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Figure 2.S3 H3K9Me3 Distribution Changes and H1 Levels Decrease with 

Senescence. H3K9Me3 (red) has a general nucleoplasmic signal in cycling (A, top) and 

senescent cells (B, middle). H3K9Me3 overlaps SAHF (DAPI) in late senescent cells (C, 

right). (D–F) Although both cells have distended α-sat (green), the top cell lacks SAHF 

(DAPI) and has robust H1 staining (red; 64%) and the bottom cell has SAHF and 

severely diminished H1 staining.   
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Figure 2.S5 Effects of Hypomethylation on Satellite Distension. 

  



90 
 

Chapter III: Unfolding the Story of Chromatin Organization 

in Senescent Cells 

Senescence and Heterochromatin: A Background 

Senescence, first reported in cultured cells by Leonard Hayflick, is the irreversible exit of 

a viable cell from the cell cycle (Hayflick, 1965). This exit can be triggered by a variety 

of mechanisms including shortened telomeres, oxidative stress, and DNA damage and 

results in cells that persist and remain metabolically active indefinitely. In vivo, 

senescence functions to prevent cancer and the formation of malignant tumors by 

stopping damaged or precancerous cells from dividing while also playing a role in the 

development of age-related disorders including osteoporosis and Alzheimer’s disease 

(Campisi, 2013; van Deursen, 2014). In addition to depleting the proliferative cell 

population, senescent cells can secrete a characteristic profile of cytokines and other 

soluble factors that influence the behavior of surrounding cells known as the Senescence 

Associated Secretory Phenotype (SASP) (Campisi, 2013). Senescent cells also undergo 

dramatic changes to DNA organization and chromatin packaging (Narita et al., 2003; 

Sadaie et al., 2013; Swanson et al., 2013), processes that are thought to be essential for 

the maintenance of the senescent state and will be our focus here. 

DNA is organized into two cytologically and molecularly distinct compartments: 

structurally open euchromatin which is more actively transcribed and predominantly 

located in the interior of the mammalian nucleus and transcriptionally repressed compact 

heterochromatin often enriched at the nuclear and nucleolar periphery. Heterochromatin 
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is further classified into two subtypes. The first is constitutive heterochromatin, defined 

as heterochromatin in all cell types and conditions, which includes tandem repetitive 

satellite repeats that form the structural domains at centromeres. The second is facultative 

heterochromatin which, despite being structurally similar to constitutive heterochromatin, 

consists of genes and genomic regions that are repressed in a developmental and cell-type 

specific manner, including the inactive X chromosome (Trojer and Reinberg, 2007). In 

eukaryotic cells, several levels of chromatin packaging are formed which not only 

accomplish compaction, but regulate gene expression patterns required for cellular 

function. The first level of compaction entails the wrapping of 147 base pairs of naked 

DNA around a core histone complex forming repeating nucleosomal units (Kornberg, 

1974). This gives rise to the 10 nm fiber (Olins and Olins, 1974; Woodcock et al., 1976), 

which is further organized into higher-order and often more compact structures.  

Currently, one avenue of research in the field of chromatin biology is focused on 

deciphering the mechanisms facilitating the higher-order organization of DNA from the 

10 nm fiber into the 10,000 fold more compact metaphase chromosome. We propose that 

insights into higher-order chromatin organization can be gleaned from the sweeping 

changes that accompany senescence, in particular the formation of Senescence 

Associated Heterochromatin Foci (SAHFs) and Senescence Associated Distension of 

Satellites (SADS). Here, we review what is known about these structures, what these 

changes can tell us about higher-order chromatin organization, and present preliminary 

observations that suggest new insights on these topics. 
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Heterochromatin Reorganization during Senescence: SAHFs 

SAHFs are DNA dense heterochromatic regions which form at numerous sites 

throughout the nucleus of many senescent human cell types (Narita et al., 2003; Swanson 

et al., 2013). Prior efforts have also demonstrated that each heterochromatic focus 

corresponds to one tightly compact chromosome territory marked by heterochromatin 

proteins and histone modifications associated with gene silencing, including HP1, 

H3K9Me3, H4 hypoacetylation, and MacroH2A (Adams, 2007; Funayama et al., 2006; 

Narita et al., 2003; Zhang et al., 2005). In addition, work of others and our own 

observations have shown that, when stained with DAPI, SAHFs appear similar in size 

and shape to the inactive X chromosome found in female cells (Barr body) (Fig 3.1) 

(Funayama et al., 2006; Narita et al., 2003), and contain several markers found on the 

inactive X chromosome (Chadwick and Willard, 2003; Narita et al., 2006; Zhang et al., 

2005). Similar to the Barr body, it has also been shown that the satellite sequences 

position at the periphery of SAHFs (Clemson et al., 2006; Funayama et al., 2006; 

Swanson et al., 2013). While genes on the inactive X chromosome, independent of their 

silencing state, are located on the periphery or outside of the Barr body, repeat ‘junk’ 

DNA is found in the interior (Chaumeil et al., 2006; Clemson et al., 2006). Furthermore, 

it is currently unknown if this organizational pattern repeats in SAHFs, due to a lack of 

rigorous studies on gene location in these bodies, but preliminary examinations have 

suggested that SAHFs suppress expression of the cell cycle genes sequestered within 

(Narita et al., 2003; Zhang et al., 2007a).  
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In addition to not knowing the pattern of genic organization or even the specific 

sequences that are reorganized into SAHFs, the precise role of SAHFs in senescence 

remains poorly understood. For example, SAHF formation occurs relatively late during 

the onset of senescence, does not form in every senescent cell or cell type (e.g. not 

observed in murine or HGPS cells), and they have not been observed in vivo (Kennedy et 

al., 2010; Kosar et al., 2011; Kreiling et al., 2011; Narita et al., 2003; Swanson et al., 

2013). It has also been shown that SAHF formation can occur in response to the 

expression of oncogenic RAS in a senescence-independent manner (Di Micco et al., 

2011). SAHF formation is thus an interesting model of chromatin repackaging that 

represents a dramatic gain of higher-order heterochromatin. However, its failure to occur 

early and consistently in response to senescence brings into question the importance of 

SAHFs in the senescence process.    
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Figure 3.1: SAHFs Appear Similar in Size and Shape to the Barr Body. a) The XIST 

RNA signal (red) shows the location of the Barr body (DNA DAPI, blue) in a cycling 

Tig1 fibroblast. b) The DNA DAPI staining from (a) is shown in grey scale to highlight 

the size and shape of the Barr body. c-d) DNA DAPI staining (grey) of two senescent 

cells with SAHFs, note the heterochromatin foci in these cells are similar in size and 

shape to the Barr body from (b). e) A SAHF positive senescent cells with XIST painting 

the Barr body.  
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Figure 3.1: SAHFs Appear Similar in Size and Shape to the Barr Body   
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Loss of “Constitutive” Satellite Heterochromatin in Senescence: SADS 

In contrast to SAHF formation, there are global chromatin changes that occur during 

senescence that are more consistent with loss of heterochromatin. For example, it has 

been shown that levels of the chromatin remodeling protein HMGA, which is typically 

associated with open regions of DNA, are increased in senescent cells, whereas the 

nucleosome linker histone, H1, is lost (Funayama et al., 2006; Narita et al., 2006). 

Furthermore, genome-wide methylation patterns in senescent cells resemble those seen in 

cancer cells (Cruickshanks et al., 2013), which are thought to be more open and less 

heterochromatic (Carone and Lawrence, 2013; Pageau et al., 2007).  

A more recent discovery supporting a loss of heterochromatin during senescence was our 

observation that all of the normally compact α-satellite and satellite II sequences at each 

peri/centromere dramatically distend in the senescence process, whereas other genomic 

loci examined (e.g. telomeres and a randomly selected region on chromosome 21) do not. 

This phenomenon, which we termed SADS (Senescence-Associated Distension of 

Satellites), was first observed in a subset of Tig-1 fibroblasts hybridized with probes to α-

satellite or satellite II repeats (Figure 3.2a) (Swanson et al., 2013). Upon further 

characterization, this distension was shown to be both specific and extremely consistent 

for senescent cells based not only on SA-β-galactosidase staining, but also on BrdU 

analysis of single cells for both replication and the presence of SADS (Swanson et al., 

2013). SADS were also observed in all forms of senescence induction examined, 

including by the Ras oncogene, oxidative stress, the upregulation of the ubiquitin ligase 

SMURF2, and replicative senescence (Swanson et al., 2013). Unlike SAHFs, SADS were 
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seen in all senescent human cell lines, in murine cells (MEFs), and in vivo in tissue 

sections of a benign, human Prostatic Intraepithelial Neoplasia (PIN) (Swanson et al., 

2013). These data allow us to conclude that SADS is a consistent, potentially ubiquitous 

new marker of senescence in single cells, but it also raises the intriguing possibility that 

the reorganization of centromeric chromatin may be an integral part of the senescence 

process.  

While the specific mechanisms that underlie SADS formation remain to be determined, 

this radical departure from “constitutive” condensed structures of centromere-associated 

heterochromatin may serve to strengthen the permanence of the senescent state by 

blocking cell division. Consistent with this functional role, SADS formation occurs early 

in senescence (beginning within 48 hours of the final cell cycle) and prior to SAHF 

formation, which occurs later (Funayama et al., 2006; Swanson et al., 2013). We also 

showed that CENP-B remains bound throughout the distended α-satellite repeats whereas 

the centromere specific histone H3 variant, CENP-A, is not visibly distended but 

decreases in senescent cells (Maehara et al., 2010; Swanson et al., 2013). Whether other 

centromere-associated proteins are impacted by SADS formation and if the distension 

directly contributes to blocking the continuation of the cell cycle by disrupting structural 

integrity of centromeres remains to be addressed.  

SADS and the Unraveling of Higher-Order Chromatin Folding 

The formation of SADS also represents a potentially unprecedented higher-order 

unfolding of the chromatin fiber in a mammalian cell nucleus on a scale visible by light 
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microscopy. The evidence supporting that this is a “higher-order unfolding” rather than a 

small-scale DNA condensation event (as occurs in transcriptional activation) is two-fold. 

First, the compaction ratio of distended α-satellite DNA was found to be a minimum of 

five times less than α-satellite regions in cycling cells. In fact, the compaction ratio of 

SADS approached previously measured levels for genic DNA (Lawrence et al., 1990). 

The loss of compaction, however, did not correlate with increased expression of satellite 

RNA, and is distinct in both scale and function from the “opening” of chromatin linked to 

transcription. While increases in satellite RNA expression have been reported 6-8 weeks 

after the induction of senescence (De Cecco et al., 2013), we examined cells within ten 

days, which could account for the contrasting results. Second, we noted that both the 

DNA methylation pattern and the enrichment of several canonical heterochromatin 

modifications (H3K9Me3, H3K27Me3, and to a slightly lesser extent H3K4Me3) in α-

satellite regions did not change during senescence despite the dramatic repackaging 

(Swanson et al., 2013). This leads us to speculate that SADS likely represent a change in 

the higher-order packaging of heterochromatin, which may be mediated by changes to 

structural proteins such as lamins, as discussed below.  

Changes in DNA Organization Occur while Many Histone Marks 

Remain 

Given the clearly apparent concentration of histone modifications, especially H3K9Me3, 

in SAHFs by light microscopy, it might be expected that the epigenetic landscape of 

histone modifications on genomic sequences would change dramatically. Surprisingly, 
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ChiP-Seq analysis found very little change in the distribution of several heterochromatin 

marks during senescence (Chandra et al., 2012; Swanson et al., 2013). This implies that 

these marks are not redistributed throughout the genomic DNA during senescence as 

might be expected; rather DNA containing these heterochromatin modifications appears 

to aggregate within the nucleus to form heterochromatin bodies (SAHFs).    

This question remains open, however, because recent work contrasts with results based 

on the data from Chandra et al. Specifically, large scale changes to the chromatin 

landscape of both the H3K27Me3 and H3K4Me3 histone modifications have been 

observed, in which regions of these modifications in senescent cells are either increased 

to form mesas or decreased to form canyons (Shah et al., 2013). These results could relate 

to earlier microarray data showing that genes with differential expression in senescent 

cells group together in blocks along the length of the chromosome (Zhang et al., 2003b). 

We note, however, that in Shah et al. (Supplemental Figure 5) the percentage of the 

genome either gaining or losing each histone modification is small and spread over large 

continuous ranges, and western blot analysis for histone modifications shows no change 

in the overall level of these modifications during senescence (Funayama et al., 2006; 

Shah et al., 2013). It is therefore possible to speculate that small changes in histone 

modification levels across the genome teased out by Shah et al. to form the canyons and 

mesas within senescent cells went undetected by Chandra et al., who were examining the 

genome for the type of gross overall changes that might be expected to occur during 

SAHF formation. Hence, we suggest that both studies may be more compatible than it 

appears and that these findings, together, with the large-scale cytological dimensions of 
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chromatin unfolding inherent in SADS point to the likelihood that SADS formation 

involves changes to the higher-order packaging of the genome.    

The Nuclear Lamina and its role in Heterochromatin Organization 

during Senescence 

Lamin proteins are key structural components throughout the nucleus which together 

form the nuclear lamina underlying the nuclear envelope. Furthermore, these proteins 

have long been implicated in the organization of chromatin into higher-order structures 

(Butin-Israeli et al., 2012). Since lamins interact with the Retinoblastoma protein (Rb), a 

regulator of both senescence and heterochromatin, and LaminB1 levels decline 

dramatically during senescence (Dorner et al., 2007; Freund et al., 2012; Gonzalo et al., 

2005; Marji et al., 2010; Shimi et al., 2011), the nuclear lamina may be a key player in 

both SADS and SAHF formation. In fact, it was recently shown that SAHF formation is 

aided by a decrease in LaminB1 (Sadaie et al., 2013). This is noteworthy and leads us to 

suggest that in some SAHF positive cells the organization of heterochromatin is flipped 

inside out as the peripheral heterochromatin compartment found in cycling cells may be 

broken down and possibly reorganized into SAHFs (Figure 3.2 and 3.3). It has also been 

demonstrated that pericentric heterochromatin (satellite DNA) is enriched in Lamin-

Associated Domains (LADs) (Guelen et al., 2008) and that the disruption of the nuclear 

lamina can alter satellite organization (Taimen et al., 2009). While recent genome wide 

analysis of LaminB1 did not address its binding to satellite DNA specifically, it showed 

that during senescence, LaminB1 is depleted from regions enriched in H3K9Me3 (Sadaie 
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et al., 2013), a histone modification known to be enriched in satellite DNA (Mikkelsen et 

al., 2007; Rosenfeld et al., 2009). Interestingly, single cell analysis showed that LaminB1 

loss occurs before SADS formation in over half of the cells, indicating that LaminB1 

depletion may be one of the factors facilitating the repackaging of satellite DNA during 

senescence (Swanson et al., 2013). 
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Figure 3.2: Closer Inspection of Satellite Structure Reveals the Presence of DNA 

Organized into Domains. a-b) Cycling (a) and senescent (b) Tig-1 fibroblasts have 

dramatically different α-satellite (green) and satellite II (red) organization at the 

resolution of light microscopy. However, closer inspection of grey scale images reveals 

evidence of organization within each satellite signal, whereby senescent satellites are 

organized such that globular domains are linked together by threads of more distended 

DNA. c-d) Using a probe specific to chromosome 17 α-satellite sequence (green) the 

signal appears punctuate in a cycling cell (c) but distends so that individual domains or 

globules of still condensed DNA become more visible in senescent cells (d). e) Confocal 

(left) and super resolution STED images (right) of chromosome 17 α-satellite in a cycling 

cell. These images are shown below in gray scale to increase visibility of more condensed 

domains (yellow arrows). f) Shows three chromosome 17 peri/centromeric α-satellite 

signals (green) from two different cells. The confocal images are on the left and the super 

resolution image is on the right. The yellow arrows point to some of the easily visible 

domains that are linked together by threads of DNA.  
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Figure 3.2: Closer inspection of Satellite Structure Reveals the Presence of DNA 
Organized into Domains   
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Preliminary Insights from a Closer Inspection of Satellite Structure    

To further our understanding of the higher-order chromatin changes that occur during 

SADS formation we have recently begun using super resolution light microscopy 

(STED), which can resolve structures down to 30nm in size. While these observations are 

preliminary, results raise the possibility that in both cycling and senescent cells, 

Chromosome 17 α-satellite DNA may be organized into tightly compacted domains or 

“globules” spaced by linker regions (Figure 3.2). The spacing between the compact 

domains, however, appears different between the two cell types, such that in senescent 

cells globular domains become further apart rather than clustered into a compact 

conformation. We hypothesize that in cycling cells domains or globules may be held in 

close proximity by an unknown factor that facilitates the higher-order organization of 

each satellite. During the senescence process, these factors may be lost from satellites, 

allowing the DNA linking the globular domains to extend into more linear 

conformations. Interestingly, these conformations appear to resemble models of 

chromatin organization predicted by chromatin conformation analysis (Baù et al., 2011; 

Gibcus and Dekker, 2013; Rao et al., 2014). In these models, the genome is organized 

into Topological Associated Domains (TADs) that are divided into subdomains based on 

the distribution of architectural proteins, like cohesins, mediator, and CTCF, that work 

independently or in combination to facilitate genomic organization (Phillips-Cremins et 

al., 2013). Depending on the combination of architectural proteins present, the size of 

these subdomains varies between less than 100 kb to greater than 1 Mb, which is loosely 

in the range that we would predict based on our images and the average size of a block of 
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tandem α-satellite repeat (2-4 Mbs) (Choo, 1997). Hence the loss of architectural proteins 

may play a role in SADS formation, as cohesins are not recruited to pericentromeric 

DNA during senescence (Wang et al., 2011). Moreover, recent reports in Drosophila have 

also indicated that the loss of condensins, which play a role in higher-order chromosome 

compaction and organization, results in a 10 fold increase in chromosome length (Bauer 

et al., 2012). Hence, we speculate that the loss of architectural proteins mentioned above 

in combination with LaminB1 may play a role in SADS formation.  
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Figure 3.3: Underlying Chromatin Structure of Centromeres. a) Correlative light 

microscopy and electron spectroscopic imaging (ESI) of three representative cycling and 

senescent WI-38 cells. Cells were labeled with gold-conjugated CENP-B antibodies and 

prepared for ESI. CENP-B fluorescence (red) was overlayed onto the low magnification 

mass image (black and white) generating the correlative image. Higher magnification ESI 

micrographs were taken of the corresponding CENP-B-containing structure (white box, 

scale bar 0.5 µm). Approximate boundaries of the centromere are indicated by a dashed 

line. Arrowheads indicate gold particles. Arrows point to the heterochromatin at the edge 

of the nuclear envelope (periphery). A higher magnification image of the region marked 

by the dashed line is shown under the correlative image (Scale bar, 0.2µm). In all ESI 

images, chromatin is pseudo colored yellow and protein-based structures cyan. b) CENP-

B labeling (red) of cycling and senescent WI-38 cells. Scale bar, 5 µm. c) Average 

phosphorus density of the centromeric and surrounding chromatin, and heterochromatin 

at the periphery of the nuclear envelope of the images shown in (a). d) Average thickness 

of the peripheral heterochromatin of the images shown in (a). 
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Figure 3.3: Underlying Chromatin Structure of Centromeres  
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To examine the underlying chromatin structure of satellite-containing chromatin at high 

molecular resolution, we performed a preliminary analysis of centromeres using electron 

spectroscopic imaging (ESI). ESI is a specialized form of energy-loss transmission 

electron microscopy that provides a direct and quantitative measurement of chromatin 

density (Bazett-Jones and Hendzel, 1999; Dellaire et al., 2004). For example, integrative 

phosphorus and nitrogen density analyses of ESI micrographs of senescent IMR90 cells 

revealed differences in chromatin compaction within SAHFs as well as between SAHFs 

and the surrounding chromatin (Chandra et al., 2012). Hence, we examined the 

underlying chromatin structure of satellite-containing heterochromatin by obtaining ESI 

micrographs from nuclei of cycling and senescent WI-38 fibroblasts labeled with gold-

conjugated CENP-B antibodies. As these images were obtained from 70 nm sections, we 

were unable to observe the chromatin fibers linking the compact domains. We were, 

however, able to observe the CENP-B-containing compact structures reminiscent of the 

globules seen in the STED analysis. The average chromatin density within the CENP-B-

defined domain and the region surrounding it was determined by measuring the 

phosphorus signal in the net phosphorus images (Figure 3.3a,c). The results affirm that 

the compaction level of the satellite-containing chromatin domains are similar in the two 

cell states; however, they are distinct from both the chromatin surrounding the 

centromeres and the compact heterochromatin at the edge of the nuclear envelope (Figure 

3.3a,c). This observation is consistent with our current hypothesis that the discrete 

satellite-containing structures seen in cycling cells are comprised of globules tightly 
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packed together that become more spaced out in senescent cells, giving rise to the 

distended patterns seen in SADS.  

We also observed that the chromatin surrounding centromeres in cycling and senescent 

cells is different. In senescent cells, non-centromeric chromatin that does not include the 

SAHFs appears as a mesh of loosely dispersed fibers, whereas the chromatin surrounding 

centromeres in cycling cells is more compact. Indeed, a preliminary analysis of the 

average integrative phosphorus density of this non-centromeric (surrounding) chromatin 

reflects this observation as it is greater in cycling cells (21.7) compared to senescent cells 

(11.4) (Figure 3.3a,c). It should also be noted that although the volume of a senescent 

nucleus is larger than that of a cycling cell, we did not observe a clear correlation 

between nuclear volume and average integrative phosphorus intensity values. We 

determined the fold change in chromatin compaction between cycling and senescent 

centromeres, surrounding chromatin, and peripheral heterochromatin to be 1.3, 1.9, and 

1.0, respectively. Since the fold change is domain specific, the dispersed chromatin 

surrounding centromeres in senescent nuclei may not solely be attributed to increased 

nuclear size, but rather to global changes in chromatin organization. Interestingly, in our 

preliminary examination, peri/centric heterochromatin often appeared less compact than 

peripheral heterochromatin in both cycling and senescent cells, suggesting that not all 

constitutive heterochromatin domains contain the most highly compact chromatin in the 

nucleus (Figure 3.3a,c). Finally, we observed that the thickness of the heterochromatin 

compartment at the nuclear periphery is reduced in the senescent cells examined here 

with an average thickness of 200 and 100 nm for cycling and senescent cells, respectively 
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(Figure 3.3a,d). Despite the thinning of peripheral heterochromatin, the chromatin 

compaction within this region did not appear to change as the average integrated 

phosphorus values are 53 in cycling and 50 in senescent cells (Figure 3.3a, c).  The loss 

of peripheral heterochromatin in senescent cells suggested here helps to reinforce the 

previously mentioned possibility that peripheral heterochromatin is relocating to the 

interior of senescent nuclei and this process could be facilitated, at least in part, by 

LaminB1 depletion. Taken together, these results illustrate numerous differences in 

chromatin organization between cycling and senescent cells that when coupled with 

advanced imaging techniques such as ESI provides a rich opportunity to reveal properties 

of higher order chromatin architecture. 

Conclusion 

Senescence is accompanied by a multitude of changes to the packaging of DNA 

including the loss of higher-order chromatin packaging during SADS formation, the 

reorganization of chromatin into SAHFs, and the breakdown of the nuclear lamina. Not 

only are these changes important to the biology of senescence and may help contribute to 

the permanence of the senescent state but they also provide a potential model to study 

higher-order chromatin packaging. Since the packaging and organization of DNA from 

the 10 nm fiber to the metaphase chromosome remains a mystery new ways to examine 

these questions are needed. As the preliminary images shown here help to illustrate the 

dramatic changes that occur to heterochromatin during senescence we suggest that they 

may provide a foundation to enable new insights into the organization of higher-order 

heterochromatin.  
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Chapter IV: Initial Investigation of Proliferation Defects in 

Cultured Down Syndrome Cells  

This chapter will explore if the proliferation defects observed in previous studies of 

Down syndrome are caused by increased levels of cell senescence and will be broken 

down into three parts. The first is a review of the literature that analyzes known cellular 

and clinical observations of Down syndrome with regards to cell senescence. The second 

part describes preliminary experimental results to address whether the proliferative 

defects of Down syndrome cells may be caused by increased levels of cell senescence, 

potentially due to increased levels of oxidative stress, and includes proposals for 

additional experimentation. Lastly, as part of this study we examined microarray data for 

expression profiling originally obtained to assay the effectiveness of silencing the extra 

21st chromosome in DS iPSCs (Jiang et al., 2013). While we did not find any differences 

indicative of increased levels of senescence in this data set, possibly because pluripotent 

cells are by definition self-renewing and therefore a challenging system to study cell 

senescence in, other gene expression differences between DS and functionally disomic 

iPSCs were analyzed.   

Synthesis of DS Literature With Regards to Cell Senescence 

Down syndrome (DS) is one of the most common genetic causes of intellectual disability 

affecting 1 in every 700 live births in the United States. This disorder, first characterized 

by John Langdon Down in 1866, is caused by an additional 21st chromosome resulting in 

the over-representation of approximately 500 genes (Down, 1866; Lejeune, 1959). While 
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it is still unknown and a subject of great debate as to how individual genes, or groups of 

genes, contribute to DS cell pathologies and phenotypes, what is known is that Down 

syndrome individuals have a characteristic appearance including, small heads and ears, 

flat face, cleft palms, and shortened stature. In addition, congenital heart defects are 

present in half of all cases and immune and endocrine, particularly thyroid, deficiencies 

are common. Furthermore, the intellectual disability in individuals with DS ranges from 

mild to severe, and they commonly display impaired cognitive and mental capabilities, as 

well as language and verbal deficiencies (Patterson, 2009; Zigman, 2013). 

During the mid-20th century nearly 50% of individuals with DS did not survive past the 

age of one and others often died at young ages. However, with modern medicine the life 

expectancy for DS has reached 60 years, but with increased life expectancy many 

premature aging phenotypes have emerged (Zigman, 2013). For example, it has been 

noted that half of DS patients in their fifties have osteoporosis (Steingass et al., 2011) and 

vision and hearing loss is also common at this age (Van Buggenhout et al., 1999). 

Another well documented aging phenotype affecting DS patients is dementia. While 

cases in individuals as young as 30 have been reported, the mean age of onset of 

Alzheimer’s disease (AD) in DS patients is 50, and by age 60, over three-quarters of the 

DS population suffers from it (Head et al., 2007). Interestingly, amyloid-β (Aβ) plaques 

which are strong indicators and a possible cause of AD, are prevalent in DS individuals in 

their 30s and in nearly all DS individuals by 40 years of age, often before clinical 

symptoms and AD diagnosis (Mann, 1989; Wisniewski, 1985). The increase in the 

production of Aβ peptide in DS individuals is thought to occur, in part, due to the 
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increased expression of the amyloid precursor protein (APP) encoded on chromosome 21 

(Hardy and Selkoe, 2002).  

In addition to a third copy of APP, AD phenotypes are thought to be accelerated by 

increased levels of oxidative stress in individuals with DS (Cenini et al., 2012; Jovanovic 

et al., 1998). However, oxidative stress is not just a problem exclusive to later in life, as 

increased levels of oxidative stress have been found in utero of DS fetuses and in young 

DS mouse models (Ishihara et al., 2009; Perluigi et al., 2011; Perrone et al., 2007; Slonim 

et al., 2009). One potential cause for this increase is dysfunction in DS mitochondria 

from an early age. In fact, DS mitochondria have lower levels of key electron transport 

chain complexes resulting in higher production of free radical ROS (Valenti et al., 2011). 

Increased levels of oxidative stress may also be caused by increased expression of SOD-

1, a chromosome 21 gene responsible for metabolizing free radicals into hydrogen 

peroxide (Anneren and Epstein, 1987; de Haan et al., 1996; Feaster et al., 1977; 

Gulesserian et al., 2001). These radicals when not reduced can disrupt cellular functions 

and cause increased levels of DNA damage and subsequent activation of the senescence 

response.  

Children with DS also have an increased risk to develop myeloproliferative disorders 

(Roy et al., 2009), which leads to 20-40 fold higher risk of Acute Myelogeous Leukemia 

and a remarkable 500 fold increase in Acute Megakaryoblastic Leukemia (Hasle et al., 

2000). While it has received less attention, a remarkable “benefit” to trisomy 21 is that 

individuals with DS have a striking resistance to developing most types of solid 
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malignant tumors (Henrik, 2001; Nizetic and Groet, 2012). For example, there is a 

notable absence of breast cancer in DS females (Hasle et al., 2000) and a complete lack 

of neuroblastomas with zero cases of DS reported among the 6,724 infants with this type 

of cancer (Satgé et al., 1998). This profound lack of solid tumors has also been 

recapitulated in DS mouse models (Sussan et al., 2008; Yang and Reeves, 2011). One 

possible explanation for this tumor resistance is the inhibition of angiogenesis due to the 

overexpression of chromosome 21 gene RCAN1 (Baek et al., 2009; Minami et al., 2004; 

Reynolds et al., 2010). While the inhibition of angiogenesis, a process crucial to tumor 

growth, may play a part in tumor resistance, this would not protect against mutations 

involving tumor suppressors or oncogenes that lead to the tumorigenic conversion of 

individual cells. Given that hindering angiogenesis does not inhibit tumor initiation, it is 

of interest that other work in DS mouse models reported that the increased expression of 

Ets2, a chromosome 21 gene linked to increased levels of senescence, prevents both 

tumor formation and growth (Sussan et al., 2008). Despite these individual studies the 

question of what leads to lower incidence of solid tumors is far from resolved, and one 

major hypothesis has not been explored: that this reflects an increased sensitivity to cell 

senescence. 

There is also evidence that proliferation defects impact some DS cell types, which may 

be due to increased levels of senescence. For example, DS patient’s brains display 

hypocellularity that occurs due to poor cell proliferation during embryogenesis (Guidi et 

al., 2011). Defects in cell proliferation have also been reported in cultures of DS 

fibroblasts (Kimura et al., 2005) and it has been suggested that the hematopoietic stem 
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cells may be both deficient in number and have shorter telomeres in DS patients (Holmes 

et al., 2006). It has also been reported that the rate of telomere loss is accelerated in DS 

lymphocytes in vivo in comparison to age matched normal controls (Vaziri et al., 1993). 

Considering that shortened telomeres are indicative of senescence it is surprising that 

only one report in mouse Ts65Dn fibroblasts showed increased levels of cell senescence 

(Contestabile et al., 2009).  

Further plausibility for a role of cell senescence in DS is provided by analysis of 

chromosome 21 gene functions. For example, DYRK1A has been shown to inhibit the 

proliferation of neuronal cells by phosphorylating p53 (Litovchick et al., 2011; Park et 

al., 2010) and has also been implicated in neurodegenerative diseases, like AD, 

characterized by increased levels of senescence (Wegiel et al., 2011). In addition to 

DYRK1A, Ets2 a tumor suppressor gene expressed in response to oxidative stress can 

upregulate p16 expression to initiate senescence (Barradas et al., 2002; Lim et al., 2011; 

Sanij et al., 2001). Finally, increased expression of Usp16 which blocks the degradation 

of p16 and inhibits cell proliferation has been shown to promote senescence in a large 

variety of DS progenitor cells and fibroblasts (Adorno et al., 2013).  

Despite the above information synthesized from a thorough analysis of several decades of 

literature on Down syndrome and chromosome 21 encoded genes, the possibility that cell 

senescence is an important contributor to one or more major aspects of the Down 

syndrome phenotype is not widely discussed or considered among researchers in this 

field. However, considering that DS is characterized by cell proliferation defects, early 
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onset of aging, resistance to solid tumors, and higher levels of oxidative stress, all 

phenotypes that have been linked to senescence in other contexts, we hypothesize that 

increased sensitivity to senescence may be one of the driving physiological processes that 

underlie aspects of the DS phenotype. Accordingly, the next section presents preliminary 

evidence and suggests additional experiments to address this hypothesis.  

Preliminary Results and Proposed Experiments 

Proliferation Defects in Cultured DS Pluripotent Stem Cells 

Additional, evidence that trisomy 21 directly causes reduced cell proliferation came from 

an analysis of a novel system of DS iPSCs capable of effectively silencing the extra 21st 

chromosome through the doxycycline inducible expression of a targeted XIST construct 

(Jiang et al., 2013). We noted that in iPSCs cultures treated with doxcycline for just one 

week, cell numbers in the functionally disomic lines were increased by 18-34% in six 

independent sub-clones when compared to identical cultures of trisomic (no dox) controls 

(Figure 4.1a)(Jiang et al., 2013). Subsequent, analysis of this proliferation defect using 

BrdU labeling (for DNA replication), in two sub clones (3258-9 and 3131D-2), revealed 

that an additional 6-11% of cells were in S-phase in the silenced cultures (Figure 4.1b). 

These results indicate that the proliferation defect in the trisomic iPSCs is likely due to 

either a slower cell cycle (e.g. longer G1) or increased levels of senescence.  

As SADS analysis revealed that some cells at the edge of the iPSCs colonies were 

senescent (Figure 4.1c), we compared both the uncorrected trisomic iPSCs and corrected, 

functionally disomic, iPSCs for increased levels of senescence. However, these results 
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proved inconsistent because a decrease in SADS positive senescent cells was observed in 

clone 3258-9 upon doxcycline treatment (and silencing the extra 21st chromosome), 

consistent with our hypothesis, whereas in clone 3131D-2 the opposite was observed 

(Figure 4.1d). However, the analysis of senescence in iPSC cultures is complicated by the 

fact that there are varying levels of differentiated cells around the periphery of each 

colony and between cultures. As these putative differentiated cells often appeared 

senescent, future studies could use a differentiation marker in conjunction with SADS 

analysis to assay the numbers of differentiated cells that are senescent between 

conditions. This may show that the differentiated uncorrected DS iPSCs senesce with 

higher frequency. Alternatively, the slower proliferation of pluripotent trisomic cells may 

occur for other reasons distinct from cell senescence, and the frequency of senescent cells 

in iPSC culture may prove independent of the number of actively expressing 21st 

chromosomes. 
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Figure 4.1 Proliferation Defects are Present in DS iPSCs. a) Corrected functionally 

disomic DS iPSCs clones grew faster than either of the trisomic controls (marked CTL) 

(Jiang et al., 2013). b) A 20 minute BrdU pulse in two clones of DS iPSCs treated with or 

without doxycycline (Dox) revealed that more cells were in S-phase in the doxycycline 

treated functionally disomic cultures. c-d) α-satellite (green) and satellite II (red) DNA 

FISH in DS iPSC cells show that SADS positive senescent cells (c, bottom left) can be 

found on the periphery of iPSC colonies. These results are quantified in (d) for two 

different clones treated with or without doxycycline.   
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Figure 4.1 Proliferation Defects are Present in DS iPSCs   
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Initial Examination of Senescence Levels in Differentiated Trisomic iPSCs 

Since initial results comparing the level of senescence in silenced functionally disomic, 

versus unsilenced trisomic iPSCs were inconclusive we next performed a pilot 

experiment to examine levels of senescence in randomly differentiated 3131D-2 DS 

iPSCs. These cells were treated with doxcycline for 10 days to insure complete silencing 

before they were allowed to differentiate into random cell lineages (by removing FGF 

and knockout serum from the iPSC media), under the continued presence of doxycycline. 

After five days of undirected differentiation we did not observe a difference in the 

frequency of senescent cells between the doxycycline treated and untreated DS cells, as 

judged by the presence of SADS and SA-β-galactosidase staining (Figure 4.2a,b). 

Although there was no difference between the two conditions, surprisingly high levels of 

senescence were observed in both the trisomic and effectively disomic cells and prior 

experimentation showed that the cultures became almost entirely senescent after ten days 

of random differentiation (data not shown). We theorize that these cells may be senescing 

due to culture stress, perhaps from the lack of factors necessary for the cell types into 

which they are randomly differentiating. This may be a significant observation for 

general studies using the undirected differentiation of ES cells, as it is unknown if this 

senescence response occurs in normal cells too. Hence, future studies that allow both 

corrected and uncorrected DS iPSCs to differentiate through embryoid bodies directed 

with lineage-specific factors would be more interpretable and may result in reproducible 

differences in the number of senescent cells.   
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Interestingly we also observed that in some cells the distended satellites appeared 

particularly thread like and oriented around the nucleolus in both culture conditions. This 

interesting pattern was not observed in previous fibroblast studies (Figure 4.2c). 

However, it is not known why this organization occurs in randomly differentiated DS 

iPSCs.           
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Figure 4.2 Cultures of Differentiated Corrected and Uncorrected DS iPSCs Show 

Similar Frequency of Senescent Cells. After ten days of doxycycline treatment and five 

days of undirected differentiation SADS (a) and SA-β-galactosidase (b) analysis show 

little difference in the frequency of senescent cells between conditions. c-d) A subset of 

undirected differentiated  DS iPSCs have dramatically distended thread like satellites 

(arrow) that extend outwards towards the periphery from the nucleolus as revealed by 

DNA FISH to α-satellite (green) and satellite II (red). Both functionally disomic (No 

Dox) and trisomic (Dox) DS iPSCs differentiated into neuronal cells were cycling with 

similar frequencies based on BrdU analysis (e) and had very few senescent cells as 

judged by SA-β-galactosidase staining (f,g).   
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Figure 4.2 Cultures of Differentiated Corrected and Uncorrected DS iPSCs Show 
Similar Frequency of Senescent Cells   
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In addition to randomly differentiated cells, we also performed a preliminary assessment 

of senescence levels in one readily available sample of cultured neuronal precursors, with 

and without XIST-mediated chromosome silencing. In these cultures, similar numbers of 

cells were in S-phase in each condition as revealed by a six hour BrdU pulse, and very 

few but equal numbers of these cells were senescent as judged by SA-β-galactosidase 

staining (Figure 4.2e,f). As increased levels of senescence were not seen in these trisomic 

neural precursors, there may not be a difference in initiation of the senescence program in 

this cell type and stage. However, examining different cell lineages or culturing the 

neuronal precursors or more fully differentiated neuronal cells for longer could reveal 

differences in the number of senescent cells. 

Oxygen Level Impacts DS Cell Proliferative Capacity 

The Lawrence lab previously noted differences indicative of increased cell senescence in 

the culture of both human and DS mouse (Ts65Dn) fibroblasts. This was recapitulated 

here, as multiple human DS fibroblast samples were found to have reduced proliferative 

potential compared to normal fibroblast lines when cultured at any oxygen condition, and 

the extent of this ranged from mild to severe (Figure 4.3a). Similarly, Ts65Dn tail tip 

fibroblasts often appeared to have senescent cell morphology and defective proliferation. 

As these results support our hypothesis of increased senescence in DS fibroblasts, an 

important question which has not been considered or addressed in prior studies is whether 

there could be a link between increased cell senescence in Down syndrome and increased 

sensitivity to long term oxidative stress. To test this we compared DS and normal 

fibroblasts lifespans under physiological (5% O2) and atmospheric (20% O2) conditions. 
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When DS fibroblasts are cultured at physiological oxygen levels (5%), beginning with 

the earliest available passage, results suggested that some lines were more sensitive to 

oxygen level as they continued to proliferate and avoid senescence for extended periods 

of time when compared to cultures of normal fibroblasts grown in parallel (Figure 4.3a). 

This result was especially apparent in the DS fibroblast line AG13902 and less so in 

GMO2508 cells, a third line (GMO2067) was also used, but its cells failed to proliferate 

and senesced almost immediately independent of oxygen conditions (Figure 4.3a).  
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Figure 4.3 Higher Oxygen Levels Negatively Affect DS Cell Proliferation. a) The 

total proliferative potential measured by the passage number in which cultural senescence 

occurs for representative DS fibroblast lines in comparison to normal Tig1 fibroblasts. 

The percent increase in the number of additional passages gained by culturing cells in 

physiological conditions is also shown. b) DS iPSCs lines proliferate more rapidly when 

placed in low oxygen conditions over 10 days (cell number=x*103).    
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Figure 4.3 Higher Oxygen Levels Negatively Affect DS Cell Proliferation   
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To further this experiment and to attempt to generate more conclusive results, controlling 

for oxygen levels from the initial generation of individual cell lines would be optimal. 

Hence, we propose to use the same experimental setup as described previously, but to 

harvest embryonic MEFs from normal and Ts65Dn littermates in order to insure that all 

cell lines are treated equally and come from a similar genetic background. As normal 

MEFs cultured in physiological oxygen conditions avoid senescence even though they 

express both p16 and p19 (Parrinello et al., 2003) it would be of particular interest to see 

if the Ts65Dn MEFs act similarly. Furthermore, if the Ts65Dn MEFs grown in 

atmospheric oxygen conditions immortalize at a lower frequency than their normal 

counterparts it would suggest that DS cells may contain a mechanism for enhanced 

maintenance and regulation of the key tumor suppressing genes required for senescence 

and the prevention of cancer.  

We also observed that when we placed DS iPSCs in physiological versus high oxygen 

levels and examined proliferation over the course of ten days the cells in physiological 

oxygen levels proliferated faster than the parallel cultures placed in atmospheric 

conditions (Figure 4.3b). This suggests that culturing cells at atmospheric oxygen 

conditions hampers the proliferative potential of DS iPSCs, a result that may be 

attributable to an inability of DS cells to handle increased rates of oxidative stress leading 

to accelerated entry into senescence. However, this study should be repeated in parallel 

with DS iPSCs that have silenced the extra 21st chromosome to see if the proliferation 

defects associated with growing these cells in high oxygen are mitigated. 
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Pathway Analysis of Microarray Expression Data in Down Syndrome 

iPSCs  

While it was previously shown that the collective transcriptional output of Chromosome 

21 genes was reduced to near disomic levels (Jiang et al., 2013), an in-depth analysis of 

gene expression changes across the genome has not been published. Here we summarize 

findings from more in-depth analyses focused on pathways relevant to the aspects of 

Down syndrome cell biology discussed throughout this chapter. 

Expression Profiling does not Show Increased Levels of Oxidative Stress in 

Uncorrected DS iPSCs 

Increased levels of oxidative stress in Down syndrome individuals has been suggested to 

cause mitochondrial dysfunction and early aging phenotypes including early onset 

dementia and senescence (Coskun and Busciglio, 2012; de Haan et al., 1996). This is 

hypothesized to occur, in part, because of increased levels of free radicals generated by 

the overexpression of chromosome 21 gene SOD-1 and the lack of compensatory 

response in Catalase (Cat) and glutathione peroxidase (GPx)(de Haan et al., 1996; 

Perluigi and Butterfield, 2011). Further, genome wide expression analysis on amniotic 

fluid comparing DS and normal fetuses showed that oxidative stress genes are differently 

expressed in trisomic individuals (Slonim et al., 2009), and other work reported that 

oxidative stress genes, particularly Cat, are overexpressed in DS iPSCs and neuronal stem 

cells in comparison to disomic lines (Weick et al., 2013). However, our analysis revealed 

that SOD-1 expression does not significantly change between disomic and trisomic cells 
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(Table 4.1). In addition, we do not see significant change in Cat expression, despite 

previous reports, and pathway analysis did not suggest that that there were changes in the 

overall oxidative stress response (Table 4.2). In agreement with our findings, our analysis 

of recent microarray experiments in iPSCs from monozygotic twins discordant for 

trisomy 21 did not see differential expression in SOD-1 and Cat (Hibaoui et al., 2013).  

An Examination of Several Significantly Perturbed Pathways in DS iPSCs  

In addition to our pathway analysis not revealing any statistically significant changes to 

oxidative stress related pathways or genes, we did not observe any changes in senescence 

related pathways or individual genes (Table 4.1 and 4.2). However, analysis of our 

microarray data revealed that gene-sets differentially regulated between effectively 

disomic and trisomic iPSCs cells often contain genes that have been linked to the hypoxia 

response and the gene encoding hypoxia-inducible factor one, alpha (HIF-1α)(Table 4.2). 

Under hypoxic conditions this transcription factor is not degraded and plays a role in 

mediating cell proliferation through p21, angiogenesis, and metabolism (Semenza, 2013), 

all processes that have been suggested to be altered in DS (Contestabile et al., 2009; 

Helguera et al., 2013; Reynolds et al., 2010). Upon initial examination, it appeared 

unlikely that hypoxia could be responsible for these changes, as the DS iPSCs in this 

study were cultured under atmospheric oxygen conditions (20% O2) and hypoxic 

conditions occur at ≤1% O2. However, we still examined our data to determine whether 

HIF-1α RNA and the genes that play a role in degrading the HIF-1α protein under normal 

conditions (Semenza, 2013) are differentially expressed in trisomic cells. We found that 

the only significant expression difference occurred in PHD2 (EGLN1), one of three genes 
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responsible for initiating the degradation of HIF-1α. As PHD2 expression is increased in 

corrected cells the degradation of HIF-1α protein may be reduced in DS individuals. As a 

result of this finding, we examined a variety of HIF-1α targets and noted that p21 and 

VEGF, a factor key to angiogenesis, are not significantly changed. Interestingly, several 

genes that were significantly changed in these sets are associated with the mitochondria 

and aerobic metabolism, particularly PDK1, and BNIP3 (Table 4.1). Considering that DS 

patients have recently been reported to have abnormal mitochondria (Helguera et al., 

2013), the differential expression of these genes may help explain the differences seen in 

the hypoxia-related gene-sets. 

Gene set analysis also revealed significant differences in several sets comprised of genes 

that are expressed at higher levels in ES cells as compared to differentiated cell lines 

(Table 4.2). We observed that the uncorrected DS iPSCs expressed higher levels of these 

factors than corrected, functionally disomic cells. Interestingly, increased expression of 

genes characteristic of stem cells may hamper stem cell differentiation and explain why 

trisomic iPSCs differentiated into neuronal precursors slower than corrected DS iPSCs 

(Jiang et al., 2013). In addition, the poor differentiation of DS iPSCs may help to explain 

DS phenotypes such as hypocellularity of brain (Contestabile et al., 2009; Guidi et al., 

2011). 
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Table 4.1. Changes in Gene Expression upon Trisomic Correction. The genes listed 

here are selected due to their known relationship to cell senescence, oxidative stress, or 

hypoxia. Positive numbers correlate to increased expression in the corrected functionally 

disomic lines. Bolded changes are statistically significant.  
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Table 4.1. Changes in Gene Expression upon Trisomic Correction 

Gene Symbol Chromosome Fold Change Log 
(2) 

P 

Oxidative Stress       
SOD1 chr21 -0.10903 1.97E-01 
CAT chr11 -0.01040 9.13E-01 
GPX1 chr3 0.02087 7.75E-01 
Hypoxia       
HIF1A chr14 -0.00967 9.25E-01 
EGLN1 (PHD2) chr1 0.27290 1.03E-02 
EGLN2 (PHD1) chr19 -0.11910 7.40E-02 
EGLN3 (PHD3) chr14 -0.46909 5.17E-07 
VEGFC chr4 0.33261 2.33E-02 
VEGFA chr6 0.14334 1.96E-01 
VEGFB chr11 0.04112 5.05E-01 
CDKN1A (p21) chr6 -0.04791 7.46E-01 
PDK1 chr2 0.65543 2.00E-08 
BNIP3 chr10 -0.24994 1.42E-03 
ES Cell       
AMD1 chr6 -0.43193 2.76E-06 
Senescence    
CDKN2A (p16) chr9 0.28605 1.51E-01 
TP53 (p53) chr18 -0.03344 7.33E-01 
RB1 chr13 0.43821 2.04E-02 
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Table 4.2. Gene Set Analysis. The pathways included here are significantly perturbed 

when comparing between both the trisomic and the corrected DOX treated, functionally 

disomic iPSCs, (w/Dox). Bold numbers are significant p<.01. Oxidative stress and 

senescence related pathways were not significantly different and are not included here.  
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Table 4.2. Gene Set Analysis 

Gene Sets 
# of 
Genes   

Up 
w/Dox 

Down 
w/Dox 

Pluripotency         
BENPORATH_ES_1 370   0.6534 0.0001 
BENPORATH_ES_2 39   0.9943 0.0001 
          
Hypoxia         
ELVIDGE_HIF1A_TARGETS_UP 65   0.9912 0.0001 
FARDIN_HYPOXIA_9 7   0.0001 0.7382 
ELVIDGE_HIF1A_TARGETS_DN 90   0.0154 0.2758 
          
Cysteine and Methionine Metabolism         
KEGG_CYSTEINE_AND_METHIONINE_METABOLI
SM 34   0.2287 0.0001 
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We also noted that the cytosine-methionine pathway which plays a role in the synthesis 

of the two amino acids in its name as well as S-adenosyl methionine (SAM), which 

serves a methyl group donor, was upregulated in uncorrected, trisomic, DS iPSCs. 

Interestingly overexpression of DYRK1A, a chromosome 21 gene, has been shown to 

play a role in upregulating this pathway (Noll et al., 2009). The upregulation of this 

pathway, which includes DNA methyltransferases, could then be connected to a variety 

of other DS phenotypes reported in the literature including increases in global DNA and 

mitochondrial methylation (Infantino et al., 2011; Jin et al., 2013). It is also worth noting 

that, the AMD1 gene is the most differently expressed (increased in trisomic lines) 

member of this pathway. This is of note because AMD1 is required for stem cell self-

renewal (Zhang et al., 2012) and may provide additional explanation as to why 

uncorrected DS iPSCs differentiate into neuronal precursors at a slower rate when 

compared to functionally disomic DS iPSCs (Jiang et al., 2013). 

Concluding Remarks 

The analysis of DS literature presented here provides an abundance of evidence to 

suggest that there may be increased levels of senescence in Down syndrome patients, and 

that this hypothesis merits further consideration. However, the potential role(s) of 

increased levels of cell senescence in DS has not been significantly studied in any 

context. While our initial efforts examining a variety of DS cells did not reveal an 

increase in senescence, they did reveal proliferation defects in Down syndrome cultures 

that can be exacerbated by increased oxygen concentrations. Considering that visual 

evidence suggests that this difference does not appear to be due to apoptosis, further 
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experimentation is necessary to rule out the role of senescence in the slower proliferation 

rate observed for DS cells.  

Furthermore, as increased levels of oxidative stress is supposed to contribute to both 

aging and increased incidence of senescence it was of great interest if our microarray data 

could recapitulate prior observations showing an imbalance between SOD-1 and GPX 

and Catalase. However, unlike what was previously reported (Weick et al., 2013), there 

was no difference in SOD-1, GPX, and Catalase levels between effectively disomic cells 

and their isogenic trisomic counterparts. This disagreement likely occurs, in part, because 

the Cat gene has one of the largest variances in expression between normal ES and iPSC 

lines cultured in similar conditions (Bock et al., 2011). Finally, based on analysis of 

expression profiling, and recent work detailing disruptions to the mitochondria in DS 

(Helguera et al., 2013), the potential role of mitochondrial dysfunction should be further 

examined in this context.      

Materials and Methods 

Cell Culture 

DS iPSCs were cultured as described in Jiang et al. (Jiang et al., 2013). Non-directed 

differentiation of DS iPSCs was performed by culturing the cells in KO DMEM F12 with 

20% fetal bovine serum, .1% Non-essential amino acids, and .1mM BME. The 

differentiation of these cells into neuronal precursors was also performed as described 

previously (Jiang et al., 2013). Silencing of the extra 21st chromosome in the DS iPSCs 

was accomplished by using 500 ng/mL doxycycline over the course of ten days. Tig1 
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fibroblasts and DS fibroblasts (AG13902, GMO2508, GMO2067) (Coriell) were grown 

in MEM with 15% FBS, 1% L-glutamine, and 1% Pen/Strep. Cells were serially 

passaged in either low/physiological oxygen conditions (5% O2) or atmospheric 

conditions (20% O2). BrdU analysis was performed as described in Swanson et al. 

(Swanson et al., 2013). 

Detection of Senescence Markers 

SA-β-galactosidase staining and SADS analysis and image acquisition was performed as 

described previously (Swanson et al., 2013).  

Microarray Analysis  

The raw array data were normalized using the Robust Multichip Average method 

(Bolstad et al., 2003) in R (Team, 2008). The limma (Smyth et al., 2005) package was 

used to fit linear models for calculation of differential gene expression. The linear model 

was: y ~ 0+xist:dox + clone, where each factor, except “clone”, can be either true or 

false. The “clone” variable enforces explicit pairing between treated and untreated clonal 

partners: the resulting empirical Bayes-moderated t-tests are, therefore, paired t-tests. For 

comparison, we calculated t-scores for this model without including the no xist·no dox 

and no xist·dox parameters, thereby ignoring the effect of doxycycline on trisomic cells 

with no exogenous chromosome 21 XIST gene. In order to detect expression 

perturbations due to trisomy 21 at the level of gene-sets, we used the ROMER (Majewski 

et al., 2010) function of limma (Smyth et al., 2005) to test whether gene-sets from the 

curated (C2) collection at the MSigDB (v. 4.0) (Subramanian et al., 2005) are up-
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regulated, down-regulated or differentially expressed without a bias in direction. We used 

10,000 random rotations with the “mean50” function applied to t-scores as the summary 

statistic. 
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Concluding Remarks and Future Directions 

The work presented here demonstrates a new and fundamental property of senescent 

cells: the formation of Senescence Associated Distension of Satellites or SADS. This 

phenotype, which may be functionally linked to the cessation of cell division through the 

disruption of normal centromere and kinetochore structure, could also be important to the 

study of chromatin organization as this cytological-scale change is an unprecedented 

example of facultative heterochromatin loss. Lastly, it can serve as a marker of 

senescence as it is a defining and ubiquitous feature characteristic of all senescent cells 

observed to date. 

SADS: Do They Reflect, Reinforce, or Contribute to Cell Senescence?      

One could envision that this substantial change in the structure and packaging of α-

satellite and satellite II sequences at the peri/centromere may contribute to the inhibition 

of cell cycle progression and help to establish the permanence of senescence. However, 

we remain uncertain as to how these currently inseparable processes relate: do SADS 

play a role in initiating the senescence process or is this marked epigenetic change the 

result of cell senescence? This chicken or egg question is challenging to elucidate but is 

compelling given that we show SADS to be an early and very consistent event in the 

senescence process. This challenge arises because perturbing many of the factors that 

may play a role in inducing SADS formation also induces cell senescence, making it 

difficult to separate the two processes. For example, we suspect that the loss of LaminB1 

may play a role in SADS formation (as discussed in Chapters II and III) but since 
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knocking down or overexpressing levels of LaminB1 results in senescence (Dreesen et 

al., 2013; Shah et al., 2013; Shimi et al., 2011), this will likely not resolve if SADS form 

in response to changes in LaminB1levels or the onset of senescence itself.    

Another example of being unable to assay when SADS form in relation to senescence 

occurs with manipulations to a protein family that could play a role in facilitating SADS 

formation. HMGA family proteins are architectural chromatin factors normally 

associated with open chromatin that can organize large-scale domains of DNA (Reeves, 

2010). This family of proteins also contains three characteristic AT-hook domains that 

bind to the minor grove of DNA within AT rich sequences (Reeves, 2001), a motif that is 

enriched in satellite DNA. Hence, these proteins may play a role in SADS formation 

because levels of HMGA increase with senescence and help to reinforce the state of 

permanent cell cycle arrest (Narita et al., 2006). While it would be logical to ectopically 

express HMGA in cycling fibroblasts to determine if it plays a role in SADS formation, 

its overexpression can cause senescence (Narita et al., 2006). Once again, this would 

make it difficult to determine if increased levels of HMGA are key to SADS formation or 

if SADS form in response to the onset of senescence. What is clear and exciting from this 

challenge, however, is that SADS and cell senescence are very tightly linked and difficult 

to separate. 

Heterochromatin Changes Characteristic of SADS 

Here we showed that satellite distension represents a fivefold loss of DNA compaction 

that is much larger in scale than changes in chromatin packaging associated with gene 
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expression. Hence, it was surprising that despite these cytological scale changes to 

satellite DNA, levels of canonical histone modifications (H3K9Me3, H3K27Me3, and 

H3K4Me3) did not change in our analysis of published data on senescent cells (Figure 

2.7d)(Chandra et al., 2012). Further highlighting this, loss of DNA methylation on 

satellites in ICF cells did not result in distension of interphase satellites and a DNA 

methylation-sensitive Southern blot for both cycling and senescent cells did not reveal 

notable differences in methylation patterns (Figure 2.7g,h). 

In addition, our work shows that SADS formation occurs within 48hours of the last S-

phase in a process that is independent from both the remodeling of chromatin into SAHFs 

and other heterochromatin loss that occurs throughout the genome much later in 

senescence (Figure 2.2, 2.3, 2.S1, 2S3)(De Cecco et al., 2013; Funayama et al., 2006; 

Narita et al., 2003). While the changes observed in satellite packaging appear unique and 

may serve as a model to illuminate higher-order chromatin folding above the 10 nm fiber, 

probing SADS with genome wide approaches like chromosome conformation capture (to 

assay differences in the interactions and looping of satellites in cycling versus senescent 

cells) are technically challenging due to the highly repetitive and often unannotated 

sequences that comprise satellite DNA. However, initial super resolution microscopy 

images appear to support that this chromatin comprises a series of globular domains that 

become apparent as the links between them distend and linearize in senescent cells. 

Finally, our findings point to the possibility that some factor(s) is perturbed in satellite 

sequences at the onset of senescence which normally plays a role in maintaining the 

higher-order heterochromatin structure observed in cycling cells.   
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Expanding SADS as a New Marker of Senescence 

The work presented here establishes SADS as a reliable single-cell marker of senescence 

that unlike other markers has been characteristic of every type of senescence examined, 

including in vivo. Consequently, we have already applied SADS as a marker for 

senescence in DS (Chapter IV), and preliminary collaborative efforts have used this 

marker to identify senescence in mouse bone marrow cells and spleen tissue sections. 

Furthermore, the detection of SADS in live cells could greatly increase this markers 

utility and applicability. One strategy for accomplishing this would be to create cell lines 

that stably express CENP-B conjugated to GFP, allowing for the visualization of SADS 

formation in real-time. As SADS formation is an early event in senescence and our data 

show that the senescence process happens relatively quickly it is of interest to determine 

the time scale required for satellite distension to take place. 

In addition, while SADS appears both dramatic and unambiguous under the microscope 

to our trained eyes, more quantifiable parameters to define when a cell is SADS positive 

would be helpful. For example, development of  algorithms for high throughput 

microscopy would allow for the analysis of a large number of cells for senescence, a 

technique that has been used by other labs to examine the frequency of senescence in 

various cells and tissues (Freund et al., 2012; Zhao et al., 2010).   

Is DS Characterized by Increased Levels of Senescence? 

It is noteworthy that even though Down syndrome has features of premature aging and 

tumor resistance, there are few examples where this common genetic disorder has been 
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considered in relation to cell senescence (Chapter IV). Based upon the synthesis of the 

existing literature we believe that there is good rational for more focused attention to this 

question and higher levels of senescence may be present in both cultured DS cells and in 

vivo. While our preliminary studies using SADS as a marker showed that cultures of 

pluripotent and randomly differentiated stem cells contain substantial amounts of 

senescent cells, the DS iPSC system proved a difficult one in which to evaluate whether 

higher levels of senescence are associated with trisomy 21. However, initial results 

suggest that DS fibroblasts are more susceptible to prolonged oxidative stress which has a 

greater effect on shortening their lifespan in culture. Hopefully, with the completion of a 

few more key experiments we can establish that increased cell senescence is a feature of 

DS cells and thus prompt further studies of the role of senescence in the clinical 

pathology of DS. 
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