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ABSTRACT 

As sequencing technology continues to produce better quality genomes at 

decreasing costs, there has been a recent surge in the variety of data that we are now able 

to analyze. This is particularly true with regards to our understanding of the human 

genome – where the last decade has seen data advances in primate epigenomics, ancient 

hominid genomics, and a proliferation of human polymorphism data from multiple 

populations. In order to utilize such data however, it has become critical to develop 

increasingly sophisticated tools spanning both bioinformatics and statistical inference. In 

population genetics particularly, new statistical approaches for analyzing population data 

are constantly being developed – unfortunately, often without proper model testing and 

evaluation of type-I and type-II error. Because the common Wright-Fisher assumptions 

underlying such models are generally violated in natural populations, this statistical 

testing is critical. Thus, my dissertation has two distinct but related themes: 1) evaluating 

methods of statistical inference in population genetics, and 2) utilizing these methods to 

analyze the evolutionary history of humans and our closest relatives. The resulting 

collection of work has not only provided important biological insights (including some of 

the first strong evidence of selection on human-specific epigenetic modifications (Shulha, 

Crisci, Reshetov, Tushir et al. 2012, PLoS Bio), and a characterization of human-specific 

genetic changes distinguishing modern humans from Neanderthals (Crisci et al. 2011, 

GBE)), but also important insights in to the performance of population genetic 

methodologies which will motivate the future development of improved approaches for 

statistical inference (Crisci et al, in review).
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GLOSSARY 

Positive selection- an increase in the frequency of an allele due to fitness benefits 
 
Genetic drift- the fluctuation seen in allele frequencies due to random sampling 
 
Site frequency spectrum (SFS) - a summary of all mutations and their frequencies within 
a sample 
 
Selective sweep- the fixation of a beneficial allele that results in reduced heterozygosity 
and high-frequency derived alleles 
 
Derived allele- a newly acquired allele within a sample distinguished by an outgroup 
sequence 
 
Linkage disequilibrium (LD) - nonrandom association of alleles due to local 
recombination rates 
 
Effective population size (Ne) - the number of individuals in a population that satisfy 
conditions of equilibrium, e.g. randomly mating, constant size, non-overlapping 
generations, etc. 
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CHAPTER I. Introduction 

 
 Ever since Charles Darwin proposed his theory of evolution by the mechanism of 

natural selection (1859), there has been considerable interest in the scientific community 

of devising ways to measure the effects of selection in populations. The field of 

Population Genetics was born out of the first attempts at describing how allele 

frequencies change between generations and how this process is affected by selection 

(e.g. Haldane 1927, Fisher 1930, Wright 1931). In 1974, Maynard Smith and Haigh 

described the hitchhiking effect of a beneficial allele and the impact this has on genetic 

variation. Briefly, when a new mutation increases in a population due to the effects of 

positive selection it will impact the frequencies of linked neutral alleles, thereby leaving a 

pattern of reduced genetic variation that will decrease from the site of the selective event. 

The extent of this signature is determined by the strength of the selection coefficient and 

the local recombination rate (Kaplan et al. 1989). When genome sequencing became a 

reality at the turn of the 20th century, this signature, known as a selective sweep, became 

the foundation for many statistics that have been developed to identify selection on 

whole-genome and sub-genomic datasets. And now sequencing technology has advanced 

to a point where we can sequence ancient genomes (e.g. the Neanderthal (Green et al. 

2010)) and multi-species epigenomes (Shulha, Crisci, Reshetov, Tushir et al. 2012). With 

these novel datasets the question remains as to whether they can be used to provide new 

insight into how positive selection has shaped human populations.  

Historically, human evolution was studied using a phenotype-first approach - 

relating phenotypic differences in populations to underlying genotypes. Perhaps the best-
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known example is the Duffy blood antigen, believed to be driven by selection for 

resistance to malaria. Individuals lacking the Duffy blood antigens are resistant to 

infection by Plasmodium vivax, and this phenotype is correlated with regions in Africa 

where transmission of P. vivax is high (Miller et al. 1975). Despite the intuitive appeal of 

this approach, it is focusing only upon differences in phenotypic variation between 

populations, which may or may not have been influenced by positive selection. In fact, 

perhaps the true advantage of the genomic age is the ability to take a genotype-first 

approach – to scan the genome for adaptive mutations, using signature patterns of 

positive selection, in a fashion that is blind to underlying phenotype.  

But this approach has its own caveats. Firstly, different mechanisms of selection 

leave different signatures in the genome, and it is unclear how much each of these 

processes affects human populations. Also, identified selective targets do not always have 

an obvious phenotypic consequence or advantage. If, for example, an identified gene 

plays a role in many cellular processes, it is difficult to determine which of these may 

have been targeted, and it is dangerous to assume that the one that makes the most ‘sense’ 

from an evolutionary or biological standpoint must be the right process (Pavlidis et al. 

2012). This leads to questions of whether the signals we are finding are, in fact, real 

indicators of selection or artifacts of neutral processes. Finally, despite a proliferation of 

statistics designed for scanning genomes for evidence of selection (for review see Crisci 

et al. 2012) there is alarmingly little overlap between such studies and methodologies 

(Akey 2009). This raises important questions both about the mode and tempo of human 

evolution, as well as the efficiency of the statistics themselves. Thus, we have only a 
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handful of convincing examples of adaptations in human populations, largely arrived at 

using a phenotype-first approach – suggesting that the full benefit of population genomics 

has yet to be realized.  

Evidence of Adaptations in Humans 

 Adaptation in humans is generally presented in two forms: population-specific 

changes that are segregating at some frequency in the species, and species-specific 

changes that have arisen since the split with our closest relatives (generally the 

chimpanzee, but recently ancient hominids as well, see below). The latter are more likely 

to explain distinctive neurological traits in humans, like language, learning and memory – 

but few convincing examples have been found to date. Thus, most examples of human 

adaptation are population-specific that most likely arose in response to environmental 

changes as humans spread to nearly every continent in the world. Common phenotypic 

traits affected are disease resistance, and metabolism in response to changes in diet. 

Population specific adaptations 

 In addition to the Duffy blood group discussed above, malaria has driven 

selection of other traits in populations where transmission is prevalent, including sickle 

cell anemia (Allison 1954). Sickle cells are caused by a variant in the human hemoglobin 

gene (HbS). Individuals who are heterozygous for the trait are more resistant to infection 

by Plasmodium falciparum, whereas those who are homozygous have higher mortality 

rates. The resistance this variant confers on heterozygotes explains why the trait remains 

at a frequency of around 10% in African populations, even when it appeared at a first 

glance to be deleterious. This allele has both a beneficial and a deleterious phenotype, 
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and is indeed one of the classic examples of balancing selection. Malaria remains today a 

selective pressure in many extant populations, and is thought to have driven selection on 

multiple variants of the hemoglobin gene that cause human blood disorders (see 

Kwiatkowski 2005 for review). 

 Many diseases act as selective pressure on the immune system, promoting the 

evolution of resistance mutations. For instance, the CCR5 receptor is normally expressed 

on the membranes of CD4 T-cells and provides entry for the HIV virus. A 32bp deletion 

in this gene in individuals of European descent prevents this receptor from being 

expressed on the membranes of CD4 T-cells, and confers resistance to HIV infection 

(Samson et al. 1996). This deletion is present in approximately 10% of Caucasian 

Europeans. The age of the variant allele has been estimated to be around 1000-2000 years 

(for review, see Galvani and Novembre 2005); if this age were correct, it would be 

unlikely for this mutation to have reached this appreciable frequency by genetic drift 

alone (Stephens et al. 1998). And since HIV is believed to be a modern disease in 

humans, it is an unlikely explanation for the observed frequency. Initially, the Bubonic 

Plague was named as the selective pressure on the variant allele for CCR5 because of the 

timing of the mutation, but studies have subsequently demonstrated that this variant does 

not provide resistance to plague infection (Elvin et al. 2004, Mecsas et al. 2004). A more 

likely culprit is small pox, since it was highly transmissible for a long period of human 

history – and a relative of poxvirus infects cells using the CCR5 receptor (Lalani et al. 

1999). 
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 Another instance of population-specific selection as a result of environmental 

pressure is adaptation to a low oxygen environment in Tibetan populations – with modern 

populations living at approximately 2.5 miles above sea level, and thus at a 40% oxygen 

deficiency. Several recent papers have compared genetic data between Tibetan and Han 

populations to try and elucidate changes that could allow humans to live at such altitudes 

(Beall et al. 2010, Yi et al. 2010, Peng et al. 2011, Xu et al. 2011). All of these studies 

consistently highlight one gene, EPAS1, as being highly differentiated in the Tibetan 

population. EPAS1 is responsible for regulating factors in response to hypoxia, including 

erythropoiesis (Patel and Simon 2008). Additionally, Yi et al (2010) find that EPAS1 is 

correlated with hemoglobin levels in the blood and could explain why Tibetans have 

lower levels of hemoglobin at high altitudes than lowland populations.  

 An example of a metabolic adaptation is the lactose tolerance phenotype. Being 

the only mammal to continue milk consumption after infancy, humans exhibit lactose 

tolerance, or lactase persistence, which results from the continual expression of lactase-

phlorizin hydrolase, LPH (LCT) into adulthood. Normally, levels of this enzyme decrease 

after infancy, and adults lose their ability to digest lactose in the intestines. The lactase 

persistence trait is present at a frequency between 40-90% in European and African 

populations that raise cattle (Swallow 2003). In 2007, Tishkoff et al. (2006) demonstrated 

that this was indeed an example of convergent evolution – with two different alleles 

conferring the phenotype between populations.  

Human specific adaptations 
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The availability of both the Neanderthal and Denisovan genomic sequences is a 

noteworthy milestone in the study of human evolution. These two populations are much 

more closely related to human than chimpanzee (see Figure 2.1), and can provide unique 

insight into genomic changes that occurred during early human evolution. By comparing 

the Neanderthal genome sequence with the genomes of 5 humans from various 

populations and using chimpanzee as an ancestor, Green et al. (2010) identified 

putatively selected regions in humans. They looked for large regions of the human 

genome where Neanderthal had the ancestral state at polymorphic sites in humans, with 

the logic being that these mutations in humans must have occurred and rose in frequency 

after the split between humans and Neanderthal. Crisci et al. (2011), further show that 

this scan is capable of detecting selection in regions that would have been missed using 

site frequency spectrum- and divergence based approaches – with the most interesting 

candidates being: CADPS2, mutations in which are linked with autism; NRG3, which is 

expressed in the brain and located within a susceptibility locus for schizophrenia; and 

DYRK1A, also expressed in the brain and believed to be involved in learning and 

memory. 

One interesting discovery from sequencing the genomes of these two hominins is 

that both populations appear to have interbred with human populations. Green et al. show 

that Neanderthals contributed up to 3% of their genomes to modern day Eurasians by 

comparing the Neanderthal genome to modern European, Asian, and African populations, 

finding that Neanderthals were more genetically similar to Eurasians than to Africans, 

suggesting gene flow. Reich et al. (2010) performed a similar analysis with the 
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Denisovan genome and found that this population contributed 4-6% of its genome to 

modern day Melanesians.  

This discovery of admixture raises some interesting questions regarding the 

evolutionary trajectory of humans. It is possible that since these two populations were 

present in Europe and Asia before modern humans, they could have acquired adaptive 

mutations in response to environmental and dietary changes, and passed them on to 

human ancestors as they began migrating out of Africa. A potential example of this is the 

controversial evolution of the FOXP2 gene. This gene has apparent functions in speech 

and language (Fisher et al. 1998, Lai et al. 2001), and contains two SNPs initially found 

to be unique to humans that have been argued to be under positive selection (Enard et al. 

2002a). Later Krause et al. (2007) discovered that these SNPs were also present in the 

human-derived state in 2 Neanderthal individuals, and suggested that there was a 

common mutation in the ancestor of humans and Neanderthals before the two populations 

split over 300 Kya. But Coop et al. (2008) argue that the selective signature in humans is 

much too young to have occurred in an ancestor of human and Neanderthal, and that if 

the sweep was that old, new mutations would have returned local diversity levels back to 

neutral expectations. However, if there was in fact admixture between human and 

Neanderthal populations approximately 50 Kya (Green et al. 2010), then this selected loci 

very well could have arisen and swept in humans, and then the haplotype could have been 

passed to Neanderthals (or vise versa).  
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Datasets and Methodology 

 With many genomes now being sequenced and the ability to process large 

amounts of data using high-performance computing, the time required to perform large 

genome scans of many individuals and compare polymorphism between populations is 

trivial. We now have genomic sequences of the extant great apes, including human 

(International Human Genome Sequencing Consortium 2001, Venter et al. 2001), 

chimpanzee (The Chimpanzee Sequencing and Analysis Consortium 2005), gorilla 

(Scally et al. 2012), orangutan (Locke et al. 2011), and most recently bonobo (Prüfer et 

al. 2012). Also, the draft genomes of two extinct hominins have been completed within 

the last few years: Neanderthal (Green et al. 2010) and an individual from Denisova cave 

in Siberia (Reich et al. 2010). This divergence data facilitates the discovery of human-

specific adaptations – often by making simple comparisons of the rate of fixation 

between branches. Commonly the ratio of nonsynonymous changes (dN) to synonymous 

(dS) is used as a measure of the direction of selection across a gene; with  dN/dS = 1 being 

consistent with neutrality, dN/dS > 1 consistent with recurrent positive selection, and dN/dS 

< 1 consistent with recurrent purifying selection (Nei and Gojobori 1986).  

 Combining this divergence-based approach with polymorphism data, the 

McDonald-Kretiman (MK) test performs a 2x2 contingency test between fixed vs. 

segregating synonymous and non-synonymous sites. Under the assumption that 

synonymous sites are neutral, an increased rate of fixation of nonsynonymous changes 

between species is generally taken as evidence of recurrent adaptive fixations (McDonald 

and Kreitman 1991).  
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There are also methods that utilize polymorphism within a single species to 

identify patterns of selection. Next-generation genome-sequencing technology has made 

it faster and more cost effective to sequence entire genomes of many individuals, leading 

to large-scale polymorphism datasets. Indeed, the 1000 genomes project has provided 

scientists with the most complete set of genome-wide SNP information in humans to date 

(Durbin et al. 2010). All such tests rely on the patterns of variation produced by a 

hitchhiking event – the process by which a new beneficial allele rises quickly within a 

population due to positive selection, altering the frequency of linked neutral variation 

(Maynard Smith and Haigh 1974, Kaplan et al. 1989; Figure 1.2). For the fixation of a 

single beneficial mutation – these patterns are well described, including a decrease in 

local heterozygosity, an excess of rare mutations around the fixation, and an excess of 

high frequency derived mutation and linkage disequilibrium in flanking regions owing to 

recombination events (Figure 1.3). These changes are captured in the site frequency 

spectrum and may be detected in polymorphism for approximately 0.1 4N generations 

(where N is the effective population size) before becoming obscured by subsequent 

mutation and recombination events (Przeworski 2002) – or approximately 250,000 years 

for humans. 

Mechanisms of Human Evolution 

Positive selection can leave many different signatures in the human genome 

depending on the targets it acts upon – and there are many different models of selection. 

Selection can act on a single new beneficial mutation (discussed above), also known as a 

“hard” or “classic” sweep. Another alternative is that selection can act on multiple copies 
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of a beneficial mutation or standing variation (Orr and Betancourt 2001, Hermisson and 

Pennings 2005). This is referred to as a “soft” sweep since the beneficial mutations are 

present at some intermediate frequency before they begin sweeping. There are also 

models for incomplete sweeps—a classic sweep that has not reached fixation—which 

may be detectable with haplotype patterns (Kim and Nielsen 2004, Sabeti et al. 2007). 

Selection can also act on polygenic (Turelli and Barton 1990, Pritchard and Pickrell 

2010) or epigenetic traits (Jablonka and Lamb 1998, Feinberg and Irizarry 2010). The 

patterns produced under all of these models differ depending on the timing, strength, and 

rate of selection. This all can be very confusing when attempting to scan the genome for 

evidence of adaptations, and contributes to the lack of concrete examples of selection at 

the genomic level. 

The classic sweep is, perhaps, the most commonly looked for signature of 

selection in humans. Numerous statistics have been developed that utilize different 

aspects of the classic sweep pattern to try and find evidence of selection in the human 

genome (for review, see Crisci et al. 2012). But the results of these scans offer minimal 

overlap of selective targets. This is further complicated by the fact that expected sweep 

patterns are difficult to distinguish from background selection, i.e. the continuous 

removal of neutral mutations though linkage with deleterious haplotypes. This process 

creates a reduced level of neutral variation as is seen with a sweep (Figure 1.3). Indeed, 

even though coding regions genome-wide show this pattern, it is unclear whether 

selective sweeps are responsible, or background selection. For example, Cai et al. (2009) 

show that the level of neutral polymorphism in the human genome is negatively 
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correlated with both functional constraint and divergence from chimpanzee – pointing out 

that this would be consistent with either recurrent selective sweeps or background 

selection. Hernandez et al. (2011) find a similar negative correlation between 

polymorphism and functionally conserved regions, and further add that the average 

reduction in diversity around human amino acid substitutions is no different from reduced 

diversity at synonymous substitutions, suggesting that classic sweeps could not be the 

cause of these amino acid substitutions.  

Consider also the wait time for a beneficial mutation to occur. In order for a new 

beneficial mutation to fix in a population via the classic sweep model, the mutation must 

overcome being lost by genetic drift, and reach a high enough initial frequency for 

selection to act on it (Kimura 1983). Thus, the waiting time for a new beneficial mutation 

to arise could be very long. If the primary driver of selection in humans were 

environmental change, selection on standing variation would allow for adaptations to fix 

more readily, alleviating the issue of wait time. Since multiple haplotypes are brought to 

fixation under both soft and standing models, this mechanism of evolution leaves a 

different genomic signature than classic sweeps – increasing intermediate frequency 

mutations and creating distinctive haplotype blocks (Przeworski et al. 2005, Pennings and 

Hermisson 2006).  

There is also recent and intriguing evidence that selection can shape epigenetic 

interactions, although the details have yet to be well resolved. For example, PRDM9 is a 

zinc finger protein that influences where recombination hotspots occur during meiosis 

(Baudat et al. 2010). The location of these hotpots differs widely between humans and 
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other species, and the binding domain of PRDM9 is diverse across humans, possibly 

owing to a selection mechanism (for review, see Ségurel et al. 2011). Another example is 

the recent discovery of species-specific methylation patterns in sperm cells between 

humans and chimpanzees (Molaro et al. 2011). There are also brain-specific epigenetic 

patterns of H3K4met3 between human, chimpanzee, and macaque, which suggests that 

changes in gene expression play a role in the evolution of the human brain (Shulha, 

Crisci, Reshetov, Tushir et al. 2012). While appealing as a potential mode of rapid 

adaptation in natural populations, the details of epigenetic inheritance and modeling 

remains as a field in need of further study, though progress is beginning to be made 

(Geoghegan and Spencer 2011). 

The Future of Human Evolution 

The role of selection on genetic variation in humans has been reconciled with 

many different models of selection—ranging from completely neutral (Kimura 1968, 

1983) to weakly deleterious (Ohta 1973) to weakly advantageous (Gillespie 1977). 

Another problem often ignored is the confounding effect that demography has when 

estimating selection (Thornton et al. 2007). Human populations violate the equilibrium 

assumptions underlying most tests of selection, being a non-randomly mating population 

that has experienced past bottlenecks and growth, as well as subdivision and migration. 

All of these neutral process shape the frequency spectrum (Figure 1.3), and it is essential 

that next generation modeling and method development be focused around jointly 

estimating selection and demography, rather than simply one or the other. 



 23 

The Role of My Dissertation in Advancing the Study of Selection in Humans 

Given the quality and quantity of human genomic data available, it is now 

possible to reevaluate selection estimators on a standardized set of non-equilibrium 

models to see how well they perform, especially considering that human populations 

violate many assumptions of the equilibrium neutral model upon which these statistics 

were founded. In fact, multiple genomic scans for selection have been performed on the 

human genome to date, all using different statistical estimators, and all identifying 

different lists of putative targets with minimal overlap between the different methods 

(Akey 2009). This is likely due to three reasons. First, some of these tests were performed 

before publically available standardized genomic polymorphism datasets for the human 

genome existed (e.g. HapMap (Sabeti et al. 2007), and 1000 Genomes (1000 Genomes 

Project Consortium, 2010)). Thus, the difference between ascertainment methods for 

SNPs can lead to widely different patterns when considering the site frequency spectrum 

(Nielsen and Signorovitch 2003). Second, these genomic scans do not deal with the 

impact of demographic forces on genomic variation in the same way. This affects the 

power of these methods to correctly identify selection and causes different regions to be 

highlighted. Lastly, many of these methods are outlier-based approaches, meaning they 

calculate a statistic across the genome and then consider the extreme values to be 

signatures of selective sweeps. This can lead to an overestimation of the effects of 

selection, since according to this practice even a non-equilibrium neutral dataset will 

have outliers. 
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I propose to fill these gaps in scientific knowledge in three ways. First I will 

examine the Neanderthal genome and its application in detecting more ancient sweeps 

along the human branch, as performed by Green et al. (2010). The rationale behind their 

selective sweep scan is that polymorphic sites present at high frequencies in human 

populations, but which are derived with respect to Neanderthal, are characteristic of 

sweeps that rose to fixation shortly after the human-Neanderthal split. While this is 

indeed an intriguing time point for revealing loci that may have uniquely contributed to 

modern human genetics, it is essential to extend this analysis using additional selection 

estimators in line with both older and more recent time scales, in order to truly identify 

the utility of ancient hominin genomes in human evolution.  

On a related note, I consider a second novel dataset that was created exclusively 

for investigating evolution of the human brain. By sequencing H3K4met3 peaks in 

neuronal cells across 3 species of primates, including human, this dataset can elucidate 

epigenetic changes that have occurred specific to human neuronal cells (Shulha, Crisci, 

Reshetov, Tashir et al. 2012). This particular dataset provides the first opportunity to see 

if epigenetic changes in humans are correlated with genetic signatures of positive 

selection. To find out if this the case, I examine a set of human-specific H3K4met3 peaks 

for traditional selective sweep signatures, and also for increased DNA substitution rates 

along the human branch. These two methods will uncover whether any of these peak 

regions have been subject to recent selective sweeps or recurrent nucleotide evolution, 

which will help answer the extent to which positive selection influences changes in gene 

expression levels. 
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Lastly, I think it is necessary to verify the effectiveness of traditional selection 

estimators, now that whole genome data is becoming widely available for many different 

species. As these different statistics have been developed over the years, they often were 

not tested properly for type-I and type-II error, and if they were the analysis did not 

necessarily extend to models that violate equilibrium assumptions. This last point is key, 

since most natural populations violate these assumptions. For example, human 

populations have experienced several bottlenecks in the recent past as we migrated out of 

Africa to populate the globe (Gutenkunst et al. 2009). This is problematic for estimating 

selection, since bottlenecks can have a similar effect on genetic variation as selective 

sweeps. Consequently, most estimators reject neutrality in favor of selection when other 

models exist that could explain the extreme values of these statistics (Jensen et al. 2005). 

It is my hope that the work contained in this dissertation can further the field’s 

understanding of how positive selection has shaped the human genome, and clarify the 

state of current methods used in detecting selection. This will hopefully shape the future 

development of statistics that can be used without fear of the underlying non-selective 

forces that inevitably influence genetic variation in all natural populations.  
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Figure 1.1. Phylogeny of the great apes and approximate divergence times.  
Branches are not drawn to scale. The Neanderthal and Denisova branches are 
intentionally truncated to indicate extinct vs. extant.  
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Figure 1.2. The hitchhiking effect.  
Each grey or red line represents a chromosome from a single individual. A) A beneficial 
mutation arises in the population and is closely linked to a neutral allele. B) As the 
mutation rises in frequency, it brings with it linked neutral alleles. Only alleles that 
recombine onto the beneficial haplotype are not lost from the sample. C) After the sweep 
is completed the closely linked allele is fixed. Thus only high frequency alleles that have 
‘hitchhiked’ with the beneficial mutation are visible as variation within the sample, and 
subsequent new mutations appear as rare variants. 
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Neutral Allele

A) B) C)
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Figure 1.3. A comparison of the site frequency spectrum under equilibrium and 
nonequilibrium conditions.  
Plots are based on simulation of a 5Kb region using either msms (A-C) or sfscode (D) 
with human-like parameters (effective population size of 10000, per site mutation rate of 
2.35x10-8, and per site recombination rate of 2.56x10-8).  Counts on the y-axis are the total 
number of mutations based on 1000 iterations. A) Equilibrium neutral population. B) 1% 
positive selection at a single locus. C) Nonequilibrium neutral population. Demographic 
parameters include an 80% reduction in population size 50 Kya, with an exponential 
growth of 5% for the last 1000 years. D) Background selection, with 80% of sites 
experiencing 1% negative selection. It is apparent from this figure that both demography 
and selection greatly reduce the number of mutations compared to neutrality.  
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CHAPTER II. On Characterizing Adaptive Events Unique to Modern Humans 

 

Abstract 

 Ever since the first draft of the human genome was completed in 2001 there has 

been increased interest in identifying genetic changes that are uniquely human, which 

could account for our distinct morphological and cognitive capabilities with respect to 

other apes. Recently, draft sequences of two extinct hominin genomes, a Neanderthal and 

Denisovan, have been released. These two genomes provide a much greater resolution to 

identify human-specific genetic differences than the chimpanzee, our closest extant 

relative. The Neanderthal genome paper presented a list of regions putatively targeted by 

positive selection around the time of the human-Neanderthal split. We here seek to 

characterize the evolutionary history of these candidate regions - examining evidence for 

selective sweeps in modern human populations, as well as for accelerated adaptive 

evolution across apes. Results indicate that 3 of the top 20 candidate regions show 

evidence of selection in at least one modern human population (p <5x105). Additionally, 

4 genes within the top 20 regions show accelerated amino acid substitutions across 

multiple apes (p <0.01), suggesting importance across deeper evolutionary time. These 

results highlight the importance of evaluating evolutionary processes across both recent 

and ancient evolutionary timescales, and intriguingly suggest a list of candidate genes 

that may have been uniquely important around the time of the human-Neanderthal split. 
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Background 

The identification of genomic regions that have been affected by positive 

selection in humans, but not in other primates, is a promising avenue for characterizing 

the genetic changes underlying phenotypic traits that are unique to humans. With the 

advent of whole-genome sequencing technology, a number of primate genomes have 

recently become available for such comparisons (e.g., chimpanzee, The Chimpanzee 

Sequencing and Analysis Consortium 2005; macaque, Rhesus Macaque Genome 

Sequencing and Analysis Consortium 2007; orangutan, Locke et al. 2011; and gorilla, 

Scally et al. 2012). Additionally, two extinct hominin genomes have recently been 

sequenced: the Neanderthal (Green et al. 2010) and a newly discovered archaic hominin 

from Denisova Cave in Siberia (Reich et al. 2010). Genomic information from these 

extinct hominin individuals provides a unique opportunity to identify genetic changes 

that occurred in the evolution of modern humans (see Figure 2.1).  

Green et al. produced a list of putatively swept regions in humans by aligning the 

human, chimpanzee, and Neanderthal genomes. They looked for spans of the genome 

with sites polymorphic in five modern human populations, where Neanderthal carried the 

ancestral allele with respect to chimpanzee. The expected number of Neanderthal derived 

alleles was calculated and compared to the observed number - producing a measure, S, 

which was used to quantify the absence of Neanderthal derived sites within a given 

region (with larger S corresponding to a higher confidence of a human-specific selective 

sweep). Because the expected number of Neanderthal derived alleles is conditioned on 
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the genomic average of each configuration of observed human alleles at polymorphic 

sites, this approach has unique power to detect older selective sweeps along the human 

branch. Importantly, this allows detection at time scales for which standard frequency 

spectrum based tests lack power (Green et al. 2010, SOM). Additionally, because the 

window size of variation affected by a sweep is related to s/r (the strength of selection 

over the recombination rate; Kaplan et al. 1989) and the transition time for a beneficial 

mutation is -log(1/2Ne)/s  generations, they were most likely to find regions that had been 

affected by strong selection (i.e., having fixed since the human-Neanderthal split, ~ s > 

0.001).   

In contrast, traditional genomic scans for positive selection rely on the hitchhiking 

pattern evident in linked neutral variation (Maynard Smith and Haigh 1974), and are 

limited to detecting adaptive fixations having occurred within ~ 0.2 2Ne generations (Kim 

and Stephan 2002). Divergence-based methods, on the other hand, rely not on patterns in 

polymorphism but rather on detecting increased rates of amino acid substitution between 

lineages, and thus are appropriate to study recurrent selection across multiple species 

(i.e., on a much longer evolutionary time scale) - requiring multiple beneficial fixations in 

order to have power. 

Thus, the Green et al. approach is unique in that the timescale over which it may 

identify positive selection is in between purely divergence- or polymorphism-based 

approaches (Figure 2.1), and they provide a first glance at regions that may set humans 

apart from our closest evolutionary relatives. Using this method, they identified a total of 
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212 genomic regions, representing the top 5% of loci with signals of putative sweeps 

dating around the human-Neanderthal split.  

As indicated by Figure 2.1, these candidate adaptive regions may be further 

characterized into four general categories of positive selection. They may be: 1) 

accelerated across apes, 2) accelerated in modern humans, 3) accelerated in the common 

ancestor of humans and Neanderthals, or 4) uniquely important around the time of the 

human-Neanderthal split. Our objective is to characterize these regions across both broad 

and narrow evolutionary time in order to reveal which regions may in fact have been 

uniquely important around the human-Neanderthal split, and to discover the extent of 

overlap between their method and traditional site frequency spectrum and dN/dS methods 

for detecting positive selection. We ask the question: given a list of regions that in theory 

represent ancient sweeps along the human linage, how many could have been detected 

without the use of the Neanderthal genome? 

In order to distinguish among the possible alternatives we utilize two additional 

classes of methodology: 1) the codeml sites model and branch model (Yang 1998, Yang 

et al. 2000) from the software package PAML, which identifies genes that show 

accelerated amino acid substitution across multiple species (Yang 2007), and within a 

single branch, respectively, using measures of dN/dS and 2) SweepFinder (Nielsen et al. 

2005), which identifies genetic regions that show evidence of a recent beneficial fixation 

within a single population using polymorphism data. This direction is similar in principle 

to the recent work of Cai et al. (2009) who demonstrated a relationship between high dN 

and levels of polymorphism, which they interpret as evidence of recurrent positive 
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selection. While we are similarly comparing across multiple time-scales, our starting 

dataset is composed of those genes recently suggested to be important around the human-

Neanderthal split (i.e., as opposed to high dN across the tree), and thus results are not 

directly comparable. 

Our findings indicate that many of these regions would not have been detected as 

candidates for positive selection using traditional frequency spectrum or divergence-

based approaches, and that the Neanderthal genome has indeed allowed for the 

identification of regions experiencing positive selection over a unique time period of the 

human lineage. By focusing exclusively on the putatively selected regions of the Green et 

al. study, we additionally parse this gene set in to those most likely to have been 

important in differentiating human and Neanderthal. 

 

Evidence for selection across apes 

A common approach for detecting positive selection across multiple species is to 

compare the ratio of the rate of non-synonymous substitutions (mutations that lead to 

amino acid changes; dN) to the rate of synonymous substitutions (silent mutations; dS), 

with dN/dS =1, <1 and >1 being consistent with neutral, purifying and positive selection, 

respectively. In early applications, dN/dS was averaged over all sites within a protein 

sequence and across the entire evolutionary time scale of all lineages. This application 

has little power to detect positive selection, because it is likely that most sites are 

functionally constrained (dN/dS << 1) and are primarily shaped by purifying selection. For 

our analysis we utilize codeml, which has a sites model allowing dN/dS (ω) to vary at each 
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site along a sequence (Yang et al. 2000). This method is still conservative in that it 

averages dN and dS over lineages at each site, but it has improved power to detect site 

specific positive selection in a functional protein sequence (Wong et al. 2004). 

Tests of positive selection in the codeml sites model compare the fit of the data 

under a neutral model, to that under a model of positive selection via a likelihood ratio 

test. For the following analysis, three model comparisons were considered: M1a vs. M2a, 

M7 vs. M8, and M8a vs. M8. M1a has two subsets of sites, one where ω varies between 0 

and 1 and one where ω is fixed at one; in M2a ω can be less than 1, equal to 1, or greater 

than 1 (Wong et al. 2004). M7 assumes a beta-distribution for ω between 0 and 1, and M8 

adds an additional class of sites to M7 with ω>1 (Wong et al. 2004). In M8a this 

additional class is fixed at ω=1 (Swanson et al. 2003). Thus, M2a and M8 allow selection 

in each comparison, while M2, M7, and M8a fit the data to a neutral model. A maximum 

likelihood ratio is computed for each model, and the null and selection models are 

compared via a likelihood ratio comparison. 

For our analysis we focused on the top 20 largest putative sweep regions from 

Green et al. (2010) and the 51 genes contained within them (Table 2.1). Orthologues 

were obtained in five primate species: macaque, chimpanzee, orangutan, human, and 

gorilla. Of the original 51 genes, 8 were noncoding RNA (MIR genes and MEG3), and 

thus not suitable for codeml analysis. Of the remaining 43 genes, 29 had annotated 1:1 

orthologues in the above primate species in Ensembl. We did not use genes from species 

with more than one annotated orthologue. Multiple species alignments were constructed 

using the PRANK alignment algorithm (Löytynoja and Goldman 2005) and tested using 
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the three codeml model comparisons described above. Results are summarized in Table 

2.2. Two of the 29 genes showed significant positive selection under all three 

comparisons: CCDC82 and RFX5. Additionally, CGN showed significant positive 

selection under M1a vs. M2a and M8a vs. M8, and THADA was significant under M8a 

vs. M8. We have included this last gene in further discussions since this model 

comparison is the most realistic (Swanson et al. 2003).  

Two of these genes are involved in human disease/immunity. THADA, which has 

been shown to be involved in beta-cell function (Simonis-Bik et al. 2010), is located 

close to a potential susceptibility locus of type II diabetes (Zeggini et al. 2008), and a 

SNP within THADA has been shown to be associated with type II diabetes (Schleinitz et 

al. 2010). RFX5 is involved in MHC-II expression through interferon gamma (Xu et al. 

2003; Garvie et al. 2008). Genes involved in immunity are among the most highly 

represented in scans for positive selection (Yang 2005), with several studies finding 

significant evidence for positive selection within the antigen recognition site of MHC-I 

(Hughes and Nei 1988; Yang et al. 2002) and MHC-II (Hughes and Nei 1989).  The other 

two genes, CCDC82, and CGN, are not as well characterized, and any inference about 

their evolutionary significance would be purely speculative. 

The codeml sites model also makes predictions regarding the most likely sites 

experiencing positive selection according to a Bayes empirical Bayes method (Yang et al. 

2005). For each codon in a DNA sequence that is analyzed, the probability that ω >1 at 

that particular site is computed. A probability of greater than 0.95 was used to determine 

a site that showed significant positive selection. Of the four genes that were significant 
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for at least two tests of selection under the sites model, two such sites were identified in 

CCDC82, CGN, and THADA; four sites were identified in RFX5 (Figure 2.2). In all 

cases, sites display accelerated rates of evolution across the species tree, but do not 

contain human-specific changes. 

Additionally, we performed two branch tests in codeml, which specifically test for 

higher than expected dN/dS along a single branch of interest. For this analysis we tested 

the human branch and the branch ancestral to humans, Neanderthals, and Denisovans. 

This is achieved, again, by a likelihood ratio comparison between two models where a 

dN/dS ratio is assigned to each branch in the tree. Each of the models allows for two 

values for dN/dS: one for the foreground branch where positive selection is assumed (ω1), 

and one for the rest of the background branches (ω0). In the null model, ω1 is fixed to 

equal 1 on the foreground branch, while ω0 is estimated on the remaining branches. In the 

alternative model, ω1 is also estimated from the data. 

We found that none of the previous 29 species alignments showed significant 

positive selection along either the human branch or the branch ancestral to hominins (p < 

0.01). However, five genes did reject the null model in favor of the alternative on both 

branches (p < 0.01: CADPS2, DYRK1A, BACH2, INPPL1, and ZFP36L2) though ω1 < 1.  

 

Evidence for selection in modern human populations 

 To detect recent selective sweeps in human populations we used ascertainment-

corrected polymorphism data from Perlegen, in African-American, European-American, 

and Chinese populations (Williamson et al. 2007). The program SweepFinder (Nielsen et 
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al. 2005) was used to scan for sweeps, given the relatively large size of the genomic 

regions under consideration. SweepFinder computes the background site frequency 

spectrum (SFS) for the region in question and then identifies unusual regions relative to 

this background (Figure 3). A significant cutoff value is determined using neutral 

simulation (see Methods).  

 Of the top 20 putative sweep regions from Green et al., three were identified as 

being consistent with recent selection in modern humans (Figure 2.3). Sweep region 1 is 

upstream of ZFP36L2 on chromosome 2 in the European population (Figure 2.3a). Sweep 

region 2 is centered around an intron of KCNAB1 on chromosome 3 in the African 

population (Figure 2.3b). Finally, sweep region 3 is localized near the last exon of DLK1 

on chromosome 14 in the Chinese population (Figure 2.3c). These sweeps are distinct 

from those detected in the original dataset for at least two reasons. First, our sweep 

analysis was performed using population specific data, and thus any selective signal will 

be unique to a single population; whereas the Green et al. scan was based upon detecting 

a joint signal from all five populations considered. Second, because of the time 

restrictions over which a recent sweep can be detected (~100,000 years for Africans), the 

time scales of the two statistics are essentially non-overlapping. This scaling becomes 

even faster for populations of smaller effective population sizes (i.e., Ne(Chinese) = 510, 

Ne(Europe) = 1000 (Gutenkunst et al. 2009)); thus the time to the oldest detectable sweep ~ 

5100 years and ~10,000 years for the Chinese and European populations, respectively. 

Therefore, these results suggest recurrent selective sweeps along the human-lineage in 
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these regions (i.e., around the human-Neanderthal split, and in modern human 

populations). 

In an attempt to localize potential genetic targets of these peak regions, the UCSC 

genome browser (track SNP 130) and dbSNP were used to identify SNPs specific to the 

populations under consideration. Since the peak regions in chromosome 2 and 14 were 

less than 1Kb, an additional 2Kb of human sequence was examined on either side of the 

peak. One high frequency derived SNP (rs10132598) was identified in the Asian 

population near the significant peak of chromosome 14 (CHB+JPT= 0.83, YRI= 0.30, 

and CEU=0.15) according to the 1000 genomes pilot data, phase 1 (Durbin et al. 2010). 

This agrees well with the SweepFinder result, as the significant peak using the Perlegen 

dataset was specific to the Chinese population. Another SNP (rs72875566) was found 

near the significant peak region of chromosome 2. The significant sweep was detected in 

the European population, and interestingly, this SNP is at a higher frequency in 

individuals of European ancestry compared to Yorubans (0.85 vs. 0.61, respectively) 

according to the phase 1 low coverage data from the 1000 genomes project. No 

information on this SNP was provided for the Asian populations. This SNP is also 

located in a CpG island upstream of both ZFP36L2 and another predicted mRNA locus 

(LOC100129726, Figure 2.3) that was not in the original table in Green et al. These two 

genes transcribe in opposite directions and the CpG island overlaps both genes, 

suggesting that it may affect expression of either locus.  
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Discussion 

By examining the candidate selection genes of Green et al. using both divergence 

and polymorphism data, we have parsed the list of candidate regions that may have been 

uniquely important in differentiating human and Neanderthal, providing an ideal list for 

functional validation. The extent of overlap between codeml, SweepFinder, and Green et 

al. is summarized in Table 2.1. Of the 20 original regions, 15 would not have been 

identified using the methods tested above (Table 2.1, red text). This highlights the utility 

of the Neanderthal genome - demonstrating power to identify regions that would have 

been missed by using site frequency spectrum- or dN/dS-based methodology alone.  

The genetic functions contained within some of these novel regions are of interest 

in terms of human evolution. The HoxD gene cluster located on chromosome 2 is 

involved in both vertebral and limb development (for review, see Favier and Dollé 1997). 

Another interesting gene is RUNX2 (CBFA1). This is a transcription factor involved in 

bone development. Mutations in RUNX2 can lead to a skeletal disorder known as 

Cleidocranial dysplasia (CCD), which is characterized by short stature, underdeveloped 

or missing clavicles, and dental and cranial abnormalities, among other skeletal changes 

(Mundlos et al. 1997). Thus selection within these regions could have led to 

morphological differences in modern humans.  

Also of note are DYRK1A, NRG3, and CADPS2. DYRK1A is located in the Down 

Syndrome Critical Region on chromosome 21. It is expressed during brain development, 

and also in the adult brain, where it is believed to be involved in learning and memory 

(Hämmerle et al. 2003). NRG3 also has neurological implications. In humans, it is 
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expressed in the hippocampus, amygdala, and thalamus, and is believed to be a 

susceptibility locus for schizophrenia (Zhang et al. 1997, Wang et al. 2008). Mutations in 

CADPS2 have been associated with autism (Sadakata and Furuichi 2010). Selection in 

these three regions during human evolution could have resulted in characteristic cognitive 

behavior.  

The availability of extinct hominin genomic sequence, such as Neanderthal and 

Denisova, is an important milestone in the study of human evolution. These genomes 

provide much greater resolution for the identification of unique human adaptive 

substitutions, since they serve as a nearer outgroup than chimpanzee (Figure 2.1). Any 

human substitutions identified using chimpanzee may be shared among the many 

ancestors between human and chimpanzee, including Australopithecus and 

Paranthropus, whereas Neanderthal and Denisova are the two nearest known relatives of 

Homo sapiens. These two genomes also can provide a more detailed adaptive history of 

the human species, and, in combination with the selective scan method of Green et al., we 

now have power to detect adaptive fixations in deeper evolutionary time. Our results 

show that this method can, in fact, detect adaptive genomic regions that would have been 

missed using selective scans based on dN/dS (i.e., codeml) or site frequency spectrum 

summary statistics (i.e., SweepFinder). In their analysis, Green et al. compared their 

regions to two other genomic scans for selection in humans, one using an outlier 

approach and the other based on Tajima’s D (Tajima 1989). They found no significant 

overlap between their regions and those of other studies, further suggesting power over 
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separate time frames. There is also no overlap between the 20 regions we examined here 

and the SweepFinder scan performed by Williamson et al. (2007). 

It is not unexpected that the majority of genes we examined within these 20 

candidate regions do not contain significant dN/dS. The codeml sites model requires that 

there be excessive dN across all species at a particular site in order to infer positive 

selection, and the human branch is short relative to other apes. Thus, the non-

synonymous changes are more likely to pre-date humans. Additionally, the codeml 

branch model averages dN/dS across an entire sequence, and this leads to reduced power 

to detect selection, as discussed above. Moreover, Green et al. identified 78 fixed non-

synonymous amino acid changes in humans that were ancestral in Neanderthal, and none 

of the genes containing these fixed changes overlapped with the genes in the top 20 

candidate regions for a selective sweep. It may well be that the target of these sweeps was 

not non-synonymous (e.g., a synonymous or non-coding change, or that a non-

synonymous change in humans was unable to be determined due to the variable depth in 

sequence coverage of the Neanderthal genome). In fact, 5 of the 20 candidate regions 

contain no annotated coding sequence (Table 2.1), and Green et al. found an additional 

232 human-specific substitutions in 5’- and 3’- UTR regions, suggesting that non-coding 

sites may have been targeted.  

Conclusion 

Here we have shown that using an ancient hominin genomic sequence to scan for 

positive selection in humans (as performed by Green et al.) has elucidated a novel list of 

candidate selection regions that would not have been discovered using currently available 
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methods of detecting selection. Of the 15 novel regions from the Green et al. scan, 5 

contained genes with interesting relations to human morphological and cognitive traits. 

Therefore, we conclude that using an ancient hominin genome to scan for selection in 

conjunction with already established methods could offer a more complete picture of how 

positive selection has shaped modern humans.  

Methods  

Multiple species alignment for codeml 

 Human mRNA sequences were obtained from Ensembl. Only sequences with 

CCDS citations were used. If there was more than one transcript, the one with the longest 

amino acid sequence was chosen. Macaque, chimp, gorilla, and orangutan sequences 

were retrieved from Ensembl using BioMart. Briefly, using the list of human gene IDs, 

orthologous Ensembl gene IDs for each species were obtained from the Ensembl Genes 

58 human dataset using the homologs filter under Multi-species Comparisons. These IDs 

were then queried to get orthologous coding transcript sequences from each species using 

the sequences attribute. In cases where more than one transcript variant was returned, the 

longest was chosen. Only genes showing 1:1 homology with orthologues in all five 

species were used for codeml analysis. Sequences were aligned using PRANK 

(Löytynoja and Goldman 2005). The codon option was used, which uses the empirical 

codon model (ECM; Kosiol et al. 2007) to align individual codons while preserving the 

reading frame. The guide tree was estimated by the program and all other parameters 

were left as default. This method of alignment was shown by Fletcher and Yang (2010) to 
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be the most accurate at preserving true sequence alignment in the presence of insertions 

and deletion when using the PAML branch-site test.  

 

codeml analysis 

The codeml program in PAML version 4.4 (Yang 2007) was used to test for positive 

selection across apes (with the exception of macaque, which was included even though it 

is an Old World Monkey). Three different sites model tests were examined: M1a vs. 

M2a, M7 vs. M8, and M8 vs. M8a (see PAML documentation for parameters). A 

likelihood ratio test was used to determine significance. A Bonferroni corrected p value 

assuming 29 tests (0.05/29) is equal to 0.0018. We also compare with the uncorrected p 

value of 0.01 to determine significance. For both the sites and human-specific branch 

tests, an alignment of 5 primate species is used (human, chimpanzee, gorilla, orangutan, 

macaque). For the human-Neanderthal ancestral branch test an alignment of 7 species 

was used that included the Neanderthal and Denisovan sequences. These two sequences 

were excluded from sites test due to the variable coverage of both genomes, as codeml 

ignores sites with missing data.  

 

Neanderthal and Denisova sequence construction 

The BAM files for Neanderthal and Denisova can be found at: 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/neandertal and 

http://hgdownload.cse.ucsc.edu/downloads.html, respectively. SAMtools (Li et al. 2009) 

was used to retrieve the reads corresponding to each gene sequence from the Neanderthal 
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and Denisova BAM files using the chromosomal locations. These reads were mapped 

back to hg18 using Geneious version 5.3.2 (Drummond et al. 2011). A Phred scaled 

confidence score cutoff of 30 was applied for all sites where these sequences differed 

from hg18. 

 

SweepFinder Analysis 

The data used for this analysis was the same Perlegen SNP dataset as in Williamson et al 

2007. The SNPs for each region were analyzed using SweepFinder (Nielsen et al. 2005), 

which computes the background site frequency spectrum (SFS) for a region using SNP 

data. It uses a likelihood framework (Kim and Stephan 2002) to compare the background 

SFS with that expected under a model of a selective sweep at a predetermined set of sites 

along the region. The number of sites is designated by the gridsize parameter, and was set 

to the number of nucleotides in the region. The cut off value was determined by 

simulating 1000 replicates in ms (Hudson 2002) under the standard neutral model for 

each region. The parameters for each simulated region consisted of the same SNP density 

(by setting the “S” parameter in ms equal to the number of SNPs from the Perlegen 

dataset present in the region) and gridsize as the actual region. For ms style input, 

SweepFinder returns the maximum LR value for each replicate. To determine 

significance, the top 99.995% of LR values (p =5x10-5) were considered significant. This 

p value reflects a Bonferroni correction for 1000 tests. 
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Figure 2.1 Summary of methods.  
A graphical representation of the evolutionary timescale over which the methods for 
detecting positive selection are effective. Branch lengths are not drawn to scale. 
Divergence-based methods can detect positive selection across a phylogenetic tree or 
along a single branch; polymorphism-based methods are effective within a single 
population; the Green et al. method using the Neanderthal genome finds selection in 
humans that occurred shortly after the human-Neanderthal split.   
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Figure 2.2. Mutations at significant sites across the primate tree.  
For genes that showed significant positive selection by at least two tests in the codeml 
sites model, the nucleotide changes within the candidate sites for selection were mapped. 
In cases where there were two possible scenarios that could describe how a change 
originated, the simplest was assumed. Branch lengths are not drawn to scale, and the 
spacing and ordering of the mapped substitutions on a given branch are arbitrary. 
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Figure 2.3. Sweep regions.  
The three regions identified from the Green et al. dataset as showing evidence of a 
selective sweep in a modern human population using SweepFinder. The horizontal 
dashed line represents a Bonferroni corrected LR cutoff (p < 5x10-5). Approximate region 
lengths correspond to the significant portion of the peak. Population-specific high 
frequency derived SNPs are marked with an arrow along the x-axis. a) A region of 531bp 
upstream of ZFP36L2 and LOC100129726 in the European-American population. b) A 
region of ~11Kb within an intron of KCNAB1 in the African-American population. c) A 
region of 121bp within an intron of DLK1 in the Chinese population. For these plots, the 
coordinates for chromosomal location along the x-axis correspond to the hg16 genome 
annotation.  

99189000 99190000 99191000 99192000

0
2

4
6

 Chromosome Location (bp)

Li
ke

lih
oo

d 
R

at
io

157294000 157296000 157298000 157300000 157302000 157304000

0
2

4
6

Chromosome Location(bp)

Li
ke

lih
oo

d 
R

at
io

43428000 43429000 43430000 43431000 43432000

0
2

4
6

Chromosome Location (bp)

Li
ke

lih
oo

d 
R

at
io

KCNAB1

rs10132598 DLK1

b)

c)

ZFP36L2

ORF ORF

a)

LOC100129726
rs72875566

African
European
Chinese



 48 

 

 

Table 2.1. Information on genomic regions considered and comparison of results 

chr2:43265008-43601389
chr11:95533088-95867597 
chr10:62343313-62655667 
chr21:37580123-37789088 
chr10:83336607-83714543 
chr14:100248177-100417724 
chr3:157244328-157597592 
chr11:30601000-30992792 
chr2:176635412-176978762

chr11:71572763-71914957 
chr7:41537742-41838097 
chr10:60015775-60262822 
chr6:45440283-45705503 
chr1:149553200-149878507
chr7:121763417-122282663 
chr7:93597127-93823574 
chr16:62369107-62675247 
chr14:48931401-49095338 
chr6:90762790-90903925 
chr10:9650088-9786954

0.5726 
0.5538 
0.5167 
0.4977 
0.4654 
0.4533 
0.425 
0.3951 
0.3481

0.3402 
0.3129 
0.3129 
0.3112 
0.3047
0.2855 
0.2769 
0.2728 
0.2582 
0.2502 
0.2475

ZFP36L2; THADA; LOC100129726c 
JRKL; CCDC82; MAML2 
RHOBTB1 
DYRK1A
NRG3 
MIR337; MIR665; DLK1; RTL1; MIR431; MIR493; MEG3; MIR770
KCNAB1

HOXD11; HOXD8; EVX2; MTX2; HOXD1; HOXD10; HOXD13; HOXD4;
HOXD12; HOXD9; MIR10B; HOXD3 
CLPB; FOLR1; PHOX2A; FOLR2; INPPL1 
INHBA
BICC1 
RUNX2; SUPT3H 
SELENBP1; POGZ; MIR554; RFX5; SNX27; CGN; TUFT1; PI4KB; PSMB4 
RNF148; RNF133; CADPS2

BACH2

Region (hg18) Width (CM) Genes

Table 1. Information on genomic regions considered and comparison of results

aThe signi!cant results using each method are either colored green (overlap between Green et al. and 
SweepFinder) or blue (overlap between Green et al. and codeml). Regions colored in red contain no overlap
with the tested methods, and represent a novel list of genes unique to the Green et al. scan using 
Neanderthal.   
bFor codeml, genes that were signi!cant for at least two tests of selection are underlined (p<0.01).
c LOC100129726 was not listed in Green et al. Table 3.
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Table 2.2. Summary of codeml results 
2�ℓ(M1a-M2a) 2�ℓ(M7-M8) 2�ℓ(M8a-M8)Genes ω/(Prω>1)b

BACH2
BICC1
CADPS2
CCDC82
CGN
CLPB
DLK1
DRYK1A
EVX2
FOLR1
HOXD1
HOXD4
HOXD8
HOXD9
HOXD10
INHBA
INPPL1
KCNAB1
MAML2
NRG3
PHOX2A
PI4KB
PSMB4
RFX5
SNX27
SUPT3H
THADA
TUFT1
ZFP36L2

0.00
4.78
2.28

8.34**
6.55**
0.50
1.85
0.00
2.19
0.00
4.43
0.20
3.00
0.00
0.00
0.00
1.77
4.72
0.03
0.00
0.00
-6.26
0.63

13.03**
0.00
1.70

6.35**
0.14
0.05

0.00
5.31
2.50

8.35**
6.55
0.61
2.57
-0.18
2.51
0.00
4.81
0.47
3.00
0.00
0.00
-0.32
1.94

8.63**
0.13
0.00
0.00
-0.32
0.53

13.05**
0.00
2.03
7.11
0.19
0.41

0.00
4.78
2.28

8.34**
6.55**
0.50
1.83
-0.18
2.17
0.00
4.41
0.20
3.00
0.00
0.00
-0.32
1.76
4.29
0.03
0.00
0.00
-1.98
0.51

13.03**
0.00
1.70

6.35**
0.14
0.05

5.781/0.980
4.186/0.952

2.121/0.934

7.898/0.993

3.720/0.965

psites ω>1c

0.130
0.376

0.003

0.050

0.108

Table 2. Summary of codeml results

** p<0.01
aSigni#cance for each test was determined from a chi-
squared distribution with degrees of freedom =1 for 
M8a vs. M8, and df=2 for M1a vs. M2a and M7 vs. M8. 
bThe probability that ω is greater than one at a given site 
in the sequence based on the BEB posterior probability For 
each gene showing evidence of positive selection. The 
highest probability observed is given with its 
corresponding ω value. 
cThe proportion of sites examined per sequence that fall 
in the category of ω being greater than one.
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CHAPTER III.  Human-Specific Histone Methylation Signatures at Transcription Start 

Sites in Prefrontal Neurons 

 

Abstract 

Cognitive abilities and disorders unique to humans are thought to result from adaptively 

driven changes in brain transcriptomes, but little is known about the role of cis-regulatory 

changes affecting transcription start sites (TSS). Here, we mapped in human, 

chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 

trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and 

identified 471 sequences with human-specific enrichment or depletion. Among these 

were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from 

children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and 

other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and 

additional loci carried a strong footprint of hominid adaptation, including elevated 

nucleotide substitution rates and regulatory motifs absent in other primates (including 

archaic hominins), with evidence for selective pressures during more recent evolution and 

adaptive fixations in modern populations. Chromosome conformation capture at two 

neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin 

structures resulting in physical contact of multiple human-specific H3K4me3 peaks 

spaced 0.5–1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to 

Polycomb repressor proteins and downregulated DPP10 expression. Therefore, 

coordinated epigenetic regulation via newly derived TSS chromatin could play an 



 

 

51 

important role in the emergence of human-specific gene expression networks in brain that 

contribute to cognitive functions and neurological disease susceptibility in modern day 

humans. 
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Introduction 

Cognitive abilities and psychiatric diseases unique to modern humans could be 

based on genomic features distinguishing our brain cells, including neurons, from those 

of other primates. Because protein coding sequences for synaptic and other neuron-

specific genes are highly conserved across the primate tree (Bayes et al 2011, King and 

Wilson 1975), a significant portion of hominid evolution could be due to DNA sequence 

changes involving regulatory and non-coding regions at the 5′ end of genes (The 

Chimpanzee Sequencing and Analysis Consortium 2005, McLean et al. 2011). 

Quantifying these differences, however, is ultimately a daunting task, considering that, 

for example, the chimpanzee–human genome comparison alone reveals close to 35×106 

single bp and 5×106 multi-bp substitutions and insertion/deletion events (The 

Chimpanzee Sequencing and Analysis Consortium 2005). While a large majority of these 

are likely to reflect genetic drift and are deemed “non-consequential” with respect to 

fitness, the challenge is to identify the small subset of regulatory sequence alterations 

impacting brain function and behavior. 

Here, we combine comparative genomics and population genetics with genome-

scale comparisons for histone H3-trimethyl-lysine 4 (H3K4me3), an epigenetic mark 

sharply regulated at transcription start sites (TSS) and the 5′ end of transcriptional units in 

brain and other tissues (Zhou et al. 2011, Shilatifard 2006, Cheung et al. 2010, Shulha et 

al. 2011) that is stably maintained in brain specimens collected postmortem (Cheung et 

al. 2010, Huang et al. 2006). Our rationale to focus on TSS chromatin was also guided by 



 

1Supplementary tables and figures for this chapter can be viewed with the original publication at 
http://www.plosbiology.org/ 
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the observation that the human brain, and in particular the cerebral cortex, shows distinct 

changes in gene expression, in comparison to other primates (Preuss et al. 2004). While 

there is emerging evidence for an important role of small RNAs shaping human-specific 

brain transcriptomes via posttranscriptional mechanisms (Somel et al. 2011) and 

increased recruitment of recently evolved genes during early brain development (Zhang 

et al. 2011), the role of TSS and other cis-regulatory mechanisms remains unclear. Here, 

we report that cell type-specific epigenome mapping in prefrontal cortex (PFC, a type of 

higher order cortex closely associated with the evolution of the primate brain) revealed 

hundreds of sequences with human-specific H3K4me3 enrichment in neuronal chromatin, 

as compared to two other anthropoid primates, the chimpanzee and the macaque. These 

included multiple sites carrying a strong footprint of hominid evolution, including 

accelerated nucleotide substitution rates specifically in the human branch of the primate 

tree, regulatory motifs absent in non-human primates and archaic hominins including 

Homo neanderthalensis and H. denisova, and evidence for adaptive fixations in modern 

day humans. The findings presented here provide the first insights into human-specific 

modifications of the neuronal epigenome, including evidence for coordinated epigenetic 

regulation of sites separated by megabases of interspersed sequence, which points to a 

significant intersect between evolutionary changes in TSS function, species-specific 

chromatin landscapes, and epigenetic inheritance. 

Results1
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H3K4me3 Landscapes across Cell Types and Species 

The present study focused on the rostral dorsolateral PFC, including 

cytoarchitectonic Brodmann Area BA10 and the immediately surrounding areas. These 

brain regions represent a higher association cortex subject to disproportionate 

morphological expansion during primate evolution (Semendeferi et al. 2001), and are 

involved in cognitive operations important for informed choice and creativity (Tsujimoto 

et al. 2010, 2011), among other executive functions. Given that histone methylation in 

neuronal and non-neuronal chromatin is differentially regulated at thousands of sites 

genome-wide (Cheung et al. 2010), we avoided chromatin studies in tissue homogenates 

because glia-to-neuron ratios are 1.4- to 2-fold higher in mature human PFC as compared 

to chimpanzee and macaque (Sherwood et al. 2006). Instead, we performed cell type-

specific epigenome profiling for each of the three primate species, based on NeuN 

(“neuron nucleus”) antigen-based immunotagging and fluorescence-activated sorting, 

followed by deep sequencing of H3K4me3-tagged neuronal nucleosomes. 

Prefrontal H3K4me3 epigenomes from NeuN+ nuclei of 11 humans, including seven 

children and four adults (Cheung et al. 2010), were compared to four chimpanzees and 

three macaques of mature age (Table S1). Sample-to-sample comparison, based on a 

subset of highly conserved Refseq TSS with one mismatch maximum/36bp, consistently 

revealed the highest correlations between neuronal epigenomes from the same species 

(Table S2). Strikingly, however, the H3K4me3 landscape in human neurons was much 

more similar to chimpanzee and macaque neurons, when compared to non-neuronal 

(NeuN−) cells (Cheung et al. 2010) from the same specimen/donor or to blood (Figure 
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3.1A). Therefore, PFC neuronal epigenomes, including their histone methylation 

landscapes at TSS, carry a species-specific signature, but show an even larger difference 

when compared to their surrounding glial and other NeuN− cells. 

Several Hundred Loci Show Human-Specific Gain, or Loss, of Histone Methylation 

in PFC Neurons 

To identify loci with human-specific H3K4me3 enrichment in PFC neurons, we 

screened 34,639 H3K4me3 peaks that were at least 500 bp long and showed a consistent 

>2-fold H3K4me3 increase for the 11 humans as compared to the average of the seven 

chimps and macaques and (ii) minimum length of 500 bp. We identified 410 peaks in the 

human genome (HG19) with significant enrichment compared to the two non-human 

primate species (with reads also mapped to HG19) after correcting for false discovery 

(FDR), and we call these peaks “HP” hereafter for “human-specific peaks” (Figure 3.1D; 

Table S3). We had previously reported that infant and child PFC neurons tend to have 

stronger peaks at numerous loci, compared to the adult (Cheung et al. 2010). To better 

age-match the human and non-human primate cohorts, we therefore repeated the analysis 

with our entire, recently published cohort of nine adult humans without known 

neurological or psychiatric disease (Cheung et al. 2010, Shulha et al. 2011). Using the 

same set of filter criteria (>2-fold increase in humans compared to chimpanzees and 

macaques), we identified 425 peaks and 296 of them overlapped with the original 410 HP 

(Table S3). Furthermore, 345 of the 410 peaks overlapped with the overlapped with the 

peaks with >1.5-fold increase for nine adult humans (compared to non-human primates; 

with correction for FDR) (Table S4), indicating that HPs can be detected reliably. 
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To obtain human depleted peaks we used a reciprocal approach where initial 

peaks were detected in chimpanzee and macaque. For the original cohort of 11 children 

and adult humans, this resulted in 61 peaks with a significant, at least 2-fold depletion in 

human PFC neurons (Table S5). 50 peaks defined by human-specific depletion in the 

mixed cohort of 11 children and adults were part of the total of 177 peaks with >1.5-fold 

decrease in the cohort of nine adults (compared to each of the two non-human primate 

species; Table S6). From this, we conclude that at least 471 loci in the genome of PFC 

neurons show robust human-specific changes (gain, 410; loss, 61) in histone methylation 

across a very wide postnatal age range. 

We further explored chimpanzee-specific changes in the H3K4me3 landscape of 

PFC neurons by comparing human and chimpanzee peaks within the chimpanzee 

genome. To this end, we constructed a mono-nucleosomal DNA library from chimpanzee 

PFC to control for input, and mapped the neuronal H3K4me3 datasets from four 

chimpanzee PFC specimens, and their 11 human counterparts, to the chimpanzee genome 

(PT2). We identified 551 peaks in the PT2 genome that were subject to >2-fold gain and 

337 peaks subject to >2-fold depletion, compared to human regardless of the H3K4me3 

level in macaque (Tables S7 and S8). A substantial portion of these PT2-annotated peaks 

(133 and 40 peaks, respectively) with gain or loss in chimpanzee PFC neurons matched 

loci with the corresponding, reciprocal changes specific to human PFC neurons in HG19 

(410 and 61 peaks as described above). Genetic differences among these genomes and 

additional, locus-specific differences in nucleosomal organization (leading to differences 

in background signal in the input libraries) are potential factors that would lead to only 
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partial matching of peaks when species-specific H3K4me3 signals are mapped within the 

human, or chimpanzee genome, respectively. These findings, taken together, confirm that 

genome sequence differences in cis are one important factor for the species-specific 

histone methylation landscapes in PFC neurons. 

Human-Specific H3K4me3 Peaks in PFC Neurons Overlap with DNA Methylation 

Signatures in the Male Germline 

Both catalytic and non-catalytic subunits of H3K4 methyltransferase complex are 

associated with transgenerational epigenetic inheritance in the worm, Caenorhabditis 

elegans, and other simple model organisms (Greer and Shi 2012), and furthermore, 

H3K4me3 and other epigenetic markings such as DNA cytosine methylation are readily 

detectable in non-somatic (“germline”-related) cells such as sperm, potentially passing on 

heritable information to human offspring (Hammond et al. 2009). Therefore, we wanted 

to explore whether a subset of the 410 loci with at least 2-fold H3K4me3 enrichment in 

human neurons are subject to species-specific epigenetic regulation in germ tissue. To 

this end, we screened a human and chimpanzee sperm database on DNA methylation 

(Molaro et al. 2011), in order to find out which, if any of the 410 sequences with human-

specific H3K4me3 gain in brain overlap with a set of >70,000 sequences defined by very 

low, or non-detectable DNA methylation in human and chimpanzee sperm (termed 

(DNA) “hypomethylated regions” in Molaro et al. 2011). Of note, the genome-wide 

distribution of H3K4me3 and DNA cytosine methylation is mutually exclusive in germ 

and embryonic stem cells, and gains in DNA methylation generally are associated with 

loss of H3K4me3 in differentiated tissues (Isagawa et al. 2011, Yan et al. 2003). 
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Unsurprisingly therefore, 300/410 HP peaks in brain matched a DNA hypomethylated 

sequence in sperm of both species. Strikingly, however, 90/410, or approximately 22% of 

HP were selectively (DNA) hypomethylated in human but not in chimpanzee sperm 

(Table S3), a ratio that is approximately 4-fold higher than the expected 5.7% based on 

10,000 simulations (p<0.00001; see also Text S1) (Figure 3.1B). Conversely, the portion 

of HP lacking DNA hypomethylation in male germ cells of either species altogether 

(18/410 or 4%), or with selective hypomethylation in chimpanzee sperm (2/410 or 0.5%), 

showed a significant, 5-fold underrepresentation in our dataset (Figure 3.1B). Thus, 

approximately one-quarter of the 410 loci with human-specific gain in histone 

methylation in PFC neurons also carry species-specific DNA methylation signatures in 

sperm, with extremely strong bias towards human (DNA) hypomethylated regions (22%) 

compared to chimpanzee-specific (DNA) hypomethylated regions (0.5%). In striking 

contrast, fewer than ten of the 61 loci with human-specific H3K4me3 depletion in PFC 

neurons showed species-specific differences in sperm DNA methylation between species 

(six human- and three chimpanzee-specific DNA hypomethylated regions; Table S5). 

H3K4 Methylation Sites with Human-Specific Gain Physically Interact in 

Megabase-Scale Higher Order Chromatin Structures and Provide an Additional 

Layer for Transcriptional Regulation 

We noticed that, at numerous chromosomal loci, HP tended to group in pairs or 

clusters (Table S3). There were more than 245 (163) from the total of 410 HP spaced less 

than 1 (or 0.5) Mb apart, which is a highly significant, 2- (or 3-) fold enrichment 

compared to random distribution within the total pool of 34,639 peaks (Figure 3.1C; Text 
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S1). Therefore, sequences with human-specific gain in H3K4me3 in PFC neurons appear 

to be co-regulated with neighboring sequences on the same chromosome that are 

decorated with the same type of histone modification. Likewise, the actual number of 

human-depleted peaks within one 1 Mb (n = 6) was higher than what is expected from 

random distribution (n = 2.6), (p = 0.051), albeit no firm conclusions can be drawn due to 

the smaller sample size (n = 61). This type of non-random distribution due to pairing or 

clustering of the majority of human-enriched sequences broadly resonates with the 

recently introduced concept of Mb-sized topological domains as a pervasive feature of 

genome organization, including increased physical interactions of sequences carrying the 

same set of epigenetic decorations within a domain (Dixon et al. 2012). Of note, H3K4 

trimethylation of nucleosomes is linked to the RNA polymerase II transcriptional 

initiation complex, and sharply increased around TSS and broadly correlated with “open 

chromatin” and gene expression activity (Zhou et al. 2011, Shilatifard 2006). Therefore, 

we reasoned that a subset of human-enriched “paired” H3K4me3 peaks could engage in 

chromatin loopings associated with transcriptional regulation. This is a very plausible 

hypothesis given that promoters and other regulatory sequences involved in 

transcriptional regulation are often tethered together in loopings and other higher order 

chromatin (Schwab et al. 2011, Splinter et al. 2011). 

To explore this, we screened a database obtained on chromatin interaction 

analysis by paired-end tag sequencing (ChIA-PET) for RNA polymerase II, a technique 

designed to detect chromosomal loopings bound by the Pol II complex. Indeed, we 

identified at least three interactions that matched to our H3K4me3 peaks with human-
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specific gain in PFC neurons (Table S9), including a loop interspersed by approximately 

2.5 Mb of sequence in chromosome 16p11.2–12.2. This is a risk locus for microdeletions 

that are linked to a wide spectrum of neurodevelopmental disease including autism 

spectrum disorder (ASD), intellectual disability (ID), attention deficit hyperactivity 

disorder (ADHD), seizures, and schizophrenia (Kumar et al. 2008, Weiss et al. 2008, 

Shinawi et al. 2009, Bijlsma et al. 2009, Fernandez et al. 2010, McCarthy et al. 2009). 

We were able to validate this interaction by chromosome conformation capture (3C), a 

technique for mapping long range physical interactions between chromatin segments 

(Dekker 2006), in 2/2 human PFC specimens and also in a human embryonic kidney 

(HEK) cell line (Figure 3.2). We conclude that human-specific H3K4me3 peaks spaced 

as far apart as 1 Mb are potentially co-regulated and physically interact via chromatin 

loopings and other higher order chromatin structures. 

Neuronal Antisense RNA LOC389023 Originating from a DPP10 (Chromosome 

2q14) Higher Order Chromatin Structure Forms a Stem-Loop and Interacts with 

Transcriptional Repressors 

Next, we wanted to explore whether sequences with human-specific gain in 

histone methylation, including those that show evidence for pairing and physical 

interactions, could affect the regulation of gene expression specifically in PFC neurons. 

To this end, we first identified which portion from the total of 410 human-specific peaks 

showed much higher H3K4me3 levels selectively in PFC neurons, when compared to 

their surrounding non-neuronal cells in the PFC. Thus, in addition to the aforementioned 

filter criteria (2-fold increase in human PFC neurons compared to non-human primate 
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PFC neurons), we searched for peaks with differential regulation among PFC neurons 

and non-neurons (see Text S1). We found 33 HP with selective enrichment in neuronal 

PFC chromatin (termed neuHP in the following) (Figure S1; Table S10). Among these 

were two HP spaced less than 0.5 Mb apart within the same gene, DPP10 (chr2q14.1), 

encoding a dipeptidyl peptidase-related protein regulating potassium channels and 

neuronal excitability (Figure 3.3A–3.3B) (Maffie 2008). Interestingly, rare structural 

variants of DPP10 confer strong genetic susceptibility to autism, while some of the gene's 

more common variants contribute to a significant risk for bipolar disorder, schizophrenia, 

and asthma (Marshall et al. 2008, Djurovic et al. 2010, Allen et al. 2003). Histone 

methylation at DPP10 was highly regulated in species- and cell type-specific manner, 

with both DPP10-1 and DPP10-2 peaks defined by a very strong H3K4me3 signal in 

human PFC neurons (Figure 3.3A), but only weak or non-detectable peaks in their 

surrounding NeuN− (non-neuronal) nuclei (Figure S1; Table S10) or blood-derived 

epigenomes (Cheung et al. 2010). 

We then employed 3C assays across 1.5 Mb of the DPP10 (chr2q14.1) in PFC of 

four humans. To increase the specificity in each 3C PCR assay, we positioned both the 

forward and reverse primer in the same orientation on the sense strand, and samples 

processed for 3C while omitting the critical DNA ligation step from the protocol served 

as negative control (Figure 3.3A–3.3B). Indeed, 3C assays on four of four human PFC 

specimens demonstrated direct contacts between the DPP10-1 and -2 peaks (Figure 

3.3A). As expected for neighboring fragments (Dekker 2006), DPP10-1 also interacted 

with portions of the interspersed sequence (CR2 in Figure 3.3A). These interactions were 
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specific, because several other chromatin segments within the same portion of chr2q14.1 

did not show longer range interactions with DPP10-1 (CR1, CR3 in Figure 3.3A). We 

further verified one of the DPP10-1/2 physical interactions (the sequences captured by 

primers 6 and 17 in Figure 3.3A) in four of five brains using 3C-qPCR with a TaqMan 

probe positioned in fragment 6. Furthermore, DPP10-2 interacted with a region (“CR3” 

in Figure 3.3A) 400 kb further downstream positioned in close proximity to a blood-

specific H3K4me3 peak. No interactions at the DPP10 locus were observed in cultured 

cells derived from the H9 embryonic stem cell line (H9ESC in Figure 3.3A), suggesting 

that these chromatin architectures are specific for differentiated brain tissue. Of note, 

similar types of DPP10 physical interactions were found in 3C assays conducted on PFC 

tissue of three of three macaques (Figure 3.3B). Because macaque PFC, in comparison to 

human, shows much weaker H3K4 methylation at these DPP10 sequences, we conclude 

that the corresponding chromatin tetherings are not critically dependent on human-

specific H3K4me3 dosage. 

Next, we wanted to explore whether human-specific H3K4 methylation at the 

DPP10 locus is associated with a corresponding change in gene expression at that locus. 

Notably, H3K4me3 is on a genome-wide scale broadly correlated with transcriptional 

activity, including negative regulation of RNA expression by generating very short (~50–

200 nt) promoter-associated RNAs. These short transcripts originate at sites of 

H4K4me3-tagged nucleosomes and act as cis-repressors in conjunction with polycomb 

and other chromatin remodeling complexes (Kanhere et al. 2010, Shi et al. 2006). 

Therefore, transcriptional activities due to the emergence of novel H3K4me3 markings in 
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human PFC is likely to be complex, with unique functional implications specific to each 

genomic locus. To explore the transcriptome at the DPP10 locus in an unbiased manner, 

we performed RNA-seq on a separate cohort of three adult human PFC (not part of the 

aforementioned ChIP-seq studies) and compared their transcriptional landscapes to 

similar datasets from chimpanzee and macaque (Liu et al. 2011, Brawand et al. 2011). 

Indeed, we found an antisense RNA, LOC389023, emerging from the second DPP10 

peak, DPP10-2 (chr2q14.1) (Figures 3.3A and 3.4A). In an additional independent 

analyses (using a set of human postmortem brains different from the ones used for 

RNAseq) quantitative reverse transcriptase (RT)-PCR assays further validated the much 

higher expression of DPP10 antisense transcript in human (Figure 3.4B), which occurred 

in conjunction with decreased expression of DPP10 exons downstream of the DPP10-2 

promoter (compared to chimp/macaque) (Figure 3.4A). 

Consistent with the H3K4me3 enrichment specifically in neuronal chromatin, the cellular 

expression of LOC389023 in adult PFC was confined to a subset of the neuronal layers 

(II–IV), but absent in neuron-poor compartments such as layer I and subcortical white 

matter (Figure 3.5A and unpublished data). Furthermore, the transcript was expressed in 

fetal and adult PFC but not in cerebellar cortex (Figure 3.5B). We noticed that 

LOC389023 harbored a GC-rich stem loop motif that is known to associate with cis-

regulatory mechanisms involved in transcriptional repression, including binding to TSS 

chromatin and components of Polycomb 2 (PRC2) complex (Figure 3.5C) (Kanhere et al. 

2010, Zhao et al. 2008). Consistent with a possible function inside the nucleus, 

LOC389023 was highly enriched in nuclear RNA fractions from extracted prenatal and 
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normal (non-degenerative) adult human PFC, but not cerebellar cortex (Figure 3.5B). 

Indeed, in transiently transfected (human) SK-N-MC neuroblastoma cells, LOC389023 

showed a specific association with H3K4-trimethylated nucleosomes and SUZ12 (Figure 

3.5D), a zinc finger protein and core component of PRC2 previously shown to interact 

with stem loop motifs similar to the one shown in Figure 3.5C (Kanhere et al. 2010). In 

contrast, EZH2, a (H3K27) methyltransferase and catalytic component of PRC-2, did not 

interact with LOC389023 (Figure 3.5D), consistent with previous reports on other RNA 

species carrying a similar stem loop motif (Kanhere et al. 2010). These observations, 

taken together, are entirely consistent with the aforementioned findings that levels of 

DPP10 transcript, including exons positioned downstream of the DPP10-2 peak from 

which LOC389023 originates, are significantly decreased in human PFC as compared to 

macaque and chimpanzee. Conversely, these two primates show non-detectable 

(RNAseq) or much lower quantitative RT-PCR (qRT-PCR) LOC389023 levels in the 

PFC, as compared to human (Figure 3.4A–3.4B). Taken together then, these findings 

strongly suggest that LOC389023 emerged de novo in human PFC neurons and interacts 

with localized chromatin templates to mediate transcriptional repression at the DPP10 

locus (Figure 3.6). 

Association of Human-Specific H3K4-Methylation Sites with Disease 

The aforementioned human-specific gains in histone methylation at DPP10 and 

the emergence of human RNA de novo at this locus could reflect a phylogenetically 

driven reorganization of neuronal functions that may have contributed not only to the 

emergence of human-specific executive and social-emotional functions, but also for 
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increased susceptibility for developmental brain disease (Teffer and Semendeferi 2012). 

In this context, we noticed that the 33 neuHP (which are defined by two criteria which are 

(i) human-specific gain compared to non-human primates and (ii) high H3K4me3 in PFC 

neurons but not their surrounding non-neuronal cells) included multiple genes conferring 

susceptibility to neurological disease. Three loci, including DPP10 on chromosome 

2q14.1 and two genes in close proximity on chromosome 3p26.3, CNTN4 and CHL1, 

both encoding cell adhesion molecules (Marshall et al. 2008, Fernandez et al. 2004, 

Sakuri et al. 2002, Glessner et al. 2009), confer very strong susceptibility to autism, 

schizophrenia, and related disease. Other disease-associated loci with human-specific 

gain selectively in PFC neurons include ADCYAP1, a schizophrenia (Hashimoto et al. 

2007, Ayalew et al. 2012) and movement disorder gene (Nasir et al. 2006) that is part of a 

cAMP-activating pathway also implicated in posttraumatic stress (Ressler et al. 2011). 

PDE4DIP (MYOMEGALIN) (Figure 3.1D) encodes a centrosomal regulator of brain size 

and neurogenesis (Bond et al. 2006) that in some studies was 9-fold higher expressed in 

human as compared to chimpanzee cortex (Enard et al. 2002b, Caceres et al. 2003). 

SORCS1 is implicated in beta amyloid processing and Alzheimer disease (Reitz et al. 

2011, Lane et al. 2010) and attention deficit hyperactivity disorder (Lionel et al. 2011), 

which again are considered human-specific neurological conditions (Preuss et al. 2004). 

Because four of 33, or 12% of neuHP overlapped with neurodevelopmental susceptibility 

genes (CNTN4, CHL1, DPP10, SORCS1), we then checked whether the entire set of 410 

human-specific peaks is enriched for genes and loci conferring genetic risk for autism, 

intellectual disability, and related neurological disease with onset in early childhood. 
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However, there was only minimal overlap with the Simons Foundation Autism Research 

Initiative database (SFARI) (Fischbach and Lord 2010), and Human unidentified Gene 

Encoded protein database (HuGE) for pervasive developmental disorder (including 

autism) associated polymorphism (Becker et al. 2004), and recent reference lists for 

mental retardation and/or autism-related genes (each of these databases five or fewer of 

the human-enriched peaks) (Neale et al. 2012). Likewise, there was minimal, and non-

significant overlap with the set of 61 human- and 337 chimpanzee-depleted peaks, or the 

551 chimpanzee-enriched in PFC neurons (five or fewer of peaks/database). None of the 

lists of peaks with human- or chimpanzee-specific gain or loss of H3K4me3 revealed 

statistical significance for any associations with the Gene Ontology (GO) database. We 

conclude that DNA sequences subject to differential histone methylation in human or 

chimpanzee PFC neurons are, as a group, not clustered together into specific cellular 

signaling pathways or functions. Table 3.1 presents examples of disease-associated genes 

associated with human-specific gain, or loss of H3K4-trimethylation. 

Evolutionary Footprints at Sites Defined by Human-Specific Histone Methylation 

To further confirm the role of phylogenetic factors in the emergence of human-

specific H3K4me3 peaks, we focused on the set of 33 neuHP and calculated the total 

number of human-specific sequence alterations (HSAs), in a comparative genome 

analyses across five primates (H. sapiens, P. troglodytes, G. gorilla, P. abelii, M. 

mulatta). We recorded altogether 1,519 HSAs, with >90% as single nucleotide 

substitutions, five >100 bp INDELs, one (Alu) retrotransposon-like element at TRIB3 

pseudokinase consistent with a role of mobile elements in primate evolution (The 
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Chimpanzee Sequencing and Analysis Consortium 2005), and gain or loss of hundreds of 

regulatory motifs (Table S12). When compared to a group of (neuronal) H3K4me3 peaks 

showing minimal changes between the three primate species (Table S13), the neuHP, as a 

group, showed a significant, 2.5-fold increase in the number of HSA (20.08±5.52 HSAs 

versus 8.36±2.44 HSAs per 1-kb sequence, p = 2.4e−06, Wilcoxon rank sum test; Figure 

S3). The findings further confirm that genetic differences related to speciation indeed 

could play a major role for changes in the brain's histone methylation landscape, 

particularly for H3K4me3 peaks that are highly specific for human neurons (neuHP). 

Interestingly, none of the above loci showed evidence for accelerated evolution of 

neighboring protein coding sequences (Table S11), reaffirming the view that protein 

coding sequences for synaptic and other neuron-specific genes are extremely conserved 

across the primate tree (Bayes et al. 2011, King and Wilson 1975). 

These DNA sequence alterations at sites of neuron-restricted H3K4me3 peaks 

(with human-specific gain) point, at least for this subset of loci, to a strong evolutionary 

footprint before the split of human–chimpanzee lineage several million years ago (The 

Chimpanzee Sequencing and Analysis Consortium 2005). Next, we wanted to find out 

whether there is also evidence for more recent selective pressures at these loci. Indeed, a 

subset of neuHP contain H. sapiens-specific sequences not only absent in rodents, 

anthropoid primates, but even in extinct members of the genus homo, including H. 

neanderthalensis and H. denisova (Reich et al. 2010). Some of the ancestral alleles 

(including MIAT, SIRPA, NRSN) shared with archaic hominins exhibit very low 

frequencies at 0%–3% in all modern populations, and therefore it remains possible that 
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positive selection for newly derived alleles contributed to their high population 

frequencies in modern humans (Table S14). However, for the entire set of neuHP that are 

defined by high H3K4me3 levels in PFC neurons (but not non-neurons), the number of 

HSAs that emerged after the human lineage was split from H. denisova or H. 

neanderthalensis were 3.31% and 1.75%, respectively, which is approximately 2-fold 

lower as compared to 32 control H3K4me3 peaks with minimal differences among the 

three primate species (5.03% and 3.77%). The 2-fold difference in the number of H. 

sapiens-specific alleles (neuHP compared to control peaks) showed a strong trend toward 

significant (p = 0.067) for the Denisova, and reached the level of significance (p = 0.034) 

for the Neanderthal genome (based on permutation test with 10,000 simulations (Pitman 

1937)). Taken together, these results suggest that at least a subset of the TSS regions with 

H3K4me3 enrichment in human (compared to non-human primates) were exposed to 

evolutionary driven DNA sequence changes on a lineage of the common ancestor of H. 

sapiens and the archaic hominins, but subsequently were stabilized in more recent human 

evolution, after splitting from other hominins. 

To provide an example on altered chromatin function due to an alteration in a 

regulatory DNA sequence that occurred after the human lineage split from the common 

ancestor with non-human primates, we focused on a change in a GATA-1 motif 

(A/TGATTAG) within a portion of DPP10-2 found in human, within an otherwise 

deeply conserved sequence across many mammalian lineages (Table S17). Gel shift 

assays demonstrate that the human-specific sequence harboring the novel GATA-1 site 

showed much higher affinity to HeLa nuclear protein extracts, compared to the 
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chimpanzee/other mammal sequence (Figure 3.4C). The emergence of a novel GATA-1 

motif at DPP10 is unlikely to reflect a systemic trend because the motif overall was lost, 

rather than gained in neuHP (10/355 versus 4/375, χ2 p = 0.053). Therefore, evolutionary 

and highly specific changes in a small subset of regulatory motifs at DPP10 and other 

loci could potentially result in profound changes in nuclear protein binding at TSS and 

other regulatory sequences, thereby affecting histone methylation and epigenetic control 

of gene expression in humans, compared to other mammals including monkeys and great 

apes. Of note, potentially important changes in chromatin structure and function due to 

human-specific sequence alterations at a single nucleotide within an otherwise highly 

conserved mammalian sequence will be difficult to “capture” by comparative genome 

analyses alone. For example, when the total set of 410 HP was crosschecked against a 

database of 202 sequences with evidence for human-specific accelerated evolution in loci 

that are highly conserved between rodent and primate lineages (Pollard et al. 2006), only 

one of 410 HP matched (Table S15). 

Species-Specific Transcriptional Regulation 

H3K4me3 is a transcriptional mark that on a genome-wide scale is broadly 

associated with RNA polymerase II occupancies and RNA expression (Guenther et al. 

2005). However, it is also associated with repressive chromatin remodeling complexes 

and at some loci the mark is linked to short antisense RNAs originating from 

bidirectional promoters, in conjunction with negative regulation of the (sense) gene 

transcript (Kanhere et al. 2010, Shi et al. 2006). Indeed, this is what we observed for the 

DPP10 locus (Figure 3.6). Therefore, a comprehensive assessment of all transcriptional 
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changes associated with the evolutionary alterations in H3K4me3 landscape of PFC 

neurons would require deep sequencing of intra- and extranuclear RNA, to ensure full 

capture of short RNAs and all other transcripts that lack polyadenylation and/or export 

into cytoplasm. While this is beyond the scope of the present study, we found several 

additional examples for altered RNA expression at the site of human-specific H3K4me3 

change. There were four of 33 neuHP loci associated with novel RNA expression specific 

for human PFC, including the aforementioned DPP10 locus. The remaining three human-

specific transcripts included two additional putative non-coding RNAs, 

LOC421321(chr7p14.3) and AX746692 (chr17p11.2). There was also a novel transcript 

for ASPARATE DEHYDROGENASE ISOFORM 2 (ASPDH)(chr19q13.33) (Figure S2). 

Furthermore, a fifth neuHP, positioned within an intronic portion of the tetraspanin gene 

TSPAN4 (chr11p15.5), was associated with a dramatic, human-specific decrease of local 

transcript, including the surrounding exons (Figure S2). Comparative analyses of 

prefrontal RNA-seq signals for the entire set of the 410 HP included at least 18 loci 

showing a highly consistent, at least 2-fold increase or decrease in RNA levels of human 

PFC, compared to the other two primate species (Table S18). 

Expanded Evolutionary Analysis for Evidence of Positive Selection at Human-

specific H3K4me3 Peaks 

We then asked whether the subset of DNA sequences with species- and cell type-

specific epigenetic regulation, including the neuHP peaks mentioned above carry a strong 

footprint of hominid evolution. Indeed, nucleotide substitution analysis revealed that both 

DPP10 peaks DPP10 -1/2, as well as ADCYAP1, CHL1, CNTN4, NRSN2, and SIRPA 
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show a significantly elevated rate, with 2- to 5-fold increase specifically in the human 

branch of the primate tree, when compared to four other anthropoid primate species (Pan 

troglodytes, Gorilla gorilla, Pongo abelii, Macaca mulatta) (Table 3.2). The finding that 

both DPP10 peaks, DPP10-1 and -2 showed a significant, >4-fold increase in nucleotide 

substitution rates in the human branch of the primate tree—indicating “co-evolution” (or 

coordinated loss of constraint)—is very plausible given that chromatin structures 

surrounding these DNA sequences are in direct physical contact (discussed above), 

reflecting a potential functional interaction and shared regulatory mechanisms between 

peaks. 

To further test whether or not there were recent, perhaps even ongoing selective 

pressures at loci defined by human-specific gain in H3K4me3 peaks of PFC neurons, we 

searched for overlap among the peaks in our study with hundreds of candidate regions in 

the human genome showing evidence of selection during the past 10–100,000 years from 

other studies. These loci typically extend over several kb, and were identified in several 

recent studies on the basis of criteria associated with a “selective sweep,” which describes 

the elimination of genetic variation in sequences surrounding an advantageous mutation 

while it becomes fixed (Tang et al. 2007, Williamson et al. 2007, Kimura et al. 2007, 

Wang et al. 2006). However, screening of the entire set of 410 human gain and 61 human 

depleted H3K4me3 sequences against nine datasets for putative selection in humans 

(Akey 2009) revealed only five loci with evidence for recent sweeps (Table 3.3). One of 

these matched to the neuHP on chromosome 2q14.1, corresponding to the second DPP10 

(DPP10-2) peak (see above). In independent analyses, using the 1,000 genome database, 
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we further confirmed recent adaptive fixations around DPP10-2 (Table S16), as well as 

two other loci, POLL and TSPAN4. While it is presently extremely difficult to determine 

how much of the genome has been affected by positive selection (of note, a recent 

metanalysis of 21 recent studies using total genomic scans for positive selection using 

human polymorphism data revealed unexpectedly minimal overlap between studies 

(Akey 2009)), we conclude that the overwhelming majority of loci associated with 

human-specific H3K4me3 gain or loss in PFC neurons (compared to non-human 

primates) indeed does not show evidence for more recent selective pressures. 

 

Discussion 

In the present study, we report that on a genome-wide scale, 471 loci show a 

robust, human-specific change in H3K4me3 levels at TSS and related regulatory 

sequences in neuronal chromatin from PFC, in comparison to the chimpanzee and 

macaque. Among the 410 sequences with human-specific gain in histone methylation, 

there was a 4-fold overrepresentation of loci subject to species-specific DNA methylation 

in sperm (Molaro et al. 2011). This would suggest that there is already considerable 

“epigenetic distance” between the germline of H. sapiens and non-human primates 

(including the great apes), which during embryonic development and tissue 

differentiation is then “carried over” into the brain's epigenome. The fact that many loci 

show species-specific epigenetic signatures both in sperm  (Molaro et al. 2011) and PFC 

neurons (Figure 3.1B) raises questions about the role of epigenetic inheritance (Danchin 

et al. 2011) during hominid evolution. However, to further clarify this issue, additional 
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comparative analysis of epigenetic markings in brain and germline will be necessary, 

including histone methylation maps from oocytes, which currently do not exist. However, 

the majority of species-specific epigenetic decorations, including those that could be 

vertically transmitted through the germline, could ultimately be driven by genetic 

differences. On the basis of DNA methylation analyses in three-generation pedigrees, 

more than 92% of the differences in methylcytosine load between alleles are explained by 

haplotype, suggesting a dominant role of genetic variation in the establishment of 

epigenetic markings, as opposed to environmental influences (Gertz et al. 2011). A broad 

overall correlation between genetic and epigenetic differences was also reported in a 

recent human–chimpanzee sperm DNA methylation study (Molaro et al. 2011), and there 

is general consensus that the inherent mutability of methylated cytosine residues due to 

their spontaneous deamination to thymine is one factor contributing to sequence 

divergence at CpG rich promoters with differential DNA methylation between species 

(Molaro et al. 2011, Saxonov et al. 2006). Furthermore, human-specific sequences in the 

DNA binding domains of PRDM9, which encodes a rapidly evolving methyltransferase 

regulating H3K4me3 in germ cells, were recently identified as a major driver for human–

chimpanzee differences in meiotic recombination and genome organization (Myers et al 

2010). It will be interesting to explore whether PRDM9-dependent histone 

methyltransferase activity was involved in the epigenetic regulation of the human-

enriched H3K4me3 peaks that were identified in the present study. 

Another interesting finding that arose from the present study concerns the non-

random distribution of histone methylation peaks with human-specific gain, due to a 
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significant, 2- to 3-fold overrepresentation of peak-pairing or -clustering on a 500 kb to 1 

Mb scale. This result fits well with the emerging insights into the spatial organization of 

interphase chromosomes, including the “loopings,” “tetherings” and “globules” that bring 

DNA sequences that are spatially separated on the linear genome into close physical 

contact with each other (Sanyal et al. 2011). Specifically, many chromosomal areas are 

partitioned into Mb-scale “topological domains”, which are defined by robust physical 

interaction of intra-domain sequences carrying the same set of epigenetic decorations 

(Dixon et al. 2012). These mechanisms could indeed have set the stage for coordinated 

genetic and epigenetic changes during the course of hominid brain evolution. The DPP10 

(2q14.1) neurodevelopmental susceptibility locus provides a particularly illustrative 

example: here, two H3K4me3 peak sequences with strong human-specific gain were 

separated by hundreds of kilobases of interspersed sequence, yet showed a strikingly 

similar, 4-fold acceleration of nucleotide substitution rates specifically in the human 

branch of the primate tree. Importantly, the two H3K4me3 peaks, DPP10-1 and -2, as 

shown here, are bundled together in a loop or other types of higher order chromatin. 

Therefore, our findings lead to a complex picture of the human-specific shapings of the 

neuronal epigenome, including a mutual interrelation of DNA sequence alterations and 

epigenetic adaptations involving histone methylation and higher order chromatin 

structures. The confluence of these factors could then, in a subset of PFC neurons (Figure 

3.5A), result in the expression of a novel antisense RNA, which associates with 

transcriptional repressors to regulate the target transcript in cis, DPP10 (Figures 3.5D and 

(Shilatifard 2006)). 
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While the present study identified a few loci, including the aforementioned DPP10 

(chromosome 2q14.1), in which DNA sequences associated with a human-specific gain 

in neuronal histone methylation showed signs for positive selection in the human 

population, it must be emphasized that the overwhelming majority of sites with human-

specific H3K4me3 changes did not show evidence for recent adaptive fixations in the 

surrounding DNA. Therefore, and perhaps not unsurprisingly, neuronal histone 

methylation mapping in human, chimpanzee, and macaque primarily reveals information 

about changes in epigenetic decoration of regulatory sequences in the hominid genome 

after our lineage split from the common ancestor shared with present-day non-human 

primates. 

Moreover, according to the present study, the subset of 33 sequences with human-

specific H3K4me3 gain and selective enrichment in neuronal (as opposed to non-

neuronal) PFC chromatin show a significant, 3-fold increase in human-specific (DNA 

sequence) alterations in comparison to non-human primate genomes. This finding speaks 

to the importance of evolutionary changes in regulatory sequences important for neuronal 

functions. Strikingly, however, the same set of sequences show a significant, 

approximately 1.5- to 2-fold decrease in sequence alterations when compared to the two 

archaic hominin (H. denisova, H. neanderthalensis) genomes. This finding further 

reaffirms that sequences defined by differential epigenetic regulation in human and non-

human primate brain, as a group, are unlikely to be of major importance for more recent 

evolution, including any (yet elusive) genetic alterations that may underlie the suspected 

differences in human and neanderthal brain development (Gunz et al. 2012). However, 
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these general conclusions by no means rule out a critical role for a subset of human-

specific sequence alterations on the single nucleotide level within any of the HPs 

described here, including the DPP10 locus. 

Such types of single nucleotide alterations and polymorphisms may be of 

particular importance at the small number of loci with human-specific H3K4me3 gain 

that contribute to susceptibility of neurological and psychiatric disorders that are unique 

to human (though it should be noticed that as a group, the entire set of sequences subject 

to human-specific gain, or loss, of H3K4me3 are not significantly enriched for 

neurodevelopmental disease genes). The list would not only include the already discussed 

ADYCAP1, CHL1, CNTN4, and DPP10, which were among the narrow list of 33 human-

specific peaks highly enriched in neuronal but not non-neuronal PFC chromatin), but also 

DGCR6, an autism and schizophrenia susceptibility gene (Liu et al. 2002, Guilmatre et al. 

2009) within the DiGeorge/Velocardiofacial syndrome/22q11 risk locus, NOTCH4 and 

CACNA1C encoding transmembrane signaling proteins linked to schizophrenia and 

bipolar disorder in multiple genome-wide association studies (Ikeda et al. 2011, Sklar et 

al. 2011), SLC2A3 encoding a neuronal glucose transporter linked to dyslexia and 

attention-deficit hyperactivity disorder (Lesch et al. 2011, Roeske et al. 2011) and the 

neuronal migration gene TUBB2B that has been linked to polymicrogria and defective 

neurodevelopment (Jaglin et al. 2009). Furthermore, among the 61 peaks with human-

specific loss of H3K4me3 is a 700-bp sequence upstream of the TSS of FOXP2, 

encoding a forkhead transcription factor essential for proper human speech and language 

capabilities (Vargha-Khadem et al. 2005) and that has been subject to accelerated 
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evolution with amino acid changes leading to partially different molecular functions in 

human compared to great apes (Enard et al. 2002a, Konopka et al. 2009). The homeobox 

gene LMX1B is another interesting disease-associated gene that is subject to human-

specific H3K4me3 depletion (Table 3.1). While expression of many of these disease-

associated genes is readily detectable even in mouse cerebral cortex (Belgard et al. 2011), 

the neuropsychiatric conditions associated with them lack a correlate in anthropoid 

primates and other animals. This could speak to the functional significance of H3K4 

methylation as an additional layer for transcriptional regulation, with adaptive H3K4me3 

changes at select loci and TSS potentially resulting in improved cognition while at the 

same time in the context of genetic or environmental risk factors contribute to 

neuropsychiatric disease. More generally, our findings are in line with a potential role for 

epigenetic (dys)regulation in the pathophysiology of a wide range of neurological and 

psychiatric disorders (Tsankova et al. 2007, Robison and Nesler 2011, Day and Sweatt 

2012, Jakovcevski and Akbarian 2012). 

Our study also faces important limitations. While we used child and adult brains 

for cross-species comparisons, human-specific signatures in the cortical transcriptome are 

thought to be even more pronounced during pre- and perinatal development (Somel et al. 

2009). Therefore, younger brains could show changes at additional loci, or more 

pronounced alterations at the TSS of some genes identified in the present study, including 

the above mentioned susceptibility genes CNTN4 and myelomegalin/PDE4DIP, which 

are expressed at very high levels in the human frontal lobe at midgestation (Lambert et al. 

2011). In this context, our finding that a large majority, or 345 of 410 H3K4me3 peaks 
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showed a human-specific gain both in children and adults, resonates with Somel and 

colleagues (Somel et al. 2011) who suggested that some of the age-sensitive differences 

in cortical gene expression among primate species are due to trans-acting factors such as 

microRNAs while cis-regulatory changes (which were the focus of the present study) 

primarily affect genes that are subject to a lesser regulation by developmental processes. 

More broadly, our studies support the general view that transcriptional regulation of both 

coding and non-coding (including antisense) RNAs could play a role in the evolution of 

the primate brain (Babbitt et al. 2010). 

Furthermore, the cell type-specific, neuronal versus non-neuronal chromatin studies as 

presented here provide a significant advancement over conventional approaches utilizing 

tissue homogenate. However, pending further technological advances, it will be 

interesting to explore genome organization in select subsets of nerve cells that bear 

particularly strong footprints of adaptation, such as the Von Economo neurons, a type of 

cortical projection neuron highly specific for the hominid lineage of the primate tree and 

other mammals with complex social and cognitive-emotional skill sets (Butti et al. 2011). 

Furthermore, our focus on PFC does not exclude the possibility that other cortical regions 

(Konopka et al. 2012), or specialized sublayers such as within the fourth layer of visual 

cortex that shows a complex transcriptional architecture (Bernard et al. 2012), show 

human-specific histone methylation gains at additional TSS that were missed by the 

present study.



 

2I have included the methods for my contributions in the main body here. A complete description 
of methods can be found in Appendix I. 
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More broadly, the approach provided here, which is region- and cell type-specific 

epigenome mapping in multiple primate species, highlights the potential of epigenetic 

markings to identify regulatory non-coding sequences with a potential role in the context 

of hominid brain evolution and the shaping of human-specific brain functions. 

Remarkably, a small subset of loci, including the aforementioned DPP10 (chromosome 

2q14.1), shows evidence for ongoing selective pressures in humans, resulting in DNA 

sequence alterations and the remodeling of local histone methylation landscapes, after the 

last common ancestor of human and non-human primates. 

 

Materials and Methods2

Primate Alignments 

For nucleotide sequences used in the baseml analysis (Yang 1998), peak 

sequences were obtained in humans using the coordinates for human-specific that were 2-

fold greater than both chimp and macaque. UCSC’s liftover utility was used to obtain 

sequences in 3 additional primate species: chimpanzee, orangutan, and macaque. These 

sequences were then aligned using ClustalW (Thompson et al. 2002), with default 

settings.  

For amino acid sequences used in codeml analyses (Yang et al. 2000), gene 

sequences were obtained using the BioMart tool available through Ensembl. Sequences 

were retrieved from five primate species: human, chimpanzee, orangutan, gorilla, and 

macaque. The Ensembl Genes 64 database was used for all species. Briefly, human 
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sequences were obtained by setting the gene filter to use WikiGene Names, and the 

“Sequence” attribute set to coding sequences. The “Homologs” attribute was used to 

return Ensembl Gene IDs 

for the orthologous sequences in the remaining 4 primate species. These IDs were then 

queried under each species gene dataset in the same way as humans, except the gene filter 

was set to Ensembl Gene IDs, instead of WikiGene Names. These sequences were then 

aligned using PRANK (Löytnoja and Goldman 2005) with the codon option, which uses 

the empirical codon model of Kosiol et al. (2007). 

 

Nucleotide substitution rates in humans 

Baseml (Yang 1998) from PAML version 4.4 (Yang 2007) was used to determine 

nucleotide substitution rates for the primate nucleotide sequence alignment. Two rate 

classes were specified for the nucleotide sequence alignments. This was accomplished by 

setting the clock parameter in the baseml control file equal to 2, and then numbering the 

foreground branch in the tree file according to the numbering scheme explained in the 

PAML documentation. A likelihood ratio test with  and p value < 0.01 was used to 

determine significance.  

 

Accelerated amino acid substitution rates in humans 

Codeml (Yang et al. 2000) from PAML version 4.4 was used to analyze the primate 

amino acid sequence alignments for differences in dN/dS.  For the sites model three 

model comparisons were used: M1a vs. M2a, M7 vs. M8, M8a vs. M8 (see PAML 
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documentation for parameter settings). M1a has two subsets of sites, one where ω varies 

between 0 and 1 and one where ω is fixed at one; in M2a ω can be less than 1, equal to 1, 

or greater than 1. M7 assumes a beta-distribution for ω between 0 and 1, and M8 adds an 

additional class of sites to M7 with ω>1 (Wong et al. 2004). In M8a this additional class 

is fixed at ω=1 (Swanson et al. 2003). Thus, M2a and M8 allow selection in each 

comparison, while M2, M7, and M8a fit the data to a neutral model. A maximum 

likelihood ratio is computed for each model, and the null and selection models are 

compared via a likelihood ratio test, with  for M1a vs. M2a, and M8a vs. M8, and  

for M7 vs. M8. For the branch model, two rate classes were specified for the amino acid 

sequence alignments, with the same specifications as in the baseml branch model except 

that the model parameter was set to equal 2 instead of the clock. A likelihood ratio test 

with  and a p value < 0.01 was used to determine significance.  

 

SNP dataset 

SNPs were obtained for 176 Yoruban individuals from the 1000 genomes May 2010 

merged SNP call release (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/). Ancestral alleles were filled in 

using the 6 way EPO human ancestral alignment for GRCh37 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/). Sites were omitted if no 

ancestral allele was identified. If there were no ancestral alleles for all sites within a 

region, that region was omitted from further analysis.  
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Sweep analysis 

Regions were analyzed using Kim and Stephan’s clsw program (Kim and Stephan 2002). 

The regions were split into windows of 100bp and a likelihood ratio (LR) is calculated 

for each, along with an estimate of alpha (the selection coefficient) and the most likely 

location of the target of selection for each window.  The window containing the 

maximum LR is considered the ultimate location of a sweep, if one has occurred .  To 

determine this, neutral simulations were performed using ms (Hudson 2002). Theta (the 

mutation rate parameter) was estimated by clsw for each region, and the human-like 

value for rho (the recombination parameter) was taken from Nielsen et al 2009. Any 

regions with LR values falling within the top 5% of the LR distribution from neutral 

simulations were considered significant. For these significant regions, the goodness-of-fit 

test (GOF) from Jensen et al. 2005 was applied to distinguish between regions that 

rejected neutrality due to true selection, and those that rejected neutrality because of 

confounding demographic factors 
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Figure 3.1. Human-specific signatures of the neuronal epigenome in PFC. 
(A) Pearson correlation coefficients (R, mean ± standard deviation [SD]) for sample-to-
sample comparison of H3K4me3 ChIP-seq normalized tag counts within Refseq 
promoters, revealing cell type- and species-specific signatures. (B) Expected 
(blue)/observed (red) counts of human-specific H3K4me3 peaks (n = 410) overlapping 
with DNA hypomethylated regions in human (H)/chimpanzee (P) sperm. Notice 4-fold 
enrichment for loci with human-only (H+,P−) DNA hypomethylation in dataset. (C) The 
actual co-localization of human-specific H3K4me3 peaks (n = 410) within 1- or 0.5-Mb 
genomic distance is 2–3-fold higher than expected (based on average distribution of 
entire set of 34,639 H3K4me3 peaks *(**), p<10−3(−4). (D) Representative example of a 
TSS (PDE4DIP/Myelomegalin (“regulator of brain size”) with species- and cell type-
specific H3K4me3 profile. Genome browser tracks showing ChIP-seq H3K4me3 signal 
at PDE4DIP (chromosome 1) locus, annotated to HG19/PT2/RM2 genomes as indicated. 
Green/blue/black tracks from PFC neuronal (NeuN+) nuclei of 11 humans/four 
chimpanzees/three macaques as indicated. Red tracks, non-neuronal (NeuN−) human 
PFC nuclei. Notice much stronger PDE4DIP peaks in human neurons. 
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Figure 3.2. H3K4me3 landscapes and higher order chromatin at the psychiatric 
susceptibility locus, 16p11.2. 
(Top) UCSC genome browser window track for approximately 1 Mb of human chr16: 
21,462,663–22,499,013, with H3K4me3 ChIP-seq tracks from neuronal chromatin (PFC) 
of three primate species, as indicated. Notice human-enriched H3K4me3 peaks at 
chr16:21,512,663–21,514,196 and chr16:22,448,157–22,449,013 (marked by arrows) 
flanking numerous peaks common to all 3 species. (Bottom) Rectangles and thin arrows 
mark 3C HindIII restriction fragments and primers from 3C assays. Notice positive 
interaction of sequences captured by primers 2 and 7, agarose gels shows representative 
196-bp PCR product for 3C from two PFC specimens (a,b), HEK cells, and no ligase and 
water controls. 
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Figure 3.3. H3K4me3 landscapes and higher order chromatin at DPP10 (2q14.1). 
(A) (Top) Genome browser tracks showing ChIP-seq H3K4me3 signal at DPP10 locus 
annotated to HG19 and RM2 genomes. Data expressed as normalized tag densities, 
averaged for 11 humans, four chimpanzees, and three macaques as indicated. Human-
specific peak DPP10-1 (1,455 bp) and DPP10-2 (3,808 bp) marked by arrows and shown 
at higher resolution in boxes, as indicated. (Bottom) Rectangles and arrows mark Hind III 
restriction fragments and primers from DPP10-1/2 (PK1, 2) and control regions (CR1-3) 
for 3C assays (human). Dotted lines connect primer pairs with sequence-verified product, 
indicating physical interaction of the corresponding fragments. Agarose gels for 
representative PCR products from 3C with (+) or without (−) DNA ligase (human 
primers 6,17: 282 bp; 6,18: 423 bp; 8,15: 160 bp; 9,15: 130 bp). (B) Rectangles and 
arrows mark Hind III restriction fragments and primers for corresponding DPP10 
sequences in RM2, for macaque brain 3C. Macaque primers 6,12:298 bp, 8,12:154 bp. 
Notice positive interaction of PK1 with PK2 and neighboring CR2, but with not CR1 or 
CR3. Notice no signal in PFC 3C assays without DNA ligase and no signal in all 3C 
assays from H9 pluripotent (H9ESC) and differentiated (DIFF) cell cultures. 
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Figure 3.4. Novel transcripts and regulatory motifs at the DPP10 locus. 
(A) (top) DPP10 and LOC389023, extracted from published RNA-seq datasets from 
human/chimpanzee/macaque PFC. (Bottom) shows 3.8-kb DPP10-2 bidirectional promoter, blue 
tick marks for human-specific sequence divergence from five other anthropoid primates, 
including (from left to right) SNP rs35809114, and fixed polymorphism with novel CTF/CBP 
motif not found in archaic hominins (H. denisova, H. neanderthalensis) and novel GATA-1 motif 
within highly conserved sequence across many mammalian lineages. The vertical dotted red line 
marks the potential center of an adaptive fixation in modern humans (see text). (B) Bar graphs 
summarize qRT-PCR on PFC RNA showing much higher LOC389023 in human, and lower 
expression of DPP10 exons downstream of DPP10-2 peak *(**) p<0.05 (0.01). (C) (Left) GATA-
1 consensus motifs/binding affinities (http://snpper.chip.org/mapper). (Right) HeLa nuclear 
extract (NE) gel shifts with 32P-labeled 21 bp duplex probes for human (H) and chimpanzee (P) 
sequences encompassing GATA-1 motif as indicated. (Left gel) lanes (1,2,5,6) labeled probe, 
(3,7) cold competitor, (4,8) unrelated duplex, or increasing salt concentrations as indicated. Anti-
GATA supershift assay confirms GATA-1 protein binding to probe sequence. 
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Figure 3.5. Cellular distribution and molecular affinities of human-specific RNA, 
LOC389023. 
(A) Digitized images of sections from adult human PFC, stained with (left to right) Nissl, 
b-actin, LOC389023, and negative control (nc). Notice numerous LOC389023-
expressing cells in cortical layers II–IV but not in neuron-poor layer I. (B) (Top) 
LOC389023, and for loading control, 18S rRNA PCR from nuclear (Nuc) and cytosolic 
(Cyto) RNA extracts, showing robust LOC389023 expression in nuclear fraction but not 
cytosolic of a prenatal (around 35 wk of gestation) PFC specimen. No LOC389023 
expression was found in fetal cerebellum. (Bottom) PCR from nuclear RNA isolates of 
adult PFC specimens and of HEK cell line. Notice weak signal in neurodegenerative 
Alzheimer PFC specimen, no signal in peripheral (HEK) cells, and strong signal in PFC 
nuclei from normal adult controls. (C) GC rich stem loop of LOC389023 (see text). (D) 
RT-PCR for LOC389023 from (top) pulldowns of transfected neuroblastoma cells, (left 
to right) IgG, H3K4-trimethylated nucleosomal preparation co-incubated with or without 
dimethyl-H3K4-blocking peptide, anti-EZH2, anti-SUZ12, and (bottom) input loading 
control. Notice specific affinity of LOC389023 for H3K4me3 and SUZ12. 



 

 

88 

 

 
Figure 3.6. Hypothetical mechanism of action of novel human-specific RNA, 
LOC389023. 
(Top) In non-human primate, DPP10 transcripts are expressed by the RNA polymerase II 
complex from the DPP10-2 promoter (see text) that is tagged with H3K4me3. (Bottom) 
In human, there is specific gain of H3K4me3 signal particularly in the 5′ portion of the 
DPP10-2 promoter (see text), which is associated with a novel antisense RNA, 
LOC389023. This RNA recruits Polycomb 2(PRC2) and other transcriptional repressors 
in cis, thereby inhibiting expression of the sense transcript, DPP10. 
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Table 3.1. Examples of disease-associated genes with human-specific gain or loss of 
H3K4 trimethylation in PFC neurons. 
 
 

 

Gene; H3K4me3 Change Function In th e Forebrain, 
Location; HGNC Gene In Human Disease Association Including Cerebral Cortex 

ADCYAPI; 18p11.32; adenytate cyclase activating Gain Schizophrenia [46.471 Alternate camp signaling pathway, 
241 polypepride 1 movement disorder [48], mediates synaptic pla.sticity and L TO in 

PT5D [49] hippocampus [95] 

CACNA IC; 12p 13.33; calcium channel, voltage-<lependent, Gain Confers genetic risk for Coupling of cell membrane 
1390 L type, alpha 1 C subunit mood. psychosis, and autism depolarization to transient increase of 

spect rum disorders [96,971 membrane permeability for calcium (961 

CHLI; 3p26.3; cell adhesion molecule with Gain Autism, schizophrenia Thalamocortical axon guidance via 
1939 homology to L 1CAM (35,44-46] interaction with ephrin receptors (98,991 

CNTN4; 3p26.3; contactin 4 Gain Autism, intellectual Developmental patterning of functional 
2174 disability [34.43-451 odor maps in olfactory bulb, axon· 

associated cell adhesion molecule 
(34.43-451 

DGCR6; 22q11.21; DiGeorge syndrome critical Gain Autism, schizophrenia Regulates intracellular distribution of 
2844 region gene 6 (74,751 GABAe receptor [ 1001 

DPPIO; 2q14.1 ; dipeptid}'f·peptidase 10 Gain Autism, mood disorder, Regulation of neuronal excitability as 
20823 schizophrenia, asthma auxiliary subunit of potassium channels 

(34-361 (331 

FOXP2; 7q31.1; forkhead box P2 Loss Speech and language disorder Transt:ription factor regulating gene 
13875 with subtle structural and expression programs in vocal 

functional change-s in brain communication, including human 
circuitry (81.821 speech and birdsong [82,101,1021 

LMXIB; 9q33.3; Lim homeobox Loss ADHD and depression Key control point in gene expression 
6654 transcription factor 1, beta (1031 programs for dopaminergic and 

serotonergic neurons (1 04,1051 

NDTCH4; 6p21.3; neurogenic locus notch Gain Schizophrenia Endothelial Notch 4 regulates brain 
7884 homolog gene 4 (1 06,107] vasculature [1081 

PDE40/P; 1q21. 1; phoshodiesterase 40 Gain Altered phospho-diesterase Anchor protein for cAMP pathway in 
15580 Interacting protein signaling broadly relevant for the Golgi/centrosomal complex. 

mood and psychosis spectrum homologue to drosophila cenrrosomin 
disorders (109,1101 regulating brain development and 

implicated in neurogenesis [50,1 11 J 

SLC2A3; 12p13.31; solute carrier famity 2 Gain Dyslexia, ADHD Neuronal glucose transporter, highly 
11007 (facil~ated glucose transporter), (78,791 expressed in neuronal processes and 

member 3 synaptic structures and neuropil of 
human cerebral cortex and other brain 
regions [112,1 13] 

SORCSI; 10q25.1; sortilin·related VPS 10 domain Gain ADHD (54] In a complex with pro-NGF, involved in 
16697 containing receptor 1 NGF·mediated cell signaling and 

neuroapoptosis (114). Interacts, like 
other sortilins, with gamma·secretase 
implicated in Alzheimer disease (S41 

TR/83; 20p 13; tribbles homolog 3 Gain Genetic determinant for Competes in complex with ATF4 with 
16228 pseudo-kinase information-processing speed CREB transcription factor to regulate 

in human (11 51 and insulin· expression of synaptosomal-associated 
dependent diabetes [1161 protein 25 (SNAP-25) involved in insulin 

exocytosis and neurotransmission (116) 

TUB828; 6p25.2; class lib beta·tubulin Gain Cortical malformations Essential for neuronal migration and 
30829 including poly·microgyria other functions of the microtubuli 

(117], microcephaly, seizures, complex [80] 
intellectual disability (1181 

ZNF423; 16p12.1; zinc-finger protein 423 Loss 16q 12 mkrodeletion C2H2·type zinc finger transcription 
16762 syndrome with micro-cephaly factor that controls the switch to 

and dysmorpho-genesis of neuronal maturation during olfactory 
fore- and hindbrain (119,120] neurogenesis (1211 and axonal 

projections across forebrain 
commissures (122]. 

AOHO, attention deficit hyperactivity disorder; LTD, long-term depression; NGF, nerve growth factor; PTSO, post-traumatic stress disorder. 
doi:1 0.1371/joumal.pbio.1001427.t001 
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Table. 3.2. Summary of Positive Selection Results 
Baseml was used to estimate branch-specific nucleotide substitution rates for alignments 
containing human, chimpanzee, orangutan, and macaque sequences. Codeml was used to 
analyze site-specific amino acid substitution rates. The alignments for codeml contained 
sequences from 5 primate species: human, chimpanzee, gorilla, orangutan, and macaque. 
Only significant results with p < 0.01 are shown, as well as 1:1 orthologs in all species. 

1 Nucleotide substitution rate 
2 dN/dS 
3 2Ns 
 

Coordinates TSS 
Distance to 
TSS 

Accelerated 
NT Evolution1 

Accelerated 
AA Evolution2 

Selective 
Sweeps3 

chr10:103328874-103331401 POLL 16572     5.16 
chr11:857724-860732 TSPAN4 13279     7.49 
chr18:903446-909852 ADCYAP1 0 4.90     
chr19:51016136-51018764 ASPDH 0   7.28   
chr2:115419153-115420608 DPP10 219255 4.18     
chr2:115917965-115921773 DPP10 0 4.39   5.31 

chr20:1782608-1784925 SIRPA 89887 2.24     
chr20:326778-329498 NRSN2 0 1.92     
chr3:2139182-2142802 CNTN4 0 3.08     
chr3:237095-242136 CHL1 0 1.99 3.32   



 

 

91 

 
Table 3.3. Comparison of 410 human-specific neuronal peaks with published genomic 
scans for positive selection in humans 
Region (hg19) Reference(s) Nearest TSS 
Overlap with 9 scans of positive selection 

 chr1:148555814-148557118 1 NBPF15 
chr11:49582211-49584242 1 LOC440040 
chr19:11784427-11785561 1 ZNF833P 
chr2:115918003-115921686 1 DPP10 
chr4:6246915-6248356 2, 3, 4 WFS1 
Overlap with 202 human accelerated regions (HARs) 

 chr20:61732970-61734710 5 HAR1B 
1. Wang et al. 2006. Proc Natl Acad Sci U S A 103: 135-140. 
2. Kimura et al. 2007. PLoS ONE 2: e286. 

 3. Tang et al. 2007. PLoS Biol 5: e171. 
  4. Williamson et al. 2007. PLoS Genet 3: e90. 
 5. Pollard et al. 2006. PLoS Genet 2: e168. 
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CHAPTER IV:  The Impact of Equilibrium Assumptions on Tests of Selection 

 
 

Abstract 

With the increasing availability and quality of whole genome population data, various 

methodologies of population genetic inference are being utilized in order to identify 

and quantify recent population-level selective events. Though there has been a great 

proliferation of such methodology, the type-I and type-II error rates of many 

proposed statistics have not been well-described. Moreover, the performance of these 

statistics is often not evaluated for different biologically relevant scenarios (e.g., 

population size change, population structure), nor for the effect of differing data sizes 

(i.e., genomic vs. sub-genomic). The absence of the above information makes it 

difficult to evaluate newly available statistics relative to one another, and thus 

difficult to choose the proper toolset for a given empirical analysis. Thus, we here 

describe and compare the performance of four widely used tests of selection: 

SweepFinder, SweeD, OmegaPlus, and iHS. In order to consider the above questions, 

we utilize simulated data spanning a variety of selection coefficients and beneficial 

mutation rates.  We demonstrate that the LD-based OmegaPlus performs best in terms 

of power to reject the neutral model under both equilibrium and non-equilibrium 

conditions. The results presented here ought to serve as a useful guide for future 

empirical studies, and provides a guide for statistical choice depending on the history 

of the population under consideration. Moreover, the parameter space investigated 
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and the Type-I and Type-II error rates calculated, represent a natural benchmark by 

which future statistics may be assessed. 
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Introduction 

 Population genetics seeks to characterize the forces that shape genomic 

variation, an endeavor that is often challenged by difficulties in unraveling the effects 

of selective and neutral processes.  When positive selection acts on a new beneficial 

mutation, it will rise in frequency within a population over time, bringing nearby 

linked variation with it (Maynard Smith and Haigh 1974). The pattern resulting from 

this process is referred to as a selective sweep, and can be observed in the site 

frequency spectrum (SFS) and the extent of linkage disequilibrium (LD) flanking the 

beneficial fixation (see reviews of Nielsen (2005)). Briefly, genetic variation within a 

swept region is expected to be reduced, and the site frequency spectrum skewed 

towards an excess of both rare and high frequency derived mutations. The haplotype 

patterns surrounding the beneficial allele are expected to be significantly impacted 

(e.g., Stephan et al. 2006) as well – and it has thus been suggested that a selective 

sweep may be identified by a characteristic haplotype pattern in which LD is 

increased in regions flanking a recent beneficial fixation, but reduced across the site 

of fixation (Jensen et al. 2007; Pavlidis et al. 2010).  

 Demographic forces also affect genetic variation and haplotype structure. For 

instance, spontaneous changes in population size can create longer haplotypes that 

may strongly resemble patterns expected after a selective sweep (Pavlidis et al. 2010). 

Additionally, as demonstrated by Barton (1998), the expected coalescent trees 
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generated by a bottleneck may indeed be identical to those generated by selection, 

and simulation studies have demonstrated that tests of selection are prone to 

extremely high false positive rates under certain bottleneck models (e.g., Jensen et al. 

2005; Thornton and Jensen 2007).  

Numerous methods for estimating selection and demography have been 

developed to deal with these challenges (for review see Crisci et al. 2011). Many tests 

of selection have taken an outlier-based approach– thus, a statistic is computed across 

an entire dataset and a top fraction of values are considered selection candidates. One 

limitation of this approach is the assumption of an equilibrium neutral background, 

with deviations being interpreted as evidence of non-neutrality (rather than non-

equilibrium). While it has been proposed to first fit a demographic model in order to 

increase power to detect selective sweeps (e.g., Williamson et al. 2005; Keightley and 

Eyre-Walker 2007), the demographic estimators themselves generally assume 

neutrality – and thus the demographic fitting may account for much of the pattern in 

the data owing to selection.  

We here focus on identifying selection in simulated recurrent hitchhiking 

(RHH) and single hitchhiking (SHH) datasets using four commonly used selection 

estimators: SweepFinder, SweeD, OmegaPlus, and iHS (Nielsen et al. 2005, Pavlidis 

et al. 2013, Alachiotis et al. 2012, Voight et al. 2006). We consider equilibrium and 

non-equilibrium neutral and selection models. Our intent is to investigate the bias in 

selection estimators under non-equilibrium neutral conditions, and to characterize the 

demographic parameter space for which neutral and selective models may not be 
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differentiated. Further, given the increasing number of proposed statistics in this area, 

we would like to emphasize the importance of proper power testing – and we here 

seek to describe performance across equivalent models. We hope that the statistical 

testing presented here, and the simulation panel assembled, may serve as a template 

against which future statistics may be evaluated allowing for a direct comparison with 

previously proposed methodology. 

For our considered models, we find that the performance of the standard 

implementation of SweepFinder has very few rejections of neutrality under even 

equilibrium models with moderately strong selection (2Ns = 1000). SweeD had 

slightly improved performance, but mainly achieved a reduced sensitivity to SNP 

density owing to the inclusion of monomorphic sites. OmegaPlus was found to have 

the most power to detect selection, but remains prone to high false-positive rates 

under certain neutral non-equilibrium models. Finally, while iHS performs well under 

equilibrium conditions, it is unable to distinguish selective effects from those of a 

population bottleneck. Thus, in addition to serving as a benchmark for future studies, 

these results highlight the need for continued methodological development in this 

area. 

 

Methods 

Simulation Parameters 

 Recurrent hitchhiking models (i.e., selective sweeps defined to occur at a 

specific rate) were simulated using sfs_code (Hernandez 2008), a forward simulation 
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program that can simulate both selection and demography simultaneously. Single 

hitchhiking models (i.e., a single selective sweep occurs at a specified time) were 

simulated using msms, which can also model both selection and demography (Ewing 

and Hermisson 2010). For both sets of models a single locus of 50Kb was simulated 

using human-like parameters for population size N=10000, mutation rate 

(θ=0.001/site), and recombination rate (ρ=0.001/site). For each set of parameters, 

1000 simulations were performed with 40 haplotypes sampled. 

Selection parameters were set as follows: for single hitchhiking events, the 

selected allele was located in the center of the locus with 2Ns = 1000, 100, and 10 for 

dominant alleles, and 500, 50, and 5, respectively, for heterozygous alleles. For 

recurrent hitchhiking, selection occurs on a new mutation with a specified probability 

(= 0.0002, 0.01, 0.1, or 0.25). Our models encompass equilibrium neutral, 

equilibrium selection, non-equilibrium neutral, and non-equilibrium selection – with 

bottlenecks ranging in severity from 25% to 99% size reduction and ranging in 

recovery time from 1000 to 4000 generations.. A complete list of the parameters of 

mixture models can be found in the Table legends.  

 

Comparison of the Different Selection Statistics 

 We evaluate selection statistics based on either the SFS (SweepFinder, 

SweeD) or patterns in LD (OmegaPlus, iHS) to identify regions that contain a 

selective sweep. These statistics were chosen because of their widespread use in 

population genetics, and for their public accessibility.  
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 SweepFinder uses information from the SFS to determine the probability of 

observing an allele at a given frequency and distance from a beneficial mutation 

(Nielsen et al. 2005, http://people.binf.ku.dk/rasmus/webpage/sf.html). This method 

is based on the similar framework of Kim and Stephan (2002), but the null SFS is 

determined from the background site frequency spectrum rather than  a strictly 

equilibrium neutral model. This approach has been argued to make the test more 

robust to demographic history and variation in mutation rate. SweepFinder is 

designed to detect completed sweeps in both subgenomic, and genomic datasets. 

 SweeD is a computationally improved version of SweepFinder that is capable 

of analyzing much larger datasets (thousands of sequences vs. hundreds for 

SweepFinder) in a cluster-computing environment (Pavlidis et al. 2013, http://sco.h-

its.org/exelixis/software.html). The user can also optionally specify the use of 

monomorphic sites (explored in Pavlidis et al. 2010), and can input parameters for an 

explicit demographic model to be used as the neutral SFS. SweepFinder requires a 

sufficiently SNP dense region in order to allow for accurate estimation, and the 

inclusion of a fraction of monomorphic sites evens out the SNP density as well as 

preserves the signature of low diversity in regions of depleted genetic variation 

(Pavlidis et al. 2010). Performance was evaluated with and without monomorphic 

sites.  

 OmegaPlus is a sliding-widow implementation of Kim and Nielsen’s (2004) 

ωMAX statistic that uses patterns of LD to identify selective sweeps (Alachiotis et al. 

2012; http://sco.h-its.org/exelixis/software.html). It scans for windows of SNPs where 
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there is increased LD flanking the fixation, and reduced LD across the fixation. Like 

SweeD, OmegaPlus is a high performance statistic capable of analyzing very large 

datasets.  

 Finally, we evaluated iHS as a second LD-based selection estimator (Voight et 

al. 2006, http://coruscant.itmat.upenn.edu/software.html). This is based on the EHH 

statistic, which measures the decay of LD from an individual SNP (Sabeti et al. 

2002).  Longer haplotypes will be observed when a SNP rises faster in frequency than 

would be expected under neutral conditions. iHS additionally looks at the LD decay 

of both the derived and ancestral state of each SNP,  calculates EHH for both alleles, 

and then integrates the area between the two curves; the notion being that this area 

will be larger for a selected allele vs. a neutral allele.  Because of the normalization 

step required for raw iHS scores, a large SNP dataset is necessary. 

 

Determining significance, and the effects of misspecification of the null 

 To determine the significance thresholds for SweepFinder, SweeD, and 

OmegaPlus, we simulated a range of neutral models in ms (Hudson 2002) using the –

s option to fix the number of segregating sites.  After performing each test on this 

neutral set of models we determined the maximum value for each of 1000 iterations 

and used the 95th percentile as the cutoff value. The empirical models were then 

binned according to their average number of segregating sites and the 95th percentile 

value was used for each bin as a cutoff for significant test values.  
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 Next we verified that the distribution of test values in the cutoff models 

appropriately matched the values in the equilibrium neutral models. We observed that 

the distribution of values in the RHH models were a poor match for the values 

obtained by running SweepFinder on the neutral models simulated in ms (Figure 

4.1a). However, sfscode samples 2 haplotypes from 20 individuals (producing a 

sample size of 40), while ms samples 40 haplotypes from a diploid population (from 

separate individuals). Thus, a sample size correction is necessary for proper 

comparison (Figure 4.1b).  

 

Determining Threshold for Significant Sweeps in iHS 

 The statistic iHS computes a test score for each SNP within a locus, whereas 

all previously mentioned statistics compute a test value at specific points across a 

user-specified grid. Since iHS requires a normalization step to control for SNPs at 

different frequencies, we followed a slightly different procedure  to determine 

significance values for this test.  Raw iHS scores were normalized according to the 

method described in Voight et al. (2006). Briefly, all SNPs across each dataset were 

binned according to frequency. The mean and standard deviation of each bin was 

calculated, and these values were used to normalize raw iHS scores in the following 

way: for each SNP, the mean of the corresponding bin is subtracted from the raw iHS 

score and this result is divided by the standard deviation. This produces iHS values 

with a mean of approximately 0 and variance 1 for each frequency such that all SNPs 

can be compared directly (Voight et al. 2006).  
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 With iHS, extreme negative values indicate a derived allele on a long 

haplotype, indicative of a selective sweep, and extreme positive values belong to a 

long ancestral haplotype. For this reason, the 1st percentiles were used to determine 

the significant values for the entire dataset.  

 

Results & Discussion 

SFS-Based Statistics Perform Poorly Under Recurrent Hitchhiking Models 

 For equilibrium neutral models our initial false positive rates for SweepFinder 

approached 0.30. After correcting for the sample size as described above, the false 

positive rates were lowered to below 0.05, which is equivalent to a p-value of 0.05 

(Table 4.1). However, this correction has the unfortunate property of lowering the 

rejection rate of SweepFinder for equilibrium selection as well. For 2Ns ranging from 

10 to 1000, the true positive rate for SweepFinder and SweeD is also under 0.05 (i.e., 

the same rejection rate as neutral models; Table 4.2). OmegaPlus is the only statistic 

that has power to reject neutrality as the strength of selection is increased, with a true 

positive rate as high as 0.44. When the probability that a new mutation is affected by 

selection is increased, this reduces the rejection rate of OmegaPlus, which is 

consistent with fewer rejections at a lower SNP density (Table 4.1), and consistent 

with the poor performance of this LD-based approach under recurrent hitchhiking 

models (Jensen et al. 2007). 

 Our bottleneck models consist of a severity in reduction ranging from 25% to 

99%, and duration ranging from 1000 to 4000 generations. Since sfscode is a forward 
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simulator (and the reduction in population size begins at time 0), a longer duration is 

equivalent to a more recent recovery, whereas a shorter duration corresponds to an 

older bottleneck. In neutral bottleneck models, SweepFinder and SweeD have low 

power to reject for all parameter combinations (Table 4.3). OmegaPlus has a low 

false positive rate when the population size reduction is small, but for a 99% 

reduction, the rate of rejection is the same as for equilibrium selection models – 

suggesting an inability to distinguish these two scenarios. This is true for all duration 

times but is more pronounced as the recovery time decreases, with a false positive as 

high as 0.91 for a 99% reduction in population size that recovered only 1000 

generations ago (Table 4.3). Thus, severe population size reductions can mimic this 

pattern of LD normally attributed to selective sweeps, consistent with previous results 

(Pavlidis et al. 2010).   

 When a bottleneck is combined with strong selection (2Ns = 1000), 

SweepFinder shows a slightly improved propensity to reject the neutral model (Table 

4.4), but this is more likely due to the fact that SweepFinder has reduced sensitivity 

when SNP density is low, and combining strong selection with a bottleneck 

exaggerates this effect. OmegaPlus has a higher rejection rate at 2Ns = 100, which is 

also likely due to the extreme reduction in genetic variation caused by combining 

strong selection with a bottleneck (Table 4.4). For non-equilibrium selection models 

the rate of rejection for OmegaPlus is within the same range as equilibrium selection 

models, which suggests that it is not capable of distinguishing selection from a 

bottleneck when both factors have impacted patterns of variation.  
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Single Hitchhiking Models 

 We included single hitchhiking models specifically to satisfy the sweep 

conditions for which SweepFinder was designed, namely that a single sweep has 

fixed at the time of sampling. For equilibrium selection with 2Ns = 1000 the true 

positive rate for SweepFinder and SweeD is between 0.32 and 0.34 (Table 4.5), while 

the true positive rate for OmegaPlus is 0.46. SweepFinder’s ability to reject neutrality 

is improved for equilibrium selection under the single hitchhiking model when 

selection is strong, while the performance of OmegaPlus remains constant. 

OmegaPlus also remains sensitive to moderate selection strengths, as the true positive 

rate for 2Ns = 100 is 0.37. Thus, LD-based approaches appear to outperform SFS-

based approaches in this parameter space.  

 Joint selection and bottleneck models follow a similar trend as previous 

models, with OmegaPlus being the only statistic with power to reject neutrality. The 

difference between the RHH and SHH joint models is that in RHH, the rejection rate 

is fairly uniform across all severities and recovery times. For the SHH models, a 

pattern similar to the neutral bottlenecks is observed, where the rejection rate is 

higher for more severe and recently recovered bottlenecks (Table 4.6).  One reason 

for this uniformity when recurrent hitchhiking is combined with various bottleneck 

scenarios is that multiple beneficial haplotypes are amplified during the bottleneck 

recovery phase. The SHH models on the other hand, experience only a single selected 

mutation, and thus the underlying coalescent trees are primarily shaped by the 
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demographic history of the population. Therefore, the demographic model determines 

the length of the tree, and the beneficial mutation will be at varying frequencies in the 

population at the recovery time, depending on the demographic model.  

 

iHS Genome-wide Approach to Detect Significant Sweeps 

 For iHS we initially attempted the above criteria to determine significance. 

However, all values were too large to afford any power for iHS to reject the neutral 

model. This may owe to the unique signal that iHS is trying to summarize, computing 

a score for each SNP instead of across an equally spaced grid. Extreme significant 

values are expected to occur in neutral haplotypes, but they appear more uniformly 

distributed than in a suspected sweep (Voight et al. 2006). This means that there is 

some requirement for extreme values to be clustered for a sweep, in order to 

distinguish a significant value left by a selective event from a random significant 

value. Thus, by binning by the number of segregating sites and using a neutral model 

to determine the cutoff, the extreme values of the neutral model may not be an 

accurate estimation of these clusters of SNPs left by a sweep. 

 For this reason we used a significance value derived from the entire dataset, 

following Voight et al (2006). As they point out, this method can be useful for 

identifying regions of interest but does not serve as a formal significance test. To 

define a selective sweep signal we considered the top and bottom 1% of all iHS 

values as our cutoffs, and then searched for instances where iHS scores greater than 

or equal to these values occurred consecutively at 2 or more neighboring SNPs. In 
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order to determine if the iHS test statistic is capable of distinguishing between a 

selective event and a bottleneck, we compared the fraction of sequences that 

contained a sweep in each model type (Figure 4.2). It is important to note, however, 

that iHS has a dependency on SNP dense sequences in order to be able to calculate an 

iHS score. For this reason, a number of replicates for 2Ns  = 1000 were excluded 

from the recurrent hitchhiking dataset as, owing to the low SNP density, iHS was 

unable to calculate a value. It is also important to consider that for both SHH and 

RHH a majority of the sequences that contain sweep signals are from the models with 

weak selection (2Ns = 10) – again owing to the issue of SNP density. In fact, across 

both selection and neutral non-equilibrium models, SNP density is the main 

determinant of rejection (thus of both true and false positive rates).  

 

Summary & Conclusions 

 For the models considered here, SweepFinder and iHS had the highest type II 

error. For both statistics, this is likely due to their dependence on SNP density, where 

a higher SNP density lends more power to the statistic. Thus, the lack of power under 

diversity reducing models (like positive selection and population bottlenecks) led to a 

reduced ability to reject the neutral model regardless of the presence or absence of 

selection. OmegaPlus showed the most sensitivity to the various model parameters, 

with the highest true positive rates for both RHH and SHH selection. This statistic has 

difficulty distinguishing selection from a severe bottleneck however, and in RHH 

models with joint selection and demography, the true positive rate was uniform across 
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all bottlenecks and within the range of true positives for equilibrium sweeps. These 

results emphasize the need to develop statistics that are more accurate in their 

identification of selective events. Many natural populations are characterized by non-

equilibrium histories, and the commonly0used methods evaluated here are unable to 

deal with this effectively. However, these results also represent an important and 

well-quantified challenge to the field – and the performance of these statistics and the 

chosen parameter space can serve as a useful benchmark for future method 

development. 
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a) 

 
b) 

 
Figure 4.1. Correction for model misspecification.  
Density plots for maximum likelihood ratio values for 1000 iteration of a neutral 
model. For sfs_code, theta = rho = 0.001 per site (red line). The same model was 
simulated in ms using the –s option to match the average number of segregating sites 
for the sfs_code model. The 95th percentile is for the ms model. A) sample size = 40, 
false positive rate = 0.15. B) sample size = 20, false positive rate = 0.01
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Table 4.1. False Positive Rate for Equilibrium Neutral Models  

 
        per site θ = ρ         

 
0.001 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 0.0002 0.0001 

SweepFinder, n = 20 0.01 0.02 0.01 0.02 0.03 0.02 0.03 0.11 0.18 0.15 
SweepFinder, n = 40 0.15 0.09 0.16 0.23 0.22 0.29 0.30 0.30 0.29 0.27 
SweeD 0.05 0.05 0.04 0.07 0.07 0.06 0.07 0.04 0.05 0.03 
SweeD with monomorphic 0.11 0.12 0.10 0.10 0.10 0.10 0.14 0.12 0.08 0.08 
OmegaPlus 0.05 0.06 0.06 0.07 0.07 0.06 0.05 0.05 0.07 0.05 
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Table 4.2. True Positive Rate for Equilibrium RHH Models 

  
2Ns = 10 

   
2Ns = 100 

   
2Ns = 1000 

 
               P(sel) 0.002 0.01 0.1 0.25 

 
0.002 0.01 0.1 0.25 

 
0.002 0.01 0.1 0.25 

SweepFinder 0.01 0.01 0.00 0.01 
 

0.01 0.03 0.13 0.05 
 

0.05 0.14 0.11 0.16 
SweeD 0.03 0.03 0.02 0.03 

 
0.02 0.03 0.05 0.04 

 
0.01 0.06 0.03 0.04 

SweeD with monomorphic 0.05 0.05 0.02 0.02 
 

0.01 0.01 0.04 0.04 
 

0.02 0.04 0.05 0.08 
OmegaPlus 0.03 0.05 0.09 0.11 

 
0.26 0.44 0.35 0.30 

 
0.44 0.27 0.11 0.20 
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Table 4.3. False Positive Rate for Neutral Bottleneck Models (sfscode) 

 
Bottleneck Duration (generations) 

   
4500 

      
4000 

  Reduction (%) 25 50 75 90 99 
  

25 50 75 90 99 
SweepFinder 0.01 0.02 0.08 0.08 0.01 

  
0.02 0.03 0.04 0.05 0.01 

SweeD 0.07 0.09 0.13 0.07 0.01 
  

0.06 0.09 0.09 0.07 0.00 
SweeD with monomorphic 0.13 0.19 0.27 0.18 0.01 

  
0.15 0.18 0.17 0.16 0.00 

OmegaPlus 0.07 0.13 0.26 0.31 0.68 
  

0.09 0.13 0.26 0.34 0.91 

 
Bottleneck Duration (generations) 

   
3000 

      
1000 

  Reduction (%) 25 50 75 90 99 
  

25 50 75 90 99 
SweepFinder 0.01 0.01 0.04 0.04 0.00 

  
0.01 0.01 0.02 0.02 0.00 

SweeD 0.05 0.09 0.11 0.08 0.00 
  

0.04 0.04 0.07 0.07 0.00 
SweeD with monomorphic 0.12 0.16 0.13 0.11 0.00 

  
0.09 0.12 0.11 0.12 0.01 

OmegaPlus 0.08 0.12 0.22 0.43 0.79 
  

0.05 0.05 0.12 0.19 0.40 
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Table 4.5. True Positive Rate for SHH Selection Models 

2Ns 10 100 1000 
SweepFinder 0.05 0.14 0.33 
SweeD 0.05 0.13 0.32 
SweeD with monomorphic 0.12 0.15 0.34 
OmegaPlus 0.07 0.37 0.46 
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Figure 4.2. Percentage Of Sequences That Contain Selective Sweeps.  
Selective sweep detection using iHS for five model categories: bottlenecks (BN), 
recurrent hitchhiking (RHH), single hitchhiking (SHH), and joint RHH and SHH 
bottleneck models. RHH models were simulated with sfcode, and SHH models were 
simulated with msms. These are the same models that were presented in Tables 4.1 – 4.6, 
and sequences with various selection and/or bottleneck parameters were pooled under 
each category. Percentages represent the number of replicates that were incorrectly 
identified as selection by iHS in each category. This plot suggests that iHS is more 
effective at identifying SHH events correctly, but actually many RHH replicates were 
eliminated due to low SNP density (see text). 
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CHAPTER V. Final Summary and Perspectives 

 The work in my dissertation is aimed at advancing the current knowledge of how 

positive selection has shaped human populations. To do this I investigated novel datasets 

that have the ability to provide a unique understanding of specific aspects of human 

evolution, i.e. genetic differences that set us apart from our most recent common 

ancestor, the Neanderthal, and unique changes in gene expression that have shaped 

evolution of the human brain. I also think it is important to validate the effectiveness of 

tests for selection that numerous scientists rely on for their ability to produce true signals 

of positive selection. 

 By checking overlap of putative sweep regions discovered with Neanderthal 

against methods encompassing a wider time frame, I was able to identify a set of regions 

that are uniquely important for differentiating modern humans – many of which contain 

biologically interesting genes including immune function, cognition and morphology. 

Obtaining the draft sequence of the Neanderthal genome was an exciting milestone for 

the field of human evolution, and now we have definitive evidence that using it as a tool 

to identify positive selection in humans can give us information about our evolutionary 

history that would otherwise have been missed using current methods. With improved 

technology to sequence high quality ancient genomes, such as the Denisovan individual, 

these same methods will become essential in giving us a clearer picture of the genetic 

differences that are unique to modern humans. This, combined with the recently released 

1000 genomes dataset can provide an improved list of essential ancient sweeps – both 
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because the Denisovan genome is of much higher quality and coverage, and the 1000 

genomes data can provide population data to compare against an ancestor, instead of the 

5 single individuals that were used for the Neanderthal analysis. The authors chose 5 

individuals of different ancestry in order to be able to say something about the relatedness 

of Neanderthal to humans from different geographical location. But, by using a 

population of Yorubans, for instance – which contain a higher level of genetic variation 

than European or Asian populations – we can identify more ancient sweeps that are 

important to human evolution. In time, we will be able to provide answers about our early 

origins that led to the intellectual differences, which set us apart from other great apes. 

Perhaps the best example to date that attempts to link positive selection to 

evolution of human brain-specific differences is the multi-species primate epigenetic 

dataset presented here. Although a majority of the H3K4me3 peak sequences examined 

do not show direct evidence of positive selection, as no examples of strong selective 

sweeps could be detected, we can make some important conclusions about the evolution 

of human-specific epigenetic signatures involved in gene expression. It is likely that 

signals of positive selection are more evident in epigenetic modifications that are active 

during early developmental neuronal processes, since modifications differ greatly 

between different age groups. It is also possible that selection has influenced trans-acting 

factors that are responsible for H3K4me3 modification in neuronal cells. We do show 

that human neuronal peaks have an increased number of human-specific sequence 

alterations when compared to non-neuronal peaks. This, combined with the finding that 

several sequences show a significant increase in nucleotide substitution rates would 
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suggest that there is some link between genetic and epigenetic evolution within these 

peak regions, although positive selection has not been a major force in shaping this 

evolution. 

As we continue our search for positive selection in human populations it is 

important to reevaluate the most commonly used selection estimators for robustness in a 

standardized manner. Many of these tests are released with performance testing for only a 

select number of models, and some without testing models that violate equilibrium 

assumptions. The last point is essential since most natural populations fall into this 

category. My work in this area has several important implications. First, it highlights the 

need for more robust selection estimators capable of distinguishing between selection and 

a more extreme bottleneck. Secondly, since my work was performed on simulated data 

where I knew the exact parameters of the demographic model, the finding that estimators 

do not distinguish between severe recent bottlenecks and selection points to the need for 

fitting a demographic model to any natural population in order to correctly identify 

selection.  

Currently, many methods that estimate demographic parameters assume that the 

population is under neutral conditions. This is dangerous, as they are making use of the 

same information about genetic variation as selection estimators, e.g. the site frequency 

spectrum, and can lead to over fitting of parameters, such as a low estimation for 

migration rates and higher estimates in the size of population bottlenecks. Also, 

demographic estimators differ in the types of model they consider. For instance some 

estimators are more diverse in the types of parameters they fit so that you can build your 
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own model using migration, population size changes, and sub-divisions (Gutenkunst et al. 

2009, Naduvilezhath et al. 2011) while others only consider one model with a few 

parameters to specify, such as 2-populaiton isolation-migration where only a split time 

and migration rate is considered (Nielsen and Wakeley 2001, Becquet and Przeworski 

2007). All of these implementations are going to be limited by the assumptions they 

make about population parameters such as rate and strength of selection, recombination, 

and mating paradigms.  

It would be nice to distill all these different methods for estimating selection and 

demography into one method that can jointly estimate the two processes. In order to do 

this it is necessary to determine what works well and what doesn’t. I have started 

answering this question by evaluating the performance of selection estimators and trying 

to identify which ones will be most robust to demography. Thus far, it would seem that 

using LD can provide a lot more power for identifying selection correctly. The other half 

of this story is determining in the same standardized sort of manner which demographic 

estimators are most effective at correctly estimating demographic model parameters (Poh 

et al., in progress). This information will hopefully lead to a joint estimator that uses the 

most robust estimation methods to jointly estimate selection and demography in a way 

that will work for a large variety of datasets. 

By examining the latest datasets and techniques that are being developed with 

respect to identifying positive selection in humans, we are gaining a better understanding 

of the amount of selection in the human genome, as well as the types of genetic and 

epigenetic changes that characterizes us as a species. The continued improvement of all 
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of the methods discussed in this dissertation will one day lead to a clearer picture of the 

processes that have shaped human evolution.  
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APPENDIX I. Supplementary Methods 

 
Sample preparation (ChIP-seq and RNA-seq) 

Ethics Statement: All work presented here was conducted on brain specimens 

collected after death. Cause of death was unrelated to the present study. All sample 

acquisition and processing of postmortem brain tissue was approved by the Institutional 

Review Boards of the participating institutions. 

ChIP-seq: Procedures for extraction and sorting of NeuN+ neuronal nuclei from 

the cortical gray matter, and subsequent chromatin immunoprecipitation with anti-

H3K4me3 antibody and ChIP-seq library preparation were recently described (Cheung et 

al. 2010, Connor et al. 2010, Jiang et al. 2008, Matevossian and Akbarian 2008). Cross-

immunoreactivity of the anti-H3K4me3 antibody with other histone methylation forms, 

including mono- and di-H3K4 (H3K4me1/2) was controlled by dot blots and synthetic 

blocking peptides as described (Connor et al. 2010). The human ChIP-seq data sets, 

generated from neuronal nuclei of the pole of the frontal lobe, were published previously 

(Cheung et al. 2010, Shulha et al. 2012). 

Postmortem brain tissue from the pole of the frontal lobe of 4 adult chimpanzees, 

ranging in age from 27-44 years, and of 3 adult macaque monkeys 11 years or older 

(Table S1) was processed in the same manner as previously described for the human 

specimens (Cheung et al. 2010, Connor et al. 2010, Jiang et al. 2008, Matevossian and 

Akbarian 2008).  Specimens were obtained from the dorsolateral portion of the prefrontal 

cortex, primarily from cytoarchitectonic (Brodmann) Area 10 (BA10) and regions that 

border on BA10, including portions of BA9 and BA46.  The quality of ChIP-seq datasets 
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was similar across all samples, with the total number of reads in the range of 2-106, of 

which typically 70-80% were derived from uniquely mappable sequences of the reference 

genome (HG19 or panTro2 or rheMac2) (Table S1).  

RNA-seq: Three human specimens with no evidence for neurological disease or 

neurodegeneration were obtained from the Harvard Brain Tissue Resource Center in 

Belmont, MA (age 69-70, postmortem interval 15-26 hrs, all male). Rostral prefrontal 

cortex was processed for RNA-seq using Illumina’s mRNA-seq sample preparation kit.  

Briefly, total RNAs were isolated using Trizol isolation kit and ploy-A containing RNAs 

were purified using poly-T oligo-attached magnetic beads. The mRNA was then 

fragmented into small pieces using divalent cations under elevated temperature and the 

cleaved RNA fragments were copied into first strand cDNA using reverse transcriptase 

and random primers. RNA integrity number for each sample was determined using the 

Agilent 2100 bioanalyzer; RIN was above 4.0 or all cases.  Second strand cDNA was 

synthesized using DNA polymerase I and RNAseH and followed by poly “A” cloning 

and PCR amplification to create the final cDNA library.  RNA-Seq data were generated 

on an Illumina Genome Analyzer IIx by single end sequencing with 35 nucleotide (nt) 

read length. 

To further confirm species-specific differences, RNA from the frontal pole was 

isolated using the RNEasy Mini Kit (Qiagen, Valencia, CA).  RNA concentrations were 

equilibrated to 100 ng/uL, and qRT-PCR was performed using the Quantifast SYBR 
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Green RT-PCR kit on an AB7500 machine (Qiagen, Applied Biosystems, Carlsbad, CA) 

using primers shown here.  Relative expression was determined using the Pfaffl method 

normalized to 18S and referenced to human expression.  All products were sequenced for 

verification of specificity.  

ChIP-seq analysis 

Libraries were sequenced with the Illumina Genome Analyzer GAII, and images 

were first processed with GAPipeline (versions 1.0 and 1.4) and OLB (1.6). We 

performed single-end sequencing of 36bp reads. We used Bowtie (version 0.11.3) 

allowing up to one mismatch to map all sequence reads to the gender appropriate human 

genome HG19 and only retained the reads that mapped to one unique location in the 

genome in each sample for subsequent data analysis. Chimpanzee and macaque datasets 

were mapped to the appropriate genomes (rheMac2 and panTro2) and to human genome 

HG19 for comparison. Table S1 online shows the sequencing statistics. 

To calculate the table of Pearson correlations among H3K4me3 profiles in 

promoters (Fig. 4.1A, Table S2), the region within 2 KB of a transcriptional start site 

(TSS) was defined as the promoter of the TSS. If a gene has multiple TSSs, each TSS 

was accounted for separately. We used the RefSeq gene set from the UCSC genome 

browser, which contained 35,519 transcripts and 22,150 genes. ChrY was excluded from 

this analysis. Promoters for TSSs that were less than 2 KB apart were merged to avoid 

double counting. The number of tags within each promoter was tallied and divided by the 

size of the regions and the resulting tag densities for all annotated TSSs were used to 

compute Pearson correlation coefficients between each pair of samples.  
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In order to detect regions that were enriched in a neuron-specific manner with the 

H3K4me3 mark in human samples but not in chimpanzee or macaque, we first filtered a 

set of 34,639 peaks (without chr Y) obtained by running MACS on each of the 7 human 

adult samples against an input human sample (micrococcal nuclease digestion without 

anti-H3K4me3 antibody pull down) and taking the union of the 7 MACS outputs. The 

criteria for filtering are as follows: (i) the average tag density for all 11 human samples is 

higher than 0.01 and is more than 2 times greater than the average tag density for 

chimpanzee or macaque samples mapped to the human genome. (ii) The region is more 

than 500 bp long, and (iii) the region is detected as a peak in every human sample. We 

obtained 418 peaks after the filtering. To obtain human depleted peaks we used a 

reciprocal approach where initial peaks were detected in chimpanzee and macaque. This 

resulted in 63 peaks after filtering. 

To evaluate significance of the 418 human-enriched and 63 human-depleted 

peaks, we applied Poisson statistics (the Poisson distribution has only one parameter, 

which is the mean called lambda). We compared human against chimp and macaque 

separately. For each peak, we computed the average reads in chimp and in macaque to 

determine the respective lambdas for the Poisson distributions. Then we computed a p-

value for human vs. chimp and another p-value for human vs. macaque, using the average 

reads across all human samples within the peak (normalized by total reads within all 

annotated promoters in that sample). The Benjamini-Hochberg method was used to 

compute the false discovery rate (FDR) of each peak. Only the peaks with FDR<0.05 in 
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both human-chimp and human-macaque comparisons were kept, and there were 410 

human-enriched peaks and 61 human depleted peaks with both FDRs<0.05. 

Procedures similar to the ones described above were applied in order to detect 

chimpanzee-specific regions with significant 2-fold enrichment, or depletion, of 

H3K4me3.  

In an additional independent analysis we probed the collection of 2,148 neuronal 

peaks not shared with lymphocytes under the most restrictive criteria, as described in our 

previous work (Cheung et al. 2010). We retained a peak if average tag density in human 

samples were more than 2 times greater than in both chimpanzee and macaque samples. 

It resulted in 33 peaks (Table S10), referred to hereafter and in the main manuscript as 

neuHP (Human-specific peak selectively enriched in neurons). To test if neuHP were 

identified because regions were unique to the human genome, we also mapped both 

macaque and chimp ChIP-seq readouts to their appropriate genomes, panTro2 and 

rheMac2. To allow direct comparison between peaks in HG19 and panTro2/rheMac2, we 

calculated tag densities normalized by sequencing depth (Table S10). 

To evaluate significance of the peaks detected we applied Poisson statistics. A set 

of appropriate monkey samples was used to assess background distribution. After that, a 

human sample with the lowest coverage at the particular peak was used to obtain the p-

value. 

Screenshots of ChIP-seq tracks in Figure S1 online were normalized by the 

number of tags that map to 5397 orthologous promoters. Orthologous promoters were 

defined as +/-2kb regions around HG19 RefSeq TSSs that are uniquely lifted-over both 
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ways between any genomes (HG19/panTro2/rheMac2) with 95% identity. UCSC lift-

over tool was used for the conversion between different genomes.  

Overlap with DNA hypomethylated regions (HMR) in male germ cells 

Approximately 76,000 DNA hypomethylated sequences (HMR) in human and 

70,000 HMRs in chimpanzee sperm (Molaro et al. 2011) were screened for overlap with 

the 34,639 H3K4me3 peaks of the present study. Altogether 22,808/34,639 neuronal 

H3K4me3 peaks of the present study overlapped with HMRs in both human and 

chimpanzee sperm. A subset of 1992 H3K4me3 peak regions from PFC neurons 

specifically overlapped with sperm HMRs in human but not chimpanzee. Conversely, 

669 human PFC neuron H3K4me3 peaks overlapped selectively with HMRs in 

chimpanzee but not human sperm. Next, 410 peaks out of the 25,469 peaks that overlap 

with sperm HMRs were picked randomly (10,000 times) and the following expected 

frequencies were found: human and chimpanzee sperm HMRs (H+/P+) 270/410 = 65.7%, 

no HMR (H-/P-), 108/410 = 26.6%, H+, P-, 24/410 = 5.7%, H-, P+, 8/410= 1.9%. 

RNA-seq analysis  

Using Tophat software, the first 40bp of each RNA-seq read was mapped into 

human, chimpanzee and macaque genomes (max. 1mismatch allowed for mapping into 

native genome and 2 mismatched when non-human was mapped to human. The original 

418 hnp peaks were extended and clustered  (united overlapped) inside of human 

genome. Alternatively, the 418 hnp were lifted-over to monkey, extended by 2kb and 

clustered. Data were expressed as  (i) Chimp_HG19/Human_HG19 - sequencing depth 

normalized ratio; plus pseudocount, (ii) Macaque_HG19/Human_HG19 - sequencing 
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depth normalized ratio; plus pseudocount; (ii) Chimp_PT2/Human_HG19 - sequencing 

depth normalized ratio; plus pseudocount; plus normalization by region size; (iv) 

Macaque_RM2/Human_HG19 - sequencing depth normalized ratio; plus pseudocount; 

plus normalization by region size (Table S18). 

Screenshots of RNA-seq track (Figure S2) were normalized by sequencing depth. 

Data for macaque RNA expression were downloaded as a wig file from GSE24538 (Liu 

et al. 2011). Data for chimpanzee RNA expression were downloaded from GSE30352  

(samples  “ptr br M 2,3,4”) (Brawand et al. 2011). Three samples were pulled together 

and mapped to panTro2 genome allowing up to 2 mismatches.  

Comparative analyses of human-specific alterations in Ensembl 

Coordinates of human (neuron)-specific H3K4me3 peaks (referred to as hnp in 

the main manuscript) were converted to the Genome Reference Consortium (GCR)’s 

genome build Grch37 and Human Specific Alterations (HSA) were selected based on 

Ensembl EPO primate alignments. Altogether 1519 HSAs were identified (continuous 

indels in the region were considered as 1 HSA) for the subset of 33 neuHP with both 

species-specific and cell-type specific (present in neurons but not blood or non-neuronal 

brain cells.) From these, 915 were found to be conserved in primates tested (Pan 

troglodytes, Gorilla gorilla, Pongo abelii, Macaca mulatta) and 963 were located within 

large-scale regions with regulatory properties (Ensembl “Regulatory Build”). We 

downloaded neanderthal and denisova genomes from UCSC browser in bam alignment 

format and further checked 1519 HSAs in comparison to them.  

The neanderthal genome (ftp://hgdownload.cse.ucsc.edu/gbdb/hg19/neandertal/seqAlis) 
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was in HG19 coordinates, denisova (ftp://hgdownload.cse.ucsc.edu/gbdb/hg18/denisova) 

in HG18.  

The coordinates of HSAs were lifted-over with UCSC lift-over tool. The comparison to 

alignments was done with a set of scripts written in Perl. For denisova we found 52 

(1353) HSAs that differ (similar) to human genome, for neanderthal - 20 (674) different 

(similar). For the remaining HSAs: 114 in case of comparison to denisova, and 674 - 

neanderthal we could not asses the allelic state due to incomplete coverage of archaic 

genomes. 

Gel shift assays 

Native gel electrophoretic mobility-shift assay with 32P end-labeled DNA probes 

(1X or 50 nM) and Hela nuclear extract (20mg) for 20 minutes at 22oC in binding buffer 

containing 10mM Tis-HCl (pH7.5), 50mM NaCl, 0.5mM DTT (1X).  Probe is a 21-bp 

human or gorilla GATA-1 sequence duplex DNA (CCAGTAAGAA(A human/T other 

primate)GATTAGCCAG), non-specific probe is 5‘ ATTCGATCGGTTCGGGGCGAGC 

3‘ sequence duplex DNA.  To demonstrate the specificity, cold probe or non-specific 

duplex DNA was used at 400X/20,000nM over 32P end-labeled DNA probes. All native 

gels were run at 150 V for 150 min in cold room in the presence of 6% glycerol, dried for 

2 hours at 80oC and exposed to X-ray film overnight at -70oC. For binding stringency 

experiment same nuclear protein and probe concentrations were used with increased 

concentrations of sodium chloride in binding buffer (50, 100, 150 and 225 mM).  

Chromosome conformation capture (3C) 
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To map physical interactions and loop formations between non-neighboring 

chromatin fragments, 1000mg of frontal pole tissue from 4 adult human specimens was 

used (male and female, 7 hrs autolysis interval (median), ranging in age from 30 to 70 

years) in conjunction with our 3C protocol as described (Jiang et al. 2010) and 24 primers 

positioned on the DPP10 (2q14.1) sense strand 5’ to 3, and 8 primers for the 16p11.2 

region. 

Presence of physical interactions was determined by sequence-verified PCR 

product. Control PCRs included no input (‘water’) and also DNA from chromatin 

digested with Hind III but without the subsequent religation step (‘no T4 ligase’). 

Additional 3C-qPCR reactions were performed using the QuantiTect Probe PCR Kit 

(Qiagen) and custom-made FAM-TAMRA taqman probes. 
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Human DPP10 chromosome conformation capture (3C) primers
primer # primer sequence bp in chr2 (hg19)

1 CTCCGAGTCCCCAAACAGACTTGTTTGAAT 114960871-114960900
2 TGTAGAACAAGAGCCCAACAGTCAACATTT 114967422-114967451 
3 CTCATCTCTCTGGGCTTGGTCATCTGTCTT 114969506-114969535
4 TTCAAACTGAAGCATCTCTTCTAGGGGTGC 114972863-114972892
5 TTGATTACAATCAGGCCGGATTGTCCACTC 114979317-114979346
6 TGCTGTGCTCCGAATCTGGAAGATTAATGG 115414659-115414688
7 CTGACACATTGAGCAACACCATGAGCAGAT 115415259-115415288
8 GATGGTTAGTTTTGCTCCAGTAGCCTGGAA 115423445-115423474
9 CTCTGTGGAATGTTCCCTCCTCTATTCTCT 115426353-115426382 

10 CCAGTGTTCAAAAGCCTGAGACTATCCACT 115612001-115612030
11 GATTCTATTTGGCTGGGCGTTGTCTTAGGC 115623208-115623237
12 GATTTCCTCTTAACAGAGAACGTCCATCGG 115628389-115628418
13 CCCTGTGGAGCTTTTTCACCTCCATTTTAG 115637630-115637659
14 GATCCACAAATGCAGAACAACCCCCGATAT 115648085-115648114
15 CCCATCTATCAGCAATTCCCCTTACCCTCT 115911510-115911539
16 CAACTGAAATATACACATGGCACCTCGCAG 115921734-115921763
17 GACTGGGGCACTGAAAAGAAAGCTCTTCTA 115926328-115926357
18 GGGAGAGGCAACGTGATGTAAGACTGAGAA 115926666-115926695 
19 TGGCAAGAGGTTACACGCAAAGCCATAATG 115929473-115929502
20 ATTGCTGCTGTTTAACGGGGACACAAATTC 116358450-116358479 
21 CCTCCTGAGAGAGTAGCCCCAACTCTATTT 116361811-116361840 
22 TTTCCTGGACTGATTATCAAGGAGCTGTCC 116364309-116364338
23 CTATGTCCACATGCAGAGGCAGAGGAAAAG 116372570-116372599
24 ATGACACATATCCCCCTTGGGAAATTGCTC 116374388-116374417

Human chr16 primer sequence bp in chr16 (hg19)
1 AAATGTATCACAGTATCG 21511195-21511213
2 TCTTTGTCGGAATCCACTCGGTACACACAC 21518730-21518760
3 AGCTCAATTTAATCAACAGAACCGGGGGTT 21532483-21532514
4 TATGTGATCATCACTGCCCTACACC 22430178-22430203
5 CATCGCCACCCAGTAAACATAGTTACTGAT 22433264-22433294
6 GGGAGATATTTCTGACTTGAGACAATGCTATACTC 22446920-22446955
7 CAAGTGCTTTATTTCTTGGCTCTGGGGAGG 22450543-22450573
8 CAGAGGCTTCCTAGTTGGAAACACATTGTT 22463714-22463744

Macaque monkey primer sequence bp in chr13 (rm2)
M1 TCCCAACCAGTTACATCTCTGCTCAGACTC 120344263-120344292
M2 GAAGTGTTTGTATCTGTTGTCACGCAGCTC 120346568-120346597
M3 TTTTACGGGGAACAAAACTCGTCTCTCTGG 120365464-120365493
M4 GCGAAGGGTTTCTCTGGTCTACCTTTAGGT 120367862-120367891
M5 AATGAAAGTGTTGGCCAGAAAGGCCTAAGA 120369239-120369268 
M6 GCTCTGCTGTGCTCCTAATCTGGAAGATTA 120806372-120806401
M7 ATATATGAGGCTGACACATTGAGCAACGCC 120806967-120806996
M8 CGGGTGGTTATTTTTGCTCCAGTAGCCTAG 120814240-120814269
M9 ATCTGTCTGTGCACACAAACAGAGAACCAG 120817252-120817281

M10 GCACCACACTAAGTGGTAGTAGGTCGGTAT 121289006-121289035
M11 AGCATCACAGTGAGGGTTTTTCAAGCACTC 121299269-121299298
M12 CTGTGTGTGCATGTGCACAAATTTACCTTG 121300506-121300535
M13 GCAAAAGAGTTATTCTTCTAGGTGCCCTTTGC 121301270-121301301
M14 GCCCAAAGCCATAATGCCTTTCTGAACATA 121306865-121306894
M15 TGTTACTATACTGCAGAGGGGAAGGACAAA 121730958-121730987
M16 GTTTACCAGGGACACCAGTTCGCATTTCTT 121756495-121756524
M17 GGGTGATGACAGTGGATTCTTAGGGTTGTC 121760129-121760158
M18 CAAGTAGCTGTCCTCTTTCATGGTCAGAGG 121762661-121762690

Human DPP10 chromosome conformation capture (3C) qPCR Probes
probe # FAM TAMRA probe sequence bp in chr2 (hg19)

6 AATGGATTTTTGTCAACTTGAAACTCAAGC 115414889-115414919
8 AAAGCAGACTTGCCTATACTTGCAGTTCTG 115426412-115426442
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Similar studies were conducted on prefrontal cortex from 3 adult macaques, using tissue 

from the right hemisphere (left hemisphere of the same animals was used for ChIP-seq). 

Another set of 18 macaque 3C primers was used to probe 3C in the macaque DPP10 

locus while primer pair 2/7 from human 16p11.2 was used to test the homologous 

sequences in the macaque. As an additional control, 3C assays were also performed with 

the H9 embryonic stem cell line. Embroid bodies were generated from colonies grown on 

feeder cells and grown in low-adherence flasks for 3 days until harvested or re-suspended 

in Neural Induction media and differentiated to a mixture of neural precursors and 

postmitotic cells, using a modified protocol (Li and Zhang 2006). 

Loc389023 cloning, expression and RNA immunoprecipitation 

Loc389023 expression in human brain samples and various cell lines was check 

either with nuclear only RNA or cytosolic enriched RNA. Two sets of primers (listed 

below) were used to confirm the expression. Resulted PCR products were further 

confirmed by sequencing. Full length Loc389023 RNA from human brain fetal nuclei 

was amplified using 3’end gene specific primer and cloned in pCDNA4A under CMV 

promoter. Loc389023 expression was verified in HEK293, Hela and SK-N-MC neural 

crest derived cells. RNA immuno-precipitation (RIP) was carried out as described (Zhao 

et al., 2008). Briefly, after transfection, nuclei were isolated from SK-N-MC cells using 

ultracentrifugation. Nuclei pellet was resuspended in 1 ml ice cold lysis buffer (100mM 

KCl, 5mM MgCl2, 10mM HEPES, 0.5% NP40 along with RNAse inhibitor, lysates were 

mechanically lysed by passing through 27.5guage needle few times. Nuclear lysates were 

further diluted in 50mM Tris-HCL, 150mM NaCl and 1mM MgCl2 and pre-cleared 
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before incubating for 6hrs with respective antibodies (H3K4 07-736, IgG 12730: Upstate, 

SUZ12 3737, EZH2 4905: Cell signaling technologies). Input was saved for transfection 

efficiency analysis. Next day after pull down with protein G beads and several washes, 

RNA was isolated using Trizol reagent (Invitrogen) according to manufacturer’s 

protocol. One step quantitative RT-PCR was performed using Quantifast SYBR kit 

(Qiagen). Primer sequences used for Loc389023 are 1. Left 

5’TCAACACTTGGAAGAAGGGAGCTG3’ Right 

5’GCCAGTACACCTTATTCTGACCCA3’; 2. Left 

5’AATCCAGCCCAGATTCTCCTACCA3’ Right 

5’TTGGGAAGGGCAGTCTGATTGAAG3’. 

In Situ Hybridization 

In situ hybridization 15 micron thick section from immersion-fixed human PFC 

specimens was performed as described previously (Mellios et al. 2008).  DIG-labeled 

LNA oligonucleotide probes used are as follows: LOC89023 

(5DigN/TTGGCTCACTCACTTACTTGCA/3Dig_N), Beta-actin 

(5DigN/CTCATTGTAGAAGGTGTGGTGCCA/3Dig_N) (Exiqon, Woburn, MA).   
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