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Abstract. This work demonstrates a highly nonrandom 
distribution of specific genes relative to nuclear do- 
mains enriched in splicing factors and poly(A) ÷ RNA, 
and provides evidence for the direct involvement of 
these in pre-mRNA metabolism. As investigated in 
hundreds of diploid fibroblasts, human collagen Ietl 
and 13-actin DNA/RNA showed a very high degree of 
spatial association with SC-35 domains, whereas three 
nontranscribed genes, myosin heavy chain, neuro- 
tensin, and albumin, showed no such preferential asso- 
ciation. Collagen Itxl RNA accumulates within the 
more central region of the domain, whereas [3-actin 
RNA localizes at the periphery. A novel approach re- 
vealed that collagen RNA tracks are polarized, with the 
entire gene at one end, on the edge of the domain, and 
the RNA extending into the domain. Intron 26 is 

spliced within the RNA track at the domain periphery. 
Transcriptional inhibition studies show both the struc- 
ture of the domain and the gene's relationship to it are 
not dependent upon the continued presence of accumu- 
lated collagen RNA, and that domains remaining after 
inhibition are not just storage sites. Results support a 
model reconciling light and electron microscopic obser- 
vations which proposes that transcription of some spe- 
cific genes occurs at the border of domains, which may 
also function in the assembly or distribution of RNA 
metabolic components. In contrast to the apparently 
random dispersal of total undefined hnRNA synthesis 
through interdomain space, transcription and splicing 
for some genes occurs preferentially at specific sites, 
and a high degree of individual pre-mRNA metabolism 
is compartmentalized with discrete SC-35 domains. 

ESPITE the remarkable complexity of critical func- 
tions the nucleus performs, a simplified view of 
the extra-nucleolar nucleoplasm has persisted for 

many years. The idea that there exists some higher-level 
organization of the nucleoplasm that facilitates basic nu- 
clear functions has been proposed for some time (see for 
example Comings, 1980; Blobel, 1985; Jackson, 1991; Law- 
rence et al., 1993), but the extent to which it exists is still 
largely unknown. It is known that the distributions of het- 
erochromatin and satellite sequences are cell type specific 
(Manuelidis, 1984), that chromosomes occupy discrete nu- 
clear "territories" (Cremer, 1982; Lichter, 1988; Pinkel et 
al., 1988), and that "chromosome position effects" can im- 
pact the expression of transgenes for largely unknown rea- 
sons (for example AI-Shawi et al., 1990). Relative to over- 
all nuclear space, individual genes do not localize to 
precise coordinates, but distribute within preferred nu- 
clear regions (Ward, W. S., J. A. McNeil, and J. B. 
Lawrence, manuscript submitted for publication; Lawrence 
et al., 1993). However, as explored in this work, greater or- 
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der may become apparent when sequences are localized 
relative to defined internal reference points. 

While some studies of nuclear structure investigate 
chromosomes or DNA within the nucleus, others focus on 
the localization of RNA or RNA metabolic components. 
These two broad aspects of nuclear structure are generally 
studied as separate entities and may in fact be indepen- 
dent of one another. Alternatively, these two compart- 
ments may be integrated, such that there is a nonrandom 
spatial arrangement of specific DNA sequences relative to 
nuclear regions devoted to the assembly, storage, trans- 
port, or activity of RNA metabolic components. This work 
investigates the possibility that there is nonrandom distri- 
bution of protein coding genes and/or their RNAs relative 
to discrete domains highly enriched in pre-mRNA splicing 
components and poly(A) ÷ RNA. 

It is now well established that many pre-mRNA splicing 
components (Spector 1990; Fu and Maniatis, 1990) as well 
as poly(A) ÷ RNA (Carter et al., 1991; Visa et al., 1993) are 
highly concentrated at ~30-40 major nuclear sites or do- 
mains, in addition to a less concentrated signal dispersed 
throughout the nucleoplasm (reviewed in Lawrence et al., 
1993; Spector, 1993; Carter, 1994; Fakan, 1994). Recent ev- 
idence indicates the presence of other nuclear matrix and 
SR proteins involved in pre-mRNA processing (Blencowe 
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et al., 1994), poly(A) ÷ RNA binding protein (Krause et 
al., 1994), and hyper-phosphorylated RNA polymerase II 
(Bregman et al., 1995) concentrated in these discrete do- 
mains. Earlier electron microscopic studies had described 
RNP-containing structures within the nucleoplasm (Bern- 
hard, 1969; Fakan and Bernhard, 1971; Fakan and Puvion, 
1980) termed interchromatin granule clusters (IGC) 1 and 
smaller, more amorphous perichromatin fibrils (PF). Al- 
though these may be heterogeneous categories, much evi- 
dence now indicates that the IGC are largely coincident 
with the prominent domains highly enriched in poly (A) 
RNA or spliceosome assembly factor, SC-35 (Spector et 
al., 1991; Visa et al., 1993). This work reflects a twofold in- 
terest in this nucleoplasmic compartment. First, irrespec- 
tive of their precise function, discrete domains detected by 
anti-SC-35 immunofluorescence (Fu and Maniatis, 1990), 
provide internal reference points with respect to which the 
possibility of higher-level genomic organization may be 
explored. Second, the potential function of this nuclear 
compartment in the biogenesis of RNA processing compo- 
nents or in RNA processing itself is of obvious interest. 
The finding that poly(A) ÷ RNA concentrated in these re- 
gions led us to raise the question of a role in pre-mRNA 
metabolism (Carter et al., 1991), an idea which would 
seem to be discounted by earlier observations that short 
pulses of 3H-uridine label primarily the PF, rather than the 
IGC (reviewed in Fakan and Puvion, 1980; Fakan, 1994). 

Biochemical studies indicate that the bulk of poly(A) ÷ 
RNA gives rise to mRNA (for example, Scherrer et al., 
1970; Salditt-Georgieff et al., 1981; reviewed in Brawer- 
man, 1981; Lewin, 1990). However, recently XIST RNA pro- 
vides a precedent for a poly(A) ÷ RNA that functions in 
nuclear structure and appears to be long-lived in the nu- 
cleus (Brown et al., 1992; Clemson et al., in press). Hence, 
the finding of poly(A) ÷ RNA in domains does not un- 
equivocally show the presence of pre-mRNA (mRNA), 
and the question of whether mRNA metabolism is associ- 
ated with this nuclear compartment remains a subject of 
interest and debate. 

Studies which investigate broad classes of RNA, rely on 
drug inhibition, or introduce exogenous sequences in a for- 
eign structural context yield readily detectable signals which 
can provide a general view, but may yield ambiguous con- 
clusions. Furthermore, such studies cannot address the 
fundamental question of whether specific genes localize to 
and are transcribed in specific places. This requires an ap- 
proach to identify directly the site of transcription and 
RNA processing for specific protein coding genes. Such 
methods showed the transcription and splicing site for fi- 
bronectin RNA to exhibit a high degree of association, 
mostly at the SC-35 domain periphery, leading us to sug- 
gest that there may be a nonrandom arrangement of some 
genetic loci relative to these regions (Lawrence et al., 
1993; Xing et al., 1993). Although not interpreted in this 
way, the prior observation of c-fos RNA near snRNP 
"speckles" (Huang and Spector, 1991) is consistent with 
this hypothesis. 

I. Abbreviat ions  used in this paper: 3-D, three-dimensional; cMHC, car- 
diac myosin heavy chain; CSK, cytoskeletal; DAPI, 4,6-diamidine-2-phen- 
ylindole; IGC, interchromatin granule clusters; PAF, paraformaldehyde; 
PF, perichromatin fibrils; VRC, vanadyl ribonucleoside complex. 

To investigate the relationship of other endogenous genes 
to this nuclear compartment, and to address key points 
concerning the function(s) of domains, we applied and fur- 
ther developed powerful molecular cytogenetic methods 
for precise cellular localization of specific genes, RNAs, 
and proteins (Langer-Safer et al., 1982; Lawrence et al., 
1989; Carter et al., 1991; Xing et al., 1993). The resulting 
evidence demonstrates a nonrandom organization of spe- 
cific sequences relative to these internal nuclear land- 
marks, and clearly demonstrates that the transcription and 
splicing of some pre-mRNAs is directly associated with 
them. Results further demonstrate that collagen RNA 
tracks are polar structures which extend beyond the gene 
and show a reproducible orientation with SC-35 domains. 

Materials and Methods 

Cell Culture and Fixation 
Human diploid cultures either from lung (WI-38, CCL 75, American Type 
Culture Collection [ATCC]), Rockville, MD) or from foreskin (Detroit 
551, CCL 110) were grown in Dulbecco's Modified Eagle's medium, high 
glucose (DME-high) supplemented with 10% FCS (GIBCO BRL, Gaith- 
ersburg, MD), and 10 ~g/ml gentamicin (GIBCO BRL). Before fixation, 
cells were treated with cytoskeletal (CSK) buffer (100 mM NaC1, 300 mM 
sucrose, 3 mM MgCI2, 10 mM Pipes, pH 6.8; Fey et al., 1986) containing 
0.5% Triton X-100 and 2 mM vanadyl ribonucleoside complex (VRC; 
GIBCO BRL), for 0.5-5 min on ice. Cells were then immediately fixed in 
4% paraformaldehyde (PAF) in 1 x PBS (pH 7.4) for 10 min and stored at 
4°C in 70% EtOH until used. 

Probes and Antibodies 
A genomic probe for the human neurotensin gene, hNT14, which encom- 
passes exons 1-3 was obtained from Dr. P. Dobner (University of Massa- 
chusetts Medical School, Worcester, MA). For detection of the a-cardiac 
myosin heavy chain gene, a genomic clone containing a 12.3-kb fragment 
encompassing 10.5 kb of the 5' end of the gene was obtained from Dr. L. 
Leinwand (University of Colorado, Boulder, CO). A 20-kb genomic clone 
containing the human albumin gene, HSA-10, was obtained from ATCC. 
Specific localization of the [~-actin locus was accomplished using a 14-kb 
genomic probe (pl4T B-17) encompassing the 6-kb human I~-actin gene 
(Leavitt et al., 1984; Ng et al., 1985). It was provided by Dr. Janet Stein 
(University of Massachusetts Medical School). Studies of the collagen Ial  
gene and/or RNA utilized several probes. A 40-kb cosmid clone contain- 
ing the entire 18-kb human type led collagen gene (CG103) was obtained 
from ATCC. A 1.8-kb human collagen cDNA clone, pH F677, and a 24 kb 
genomic mouse collagen I~1 gene probe encompassing and consisting al- 
most entirely of the homologous mouse collagen gene were provided by 
Dr. William Strauss (Whitehead Institute for Biomedical Research, Cam- 
bridge, MA). Human collagen Icd intron 26-specific probes were gener- 
ated by PCR amplification of intron 26 sequences only, and was provided 
by Dr. David Rowe (University of Connecticut, Farmington, CT). Hybrid- 
ization of specific probes to metaphase chromosomes was used to confirm 
probe specificity for a defined genetic locus, as described elsewhere 
(Johnson et al., 1991, 1993). 

A mouse monoclonal antibody against the spliceosome assembly factor 
SC-35, provided by Dr. T. Maniatis (Harvard University, Cambridge, 
MA) was used to delineate SC-35 domains by immunofluorescence. Anti- 
SC-35 antibody detects a non-snRNP spliceosome assembly factor (Fu 
and Maniatis, 1990) and may detect another structural protein which colo- 
calizes to the same nuclear domains (X.-D. Fu, personal communication). 

Fluorescent In Situ Hybridization and 
Immunofluorescence Staining 
Probes were nick-translated using either biotin-16-dUTP or digoxigenin- 
11-dUTP as the substituted nucleotide. Briefly, for hybridization to DNA, 
cells were heat denatured in 70% formamide, 2x SSC at 70°C for 2 min, 
followed by hybridization with labeled probe in 50% formamide 2× SSC 
for 3 h to overnight at 37°C, as previously described (Johnson et al., 1991; 
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Xing et al., 1993). Hybridized probe was detected using either rhodamine 
or fluorescein conjugated anti-digoxigenin (Boehringer Mannheim Corp., 
Indianapolis, IN) or FITC-conjugated avidin (Boehringer Mannheim) 
(Johnson et al., 1991). In cases where DNA-specific hybridization was de- 
sired, removal of complementary RNA sequences was performed by ei- 
ther 0.07 N NaOH hydrolysis of RNA or incubation in RNAse A before 
hybridization. For RNA-specific hybridizations, no denaturation of cellu- 
lar DNA was done, as previously described (Lawrence et al., 1989). 

We previously reported the colocalization of the fibronectin gene and 
its RNA by targeting a nontranscribed 5' flanking sequence as a probe for 
DNA, and an expressed sequence probe for detection of RNA (Xing et 
al., 1993). This method was supplemented by the development of a se- 
quential hybridization protocol that makes it possible to detect DNA and 
RNA using the identical probe detected with two different fluorochromes. 
Collagen Icd RNA and the gene were detected using the 24-kb genomic 
collagen probe previously described. Nondenatured cells were hybridized 
with the digoxigenin-labeled probe to specifically detect collagen RNA, 
and the hybridized probe then detected using rhodamine anti-digoxigenin. 
The bound fluorescent antibody was then cross-linked by fixation in 4% 
PAF, rendering it impermeable to alkaline hydrolysis. The cells were then 
denatured in 0.07 N NaOH and then hybridized with the same sequence 
labeled with biotin to detect DNA specifically. Biotin was detected using 
FITC-avidin. 

For all experiments, coverslips were rinsed in 4× SSC after the final de- 
tection incubation, when appropriate stained for 30 s in 0.1 p.g/ml 4,6-dia- 
midino-2-phenylindole (DAPI) in PBS and mounted on microscope slides 
in 90% glycerol/10% PBS containing 1 mg/ml phenylene diamine as an 
antioxidant. Slides were stored at -20°C until analysis. 

Microscopy and Image Analysis 
A Zeiss Axioplan microscope equipped with a triple-bandpass epifluores- 
cence filter (Chroma Technology, Inc., Brattleboro, VT) was used for 
sample analysis by both standard and digital imaging microscopy. Digital 
images were captured with a Photometrics series 200 CCD camera (Pho- 
tometrics, Ltd., Tucson, AZ) equipped with a custom-made color filter 
wheel, such that three colors can be captured and viewed simultaneously 
with no optical shift (J. McNeil, personal communication). Care was taken 
to score cells randomly, with the only selection criteria being clear quality 
of the hybridization signal and the SC-35 staining, which was evaluated 
first using separate filter sets. Placement of the signals relative to domains 
was then visualized through the standard microscope using a dual-band 
filter and scored by two investigators independently. 

Scoring was done using a 100x 1.4 N.A. objective, which provides high- 
resolution and shallow depth of field, such that objects more than ~0.5 
microns apart in the Z-axis will appear in a different focal plane (Carter et 
al., 1993). Hence, a significant degree of three-dimensional (3-D) informa- 
tion was discernible as cells were scored. As documented earlier by a thor- 
ough 3-D analysis using deconvolution and 3-D rendering, the SC-35 do- 
mains lie in a single plane in fibroblasts in the lower half of the nucleus 
(Carter et al., 1993), and hence are almost always all in focus in a single 
photograph. Optical sections of nuclei were obtained in 0.2 micron steps 
using a Z-axis stage controller, as detailed elsewhere (Carter et al., 1993). 

As determined by computerized microfluorimetry of ten cells, the sur- 
face area occupied by SC-35 domains averaged 22%. However, correcting 
for the fact that domains have a planar arrangement and appear in the fo- 
cal plane in only 1/3 to 1/2 of the Z-axis using standard microscopy (Carter 
et al., 1993; J. McNeil, unpublished data), the expected random distribu- 
tion of spots which would associate with domains would be ~8-12%. This 
estimate is close to and consistent with the empirical observations pre- 
sented here. 

Resul ts  

The distribution of five single-copy genes and/or their nu- 
clear RNAs was investigated using fluorescence in situ hy- 
bridization to nonsynchronized human diploid fibroblasts, 
using a combination of previously described (Lawrence et 
al., 1989; Johnson et al., 1991; Xing et al., 1993) and new 
techniques (Materials and Methods). Nuclear domains en- 
riched in the spliceosome assembly protein SC-35 were de- 
tected using immunofluorescence with anti-SC-35 anti- 
body (Fu and Maniatis, 1990). For clarity we will refer to 

these regions here as SC-35 domains to distinguish them 
from the more diffuse component seen for a subset of SC- 
35 signal. The SC-35 domains colocalize with discrete nu- 
clear domains that have previously been termed transcript 
domains, which are regions enriched in poly(A) + RNA 
(Carter et al., 1991, 1993), and with the subset of Sm 
speckles that excludes coiled bodies (Lerner et al., 1981; 
Spector et al., 1983: Nyman et al., 1986; Fu and Maniatis, 
1990). Generally 100-200 signals were examined by two 
investigators using 2-D analysis, and where necessary 3-D 
sectioning was done on a smaller cell sample. As previ- 
ously described (Xing et al., 1993), "associated" denotes 
that the signal appears to contact the domain with no visi- 
ble separation between the SC-35 domain and the gene/ 
RNA, as opposed to "separate" in which a space between 
them is visible by fluorescence microscopy. 

Localization of  Five Genetic Loci Relative to 
SC-35 Domains 

The first set of experiments addressed the question of 
whether there was a nonrandom organization of specific 
genetic loci relative to SC-35 domains. To investigate this 
we examined quantitatively the distribution of five differ- 
ent sequences, including two transcriptionally active and 
three inactive genes. Since DNA signals are not detected 
unless cellular DNA is denatured (Lawrence et al., 1989; 
Xing et al., 1993), the presence of signal in the absence of 
denaturation confirms the expression of nuclear RNA 
from the gene. In all cases below, the in situ analysis of 
RNA expression was consistent with the predicted expres- 
sion pattern of that gene in human fibroblasts. As shown 
in other work from our lab and confirmed below, specific 
pre-mRNA and gene signals overlap, and were therefore 
only separately visualized where necessary. 

Albumin. The albumin gene, expressed only in liver cells 
(see Hawkins and Dugaiczyk, 1982), is transcriptionally in- 
active in human diploid fibroblasts. Hybridization gener- 
ally produced two small fluorescent spots in samples 
where cellular DNA was denatured, in keeping with sin- 
gle-copy gene detection. As illustrated in Fig. 1 F, and 
summarized in Table I, analysis of 160 signals for the spa- 
tial relationship of this gene to SC-35 domains showed 
86% of genes clearly separate from domains. The remain- 
ing signals (14%) showed no visible separation by fluores- 
cence microscopy, and hence were scored as associated. 
Interestingly, in most cells the gene localized near the nu- 
clear periphery (Fig. 1 F), in a region devoid of poly(A) ÷ 
RNA/splicing factor-rich domains in human fibroblasts 
(Carter et al., 1991, 1993), and an area in which hetero- 
chromatin is known to concentrate in many cell types 
(Lentz, 1971). 

In human fibroblasts, poly(A) ÷ RNA/SC-35 domains 
occupy ~ 5 %  of nuclear volume, as measured in deconvo- 
luted and 3-D restored digital images (Carter et al., 1993). 
However, as considered in Materials and Methods, based 
on both average surface area and Z-axis distribution of do- 
mains using the optics applied here, a spot randomly dis- 
tributed in the nucleus would appear associated with SC- 
35 domains on the order of 8-12% of the time (see Materials 
and Methods). We conclude, therefore, that the distribu- 
tion of the albumin gene with respect to SC-35 domains is 
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Figure 1. Localization of genes and/or their transcripts relative to SC-35 domains. Genes were probed in normal human diploid fibro- 
blasts using fluorescence in situ hybridization in conjunction with immunofluorescence staining using an antibody to SC-35. (A) Col- 
lagen Icd transcripts (red), visualized using a full length genomic probe, colocalize with SC-35 domains (green, overlap of red and green 
appears yellow) (2,500x). (B) Collagen Ia l  transcripts (green) hybridized with a cDNA probe (2,500x). (C) Collagen Ic~l gene (red) lo- 
calizes at the edge of SC-35 domains (green) (2,500×). (D and E) Optical sections along the Z-axis of a single SC-35 domain (green) il- 
lustrating the location of (D) collagen Icd transcripts (red) that are coincident in all planes with thc domain, and (E) the collagen Icd 
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Table L Localization of Genes and~or RNAs Relative to SC-35 Domains 

No. scored % Associated % Separate Comments 

Albumin 

c-Myosin Heavy Chain 

Neurotensin 

Actin Total 
DNA or DNA/RNA 
RNA 

Collagen Total 
RNA 
DNA 

160 14 86 Nuclear periphery 

217 22 78 Near nucleolus 

154 11 89 Nuclear periphery 

290 89 11 
155 94 6 Edge of SC-35 domain 
135 83 17 Edge of SC-35 domain 

239 99 1 
135 100 0 Within domain interior 
104 98 2 Edge of domain 

in keeping with a random distribution or a preferential sep- 
aration from domains that falls within the limitations of our 
light microscopic technique (Materials and Methods). 

Cardiac MHC. The human cardiac myosin heavy chain 
(cMHC) gene is expressed exclusively in cardiac or skele- 
tal muscle and thus is inactive in fibroblasts (Lompre et al., 
1984; Saez et al., 1987). Unlike the more peripheral albu- 
min gene, the MHC gene distributed more internally and 
frequently near the nucleolus, consistent with its chromo- 
somal location close to the ribosomal RNA genes on chro- 
mosome 14. As illustrated in Fig. 1 G, despite the fact that 
this gene is in a nuclear region where there is a preponder- 
ance of poly(A) + RNA/SC-35-rich domains in human fi- 
broblasts (Carter et al., 1991, 1993), the vast majority 
(78%) of cMHC genes were not associated with any SC-35 
domain. Under the optics used, 22% appeared to be in 
contact with a domain, and were hence scored as associ- 
ated (Table I). While this frequency is slightly elevated 
compared to albumin, it does not differ clearly from ran- 
dom, especially given the localization of the gene in a re- 
gion enriched in domains. Localization of cMHC near the 
nucleolus is likely related to its linkage to the rRNA genes, 
but is also consistent with a localization with extra-nucle- 
olar heterochromatin. 

Neurotensin. The neurotensin gene, transcribed only in 
certain types of neural cells (Kislauskis et al., 1988), is 
transcriptionally inactive in human diploid fibroblasts. 
Analysis of over 100 cells showed 89% of neurotensin 
gene loci visibly separate from the SC-35 nuclear domains 
(Table I), with only 11% appearing to contact domains. 
Most neurotensin signals were localized to the extreme pe- 
riphery of the nucleus, close to the nuclear envelope. 
Hence the inactive neurotensin gene is not preferentially 
associated with SC-35 domains, and may reside in or near 
peripheral heterochromatin. 

[3-actin. The location of the human p-actin gene and 
RNA, which is expressed in fibroblasts, was examined us- 
ing a 14-kb genomic probe that specifically detects the lo- 
cus encompassing the 6-kb p-actin gene as confirmed by 
hybridization to metaphase chromosomes (Fig. 1 H). Nu- 
clear hybridization to the p-actin gene produced two small 
spots, and hybridization to RNA produced two small foci 
only slightly larger than the DNA. Detection of DNA and 
RNA simultaneously showed the same number of signals 
as when RNA was detected alone, confirming that the 
DNA and RNA signals overlapped. Initial analysis of 155 
p-actin gene or gene and RNA signals showed a very high 
degree of association (94%). Subsequent hybridizations 
detecting p-actin RNA alone (non-denatured samples) 
confirmed that the gene was transcriptionally active and 
that the foci of nuclear RNA showed a high degree of as- 
sociation. Of 135 RNA signals scored, 83% were associ- 
ated. In total 290 actin signals were scored by three investi- 
gators, with an average of 89% association with SC-35 
domains (Table I). 

For several reasons the details of the spatial association 
are important (see Discussion). All associated signals were 
categorized as either within, meaning the signal overlapped 
the interior or central SC-35 domain, or border, indicating 
it localized at the extreme periphery or edge of the domain 
(Xing et al., 1993). As illustrated in Fig. 1, l -L ,  ~94% of 
the associated actin gene or RNA signals localized at the 
border, directly adjacent or abutting the boundary of the 
SC-35 rich region, whereas only 6% appeared inside the do- 
mains (Table I). Most signals associated with a large do- 
main, with ~16% associated with a small but discrete SC-35 
domain (see Fig. 1, I and J, inset). The gene or RNA sig- 
nals from homologous chromosomes generally did not asso- 
ciate with the same domain but with two different domains, 
and while the two alleles generally were both associated, in 

gene (red) that localizes to the edge of the domain (5,000x). (F) Hybridization of the albumin gene (red) shows that it is not associated 
with SC-35 domains (green) and frequently appears at the nuclear periphery. (G) MHC gene (red) does not associate with the SC-35 do- 
mains (green) and frequently localizes to the inner regions of the nucleus near the nucleolus (2,500×). (H) Metaphase chromosomes hy- 
bridized with a genomic p-actin probe (red) demonstrating this probe detects a single locus. The location on Chr. 7p is consistent with 
the reported location of the functional gene, although using fluorescence mapping we observe the gene in a slightly more telomeric po- 
sition. (2,500×). (l-K) Foci of actin RNA (green) occur most frequently at the edge of the SC-35 domains (red), but occasionally within 
smaller domains (overlap of red and green appears yellow). The lower insets show detail of overlap (5,000x). (/) three nuclei with four 
of five signals associated (arrow points to the nonassociated signal) (1,250×). (J-K) images were processed to enhance contrast 
(2,500x). (L) Actin RNA/DNA (red) associated with SC-35 domains (green) in a nonenhanced image (2,500x). Bar: (A-C, F-H, J-L) 
2.5 p~m; (/) 5 p~m; (D, E, insets l-K) 1.25 p.m. 
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Figure 2. (A) Collagen Icd intron 26 probe (red) and collagen Icd cDNA (green, overlap of red and green appears yellow) simulta- 
neously hybridized in human fibroblasts (2,500x). Insets show additional examples of intron sequences (red) and cDNA sequences 
(green) from other cells (4,000x). Note that intron sequences are generally localized to the edge of the track. (B) Colocalization of col- 
lagen Icd intron 26 sequences (red) and SC-35 domains (green) (2,500x). Inset shows enlarged example from a different cell, illustrating 
intron signal at the inner periphery of the domain (4,000x). (C and D) Collagen I~1 gene (blue-green) remains associated with SC-35 
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occasional ceils one allele associated and the other did not 
(see bottom cell, Fig. 1/).  

Collagen Ial. The distribution of the transcriptionally 
active collagen type In1 gene/RNA was investigated using 
a genomic probe encompassing the transcription unit for 
this 18 kb gene (Barsh et al., 1984), which detected two 
specific D N A  or concentrated RNA signals in most nuclei. 
Simultaneous hybridization to DNA and RNA, versus 
D N A  or RNA alone, confirmed that the gene signal was a 
small spot coincident with a larger accumulation of RNA. 
Although not highly elongated tracks, the RNA accumula- 
tions were substantially larger than the small foci observed 
for actin RNA, and were track-like in that they often had 
some longitudinal axis. As illustrated in Fig. 1, A and B 
and quantitated in Table I, essentially all collagen RNA 
signals spatially associated with large distinct SC-35 domains. 
In contrast to actin RNA, collagen RNA consistently ap- 
peared to occupy the inner regions of the domains. 

Using high resolution optics which allow discrimination 
of objects more than 0.5 microns apart in the Z-axis, the 
collagen RNA signal consistently appeared to be within 
the SC-35 domain. This conclusion was confirmed by opti- 
cal sectioning of several cells by digital imaging micros- 
copy (Fig. 1 D) that showed the collagen RNA occupied 
the same focal planes as the SC-35 enriched region, and 
therefore overlapped it in 3-D space. The domains with 
which collagen RNA associated were among the largest 
within the nucleus (,--d-3 microns; Carter et al., 1993). 
Some collagen RNA loci or tracks had a similar size and 
shape to their associated domains (compare Fig. 1 B), al- 
though sometimes (in some experiments as high as 80%) 
the collagen nuclear RNA appeared to concentrate in one 
part of the SC-35 domain (Fig. 1, A and D). 

It is important that sequence distributions be deter- 
mined in many cells (see Discussion). However, even in 
nonsynchronized cultures, the gene distributions were re- 
producible from experiment to experiment and distinct 
distributions were obvious from just brief viewing blind 
through the microscope. Irrespective of the function of do- 
mains, these results demonstrate a nonrandom organiza- 
tion of genomic loci relative to splicing factor rich do- 
mains. While we do not suggest that all transcriptionally 
active genes or pre-mRNAs associate with domains (see 

Discussion), these and other results support that the asso- 
ciation of the two active genes with SC-35 domains, as con- 
trasted with the three inactive genes, is not coincidental 
but related to their production or maturation of pre- 
mRNA. 

Structural Relationship o f  CoUegen I a l  Transcription 
and Splicing with SC-35 Domains and R N A  Tracks 

The collagen In1 gene is one of the cell's most highly ac- 
tive genes, accounting for approximately 4% of total mRNA 
in fibroblasts and producing an RNA with 51 introns 
(Genovese et al., 1989). From some perspectives it might 
be considered surprising to find pre-mRNA from such a 
highly active gene associated with SC-35 domains (see 
Discussion). The collagen Ietl gene and RNA were ana- 
lyzed in much greater detail to address several key points 
as to the relationship of structure and function between 
RNA foci or tracks and the SC-35 domains. 

Transcripton at the Border o fSC-35 Domains 

To determine the precise spatial relationship of the col- 
lagen gene relative to the SC-35 domain, hybridizations 
were performed under conditions which remove RNA and 
denature cellular DNA, using the same full-length ge- 
nomic probe. As shown directly in Fig. 1 C, the collagen 
gene signal was associated with the prominent SC-35 do- 
mains in ~99% of cells. But unlike the RNA that localized 
within the domain, the DNA signals localized as a spot at 
the domain border, with no visible separation between the 
gene and the edge of the SC-35 region. It was not possible 
to discern unequivocally on which side of the border the 
gene was positioned, since it sometimes appeared on the 
outer border, but frequently appeared just within the bor- 
der. Interestingly, when the domain with which the gene 
was associated was elongated, in most cases the gene posi- 
tioned at one end of the linear axis (see Fig. 1 C). 

A curious and interesting aspect of our results is that in 
the vast majority of cells the collagen gene appeared adja- 
cent to the domain in the X-Y plane, such that the gene 
was in focus with the boundary of the domain. The gene 
only rarely appeared to be above or below the domain. 
This impression was confirmed by optical sectioning of nu- 

domains (red) after three hours inhibition with actinomycin D in (C) diploid and (D) tetraploid (three signals visible) fibroblasts 
(2,500x). (E and F) Collagen Icd gene (blue-green) with transcripts (red) colocalized by sequential hybridization with the same genomic 
probe encompassing the collagen 1A1 gene in primary mouse fibroblasts (2,500x). Even in the polyploid cell (F) where RNA accumu- 
lations appear as relatively small foci, there are several examples of gene/RNA polarity. Insets show enlarged examples illustrating the 
RNA signal extending beyond the gene signal. (G) Hybridization to cytoplasmic and nuclear collagen Ietl RNA (red); and collagen Ial  
gene (green, overlap of red and green appears yellow) in human fibroblast (1,250x). Inset shows magnification of RNA associated with 
the nuclear envelope (see text). (H) Schematic diagram summarizing spatial arrangements of collagen Ietl gene transcription and RNA 
splicing relative to domains identified by immunofluorescence to splicing assembly factor, SC-35. Transcription localizes at the bound- 
ary of the SC-35-rich domain. Splicing, as studied for intron 26, occurs at the domain periphery, and spliced RNA enters the central do- 
main. Since gene and intron RNA are both peripheral, splicing may be either co-transcriptional (top) or posttranscriptional (bottom). (I) 
Model for the subcompartmentalization of individual domains, as it relates to earlier light and electron microscopic observations, pro- 
posing that transcription of some specific pre-mRNAs occurs at the border of discrete concentrations of SC-35. The SC-35 core may 
have additional functions such as in the assembly or distribution of splicing components or mRNA transport. Upper image summarizes 
results of this work. Collagen and p-actin RNA are shown associated with the same domain for purposes of illustration only. Results il- 
lustrate their differential spatial arrangement relative to the SC-35 domains, and the position of gene and RNA. Middle image (from 
Carter et al., 1993), shows SC-35 as an inner core of a slightly larger domain defined by hybridization to poly(A) ÷ RNA. Lower image il- 
lustrates the potential correlation to electron microscopic structures, with IGC corresponding to the SC-35 core, and perichromatin 
fibrils to the rim where transcription occurs, for some specific genes. Bar: (A-F) 2.5 Ixm; (G) 5 ~m; (insets A, B, E-G) 1.67 ixm. 
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clei, as illustrated in Fig. 1 E which showed the gene next 
to the domain, as opposed to the RNA that lay within the 
domain (Fig. 1 D). These results clearly demonstrate that 
the transcription site of collagen is not only associated 
with SC-35 domains but displays a reproducible spatial po- 
sition at the boundary or periphery of the SC-35 rich re- 
gion. This point is pivotal to building a model of the structure 
and function of SC-35 domains (Discussion and Fig. 2/) .  

Reproducible Polarity and Orientation of Collagen 
RNA Tracks 

Since the collagen gene signal positions at the edge of the 
domain and the collagen RNA concentrates within it, this 
strongly implies a polarity of the gene position relative to 
the RNA accumulation. The question of whether the RNA 
accumulation extends beyond the dimensions of the gene 
is important to understanding whether it comprises strictly 
nascent transcripts or a posttranscriptional accumulation 
of RNA. The ,'-48-kb collagen gene provides an ideal 
model to examine this, since overwhelming evidence indi- 
cates that sequences of this relatively small size are below 
the resolution of the light microscope, and produce just a 
single round spot of signal in unfractionated interphase 
nuclei (Lawrence et al., 1988, 1990; Trask et al., 1991; Wie- 
gant et al., 1992; Gerdes et al., 1994). As expected, in nu- 
merous experiments the genomic probe encompassing the 
entire transcribed region of collagen Ietl consistently ap- 
peared as a small round spot (Figs. 1 C and 2, E and F). 
That the gene was not packaged as a large extended loop 
was further confirmed by experiments in which hybridiza- 
tion of a 5.6-kb sequence near the middle of the gene pro- 
duced overlapping signal with hybridization to the rest of 
the sequences from the full-length genomic probe (not 
shown). 

To compare the DNA and RNA signals by the most di- 
rect means possible, a novel procedure involving sequen- 
tial hybridization was developed which allowed simulta- 
neous visualization of DNA and RNA in different colors 
using the same sequence as a probe (see Materials and 
Methods). A 24-kb mouse genomic probe encompassing 
almost exclusively the full transcription unit of the col- 
lagen gene (~20 kb) was used for this purpose in mouse fi- 
broblasts. Results were striking. As shown in Fig. 2, E and 
F, this revealed that the collagen gene was clearly posi- 
tioned at or very near one end of the RNA "track." This 
was the case in 124 out of 145 cases examined. As illus- 
trated in the polyploid cell shown in Fig. 2 F, even in a cell 
where the RNA signals are just small foci with no appar- 
ent linear axis, a prominent accumulation of RNA is most 
frequently observed to the side of the gene signal, produc- 
ing an appearance of a comet consisting of a gene and a 
trailing track of RNA. 

This clear polarity of the gene relative to the RNA track 
is consistent with and confirms the above observations 
which independently showed the collagen gene at the 
boundary of an SC-35 domain and the RNA within the do- 
main. These experiments support that collagen RNA tracks 
or foci are formed by an accumulation of RNA which ex- 
tends from and beyond the dimensions of the gene; hence 
even small foci may be RNA accumulations at some post- 
transcriptional step, rather than solely nascent transcripts 

directly on the gene. These RNA tracks extend vectorially 
from the gene into the SC-35 domain. 

Collagen lal  RNA Splicing in the Domain Periphery 

Why would there be an accumulation of RNA adjacent to 
the gene? Does the RNA track contain both introns and 
exons, spliced mRNA, or might this be an accumulation of 
excised introns? To address these questions and determine 
directly whether RNA splicing localized with the domain, 
a series of experiments was done using a combination of 
genomic, eDNA and intron probes. Sequences detected 
with a eDNA probe showed high concentrations through- 
out much of the SC-35 domain, similar to RNA detected 
with the genomic probe (Fig. 1 B). Direct comparison of 
the signal from the eDNA and full-length genomic probes 
in two colors showed that these completely overlap (not 
shown). This demonstrates that no appreciable portion of 
the collagen Ietl RNA tracks consisted of accumulated in- 
trons alone, ruling out the possibility that RNA within the 
domain consisted of excised introns. 

Analysis was next done using an intron-only probe 
which detected sequences from intron 26 (143 bp). As il- 
lustrated in Fig. 2 B, colocalization of intron sequences rel- 
ative to SC-35 demonstrated that, in contrast to results 
with the eDNA and genomic probes, the intron was de- 
tected as a small focal signal in the periphery of the do- 
main, rather than broadly throughout the central domain. 
This peripheral concentration was observed in the vast 
majority of cells; only infrequently was there a weaker more 
dispersed signal within the domain. Comparison of intron 
signal directly with eDNA showed that intron 26 se- 
quences occupied only a portion of the track defined by 
the cDNA (Fig. 2 A), with intron consistently concentrated 
towards one end. 

The absence of intron from a portion of the eDNA track 
indicates that splicing of this intron is occurring within the 
track. Since collagen RNA tracks associate with SC-35 do- 
mains, both splicing and transcription of collagen RNA oc- 
curs in intimate association with the domain, generally 
near the periphery, as schematically illustrated in Fig. 2 H. 
Two versions of the model are presented, illustrating 
cotranscriptional splicing of introns restricted to nascent 
transcripts on the gene (top) or posttranscriptional splicing 
at the periphery of the domain (bottom). Given that both 
gene and intron RNA localize near the domain periphery, 
this indirectly indicates that splicing of intron 26 is spa- 
tially proximal to the gene, if not at the gene itself. Cotrans- 
criptional splicing is known to occur for some RNAs 
(Beyer and Osheim, 1988); however because the intron 
may extend slightly further into the domain, and because it 
is possible that the RNA's  entry into a splicing factor-rich 
region is related to its splicing, from our data either ver- 
sion of the model is plausible. In both versions, the bulk of 
the RNA throughout the domain has been spliced, specifi- 
cally with respect to intron 26. 

RNA Tracks Extend into the Domain but Not to the 
Nuclear Envelope 

The polar relationship between the collagen gene and its 
RNA accumulation suggests that there is movement  of 
the RNA and gene with respect to one another, such that 
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the RNA extends from the gene into the domain in a vec- 
torial manner. Consistent with the observation that SC-35 
domains do not position adjacent to the nuclear envelope 
(Carter et al., 1993), collagen RNA tracks, which occupy 
SC-35 domains, do not appear to extend to the nuclear en- 
velope. As shown in Fig. 2 G, dispersed collagen RNA sig- 
nal is sometimes observed which may represent nuclear 
RNA in transport towards the nuclear envelope. How- 
ever, no one clear track is seen to the envelope, suggesting 
that this step may occur very quickly and/or the RNA 
could disperse in multiple directions, consistent with previ- 
ous results for endogenous fibronectin RNA (Xing and 
Lawrence, 1993; Xing et al., 1993). Fig. 2 G shows a ring of 
collagen RNA studding and encircling the nuclear enve- 
lope (inset); to the extent that this may reflect RNA as, or 
shortly after, it exits the nucleus, this would suggest that 
collagen RNA exits many or all of the nuclear pores and 
not just a specific region. While it was occasionally ob- 
served that there was more RNA in the cytoplasm nearest 
the nuclear RNA track, this was not commonly observed, 
and the distribution of the RNA in the cytoplasm was 
most consistent with random association of the mRNA 
with the endoplasmic reticulum (Fig. 2 G). As viewed in 
two dimensions, no specific orientation of the gene and 
RNA tracks relative to the nuclear envelope was noted, al- 
though more analysis would be required to demonstrate 
this rigorously. 

In summary our results indicate that visible nuclear col- 
lagen RNA tracks lead into SC-35 domains, but do not di- 
rectly extend to the nuclear envelope. 

The Collagen Ia l  Gene Remains 
Associated with a Prominent SC-35 Domain after 
Transcriptional Inhibition 

Finally we investigated whether the collagen gene re- 
mained associated with SC-35 domains in cells treated to 
inhibit transcription. As considered under discussion, such 
studies have produced variable and enigmatic effects on 
domain structure (Lawrence et al., 1993). Several studies 
report that IGC become fewer and larger and correlate 
these with the round prominent SC-35 domains observed 
after inhibition (Davis et al., 1993; Visa et al., 1993; Huang 
et al., 1994). In one case these studies have been inter- 
preted to support that the large prominent SC-35 domains 
or IGC which exist in uninhibited cells are unassociated 
with pre-mRNA metabolism, but are sites devoted to stor- 
age of splicing factors (Huang et al., 1994; reviewed in Mat- 
taj, 1994). To provide a critical test of this interpretation of 
inhibition studies, we colocalized the collagen gene and 
SC-35 after transcriptional inhibition. This experiment si- 
multaneously addresses two other key questions: (a) Is the 
domain of SC-35 an accumulation of splicing factors de- 
pendent on the continued presence of accumulated col- 
lagen RNA? (b) Is the association of the collagen gene with 
SC-35 domains dependent on its continued transcription? 

As shown in Fig. 2, C and D, transcriptional inhibition 
for 3 h resulted in prominent round SC-35 domains in 
many though not all cells. Under these conditions, col- 
lagen RNA tracks are generally undetectable or extremely 
reduced (Clemson et al., in press; and C. Clemson, data 
not shown). Hybridization to the collagen gene in dena- 

tured samples revealed that the gene remained precisely 
positioned at the edge of these round large structures, as 
shown in Fig. 2, C and D. In the vast majority of cells the 
collagen genes remained directly abutting the SC-35 do- 
main. Neither the presence of the domain nor the gene's 
relationship to it is dependent upon the continued pres- 
ence of accumulated collagen RNA. These results also 
show that inhibition studies cannot be reliably interpreted 
to show that domains which remain or rearrange after in- 
hibition are solely storage sites, as our results demonstrate 
that they correspond to the transcription and splicing site 
of one of the cell's most active genes. 

Discuss ion 

This work details many new observations which substan- 
tially enhance an emerging view of a compartmentalized 
and structured nucleoplasm. We demonstrate that individ- 
ual genes display distinct and nonrandom distributions rel- 
ative to domains enriched in SC-35 and poly(A) + RNA, 
with two transcribed sequences specifically associating 
with discrete domains. Three transcriptionally inactive se- 
quences do not. [3-actin RNA associated at the periphery 
of the domain, whereas collagen I~1 RNA accumulates 
within the central region of the domain. The focus of col- 
lagen RNA contains exon sequences, is not an accumula- 
tion of excised introns, and has undergone splicing, as 
shown for intron 26. Although collagen RNA accumulates 
within the SC-35 domain, gene transcription occurs just at 
its border. RNA splicing of intron 26 occurs at the periph- 
ery of the domain, likely proximal to the gene. Two-color 
DNA/RNA hybridization with a full-length genomic probe 
shows that collagen RNA tracks or foci are polar accumu- 
lations of RNA which extend beyond the dimensions of 
the gene, suggesting a posttranscriptional RNA accumula- 
tion beyond the nascent transcript "tree." This accumula- 
tion extends vectorially from the gene into the domain, 
and therefore may involve transport into the domain, but 
the track does not appear to extend to the nuclear enve- 
lope. The results presented also clearly show that neither 
the presence of the SC-35 domain nor the gene's associa- 
tion with it is dependent on the continued transcription or 
accumulation of collagen RNA. The prominent domains 
that remain after inhibition with actinomycin D correspond 
to the transcription and processing site of one of the cell's 
most highly active genes, and therefore cannot reliably be 
interpreted as solely storage sites unassociated with pre- 
mRNA metabolism. 

Although gene position in overall nuclear space is more 
variable (Ward, W. S., J. A. McNeil, and J. B. Lawrence, 
manuscript submitted for publication; Lawrence et al., 
1993), when viewed relative to SC-35 domains a statisti- 
cally nonrandom distribution of specific sequences is 
clearly demonstrated. Irrespective of the relationship to 
function, these clear differences in gene distribution point 
to a previously unappreciated aspect of interphase genome 
packaging and a structural integration of two distinct nu- 
clear compartments. We do not suggest that all active 
genes are associated with SC-35 domains (see below); how- 
ever the two examined here, collagen and [3-actin clearly 
show a specific preferential association. In contrast, three 
transcriptionally inactive genes (cMHC, neurotensin, and 
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albumin) showed a much lower association rate, consistent 
with a random distribution, possibly reflecting a preferen- 
tial avoidance of the domains. 

Transcription and Splicing of Some pre-mRNAs Is 
Directly Associated with SC-35 Domains 

While it has been thought that prominent domains, which 
correspond largely to IGC, were not involved in short 
lived pre-mRNA metabolism (Fakan and Bernhard, 1971; 
Fakan and Puvion, 1980; Spector, 1993; Mattaj, 1994; re- 
viewed in Fakan, 1994), the finding of poly(A) ÷ RNA 
(Carter et al., 1991, 1993; Visa et al., 1993) and microin- 
jected intron-containing globin RNA (Wang et al., 1991) 
in all of these domains justified a reevaluation of this view. 
In this work, we show that pre-mRNA metabolism for two 
of the most active genes in fibrolasts, collagen Ia l  and 
13-actin, is directly associated with SC-35 domains. These 
results, together with the preferential association of fi- 
bronectin transcription/splicing with domains (Xing et al., 
1993), and the proximity of induced c-fos nuclear RNA to 
domains (Huang and Spector, 1991) argues strongly that 
there is pre-mRNA metabolism associated with these re- 
gions, with transcription at the periphery. Localization to 
the central domain is not unique to C O L l a l  RNA, as thus 
far two other pre-mRNAs have been found which show 
similar localization (J. Coleman, C. Johnson, P. Moen, and 
J. Lawrence, unpublished data). 

While we believe the association is related to function of 
these specific genes, we do not suggest this to be a prop- 
erty of all transcriptionally active DNA, or even of all in- 
tron-containing protein-coding RNAs (Lawrence et al., 
1993). Of 10 active genes examined thus far in our lab, 7 
have been found associated and 3 have not; in contrast, 
none of several inactive genes have yet been found associ- 
ated (this work and Carter et al., 1991; Xing et al., 1993; 
Clemson et al., in press; J. Coleman and P. Moen, unpub- 
lished data). A cell cycle-regulated histone gene showed a 
mixed result (Xing, 1993), which is under investigation in 
synchronized cells. Further support that association is re- 
lated to expression is provided by work showing that two 
genes which associate with domains in expressing muscle 
cells do not associate with domains in nonexpressing myo- 
blasts (P. Moen, unpublished data). 

Recently, a report focusing on Adenovirus localization 
included what appears to be a cursory analysis of the 
~-actin RNA transcription site relative to SC-35 domains 
in five cells (Zhang et al., 1994). Reporting 4 of 10 signals 
associated, the authors conclude that the distribution is 
random, using a random expected frequency that appar- 
ently does not correct for Z-axis considerations. Based on 
our analysis of hundreds of signals from the identical gene/ 
RNA relative to the same structures detected with the 
same SC-35 antibody (Xing, 1993 and this work), the very 
small sample size of Zhang et al. (1994) is insufficient to 
draw a conclusion, and may not be representative. Most 
importantly, the general conclusion these authors draw 
from their data, that there is no compartmentalization of 
gene transcription and splicing with nuclear domains or 
speckles, is not only contradicted directly by results pre- 
sented here but argued against by a variety of earlier ob- 
servations (Walton et al., 1989; Carter et al., 1991; Huang 

and Spector, 1991; Wang et al., 1991; Xing, 1993; Xing et 
al., 1993; Jim6nez-Garc/a and Spector, 1993). 

Total Uridine Incorporation: Transcription of What? 

The tenet or expectation that prominent SC-35 domains 
would not be associated with short-lived pre-mRNA or 
mRNA stems largely from uridine incorporation studies, 
which clearly show that general transcription occurs pri- 
marily in the interdomain (or inter-IGC) space (Fakan 
and Puvion, 1980; Wansink et al., 1993). However, a key 
question is, what classes of RNA does this transcription 
represent (Moen et al., 1995)? Uridine labeling has in 
some cases been equated with pre-mRNA for protein cod- 
ing genes (Mattaj, 1994). However, there are many caveats 
to this assumption, as considered previously (Carter et al., 
1993; Visa et al., 1993; Moen et al., 1995). For instance, 
most uridine label (possibly as much as 75-90%) will not 
be in mRNA precursors, but in other classes of RNA, es- 
pecially noncoding hnRNAs of unknown function, and in 
intron sequences that may be rapidly spliced and disperse 
from the pre-mRNA molecule (for example, Salditt-Geor- 
gieff et al., 1981; Lewin, 1975; Brawerman, 1981; Beyer 
and Osheim, 1988; Lewin, 1990; Xing et al., 1993). Some 
labeling of IGC and SC-35 domains does occur (Fakan 
and Bernhard, 1971; Raska et al., 1991; Jackson et al., 
1993; Wansink et al., 1993), and studies using Br-UTP are 
impacted by the fact that the Br-UTP inhibits splicing 
(Wansink, 1994). Most importantly, despite the impression 
of random transcription, these studies cannot address the 
question of whether transcription and splicing of specific 
genes is randomly localized. Our results provide direct evi- 
dence that it is not. 

Two exceptions to the generalization that poly(A) ÷ RNAs 
encode mRNAs have recently been described; Omega-n in 
Drosophila (Hogan et al., 1994) and XIST RNA, which as- 
sociates with the inactive X chromosome of mammals 
(Brown et al., 1992; Clemson et al., in press). XIST RNA 
represents a precedent for an apparently long-lived struc- 
tural RNA that functions in the nucleus; other nuclear 
RNAs likely contribute significantly to the label observed 
with uridine incorporation. Although most are not poly-ade- 
nylated (Salditt-Georgieff et al., 1981; reviewed in Lewin, 
1990), some long-lived nuclear RNAs could potentially 
contribute to the poly(A) ÷ RNA distributions observed. 

SC-35 Domains Are Not Just Storage Sites: 
Inhibition of What? 

Differing effects of transcriptional inhibition have been 
observed which result in complex and variable rearrange- 
ments or loss of nuclear poly(A) + RNA (Lawrence et al., 
1993; Moen et al., 1995). Contradictory conclusions have 
been reported which support that poly(A) ÷ RNA in dis- 
crete domains (or IGC) is short-lived pre-mRNA (Visa et 
al., 1993) or, alternatively, argue that it is long-lived struc- 
tural RNA (Huang et al., 1994). In many cases, domains 
break down or dissipate. Even where there clearly is a re- 
tention and redistribution of nuclear poly(A) + RNA after 
inhibition (Lawrence et al., 1993; Huang et al., 1994; Moen 
et al., 1995), interpretation of such results is compromised 
by the secondary effects on global nuclear function (re- 
viewed in Brasch, 1990), such as inhibition of RNA trans- 
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port and message-specific increases in RNA stability and 
poly(A) ÷ tail length (for example see Herman and Pen- 
man, 1977; Herman et al., 1976, Brawerman, 1987; Hogan 
et al., 1994). The recent observation that XIST RNA is 
largely retained after inhibition whereas collagen RNA is 
not lends some credence to the idea that two classes of 
poly(A) ÷ RNA with different stabilities may be detected 
(Xing, 1993; Clemson et al., in press). However XIST 
RNA does not localize to poly(A) + RNA-rich domains 
(Clemson et al., in press). It is an intriguing possibility that 
there may be some structural poly(A) ÷ RNAs in domains 
and potentially elsewhere in the nucleus (Lawrence et al., 
1993; Huang et al., 1994), but this would by no means pre- 
clude the presence of pre-mRNA in those same regions. 

An important result presented here clearly indicates that 
the subset of domains which remain after transcriptional 
inhibition cannot simply be interpreted solely as storage 
sites or as not directly involved in pre-mRNA metabolism, 
as has been suggested (Huang et al., 1994; O'Keefe et al., 
1994; Mattaj 1994). We demonstrate here that domains re- 
maining in actinomycin inhibited cells correspond to the 
transcription and splicing site of one of the cell's most 
highly active genes. 

A Model for Domain Substructure: Transcription at 
SC-35 Domain Borders 

A key point of our results is that transcription occurs at or 
near the border of SC-35 domains, as suggested by studies 
quantitatively demonstrating the peripheral position of 
the fibronectin gene/RNA (Xing et al., 1993). Subcom- 
partmentalization of light microscopic domains was sug- 
gested by Carter et al. (1993) (Fig. 2 /). We propose a 
model showing a high-level of transcription and splicing of 
some specific genes in the outer rim of the light micro- 
scopic domain, abutting the SC-35 core (Fig. 2 /). Al- 
though indirect, several results support that this SC-35 
core corresponds to IGC; particularly our finding that the 
gene remains associated with a domain in inhibited cells, 
since such domains have been directly correlated to IGC 
(Davis et al., 1993; Visa et al., 1993; Huang et al., 1994). 
The subcompartmentalization model (Fig. 2 I) potentially 
reconciles results from our lab and others with earlier elec- 
tron microscopic reports, some of which showed heavy uri- 
dine labeling at the borders of IGC, as well as the periph- 
eral association of perichromatin fibrils (Fakan and Puvion, 
1980; Spector, 1993; Hendzel and Bazett-Jones, 1995). 

Several points indicate that SC-35 domains in general 
cannot simply be explained by the presence of splicing 
components wherever there are individual intron-contain- 
ing RNAs. (a) Some specific RNAs (e.g., 13-actin and fi- 
bronectin) clearly do not overlap most of the domain, but 
are smaller and peripheral to it. (b) While the association 
of the collagen gene likely depends upon its transcrip- 
tional history within the cell, the large SC-35 domain with 
which the gene associates remains after collagen RNA 
synthesis is inhibited and the RNA accumulation is essen- 
tially undetectable. (c) We have found large accumula- 
tions of specific intron-containing RNAs that do not asso- 
ciate with concentrated accumulations of SC-35, hence 
RNAs are likely processed by more diffusely distributed 
splicing factors (Clemson et al., in press; Coleman, J. R., 

P. T. Moen, and J. B. Lawrence, manuscript in prepara- 
tion). (d) The number of discrete domains of SC-35 (up to 
~50) is far fewer than the number of active genes. We 
note that points 3 and 4 rely on an assumption that essen- 
tially the same splicing factors are involved in processing 
all pre-mRNAs, which may not be the case (Fu, 1993). 

It will be important to determine directly whether multi- 
ple pre-mRNAs associate with an individual domain. Rec- 
ognizing that not all prominent domains (or IGC) may be 
the same functional entities, we suggest two general ideas 
for what some or all domains might be if they are indeed 
more than the accumulation of splicing components asso- 
ciated with transcripts of a single gene: (a) Domains may 
represent the association of some transcriptionally active 
genes with centers involved in maturation and transport of 
RNA and/or RNA metabolic components. (b) Domains 
may reflect the accumulation of splicing components on 
pre-mRNA from multiple specific genes, which associate 
due to either the mutual affinity of their RNAs for splicing 
components or their genomic organization, or both. Either 
possibility could facilitate the expression of an mRNA by 
raising the concentration of RNA metabolic components 
in the immediate vicinity and would involve nonrandom 
compartmentalization of specific genes relative to regions 
of enhanced RNA metabolic activity, as previously sug- 
gested (Carter et al., 1991; discussed in Lawrence et al., 
1993). 

Sequence-specific Structural Arrangements 
within the Nucleoplasm 

Results presented here are indicative of a structured nu- 
clear interior. While splicing factor/poly(A) + RNA rich 
domains reside in regions of little to no DNA (Spector, 
1990; Carter et al., 1991; Cremer et al., 1993; Visa et al., 
1993; Zirbel et al., 1993), we view it unlikely that localiza- 
tions observed merely reflect diffusion of splicing compo- 
nents or RNAs within inter-chromosome space (see for 
example Zachar et al., 1993, Cremer et al., 1993). The nu- 
clear splicing factor/poly(A) ÷ RNA-rich compartment has 
itself a specific, reproducible 3-D topography that can vary 
with cell type (Carter et al., 1993; Lawrence et al., 1993). 
Collagen RNA tracks are highly resistant to triton extrac- 
tion and remain after nuclear matrix fractionation (Clem- 
son et al., in press). There may well be DNA and RNA or 
splicing components which randomly distribute and freely 
diffuse within the nucleus. However, the results presented 
here show nonrandom distributions of specific genes, a po- 
lar configuration of DNA and RNA in RNA tracks, and 
specific spatial relationships of different pre-mRNAs to 
domains, all suggest structural relationships with a sub- 
stantial degree of order. 
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