C) 
compared to WT retinas (A).  
 
D-K) Closer examination reveals increased vascular density (D-G and H and J), 
increased tip cell numbers (yellow asterisks in H and J) and more filopodia (red 
dots in I and K) at the vascular front region of Mlk2-/-Mlk3-/- retinas compared to 
WT retinas.  
 
L-O) Quantitative analysis of vascularized retinal area (L), vascular density within 
angiogenic front regions indicated in E and G (M), tip cell number (N) and 
filopodia (O) demonstrates that differences between Mlk2-/-Mlk3-/- and control 
mice are statistically significant (mean ± SEM; n = 5 retinas from 5 mice per 
group - multiple confocal images per retina were quantified and averaged).   
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Figure II.9 RNA-Seq analysis of genes differentially regulated between 
control and JNK-deficient endothelial cells 
 
A) Heatmap of the 781 differentially expressed genes (FPKM > 2; log2 fold 
change ≤ -0.5 or ≥ +0.5; q ≤ 0.05) between E3KO and control endothelial cells 
showing similar numbers of upregulated and downregulated genes in E3KO cells 
(mean; n = 3 libraries per group prepared with RNA from 3 independent lung 
endothelial cell preparations per group. Each endothelial cell preparation 
included lungs from 4 mice). 
 
B) Gene ontology analysis of the group of differentially expressed genes 
identifying significant enrichment in genes involved in several biological 
processes. 
 
C) Genes related to mitosis/cell division/cell cycle processes that were identified 
by the gene ontology analysis are presented as a heatmap. Genes are displayed 
with highest upregulation top and highest downregulation bottom.  
 
D) Genes related to vascular development/morphogenesis and function, 
including those identified by the gene ontology analysis, were grouped in several 
categories and are presented as a heatmap. Genes are displayed with highest 
upregulation top and highest downregulation bottom within each category.  
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Figure II.10 Reduced Dll4 – Notch signaling in the JNK-deficient vascular 
endothelium 
 
A) Quantitative RT-PCR analysis of Notch pathway genes revealing reduced 
expression in E3KO endothelial cells compared to control cells (mean ± SEM; n = 
4). Data shown represent one of three independent experiments with similar 
results. Each experiment was performed with independent endothelial cell 
preparations.  
 
B) Immunofluorescence analysis on endothelial cells showing reduced Dll4 
immunostaining in E3KO cells compared to control cells. Quantification of Dll4 
signal intensity demonstrates the difference is statistically significant (mean ± 
SEM; n = 10 images per group).   
 
C) Endothelial cells were treated with VEGF for 16 hrs. Immunoblot analysis of 
cell lysates revealed reduced levels of Dll4 and Notch intracellular domain 
(NICD) in lysates from E3KO endothelial cells compared to control cells. Lysates 
were also examined with antibodies to JNK and α-Tubulin. Data are 
representative of two experiments with independent endothelial cells 
preparations. 
 
D) Endothelial cells were treated with bFGF for 4 or 16 hrs. Immunoblot analysis 
of cell lysates revealed reduced levels of Dll4 and NICD in lysates from E3KO 
endothelial cells compared to control cells. Lysates were also examined with 
antibodies to phospho-cJun (pSer63), cJun, phospho-JNK (pJNK), JNK, Cdh5 
and GAPDH. Data are representative of two experiments with independent 
endothelial cell preparations. 
 
E) Confocal immunofluorescence analysis of P6 retina wholemounts 
immunostained for Dll4 (red), and isolectinB4 (iB4, green) reveals reduced Dll4 
signal intensity at the angiogenic vascular front of retinas from E3KO mice 
compared to retinas from littermate control mice. Hoechst labels cell nuclei. 
Quantification of Dll4 signal intensity shows this difference is statistically 
significant (mean ± SEM; n = 42-44 images per group, retinas from 6 mice per 
group were analyzed). 
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Figure II.11 Diagram illustrating the functional importance of collateral 
arteries during arterial occlusion, and the collateral artery patterning / 
maturation defects and functional impairment in mice with disrupted MLK – 
JNK signaling. 
 
MLK-JNK signaling (left) contributes to high Dll4-Notch signaling in endothelial 
cells leading to formation of balanced vascular networks and formation of distinct 
collateral vessels that interconnect adjacent arteries.  
 
Disrupted MLK-JNK signaling in the vascular endothelium (right) results in 
excessive sprouting angiogenesis, leading to hyperbranched vascular networks 
and defective formation of collateral arteries, which are smaller, display 
excessive branching and altered organization. 
 
In addition to regulating Dll4-Notch signaling, the MLK-JNK pathway may also 
contribute to proper vascular morphogenesis and collateral artery formation via 
other mechanisms. 
  
Following FAL blood flow (black arrows) through the femoral artery is blocked. 
Under these circumstances due to increased proximal and reduced distal 
pressure, more blood flow is diverted to the collateral circulation. Existing 
collateral arteries in the proximal adductor muscles are capable of restoring a 
significant amount of blood flow to the distal limb immediately following occlusion 
of the femoral artery. The increased pressure and flow stimulates the remodeling 
of existing collateral arteries, which increase in size and restore blood perfusion 
to the distal limb, limiting ischemic damage in control mice (left).  
 
The abnormal collateral circulation in the absence of MLK-JNK signaling 
prevents sufficient blood flow restoration to distal limb tissues following FAL 
resulting in enhanced blood perfusion reduction. The ensuing hypoxia and 
ischemia leads to severe necrotic damage to the distal limb (right). 
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Supplementary Figure II.1 Characterization of endothelial JNK-deficient 
mice and lung endothelial cells.  
 
A-C) Body mass measurements showing no significant differences between E3KO 
and littermate control mice at postnatal day 0 and 6. Adult endothelial JNK-
deficient mice are slightly smaller than control mice (B), but continue to maintain 
their body mass similar to control mice (C), (mean ± SEM; n = ~8-23). 
 
D) Following two rounds of ICAM2 antibody-conjugated magnetic bead 
purification, endothelial cell monolayers show efficient and homogeneous uptake 
of Dil-labeled acetylated low density lipoprotein (Dil-Ac-LDL, red). Mouse 
embryonic fibroblasts (MEF) show no Dil-Ac-LDL uptake. 
 
E) Flow cytometry analysis confirming that ~99% of cells in endothelial cell 
preparations stained for Dil-Ac-LDL.  
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Supplementary Figure II.2 Endothelial JNK-deficient mice have no major 
perturbations in the hematopoietic system.  
 
A) Immunoblot analysis demonstrating no major differences in JNK protein 
abundance in hematopoietic tissues. The data presented are representative of 2 
independent experiments (n=5 mice) 
 
B) Genomic DNA isolated from blood, bone marrow, and lung tissue was 
examined by PCR analysis to detect Cre-mediated recombination of the Jnk1 
gene (n=3 mice). 
 
C) Complete blood cell analysis showing no significant JNK-dependent 
differences in any of the measured indices (mean ± SEM; n = 15). RBC, red 
blood cells; MCV, mean corpuscular volume; MCH, mean corpuscular 
hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red cell 
distribution width; MPV, mean platelet volume.  
 
D) Flow cytometry analysis demonstrating no significant differences in the 
frequency of myeloid cells (CD11b+), B cells (CD19+) and T cells (CD3e+) in the 
blood of E3KO and control mice (mean ± SEM; n = ~8-10).  
 
E) Flow cytometry analysis of peripheral blood showing no significant differences 
in chimerism at 5 and 20 weeks post-transplantation between mice transplanted 
with bone marrow cells from E3KO or control mice (mean ± SEM; n = ~7-8).  
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Supplementary Figure II.3 Endothelial JNK is dispensable for proliferation, 
migration and angiogenic responses in vitro.  
 
A) JNK-deficient endothelial cells form tubular networks in matrigel similarly to 
control endothelial cells. Images are representative of two experiments 
performed in triplicate with independent endothelial cell preparations.   
 
B) Representative maximum projection confocal images of collagen imbedded 
aortic ring explants showing similar numbers of VEGF-induced iB4 (green) 
positive microvessels sprouting from aortic rings from control and endothelial 
JNK-deficient mice. Smooth muscle actin (SMA) immunofluorescence (red) 
labels supporting cells. DAPI (blue) labels nuclei. Quantification of microvessel 
number per aortic ring demonstrated no significant differences between aortic 
rings from control and JNK-deficient mice (mean ± SEM; n = ~8-21 rings per 
group). Data presented are from one of three experiments with similar results. 
Aortas from 2-3 mice per group were used in each experiment.   
 
C and D) Representative confocal images and quantification of the percentage of 
endothelial cells incorporating Edu (green, C) following a 6 hour Edu pulse or 
staining positive for the proliferation marker Ki-67 (green, D), (mean ± SEM; n = 
10 images per group). Data presented are from one of three experiments with 
similar results. α-Tubulin (red) labels cell bodies. DAPI (blue) labels nuclei.  
 
E) Endothelial monolayers were wounded using a Woundmaker and wound 
closure was monitored over time. Representative images showing similar 
migratory ability of JNK-deficient endothelial cells. Quantification of wound area 
closure over time demonstrated no statistically significant differences between 
JNK-deficient and control endothelial cells (mean ± SEM; n = 8). Data presented 
are from one of three experiments with similar results.  
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Supplementary Figure II.4 Endothelial JNK is dispensable for in vivo 
pathologic angiogenesis.  
 
A and B) Representative examples of iB4 positive laser-induced choroidal 
neovascular (CNV) tufts 7 days post-lasering in control and E3KO mice (A). 
Quantification of CNV size (B) shows no statistically significant differences 
between the two groups (mean ± SEM; n = ~32-36 CNV tufts) from 5 mice per 
group.  
 
C and D) Images of tumors grown in the flanks of E3KO and control mice following 
subcutaneous transplantation of congenic B16F10 melanoma cells. (D) 
Quantification of tumor weight shows no statistically significant differences 
between E3KO and control mice (mean ± SEM; n = 10 tumors). Data presented 
are from one of two experiments with 5 mice per group.  
 
E and F) Examples of CD31 (green) immunofluorescence images of B16F10 
melanoma tumor cryosections showing similar vascularization of tumors from 
E3KO and control mice. Smooth muscle actin (SMA, red) labels supporting cells. 
DAPI (blue) labels nuclei. (F) Quantification of vessel number in tumor 
cryosections showing no significant differences between tumors from E3KO and 
control mice (mean ± SEM; n = 5 mice, 5-6 images from tumors from each 
mouse were quantified and averaged per mouse).    
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Supplementary Figure II.5 Normal hypoxia responses and VEGF signaling 
in JNK-deficient endothelial cells. 
 
A) Endothelial cells incubated overnight in media containing only 1% FBS were 
placed under hypoxic (1% O2) conditions for the indicated times and extracts 
were examined by immunoblot analysis with antibodies to p-JNK, JNK, p(S63)-
cJun, and α-Tubulin. No change in the phosphorylation of JNK or its substrate 
cJun is detected. Anisomycin (Aniso, 1µg/ml) treatment causes robust JNK and 
cJun phosphorylation. Data presented are representative of two independent 
experiments. 
 
B) Endothelial cells incubated overnight in media containing only 1% FBS were 
treated with VEGFa (100 ng/ml, added directly to existing media) for the 
indicated times and extracts were examined by immunoblot analysis with 
antibodies to p-JNK, JNK, p-ERK, ERK and α-Tubulin. VEGFa treatment leads to 
phosphorylation of ERK at 5 minutes, but not JNK. TNF (20 ng/ml) and 
Anisomycin (Aniso, 1 µg /ml) treatment leads to JNK phosphorylation. Data 
presented are representative of two independent experiments.  
 
C and D) Endothelial cells in media containing only 1% FBS were incubated 
under normoxic (21% O2) or hypoxic (1% O2) conditions for 16 hours. The mRNA 
expression of the hypoxia responsive genes Vegfa (C) and Slc2a1 (D) was 
examined by quantitative RT-PCR analysis (mean ± SEM; n = 4). Data presented 
are from one of at least 2 similar experiments with independent endothelial cell 
preparations.   
 
E) Endothelial cells incubated overnight in media containing only 1% FBS were 
treated with VEGFa (100 ng/ml, added directly to existing media) for 5 minutes 
and extracts were examined by immunoblot analysis with antibodies to p-ERK, 
ERK, JNK and Tubulin. VEGFa-stimulated ERK phosphorylation was similar in 
JNK-deficient and control cells. Data presented are representative of two 
experiments with independent endothelial cell preparations.   
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Supplementary Figure II.6 Compound endothelial deficiency of JNK1 plus 
JNK2 leads to enhanced blood perfusion blockade in models of arterial 
occlusion. 
 
A) Simplified diagram of the medial aspect of the mouse hindlimb skeletal muscle 
vasculature indicating the location of the femoral artery ligation site for the 
experiment shown in panel B. Unlike experiments described in Figure I.1, the 
ligation site indicated here is proximal to the PCFA.   
 
B) Following ligation of the femoral artery at its origin as shown in panel A, 
quantification of limb blood perfusion by laser Doppler imaging shows 
significantly enhanced blood perfusion blockade and no recovery 3 days after 
ligation in E3KO mice (mean ± SEM; n = ~7-14).  
 
C) Simplified diagram of the coronary artery circulation indicating the location of 
the coronary artery ligation site for the experiment shown in panel D.  
 
D) Following coronary artery ligation as shown in panel C, E3KO mice show 
significantly decreased survival (n = ~7-10).  
 
E) Following FAL as shown in panel A, laser Doppler quantification of limb blood 
perfusion shows no significant differences in blood perfusion blockade and 
recovery over 28 days in single Jnk1-/- or Jnk2-/- mice compared to WT mice 
(mean ± SEM; n = 5). 
 
F) Following FAL as shown in Figure I.B, quantification of limb blood perfusion by 
laser Doppler imaging shows significantly enhanced blood perfusion blockade 
and no recovery 3 days after ligation in E2KO mice (mean ± SEM; n = 4). 
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Supplementary Figure II.7 JNK deficient mice show no perturbations in 
overall cardiovascular function. 
 
 
A) Analysis of blood pressure and heart rate in WT and single Jnk1-/- and Jnk2-/- 
mice showing no statistically significant differences (mean ± SEM; n = ~9-15).  
 
B) Analysis of blood pressure and heart rate in E3KO and control mice showing no 
JNK-dependent statistically significant differences between the groups (mean ± 
SEM; n = ~9-15).   
 
C) Echocardiographic analysis of heart function in E3KO and control mice showing 
no statistically significant differences between the groups (mean ± SEM; n = ~12-
15).  
 
D) Segments from thoracic aortas from E3KO and control mice were mounted on a 
myograph and vasocontraction and vasorelaxation in response to increasing 
doses of phenylephrine (PE) or acetylcholine (ACH) respectively were recorded. 
Contraction in response to PE is expressed as a percentage of maximum aortic 
contraction obtained in the presence of K+ containing buffer (K-PSS). 
Vasorelaxation in response to ACH is expressed as a percentage of maximum 
contraction obtained in the presence of 10-3 µM PE (mean ± SEM; n =2 m). Data 
presented are from one of two experiments with similar results. Aortas from 2 
mice per group were used in each experiment.    
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Supplementary Figure II.8 Gene expression analysis in adductor and calf 
muscles of E3KO and control mice. 
 
A and B) Taqman gene expression analysis quantitating the mRNA abundance 
of the endothelial cell specific marker Pecam1 (A) and the macrophage specific 
marker Emr1 (B) on day 4 post FAL (mean ± SEM; n = ~7-8 mice per group). 
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Supplementary Figure II.9 Abnormal retinal vascular development marked 
by excessive sprouting in E2KO mice 
 
A-C) Representative examples of whole mount retina iB4 immunofluorescence 
showing reduced vascular extension in P6 E2KO retinas (B and C) compared to 
littermate control retinas (A).  
 
D-K) Closer examination reveals increased vascular density (D-G and H and J), 
increased tip cell numbers (yellow asterisks in H and J) and more filopodia (red 
dots in I and K) at the vascular front region of E2KO retinas compared to littermate 
control retinas.  
 
L-O) Quantitative analysis of vascularized retinal area (L), vascular density within 
angiogenic front regions indicated in E and G (M), tip cell number (N) and 
filopodia (O) demonstrates that differences between E2KO and control mice are 
statistically significant (mean ± SEM; n = ~4-9 retinas from at least 4 mice per 
group - multiple confocal images per retina were quantified and averaged).   
 



E2KO

IsolectinB4NG2 NG2 / IsolectinB4

C
en

trl
al

 R
et

in
a 

C
en

trl
al

 R
et

in
a 

A
ng

io
ge

ni
c 

Fr
on

t 
A

ng
io

ge
ni

c 
Fr

on
t

ECtrl

150 μm

150 μm

152



153 

Supplementary Figure II.10 No major perturbations in NG2+ pericyte 
coverage in the E2KO retinal vasculature at P6.  
 
Confocal microscopy analysis of whole mount retinal vasculature immunostained 
for the pericyte marker NG2 and isolectinB4 showing no major differences in 
vessel pericyte coverage in retinas from E2KO mice compared to retinas from 
littermate control mice. Data presented are representative of multiple images of 
retinas from 4 mice per group.     
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Supplementary Figure II.11 Intimate association of gracillis collaterals and 
peripheral nerves in adductor muscles. 
 
Confocal microscopy of a whole mount adductor muscle immunostained for 
smooth muscle actin (green) and Neurofilament-M shows close association of 
gracillis collateral arteries with peripheral nerves.  
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Chapter III 

JNK is cell-autonomously dispensable for hematopoietic 
development and hematopoietic stem cell self-renewal 
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Abstract 

 

cJun NH2-terminal kinases (JNK) exist in multiple isoforms with high functional 

redundancy. JNK mediates pleiotropic cellular responses to diverse 

environmental stimuli, including various types of stress as well as numerous 

growth factors and cytokines. JNK has been implicated in immune cell 

differentiation and function, however its role in hematopoiesis or hematopoietic 

stem cell (HSC) self-renewal has not been explored. Here, we employ mice with 

single or compound ablation of Jnk genes and serial competitive bone marrow or 

HSC transplantation assays to dissect the function of JNK in hematopoiesis and 

HSC self-renewal. Unexpectedly, we find that JNK is not required for normal 

hematopoiesis, HSC and progenitor cell homing and engraftment following 

transplantation, HSC self-renewal or 5-FU-induced stress hematopoiesis. These 

results may be medically relevant because JNK inhibitors have reached clinical 

trials.      
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Introduction 

 

c-Jun NH2-terminal kinase (JNK), a member of the stress and mitogen activated 

family of protein kinases, is encoded by three separate genes. JNK1 and JNK2 

are ubiquitously expressed, whereas expression of JNK3 is confined to neurons, 

heart and testis.1 Alternative splicing of the messenger RNA (mRNA) transcripts 

of the three JNK genes generates ten JNK isoforms.3 Studies have demonstrated 

that some of these isoforms have differential substrate binding specificities; 

however, often JNK isoforms show significant functional redundancy.1,200 JNK 

has been implicated in embryonic development, proliferation, apoptosis, 

inflammation and cytokine expression among other processes.1,6 Indeed, JNK is 

required in embryonic development as compound Jnk1-/-Jnk2-/- embryos die in 

utero and murine embryonic fibroblasts (MEFs) from Jnk1-/-Jnk2-/- mice show 

major defects in proliferation.20,183 In contrast, compound Jnk1-/-Jnk2-/- murine 

embryonic stem cells display increased proliferation and self-renewal compared 

to Jnk+/+ stem cells.201 

 

Hematopoiesis is the process that gives rise to all blood cells from hematopoietic 

stem cells (HSCs). In addition to their ability to generate all hematopoietic cells, 

HSCs have the capacity to self-renew (i.e., proliferate without differentiating).202-

204 The processes of blood cell production and HSC self-renewal are regulated 

by a multitude of secreted growth factors and cytokines, cell-cell or cell-



                                                                                                                                                                                                                                                                         

 

159 

extracellular matrix interactions as well as numerous signaling pathways, which 

collectively orchestrate hematopoietic cell survival, proliferation, differentiation or 

quiescence.33,205,206 

 

JNK has been implicated in the regulation hematopoietic cell survival, cytokine 

expression, effector T cell differentiation and inflammation.4,24,158,162 However, 

due to the early embryonic death of compound Jnk1-/-Jnk2-/- mice, almost all 

studies have been confined to the examination of Jnk1-/- or Jnk2-/- mice. 

Furthermore, with the exception of one recent study that analyzed hematopoietic 

progenitor cell expansion using whole body single Jnk1-/- or Jnk2-/- mice,170 no 

extensive studies on the role of JNK specifically in HSC self-renewal and function 

have been undertaken. Given the high functional redundancy of JNK isoforms, 

and their different roles in multiple tissues, hematopoietic cell specific compound 

ablation of all JNK isoforms is required to better understand the function of JNK 

in hematopoietic development and HSC self-renewal. In this study, we employ 

hematopoietic cell specific compound mutant mice with dual disruption of both 

Jnk1 plus Jnk2 genes, and surprisingly, find that absence of all JNK isoforms in 

hematopoietic cells does not perturb normal, transplant-induced or drug-induced 

stress hematopoiesis or HSC self-renewal.     
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Results 

 

Normal HSC and progenitor cell development in single Jnk1-/- and Jnk2-/- mice 

To assess if different JNK isoform subsets are important for normal development 

of HSCs or progenitor cells we performed immunophenotyping of bone marrow 

cells from adult WT, Jnk1-/- and Jnk2-/- mice using antibodies against established 

HSC and/or progenitor cell markers (Supplementary Figure III.1). Total bone 

marrow cellularity was not significantly different between WT and Jnk1-/- or Jnk2-/-  

mice (Figure III.1D), and multiparameter flow cytometry analysis revealed no 

significant differences in the frequency of HSCs or any of the progenitor cells 

examined (Figure III.1A-C). Thus, JNK1 or JNK2 isoforms in hematopoietic or 

non-hematopoietic cells are not required for normal development of HSCs or the 

progenitor cell populations that we examined. 

 

HSCs and progenitors from single Jnk1-/- and Jnk2-/- mice have normal 

multilineage reconstitution potential and self-renewal 

To examine the role of different JNK isoform subsets in HSC and progenitor cell 

function, we performed serial competitive bone marrow transplantation assays. 

WT or JNK knockout bone marrow cells expressing the pan-hematopoietic cell 

marker CD45.2 were mixed with competitor bone marrow cells expressing 

CD45.1 at two different ratios (20:80 and 50:50) and transplanted into lethally 

irradiated mice (Figure III.2A). Peripheral blood from recipient mice was 
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examined by flow cytometry analysis for donor cell chimerism and multilineage 

reconstitution as indicated in Figure III.2B. Analysis of peripheral blood 

chimerism in primary recipient mice at 5, 10, 15 and 20 weeks post-

transplantation revealed no consistently significant differences in overall 

reconstitution between recipients that received WT and those that received   

Jnk1-/- or Jnk2-/- bone marrow cells (Figure III.2C, primary transplant). 

Furthermore, we found no consistently significant differences in reconstitution of 

individual myeloid, B and T cell subsets (Figure III.2D, primary transplant), or 

frequency of myeloid, B and T cell subsets (within the CD45.2+ donor population) 

in the blood of recipients that received WT, Jnk1-/- or Jnk2-/- bone marrow cells 

(Figure III.2E, primary transplant). This analysis indicates that HSC and 

progenitor multilineage reconstitution function as well as hematopoietic cell 

differentiation into myeloid, B and T cell lineages is preserved in the absence of 

JNK1 or JNK2. Twenty weeks post-transplantation, we analyzed bone marrow 

from recipient mice and found no significant differences in overall reconstitution 

as well as no significant differences in reconstitution or frequency of HSC and 

progenitor populations in the bone marrow of recipients that received WT, Jnk1-/- 

or Jnk2-/- bone marrow cells (Figure III.3A-C). 

 

To test if absence of JNK1 or JNK2 affected HSC self-renewal potential, we 

pooled bone marrow from primary recipient mice and used it to transplant 

secondary recipients. Peripheral blood analysis over 20 weeks revealed no 



                                                                                                                                                                                                                                                                         

 

162 

consistently significant differences in overall CD45.2+ donor cell chimerism, as 

well as no consistently significant differences in reconstitution or frequency of 

myeloid, B and T cell subsets in the blood of secondary recipients that received 

WT, Jnk1-/- or Jnk2-/- bone marrow cells (Figure III.2C-E, secondary transplant). 

This analysis demonstrates that Jnk1-/- and Jnk2-/- bone marrow cells are able to 

maintain blood cell production for extended periods and upon serial 

transplantation, similarly to WT bone marrow cells, indicating that HSC self-

renewal potential is not significantly altered in the absence of JNK1 or JNK2 

isoforms.  

 

Compound deficiency of Jnk1 plus Jnk2 in hematopoietic cells does not perturb 

hematopoiesis or homing of HSC and progenitor cells 

JNK1 and JNK2 isoforms expressed in hematopoietic cells display significant 

functional redundancy. Therefore, the absence of significant perturbations in 

hematopoietic cell function in single JNK knockout mice may be due to functional 

compensation by remaining JNK isoforms. To test if JNK has a role in 

hematopoiesis would therefore require ablation of all JNK isoforms expressed in 

hematopoietic cells. To disrupt both JNK1 plus JNK2 genes simultaneously, we 

employed Jnk1LoxP/LoxPJnk2LoxP/LoxP mice in conjunction with a tamoxifen-inducible 

Cre recombinase system (Rosa26-CreERT2 Jnk1LoxP/LoxPJnk2LoxP/LoxP), referred 

to as J1f/fJ2f/f R-Cre mice and control mice (Rosa26-CreERT2 Jnk1+/+Jnk2+/+), 

referred to as J1+/+J2+/+ R-Cre mice. We, then, assessed the effect of compound 
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disruption of both Jnk1 plus Jnk2 genes on HSC and progenitor function in 

competitive bone marrow transplantation assays. To avoid potentially 

confounding effects of JNK disruption in non-hematopoietic cells and also issues 

with homing of JNK-deficient HSC and progenitor cells following transplantation, 

we performed transplantations with bone marrow from J1+/+J2+/+ R-Cre and 

J1f/fJ2f/f R-Cre mice prior to induction of JNK ablation (Figure III.4A). Two groups 

of recipient mice received J1+/+J2+/+ R-Cre bone marrow cells, while two other 

groups received J1f/fJ2f/f R-Cre bone marrow cells. All four groups also received 

the same number of competitor CD45.1+ bone marrow cells. Ten weeks following 

transplantation we confirmed equal levels of engraftment in all four groups of 

recipient mice by flow cytometry analysis of peripheral blood (Figure III.4C-E, 10 

weeks post transplant timepoint) and then administered either tamoxifen to 

induce Cre activity in donor hematopoietic cells or oil as a control (Figure III.4A). 

Peripheral blood analysis, over 20 weeks following tamoxifen administration, 

revealed no significant alterations in overall CD45.2+ donor cell chimerism, as 

well as no significant changes in reconstitution or frequency of myeloid, B and T 

cell subsets in the blood of recipients from any of the four groups (Figure III.4C-

E). Efficient ablation of JNK in J1f/fJ2f/f R-Cre bone marrow cells ~20 weeks 

following tamoxifen administration was confirmed by immunoblot analysis of 

bone marrow from recipient mice that had received either J1+/+J2+/+ R-Cre alone 

or J1f/fJ2f/f R-Cre alone (i.e., in a non-competitive setting, Figure III.4A and B). 
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This analysis indicates that JNK in hematopoietic cells is not required for normal 

blood cell production in adult mice. 

 

To test if compound JNK-deficiency might affect homing and initial engraftment of 

HSC and/or progenitor cells following transplantation, we administered tamoxifen 

to adult J1+/+J2+/+ R-Cre or J1f/fJ2f/f R-Cre (J1∆/∆J2∆/∆ R-Cre) mice and 5 weeks 

later harvested bone marrow from these mice and performed competitive bone 

marrow transplantations into lethally irradiated recipient mice (Figure III.4F). 

Peripheral blood analysis, over 20 weeks following transplantation, revealed no 

consistently significant differences in overall CD45.2+ donor cell chimerism, as 

well as no consistently significant changes in reconstitution or frequency of 

myeloid, B and T cell subsets in the blood of recipients (Figure III.4G-I), 

indicating that JNK in adult hematopoietic cells is also not required for homing or 

engraftment of HSC and/or progenitor cells following transplantation.  

 

JNK in hematopoietic cells is dispensable for normal HSC and progenitor cell 

development 

Although our data so far indicate that JNK is not required for normal HSC and/or 

progenitor cell function in adult mice, JNK in hematopoietic cells may be 

important for HSC and/or progenitor cell development and function at earlier 

developmental times. To test this possibility we crossed Jnk1LoxP/LoxPJnk2LoxP/LoxP 

or Jnk1+/+Jnk2+/+ mice to mice expressing a constituitive version of Cre 
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recombinase under the control of Vav1 regulatory elements that drive Cre 

expression in all hematopoietic cells including HSCs.185,207 Prior studies have 

reported Vav1 expression in hematopoietic cells as early as embryonic day 

(E)11.5 in blood islands.208 We generated Vav1-Cre+ Jnk1LoxP/LoxPJnk2LoxP/LoxP 

(H2KO) mice. Cre- littermate mice Vav1-Cre- Jnk1LoxP/LoxPJnk2LoxP/LoxP (HfCtrl) and 

Vav1-Cre+ Jnk1+/+Jnk2+/+ (HCtrl) mice served as controls. H2KO mice developed 

normally, showed no obvious morphological defects and had normal body mass 

(Supplementary Figure III.2A). Immunoblot analysis confirmed the absence of 

detectable JNK protein in lysates from H2KO bone marrow cells (Figure III.6F). 

Automated complete blood cell analysis showed no significant perturbations in 

any of the indices examined (Supplementary Figure III.2B). Furthermore, total 

bone marrow cellularity was not significantly different between adult H2KO, HfCtrl or 

HCtrl mice (Figure III.5D), and multiparameter flow cytometry analysis of bone 

marrow cells revealed no significant differences in the frequency of HSCs or any 

of the progenitor cells examined (Figure III.5A-C), indicating normal HSC and 

progenitor cell development in H2KO mice. 

 

JNK in hematopoietic cells is dispensable for normal HSC and progenitor cell 

engraftment, multilineage reconstitution and HSC self-renewal 

To directly examine the role of JNK in HSC function, we sorted HSCs (Lineage-

/low, Sca1+, cKit+, CD150+, CD48-) and transplanted 100 H2KO, HfCtrl or HCtrl HSCs 

together with 2x105 competitor CD45.1+ total bone marrow cells into lethally 
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irradiated recipient mice (Figure III.6A). Peripheral blood analysis, over 20 weeks 

following transplantation, revealed no significant differences in overall CD45.2+ 

donor cell chimerism (Figure III.6B, 1o Transplant), as well as no consistently 

significant JNK-dependent changes in reconstitution or frequency of myeloid, B 

and T cell subsets in the blood of recipients that received H2KO, HfCtrl, or HCtrl 

HSCs (Figure III.6C and D, 1o Transplant), indicating that JNK is not required for 

normal HSC function following transplantation. 

 

To test H2KO HSC self-renewal potential, we pooled bone marrow from primary 

recipients and used it to transplant secondary recipient mice (Figure III.6A). 

Peripheral blood analysis, over 20 weeks following transplantation, revealed no 

consistently significant JNK-dependent differences in overall CD45.2+ donor cell 

chimerism, as well as no consistently significant changes in reconstitution or 

frequency of myeloid, B and T cell subsets in the blood of secondary recipients 

that received H2KO, HfCtrl, or HCtrl bone marrow cells (Figure III.6B-D, 2o 

Transplant).  

 

We also performed competitive bone marrow transplantations with total bone 

marrow cells from H2KO, HfCtrl, and HCtrl mice and competitor mice at two different 

ratios (20:80 or 50:50) of test to competitor cells (Figure III.6E) and found no 

significant differences in overall CD45.2+ donor cell chimerism, as well as no 

consistently significant JNK-dependent changes in reconstitution or frequency of 
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myeloid, B and T cell subsets in the blood of recipient mice that received H2KO, 

HfCtrl, or HCtrl bone marrow cells (Figure III.6G-I). Collectively, these data indicate 

that JNK in hematopoietic cells is not required for normal HSC and progenitor cell 

development, and function following transplantation or HSC self-renewal. 

 

H2KO mice show normal sensitivity to 5-fluorouracil (5-FU) treatment 

Although JNK-deficiency in hematopoietic cells does not appear to affect normal 

hematopoiesis or hematopoiesis following transplantation, JNK may play a role 

during drug-induced stress hematopoiesis. We examined if hematopoietic stress 

induced by treatment of mice with 5-FU affected the survival of H2KO mice 

differently from control mice. Weekly treatments of mice with 150 mg/Kg 5-FU 

resulted in similar mortality between H2KO, HfCtrl and HCtrl mice (Figure III.7), 

suggesting that JNK in hematopoietic cells is also not required for 5-FU-induced 

stress hematopoiesis.  
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Discussion 

 

Hematopoiesis is a complex biological process that involves the integration of 

multiple signaling pathways.33,205,206 Members of the mitogen activated family of 

protein kinases have been shown to play important roles in hematopoietic cell 

development and function.24,167,170 In this study, we explored the role of JNK in 

hematopoiesis and HSC self-renewal. We employed hematopoietic cell specific 

mutant mice with dual disruption of Jnk1 plus Jnk2 genes and found that JNK is 

dispensable for normal and stress-induced hematopoiesis as well as HSC self-

renewal. These findings are unexpected, because JNK has been shown to 

regulate numerous biological processes both in hematopoietic and non-

hematopoietic cells that are important for hematopoietic development. 

 

JNK has been shown to regulate the expression of various cytokines, such as 

TNF-α, TGF-β and INF-γ that regulate various aspects of hematopoiesis, 

including HSC self-renewal, differentiation and survival.163,209-214 It is possible that 

JNK regulates cytokine expression only in specific contexts (e.g., during 

inflammatory responses) and that JNK may not be involved in cytokine 

expression during hematopoietic development in the bone marrow. Furthermore, 

JNK is activated by numerous cytokines, including erythropoietin (EPO), 

thrombopoietin (TPO), stem cell factor (SCF), IL-3, and GM-CSF that are major 

regulators of the hematopoietic process.215,216 The activation of JNK by these 
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cytokines may be important for processes that are not essential for normal 

hematopoiesis or JNK activation by these cytokines may not be physiologically 

relevant.  

 

A recent study reported that JNK in hematopoietic cells is activated by Wnt4 in 

vitro, and that Jnk2-/- mice show increased rates of progenitor cell apoptosis 

associated with decreased numbers of hematopoietic progenitors in the bone 

marrow.170 This finding contrasts with ours, as we found no significant differences 

in the abundance of various progenitor populations in Jnk1-/- or Jnk2-/- mice or in 

compound mutants with disruption of both Jnk1 and Jnk2 genes in hematopoietic 

cells. This discrepancy may be due to mouse background differences between 

our mice, which were on a fully backcrossed C57BL/6J background, while the 

mice in that study were on mixed background. 

 

JNK has also been implicated in embryonic stem cell proliferation, differentiation 

and self-renewal.201 In contrast, here we find that JNK in hematopoietic cells is 

dispensable for HSC self-renewal and differentiation, suggesting that JNK has 

distinct roles in embryonic compared to somatic stem cells in general, or that 

JNK is dispensable in HSCs. 

 

Despite the numerous lines of evidence suggesting a possible role for JNK in 

hematopoietic development and function, our study demonstrates that this is not 
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the case. Collectively, our study shows that JNK in hematopoietic cells is cell-

autonomously dispensable for normal, transplantation-induced and 5-FU-induced 

hematopoiesis as well as for HSC self-renewal. These findings are medically 

relevant because JNK inhibitors are being used in clinical trials.217    
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Experimental Procedures 

 

Mice 

We have previously described Jnk1LoxP/LoxP, Jnk2LoxP/LoxP, Jnk1-/- and Jnk2-/-.161-

163183 B6.Cg-Tg(Vav1-cre)A2Kio/J mice185 expressing an improved version of Cre 

recombinase (iCre) driven by Vav1 regulatory elements,  

B6.129-Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J218 expressing a tamoxifen inducible 

version of Cre recombinase from the Gt(ROSA)26Sor promoter and  

B6.SJL-Ptprca Pepcb/BoyJ mice expressing the CD45.1 allele were obtained from 

the Jackson Laboratories. Here we generated and analyzed the following mice: 

J1f/fJ2f/f R-Cre (Rosa26-CreERT2 Jnk1LoxP/LoxPJnk2LoxP/LoxP) 

J1+/+J2+/+ R-Cre (Rosa26-CreERT2 Jnk1+/+Jnk2+/+) 

H2KO (Vav1-Cre+ Jnk1LoxP/LoxPJnk2LoxP/LoxP)                                                     

HLoxP (Vav1-Cre - Jnk1LoxP/LoxPJnk2LoxP/LoxP)                                                        

HWT (Vav1-Cre+Jnk1+\+Jnk2+\+) 

All mice used in this study were backcrossed  (≥ ten generations) to the 

C57BL/6J strain (The Jackson Laboratories). Mice were housed in a facility 

accredited by the American Association for Laboratory Animal Care. All animal 

studies were approved by the Institutional Animal Care and Use Committee of 

the University of Massachusetts Medical School. 
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Genotyping 

PCR assays with genomic DNA and the amplimers  

5’-GCGAAGAGTTTGTCCTCAACC-3’, 5’-GGAGCGGGAGAAATGGATATG-3’ 

and 5’-AAAGTCGCTCTGAGTTGTTAT-3’ were used to detect the Rosa26 Cre+ 

allele (250 bp) and the WT allele (550 bp). The amplimers  

5’-CTAGGCCACAGAATTGAAAGATCT-3’,  

5’-GTAGGTGGAAATTCTAGCATCATCC-3’,  

5’-AGATGCCAGGACATCAGGAACCTG-3’ and  

5’- ATCAGCCACACCAGACACAGAGATC-3’ were used to detect an internal 

positive control fragment (324 bp) and the iCre+ allele (236 bp). The amplimers 

5’-CCTCAGGAAGAAAGGGCTTATTTC-3’ and  

5’-GAACCACTGTTCCAATTTCCATCC-3’ detected the Jnk1+ allele (1,550 bp), 

the Jnk1LoxP allele (1,095 bp), and the Jnk1Δ allele (395 bp). The amplimers  

5’-GTTTTGTAAAGGGAGCCGAC-3’ and  

5’-CCTGACTACTGAGCCTGGTTTCTC-3’ were used to detect the Jnk2+ allele 

(224 bp) and the Jnk2LoxP allele (264 bp). The amplimers  

5’-GGAATGTTTGGTCCTTTAG-3’, 5’-GCTATTCAGAGTTAAGTG-3’, and  

5’-TTCATTCTAAGCTCAGACTC-3’ were used to detect the Jnk2LoxP allele (560 

bp) and the Jnk2Δ allele (400 bp). 

 

Tamoxifen Treatments 

Tamoxifen (Sigma) was dissolved in 2% ethanol 98% sunflower seed oil (Sigma)  



                                                                                                                                                                                                                                                                         

 

173 

and 1 mg/mouse was administered intraperitoneally (ip) 3 times on alternate 

days. 

 

Transplantations 

Bone marrow (BM) was harvested by flushing tibias and femurs from at least five 

10-12 week old mice with ice cold PBS. Erythrocytes were lysed by incubating 

the BM in ACK lysing buffer (Life Technologies). BM cells were 

then resuspended in PBS and passed through a 100 µm filter. Cells were 

counted and mixtures of test BM cells from the indicated genotypes were 

prepared by mixing test BM cells expressing the CD45.2 allele with competitor 

BM cells expressing the CD45.1 allele at various test to competitor cell ratios. 

1x106 total BM cells were intravenously injected via the tail vein into lethally 

irradiated (11 Gy) 10-12 week old CD45.1/CD45.2 heterozygous or CD45.1 

homozygous female mice. Transplanted mice were maintained on antibiotic 

water for the first two weeks post transplantation. Blood was harvested via 

the retroorbital sinus using heparinized capillary tubes and EDTA coated vials at 

5, 10, 15 and 20 weeks post transplantation and subjected to 

flow cytometry analysis. 

 

 

Flow Cytometry 

Blood was washed in PBS, stained with live/dead fixable blue dead cell staining 



                                                                                                                                                                                                                                                                         

 

174 

kit (Invitrogen), washed in PBS and blocked in 2% FBS-PBS 0.02% 

sodium azide plus Fc-block (Anti-CD16/32 antibody 1:200, BD Biosciences). 

Surface antigens were detected by incubation for 30 min at 4oC with conjugated 

antibodies including CD45.1-Pacific Blue, CD45.2-FITC, CD3e-APC, CD19-APC-

H7, CD11b-PE (BD Biosciences), GR1-Alexa Fluor 700 (Biolegend). Following 

washing with 2% FBS-PBS 0.02% sodium azide, red cells were lysed and 

leukocytes fixed by incubating in lyse/fix solution (BD Biosciences) and then 

washed with PBS.  

 

Bone marrow cells were stained with live/dead fixable blue dead cell staining kit 

(Invitrogen), washed in PBS and blocked in 2% FBS-PBS 0.02% 

sodium azide plus Fc-block (unconjugated anti-CD16/32 antibody 1:200, BD 

Biosciences). This Fc-block was not done on cells that were going to be stained 

for myeloid progenitors. Instead these cells were incubated with a CD16/32-

AlexaFluor 700 antibody. Cells were incubated for 30 min at 4oC with a lineage 

cocktail that included biotinylated antibodies against CD3e, CD4, CD8, B220, 

CD11b, GR-1 and Ter119. Cells were then washed, and surface antigens were 

detected by incubation with Streptavidin-PE-TexasRed and conjugated 

antibodies including CD45.2-APC, cKit-APC-Cy7, Sca-1-PacificBlue, CD150-PE-

Cy7 and CD48-FITC (Panel 1) or Streptavidin-PE-TexasRed and conjugated 

antibodies including CD45.2-APC, cKit-APC-Cy7, Sca-1-PacificBlue, IL7R-PE-

Cy7, CD34-FITC, and CD135-PE-Cy5.5 (Panel 2). A CD45.1-PE antibody was 
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included when bone marrow cells from chimeric mice were analyzed. Cells were 

washed, fixed with 4% PFA, washed with PBS and analyzed on an LSR-II 

cytometer (Becton Dickenson). Data were processed using FlowJo Software 

(Tree Star). 

 

For HSC sorting, bone marrow cells were lineage depleted using a Lineage Cell 

Depletion kit (Miltenyi Biotec) and MACS columns (Miltenyi Biotec). Cells were 

stained with live/dead fixable blue dead cell staining kit (Invitrogen), washed in 

PBS and blocked in 2% FBS-PBS plus Fc-block. Cells were then stained with 

antibodies from Panel 1 above and HSCs were sorted on a BD FACSAria II Cell 

Sorter. Using the single cell mode live HSCs (CD45.2+, Lin-, cKit+, Sca-1+, 

CD150+ and CD48-) were collected directly into tubes containing competitor total 

bone marrow cells and cell mixtures were immediately transplanted into lethally 

irradiated mice.       

 

Immunoblot Analysis 

Cell extracts were prepared using Triton lysis buffer (20 mM Tris at pH 7.4, 1% 

Triton X-100, 10% glycerol, 137 mM NaCl, 2 mM EDTA, 25 mM β-

glycerophosphate, 1 mM sodium orthovanadate, 1 mM 

phenylmethylsulfonylfluoride, 10 mg/mL of aprotinin and leupeptin). Extracts (20-

50 µg of protein) were examined by protein immunoblot analysis by probing with 

antibodies to JNK (R&D Systems or Pharmigen), GAPDH (Santa Cruz) 
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and αTubulin (Sigma). Immune complexes were detected using the Odyssey 

infrared imaging system (LI-COR Biosciences). 

 

Statistical Analysis 

Differences between groups were examined for statistical significance with an 

unpaired Student's test with equal variance or a log-rank (Mantel-Cox) test for 

determining significance of Kaplan-Meier survival curves. 
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Figure III.1 Jnk1-/- and Jnk2-/- mice have normal HSC and progenitor cell 
composition in the bone marrow.  
 
A) Bone marrow (BM) cells from WT, Jnk1-/- and Jnk2-/- mice were 
immunostained with fluorochrome-conjugated antibodies and analyzed by flow 
cytometry to identify bone marrow cell populations enriched in HSC and 
progenitor cells. The detailed step-by-step gating strategy is presented in 
Supplementary Figure II.1. Lineage negative (Lin-) cells staining positive for Sca-
1 and cKit identify the LSK population that is enriched in long term HSCs (LT-
HSC) and multipotent progenitors (MPP). Staining LSK cells with antibodies to 
CD150 and CD48 defines populations of LT-HSCs and MPPs more specifically. 
Quantitative flow cytometry analysis revealed no significant perturbations in the 
proportions of any of the of BM populations examined between WT and Jnk1-/- or 
Jnk2-/- mice (mean ± SEM; n = ~5-7 mice per group). Data presented are from 
one of two experiments with similar results. 
 
B) A second panel of antibodies that includes antibodies to CD135 and CD34 
also defines populations of LT-HSCs, short-term (ST)-HSCs and MPPs within the 
LSK population. Quantitative flow cytometry analysis using this panel of 
antibodies also revealed no significant perturbations in the proportions of the 
indicated HSC and MPP populations examined between WT and Jnk1-/- or Jnk2-/- 
mice (mean ± SEM; n = ~5-7 mice per group). Data presented are from one of 
two experiments with similar results. 
 
C) Flow cytometry analysis of lymphoid and myeloid progenitors including the 
common lymphoid progenitors (CLP), common myeloid progenitors (CMP), 
granulocyte macrophage progenitors (GMP) and megakaryocyte erythrocyte 
progenitors (MEP) shows no significant differences in their proportion in the BM 
of Jnk1-/- or Jnk2-/- compared to WT BM (mean ± SEM; n = ~5-7 mice per group). 
Data presented are from one of two experiments with similar results. 
 
D) No significant differences were detected in total BM cellularity between Jnk1-/- 
or Jnk2-/- and WT mice (mean ± SEM; n = ~5-7 mice per group). Data presented 
are from one of two experiments with similar results.    
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Figure III.2 Bone marrow cells from Jnk1-/- and Jnk2-/- mice display normal 
multilineage reconstitution potential in serial competitive transplantation 
experiments 
 
A) Serial competitive BM transplantation experimental set up. Test BM cells from 
WT, Jnk1-/- and Jnk2-/- mice expressing the CD45.2 allele were each mixed with 
competitor BM cells expressing the CD45.1 allele at two different ratios, as 
indicated, and transplanted via the tail vein into primary lethally irradiated 
recipient mice expressing both CD45.1 and CD45.2. Peripheral blood from 
primary recipient mice was analyzed at different times over 20 weeks for donor 
cell chimerism and multilineage reconstitution with antibodies to lineage markers. 
Twenty weeks post-transplantation BM from primary recipient mice transplanted 
with the 50:50 ratio of test to competitor BM cells was pooled and used to 
transplant secondary recipient mice that were analyzed similarly to primary 
recipients.      
 
B) Flow cytometry gating strategy for donor cell chimerism and multilineage 
reconstitution analysis of peripheral blood from recipient mice. 
 
C) Primary and secondary recipient mice transplanted with Jnk1-/- or Jnk2-/- BM 
cells show no consistently significant differences in overall peripheral blood 
leukocyte reconstitution compared to recipients transplanted with WT BM cells 
(mean ± SEM; n = ~7-9 recipient mice per group) 
 
D) Primary and secondary recipient mice transplanted with Jnk1-/- or Jnk2-/- BM 
cells show no consistently significant differences in reconstitution of myeloid, B 
and T cells compared to recipients transplanted with WT BM cells (mean ± SEM; 
n = ~7-9 recipient mice per group) 
 
E) Primary and secondary recipient mice transplanted with Jnk1-/- or Jnk2-/- BM 
cells show no consistently significant differences in the frequency of myeloid, B 
and T cells within the donor CD45.2+ leukocyte population compared to 
recipients transplanted with WT BM cells (mean ± SEM; n = ~7-9 recipient mice 
per group) 
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Figure III.3 HSC and progenitor analysis 20 weeks post-transplantation in 
the bone marrow of primary recipients from the experiment in Figure III.2 
 
A) Flow cytometry analysis of BM from primary recipient mice 20 weeks post 
transplantation shows no statistically significant differences in overall donor 
CD45.2+ cell reconstitution in mice that were transplanted with Jnk1-/- or Jnk2-/- 
BM cells compared to recipients that were transplanted with WT BM cells. (mean 
± SEM; n = ~7-9 recipient mice per group) 
 
B) No statistically significant differences in the reconstitution of various 
progenitors and HSCs were detected between primary recipient mice that were 
transplanted with Jnk1-/- or Jnk2-/- BM cells compared to recipients that were 
transplanted with WT BM cells. (mean ± SEM; n = ~7-9 recipient mice per group) 
   
C) No statistically significant differences in the frequency of various progenitors 
and HSCs within the donor CD45.2+ population were detected between primary 
recipient mice that were transplanted with Jnk1-/- or Jnk2-/- BM cells compared to 
recipients that were transplanted with WT BM cells. (mean ± SEM; n = ~7-9 
recipient mice per group) 
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Figure III.4 Compound ablation of both Jnk1 plus Jnk2 genes in 
hematopoietic cells of adult mice does not perturb hematopoiesis or BM 
cell homing and engraftment following transplantation. 
 
A) Competitive BM transplantation experimental set up involving in situ ablation 
of both Jnk1 plus Jnk2 genes after engraftment into recipient mice was 
completed. Test BM cells from J1+/+J2+/+ R-Cre or J1f/fJ2f/f R-Cre mice expressing 
the CD45.2 allele were each either transplanted alone (non-competitive 
transplants), or mixed with competitor BM cells expressing the CD45.1 allele, as 
indicated, and transplanted via the tail vein into lethally irradiated recipient mice. 
Two groups of recipient mice received J1+/+J2+/+ R-Cre and another two groups 
received J1f/fJ2f/f R-Cre BM cells in conjunction with competitor cells. Ten weeks 
post-transplantation, successful and similar engraftment in all 4 groups of 
competitively transplanted mice was confirmed by flow cytometry analysis of 
peripheral blood, and recipient mice received either tamoxifen (TAM) to induce 
Cre activity in donor-derived test hematopoietic cells or oil as control. Peripheral 
blood from recipient mice was then analyzed at different times over 20 weeks for 
alterations in donor cell chimerism and multilineage reconstitution. 
 
B) Bone marrow cells from recipient mice that were transplanted with either 
J1+/+J2+/+ R-Cre or J1f/fJ2f/f R-Cre alone (i.e., in a non-competitive fashion) were 
harvested >20 weeks post-tamoxifen administration and examined by 
immunoblot analysis with antibodies to JNK and GAPDH. This analysis revealed 
successful deletion of JNK in BM cells from mice transplanted with J1f/fJ2f/f R-Cre 
BM. 
 
C) Recipient mice transplanted with J1+/+J2+/+ R-Cre or J1f/fJ2f/f R-Cre BM cells 
showed no significant alterations in overall peripheral blood leukocyte 
reconstitution whether they were treated with oil or tamoxifen (mean ± SEM; n = 
10 recipient mice per group). 
 
D) Recipient mice transplanted with J1+/+J2+/+ R-Cre or J1f/fJ2f/f R-Cre BM cells 
showed no significant alterations in reconstitution of myeloid, B and T cells 
whether they were treated with oil or tamoxifen (mean ± SEM; n = 10 recipient 
mice per group). 
 
E) Recipient mice transplanted with J1+/+J2+/+ R-Cre or J1f/fJ2f/f R-Cre BM cells 
showed no significant alterations in the frequency of myeloid, B and T cells within 
the donor CD45.2+ leukocyte population whether they were treated with oil or 
tamoxifen (mean ± SEM; n = 10 recipient mice per group). 
 
F) Competitive BM transplantation experimental set up involving ablation of both 
Jnk1 plus Jnk2 genes before transplantation into recipient mice. J1+/+J2+/+ R-Cre 
and J1f/fJ2f/f R-Cre mice were treated with tamoxifen to induce Cre activity and 
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disrupt Jnk1 and Jnk2 floxed alleles in J1f/fJ2f/f R-Cre mice, now refered to as 
J1∆/∆J2∆/∆ R-Cre. Successful deletion was confirmed by immunoblot analysis. 
Test BM cells from J1+/+J2+/+ R-Cre or J1∆/∆J2∆/∆ R-Cre mice expressing the 
CD45.2 allele were each mixed with competitor BM cells expressing the CD45.1 
allele, as indicated, and transplanted via the tail vein into lethally irradiated 
recipient mice. Peripheral blood from recipient mice was analyzed at different 
times over 20 weeks for donor cell chimerism and multilineage reconstitution with 
antibodies to lineage markers. 
 
G) Recipient mice transplanted with J1+/+J2+/+ R-Cre or J1∆/∆J2∆/∆ R-Cre BM cells 
showed no consistently significant differences in overall peripheral blood 
leukocyte reconstitution (mean ± SEM; n = ~8-10 recipient mice per group). 
 
H) Recipient mice transplanted with J1+/+J2+/+ R-Cre or J1∆/∆J2∆/∆ R-Cre BM cells 
showed no consistently significant differences in reconstitution of myeloid, B and 
T cells (mean ± SEM; n = ~8-10 recipient mice per group). 
 
I) Recipient mice transplanted with J1+/+J2+/+ R-Cre or J1∆/∆J2∆/∆ R-Cre BM cells 
showed no consistently significant differences in the frequency of myeloid, B and 
T cells within the donor CD45.2+ leukocyte population (mean ± SEM; n = ~8-10 
recipient mice per group). 
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Figure III.5 Compound ablation of both Jnk1 plus Jnk2 genes in 
hematopoietic cells starting in embryonic life does not perturb HSC and 
progenitor cell development.  
 
A) Bone marrow (BM) cells from H2KO and control mice were immunostained with 
fluorochrome-conjugated antibodies and analyzed by flow cytometry to identify 
bone marrow cell populations enriched in HSC and progenitor cells. Quantitative 
flow cytometry analysis revealed no significant perturbations in the proportions of 
the indicated HSC and MPP populations examined between H2KO and control 
mice (mean ± SEM; n = 7 mice per group). Data presented are from one of two 
experiments with similar results. 
 
B) Quantitative flow cytometry analysis using a second panel of antibodies also 
revealed no significant perturbations in the proportions of the indicated HSC and 
MPP populations examined between H2KO and control mice (mean ± SEM; n = 7 
mice per group). Data presented are from one of two experiments with similar 
results. 
 
C) Flow cytometry analysis of lymphoid and myeloid progenitors including the 
common lymphoid progenitors (CLP), common myeloid progenitors (CMP), 
granulocyte macrophage progenitors (GMP) and megakaryocyte erythrocyte 
progenitors (MEP) shows no significant differences in their proportion in the BM 
of H2KO and control mice (mean ± SEM; n = 7 mice per group). Data presented 
are from one of two experiments with similar results. 
 
D) No significant differences were detected in total BM cellularity between H2KO 
and control mice mice (mean ± SEM; n = 7 mice per group). Data presented are 
from one of two experiments with similar results.    
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Figure III.6 Compound ablation of both Jnk1 plus Jnk2 genes in 
hematopoietic cells starting in embryonic life does not perturb HSC and 
progenitor function upon transplantation 
 
A) Serial competitive BM transplantation experimental set up using purified HSCs 
from H2KO and control mice. Test HSCs (Lin-, Sca-1+, cKit+, CD150+, CD44-) from 
H2KO and control mice expressing the CD45.2 allele were sorted, mixed with 
competitor BM cells expressing the CD45.1 allele, as indicated, and transplanted 
via the tail vein into lethally irradiated recipient mice. Peripheral blood from 
primary recipient mice was analyzed at different times over 20 weeks for donor 
cell chimerism and multilineage reconstitution with antibodies to lineage markers. 
Twenty weeks post-transplantation BM from primary recipient mice was pooled 
and used to transplant secondary recipient mice that were analyzed similarly to 
primary recipients.      
 
B) Primary and secondary recipient mice transplanted with H2KO HSCs show no 
significant differences in overall peripheral blood leukocyte reconstitution 
compared to recipients transplanted with control HSCs. (mean ± SEM; n = ~5-8 
recipient mice per group) 
 
C) Primary and secondary recipient mice transplanted with H2KO HSCs show no 
consistently significant JNK-dependent differences in reconstitution of myeloid, B 
and T cells compared to recipients transplanted with control HSCs. In some 
instances, significant differences between H2KO recipients and one of the control 
recipient groups, but not the other were detected. These differences were not 
maintained over time. (mean ± SEM; n = ~5-8 recipient mice per group) 
 
D) Primary and secondary recipient mice transplanted with H2KO HSCs show no 
consistently significant JNK-dependent differences in the frequency of myeloid, B 
and T cells within the donor CD45.2+ leukocyte population compared to 
recipients transplanted with control HSCs. In some instances, significant 
differences between H2KO recipients and one of the control recipient groups, but 
not the other were detected. Furthermore, these differences were not maintained 
over time. (mean ± SEM; n = ~5-8 recipient mice per group) 
 
E) Competitive BM transplantation experimental set up. Test BM cells from H2KO 
and control mice expressing the CD45.2 allele were mixed with competitor BM 
cells expressing the CD45.1 allele at two different ratios, as indicated, and 
transplanted via the tail vein into lethally irradiated recipient mice. Peripheral 
blood from primary recipient mice was analyzed at different times over 20 weeks 
for donor cell chimerism and multilineage reconstitution with antibodies to lineage 
markers. 
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F) Immunoblot analysis of BM cell lysates from H2KO and control mice with 
antibodies to JNK and GAPDH confirmed absence of JNK protein in BM cells 
from H2KO mice. 
 
G) Recipient mice transplanted with H2KO BM cells show no significant 
differences in overall peripheral blood leukocyte reconstitution compared to 
recipients transplanted with control BM cells. (mean ± SEM; n = ~9-10 recipient 
mice per group) 
 
H) Recipient mice transplanted with H2KO BM cells show no consistently 
significant JNK-dependent differences in reconstitution of myeloid, B and T cells 
(mean ± SEM; n = ~9-10 recipient mice per group). 
 
I) Recipient mice transplanted with H2KO BM cells show no consistently significant 
JNK-dependent differences in the frequency of myeloid, B and T cells within the 
donor CD45.2+ leukocyte population (mean ± SEM; n = ~9-10 recipient mice per 
group). 
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Figure III.7 Sensitivity to 5-fluorouracil (5-FU) is not altered in H2KO mice. 
 
H2KO and control mice received weakly intraperitoneal injections of 5-FU (150 
mg/Kg) and were monitored over time. H2KO mice showed similar survival kinetics 
compared to control mice (n = ~11-13 mice per group).  
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Supplementary Figure III.1 Gating strategy and fluorescence minus one 
(FMO) controls used for the identification of HSC and progenitor cell 
populations. 
 
A) Bone marrow cell singlets were selected based on forward scatter (FSC-A, 
and FSC-H) and side scatter (SSC-A) properties. Live cells staining negative for 
Live/Dead Blue and positive for the pan-hematopoietic cell marker CD45 were 
then selected and displayed as shown in (B).  
 
C) Lineage (Lin-), IL7Rα+ cells gated in panel B with intermediate cKit and Sca-1 
staining identified common lymphoid progenitors (CLP). IL7Rα FMO antibody 
control that includes all antibodies in the panel except for the IL7Rα antibody is 
shown (right). 
 
D) Lin-, IL7Rα- cells gated in panel (B) were displayed as shown. cKit and Sca-1 
FMO controls are shown (left). 
 
E) Lin-, Sca-1+, cKit+ (LSK) cells gated in panel (D) that stained positive for 
CD150 and negative for CD48 were identified as long-term HSCs (LT-HSC). LSK 
cells staining positive for CD48 were identified as multipotent progenitors (MPP). 
CD150 and CD48 FMO controls are shown (right). 
 
F) LSK cells gated in panel (D) that stained negative for CD135 and CD34 were 
also identified as LT-HSC. LSK cells staining negative for CD135, but positive for 
CD34 were identified as short-term HSCs (ST-HSC). LSK cells staining positive 
for CD135 and CD34 were identified as MPP. CD135 and CD34 FMO controls 
are shown (right). 
 
G) Lin-, Sca-1-, cKit+ (LK) cells gated in panel (D) that stained positive for 
CD16/32 and CD34 were identified as granulocyte/macrophage progenitors 
(GMP). LK cells staining negative for CD16/32, but positive for CD34 were 
identified as common myeloid progenitors (CMP). LK cells staining negative for 
both CD16/32 and CD34 were identified as megakaryocyte/erythrocyte 
progenitors (MEP). CD16/32 and CD34 FMO controls are shown (left).  
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Supplementary Figure III.2 Normal body mass and blood cell indices in H2KO 
mice. 
 
 
A) Body mass measurements showing no significant differences between adult 
H2KO and control mice (mean ± SEM; n =~9-10).  
 
B) Complete blood cell analysis showing no significant JNK-dependent 
differences in any of the measured indices (mean ± SEM; n =~4-6 mice per 
group). RBC, red blood cells; MCV, mean corpuscular volume; MCH, mean 
corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; 
RDW, red cell distribution width; MPV, mean platelet volume.  
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Discussion 

JNK has pleiotropic roles in many areas of biology. Studies have revealed 

important physiologic and pathologic functions of JNK in embryonic development, 

inflammation, metabolism and cancer.1,12,158 The work presented in this 

dissertation uncovers new functions of JNK and expands the repertoire of 

knowledge on the role of JNK in vascular biology and the hematopoietic system.  

 

Prior to our study the role of JNK in endothelial cells and vascular biology was 

limited to in vitro investigations or a few studies that employed Jnk1-/- mice. Thus, 

the role of JNK in endothelial cell-mediated vascular development and function 

was unknown. In Chapter II of this dissertation I have presented a body of data 

that adds considerable insight into the role of JNK in the endothelium, but also 

vascular biology in general. In this study, we generated endothelial-specific 

constitutive and inducible compound mutant mice that lack all JNK isoforms in 

the vascular endothelium. These mice were instrumental in our investigations 

and allowed us to identify critical roles for JNK in retinal and muscle vascular 

morphogenesis as well as native collateral artery development. In contrast to the 

essential function of JNK during the embryonic and early postnatal development 

of the vasculature, our study of mice in which we ablated JNK only after mice had 

reached adulthood demonstrated that endothelial JNK does not play a major role 

in the process of arteriogenesis in the setting of vascular occlusion.  
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Our study of Mlk2-/-Mlk3-/- mice reveals an important role for these kinases in 

vascular morphogenesis and native collateral artery development that in many 

respects mirrors the role of endothelial JNK indicating that MLK mediate JNK 

activation important for vascular development. Although, MLK are known to 

activate JNK, our study demonstrates for the first time that they play a major role 

in vascular development.  

 

In addition to the identification of a MLK – JNK signaling axis that is critical for 

vascular morphogenesis and native collateral artery formation, our study makes 

a significant advance in the understanding of how muscle collateral arteries form 

during ontogeny. Our detailed tracing of gracilis muscle collaterals at different 

times during development have lead us to propose a model in which gracilis 

collaterals form via a plexus intermediate from which vessels within the plexus 

get selected to become collateral arteries due to their proximity to peripheral 

nerves. This model is different from that proposed for pial collateral artery 

formation, which appear to form as distinct sprouts from existing arterioles.61  

Both models may be correct and may reflect the differences in tissue composition 

and architecture between brain and skeletal muscle. 

 

By combining our morphological observations and functional data with 

information from the literature and our RNA Seq results from JNK-deficient and 

control endothelial cells, we were able to identify perturbations in Dll4 – Notch 
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signaling in JNK-deficient endothelial cells and the JNK-deficient retinal 

vasculature that provide a likely mechanism that may contribute to the retinal 

vascular and native collateral artery defects in mice that lack JNK in the 

endothelium. Our RNA Seq data also provides a wealth of gene expression 

information that may fuel many future investigations.  

 

We have identified perturbations in the expression of several guidance molecules 

including downregulation of several class 3 semaphorins as well as upregulation 

of Slit2 and smaller perturbations in Netrin 1 and the semaphorin receptor, Nrp1. 

Semaphorins were originally described as axon guidance factors, but have now 

also been shown to act as attractive or repulsive regulators of angiogenesis.219-

221 Although the role of the alterations in expression of particular semaphorins in 

JNK-deficient endothelial cells and the role of the endothelium as a source of 

semaphorins remains unclear, it is possible that the perturbations in semaphorin 

expression in JNK-deficient endothelial cells may contribute to the dysfunctional 

vascular morphogenesis in E3KO mice. The strong upregulation of the guidance 

molecule Slit2 is also interesting. Slits bind to several Robo receptors that are 

expressed in endothelial cells and mediate cellular motility.222 Indeed, a recent 

study reported a critical role for Slit2 signaling in promoting retinal vascularization 

through endothelial Robo1 and Robo2.223 Although, again, the role of the 

endothelium as a source of Slit2 is unclear, the increased Slit2 expression in the 

JNK-deficient endothelial cells may contribute to the excessive sprouting 
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angiogenesis observed in E3KO mice. 

 

The downregulation of several gap junction proteins including connexin37 (Cx37, 

encoded by Gja4) and connexin40 (Cx40, encoded by Gja5) in JNK-deficient 

endothelial cells may also play a role in the defective formation of native 

collateral arteries in E3KO mice. Cx40-/- mice have been reported to modulate 

arterial identity in response to shear stress and show markedly reduced blood 

perfusion restoration in the FAL model.80,92 The role of Cx40 specifically in the 

formation of native collateral arteries has not been demonstrated. In contrast to 

Cx40-/- mice, Cx37-/- mice81 show significantly enhanced blood perfusion 

immediately after FAL, suggesting that they have improved collateral artery 

function. Connexins are known to form homo or heteromeric hemichannels (or 

connexons). Gap junctions are composed of two hemichannels from neighboring 

cells that provide intercellular communication by facilitating the diffusion of ions, 

small metabolites and second messengers.224 Thus, the phenotype in the 

absence of a particular connexin may reflect altered composition of 

hemichannels. Therefore, the improved bood perfusion recovery following FAL in 

Cx37-/- mice may be due to hemichannels that contain more Cx40 molecules. 

Hence, the reduction in both Cx37 and Cx40 expression in JNK-deficient 

endothelial cells may result in altered hemichannel composition and gap junction 

function and may contribute to the native collateral artery defects in E3KO mice.  
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Another gene whose expression is increased in JNK-deficient endothelial cells 

and may contribute to abnormal vascular morphogenesis in E3KO mice is 

endothelial cell-specific molecule 1 (Esm1). Esm1 is a secreted glycoprotein that 

binds to fibronectin in the extracellular matrix and can displace fibronectin-bound 

VEGF-A165, thus, enhancing regional VEGF-A165 bioavailability.225 Increased 

Esm1 expression by JNK-deficient endothelial cells may result in increased 

regional VEGF-A165 bioavailability that may mediate excessive sprouting 

angiogenesis and altered vascular morphogeneis in E3KO mice.  

 

Other gene expression alterations in JNK-deficient endothelial cells that are 

displayed in the heatmap in Figure II.9D are potentially interesting and open the 

door for much future exploration into the mechanism of JNK-mediated regulation 

of vascular morphogenesis and native collateral artery formation. 

 

Our study points to an important role for JNK-mediated regulation of Dll4 – Notch 

signaling and vascular morphogenesis, and identifies a MLK – JNK signaling axis 

that is critical for native collateral artery formation. Genetically modified mice with 

disruption in this pathway display defective collateral artery patterning and 

undergo severe blood perfusion blockade and severe tissue injury following 

arterial occlusion (Figure II.11). 
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Endothelial and hematopoietic cells are thought to arise from a common 

precursor.33 Although JNK has major roles in endothelial cell biology and 

vascular development, our studies presented in Chapter III demonstrate that JNK 

in hematopoietic cells is dispensable for normal hematopoiesis and HSC self-

renewal. However, JNK in hematopoietic cells may be important in certain 

conditions such as in inflammatory responses to infection or during 

hematopoietic cell transformation.  
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Future Directions 

 

Future research into the role of JNK in the vasculature could include the 

following: 

A synthetic Jag1 peptide has been previously reported to induce Dll4 expression 

and Notch signaling resulting in suppression of endothelial cell sprouting 

activity.46,47,175 To test if the decreased Dll4 expression in the retinal vasculature 

of E3KO mice is biologically relevant, E3KO pups can be treated with Jag1 peptide 

or a scrambled peptide. Analysis of the retinal vasculature should reveal whether 

treatment with Jag1 peptide restores Dll4 levels in the vascualture of E3KO pups 

and whether this normalizes endothelial cell sprouting activity. Suppression of 

excessive endothelial cell sprouting by Jag1 peptide treatment of E3KO mice 

would strongly support the hypothesis that the endothelial cell hypersprouting in 

the E3KO vasculature is mediated by decreased Dll4-Notch signaling. It is unclear 

how Jag1 peptide treatment enhances Dll4 levels and Notch signaling. It is 

possible that Jag1 peptide treatment may not restore Dll4 levels in the E3KO 

retinal vasculature. This would indicate that JNK may regulate Dll4 expression 

and Notch signaling via mechanism(s) that are distinct from those that mediate 

the effects of Jag1 peptide treatment. 

 

A detailed analysis of muscle collateral arteries in Dll4+/- mice via methods 

employed in our study would reveal whether these mice display similar defects to 
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those observed in E3KO mice. This analysis would clarify the role of Dll4-Notch 

signaling in native collateral artery formation.  

 

In addition to perturbations in Dll4-Notch signaling other mechanisms are likely to 

contribute to the vascular defects in JNK-deficient mice. Direct investigation of 

the possible role of other genes that were shown to be differentially expressed in 

JNK-deficient endothelial cells may reveal additional mechanisms through which 

the JNK pathway may contribute to vascular morphogenesis and native collateral 

artery formation. 

 

We found that gracilis collateral arteries form in close apposition to peripheral 

nerves. These data suggest that factors secreted by peripheral nerves may be 

important for formation and maturation of collateral arteries. Investigation of the 

role of peripheral nerves in collateral artery formation would, therefore, be an 

exciting area for future investigations. It is also possible that the vasculature may 

influence peripheral nerve morphogenesis and/or function. Thus the vasculature 

and the peripheral nervous system may have important interdependent functions, 

and perturbations in either system may lead to defects in both systems.  

 

We found that the JNK pathway plays an essential role in endothelial cells, 

however, JNK in hematopoietic or skeletal muscle does not appear to play a role 

in vascular development and function as suggested by the absence of defects in 
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the response to arterial occlusion in mice that lack JNK in these tissues. We did 

not investigate the role of JNK in smooth muscle cells. It is possible that JNK in 

smooth muscle cells may be important for vascular development and collateral 

artery formation and thus analysis of mice with smooth muscle cell-specific 

ablation of JNK may be warranted. 

 

JNK in liver, adipose tissue, pituitary and hematopoietic cells has essential roles 

in the metabolic response to high fat diet consumption.13,163,226,227 The 

endothelium also participates in metabolic homeostasis.228,229 Investigation of the 

role of endothelial JNK in metabolism may reveal important functions of the JNK 

pathway in these cells. We have initiated these studies. 

 

Investigation of the effect of endothelial JNK disruption in experimental tumor cell 

metastasis models also represents an area of research that deserves further 

exploration. We have initiated these studies. 

 

Some E2KO and E3KO mice display defects in tooth development. We have 

initiated studies that indicate that bone development may also be affected. 

Investigation of the role of endothelial JNK in bone and tooth development 

represents an exciting area of future research particularly because recent studies 

have demonstrated an important role for endothelial cells in osteogenesis.230-232 
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Future research into the role of JNK in the hematopoietic system could include 

the following: 

Although an unlikely scenario, low levels of JNK3 expression in hematopoietic 

cells may have compensated for the loss of JNK1 and JNK2 in our mice. We 

have not been able to detect Jnk3 expression in bone marrow cells from WT or 

hematopoietic cell JNK-deficient mice by quantitative RT-PCR analysis. 

Nevertheless, we have now generated mice with hematopoietic cell specific 

compound deficiency of JNK1 plus JNK2 plus JNK3. These mice appear 

morphologically normal. Future experiments will analyze if hematopoiesis is 

perturbed in these mice. 

 

Although we have not found a required role for JNK in normal hematopoietic cell 

development and bone marrow cell function in transplantation assays, assessing 

the role of compound ablation of JNK genes in hematopoietic cell transformation 

induced by BCR-ABL, Pten deletion or other methods may reveal if the JNK 

pathway is important during hematopoietic cell transformation. We have 

generated Vav1-Cre Jnk1LoxP/LoxPJnk2LoxP/LoxPPtenLoxP/LoxP and have initiated their 

analysis.     

 

Assessing the role of compound ablation of JNK genes in infection or 

autoinflammatory disease models may also potentially reveal a role for JNK in 

these processes. 



                                                                                                                                                                                                                                                                         

 

208 

References 
 
 
1. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 

103, 239-252 (2000). 
2. Karin, M. & Gallagher, E. From JNK to pay dirt: jun kinases, their 

biochemistry, physiology and clinical importance. IUBMB Life 57, 283-295 
(2005). 

3. Manning, A.M. & Davis, R.J. Targeting JNK for therapeutic benefit: from 
junk to gold? Nat Rev Drug Discov 2, 554-565 (2003). 

4. Rincon, M., Flavell, R.A. & Davis, R.J. Signal transduction by MAP 
kinases in T lymphocytes. Oncogene 20, 2490-2497 (2001). 

5. Kant, S., Swat, W., Zhang, S., Zhang, Z.Y., Neel, B.G., Flavell, R.A. & 
Davis, R.J. TNF-stimulated MAP kinase activation mediated by a Rho 
family GTPase signaling pathway. Genes Dev 25, 2069-2078 (2011). 

6. Jaeschke, A. & Davis, R.J. Metabolic stress signaling mediated by mixed-
lineage kinases. Mol Cell 27, 498-508 (2007). 

7. Brancho, D., Ventura, J.J., Jaeschke, A., Doran, B., Flavell, R.A. & Davis, 
R.J. Role of MLK3 in the regulation of mitogen-activated protein kinase 
signaling cascades. Mol Cell Biol 25, 3670-3681 (2005). 

8. Kuan, C.Y., Yang, D.D., Samanta Roy, D.R., Davis, R.J., Rakic, P. & 
Flavell, R.A. The Jnk1 and Jnk2 protein kinases are required for regional 
specific apoptosis during early brain development. Neuron 22, 667-676 
(1999). 

9. Barnat, M., Enslen, H., Propst, F., Davis, R.J., Soares, S. & Nothias, F. 
Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and 
elongation during axonal regeneration. J Neurosci 30, 7804-7816 (2010). 

10. Tournier, C., Dong, C., Turner, T.K., Jones, S.N., Flavell, R.A. & Davis, 
R.J. MKK7 is an essential component of the JNK signal transduction 
pathway activated by proinflammatory cytokines. Genes Dev 15, 1419-
1426 (2001). 

11. Derijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M. & 
Davis, R.J. JNK1: a protein kinase stimulated by UV light and Ha-Ras that 
binds and phosphorylates the c-Jun activation domain. Cell 76, 1025-1037 
(1994). 

12. Weston, C.R. & Davis, R.J. The JNK signal transduction pathway. Curr 
Opin Cell Biol 19, 142-149 (2007). 

13. Vernia, S., Cavanagh-Kyros, J., Garcia-Haro, L., Sabio, G., Barrett, T., 
Jung, D.Y., Kim, J.K., Xu, J., Shulha, H.P., Garber, M., Gao, G. & Davis, 
R.J. The PPARalpha-FGF21 hormone axis contributes to metabolic 
regulation by the hepatic JNK signaling pathway. Cell Metab 20, 512-525 
(2014). 



                                                                                                                                                                                                                                                                         

 

209 

14. Ventura, J.J., Hubner, A., Zhang, C., Flavell, R.A., Shokat, K.M. & Davis, 
R.J. Chemical genetic analysis of the time course of signal transduction by 
JNK. Mol Cell 21, 701-710 (2006). 

15. Lamb, J.A., Ventura, J.J., Hess, P., Flavell, R.A. & Davis, R.J. JunD 
mediates survival signaling by the JNK signal transduction pathway. Mol 
Cell 11, 1479-1489 (2003). 

16. Varfolomeev, E.E. & Ashkenazi, A. Tumor necrosis factor: an apoptosis 
JuNKie? Cell 116, 491-497 (2004). 

17. Sakon, S., Xue, X., Takekawa, M., Sasazuki, T., Okazaki, T., Kojima, Y., 
Piao, J.H., Yagita, H., Okumura, K., Doi, T. & Nakano, H. NF-kappaB 
inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK 
activation and necrotic cell death. EMBO J 22, 3898-3909 (2003). 

18. Ventura, J.J., Cogswell, P., Flavell, R.A., Baldwin, A.S., Jr. & Davis, R.J. 
JNK potentiates TNF-stimulated necrosis by increasing the production of 
cytotoxic reactive oxygen species. Genes Dev 18, 2905-2915 (2004). 

19. Chang, L., Kamata, H., Solinas, G., Luo, J.L., Maeda, S., Venuprasad, K., 
Liu, Y.C. & Karin, M. The E3 ubiquitin ligase itch couples JNK activation to 
TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124, 
601-613 (2006). 

20. Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A., Bar-
Sagi, D., Jones, S.N., Flavell, R.A. & Davis, R.J. Requirement of JNK for 
stress-induced activation of the cytochrome c-mediated death pathway. 
Science 288, 870-874 (2000). 

21. Gelinas, C. & White, E. BH3-only proteins in control: specificity regulates 
MCL-1 and BAK-mediated apoptosis. Genes Dev 19, 1263-1268 (2005). 

22. Morel, C., Carlson, S.M., White, F.M. & Davis, R.J. Mcl-1 integrates the 
opposing actions of signaling pathways that mediate survival and 
apoptosis. Mol Cell Biol 29, 3845-3852 (2009). 

23. Almeida, E.A., Ilic, D., Han, Q., Hauck, C.R., Jin, F., Kawakatsu, H., 
Schlaepfer, D.D. & Damsky, C.H. Matrix survival signaling: from 
fibronectin via focal adhesion kinase to c-Jun NH(2)-terminal kinase. J Cell 
Biol 149, 741-754 (2000). 

24. Hess, P., Pihan, G., Sawyers, C.L., Flavell, R.A. & Davis, R.J. Survival 
signaling mediated by c-Jun NH(2)-terminal kinase in transformed B 
lymphoblasts. Nat Genet 32, 201-205 (2002). 

25. Jacinto, A., Woolner, S. & Martin, P. Dynamic analysis of dorsal closure in 
Drosophila: from genetics to cell biology. Dev Cell 3, 9-19 (2002). 

26. Tada, M., Concha, M.L. & Heisenberg, C.P. Non-canonical Wnt signalling 
and regulation of gastrulation movements. Semin Cell Dev Biol 13, 251-
260 (2002). 

27. Yamanaka, H., Moriguchi, T., Masuyama, N., Kusakabe, M., Hanafusa, 
H., Takada, R., Takada, S. & Nishida, E. JNK functions in the non-
canonical Wnt pathway to regulate convergent extension movements in 
vertebrates. EMBO Rep 3, 69-75 (2002). 



                                                                                                                                                                                                                                                                         

 

210 

28. Weston, C.R., Wong, A., Hall, J.P., Goad, M.E., Flavell, R.A. & Davis, R.J. 
The c-Jun NH2-terminal kinase is essential for epidermal growth factor 
expression during epidermal morphogenesis. Proc Natl Acad Sci U S A 
101, 14114-14119 (2004). 

29. Weston, C.R., Wong, A., Hall, J.P., Goad, M.E., Flavell, R.A. & Davis, R.J. 
JNK initiates a cytokine cascade that causes Pax2 expression and closure 
of the optic fissure. Genes Dev 17, 1271-1280 (2003). 

30. Monahan-Earley, R., Dvorak, A.M. & Aird, W.C. Evolutionary origins of the 
blood vascular system and endothelium. J Thromb Haemost 11 Suppl 1, 
46-66 (2013). 

31. Fish, J.E. & Wythe, J.D. The molecular regulation of arteriovenous 
specification and maintenance. Dev Dyn 244, 391-409 (2015). 

32. Coultas, L., Chawengsaksophak, K. & Rossant, J. Endothelial cells and 
VEGF in vascular development. Nature 438, 937-945 (2005). 

33. Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell 
biology. Cell 132, 631-644 (2008). 

34. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of 
angiogenesis. Cell 146, 873-887 (2011). 

35. Stahl, A., Connor, K.M., Sapieha, P., Chen, J., Dennison, R.J., Krah, N.M., 
Seaward, M.R., Willett, K.L., Aderman, C.M., Guerin, K.I., Hua, J., 
Lofqvist, C., Hellstrom, A. & Smith, L.E. The mouse retina as an 
angiogenesis model. Invest Ophthalmol Vis Sci 51, 2813-2826 (2010). 

36. Pitulescu, M.E., Schmidt, I., Benedito, R. & Adams, R.H. Inducible gene 
targeting in the neonatal vasculature and analysis of retinal angiogenesis 
in mice. Nat Protoc 5, 1518-1534 (2010). 

37. Roca, C. & Adams, R.H. Regulation of vascular morphogenesis by Notch 
signaling. Genes Dev 21, 2511-2524 (2007). 

38. Eilken, H.M. & Adams, R.H. Dynamics of endothelial cell behavior in 
sprouting angiogenesis. Curr Opin Cell Biol 22, 617-625 (2010). 

39. Phng, L.K. & Gerhardt, H. Angiogenesis: a team effort coordinated by 
notch. Dev Cell 16, 196-208 (2009). 

40. Olsson, A.K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF 
receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 
7, 359-371 (2006). 

41. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., 
Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D. & Betsholtz, 
C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. 
J Cell Biol 161, 1163-1177 (2003). 

42. Taylor, K.L., Henderson, A.M. & Hughes, C.C. Notch activation during 
endothelial cell network formation in vitro targets the basic HLH 
transcription factor HESR-1 and downregulates VEGFR-2/KDR 
expression. Microvasc Res 64, 372-383 (2002). 

43. Suchting, S., Freitas, C., le Noble, F., Benedito, R., Breant, C., Duarte, A. 
& Eichmann, A. The Notch ligand Delta-like 4 negatively regulates 



                                                                                                                                                                                                                                                                         

 

211 

endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S 
A 104, 3225-3230 (2007). 

44. Benedito, R., Rocha, S.F., Woeste, M., Zamykal, M., Radtke, F., 
Casanovas, O., Duarte, A., Pytowski, B. & Adams, R.H. Notch-dependent 
VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 
signalling. Nature 484, 110-114 (2012). 

45. Jakobsson, L., Franco, C.A., Bentley, K., Collins, R.T., Ponsioen, B., 
Aspalter, I.M., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., 
Schulte-Merker, S. & Gerhardt, H. Endothelial cells dynamically compete 
for the tip cell position during angiogenic sprouting. Nat Cell Biol 12, 943-
953 (2010). 

46. Hellstrom, M., Phng, L.K., Hofmann, J.J., Wallgard, E., Coultas, L., 
Lindblom, P., Alva, J., Nilsson, A.K., Karlsson, L., Gaiano, N., Yoon, K., 
Rossant, J., Iruela-Arispe, M.L., Kalen, M., Gerhardt, H. & Betsholtz, C. 
Dll4 signalling through Notch1 regulates formation of tip cells during 
angiogenesis. Nature 445, 776-780 (2007). 

47. Benedito, R., Roca, C., Sorensen, I., Adams, S., Gossler, A., Fruttiger, M. 
& Adams, R.H. The notch ligands Dll4 and Jagged1 have opposing effects 
on angiogenesis. Cell 137, 1124-1135 (2009). 

48. Dou, G.R., Wang, Y.C., Hu, X.B., Hou, L.H., Wang, C.M., Xu, J.F., Wang, 
Y.S., Liang, Y.M., Yao, L.B., Yang, A.G. & Han, H. RBP-J, the 
transcription factor downstream of Notch receptors, is essential for the 
maintenance of vascular homeostasis in adult mice. FASEB J 22, 1606-
1617 (2008). 

49. Izumi, N., Helker, C., Ehling, M., Behrens, A., Herzog, W. & Adams, R.H. 
Fbxw7 controls angiogenesis by regulating endothelial Notch activity. 
PLoS One 7, e41116 (2012). 

50. Corada, M., Orsenigo, F., Morini, M.F., Pitulescu, M.E., Bhat, G., Nyqvist, 
D., Breviario, F., Conti, V., Briot, A., Iruela-Arispe, M.L., Adams, R.H. & 
Dejana, E. Sox17 is indispensable for acquisition and maintenance of 
arterial identity. Nat Commun 4, 2609 (2013). 

51. Folkman, J. & D'Amore, P.A. Blood vessel formation: what is its molecular 
basis? Cell 87, 1153-1155 (1996). 

52. Hanahan, D. Signaling vascular morphogenesis and maintenance. 
Science 277, 48-50 (1997). 

53. Gale, N.W. & Yancopoulos, G.D. Growth factors acting via endothelial 
cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins 
in vascular development. Genes Dev 13, 1055-1066 (1999). 

54. Carmeliet, P. & Collen, D. Role of vascular endothelial growth factor and 
vascular endothelial growth factor receptors in vascular development. Curr 
Top Microbiol Immunol 237, 133-158 (1999). 

55. Rossant, J. & Hirashima, M. Vascular development and patterning: 
making the right choices. Curr Opin Genet Dev 13, 408-412 (2003). 



                                                                                                                                                                                                                                                                         

 

212 

56. Bicknell, R. & Harris, A.L. Novel angiogenic signaling pathways and 
vascular targets. Annu Rev Pharmacol Toxicol 44, 219-238 (2004). 

57. Faber, J.E., Chilian, W.M., Deindl, E., van Royen, N. & Simons, M. A brief 
etymology of the collateral circulation. Arterioscler Thromb Vasc Biol 34, 
1854-1859 (2014). 

58. Schaper, W. Collateral circulation: past and present. Basic Res Cardiol 
104, 5-21 (2009). 

59. van Royen, N., Piek, J.J., Schaper, W. & Fulton, W.F. A critical review of 
clinical arteriogenesis research. J Am Coll Cardiol 55, 17-25 (2009). 

60. Faber, J.E., Zhang, H., Lassance-Soares, R.M., Prabhakar, P., Najafi, 
A.H., Burnett, M.S. & Epstein, S.E. Aging causes collateral rarefaction and 
increased severity of ischemic injury in multiple tissues. Arterioscler 
Thromb Vasc Biol 31, 1748-1756 (2011). 

61. Lucitti, J.L., Mackey, J.K., Morrison, J.C., Haigh, J.J., Adams, R.H. & 
Faber, J.E. Formation of the collateral circulation is regulated by vascular 
endothelial growth factor-A and a disintegrin and metalloprotease family 
members 10 and 17. Circ Res 111, 1539-1550 (2012). 

62. Dai, X. & Faber, J.E. Endothelial nitric oxide synthase deficiency causes 
collateral vessel rarefaction and impairs activation of a cell cycle gene 
network during arteriogenesis. Circ Res 106, 1870-1881 (2010). 

63. Heil, M., Ziegelhoeffer, T., Wagner, S., Fernandez, B., Helisch, A., Martin, 
S., Tribulova, S., Kuziel, W.A., Bachmann, G. & Schaper, W. Collateral 
artery growth (arteriogenesis) after experimental arterial occlusion is 
impaired in mice lacking CC-chemokine receptor-2. Circ Res 94, 671-677 
(2004). 

64. Chalothorn, D. & Faber, J.E. Formation and maturation of the native 
cerebral collateral circulation. J Mol Cell Cardiol 49, 251-259 (2010). 

65. Chalothorn, D., Zhang, H., Smith, J.E., Edwards, J.C. & Faber, J.E. 
Chloride intracellular channel-4 is a determinant of native collateral 
formation in skeletal muscle and brain. Circ Res 105, 89-98 (2009). 

66. Pohl, T., Seiler, C., Billinger, M., Herren, E., Wustmann, K., Mehta, H., 
Windecker, S., Eberli, F.R. & Meier, B. Frequency distribution of collateral 
flow and factors influencing collateral channel development. Functional 
collateral channel measurement in 450 patients with coronary artery 
disease. J Am Coll Cardiol 38, 1872-1878 (2001). 

67. Meier, P., Gloekler, S., Zbinden, R., Beckh, S., de Marchi, S.F., Zbinden, 
S., Wustmann, K., Billinger, M., Vogel, R., Cook, S., Wenaweser, P., 
Togni, M., Windecker, S., Meier, B. & Seiler, C. Beneficial effect of 
recruitable collaterals: a 10-year follow-up study in patients with stable 
coronary artery disease undergoing quantitative collateral measurements. 
Circulation 116, 975-983 (2007). 

68. Bang, O.Y., Saver, J.L., Buck, B.H., Alger, J.R., Starkman, S., Ovbiagele, 
B., Kim, D., Jahan, R., Duckwiler, G.R., Yoon, S.R., Vinuela, F., 
Liebeskind, D.S. & Investigators, U.C. Impact of collateral flow on tissue 



                                                                                                                                                                                                                                                                         

 

213 

fate in acute ischaemic stroke. J Neurol Neurosurg Psychiatry 79, 625-629 
(2008). 

69. Christoforidis, G.A., Karakasis, C., Mohammad, Y., Caragine, L.P., Yang, 
M. & Slivka, A.P. Predictors of hemorrhage following intra-arterial 
thrombolysis for acute ischemic stroke: the role of pial collateral formation. 
AJNR Am J Neuroradiol 30, 165-170 (2009). 

70. Miteff, F., Levi, C.R., Bateman, G.A., Spratt, N., McElduff, P. & Parsons, 
M.W. The independent predictive utility of computed tomography 
angiographic collateral status in acute ischaemic stroke. Brain 132, 2231-
2238 (2009). 

71. Maas, M.B., Lev, M.H., Ay, H., Singhal, A.B., Greer, D.M., Smith, W.S., 
Harris, G.J., Halpern, E., Kemmling, A., Koroshetz, W.J. & Furie, K.L. 
Collateral vessels on CT angiography predict outcome in acute ischemic 
stroke. Stroke 40, 3001-3005 (2009). 

72. Abul-Khoudoud, O. Diagnosis and risk assessment of lower extremity 
peripheral arterial disease. J Endovasc Ther 13 Suppl 2, II10-18 (2006). 

73. Bobek, V., Taltynov, O., Pinterova, D. & Kolostova, K. Gene therapy of the 
ischemic lower limb--Therapeutic angiogenesis. Vascul Pharmacol 44, 
395-405 (2006). 

74. Chalothorn, D., Clayton, J.A., Zhang, H., Pomp, D. & Faber, J.E. Collateral 
density, remodeling, and VEGF-A expression differ widely between mouse 
strains. Physiol Genomics 30, 179-191 (2007). 

75. Chalothorn, D. & Faber, J.E. Strain-dependent variation in collateral 
circulatory function in mouse hindlimb. Physiol Genomics 42, 469-479 
(2010). 

76. Zhang, H., Prabhakar, P., Sealock, R. & Faber, J.E. Wide genetic variation 
in the native pial collateral circulation is a major determinant of variation in 
severity of stroke. J Cereb Blood Flow Metab 30, 923-934 (2010). 

77. Clayton, J.A., Chalothorn, D. & Faber, J.E. Vascular endothelial growth 
factor-A specifies formation of native collaterals and regulates collateral 
growth in ischemia. Circ Res 103, 1027-1036 (2008). 

78. Takeda, Y., Costa, S., Delamarre, E., Roncal, C., Leite de Oliveira, R., 
Squadrito, M.L., Finisguerra, V., Deschoemaeker, S., Bruyere, F., Wenes, 
M., Hamm, A., Serneels, J., Magat, J., Bhattacharyya, T., Anisimov, A., 
Jordan, B.F., Alitalo, K., Maxwell, P., Gallez, B., Zhuang, Z.W., Saito, Y., 
Simons, M., De Palma, M. & Mazzone, M. Macrophage skewing by Phd2 
haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 
479, 122-126 (2011). 

79. Chen, Z., Rubin, J. & Tzima, E. Role of PECAM-1 in arteriogenesis and 
specification of preexisting collaterals. Circ Res 107, 1355-1363 (2010). 

80. Fang, J.S., Angelov, S.N., Simon, A.M. & Burt, J.M. Cx40 is required for, 
and cx37 limits, postischemic hindlimb perfusion, survival and recovery. J 
Vasc Res 49, 2-12 (2012). 



                                                                                                                                                                                                                                                                         

 

214 

81. Fang, J.S., Angelov, S.N., Simon, A.M. & Burt, J.M. Cx37 deletion 
enhances vascular growth and facilitates ischemic limb recovery. Am J 
Physiol Heart Circ Physiol 301, H1872-1881 (2011). 

82. Cristofaro, B., Shi, Y., Faria, M., Suchting, S., Leroyer, A.S., Trindade, A., 
Duarte, A., Zovein, A.C., Iruela-Arispe, M.L., Nih, L.R., Kubis, N., Henrion, 
D., Loufrani, L., Todiras, M., Schleifenbaum, J., Gollasch, M., Zhuang, 
Z.W., Simons, M., Eichmann, A. & le Noble, F. Dll4-Notch signaling 
determines the formation of native arterial collateral networks and arterial 
function in mouse ischemia models. Development 140, 1720-1729 (2013). 

83. Wang, S., Zhang, H., Dai, X., Sealock, R. & Faber, J.E. Genetic 
architecture underlying variation in extent and remodeling of the collateral 
circulation. Circ Res 107, 558-568 (2010). 

84. Wang, S., Zhang, H., Wiltshire, T., Sealock, R. & Faber, J.E. Genetic 
dissection of the Canq1 locus governing variation in extent of the collateral 
circulation. PLoS One 7, e31910 (2012). 

85. Sealock, R., Zhang, H., Lucitti, J.L., Moore, S.M. & Faber, J.E. Congenic 
fine-mapping identifies a major causal locus for variation in the native 
collateral circulation and ischemic injury in brain and lower extremity. Circ 
Res 114, 660-671 (2014). 

86. Baklanov, D. & Simons, M. Arteriogenesis: lessons learned from clinical 
trials. Endothelium 10, 217-223 (2003). 

87. Fraisl, P., Mazzone, M., Schmidt, T. & Carmeliet, P. Regulation of 
angiogenesis by oxygen and metabolism. Dev Cell 16, 167-179 (2009). 

88. Troidl, K. & Schaper, W. Arteriogenesis versus angiogenesis in peripheral 
artery disease. Diabetes Metab Res Rev 28 Suppl 1, 27-29 (2012). 

89. Deindl, E. & Schaper, W. The art of arteriogenesis. Cell Biochem Biophys 
43, 1-15 (2005). 

90. Deindl, E., Buschmann, I., Hoefer, I.E., Podzuweit, T., Boengler, K., Vogel, 
S., van Royen, N., Fernandez, B. & Schaper, W. Role of ischemia and of 
hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in 
the rabbit. Circ Res 89, 779-786 (2001). 

91. Heil, M., Eitenmuller, I., Schmitz-Rixen, T. & Schaper, W. Arteriogenesis 
versus angiogenesis: similarities and differences. J Cell Mol Med 10, 45-
55 (2006). 

92. Buschmann, I., Pries, A., Styp-Rekowska, B., Hillmeister, P., Loufrani, L., 
Henrion, D., Shi, Y., Duelsner, A., Hoefer, I., Gatzke, N., Wang, H., 
Lehmann, K., Ulm, L., Ritter, Z., Hauff, P., Hlushchuk, R., Djonov, V., van 
Veen, T. & le Noble, F. Pulsatile shear and Gja5 modulate arterial identity 
and remodeling events during flow-driven arteriogenesis. Development 
137, 2187-2196 (2010). 

93. Hoefer, I.E., den Adel, B. & Daemen, M.J. Biomechanical factors as 
triggers of vascular growth. Cardiovasc Res 99, 276-283 (2013). 

94. Simons, M. & Eichmann, A. Molecular Controls of Arterial Morphogenesis. 
Circ Res 116, 1712-1724 (2015). 



                                                                                                                                                                                                                                                                         

 

215 

95. Moraes, F., Paye, J., Mac Gabhann, F., Zhuang, Z.W., Zhang, J., 
Lanahan, A.A. & Simons, M. Endothelial cell-dependent regulation of 
arteriogenesis. Circ Res 113, 1076-1086 (2013). 

96. Pipp, F., Boehm, S., Cai, W.J., Adili, F., Ziegler, B., Karanovic, G., Ritter, 
R., Balzer, J., Scheler, C., Schaper, W. & Schmitz-Rixen, T. Elevated fluid 
shear stress enhances postocclusive collateral artery growth and gene 
expression in the pig hind limb. Arterioscler Thromb Vasc Biol 24, 1664-
1668 (2004). 

97. Yu, J., deMuinck, E.D., Zhuang, Z., Drinane, M., Kauser, K., Rubanyi, 
G.M., Qian, H.S., Murata, T., Escalante, B. & Sessa, W.C. Endothelial 
nitric oxide synthase is critical for ischemic remodeling, mural cell 
recruitment, and blood flow reserve. Proc Natl Acad Sci U S A 102, 
10999-11004 (2005). 

98. Troidl, K., Tribulova, S., Cai, W.J., Ruding, I., Apfelbeck, H., Schierling, 
W., Troidl, C., Schmitz-Rixen, T. & Schaper, W. Effects of endogenous 
nitric oxide and of DETA NONOate in arteriogenesis. J Cardiovasc 
Pharmacol 55, 153-160 (2010). 

99. Le Clerc, V., Bazante, F., Baril, C., Guiard, J. & Zhang, D. Assessing 
temporal changes in genetic diversity of maize varieties using 
microsatellite markers. Theor Appl Genet 110, 294-302 (2005). 

100. Ito, W.D., Arras, M., Winkler, B., Scholz, D., Schaper, J. & Schaper, W. 
Monocyte chemotactic protein-1 increases collateral and peripheral 
conductance after femoral artery occlusion. Circ Res 80, 829-837 (1997). 

101. Voskuil, M., van Royen, N., Hoefer, I.E., Seidler, R., Guth, B.D., Bode, C., 
Schaper, W., Piek, J.J. & Buschmann, I.R. Modulation of collateral artery 
growth in a porcine hindlimb ligation model using MCP-1. Am J Physiol 
Heart Circ Physiol 284, H1422-1428 (2003). 

102. Scholz, D., Ito, W., Fleming, I., Deindl, E., Sauer, A., Wiesnet, M., Busse, 
R., Schaper, J. & Schaper, W. Ultrastructure and molecular histology of 
rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch 
436, 257-270 (2000). 

103. Heil, M., Ziegelhoeffer, T., Pipp, F., Kostin, S., Martin, S., Clauss, M. & 
Schaper, W. Blood monocyte concentration is critical for enhancement of 
collateral artery growth. Am J Physiol Heart Circ Physiol 283, H2411-2419 
(2002). 

104. van Royen, N., Hoefer, I., Buschmann, I., Kostin, S., Voskuil, M., Bode, C., 
Schaper, W. & Piek, J.J. Effects of local MCP-1 protein therapy on the 
development of the collateral circulation and atherosclerosis in Watanabe 
hyperlipidemic rabbits. Cardiovasc Res 57, 178-185 (2003). 

105. Hamm, A., Veschini, L., Takeda, Y., Costa, S., Delamarre, E., Squadrito, 
M.L., Henze, A.T., Wenes, M., Serneels, J., Pucci, F., Roncal, C., 
Anisimov, A., Alitalo, K., De Palma, M. & Mazzone, M. PHD2 regulates 
arteriogenic macrophages through TIE2 signalling. EMBO Mol Med 5, 
843-857 (2013). 



                                                                                                                                                                                                                                                                         

 

216 

106. Patel, A.S., Smith, A., Nucera, S., Biziato, D., Saha, P., Attia, R.Q., 
Humphries, J., Mattock, K., Grover, S.P., Lyons, O.T., Guidotti, L.G., Siow, 
R., Ivetic, A., Egginton, S., Waltham, M., Naldini, L., De Palma, M. & 
Modarai, B. TIE2-expressing monocytes/macrophages regulate 
revascularization of the ischemic limb. EMBO Mol Med 5, 858-869 (2013). 

107. Buschmann, I.R., Hoefer, I.E., van Royen, N., Katzer, E., Braun-Dulleaus, 
R., Heil, M., Kostin, S., Bode, C. & Schaper, W. GM-CSF: a strong 
arteriogenic factor acting by amplification of monocyte function. 
Atherosclerosis 159, 343-356 (2001). 

108. Deindl, E., Zaruba, M.M., Brunner, S., Huber, B., Mehl, U., Assmann, G., 
Hoefer, I.E., Mueller-Hoecker, J. & Franz, W.M. G-CSF administration 
after myocardial infarction in mice attenuates late ischemic 
cardiomyopathy by enhanced arteriogenesis. FASEB J 20, 956-958 
(2006). 

109. Seiler, C., Pohl, T., Wustmann, K., Hutter, D., Nicolet, P.A., Windecker, S., 
Eberli, F.R. & Meier, B. Promotion of collateral growth by granulocyte-
macrophage colony-stimulating factor in patients with coronary artery 
disease: a randomized, double-blind, placebo-controlled study. Circulation 
104, 2012-2017 (2001). 

110. Arai, M., Misao, Y., Nagai, H., Kawasaki, M., Nagashima, K., Suzuki, K., 
Tsuchiya, K., Otsuka, S., Uno, Y., Takemura, G., Nishigaki, K., 
Minatoguchi, S. & Fujiwara, H. Granulocyte colony-stimulating factor: a 
noninvasive regeneration therapy for treating atherosclerotic peripheral 
artery disease. Circ J 70, 1093-1098 (2006). 

111. van Royen, N., Schirmer, S.H., Atasever, B., Behrens, C.Y., Ubbink, D., 
Buschmann, E.E., Voskuil, M., Bot, P., Hoefer, I., Schlingemann, R.O., 
Biemond, B.J., Tijssen, J.G., Bode, C., Schaper, W., Oskam, J., 
Legemate, D.A., Piek, J.J. & Buschmann, I. START Trial: a pilot study on 
STimulation of ARTeriogenesis using subcutaneous application of 
granulocyte-macrophage colony-stimulating factor as a new treatment for 
peripheral vascular disease. Circulation 112, 1040-1046 (2005). 

112. Schierling, W., Troidl, K., Troidl, C., Schmitz-Rixen, T., Schaper, W. & 
Eitenmuller, I.K. The role of angiogenic growth factors in arteriogenesis. J 
Vasc Res 46, 365-374 (2009). 

113. Murakami, M. & Simons, M. Fibroblast growth factor regulation of 
neovascularization. Curr Opin Hematol 15, 215-220 (2008). 

114. Unger, E.F., Banai, S., Shou, M., Lazarous, D.F., Jaklitsch, M.T., 
Scheinowitz, M., Correa, R., Klingbeil, C. & Epstein, S.E. Basic fibroblast 
growth factor enhances myocardial collateral flow in a canine model. Am J 
Physiol 266, H1588-1595 (1994). 

115. Yanagisawa-Miwa, A., Uchida, Y., Nakamura, F., Tomaru, T., Kido, H., 
Kamijo, T., Sugimoto, T., Kaji, K., Utsuyama, M., Kurashima, C. & et al. 
Salvage of infarcted myocardium by angiogenic action of basic fibroblast 
growth factor. Science 257, 1401-1403 (1992). 



                                                                                                                                                                                                                                                                         

 

217 

116. Deindl, E., Hoefer, I.E., Fernandez, B., Barancik, M., Heil, M., Strniskova, 
M. & Schaper, W. Involvement of the fibroblast growth factor system in 
adaptive and chemokine-induced arteriogenesis. Circ Res 92, 561-568 
(2003). 

117. Yang, X., Liaw, L., Prudovsky, I., Brooks, P.C., Vary, C., Oxburgh, L. & 
Friesel, R. Fibroblast growth factor signaling in the vasculature. Curr 
Atheroscler Rep 17, 509 (2015). 

118. Ortega, S., Ittmann, M., Tsang, S.H., Ehrlich, M. & Basilico, C. Neuronal 
defects and delayed wound healing in mice lacking fibroblast growth factor 
2. Proc Natl Acad Sci U S A 95, 5672-5677 (1998). 

119. Zhou, M., Sutliff, R.L., Paul, R.J., Lorenz, J.N., Hoying, J.B., 
Haudenschild, C.C., Yin, M., Coffin, J.D., Kong, L., Kranias, E.G., Luo, W., 
Boivin, G.P., Duffy, J.J., Pawlowski, S.A. & Doetschman, T. Fibroblast 
growth factor 2 control of vascular tone. Nat Med 4, 201-207 (1998). 

120. Miller, D.L., Ortega, S., Bashayan, O., Basch, R. & Basilico, C. 
Compensation by fibroblast growth factor 1 (FGF1) does not account for 
the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 20, 
2260-2268 (2000). 

121. Molin, D. & Post, M.J. Therapeutic angiogenesis in the heart: protect and 
serve. Curr Opin Pharmacol 7, 158-163 (2007). 

122. Henry, T.D., Annex, B.H., McKendall, G.R., Azrin, M.A., Lopez, J.J., 
Giordano, F.J., Shah, P.K., Willerson, J.T., Benza, R.L., Berman, D.S., 
Gibson, C.M., Bajamonde, A., Rundle, A.C., Fine, J., McCluskey, E.R. & 
Investigators, V. The VIVA trial: Vascular endothelial growth factor in 
Ischemia for Vascular Angiogenesis. Circulation 107, 1359-1365 (2003). 

123. Morrison, A.R., Yarovinsky, T.O., Young, B.D., Moraes, F., Ross, T.D., 
Ceneri, N., Zhang, J., Zhuang, Z.W., Sinusas, A.J., Pardi, R., Schwartz, 
M.A., Simons, M. & Bender, J.R. Chemokine-coupled beta2 integrin-
induced macrophage Rac2-Myosin IIA interaction regulates VEGF-A 
mRNA stability and arteriogenesis. J Exp Med 211, 1957-1968 (2014). 

124. Lanahan, A., Zhang, X., Fantin, A., Zhuang, Z., Rivera-Molina, F., 
Speichinger, K., Prahst, C., Zhang, J., Wang, Y., Davis, G., Toomre, D., 
Ruhrberg, C. & Simons, M. The neuropilin 1 cytoplasmic domain is 
required for VEGF-A-dependent arteriogenesis. Dev Cell 25, 156-168 
(2013). 

125. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6, 
389-395 (2000). 

126. Lanahan, A.A., Hermans, K., Claes, F., Kerley-Hamilton, J.S., Zhuang, 
Z.W., Giordano, F.J., Carmeliet, P. & Simons, M. VEGF receptor 2 
endocytic trafficking regulates arterial morphogenesis. Dev Cell 18, 713-
724 (2010). 

127. Lampugnani, M.G., Orsenigo, F., Gagliani, M.C., Tacchetti, C. & Dejana, 
E. Vascular endothelial cadherin controls VEGFR-2 internalization and 
signaling from intracellular compartments. J Cell Biol 174, 593-604 (2006). 



                                                                                                                                                                                                                                                                         

 

218 

128. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. & Shibuya, M. 
Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in 
vasculogenesis in mice. Proc Natl Acad Sci U S A 102, 1076-1081 (2005). 

129. Kofler, N.M. & Simons, M. Angiogenesis versus arteriogenesis: neuropilin 
1 modulation of VEGF signaling. F1000Prime Rep 7, 26 (2015). 

130. Lanahan, A.A., Lech, D., Dubrac, A., Zhang, J., Zhuang, Z.W., Eichmann, 
A. & Simons, M. PTP1b is a physiologic regulator of vascular endothelial 
growth factor signaling in endothelial cells. Circulation 130, 902-909 
(2014). 

131. Koch, S. & Claesson-Welsh, L. Signal transduction by vascular endothelial 
growth factor receptors. Cold Spring Harb Perspect Med 2, a006502 
(2012). 

132. Tam, S.J., Richmond, D.L., Kaminker, J.S., Modrusan, Z., Martin-McNulty, 
B., Cao, T.C., Weimer, R.M., Carano, R.A., van Bruggen, N. & Watts, R.J. 
Death receptors DR6 and TROY regulate brain vascular development. 
Dev Cell 22, 403-417 (2012). 

133. Murata, Y., Fujiwara, N., Seo, J.H., Yan, F., Liu, X., Terasaki, Y., Luo, Y., 
Arai, K., Ji, X. & Lo, E.H. Delayed inhibition of c-Jun N-terminal kinase 
worsens outcomes after focal cerebral ischemia. J Neurosci 32, 8112-
8115 (2012). 

134. Pi, X., Wu, Y., Ferguson, J.E., 3rd, Portbury, A.L. & Patterson, C. SDF-
1alpha stimulates JNK3 activity via eNOS-dependent nitrosylation of 
MKP7 to enhance endothelial migration. Proc Natl Acad Sci U S A 106, 
5675-5680 (2009). 

135. Guma, M., Rius, J., Duong-Polk, K.X., Haddad, G.G., Lindsey, J.D. & 
Karin, M. Genetic and pharmacological inhibition of JNK ameliorates 
hypoxia-induced retinopathy through interference with VEGF expression. 
Proc Natl Acad Sci U S A 106, 8760-8765 (2009). 

136. Du, H., Sun, X., Guma, M., Luo, J., Ouyang, H., Zhang, X., Zeng, J., 
Quach, J., Nguyen, D.H., Shaw, P.X., Karin, M. & Zhang, K. JNK inhibition 
reduces apoptosis and neovascularization in a murine model of age-
related macular degeneration. Proc Natl Acad Sci U S A 110, 2377-2382 
(2013). 

137. Jimenez, B., Volpert, O.V., Reiher, F., Chang, L., Munoz, A., Karin, M. & 
Bouck, N. c-Jun N-terminal kinase activation is required for the inhibition 
of neovascularization by thrombospondin-1. Oncogene 20, 3443-3448 
(2001). 

138. Salvucci, O., Ohnuki, H., Maric, D., Hou, X., Li, X., Yoon, S.O., Segarra, 
M., Eberhart, C.G., Acker-Palmer, A. & Tosato, G. EphrinB2 controls 
vessel pruning through STAT1-JNK3 signalling. Nat Commun 6, 6576 
(2015). 

139. Bryan, M.T., Duckles, H., Feng, S., Hsiao, S.T., Kim, H.R., Serbanovic-
Canic, J. & Evans, P.C. Mechanoresponsive networks controlling vascular 
inflammation. Arterioscler Thromb Vasc Biol 34, 2199-2205 (2014). 



                                                                                                                                                                                                                                                                         

 

219 

140. Cuhlmann, S., Van der Heiden, K., Saliba, D., Tremoleda, J.L., Khalil, M., 
Zakkar, M., Chaudhury, H., Luong le, A., Mason, J.C., Udalova, I., Gsell, 
W., Jones, H., Haskard, D.O., Krams, R. & Evans, P.C. Disturbed blood 
flow induces RelA expression via c-Jun N-terminal kinase 1: a novel mode 
of NF-kappaB regulation that promotes arterial inflammation. Circ Res 
108, 950-959 (2011). 

141. Boon, R.A., Leyen, T.A., Fontijn, R.D., Fledderus, J.O., Baggen, J.M., 
Volger, O.L., van Nieuw Amerongen, G.P. & Horrevoets, A.J. KLF2-
induced actin shear fibers control both alignment to flow and JNK 
signaling in vascular endothelium. Blood 115, 2533-2542 (2010). 

142. Hahn, C., Wang, C., Orr, A.W., Coon, B.G. & Schwartz, M.A. JNK2 
promotes endothelial cell alignment under flow. PLoS One 6, e24338 
(2011). 

143. Hahn, C., Orr, A.W., Sanders, J.M., Jhaveri, K.A. & Schwartz, M.A. The 
subendothelial extracellular matrix modulates JNK activation by flow. Circ 
Res 104, 995-1003 (2009). 

144. Yamawaki, H., Pan, S., Lee, R.T. & Berk, B.C. Fluid shear stress inhibits 
vascular inflammation by decreasing thioredoxin-interacting protein in 
endothelial cells. J Clin Invest 115, 733-738 (2005). 

145. Blank, U., Karlsson, G. & Karlsson, S. Signaling pathways governing 
stem-cell fate. Blood 111, 492-503 (2008). 

146. Shalaby, F., Ho, J., Stanford, W.L., Fischer, K.D., Schuh, A.C., Schwartz, 
L., Bernstein, A. & Rossant, J. A requirement for Flk1 in primitive and 
definitive hematopoiesis and vasculogenesis. Cell 89, 981-990 (1997). 

147. Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., 
Crozet, L., Garner, H., Trouillet, C., de Bruijn, M.F., Geissmann, F. & 
Rodewald, H.R. Tissue-resident macrophages originate from yolk-sac-
derived erythro-myeloid progenitors. Nature 518, 547-551 (2015). 

148. Cumano, A. & Godin, I. Ontogeny of the hematopoietic system. Annu Rev 
Immunol 25, 745-785 (2007). 

149. Bertrand, J.Y., Chi, N.C., Santoso, B., Teng, S., Stainier, D.Y. & Traver, D. 
Haematopoietic stem cells derive directly from aortic endothelium during 
development. Nature 464, 108-111 (2010). 

150. Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic 
stem cells within the vascular labyrinth region. Dev Cell 8, 377-387 (2005). 

151. Gekas, C., Dieterlen-Lievre, F., Orkin, S.H. & Mikkola, H.K. The placenta 
is a niche for hematopoietic stem cells. Dev Cell 8, 365-375 (2005). 

152. Kohli, L. & Passegue, E. Surviving change: the metabolic journey of 
hematopoietic stem cells. Trends Cell Biol 24, 479-487 (2014). 

153. Lin, K.K. & Goodell, M.A. Detection of hematopoietic stem cells by flow 
cytometry. Methods Cell Biol 103, 21-30 (2011). 

154. Kiel, M.J., Yilmaz, O.H., Iwashita, T., Yilmaz, O.H., Terhorst, C. & 
Morrison, S.J. SLAM family receptors distinguish hematopoietic stem and 



                                                                                                                                                                                                                                                                         

 

220 

progenitor cells and reveal endothelial niches for stem cells. Cell 121, 
1109-1121 (2005). 

155. Avagyan, S., Amrani, Y.M. & Snoeck, H.W. Identification and in vivo 
analysis of murine hematopoietic stem cells. Methods Enzymol 476, 429-
447 (2010). 

156. Szilvassy, S.J., Nicolini, F.E., Eaves, C.J. & Miller, C.L. Quantitation of 
murine and human hematopoietic stem cells by limiting-dilution analysis in 
competitively repopulated hosts. Methods Mol Med 63, 167-187 (2002). 

157. Kent, D., Dykstra, B. & Eaves, C. Isolation and assessment of long-term 
reconstituting hematopoietic stem cells from adult mouse bone marrow. 
Curr Protoc Stem Cell Biol Chapter 2, Unit 2A 4 (2007). 

158. Rincon, M. & Davis, R.J. Regulation of the immune response by stress-
activated protein kinases. Immunol Rev 228, 212-224 (2009). 

159. Rincon, M., Whitmarsh, A., Yang, D.D., Weiss, L., Derijard, B., Jayaraj, P., 
Davis, R.J. & Flavell, R.A. The JNK pathway regulates the In vivo deletion 
of immature CD4(+)CD8(+) thymocytes. J Exp Med 188, 1817-1830 
(1998). 

160. Sabapathy, K., Kallunki, T., David, J.P., Graef, I., Karin, M. & Wagner, 
E.F. c-Jun NH2-terminal kinase (JNK)1 and JNK2 have similar and stage-
dependent roles in regulating T cell apoptosis and proliferation. J Exp Med 
193, 317-328 (2001). 

161. Dong, C., Yang, D.D., Wysk, M., Whitmarsh, A.J., Davis, R.J. & Flavell, 
R.A. Defective T cell differentiation in the absence of Jnk1. Science 282, 
2092-2095 (1998). 

162. Yang, D.D., Conze, D., Whitmarsh, A.J., Barrett, T., Davis, R.J., Rincon, 
M. & Flavell, R.A. Differentiation of CD4+ T cells to Th1 cells requires 
MAP kinase JNK2. Immunity 9, 575-585 (1998). 

163. Han, M.S., Jung, D.Y., Morel, C., Lakhani, S.A., Kim, J.K., Flavell, R.A. & 
Davis, R.J. JNK expression by macrophages promotes obesity-induced 
insulin resistance and inflammation. Science 339, 218-222 (2013). 

164. Humphreys, B.D., Rice, J., Kertesy, S.B. & Dubyak, G.R. Stress-activated 
protein kinase/JNK activation and apoptotic induction by the macrophage 
P2X7 nucleotide receptor. J Biol Chem 275, 26792-26798 (2000). 

165. Ricci, R., Sumara, G., Sumara, I., Rozenberg, I., Kurrer, M., Akhmedov, 
A., Hersberger, M., Eriksson, U., Eberli, F.R., Becher, B., Boren, J., Chen, 
M., Cybulsky, M.I., Moore, K.J., Freeman, M.W., Wagner, E.F., Matter, 
C.M. & Luscher, T.F. Requirement of JNK2 for scavenger receptor A-
mediated foam cell formation in atherogenesis. Science 306, 1558-1561 
(2004). 

166. Libby, P. Inflammation in atherosclerosis. Nature 420, 868-874 (2002). 
167. Tang, M., Wei, X., Guo, Y., Breslin, P., Zhang, S., Zhang, S., Wei, W., Xia, 

Z., Diaz, M., Akira, S. & Zhang, J. TAK1 is required for the survival of 
hematopoietic cells and hepatocytes in mice. J Exp Med 205, 1611-1619 
(2008). 



                                                                                                                                                                                                                                                                         

 

221 

168. Shim, J.H., Xiao, C., Paschal, A.E., Bailey, S.T., Rao, P., Hayden, M.S., 
Lee, K.Y., Bussey, C., Steckel, M., Tanaka, N., Yamada, G., Akira, S., 
Matsumoto, K. & Ghosh, S. TAK1, but not TAB1 or TAB2, plays an 
essential role in multiple signaling pathways in vivo. Genes Dev 19, 2668-
2681 (2005). 

169. Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, 
T., Matsumoto, K., Takeuchi, O. & Akira, S. Essential function for the 
kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6, 
1087-1095 (2005). 

170. Heinonen, K.M., Vanegas, J.R., Lew, D., Krosl, J. & Perreault, C. Wnt4 
enhances murine hematopoietic progenitor cell expansion through a 
planar cell polarity-like pathway. PLoS One 6, e19279 (2011). 

171. Antoniucci, D., Valenti, R., Migliorini, A., Moschi, G., Trapani, M., 
Buonamici, P., Cerisano, G., Bolognese, L. & Santoro, G.M. Relation of 
time to treatment and mortality in patients with acute myocardial infarction 
undergoing primary coronary angioplasty. Am J Cardiol 89, 1248-1252 
(2002). 

172. Antoniucci, D., Valenti, R., Moschi, G., Migliorini, A., Trapani, M., Santoro, 
G.M., Bolognese, L., Cerisano, G., Buonamici, P. & Dovellini, E.V. 
Relation between preintervention angiographic evidence of coronary 
collateral circulation and clinical and angiographic outcomes after primary 
angioplasty or stenting for acute myocardial infarction. Am J Cardiol 89, 
121-125 (2002). 

173. Wang, J., Peng, X., Lassance-Soares, R.M., Najafi, A.H., Alderman, L.O., 
Sood, S., Xue, Z., Chan, R., Faber, J.E., Epstein, S.E. & Burnett, M.S. 
Aging-induced collateral dysfunction: impaired responsiveness of 
collaterals and susceptibility to apoptosis via dysfunctional eNOS 
signaling. J Cardiovasc Transl Res 4, 779-789 (2011). 

174. Faber, J.E. Reprogrammed endothelial cells: cell therapy for coronary 
collateral growth? Circ Res 110, 192-194 (2012). 

175. Tirziu, D., Jaba, I.M., Yu, P., Larrivee, B., Coon, B.G., Cristofaro, B., 
Zhuang, Z.W., Lanahan, A.A., Schwartz, M.A., Eichmann, A. & Simons, M. 
Endothelial nuclear factor-kappaB-dependent regulation of arteriogenesis 
and branching. Circulation 126, 2589-2600 (2012). 

176. Alva, J.A., Zovein, A.C., Monvoisin, A., Murphy, T., Salazar, A., Harvey, 
N.L., Carmeliet, P. & Iruela-Arispe, M.L. VE-Cadherin-Cre-recombinase 
transgenic mouse: a tool for lineage analysis and gene deletion in 
endothelial cells. Dev Dyn 235, 759-767 (2006). 

177. Kochi, T., Imai, Y., Takeda, A., Watanabe, Y., Mori, S., Tachi, M. & 
Kodama, T. Characterization of the arterial anatomy of the murine 
hindlimb: functional role in the design and understanding of ischemia 
models. PLoS One 8, e84047 (2013). 



                                                                                                                                                                                                                                                                         

 

222 

178. Kant, S., Barrett, T., Vertii, A., Noh, Y.H., Jung, D.Y., Kim, J.K. & Davis, 
R.J. Role of the mixed-lineage protein kinase pathway in the metabolic 
stress response to obesity. Cell Rep 4, 681-688 (2013). 

179. Gallo, K.A. & Johnson, G.L. Mixed-lineage kinase control of JNK and p38 
MAPK pathways. Nat Rev Mol Cell Biol 3, 663-672 (2002). 

180. Wang, Y., Nakayama, M., Pitulescu, M.E., Schmidt, T.S., Bochenek, M.L., 
Sakakibara, A., Adams, S., Davy, A., Deutsch, U., Luthi, U., Barberis, A., 
Benjamin, L.E., Makinen, T., Nobes, C.D. & Adams, R.H. Ephrin-B2 
controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 
465, 483-486 (2010). 

181. Takeshita, K., Satoh, M., Ii, M., Silver, M., Limbourg, F.P., Mukai, Y., 
Rikitake, Y., Radtke, F., Gridley, T., Losordo, D.W. & Liao, J.K. Critical 
role of endothelial Notch1 signaling in postnatal angiogenesis. Circ Res 
100, 70-78 (2007). 

182. Meisner, J.K., Niu, J., Sumer, S. & Price, R.J. Trans-illuminated laser 
speckle imaging of collateral artery blood flow in ischemic mouse hindlimb. 
J Biomed Opt 18, 096011 (2013). 

183. Das, M., Jiang, F., Sluss, H.K., Zhang, C., Shokat, K.M., Flavell, R.A. & 
Davis, R.J. Suppression of p53-dependent senescence by the JNK signal 
transduction pathway. Proc Natl Acad Sci U S A 104, 15759-15764 
(2007). 

184. Kuan, C.Y., Whitmarsh, A.J., Yang, D.D., Liao, G., Schloemer, A.J., Dong, 
C., Bao, J., Banasiak, K.J., Haddad, G.G., Flavell, R.A., Davis, R.J. & 
Rakic, P. A critical role of neural-specific JNK3 for ischemic apoptosis. 
Proc Natl Acad Sci U S A 100, 15184-15189 (2003). 

185. de Boer, J., Williams, A., Skavdis, G., Harker, N., Coles, M., Tolaini, M., 
Norton, T., Williams, K., Roderick, K., Potocnik, A.J. & Kioussis, D. 
Transgenic mice with hematopoietic and lymphoid specific expression of 
Cre. Eur J Immunol 33, 314-325 (2003). 

186. Bruning, J.C., Michael, M.D., Winnay, J.N., Hayashi, T., Horsch, D., Accili, 
D., Goodyear, L.J. & Kahn, C.R. A muscle-specific insulin receptor 
knockout exhibits features of the metabolic syndrome of NIDDM without 
altering glucose tolerance. Mol Cell 2, 559-569 (1998). 

187. Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-
fluorescent Cre reporter mouse. Genesis 45, 593-605 (2007). 

188. Craige, S.M., Chen, K., Pei, Y., Li, C., Huang, X., Chen, C., Shibata, R., 
Sato, K., Walsh, K. & Keaney, J.F., Jr. NADPH oxidase 4 promotes 
endothelial angiogenesis through endothelial nitric oxide synthase 
activation. Circulation 124, 731-740 (2011). 

189. Limbourg, A., Korff, T., Napp, L.C., Schaper, W., Drexler, H. & Limbourg, 
F.P. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse 
model of hind-limb ischemia. Nat Protoc 4, 1737-1746 (2009). 



                                                                                                                                                                                                                                                                         

 

223 

190. Cashman, S.M., Ramo, K. & Kumar-Singh, R. A non membrane-targeted 
human soluble CD59 attenuates choroidal neovascularization in a model 
of age related macular degeneration. PLoS One 6, e19078 (2011). 

191. Baker, M., Robinson, S.D., Lechertier, T., Barber, P.R., Tavora, B., 
D'Amico, G., Jones, D.T., Vojnovic, B. & Hodivala-Dilke, K. Use of the 
mouse aortic ring assay to study angiogenesis. Nat Protoc 7, 89-104 
(2012). 

192. Li, Y., Hiroi, Y., Ngoy, S., Okamoto, R., Noma, K., Wang, C.Y., Wang, 
H.W., Zhou, Q., Radtke, F., Liao, R. & Liao, J.K. Notch1 in bone marrow-
derived cells mediates cardiac repair after myocardial infarction. 
Circulation 123, 866-876 (2011). 

193. Bauer, M., Cheng, S., Jain, M., Ngoy, S., Theodoropoulos, C., Trujillo, A., 
Lin, F.C. & Liao, R. Echocardiographic speckle-tracking based strain 
imaging for rapid cardiovascular phenotyping in mice. Circ Res 108, 908-
916 (2011). 

194. Simons, M. Chapter 14. Assessment of arteriogenesis. Methods Enzymol 
445, 331-342 (2008). 

195. Li, Y., Song, Y., Zhao, L., Gaidosh, G., Laties, A.M. & Wen, R. Direct 
labeling and visualization of blood vessels with lipophilic carbocyanine dye 
DiI. Nat Protoc 3, 1703-1708 (2008). 

196. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. & Salzberg, S.L. 
TopHat2: accurate alignment of transcriptomes in the presence of 
insertions, deletions and gene fusions. Genome Biol 14, R36 (2013). 

197. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van 
Baren, M.J., Salzberg, S.L., Wold, B.J. & Pachter, L. Transcript assembly 
and quantification by RNA-Seq reveals unannotated transcripts and 
isoform switching during cell differentiation. Nat Biotechnol 28, 511-515 
(2010). 

198. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for 
integration and interpretation of large-scale molecular data sets. Nucleic 
Acids Res 40, D109-114 (2012). 

199. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative 
analysis of large gene lists using DAVID bioinformatics resources. Nat 
Protoc 4, 44-57 (2009). 

200. Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., 
Derijard, B. & Davis, R.J. Selective interaction of JNK protein kinase 
isoforms with transcription factors. EMBO J 15, 2760-2770 (1996). 

201. Xu, P. & Davis, R.J. c-Jun NH2-terminal kinase is required for lineage-
specific differentiation but not stem cell self-renewal. Mol Cell Biol 30, 
1329-1340 (2010). 

202. Seita, J. & Weissman, I.L. Hematopoietic stem cell: self-renewal versus 
differentiation. Wiley Interdiscip Rev Syst Biol Med 2, 640-653 (2010). 

203. Pazianos, G., Uqoezwa, M. & Reya, T. The elements of stem cell self-
renewal: a genetic perspective. Biotechniques 35, 1240-1247 (2003). 



                                                                                                                                                                                                                                                                         

 

224 

204. Reya, T. Regulation of hematopoietic stem cell self-renewal. Recent Prog 
Horm Res 58, 283-295 (2003). 

205. Clements, W.K. & Traver, D. Signalling pathways that control vertebrate 
haematopoietic stem cell specification. Nat Rev Immunol 13, 336-348 
(2013). 

206. Loose, M., Swiers, G. & Patient, R. Transcriptional networks regulating 
hematopoietic cell fate decisions. Curr Opin Hematol 14, 307-314 (2007). 

207. Ding, L., Saunders, T.L., Enikolopov, G. & Morrison, S.J. Endothelial and 
perivascular cells maintain haematopoietic stem cells. Nature 481, 457-
462 (2012). 

208. Bustelo, X.R., Rubin, S.D., Suen, K.L., Carrasco, D. & Barbacid, M. 
Developmental expression of the vav protooncogene. Cell Growth Differ 4, 
297-308 (1993). 

209. Ventura, J.J., Kennedy, N.J., Flavell, R.A. & Davis, R.J. JNK regulates 
autocrine expression of TGF-beta1. Mol Cell 15, 269-278 (2004). 

210. Das, M., Sabio, G., Jiang, F., Rincon, M., Flavell, R.A. & Davis, R.J. 
Induction of hepatitis by JNK-mediated expression of TNF-alpha. Cell 136, 
249-260 (2009). 

211. Challen, G.A., Boles, N.C., Chambers, S.M. & Goodell, M.A. Distinct 
hematopoietic stem cell subtypes are differentially regulated by TGF-
beta1. Cell Stem Cell 6, 265-278 (2010). 

212. King, K.Y. & Goodell, M.A. Inflammatory modulation of HSCs: viewing the 
HSC as a foundation for the immune response. Nat Rev Immunol 11, 685-
692 (2011). 

213. King, K.Y., Baldridge, M.T., Weksberg, D.C., Chambers, S.M., Lukov, 
G.L., Wu, S., Boles, N.C., Jung, S.Y., Qin, J., Liu, D., Songyang, Z., Eissa, 
N.T., Taylor, G.A. & Goodell, M.A. Irgm1 protects hematopoietic stem cells 
by negative regulation of IFN signaling. Blood 118, 1525-1533 (2011). 

214. Baldridge, M.T., King, K.Y. & Goodell, M.A. Inflammatory signals regulate 
hematopoietic stem cells. Trends Immunol 32, 57-65 (2011). 

215. Nagata, Y., Nishida, E. & Todokoro, K. Activation of JNK signaling 
pathway by erythropoietin, thrombopoietin, and interleukin-3. Blood 89, 
2664-2669 (1997). 

216. McLeish, K.R., Knall, C., Ward, R.A., Gerwins, P., Coxon, P.Y., Klein, J.B. 
& Johnson, G.L. Activation of mitogen-activated protein kinase cascades 
during priming of human neutrophils by TNF-alpha and GM-CSF. J 
Leukoc Biol 64, 537-545 (1998). 

217.   
 https://www.clinicaltrials.gov/ct2/show/NCT01630252?term=jnk+inhibitor&rank=1 
218. Ventura, A., Kirsch, D.G., McLaughlin, M.E., Tuveson, D.A., Grimm, J., 

Lintault, L., Newman, J., Reczek, E.E., Weissleder, R. & Jacks, T. 
Restoration of p53 function leads to tumour regression in vivo. Nature 445, 
661-665 (2007). 



                                                                                                                                                                                                                                                                         

 

225 

219. Sakurai, A., Doci, C.L. & Gutkind, J.S. Semaphorin signaling in 
angiogenesis, lymphangiogenesis and cancer. Cell Res 22, 23-32 (2012). 

220. Torres-Vazquez, J., Gitler, A.D., Fraser, S.D., Berk, J.D., Van, N.P., 
Fishman, M.C., Childs, S., Epstein, J.A. & Weinstein, B.M. Semaphorin-
plexin signaling guides patterning of the developing vasculature. Dev Cell 
7, 117-123 (2004). 

221. Adams, R.H. & Eichmann, A. Axon guidance molecules in vascular 
patterning. Cold Spring Harb Perspect Biol 2, a001875 (2010). 

222. Fujiwara, M., Ghazizadeh, M. & Kawanami, O. Potential role of the 
Slit/Robo signal pathway in angiogenesis. Vasc Med 11, 115-121 (2006). 

223. Rama, N., Dubrac, A., Mathivet, T., Ni Charthaigh, R.A., Genet, G., 
Cristofaro, B., Pibouin-Fragner, L., Ma, L., Eichmann, A. & Chedotal, A. 
Slit2 signaling through Robo1 and Robo2 is required for retinal 
neovascularization. Nat Med 21, 483-491 (2015). 

224. Simon, A.M. & Goodenough, D.A. Diverse functions of vertebrate gap 
junctions. Trends Cell Biol 8, 477-483 (1998). 

225. Rocha, S.F., Schiller, M., Jing, D., Li, H., Butz, S., Vestweber, D., Biljes, 
D., Drexler, H.C., Nieminen-Kelha, M., Vajkoczy, P., Adams, S., Benedito, 
R. & Adams, R.H. Esm1 modulates endothelial tip cell behavior and 
vascular permeability by enhancing VEGF bioavailability. Circ Res 115, 
581-590 (2014). 

226. Sabio, G., Das, M., Mora, A., Zhang, Z., Jun, J.Y., Ko, H.J., Barrett, T., 
Kim, J.K. & Davis, R.J. A stress signaling pathway in adipose tissue 
regulates hepatic insulin resistance. Science 322, 1539-1543 (2008). 

227. Vernia, S., Cavanagh-Kyros, J., Barrett, T., Jung, D.Y., Kim, J.K. & Davis, 
R.J. Diet-induced obesity mediated by the JNK/DIO2 signal transduction 
pathway. Genes Dev 27, 2345-2355 (2013). 

228. Sung, H.K., Doh, K.O., Son, J.E., Park, J.G., Bae, Y., Choi, S., Nelson, 
S.M., Cowling, R., Nagy, K., Michael, I.P., Koh, G.Y., Adamson, S.L., 
Pawson, T. & Nagy, A. Adipose vascular endothelial growth factor 
regulates metabolic homeostasis through angiogenesis. Cell Metab 17, 
61-72 (2013). 

229. Kubota, T., Kubota, N., Kumagai, H., Yamaguchi, S., Kozono, H., 
Takahashi, T., Inoue, M., Itoh, S., Takamoto, I., Sasako, T., Kumagai, K., 
Kawai, T., Hashimoto, S., Kobayashi, T., Sato, M., Tokuyama, K., 
Nishimura, S., Tsunoda, M., Ide, T., Murakami, K., Yamazaki, T., Ezaki, 
O., Kawamura, K., Masuda, H., Moroi, M., Sugi, K., Oike, Y., Shimokawa, 
H., Yanagihara, N., Tsutsui, M., Terauchi, Y., Tobe, K., Nagai, R., Kamata, 
K., Inoue, K., Kodama, T., Ueki, K. & Kadowaki, T. Impaired insulin 
signaling in endothelial cells reduces insulin-induced glucose uptake by 
skeletal muscle. Cell Metab 13, 294-307 (2011). 

230. Kusumbe, A.P. & Adams, R.H. Osteoclast progenitors promote bone 
vascularization and osteogenesis. Nat Med 20, 1238-1240 (2014). 



                                                                                                                                                                                                                                                                         

 

226 

231. Ramasamy, S.K., Kusumbe, A.P., Wang, L. & Adams, R.H. Endothelial 
Notch activity promotes angiogenesis and osteogenesis in bone. Nature 
507, 376-380 (2014). 

232. Kusumbe, A.P., Ramasamy, S.K. & Adams, R.H. Coupling of 
angiogenesis and osteogenesis by a specific vessel subtype in bone. 
Nature 507, 323-328 (2014). 

 
 


	Title Page
	Signature Page
	Copyright Page
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Abbreviations
	Preface
	Publications
	Chapter I: Introduction
	Chapter II: Endothelial MLK – JNK Signaling Regulates Vascular Morphogenesis and is Critically Required for Native Collateral Artery Development
	Chapter III: JNK is cell-autonomously dispensable for hematopoietic development and hematopoietic stem cell self-renewal
	Chapter IV: Discussion & Future Directions
	References

