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Abstract 
 

Protruding from the apical surface of nearly every cell in our body lies a specialized
sensory organelle -‐ the primary cilium. Eukaryotic cells use these ubiquitous
structures to monitor the extracellular environment, defects in which result in an
ever-‐growing list of human maladies termed ciliopathies including obesity, retinal
degeneration and polycystic kidney disease. The sensory functions of primary cilia
rely on the unique complement of receptors concentrated within the ciliary
membrane. Vital to the proper functioning of the cilium is the cell's ability to target
specific proteins to the ciliary membrane yet little is known how a cell achieves this
highly polarized distribution. IFT20, a subunit of the intraflagellar transport particle
is localized to the Golgi complex that is hypothesized to sort proteins to the ciliary
membrane. We show that IFT20 is anchored to the Golgi complex by the golgin
protein GMAP-‐210 and mice lacking GMAP210 die at birth with a pleiotropic
phenotype that includes growth restriction and heart defects. Cilia on GMAP210
mutant cells have reduced amounts of the membrane protein polycystin-‐2 localized
to them suggesting IFT20 and GMAP-‐210 function together in the sorting or
transport of proteins to the ciliary membrane. To better understand the mechanism
of ciliary protein trafficking, we identify a ciliary targeting sequence (CTS) contained
within fibrocystin, the gene mutated in autosomal recessive polycystic kidney
disease, and investigate a series of proteins required for the delivery of this
sequence to the primary cilium. We demonstrate the small G protein Rab8 interacts
with the CTS of fibrocystin and controls the ciliary levels of the CTS. Arf4 is another
small G protein deemed a key regulator of ciliary protein trafficking. We show Arf4
binds the CTS of fibrocystin but is not absolutely required for trafficking of the
fibrocystin CTS to cilia. Arf4 mutant mice are embryonic lethal and die at mid-‐
gestation likely due to defects in the non-‐ciliated visceral endoderm, where the lack
of Arf4 caused defects in cell structure and apical protein localization. This suggests
Arf4 is not only important for the efficient transport of fibrocystin to cilia, but also
plays critical roles in non-‐ciliary processes. Together this work aims to elucidate
the mechanisms of protein targeting to the ciliary membrane.
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CHAPTER I 

 

Introduction 

Cilia are subcellular organelles composed of a microtubule- based cytoskeleton 

surrounded by an extension of the plasma membrane and exist in motile and non-motile 

forms.  The functions of motile cilia and flagella have long been recognized.  The 

coordinated beating of cilia lining our respiratory tract clear mucus allowing us to breathe 

and propulsion of the male gamete required for fertilization of a human embryo are two 

of the most widely recognized functions of motile cilia.  Another class of cilia exists that 

compensate for their lack of flashy motility with their association with an ever-growing 

list of human maladies; these are known as the primary cilia.   

The darlings of countless electron microscopists, primary cilia were once viewed 

as a cellular anomaly, a curious vestige of our primitive past (Alberts, 1994).  Protruding 

from the apical surface of nearly every cell in our body, a solitary non-motile primary 

cilium endures.  Recent studies in the field of cilia biology have thrust this once neglected 

organelle firmly into the spotlight of a fascinating realm of cell biology.  Defects in cilia 

structure or function result in a number of human diseases including obesity, cognitive 

deficits, polycystic kidney disease and retinal degeneration (Fliegauf et al., 2007; Pazour 

and Witman, 2003; Wheatley, 1995).  This introduction serves to highlight the key 

features of the primary cilium with special focus given to current understanding of the 

mechanisms by which ciliary proteins are trafficked to this organelle. 
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Protein trafficking to the ciliary membrane 

Sight and smell, the detection of visual and olfactory stimuli, depend upon proper 

functioning of cilia.  To perceive extracellular cues, the ciliary membrane is replete with 

an ever-growing number of trans-membrane receptors (Nachury et al., 2010).  The ability 

of the cell to target and concentrate a specific set of receptors to the ciliary membrane is 

of upmost importance as the gene products of numerous human disease genes localize to 

cilia (Pazour and Bloodgood, 2008).  Defects in receptors present on the ciliary 

membrane result in a pleiotropic class of human disorders termed ciliopathies (Waters 

and Beales, 2011).  The diverse functions of cilia underlie the broad range of disorders 

associated with ciliary dysfunction including obesity, cognitive deficits, blindness and 

polycystic kidney disease (Fliegauf et al., 2007; Pazour, 2004).  The numerous sensory 

functions of primary cilia rely on a unique complement of receptors that are targeted and 

concentrated within the ciliary membrane.  While continuous with the apical plasma 

membrane, the ciliary membrane is a specialized subdomain of the plasma membrane 

that surrounds the ciliary axoneme (Rohatgi and Snell, 2010).  Trans-membrane receptors 

destined for the ciliary membrane are first synthesized in the endoplasmic reticulum, 

sorted at the Golgi complex and subsequently delivered to the cilium (Nachury et al., 

2010).  The subsequent chapters explore the mechanisms underlying ciliary protein 

targeting. 
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Intraflagellar transport and the strange case of IFT20 

The primary cilium is composed of a microtubule-based axoneme consisting of nine outer 

doublets surrounded by an extension of the plasma membrane deemed the ciliary 

membrane.  Intraflagellar transport (IFT) is the bi-directional movement of protein 

complexes along these microtubule tracks within a cilium (Kozminski et al., 1993).  IFT 

is required to build, maintain and ultimately disassemble the cilium by transporting 

required axonemal subunits from the site of synthesis in the cell body to the growing tip 

of the cilium (Ishikawa and Marshall, 2011; Rosenbaum and Witman, 2002).  

Purification and subsequent characterization of IFT complexes from the biflagellar green 

algae Chlamydomonas revealed two multi-subunit complexes termed IFT Complex A and 

B (Cole et al., 1998).  The IFT complexes are highly conserved in mammals. This fact led 

to a discovery identifying defects in IFT88, known to be required for ciliary assembly in 

Chlamydomonas, as the causative mutation in the orpk mouse model of polycystic kidney 

disease (PKD).  This provided the first link between primary cilia and PKD (Pazour et al., 

2000).  A pool of IFT proteins is concentrated at the base of the cilium and IFT 

complexes in transit along the cilium are observed as punctate staining decorating the 

cilium (Rosenbaum and Witman, 2002).   

One IFT protein is unique in its subcellular localization.  The IFT Complex B 

subunit IFT20 is concentrated at the Golgi complex and exhibits dynamic movement 

between the Golgi and cilium (Follit et al., 2006).  In addition to soluble proteins required 

to build the axoneme, the ciliary membrane is decorated with trans-membrane proteins 

synthesized by the endoplasmic reticulum, sorted at the Golgi complex and trafficked to 
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the ciliary membrane.  Unique among the IFT proteins, the Golgi localization of IFT20 

suggested that it might play a role in sorting proteins at the Golgi destined for the cilium.  

Early RNAi based studies demonstrated that partial knocking down of IFT20 resulted in 

decreased levels of the ciliary membrane channel polycystin-2 (Follit et al., 2006).  The 

second chapter of this dissertation builds on these findings and further explores the role 

of IFT20 at the Golgi complex. 

 

Ciliary targeting sequences 

Intraflagellar transport is known to move soluble axonemal precursors from their site of 

synthesis in the cell body to the growing tip of the cilium. Ciliary function also relies on 

specific receptors localized to the ciliary membrane and many of these trans-membrane 

receptors undergo IFT-like movement within the cilium.  However, with the exception of 

IFT20, the majority of IFT proteins are believed to transport cargo within the cilium, but 

little is known regarding the intracellular transport of trans-membrane receptors to the 

cilium (Nachury et al., 2010; Pazour and Bloodgood, 2008). 

 To understand the mechanisms required for ciliary protein targeting a number of 

groups have identified targeting sequences in known ciliary proteins.  A ciliary targeting 

sequence (CTS) is a domain within a protein necessary and sufficient to target said 

protein to the cilium.  The CTS is often a transferrable module capable of conferring 

ciliary targeting to a previously non-ciliary protein; in fact this ability is required to 

validate potential ciliary targeting sequences.   
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Table 1.1 Ciliary targeting sequences capable of delivering heterologous proteins to 
the cilium [modified from (Nachury et al., 2010)]. 
 

Protein Function Lipidation CTS (key residues in bold) Reference 
Polycystin-
1 

Unknown Not 
Determined 

KVHPSST Ward et. 
al (2011) 

Fibrocystin Unknown Palmitoylated CLVCCWFKKSKTRKIKPE Follit et. 
al (2010) 

Cystin Unknown Myristoylated TASEGGTA Tao et. al 
(2009) 

Polycystin-
2 

Cation 
Channel 

Not 
Determined 

MVNSSRVQPQQPGDA Geng et. 
al (2006) 

Rhodopsin Photon 
Receptor 

Palmitoylated SSSQVSPA Tam et. al 
(2000) 

SSTR3 Somatostatin 
Receptor 

Not 
Determined 

APSCQ + APACQ Berbari et. 
al (2008); 
Jin et. al 
(2010) 

5HT6 Serotonin 
Receptor 

Not 
Determined 

ATAGQ Berbari et. 
al (2008) 

 

 Rhodopsin is a seven-span transmembrane receptor that is concentrated in the 

highly specialized photoreceptor cilium and is required for light detection in the first 

steps of the visual system.  Mutations present in the last five residues of rhodopsin 

(QVSPA) result in severe autosomal dominant retinal degeneration and deletion of this 

motif impairs trafficking of rhodopsin (Berson et al., 2002).  Tam et. al identified a CTS 

present in the c-terminal tail of rhodopsin by fusing the last eight amino acids of 

rhodopsin to membrane- anchored GFP or the cytoplasmic tail of structurally similar but 

non-ciliary localized AAR and demonstrating trafficking of this heterologous protein to 

the rod outer segment (ROS) (Tam et al., 2000).  Interestingly truncations/mutations to 

the QVSPA caused an accumulation of these proteins within the rod inner segment (RIS) 
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and reduced, but did not prevent targeting to the ROS, suggesting additional residues may 

be involved in Rhodopsin trafficking to the ROS. 

 Defects in the ciliary-localized transmembrane receptors polycystin-1, polycystin-

2 and fibrocystin result in polycystic kidney disease (Pazour et al., 2002b; Ward et al., 

2003; Yoder et al., 2002).  Characterized by the over proliferation and poor 

differentiation of the ciliated kidney epithelia, this progressive degenerative disorder 

afflicts between 1:1000 (ADPKD) and 1:20,000 (ARPKD) persons worldwide (Chapin 

and Caplan, 2010; Harris and Torres, 2009). Geng et. al identified a (RVxP) sequence 

present in polycystin-2 that shared similarity with the CTS of rhodopsin (Geng et al., 

2006).  In an elegant series of experiments, Geng et. al demonstrated that the first 72 

amino acids of polycystin-2 are both necessary and sufficient to direct the non-ciliary 

PKD2L1, albeit weakly, to primary cilia.  Using a second heterologous fusion with the 

transferrin receptor, Geng et. al further refined the CTS to the first 15 amino acids of 

polycystin-2.  Conserved residues including the RVxP motif were identified and 

subsequently mutated confirming the importance of these residues within the CTS of 

polycystin.  Truncations to the N-terminal amino acids (∆5-72) or mutations (R6G, V7A, 

P9A) resulted in heterologous protein accumulation within the endoplasmic reticulum 

(ER) and endo H insensitivity, suggesting the mutant proteins may be misfolded and 

unable to exit the ER.  Of note, the RVxP motif is not conserved in C. elegans although 

this orthologue of polycystin-1 is known to localize to cilia indicating an alternative 

pathway may be present in C. elegans (Bae et al., 2006).  
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 G protein-coupled receptors serve a vast array of sensory functions and play vital 

roles in both our sense of taste and smell (Takeda et al., 2002).  The seven trans-

membrane span receptors must be properly localized within the cell including several 

isoforms that are concentrated to the ciliary membrane including the third isoform of the 

somatostatin receptor (SSTR3) and the sixth isoform of the serotonin receptor (5HTR6) 

(Brailov et al., 2000; Hamon et al., 1999; Handel et al., 1999; Schulz et al., 2000).  

Taking advantage of closely related but non-ciliary localized Sstr5 and 5Htr7 and using a 

well-designed series of domain swapping experiments, Berbari et. al demonstrated the 

third intracellular loop (i3) of Sstr3 or 5Htr6 was necessary and sufficient to direct the 

previously plasma membrane localized Sstr5 or 5Htr7 receptors to the ciliary membrane 

(Berbari et al., 2008).  Sequence alignment and analysis highlighted a unique (AxS/AxQ) 

motif present in the i3 loop of both Sstr3 and 5Htr6; subsequent mutation of the 

conserved A and Q residues to F drastically reduced ciliary localization of each construct. 

Using the (AxS/AxQ) to screen a library of i3 loops from all human GPCRs, the authors 

identified a number of known ciliary receptors including opsin, and identified four 

additional GPCRs of unknown cellular localization.  In support of the (AxS/AxQ) motif 

as a predictor of ciliary GPCRs, the authors demonstrated one of their identified receptors 

(Mchr1) indeed localizes to cilia in both mouse brain and cultured kidney cells.   

Following the identification of the i3 loop CTS, Jin et. al used the i3 loop of 

SSTR3 in a ciliary trafficking assay in which the authors fused the i3 loop of Sstr3 to the 

transmembrane and extracellular domain of CD8a creating a single span trans-membrane 

chimera (Jin et al., 2010).  The CD8a/Sstr3(i3) traffics efficiently to the cilium and 
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confirms a CTS is located within the Sstr3(i3) domain.  However the previously 

identified A and Q residues were not required for the ciliary localization of this 

CD8a/Sstr3(i3).  Rather, Jin et al. describe two conserved cysteines adjacent to the Q are 

required for ciliary localization of the CD8a/Sstr3(i3) chimera.  The observed differences 

suggest that the context in which the i3 CTS is presented is important in ciliary 

trafficking, as Jin et. al suggests the original A/Q mutations may result in a misfolded 

protein subject to ER retention.   Unfortunately Berbari et. al do not discuss the effect of 

the A/Q mutations on the subcellular localization and possible ER retention of either 

Sstr3 or 5Htr6 as this information would be useful in assessing the possible function of 

this sequence. 

Proper presentation and requisite sorting of CTSs may involve important post-

translational modifications, since many ciliary-localized receptors are known to be lipid 

modified including rhodopsin(Emmer et al., 2010; Nachury et al., 2010; Pazour and 

Bloodgood, 2008).  In some cases, lipid modifications are inseparable from CTS activity 

as is the case with the CTS of fibrocystin and the peripheral membrane protein cystin 

(Follit et al., 2010; Tao et al., 2009).  Initially identified as the causative mutation in 

Cys1cpk mouse model of autosomal recessive polycystic kidney disease.  Tao et. al 

demonstrate that cystin localizes to cilia in both embryonic mouse kidneys and cultured 

kidney cells and often note an interesting accumulation of cystin at the ciliary tip (Tao et 

al., 2009).  To better understand the ciliary targeting of cystin, the authors performed 

deletion analysis to identify a CTS in the first 50 amino acids of cystin, which is N-

terminally myristoylated and associated with the lipid microdomain marker flotillin-1.  

8



 

 

Mutations that block myristoylation prevent lipid microdomain association and 

subsequent ciliary localization of cystin; however a similarly myristoylated protein HIV 

Gag does not localize to the cilium, demonstrating that myristoylation is necessary but 

not sufficient for ciliary localization of cystin.  Using the N-terminal myristoylated first 

30 amino acids of HIV Gag followed by amino acids 22-50 of cystin, the authors further 

refine the CTS.  Sequence analysis identified a conserved AxEEG motif that when 

mutated blocks ciliary localization of cystin or chimeric cystin/gag.  When combined 

with myristoylation, the AxEEG motif constitutes a functional CTS and suggests an 

intriguing link with lipid modifications as a primary sorting step in ciliary trafficking. 

 Mutated in 85% of autosomal dominant polycystic kidney disease, the PKD1 gene 

encodes, polycystin-1, a 12-span transmembrane receptor that localizes to the ciliary 

membrane (Yoder et al., 2002).  To identify the CTS of polycystin-1, Ward et. al 

constructed a heterologous fusion of the last 112 intracellular residues of polycystin-1 

fused to the trans-membrane domain of CD7 and extracellular domain of CD16 that 

localizes to the primary cilium (Ward et al., 2011).  The authors identified a conserved 

KVxP motif that is similar to the rhodopsin and polycystin-2 CTS, residing within the 

final 20 residues of polycystin-1, and demonstrated that deletion of the final 20 amino 

acids or mutagenesis of the KVxP motif prevented ciliary targeting of CD16/7/Pkd1.  

However it is important to point out any mutation to the putative polycystin-1 CTS 

resulted in an accumulation of protein with the ER, again complicating the interpretation 

of results.  To support a role for the KVxP motif in ciliary trafficking, Ward et al fused 

the KVHPSST motif to a similar CD16/CD7 construct containing the full C-terminal tail 

9



 

 

of CD7 and show this chimera traffics to 100% of cilia.  Once again, it is important to 

point out that the authors show their CD16/CD7 construct without the putative CTS 

traffics to 50% of cilia, an unusual localization since entry into the cilium is generally 

regarded as a tightly regulated process.  Furthermore, the authors failed to perform a 

critical mutagenesis experiment in the same CD16/CD7 construct that would distinguish 

between a bona fide CTS and a mutation that results in an unfolded and subsequently ER-

retained protein. 

 In Chapter III we identify a CTS in the cytoplasmic tail of fibrocystin, the gene 

product mutated in autosomal recessive polycystic kidney disease, and examine salient 

features including lipid modification and interaction with the small G protein Rab8 (Follit 

et al., 2010).  

 

Proteins implicated in ciliary trafficking 

 The identification of ciliary targeting sequences is a significant first step in 

understanding how trans-membrane proteins are directed to the cilium.  Once a CTS is 

identified, the focus turns to better understanding the mechanisms that drive the CTS 

sequence to the ciliary membrane.  One approach is to identify proteins and/or complexes 

that specifically interact with a CTS and that are themselves required for cargo delivery 

to the cilium.  Here we examine recent findings linking candidate proteins to known 

CTSs and provide biochemical and functional data in support. 

 Rhodopsin trafficking to the photoreceptor cilium is one of the best-studied 

examples of protein trafficking to a ciliary membrane.  The C-terminal tail of rhodopsin 
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harbors a VxPx CTS; mutations within this region cause rhodopsin mislocalization and 

lead to severe retinal degeneration (Deretic, 2006).  To better understand the mechanism 

of rhodopsin trafficking, Deretic and colleagues used two rhodopsin peptides, one 

corresponding to the C-terminal tail and another that lacked the VxPx CTS, to search for 

rhodopsin interacting proteins.  Using a combination of photo-activatable crosslinkers 

and GST pulldown assays, the authors identified the small G protein Arf4 to be a protein 

that specifically interacted with the full-length rhodopsin peptide but not the peptide 

lacking the VxPx motif.  Antibodies to Arf4 or rhodopsin inhibited rhodopsin transport 

carrier (RTC) formation in an in vitro assay and suggested a functional role for Arf4 in 

RTC formation (Deretic et al., 2005).   

Based on this work, Mazelova et. al. confirmed the VxPx motif is required for 

RTC formation in the same cell free assay; using a combination of co-localization and co-

fractionation experiments, additional components of this trafficking pathway were 

identified including the small G protein Rab11, an effector FIP3 and the GTPase 

activating protein ASAP1 (Mazelova et al., 2009).  In a series of loosely controlled 

immunoprecipitations, Mazelova and colleagues showed some evidence for a 

Arf4/Rab11/FIP3/ASAP1 complex and demonstrated that perturbation of any of these 

proteins inhibits RTC budding.  To support a functional role for this complex in 

rhodopsin trafficking, transgenic frogs harboring a mutation in Arf4 that inhibited 

ASAP1 mediated GTP hydrolysis exhibited rhodopsin trafficking defects (Mazelova et 

al., 2009).  Taken together these results suggest a possible role for an 
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Arf4/Rab11/FIP3/ASAP1 complex, however the authors fail to provide a direct link to 

the functional effect these proteins may have on rhodopsin trafficking. 

Based on the Arf4/rhodopsin model of ciliary trafficking Ward et. al asked if a 

similar trafficking module is required for polycystin-1 delivery to cilia (Ward et al., 

2011).  A series of in vitro GST binding and immunoprecipitation studies demonstrated 

interactions between Arf4 and the CTS of polycystin-1.  Removal of the predicted Arf4 

binding site KVHPSST resulted in a 50% reduction in its ability to bind to polycystin-1.  

Additional deletion analysis of the CTS revealed a similar reduction in polycystin-1/Arf4 

where each successive deletion results in 50% less polycystin-1 binding to Arf4.  The 

authors concluded the KVHPSST sequence is required for Arf4 binding and constitutes a 

functional CTS. However, the data indicated additional truncations to the C-terminal tail 

of polycystin-1 have similar graded effect on ciliary trafficking.  This suggests there are 

other functional motifs present in the C-terminal tail of polycystin in addition to the 

indicated KVHPSST.  The authors then used a series of poorly controlled and 

unconvincing IPs to suggest a Rab6/Rab11/ASAP1 complex exists in mammalian cells, 

however functional data to support these claims is absent. RNAi mediated knockdown of 

two putative polycystin-1 CTS interacting proteins, Arf4 and Rab8, resulted in an 

approximately 50% reduction in polycystin-1 CTS positive cells and provides some 

functional support for the authors’ conclusions.  Additional experiments are required to 

investigate and validate the potential roles of Arf4, Rab8 and especially 

Rab6/Rab11/ASAP1 and possible consequences related to ciliary protein trafficking. 
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Intraflagellar transport (IFT) is required for the transport of soluble axonemal 

precursors from their site of synthesis in the cell body to the point of assembly at the 

growing tip of the cilium (Ishikawa and Marshall, 2011; Rosenbaum and Witman, 2002).  

Bhowmick et. al asked if IFT-based mechanisms may also move trans-membrane cargo 

within the cilium (Bhowmick et al., 2009).  Based on a yeast two-hybrid screen with IFT 

Complex B subunit IFT88 as bait, and confirmed through reciprocal immunorecipitation 

studies, the authors identified IFT Complex B members and the co-chaperone protein 

MRJ and its binding partner HSC70 as IFT88 interacting proteins.  The ciliary-localized 

MRJ was also able to pull down the trans-membrane guanylyl cyclase 1 (GC1) from 

bovine retinal extracts.  To investigate whether these MRJ/GC1 complexes also contained 

IFT Complex B proteins, the authors performed a series of co-immunoprecipitations that 

showed a weak interaction with MRJ/GC1 and a number of IFT proteins.  The addition of 

ATP significantly increased interactions with MRJ/Hsc70/IFT complexes with trans-

membrane receptors GC1 and rhodopsin, providing the most convincing evidence for an 

IFT/trans-membrane cargo interaction.  Further research is needed to explore the role of 

ATP on MRJ/Hsc70 interactions with IFT and possible effects on trans-membrane cargo. 

Previously we discussed the unique distribution of another IFT protein, IFT20, 

which is found in the Golgi complex in addition to the canonical basal body and ciliary 

localization (Follit et al., 2006).  Data presented in Chapter II and in previous work 

suggest that IFT20 may play a role in ciliary protein targeting,  as reduction in IFT20 or 

IFT20’s binding partner GMAP210 results in decreased ciliary levels of polycystin-2 

(Follit et al., 2008).  To further investigate the role of IFT20 in ciliary trafficking, Keady 
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et. al examined the effect of deleting IFT20 in mouse photoreceptors (Keady et al., 2011).  

Using a tamoxifen inducible Cre to delete IFT20 in the retina, rhodopsin rapidly becomes 

mislocalized within the photoreceptors.  Immunogold labeling indicates rhodopsin 

accumulates in the Golgi complex suggesting that IFT20 may be involved in rhodopsin 

trafficking and sorting at the Golgi.  A series of GST-pulldowns and 

immunoprecipitations demonstrated that IFT20 interacts with the C-terminal tail of both 

opsin and rhodopsin in addition to the IFT Complex B members IFT57, IFT52 and 

IFT54.  In contrast to reported rhodopsin binding to Arf4, the VxPx motif appears 

dispensable for interactions with IFT Complex B proteins.  Finally the authors asked if 

IFT20, the only Golgi localized IFT protein, interacted with opsin independent of IFT 

Complex B.  Use of the GMAP210 binding domain for IFT20 binding (discussed in 

Chapter II) the authors pulldown IFT20 and opsin but not other IFT proteins.  This 

confirms an opsin interaction with IFT20 that is independent of IFT Complex B, 

presumably at the Golgi Complex. 

Cilia are required for myriad sensory functions. Consequently, defects in ciliary 

function often result in pleiotropic symptoms as is the case in Bardet-Biedel Syndrome 

(BBS).  Characterized by retinal degeneration, polydactylyly, obesity and kidney cysts, 

Bardet-Biedel Syndrome is associated with ciliary dysfunction caused by defects in any 

of 14 known BBS genes (Fliegauf et al., 2007).  A number of the BBS proteins form a 

stable complex called the BBSome that has been implicated in vesicular trafficking to 

cilia (Nachury et al., 2007). In an elegant series of experiments, Jin et al. demonstrate that 

the small G protein BBS3(Arl6) recruits the BBSome to the cilium in cultured cells and 
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drives its association with membranes in vitro in a GTP dependent manner (Jin et al., 

2010).  Using structure based algorithms and drawing corollaries to the Arf1/coatamer 

complex, the authors suggest the BBSome functions as a coat recruited by BBS3 that is 

required for the entry of trans-membrane receptors to the cilium.  In support of this, the 

authors demonstrate that the BBSome directly interacts with CTS of Sstr3 and that this 

interaction is required for entry of the Sstr3 CTS to primary cilia in hippocampal neurons 

and cultured cells.  Although the BBS3/BBSome fails to form vesicles from membrane in 

vitro and does not meet the classical requirements of a bona fide coat, this is the best 

evidence to date of the direct CTS recognition by large protein complex and subsequent 

trafficking into the cilium. 

 Further support of BBS functions in ciliary protein trafficking includes the 

identification of another BBS interacting protein Lztfl1 (Seo et al., 2011).  Seo et. al 

created a functional BBS4 LAP tagged transgenic mouse and purified the BBSome from 

mouse testis and identified Leucine zipper transcription factor-like 1 (Lztfl1).  Unlike 

BBS proteins Lztfl1 is not localized to the basal body or cilium and is, instead, 

concentrated in the cytoplasm where it appears to sequester the BBSome.  A combination 

of over-expression and knockdown studies indicates a high level of Lztfl1 reduces ciliary 

levels of several BBS proteins and knockdown of Lztfl1 increases ciliary levels of BBS 

proteins.  Finally the authors report Lztfl1 knockdown increased ciliary levels of the 

trans-membrane receptor smoothened and demonstrate BBSome binding to the c-terminal 

tail of smoothened.  The authors speculate that altered BBSome function caused by Lztfl1 

knockdown results in abnormal ciliary accumulation of smoothened.  Further 
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experiments are needed to determine if smoothened accumulation is a result of increased 

delivery or a failure to remove smoothened from the cilium by BBS proteins. 

  

 This introduction highlights the vital role of the primary cilium in numerous 

sensory functions – sensory functions that depend on the specific receptors targeted to the 

ciliary membrane.  The recent advances in the field of ciliary protein trafficking highlight 

this exciting and rapidly evolving field of cell biology.  The subsequent chapters 

represent significant contributions to the understanding of ciliary protein trafficking. 
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CHAPTER II 

The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex 
 

 

Preface 

 

Originally published in Plos Genetics*, Chapter II describes the role of a golgin protein 

GMAP-210 in anchoring IFT20 to the golgi complex and the requirement of GMAP-210 

in mouse development.  Cardiac defects evident in GMAP-210 (Trip11) knockout 

embryos were investigated in collaboration with Cecilia Lo and Rajeev Samtani who 

added significant technical and analytical contributions to this work including the data in 

Figure 2.5.  GMAP-210 lung defects were characterized by Jovenal T. San Agustin who 

contributed data to Figure 2.6.  Fenghui Xu provided assistance in cloning some of the 

GMAP-210 constructs and Julie Jonassen conducted rtPCR and statistical analysis of the 

GMAP-210 expression levels.  Finally, this chapter was co-authored primarily with Greg 

Pazour. 

 

*The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex.  Follit JA, San 
Agustin JT, Xu F, Jonassen JA, Samtani R, Lo CW, Pazour GJ.  PLoS Genet. 2008 
Dec;4(12):e1000315. Epub 2008 Dec 26.  PMID: 19112494   
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Abstract 

 

Eukaryotic cells often use proteins localized to the ciliary membrane to monitor the 

extracellular environment.  The mechanism by which proteins are sorted specifically to 

this subdomain of the plasma membrane is almost completely unknown.  Previously we 

showed that the IFT20 subunit of the intraflagellar transport particle is localized to the 

Golgi complex in addition to the cilium and centrosome and hypothesized that the Golgi 

pool of IFT20 plays a role in sorting proteins to the ciliary membrane.  We show here that 

IFT20 is anchored to the Golgi complex by the golgin protein GMAP210/Trip11.  Mice 

lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth 

restriction, ventricular septal defects of the heart, omphalocele, and lung hypoplasia.  

Cells lacking GMAP210 have normal Golgi structure but IFT20 is no longer localized to 

this organelle.  GMAP210 is not absolutely required for ciliary assembly, but cilia on 

GMAP210 mutant cells are shorter than normal and have reduced amounts of the 

membrane protein polycystin-2 localized to them.  This work suggests that GMAP210 

and IFT20 function together at the Golgi in the sorting or transport of proteins destined 

for the ciliary membrane. 
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Author Summary 

 

The primary cilium is a sensory organelle used by cells to monitor the extracellular 

environment.  In mouse, severe defects in primary cilia lead to embryonic lethality while 

less severe defects cause a pleiotrophic phenotype that includes cystic kidney disease, 

retinal degeneration, obesity, and hydrocephaly among others.  The sensory functions of 

cilia rely on proteins localized to the ciliary membrane, which is continuous with the 

plasma membrane of the cell.  Cells have the ability to specifically localize proteins to the 

ciliary membrane to the exclusion of the rest of the plasma membrane.  Little is known 

about how this is accomplished.  In prior work, we showed that the ciliary assembly 

protein IFT20 is localized to the Golgi complex in addition to the cilium and proposed 

that it is involved in sorting or transport of membrane proteins to the cilium.  In this work 

we show that IFT20 is anchored to the Golgi complex by the golgin GMAP210.  Mice 

defective in GMAP210 die at birth with lung and heart defects.  Cells from these animals 

have ciliary defects suggesting that IFT20 and GMAP210 function together at the Golgi 

complex in the trafficking of ciliary membrane proteins. 
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Introduction 

 

Most vertebrate cells have a non-motile primary cilium projecting from their surface 

(Satir and Christensen, 2007; Wheatley, 1995).  Defects in these organelles lead to a wide 

range of developmental disorders and diseases ranging from embryonic lethality in severe 

cases to polycystic kidney disease and retinal degeneration with less extreme alleles.  

These non-motile primary cilia are thought to be sensors of the extracellular environment.  

A number of receptors and channels have been localized to the ciliary membrane 

including the opsin photoreceptors of the vertebrate retina, the odorant receptors of the 

olfactory system, the SSTR3 isoform of the somatostatin receptor (Handel et al., 1999), 

smoothened and patched, transmembrane receptors in the hedgehog signaling pathway 

(Corbit et al., 2005; Rohatgi et al., 2007), the PDGFRα isoform of the platelet derived 

growth factor receptor (Schneider et al., 2005), and the polycystins and fibrocystin, 

products of the human polycystic kidney disease genes (Hou et al., 2002; Pazour et al., 

2002b; Yoder et al., 2002). 

Little is known about how the ciliary membrane is assembled and maintained 

despite the fact that this membrane is vitally important for the sensory functions of cilia.  

While the ciliary membrane is continuous with the plasma membrane of the cell it is a 

separate domain with a unique complement of proteins localized to it (Bloodgood, 1990).  

The mechanism separating the ciliary membrane domain from the rest of the apical 

plasma membrane is likely to involve a membrane-cytoskeletal complex called the ciliary 

necklace (Gilula and Satir, 1972).  The proteins that make up these complexes are as yet 
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unknown, but probably help form the diffusional barrier separating the two zones.  There 

is also a zone of condensed lipid at the base of the cilium that may contribute to the 

barrier (Vieira et al., 2006).  Membranous vesicles containing ciliary membrane proteins 

appear to dock on the plasma membrane just outside of the cilium (Bouck, 1971; 

Papermaster et al., 1985).  Recent studies are beginning to identify the protein machinery 

required for trafficking to the ciliary membrane.  In C. elegans, progress has been made 

in identifying proteins required for transport of membrane proteins into the dendrite, 

which is a prerequisite step for ciliary membrane targeting in this organism, but proteins 

required specifically at the cilium are still unknown (Bae et al., 2006).  In vertebrates, 

Rab8 appears to regulate the transport of membrane proteins to the cilium as expression 

of dominant negative Rab8 causes opsin-containing vesicles to accumulate at the base of 

the cilium (Moritz et al., 2001) and also prevents the formation of cilia in cultured cells 

(Nachury et al., 2007).  Defects in proteins required for polarization of mammalian cells 

such as FAPP2 (Vieira et al., 2006), Crumbs3-CLPI (Fan et al., 2007), annexin-13, and 

syntaxin-3 (Torkko et al., 2008) also perturb ciliogenesis, but whether these are acting 

directly on transport of ciliary proteins or indirectly in the formation of the apical domain 

is not known (Vieira et al., 2006).  Smoothened transport in mammalian cells requires 

beta-arrestin (Kovacs et al., 2008) although this is not required for transport of 

polycystin-2 in C. elegans (Bae et al., 2006). 

Intraflagellar transport (IFT) is responsible for assembling the non-membrane 

portions of the cilium (reviewed in (Rosenbaum and Witman, 2002; Scholey, 2003)) but 

its role in movement of membrane proteins is not clear.  During IFT, large complexes, 
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composed of ~20 proteins are transported along the ciliary microtubules under the 

membrane (Cole et al., 1998; Piperno and Mead, 1997).  The complexes are thought to 

carry proteins from their site of synthesis in the cell body to sites of assembly in the 

cilium.  The IFT particles traffic along the microtubule axoneme just under the flagellar 

membrane and probably interact with the membrane (Kozminski et al., 1993; Pazour et 

al., 1998).  The nature of the connection between the ciliary membrane and the particle is 

not obvious as none of the known IFT particle proteins have any predicted 

transmembrane domains (Cole, 2003).  In C. elegans, membrane channels move in cilia 

at rates that are comparable to those of IFT, suggesting that IFT moves proteins within 

the ciliary membrane (Qin et al., 2005) and in Chlamydomonas, movement of a 

membrane associated kinase into the cilium requires IFT (Pan and Snell, 2003).  Levels 

of the transmembrane protein, polycystin-2, are elevated in cilia when the IFT88 subunit 

is mutated in C. elegans (Qin et al., 2001), mouse (Pazour et al., 2002b), and 

Chlamydomonas (Huang et al., 2007) suggesting that IFT88 may be more important for 

removing polycystin-2 from the cilium than inserting it into the cilium. 

We previously showed that one of the IFT particle proteins, IFT20, is localized to 

the Golgi complex as well as to the cilium and the peri-basal body pool.  We 

hypothesized that IFT20 plays a role in the sorting or transport of membrane proteins 

processed through the Golgi complex and destined for the ciliary membrane.  This idea 

was based on the observation that IFT20 moved between the Golgi and ciliary 

compartments and the demonstration that partial reduction of IFT20 by RNAi reduced the 

level of the membrane protein polycystin-2 in cilia (Follit et al., 2006).  In this work we 
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sought to further our understanding of the function of the Golgi-associated pool of IFT20 

by identifying proteins that interact with IFT20 at the Golgi complex.  To do this, we 

immunoprecipitated an IFT20-containing complex from mouse kidney cells and used 

mass spectrometry (MS) to identify one of the subunits as a golgin known as GMAP210 

or TRIP11.  This peripheral membrane protein was previously shown to be localized to 

the Golgi complex by a number of groups (Barr and Egerer, 2005).  Beyond localization 

to the Golgi complex, there is little agreement in the literature about the function of this 

protein in mammals and it has been proposed to play roles ranging from regulating gene 

expression, controlling Golgi structure, and polarized secretion.  To understand the in 

vivo function of GMAP210, we generated a GMAP210 mutant mouse.  The mutant mice 

are viable until birth, when they die from a pleiotrophic phenotype that includes growth 

retardation and lung and heart defects.  Cells derived from these animals do not have 

structural defects in their Golgi complexes indicating that this protein is not required for 

Golgi organization.  However, IFT20 is displaced from the Golgi complex in mutant cells 

indicating that GMAP210 anchors IFT20 to the Golgi membrane.  In addition, the mutant 

cells have slightly shorter cilia and have significantly less polycystin-2 in these cilia.  

This suggests that GMAP210 functions with IFT20 in the trafficking of proteins to the 

ciliary membrane. 
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Results 

Identification of IFT20 interacting proteins 

IFT20 is the only IFT particle protein known to be associated with the Golgi complex 

(Follit et al., 2006).  The identification of proteins that interact with IFT20 at the Golgi 

membrane is likely to yield new information about the function of IFT20.  To this end, 

we generated stable mouse kidney cell lines expressing FLAG-tagged IFT20 and as 

controls, FLAG-tagged IFT25 and FLAG-tagged GFP (Figure 2.1A).  IFT25 is a small 

IFT complex B subunit that is not Golgi associated (Follit et al., 2009).  FLAG-IFT20 

localizes predominantly to the Golgi complex, whereas FLAG-IFT25 localizes to the 

cilium and basal body region as well as the cell body.  FLAG-GFP is found in the cell 

body and is not enriched at either the cilium or Golgi complex.  To identify candidate 

proteins that potentially interact with FLAG-tagged proteins, FLAG-tagged proteins were 

immunoprecipitated (IPed) from cell lysates using FLAG antibody coupled to agarose, 

fractionated by SDS-PAGE and the gels silver stained (Figure 2.1B).  Proteins found in 

all three lanes are background proteins that non-specifically bound to the resin whereas 

proteins found in the IFT20 and IFT25 extracts are likely to be IFT complex B proteins.  

This appears to be the case since the ~200 kD band found in both the IFT20 and IFT25 

lanes was identified by mass spectrometry (MS) as IFT172.  Two bands were identified 

in the IFT20 extract but not in either of the controls suggesting that these are IFT20 

interacting proteins that are not part of complex B.  We were not able to identify the 

larger band (indicated by an asterisk), but MS identified the smaller band as a golgin 

protein known in mammals as Thyroid Hormone Receptor Interacting Protein 11 
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(TRIP11) (Chen et al., 1999), Golgi Microtubule Associated Protein 210 (GMAP210) 

(Rios et al., 2004), and Clonal Evolution Related Protein (CEV14) (Abe et al., 1997).  

The yeast orthologue is known as RUD3p (Gillingham et al., 2004). 

To verify the interaction between IFT20 and GMAP210, we used a monoclonal 

antibody against GMAP210 (Clone 15, BD Transduction Laboratories) to perform 

inverse IPs.  This antibody recognizes a single protein in extracts made from human cells 

(Figure 2.1C, starting material) but does not recognize the mouse orthologue.  Extracts of 

human retinal pigmented epithelial (RPE) cells were IPed using the GMAP210 

monoclonal Ab and a GFP monoclonal Ab (JL-8, Clontech) as a negative control.  The 

GMAP210 Ab but not the GFP Ab precipitated IFT20 (Figure 2.1C).  The IP extracts 

also were probed with our collection of antibodies directed against mouse IFT proteins 

that also recognize the human orthologues.  Even though all of these proteins were 

present in the extract, only IFT20 was precipitated by the GMAP210 antibody (Figure 

2.1C).  This corroborates the identification of GMAP210 as an IFT20-binding protein and 

indicates that IFT20 and GMAP210 interact independently of IFT complex B.  

Furthermore, IFT20 and GMAP210 extensively co-localize at the Golgi complex as 

would be expected for interacting proteins (Figure 2.1D). 

Identification of the IFT20 binding site on GMAP210 

To map the IFT20 binding site on GMAP210, we tested whether IPing FLAG-tagged 

fragments of GMAP210 also brought down IFT20 and whether these FLAG-GMAP210 

fragments could displace IFT20 from the Golgi apparatus by competing with native 

GMAP210 for binding to IFT20.  The identity of the Golgi-targeting sequence within 
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Figure 2.1: Identification of GMAP210 as an IFT20 binding protein. 
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Figure 2.1: Identification of GMAP210 as an IFT20 binding protein. 
A.  Stable mouse kidney cells lines expressing FLAG-tagged GFP, IFT20, and IFT25 
were generated, fixed and stained with DAPI (blue) and antibodies to IFT20 (green) and 
FLAG (red).  Scale bar is 10 µm.  B.  FLAG IPs from these lines were analyzed by silver 
stain after SDS-PAGE.  The bait proteins are marked with * on the 10% (lower) gel.  The 
bands marked with arrows were analyzed by MS.  The large band (*) was not identified.  
C.  Inverse IP.  Human RPE cells were IPed with antibodies to GFP and GMAP210 
(monoclonal antibody clone 15) and analyzed by western blotting.  The GMAP210 
antibody precipitated GMAP210 and IFT20 but not any of the other IFT proteins or the 
negative control protein BiP even though all were present in the starting material.  * mark 
proteins introduced in the IP.  D.  GMAP210 and IFT20 extensively colocalize in human 
RPE cells.  GMAP210 (green) was detected by monoclonal Ab clone 15.  IFT20 (red), 
DAPI (blue).  Scale bar is 10 µm. 
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GMAP210 is controversial, with the targeting sequence variably being located to the N- 

or C-terminal ends of the protein (Barr and Egerer, 2005) so we also examined the 

cellular distribution of our FLAG-tagged GMAP210 constructs.  Data are graphically 

displayed in Figure 2.2A, key examples of IF and IP that document the IFT20 binding 

site are shown in Figures 2.2B and 2.2C while IF data supporting the Golgi localization 

are shown in Figure 2.3.  Initially, we expressed GMAP210 as two fragments split at the 

junction between the coiled-coil and Grab domains (JAF157 and JAF172, Figure 2.2A).  

Both fragments localized to the Golgi-complex, although the N-terminal fragment 

(JAF172) also was found in the cytoplasm (Figure 2.3A).  The C-terminal fragment 

(JAF157) did not affect the localization of native IFT20 or bring down IFT20 in an IP.  

The N-terminal fragment (JAF172) precipitated IFT20 and partially displaced IFT20 

from the Golgi complex indicating that it contains an IFT20 binding site (Figure 2.3A).  

We then split the JAF172 fragment into two smaller fragments.  The N-terminal JAF175 

fragment partially localized to the Golgi complex indicating that there are Golgi-targeting 

domains at both the N- and C-terminal ends of the protein (Figure 2.2A, Figure 2.3).  

Thus our results explain the apparent discrepancy in the literature (Barr and Egerer, 

2005), which can be ascribed to a non-systematic analysis of the protein in previous 

studies (Chen et al., 1999; Gillingham et al., 2004; Infante et al., 1999).  We did not 

precisely map the Golgi-binding domain at the N-terminus, but it is likely to involve the 

ALPS domain that has recently been shown to bind curved membranes (Drin et al., 

2008).  The JAF174 fragment displaced IFT20 from the Golgi and was able to IP IFT20 

indicating that it contained the IFT20 binding site (Figure 2.2A, 2.3).  Expression of these 
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Figure 2.2: Identification of the IFT20 binding site on GMAP210. 
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Figure 2.2: Identification of the IFT20 binding site on GMAP210. 
A.  Schematic map of GMAP210 and summary of the data.  Fusion proteins that bind 
IFT20 are drawn red while those that did not are black.  The numbers following the 
plasmid names are the residues of GMAP210 in the construct.  The behavior of the fusion 
proteins is summarized on the right.  B.  Selected images of cells expressing the fusion 
proteins illustrating the main points from Figure 1.2A.  GMAP210 fragments were 
detected with FLAG antibody staining (green), endogenous IFT20 with our antibody 
(red) and nuclei with DAPI (blue).  Note that fragments of GMAP210 containing the 
IFT20 binding site (JAF185, JAF192, JAF203) did not bind to the Golgi on their own but 
did displace IFT20 from the Golgi complex.  Scale bar is 10 µm.  C.  Co-IP of IFT20 by 
selected GMAP210 fragments to illustrate main points from Figure 1.2A.  The top panel 
shows the GMAP210 fusion proteins after IP with FLAG.  The bottom panel show these 
IPs probed with the IFT20 antibody to determine if the fragment of GMAP210 is capable 
of binding IFT20.  The smallest fragment capable of binding IFT20 is encoded by 
JAF203 although the fragment encoded JAF192 is more effective.  The band marked with 
* is a cross reacting protein IPed and detected by the FLAG antibody.  Arrows mark the 
GMAP210-FLAG fusion proteins.  JAF203 (Input) is the starting material to illustrate the 
level of IFT20 in these cells while the remaining lanes are after IP. 
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GMAP210 fragments did not alter Golgi structure (Figure 2.3B).  We progressively split 

the JAF174 fragment into smaller pieces and tested their ability to IP IFT20 and displace 

IFT20 from the Golgi complex.  The smallest fragment of GMAP210 that IPed IFT20 

and displaced IFT20 from the Golgi contained residues 1180 to 1319 (JAF203) (Figure 

2.2).  However, this peptide was not as effective as the slightly larger 1157 to 1319 

fragment (JAF192).  In all cases, the ability to IP IFT20 correlated with the ability to 

displace IFT20 from the Golgi complex (Figure 2.2).  In contrast, the ability of the 

GMAP210 fragment to localize to the Golgi complex was not correlated with the 

presence of the IFT20 binding site.  This suggests that GMAP210 localization to the 

Golgi complex is not dependent on IFT20.  This appears to be the case as cells lacking 

IFT20 still localize GMAP210 to the Golgi complex. 

The amino acid sequence of the IFT20 binding domain in GMAP210 is 95% 

identical between humans and mice while overall the two proteins are 80% identical, 

suggesting that there is selective pressure maintaining the IFT20-binding sequence.  The 

IFT20 binding site is not found in the Caenorhabditis or Drosophila GMAP210 

homologues. 

Generation of a GMAP210 mutant mouse 

To begin to understand the in vivo function of GMAP210, we obtained mouse gene trap 

ES cell line AJ0490 from the Sanger Institute (Skarnes et al., 2004) and used these cells 

to generate a mutant mouse.  Cell line AJ0490 contains a splice acceptor site and a β-

galactosidase-neomycin resistance gene fusion inserted into intron 4 of GMAP210.  

There also is an insertion of 531 bp derived by duplication from chromosome 16 at the 
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Figure 2.3: Golgi binding site in GMAP210. 
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Figure 2.3: Golgi binding site in GMAP210. 
A.  Selected images to illustrate the Golgi binding site in GMAP210.  See Figure 1.2A 
for schematic drawing of the constructs and summary of data.  GMAP210 fragments 
were detected with FLAG antibody staining (green), endogenous IFT20 with our 
antibody (red) and nuclei with DAPI (blue).  Note that both the N- (JAF172) and C- 
(JAF157) terminal ends of GMAP210 bound to the Golgi.  Splitting the N-terminal 
fragment into two halves separated the N-terminal Golgi binding site (in JAF175) from 
the IFT20 binding site (in JAF174).  Scale bar is 10 µm.  B.  Selected images to show 
that expression of FLAG-tagged GMAP210 fragments does not disperse the Golgi 
complex.  Cells expressing the N-terminal coiled-coil domain (JAF172), the C-terminal 
grab domain (JAF157) and the IFT20 binding domain (JAF192) stained with DAPI 
(blue), FLAG (green), and giantin (top row), HPA (second row), GM130 (third row) or 
WGA (fourth row) in red.  Scale bar is 10 µm.  Note that Golgi complex is still organized 
in ribbons when these constructs are expressed. 
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junction between the vector and intron 4 (Figure 2.4A).  In spite of this duplication, the 

rest of the gene appears intact as measured by PCR of exons and selected other regions of 

genomic DNA (Figure 2.4A).  Sequencing of cDNA made from the AJ0490 allele 

indicates that the first four GMAP210 exons are spliced to the 5’ end of the b-

galactosidase message, potentially producing a fusion protein containing the first 197 

residues of GMAP210 fused to the N-terminus of β-galactosidase.  Real time RT-PCR of 

mRNA from e18.5 lungs indicates that the message derived from exons upstream of the 

insertion is found at about the same level as controls but significantly less message is 

made from the exons downstream of the insertion (Figure 2.4C). 

Since the commercially available GMAP210 clone 15 Ab did not detect mouse 

GMAP210, we generated a rabbit polyclonal directed against the C-terminal tail of the 

mouse protein.  In extracts made from wild type and heterozygous mouse cells, this 

antibody recognizes a band of ~200 kD that is likely to be GMAP210 and a cross reacting 

band of ~60 kD.  The observation that the 200 kD band is missing in the homozygous 

mutants, without the presence of any new smaller bands, suggests that the downstream 

exons in the mutant allele are not translated significantly (Figure 2.4D).  In addition, 

immunofluorescence analysis of MEFs from mutant animals did not show any staining 

with this antibody whereas GMAP210 was readily detected at the Golgi complex in the 

control MEFs (Figure 2.4E).  This data suggests that the AJ0490 allele is either null or a 

strong hypomorph.  

The GMAP210 gene trap allele causes a neonate lethal phenotype as all 

homozygous mutant animals were found either dead or close to death on the morning of 
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Figure 2.4: Generation of a GMAP210 mutant mouse.  
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Figure 2.4: Generation of a GMAP210 mutant mouse. 
A.  Schematic drawing of the GMAP210 AJ0290 allele.  This allele contains the gene 
trap vector plus 531 base pairs of DNA duplicated from chromosome 16 inserted into the 
fourth intron.  Exons are numbered above the bar.  The lines under the exons and intron 1 
indicate fragments of genomic DNA that were verified to be present by PCR.  Positions 
of genotyping primers are indicated by the pairs of arrows.  B.  Genotyping primers (see 
materials and methods and diagram in A) spanning the insertion site were designed to 
detect the wild-type allele while primers in the insertion were used to detect the mutant 
allele.  C.  Real Time qPCR was used to measure the relative transcript levels in lung for 
parts of the message upstream of the insertion site (exons 2-3), at the insertion site (exons 
4-5), and downstream of the insertion site (exons 18-19).  GMAP data were expressed 
relative to GAPDH mRNA and normalized to wild-type expression for each primer pair.  
n=9-10 mice/point.  Note the logarithmic scale on the ordinate axis ** p <0.01, unpaired 
t-tests.  D.  Western blotting of MEF cells generated from homozygous mutant, 
heterozygous and homozygous wild-type embryos.  Antibody was generated against the 
C-terminal end of the protein and detects GMAP210 and a smaller non-specific band at 
~60 kD.  Tubulin was used as a loading control.  E.  Embryonic fibroblasts from 
heterozygous (+/-) and homozygous (-/-) mutant embryos stained with GMAP210 (green) 
and acetylated a-tubulin (red) antibodies plus DAPI (blue).  Scale bar is 10 µm.  F.  Photo 
of a new born liter of animals.  The fourth animal from the left was alive at the time of 
the photo, while the right most animal had died prior.  Genotypes are above the animals. 
 

37



 

 

their birth and none survived past postnatal day 0 (p0) (25 +/+, 56 +/-, 14 -/- from 18 

litters.  +/+ and +/- were genotyped at various ages between p0 and p21, all -/- were 

genotyped at p0).  Mutants on p0 never achieve the healthy pink color of normal 

littermates but rather appear cyanotic or pale bluish pink (Figure 2.4F).  Mutants that 

were found alive were inactive but occasionally made a convulsive or a gasping like 

movement.  Less than expected numbers of homozygous mutants were found but this is 

likely due to cannibalism of dead pups, since roughly Mendelian numbers of mutant 

embryos (44 +/+, 50 +/- , 33 -/- from 18 litters) were found at embryonic day 18.5 

(e18.5), one day prior to birth.  Mutant embryos at e18.5 were smaller than normal, 

weighing on average 70 + 9% (n=6 litters) of what +/- and +/+ embryos weigh.  In 

addition, the mutants usually had their mouths open with protruding tongues, suggesting 

craniofacial anomalies, and some exhibited an omphalocele or abdominal wall hernia, 

indicating a body wall closure defect (Figure 2.5A).  The omphalocele has also been 

observed by D. Beier in an independently identified allele (Smits et al., 2010).  We 

observed no evidence of polydactyly, left-right patterning defects or hydrocephaly, which 

are common phenotypes also associated with cilia defects. 

To understand the pathology causing neonatal lethality in the mutant animals, we 

fixed embryos at e18.5, the day prior to birth, and examined them histologically.  The 

abdominal organs did not appear to be greatly affected by the absence of GMAP210 and 

we did not detect any abnormalities in the kidney or pancreas.  However in the thoracic 

cavity, both the heart and lungs were affected.  To characterize the heart defect, 5 mutant 

and control animals were fixed in formalin and the hearts analyzed using episcopic 
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Figure 2.5:  Characterization of the GMAP210 mutant mouse phenotype. 
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Figure 2.5:  Characterization of the GMAP210 mutant mouse phenotype. 
A Gross Morphology of GMAP210 Mutants.  Image of a pair of e18.5 embryos.  Note 
the open mouth and omphalocele (arrow) on the mutant embryo.  B Cardiovascular 
defects in the GMAP210 Mutants.  (Ba-Bb, wild type)  EFIC images of a wild type 
e18.5 embryo showing normal septation of the ventricular chambers (Ba), contrasting 
with the VSD seen in mutant embryo shown in (Bc).  The aorta (Ao) connects with the 
left ventricle (LV) (Bb), which contrasts with the mutant embryo shown in (Bf) with an 
overriding aorta that connects to both ventricles via a VSD.  (Bc-Be, mutant)  EFIC 
images of a mutant embryo at e18.5.  In the transverse imaging plane (Bc), a large 
muscular ventricular septal defect (white arrow) can be seen situated posteriorly.  
Examination in the frontal plane (Bd) showed a second muscular ventricular septal defect 
(white arrow) positioned anteriorly.  Three dimensional reconstruction of the heart (Be) 
shows the posterior ventricular septal defects (white arrow).  (Bf, mutant) Another 
mutant fetus at E18.5 examined by EFIC imaging was found to have a ventricular septal 
defect (white arrow) associated with a overriding aorta (Ao).  Pulmonary stenosis was 
indicated with a reduction in the size of the pulmonary outflow (P) compared to the aorta 
(Ao).  There was also apparent thickening of the ventricular chamber walls.  This 
constellation of defects is consistent with Tetralogy of Fallot.  At: atrium, LV: left 
ventricle, RV: right ventricle, S: septum, Cr: cranial, CD: caudal, L: left, R: right, A: 
anterior, P: posterior.  C Lung.  Hematoxylin and eosin staining of e18.5 embryonic 
lungs.  The larger airways are marked with B and the saccules are marked with S.  Note 
the smaller saccule space and thicker inter saccule mesenchyme in the mutant at e18.5.  
Scale bar is 50 µm for e18.5 and 100 µm for e15.5. 
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fluorescence image capture (EFIC) (Rosenthal et al., 2004).  With EFIC imaging, we 

generated serial 2D image stacks and 3D reconstructions that allowed detailed 

examination of the cardiac anatomy in multiple imaging planes.  All five mutant hearts 

showed ventricular septal defects (VSD).  Normally, at e18.5 ventricular septation is 

complete, allowing for separate pulmonary vs. systemic circulation from the right vs. left 

ventricles (Figure 2.5Ba,b +/+).  However in the mutants, muscular VSDs are found at 

the anterior and posterior walls of the heart, which would cause inappropriate mixing of 

blood (Figure 2.5Bc-f -/-).  In one mutant, a VSD was observed in conjunction with an 

overriding aorta, which is an abnormal positioning of the aorta between the right and left 

ventricle.  This was accompanied by a narrowing of the pulmonary outflow (pulmonary 

stenosis) and thickening of the ventricular chamber walls (Figure 2.5Bf).  Together this 

constellation of defects is consistent with Tetralogy of Fallot (Figure 2.5Bf), which in 

humans, is a relatively common but serious congenital heart condition.  The lungs 

showed the normal four right and one left lobe structure suggesting that the early stages 

of development had occurred normally.  However, at e18.5 the mutant animals had 

notably smaller saccules with thicker inter-saccule mesenchyme (Figure 2.5C).  Mutants 

had about one third as much saccule space as littermate controls (Wild type = 33.6 + 9%, 

Mutant = 12.9 + 5%, n=5 animals for each genotype).  At e18.5 mouse lungs are 

normally in the terminal sac stage of development.  During this stage, which lasts from 

e17.5 to p5, the lung mesenchyme thins to bring the capillaries next to the prospective 

alveoli and the alveolar type I and II cells differentiate (Bridges and Weaver, 2006).  

During their differentiation, the Type I cells flatten to reduce the distance between the 
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capillaries and the air exchange surface of the saccule and the Type II cells produce 

surfactant for secretion into the saccules.  Staining control and mutant lungs with markers 

for the Type I and II epithelial cells indicates that both types of cells are present.  

However in the mutant lungs, the Type II surfactant secreting cells are not as clearly 

interdigitated between the Type I cells and the SP-C staining is more punctate and 

distributed throughout the cell rather than being located at the apical end as it is in the 

control lungs (Figure 2.6B).  Staining with PECAM1, to mark the endothelial cells of the 

capillaries, indicates that capillaries are forming in the mutant lungs like the wild type but 

in the mutant lungs the capillaries are less associated with the saccules (Figure 2.6A).  

EM analysis indicates that the type I cells are less flattened in the mutant lungs as 

compared to the controls (Figure 2.6C).  Quantitative PCR was used to examine the 

expression levels of a number of lung development genes.  Genes examined included 

sonic hedgehog (SHH), which is critical for branching morphogenesis, VEGF-A, which 

is a regulator of vascular development, Hif1a and its binding partner ARNT, which 

regulate transcription of VEGF-A and other genes, SP-C, which encodes a surfactant 

molecule critical for lung function at birth, and the selenium binding protein, SelenBP1, 

which is up regulated just before birth (Bonner et al., 2003).  No differences were seen 

between the mutant and control animals (data not shown). 

Cellular function of GMAP210 

To begin to understand GMAP210s function in cells, we generated embryonic fibroblasts 

(MEFs) and kidney (MEKs) cells from e18.5 animals.  All three genotypes (+/+, +/-, -/-) 

grew at similar rates and outwardly appeared indistinguishable.  Since GMAP210 was 

42



 

Figure 2.6: Lung Cell Types. 
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Figure 2.6: Lung Cell Types. 
A.  PECAM1 (green, arrow) and T1α (red, arrowhead) staining of e18.5 embryos.  * 
mark selected red blood cells.  Scale bar is 20 µm.  B.  Surfactant C (SP-C, green, arrow) 
and T1α (red, arrowhead) staining of e18.5 embryos.  Blue is DAPI plus 
autofluorescence.  * mark selected red blood cells.  Scale bar is 20 µm.  C.  Transmission 
EM of e18.5 lungs.  Type II cells are marked with arrows.  Glycogen is marked with g.  
Scale bar is 10µm.  D.  IFT88 (green) and 611β1 (red) staining of multi-ciliated cells in 
e18.5 lungs.  Blue is DAPI plus autofluorescence.  Scale bar is 20 µM. 
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identified as an IFT20 binding partner, we sought to understand how the lack of 

GMAP210 affected IFT20 and cilia formation.  Wild-type MEKs and MEFs (not shown) 

localize IFT20 to the Golgi apparatus (Figure 2.7A, Wild Type) as we described earlier 

for other cell types (Follit et al., 2006).  However, IFT20 is completely dispersed from 

the Golgi complex in cells lacking GMAP210 (Figure 2.7A Mutant).  This is not simply 

an indirect result caused by dispersal of the Golgi as the cis-medial and trans 

compartments of the Golgi complex appear normal in the GMAP210 mutant cells by 

Helix pomatia agglutinin (HPA), golgin97, wheat germ agglutinin (WGA), giantin, and 

GM130 staining (Figure 2.7B).  The dispersal of IFT20 from the Golgi complex is caused 

by the lack of GMAP210 because re-expression of FLAG-tagged GMAP210 restores 

IFT20 to the Golgi complex (Figure 2.7A Rescue).  IFT20 protein levels are slightly 

reduced in the mutant cells suggesting that some IFT20 is degraded when GMAP210 is 

absent with the rest being distributed throughout the cell.  In addition to being localized 

to the Golgi complex, IFT20 is also found at the centrosome (Follit et al., 2006).  We 

were unable to detect GMAP210 at the centrosome in either the mutant or wild-type cells 

(Figure 2.7C top row) and consistent with this observation, the centrosomal pool of 

IFT20 is not affected in the GMAP210 mutant cells (Figure 2.7C bottom row).  This 

suggests that IFT20 is not required to be trafficked through the Golgi complex in order to 

be assembled into an IFT particle. 

We previously showed that IFT20 is required for ciliary assembly (Follit et al., 

2006).  GMAP210 in contrast, is not absolutely required for cilia assembly (Figure 2.4E, 

2.7A, Figure 2.6D).  Quantification showed that GMAP210 mutant cells are ciliated 
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Figure 2.7:  Characterization of the GMAP210 cellular phenotype. 
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Figure 2.7:  Characterization of the GMAP210 cellular phenotype. 
A.  MEK cells labeled with IFT20 (green), the cis-medial Golgi marker HPA (red) and 
FLAG (blue).  Scale bar is 10 µm.  B.  MEK cells labeled with Golgi markers HPA, 
Golgin97, WGA, Giantin, and GM130 (red).  The Golgi compartment stained by each 
marker is listed on the left side of the row.  Cells also are labeled with DAPI (blue) and 
GMAP210 (green) if the markers are compatible.  Scale bar is 5 µm.  C.  MEK cells were 
fixed with methanol and labeled with DAPI (blue), the centrosome marker gamma 
tubulin (red), and either GMAP210 (green, top panel) or IFT20 (green, bottom panel).  
Insets show the green and red channels of the centrosome region.  Note that the methanol 
fixation extracts most of the Golgi pools of IFT20 and GMAP210 (see [32]).  Scale bar is 
5 µm. 
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nearly as well as control cells, and the level of ciliation did not increase upon re-

expression of FLAG-tagged GMAP210 (Figure 2.8B, left panel).  However we did note 

that the cilia on the GMAP210 mutant cells were often shorter than those on control cells.  

Measurement of cilia length on MEK cells indicated that the cilia are only about 2/3 as 

long as cilia on control cells.  The length difference can be restored by expression of 

FLAG-tagged GMAP210 indicating that this result is specifically caused by the lack of 

GMAP210 (Figure 2.8B, right panel).  This suggests that GMAP210 is involved in ciliary 

assembly. 

One of the proposed roles of GMAP210 is in ER to Golgi transport (Pernet-

Gallay et al., 2002) and there is clear evidence in yeast for the involvement of the 

homologue Rud3p and Rud3p-interacting proteins in membrane protein transport (Kim et 

al., 1999; Powers and Barlowe, 2002).  Partial knockdown of IFT20 by RNAi reduced the 

amount of the membrane protein polycystin-2 on cilia suggesting that the Golgi pool of 

IFT20 was important for transport or retention of polycystin-2 in cilia  

(Follit et al., 2006).  To test the involvement of GMAP210 in ciliary transport, we 

measured the ciliary levels of polycystin-2 in wild-type and mutant MEKs (Figure 2.8C, 

D).  The level of polycystin-2 in the mutant cilia was reduced to about one quarter the 

amount seen in the control line.  The results are also displayed as polycystin-2 per unit of 

ciliary length to show that this is not an indirect effect of having shorter cilia on the 

mutant cells (Figure 2.8D right panel).  To test if the decrease in ciliary polycystin-2 was 

specifically due to the lack of GMAP210, we transfected in FLAG-tagged GMAP210 and 

measured the levels of ciliary polycystin-2 in the rescued cells.  Rescue with FLAG-
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Figure 2.8:  GMAP210 mutant cilia. 
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Figure 2.8:  GMAP210 mutant cilia. 
A.  MEK cells labeled with GMAP210 (red), the acetylated tubulin marker 611b1 to 
mark cilia (green) and DAPI (blue).  Scale bar is 5 µm.  Insets show the acetylated 
tubulin channel.  B.  Extent of ciliation (left panel) and cilia length (right panel) of the 
MEK cells after 48 hrs of serum starvation.  n=50 cilia for each genotype.  C.  MEK cells 
labeled with polycystin-2 (PKD2, green), the acetylated tubulin marker 611b1 to mark 
cilia (red) and FLAG (blue).  Scale bar is 5 µm.  Insets show the polycystin-2 channel.  
D.  Quantification of ciliary polycystin-2 levels in control, mutant and rescued MEK 
cells.  Polycystin-2 data are plotted per cilium on the left and corrected for length 
differences on the right.  Error bars represent standard error of the mean (n=46-50 cilia 
measured for each line).  ** p< 0.01. 
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tagged GMAP210 was able to restore ciliary polycystin-2 levels to wild type levels 

(Figure 2.8C, D).  These results indicate that GMAP210 is important for efficient 

targeting of polycystin-2 to the cilium. 

Discussion 

IFT20 is unique among the known IFT particle proteins in that it is the only one shown to 

localize to the Golgi complex in addition to the basal body and cilium, where the other 

IFT particle proteins are found.  As such, it is in a unique position to coordinate the 

sorting or transport of ciliary membrane proteins.  In prior work, we showed that an 

RNAi-mediated reduction of IFT20 that depleted the Golgi pool but did not greatly affect 

the basal body pool was sufficient to block ciliary assembly suggesting that the Golgi 

pool of IFT20 played an important role in ciliary assembly.  We also showed that cells 

with a moderate reduction of IFT20 could still assemble cilia, but these cilia had less 

polycystin-2 in them supporting a role for IFT20 in the sorting or transport of ciliary 

membrane proteins (Follit et al., 2006).  In the present work, we sought to further our 

understanding of the function of the Golgi-associated pool of IFT20 by identifying 

proteins that interact with IFT20 at the Golgi complex.  This analysis identified a protein 

called GMAP210 that binds to IFT20.  Cells lacking GMAP210 fail to localize IFT20 to 

the Golgi complex, indicating that this protein is the linker that holds IFT20 to the Golgi.  

These cells can still form cilia, but they are shorter than normal and have reduced 

amounts of polycystin-2.  Mice lacking GMAP210 die at birth likely from heart and lung 

defects. 
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As discussed below, previously published in vitro studies have implicated 

GMAP210 in a wide variety of processes ranging from Golgi structure to regulating gene 

expression, so the ability of GMAP210 mutant embryos to progress through embryonic 

development was unexpected.  When examined just prior to birth, the major organs, with 

the exception of the lungs and heart, appear fairly normal and do not show signs of cystic 

disease.  Our finding that ciliary levels of polycystin-2 are reduced in cells derived from 

the GMAP210 mutant animals would suggest that these animals should develop kidney 

cysts.  However, in other work, we found that mice lacking cilia due to a mutation in 

IFT20 do not show signs of cystic disease until five to ten days after birth.  When the 

IFT20 mutant kidneys are examined at e18.5, cilia are absent but there is no sign of cysts 

or even dilation of the kidney tubules (Jonassen et al., 2008).  Thus, it is likely that if the 

GMAP210 mutant animals were to live for a few weeks longer they would develop cystic 

kidney disease, but instead, animals die at birth before cysts have time to develop within 

the kidneys. 

GMAP210 mutants exhibit serious congenital heart defects (VSD and Tetralogy 

of Fallot) that are a likely cause of the neonatal lethality observed in these animals.  

These disorders are common in humans, where it is estimated that as many as 1% of live 

births have congenital heart defects with VSDs being the most common form (Hoffman 

and Kaplan, 2002).  Tetralogy of Fallot accounts for 10% of human congenital heart 

disease and is the leading cause of cyanotic congenital heart disease in newborns 

(Shinebourne et al., 2006).  VSDs and malalignment of the great arteries also are 

observed in mice with mutations in Vangl2, Dvl2, and Scrib.  These genes are members 

52



 

 

of the planar cell polarity pathway (PCP), which regulates cell polarity and polarized cell 

movement via non canonical Wnt signaling (Hamblet et al., 2002; Phillips et al., 2005; 

Phillips et al., 2007); for review see (Henderson et al., 2006).  It is thought that formation 

of the ventricular septum is mediated by compaction of the trabeculae, with growth of the 

muscular septum generated by addition of sheets of trabeculae (Ben-Shachar et al., 1985).  

Cre mediated cell lineage tracing indicates the ventricular septum is derived from cells 

originating from the ventral aspect of the primitive ventricle, with closure of the 

ventricular foramen mediated by dorsal migration of this precursor cell population 

(Stadtfeld et al., 2007).  These cell migration events could be regulated by PCP signaling 

and thus VSDs might arise in animals with defects in PCP components.  Similarly, the 

outflow tract alignment defects in the Vangl2 mutant hearts may involve inhibition of 

polarized cell migration associated with myocardialization of the outflow tract.  In the 

Scrib mutants, PCP defects are suggested to cause abnormalities of cardiomyocyte 

organization, which may result in abnormal trabeculation and ventricular noncompaction 

(Phillips et al., 2007).  Cilia mutants often show defects in PCP (Jonassen et al., 2008; 

Jones et al., 2008; Ross et al., 2005).  For example, the deletion of IFT20 in the kidney 

collecting duct disrupts PCP by randomizing the orientation of the cell division plane 

(Jonassen et al., 2008).  These observations suggest cardiac defects in the GMAP210 

mutants could arise from dysregulated PCP signaling due to defects in the cilia.  Cilia are 

present in the developing mouse heart from e9.5 onward and defects in ciliary assembly 

cause severe heart development defects including malformation of the trabeculae that 

normally contribute to the formation of the ventricular septum (Slough et al., 2008).  In 
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the GMAP210 mouse, the cilia are not absent but are likely missing key sensory 

receptors, analogous to the reduction of polycystin-2 in the kidney cilia (Figure 2.8). 

The lung phenotype of the GMAP210 mutant mouse is similar to several mouse 

models of infantile respiratory distress syndrome caused by defects in signaling between 

cells of the developing lungs such as the Wnt5a (Li et al., 2002) and the nitric oxide 

synthase (eNOS) mutant (Han et al., 2004).  The Wnt5a mutant mouse is neonatal lethal 

and shares a number of features with the GMAP210 mutant mouse, including the 

thickened mesenchyme, reduced saccule space and a failure to organize its capillaries 

under the saccule epithelium.  Wnt5a is a secreted ligand thought to be produced by both 

the mesenchyme and epithelial cells of the lung to regulate lung development (Li et al., 

2002).  It is of significance to note that Wnt5a mediates non canonical Wnt signaling in 

the PCP pathway.  Thus the observed disorganization of the alveoli may reflect a 

disturbance of PCP signaling related to ciliary dysfunction.  Similarly, the eNOS mouse 

is neonatal lethal and has reduced saccule space with thickened mesenchyme.  In this 

case, it is thought that signaling between the endothelial and epithelial cells via eNOS 

influences development of the lung (Han et al., 2004).  Recent studies suggest NO 

production in endothelial cells is regulated by shear stress transduced through the cilia, 

with polycystin-1 cleavage associated with loss of responsiveness to high shear stress 

(Nauli et al., 2008).  Thus it is also possible that abnormal regulation of NO production 

due to ciliary abnormalities in the GMAP210 mutant may play a role in the lung defects.  

Based on the reduced amount of polycystin-2 in the kidney cilia, we speculate that the 
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cilia present in the developing lung may be deficient in membrane-localized receptors 

and hence unable to respond to cues from the environment. 

GMAP210 is a member of the golgin family of proteins.  Golgins are thought to 

function in the formation of the Golgi matrix, which organizes the Golgi membranes and 

regulates membrane trafficking.  Members of this family typically have large coiled-coil 

regions and GRIP and GRAB domains that bind to small GTPases in the ARF and ARL 

subfamilies (Short et al., 2005).  In addition, GMAP210 contains an ALPS domain, 

which is an amphipathic helix that binds preferentially to curved membranes.  In 

GMAP210 the ALPS domain is at the N-terminus and is separated from the GRIP and 

GRAB domains at the C-terminus by a long stretch of coiled-coil suggesting that it may 

be able to hold small vesicles on the end of a long tether (Drin et al., 2008).  Clear 

homologues of GMAP210 are found throughout the vertebrates and in organisms as 

distantly related as Drosophila and Caenorhabditis.  The yeast orthologue is reported to 

be Rud3p as this protein shares the same domain structure being largely coiled-coil with 

Grab and Grab-associated domains (Gillingham et al., 2004).  However sequence identity 

between the yeast and mouse proteins is low (20-24%, BLAST E= 1e-9).  BLAST 

analysis does not identify a Chlamydomonas homologue, but XP_001702340 is a coiled-

coil protein containing Grab and Grab-associated domains and thus may be the 

Chlamydomonas orthologue.  The IFT20 binding domain localizes within a 163 amino 

acid region of the GMAP210 coiled-coil domain.  This sequence is well conserved 

throughout the vertebrate kingdom but is not present in the yeast, Drosophila or 

Caenorhabditis proteins nor is it found in the putative Chlamydomonas GMAP210 
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homologue.  At this point, it is not known if IFT20 associates with the Golgi complex in 

Drosophila, Caenorhabditis or Chlamydomonas but if it does, it is likely to use a 

different mechanism.  It is possible that the sorting mechanism of ciliary membrane 

proteins is fundamentally different in vertebrate cells as compared to Caenorhabditis or 

Drosophila since the cilia assembled by IFT in these invertebrates are found on dendrites 

and so ciliary trafficking requires sorting to dendrites before sorting to cilia.  In 

vertebrates, this arrangement is found in olfactory sensory neurons but the majority of 

cells assemble their cilia directly from the cell body and do not require sorting to 

dendrites first.  Dendritic sorting shares features with sorting to the basal-lateral domain 

(Dotti and Simons, 1990) whereas most vertebrate cilia project from the apical surface if 

the cell is polarized. 

The proposed functions of GMAP210 in the literature fall into disparate 

categories of organizing the microtubule cytoskeleton, organizing the Golgi complex, 

regulating gene expression, and playing roles in vesicular transport.  Many of these 

studies have either not been repeated independently or are controversial.  For example, 

Barr and Egerer called into question the role of GMAP210 as a microtubule associated 

protein involved in Golgi organization (Barr and Egerer, 2005) and our data indicating 

that cells lacking GMAP210 still form normal Golgi structures further brings this result 

into question.  The strongest data on the role of GMAP210 suggests that it plays roles in 

vesicular trafficking within the endomembrane system.  In yeast, Rud3p, the GMAP210 

homologue (with the caveats described above), was identified as a suppressor of 

mutations causing defective ER to Golgi transport (Kim et al., 1999).  Deletion of Rud3p 
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causes glycosylation defects but the gene is not essential for viability (Kim, 2003).  

Erv14p is required to localize Rud3p to the Golgi membrane (Gillingham et al., 2004).  

Erv14 in yeast and its orthologue Cnih in Drosophila appear to play critical roles in 

polarized secretion.  In yeast, Erv14 mutants retain the transmembrane protein Axl2p in 

the ER rather than inserting at the bud site (Powers and Barlowe, 2002).  In Drosophila, 

Cnih mutants retain the membrane protein Gurkin in the endoplasmic reticulum instead 

of secreting it at the anterodorsal corner of the oocyte (Bokel et al., 2006).  Mammals 

have four Erv14/Cnih homologues but very little is known about their function.  It will be 

interesting to learn if any of the Erv14/Cnih homologues are required for localization of 

mouse GMAP210 and IFT20 to the Golgi complex.  In mammalian cells, overexpression 

of GMAP210 blocked the secretion of alkaline phosphatase into the medium and 

inhibited the retrograde transport of a KDEL-containing substrate from the Golgi to the 

ER (Pernet-Gallay et al., 2002). 

The proposed function of GMAP210 in polarized secretion of proteins is 

interesting in the context of GMAP210 anchoring IFT20 to the Golgi complex and in 

being required for localization of polycystin-2 to cilia.  Polarized secretion at the bud site 

in yeast and at the base of the cilium in other eukaryotes may be evolutionarily related 

and share common components.  It has been proposed that the entire IFT process evolved 

from the coated vesicle transport system (Jekely and Arendt, 2006).  Whether this is true 

remains to be determined.  However, it is likely that transport of membrane proteins to 

the ciliary membrane evolved as a specialized form of transport to the apical plasma 

membrane.  We proposed earlier that IFT20 may function to mark vesicles that are 
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destined for the ciliary membrane (Follit et al., 2006).  The unique ability of GMAP210 

to bind IFT20 and anchor it to the Golgi membrane in addition to its ability to bind 

curved membranes (Drin et al., 2008) puts GMAP210 in a position to play a key role in 

sorting proteins to the ciliary membrane. 
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Materials and Methods 

Mammalian cell culture 

IMCD3 (ATCC) and hTERT-RPE cells (Clontech, Palo Alto, CA) were grown in 47.5% 

DMEM (high glucose for IMCD3, low glucose for hTERT-RPE), 47.5% F12, 5% fetal 

bovine serum, with penicillin and streptomycin at 37° C in 5% CO2.  Cells were 

transfected by electroporation (Biorad, Hercules CA).  Stable cell lines were selected by 

supplementing the medium with 400 µg/ml of G418 (Sigma, St.  Louis, MO).  Clonal 

lines were selected by dilution cloning after drug selection. 

Primary mouse embryonic fibroblasts (MEF) were generated by dispersing e18.5 

embryos in trypsin then plating in 45% DMEM (high glucose), 45% F12, 10% fetal 

bovine serum, with penicillin and streptomycin.  Mouse embryonic kidney (MEK) cells 

were made by trypsin, collagenase, and DNAse dispersion (Freshney, 2000) of e18.5 

kidneys and grown in the same medium as the MEFs.  24 hrs after the MEKs were 

initially plated, the medium was supplemented with 150 mM NaCl and 150 mM urea to 

select against fibroblasts and maintained until the fibroblasts were gone. 

Immunofluorescence microscopy 

Cells for immunofluorescence microscopy were grown, fixed, and stained as described 

(Follit et al., 2006) except that the paraformaldehyde fixation time was reduced to 15 

min.  For embryonic lung immunofluorescence, lungs from e18.5 embryos were fixed 

overnight at 4 0C with 4% paraformaldehyde in PBS and embedded in paraffin.  Sections 

were treated with the antibodies after antigen retrieval.  Labeling of the GMAP210 and 
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PECAM-1 antibodies was enhanced with a biotin-streptavidin layer.  For electron 

microscopy, the lungs were fixed in 4% paraformaldehyde and 2% glutaraldehyde. 

Primary antibodies used included anti-tubulins (611β1, GTU-88, Sigma, St.  

Louis MO), anti-FLAG (Sigma), anti-MmIFT20, anti-MmIFT52, anti-MmIFT57, anti-

MmIFT88 (Pazour et al., 2002a), anti-MmPKD2 (Pazour et al., 2002b), anti-human 

GMAP210 (clone 15, BD Transduction Laboratories), anti-T1α (8.1.1, DSHB, Univ.  

Iowa), anti-PECAM1 (M-20, Santa Cruz Biotechnology), anti-SP-C (FL-197, Santa Cruz 

Biotechnology), anti-golgin97 (CDF4, Molecular Probes).  Anti-giantin, anti-GM130 

(gifts from M. Fritzler, Univ. of Calgary), Anti-MmGMAP210 was made by expressing 

the C-terminal end of GMAP210 in bacteria (residues 1761-1976, same fragment as in 

JAF157, Figure 2.2) as a maltose binding protein fusion and injecting into rabbits.  

Antibodies were affinity purified against the same fragment expressed as a glutathione S-

transferase fusion.  Alexa 488 conjugated Helix pomatia agglutinin and wheat germ 

agglutinin was from Molecular Probes (Eugene, OR). 

Widefield images were acquired by an Orca ER camera (Hamamatsu, 

Bridgewater, NJ) on a Zeiss Axiovert 200M microscope equipped with a Zeiss 100X 

plan-Apochromat 1.4 NA objective.  Images were captured by Openlab (Improvision, 

Waltham, MA) and adjusted for contrast in Adobe Photoshop.  If comparisons are to be 

made between images, the photos were taken with identical conditions and manipulated 

equally.  For the quantification of polycystin-2 in the cilia, the length, area, and average 

fluorescence intensity of the cilia was measured using the measurement tools of Openlab.  

To determine significance of differences, data were logarithmically transformed to 
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normalize variance, subjected to one-way analysis of variance, followed by post-hoc 

analysis with a Tukey-Kramer test (SuperANOVA, Abacus Concepts, Berkeley CA).  

Confocal images were acquired by a Nikon TE-2000E2 inverted microscope equipped 

with a Solamere Technology modified Yokogawa CSU10 spinning disk confocal scan 

head.  Z-stacks were acquired at 0.5 micron intervals and converted to single planes by 

maximum projection with MetaMorph software.  Bright field images were acquired using 

a Zeiss Axioskop 2 Plus equipped with an Axiocam HRC color digital camera and 

Axiovision 4.0 acquisition software. 

Protein analysis 

FLAG-tagged IFT20, IFT25, GMAP210, and GFP were constructed by PCR amplifying 

the open reading frames and inserting them into p3XFLAG-myc-CMV-26 (Sigma, St. 

Louis, MO).  FLAG IPs were carried out on stable cell lines expressing FLAG-Tagged 

IFT20 (JAF134), IFT25(JAF143), GFP(JAF146) or GMAP210 (full length = JAF205, 

shorter fragments are listed in Figure 2.2).  Cells were rinsed once with cold PBS and 

lysed in Cell Lytic M + 0.1 % NP40 (Sigma), 0.1% CHAPSO (BioRad), plus Complete 

Protease Inhibitor (Roche) at 4° Celsius.  Lysates were centrifuged at 18,000 g for 10 

minutes and clarified lysates were incubated with Agarose beads coupled with FLAG M2 

antibody (Sigma) for one hour.  FLAG beads were washed 3 times with Wash Buffer (50 

mM Tris, 150 mM NaCl, pH 7.4) plus 1% NP40.  Bound FLAG proteins were eluted 

with 200 mg/ml 3X FLAG peptide (Sigma). 
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Mouse Breeding 

ES cell line AJ0490 was obtained from the Sanger Center and injected into C57Bl6J 

blastocysts to generate chimeric mice.  Chimeric mice were backcrossed to the C57Bl6J 

inbred line and the animals used in this study were a mix of 129 and C57Bl6 

backgrounds.  Embryonic ages were determined by timed mating with the day of the plug 

being embryonic day 0.5.  Genotyping was carried out with the following primer pairs: 

GMAPwt3 AAACAGGAGCATTTCCGAGA + GMAPwt4 

AAGACATGCGCCACTATGC (product size = 295 bp in wild type) and GMAPmt1 

GGGCATCCACTTCTGTGTTT + GMAPmt2 TGTCCTCCAGTCTCCTCCAC (product 

size = 168 bp in mutant)  (Figure 2.4B).  Mouse work was approved by the UMMS 

IACUC. 

Quantification of Saccule Area 

Pregnant mice were euthanized by isoflurane overdose, their uteri were removed and 

submerged in ice cold PBS.  While remaining submerged in cold PBS, the embryos were 

dissected from the uteri and their chests opened.  The lungs were then fixed, paraffin 

embedded, sectioned, stained with H&E, and photographed at 4X magnification.  The 

percent of open space (excluding bronchioles and vasculature) was calculated using the 

measure particle function of ImageJ. 

mRNA analysis 

Individual lungs were dissected and frozen at -80oC in RNAlater (Qiagen Inc, Valencia, 

CA) until RNA was isolated with RNeasy kits (Qiagen), including on-column DNA 
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digestion.  First strand cDNA was synthesized from 1 µg of total lung RNA per mouse, 

using a SuperScript II First-Strand Synthesis System (Invitrogen, Carlsbad, CA) and 

random hexameric primers.  PCR primers were designed to produce amplicons between 

100-150 nucleotides in length, using the online primer3 web PCR primer tool 

(http://fokker.wi.mit.edu/primer3/input.htm) and the IDT Primer Express software tool 

(http://www.idtdna.com/Scitools/Applications/Primerquest/).  PCR primers were 

synthesized by Integrated DNA Technologies Inc (Coralville, IA) and are listed in Table 

S1.  Real-time qRT-PCR analysis was performed using the ABI Prism 7500 sequence 

detection system (Applied Biosystems, Foster City, CA).  Each reaction contained 2.5 ng 

first strand cDNA, 0.1µM each specific forward and reverse primers and 1X Power 

SYBR Green (Applied Biosystems, Foster City, CA) in a 15 µl volume. 

Accession numbers 

Mouse IFT20 = NM_018854, Mouse GMAP210/TRIP11 = XM_001001171. 
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CHAPTER III 

The Cytoplasmic Tail of Fibrocystin Contains a Ciliary Targeting Sequence 

 

Preface 

 

Originally published the Journal of Cell Biology*, Chapter III identifies a ciliary 

targeting sequence (CTS) within the transmembrane receptor fibrocystin and 

characterizes the interaction of this CTS with the small G protein Rab8.  First co-author 

Lixia Li performed deletion and alanine scanning mutagenesis to identify the CTS and 

was responsible for lipid flotation experiments and contributed significant data to Figures 

3.2, 3.3.  Yvonne Vucica assisted in cloning and supplied reagents.  Gregory Pazour 

conducted Rab8/CTS overexpression experiments providing the data in Figure 3.5.  

Finally, this chapter was written in collaboration with Lixia Li and Gregory Pazour. 

 

 

* The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence. Follit JA, Li L, 

Vucica Y, Pazour GJ. J Cell Biol. 2010 Jan 11;188(1):21-8. Epub 2010 Jan 4. PMID: 

20048263 
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Abstract 

 

Sensory functions of primary cilia rely on ciliary-localized membrane proteins but little is 

known about how these receptors are targeted to the cilium.  To further our understanding 

of this process, we dissected the ciliary targeting signal (CTS) of fibrocystin, the human 

autosomal recessive polycystic kidney disease gene product.  We show that the 

fibrocystin CTS is an 18 residue motif localized in the cytoplasmic tail. This motif is 

sufficient to target GFP to cilia of ciliated cells and targets GFP to lipid rafts if the cells 

are not ciliated.  Rab8, but not a number of other Rabs implicated in ciliary assembly, 

binds to the CTS in a co-immunoprecipitation assay.  Dominant negative Rab8 interacts 

more strongly than wild type or constitutively active Rab8 and co-expression of this 

dominant negative mutant Rab8 blocks trafficking to the cilium.  This suggests that the 

CTS functions by binding regulatory proteins like Rab8 to control its own trafficking 

through the endomembrane system and on to the cilium. 
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Introduction 

 

The primary cilium is a ubiquitous eukaryotic organelle that plays vital roles in the 

development of mammals and in the etiology of diseases such as polycystic kidney 

disease and blindness. It is thought that primary cilia function as cellular antennae to 

monitor the extracellular environment and report this information back to the cell. This 

small organelle is composed of hundreds of proteins assembled onto a microtubule-based 

cytoskeleton that projects from the surface of the cell and is surrounded by an extension 

of the plasma membrane. Although contiguous with the plasma membrane, the ciliary 

membrane is unique as cells have the ability to localize receptors and other membrane 

proteins specifically to this domain.  This polarized distribution of proteins is required for 

the cilium to carry out its sensory function but little is known about how the cell achieves 

this distribution. 

To learn more about the mechanism of ciliary targeting of membrane proteins, we 

characterized the ciliary targeting sequence (CTS) in fibrocystin. Fibrocystin is the gene 

product of the human autosomal recessive polycystic kidney disease gene, PKHD1 

(Onuchic et al., 2002; Ward et al., 2002). Patients with defects in this gene develop 

severe cystic kidney disease along with defects in lung, pancreas and liver. Fibrocystin is 

a large (>4000 residues) single-pass transmembrane protein that is predicted to be 

entirely extracellular except for a short ~190 residue C-terminal tail. Fibrocystin has been 

localized to cilia and centrosomes in mammalian cells (Menezes et al., 2004; Wang et al., 
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2004; Ward et al., 2003; Wu et al., 2006; Zhang et al., 2004) and a Chlamydomonas 

homolog was found in cilia (Pazour et al., 2005). 

Results and Discussion 

The cytoplasmic tail of fibrocystin contains a ciliary targeting signal 

To understand how fibrocystin is targeted to cilia, we characterized its CTS.  To date, 

CTSs have been identified in a small number of proteins but comparison of these does 

not reveal common motifs.  However, all are found in intracellular domains (Pazour and 

Bloodgood, 2008).  Thus, we reasoned that even though fibrocystin is large, it is mostly 

extracellular with only a short cytoplasmic tail and this is the likely position of its CTS.  

To test this idea, we made two constructs fusing the C-terminal end of fibrocystin to 

reporter proteins (Fig 3.1A).  In the first (JAF16), we fused the C-terminal 503 residues 

of fibrocystin to a fragment of CD8.  This construct contains the extracellular domain of 

CD8 fused to fibrocystin just prior to its membrane spanning domain and is predicted to 

have the same membrane topology as native fibrocystin.  CD8 is a well characterized 

membrane protein often used in chimerics to identify targeting domains (Xia et al., 2001).  

In the second construct (JAF99), we fused the last 193 residues of fibrocystin to the C-

terminal end of GFP.  This construct lacks most of the predicted membrane spanning 

residues but contains the entire cytoplasmic tail.  After transfection into cells, both 

constructs can localize to cilia (Fig 3.1B, Fig 3.2Aa).  In addition to cilia, JAF16 also is 

found in the endoplasmic reticulum.  In non-ciliated cells, JAF16 remains in the 

endoplasmic reticulum while JAF99 is found throughout the cell in small punctate spots 
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Figure 3.1.  The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence.  
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Figure 3.1.  The cytoplasmic tail of fibrocystin contains a ciliary targeting sequence.  
A.  Diagram of fibrocystin and the two initial constructs made to characterize the CTS.  
The CD8 fragment contains a signal sequence that directs the N-terminal end to the 
extracellular space and an epitope recognized by the CD8 antibody.  The JAF16 construct 
is expected to have the same membrane topology as native fibrocystin.  The JAF99 
construct contains only the last residues of the predicted transmembrane domain and the 
cytoplasmic tail fused to GFP.  B.  Cellular distribution of these two constructs in IMCD3 
cells.  Both constructs have the ability to traffic to cilia (top row).  The left panels are 
three color merges while the right panel in each pair shows only the CD8-CTS and GFP-
CTS channels.  IFT27 marks either the cilia (arrow, top row) or centrosome (arrow, 
bottom row).  Note that JAF16 directs CD8 to both the cilium (arrow) and the 
endoplasmic reticulum (below the focal plane in the top image).  Scale bar is 10 mm and 
relevant for all images in panel. 
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(Sup Fig 3.1, Fig 3.2Aa’).  These results indicate that a CTS is located within the C-

terminal 193 residues of fibrocystin. 

To determine what part of the cytoplasmic tail is responsible for ciliary targeting, 

we constructed a series of GFP fusions containing smaller portions of the tail and 

quantitated their ability to localize to cilia (Fig 3.2A, B).  This analysis indicated that 18 

residues near the N-terminal end of the cytoplasmic tail were sufficient to target GFP to 

the cilium of ciliated cells or to punctate spots in non-ciliated cells.  The large size of 

fibrocystin prevented us from determining if these residues are required for trafficking of 

native fibrocystin to cilia.  Thus it is currently unknown if this is the only CTS within the 

protein.  If the GFP fusion construct did not contain the 18 residue CTS, the GFP was 

distributed throughout the cell or concentrated in the nucleus. We did not carefully 

demarcate the nuclear targeting sequence but the fusion containing residues 63-193 was 

able to efficiently concentrate in the nucleus, while the 40-68 fusion could localize to the 

nucleus but was also found in the cytoplasm. Other work also mapped a nuclear targeting 

sequence to the region between residues 80 and 104 (Hiesberger et al., 2006). 

Examination of the CTS in fibrocystins from other species indicates that it is 

highly conserved in mammals and moderately conserved in chicken (Fig 3.2C). The 

sequence is not conserved in the fibrocystin-related protein, fibrocystin-L from mammals 

or other species. BLAST searches with the CTS did not identify any novel proteins 

containing similar sequences.  The fibrocystin CTS does not contain a VxP motif that has 

been proposed to be a generic ciliary targeting sequence (Deretic et al., 2005; Geng et al., 

2006) nor does it contain an Ax[S/A]xQ motif identified in several G-protein coupled 
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Figure 3.2:  Characterization of the CTS of fibrocystin.    
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Figure 3.2:  Characterization of the CTS of fibrocystin.  Aa-f.  Selected examples 
showing the distribution of sub fragments of the cytoplasmic tail. Two different cells are 
shown for each construct. The first image (a-f) shows a ciliated cell with the cilium 
marked with an arrow while the second image (a’-f’) shows a non-ciliated cell.  Insets 
show the cilia (red) and GFP-CTS (green) channels alone.  The amino acid fragments 
fused to GFP are listed at the bottom of each image and are graphically shown in B. Size 
bar in Aa is 5 mm and is relevant for all images in the panel.  B. Graphical representation 
of the constructs and quantification of the ability of the constructs to function.  The 
numbers on the left represent the amino acids included in the construct and the box 
denotes the limits of the CTS.  The graph shows the mean amount of GFP fluorescence 
per µm in cilia from 25 transfected cells.  Error bars are SEM.  C.  Alignment of the CTS 
(box) and surrounding sequence of vertebrate fibrocystins (mouse Mm, rat Rn, human 
Hs, chimp Pt, Chick Gg).  D,E.  Alanine scanning mutagenesis of the CTS.  D.  Sequence 
and quantification of the ability of the mutated CTSs to direct GFP to cilia.  
Quantification is as described for panel B.  WT, wild type; CCC, LV, WF, KKS, KTRK, 
IKP indicate which amino acids were mutated in each construct.  E.  Images illustrating 
the cellular distribution of constructs described in D.  Arrows mark cilia. Scale bar is 5 
mm and is relevant for all images in the panel. 
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receptors (Berbari et al., 2008).  To further our understanding of the CTS, we used 

alanine scanning mutagenesis to mutate small blocks of residues (Fig 3.2D, E).  

Quantification of the effects of these mutations (Fig 3.2D) shows that most residues are 

important for function.  The CCC and KTRK residues are most critical since mutating 

these to alanines almost completely blocks CTS function.  At the other extreme, the LV 

mutation does little to the CTS function while the other mutations reduce the ability to 

traffic to cilia but do not completely block function. 

While we did not detect any significant homology between the fibrocystin CTS 

and other non-fibrocystin sequences, we noted similarity between the CTS amino acid 

composition and a lipid raft targeting sequence in SNAP25 (Salaun et al., 2005) (Fig 

3.3A).  This suggested that the punctate spots to which the CTS localized might be lipid 

rafts. To test this, live CTS-GFP expressing cells were labeled with fluorescent cholera 

toxin B (Fig 3.3B). Cholera toxin B binds GM1 gangliosides and is a marker for 

membrane domains enriched in these lipids.  In non-ciliated cells, there is strong 

colocalization between the CTS-GFP spots and the cholera toxin binding sites (Fig 

3.3Ba).  The colocalization also is observed if the cholera toxin is cross linked with an 

antibody and then fixed (Fig 3.3Bb).  Cholera toxin B labels the cilium (Fig 3.3Bc) 

confirming previous reports that this organelle is enriched in GM1 gangliosides (Janich 

and Corbeil, 2007).  SNAP25 has been reported to localize to cilia (Low et al., 1998) but 

the lipid raft targeting sequence of SNAP25 was not sufficient to target GFP to cilia (Fig 

3.3Bd) indicating that a lipid raft targeting sequence alone is not sufficient for ciliary 

targeting. 
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Figure 3.3:  The CTS is associated with lipid. 
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Figure 3.3:  The CTS is associated with lipid.  A. Comparison of the CTS from 
fibrocystin to the lipid raft targeting sequence of SNAP25 [19].  B. Colocalization of 
GFP-CTS with lipid rafts.  Ba. Live cells stained with Alexa-594 conjugated cholera 
toxin.  In non-ciliated cells, cholera toxin shows extensive colocalization with the GFP-
CTS in the cell body; the arrow points at one example.  Bb. Cholera toxin was 
crosslinked by antibody before fixation, which caused the toxin and GFP to cluster 
(arrow).  Bc. In ciliated cells, GFP and cholera toxin colocalize in the cilium (arrow).  
Bd.  The lipid raft targeting sequence of Snap25 does not target GFP to the cilium 
(arrow).  Size bar is 5 mm and is relevant for all images. C.  Tritiated palmitate is 
incorporated into the wild type but not the cysteine-mutated CTS (arrow).  D.  The CTS 
cysteines mediate interaction with membranes.  Cells expressing either wild type or 
cysteine-mutated CTS-GFP were lysed and fractionated by an OptiPrep gradient. 
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Cysteine residues near blocks of basic amino acids are often palmitoylated 

(Bijlmakers and Marsh, 2003).  The fibrocystin CTS contains three cysteine residues 

followed by a block of basic residues (Fig 3.3A) and mutational analysis indicated that 

these cysteines are critical to CTS function (Fig 3.2D).  To test if the CTS cysteines are 

palmitoylated, we grew cells expressing either the wild type or the CCC mutated GFP-

CTS in radioactive palmitate, immunoprecipitated the GFP-CTS and looked for the 

incorporation of isotope.  The wild type protein but not the CCC mutated version 

incorporated radioactive palmitate (Fig 3.3C).  This indicates that the CTS includes a 

palmitoylation motif and since the mutation of the cysteines blocks function, this 

suggests that palmitoylation is important for targeting this protein to the cilia.  Acylations 

like palmitoylation and myristoylation are common modifications of ciliary membrane 

proteins.  The opsin photoreceptor contains two cysteine residues that are palmitoylated 

and needed for proper targeting to the cilium (Tam et al., 2000).  A Trypanosome ciliary 

calcium binding protein contains a palmitoylated cysteine and a myristoylated glycine 

(Godsel and Engman, 1999) that are needed for targeting to the cilium. 

It is likely that the palmitoylated cysteines of fibrocystin serve to link the GFP-

CTS to lipid membranes and this is responsible for the puncta that are observed in non-

ciliated cells.  The fact that the GFP-CTS is evenly distributed in the cells when the 

cysteines are mutated (Fig 3.2E) supports this idea but we tested this more directly by 

floatation analysis.  Membranes from cells expressing either wild type or the CCC 

mutated GFP-CTS were loaded on the bottom of an OptiPrep gradient and centrifuged.  

Membranes floated up and carried along the lipid raft marker flotillin-2.  The wild type 
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GFP-CTS was also carried up whereas the CCC mutated protein remained at the bottom 

where it was loaded (Fig 3.3D).  This indicates that the palmitoylated cysteines link the 

GFP-CTS to the membrane.  Thus, even though the protein no longer contains a 

transmembrane domain, it remains associated with the membrane. To understand the 

cellular compartment to which the GFP-CTS localized, we labeled cells expressing the 

GFP-CTS with a variety of compartmental markers (Fig 3.4).  No significant 

colocalization was seen with Golgi, lysosome, and most endosome markers but 

colocalization was seen with markers for the recycling endosome.  This suggests that the 

palmitoylated GFP-CTS has affinity for the membranes of this compartment but whether 

the native protein is trafficked through the recycling endosome remains to be determined. 

Trafficking of the CTS is regulated by Rab8 

Work in frog retina indicates that Rab8 plays a key role in trafficking of opsin to the 

outer segment (Moritz et al., 2001) and recent work in mammalian cell culture has 

indicated that Rab8 and other Rab family proteins are critical for ciliary assembly 

(Nachury et al., 2007; Yoshimura et al., 2007).  To test if Rab8 plays a role in the 

trafficking of the fibrocystin CTS, we generated cell lines expressing FLAG-tagged wild 

type Rab8, dominant negative Rab8T22N and constitutively active Rab8Q67L (Fig 3.5).  

These mutations are often used to perturb the GTP/GDP cycle of small G proteins.  The 

T22N mutation is thought to keep the protein in the GDP-bound state, which binds 

guanine exchange factors to inhibit their activity on native substrates.  The Q67L 

mutation reduces GTP hydrolysis keeping the protein in the GTP bound state (Feig, 

1999).  As previously reported (Nachury et al., 2007), wild-type FLAG-Rab8 and FLAG-
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Figure 3.4:  Colocalization between the CTS-GFP and various markers of the 

endomembrane system.
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Figure 3.4:  Colocalization between the CTS-GFP and various markers of the 
endomembrane system.  IMCD3 cells expressing the GFP-CTS (JAF99) were fixed and 
stained with each of the antibodies listed (Giantin, Golgin97, EEA1), or were labeled 
with Lysotracker and then fixed, or were incubated with red fluorescent transferrin or 
EGF for 5 minutes, washed and then chased for the amount of time indicated before 
fixing.  Size bars are 10 mm.  Note that no significant colocalization was seen with 
markers of the cis-medial (Giantin) and trans (Golgin97) Golgi complex.  Some markers 
of the endosomal compartment partially colocalized with the smaller GFP-CTS puncta.  
The most extensive colocalization is seen with endocytosed transferrin at late time points 
after a pulse chase (Transferrin 45 min).  A 2X enlargement is shown to better visualize 
this co-localization.  One example of a co-localizing region is marked with an arrow.  
Endocytosed EGF showed minimal colocalization at either early (EGF 5 min) or late 
(EGF 60 min) time points and minimal colocalization was seen with the early endosome 
antigen (EEA1) and with a lysosome marker (Lysotracker).  This suggests that the GFP-
CTS localizes to the recycling endosome as both transferrin and EGF traffic to early 
endosomes after endocytosis but from the early endosome, transferrin moves to the 
recycling endosome whereas EGF moves to the late endosome and then to the lysosome.  
The large GFP-CTS puncta near the nuclei did not colocalize with any markers 
suggesting that they may be aggregates.  There was also a significant amount of the GFP-
CTS in small puncta that did not localize with any of the markers.  This pool may be in 
the plasma membrane since there was good colocalization with cholera toxin (Fig 2Ba, 
Bb). 
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Rab8Q67L localized to cilia while FLAG-Rab8T22N did not localize to the cilia that 

formed on these cells (Fig 3.5A).  Cells expressing FLAG-tagged wild type Rab8 and 

Rab8Q67L ciliated fairly well but cells expressing Rab8T22N did not ciliate nearly as 

well (wild type 68%+/-12; T22N 2.7%+/-0.6; Q67L 46%+/-3.5).  The fibrocystin GFP-

CTS did not traffic to the cilia that formed on the FLAG-Rab8T22N cells (Fig 3.5B, C) 

but was trafficked to cilia on cells expressing FLAG-Rab8 and FLAG-Rab8Q67L.  

Interestingly, the amount of the GFP-CTS trafficked to cilia was higher in cells that 

expressed the wild type FLAG-Rab8 than in cells that were not transfected or in cells 

expressing either of the mutant forms.  This suggests that Rab8 is a limiting factor in the 

amount of GFP-CTS that can be trafficked to cilia.  The observation that the mutant 

forms either do not show the enhancement (Q67L) or reduce the amount of trafficking 

(T22N) suggests that Rab8 needs the normal GTP/GDP cycle to function properly. 

The CTS interacts with Rab8 

Since Rab8 appeared to regulate the trafficking of the fibrocystin CTS, we sought to 

understand how this might be functioning and asked if Rab8 or other Rabs could be 

physically connected to the CTS (Fig 3.6).  To do this, we co-expressed the cytoplasmic 

tail of fibrocystin with a series of Rab proteins (Rab6, Rab8, Rab11, Rab17, and Rab23) 

that have been implicated in trafficking of ciliary membrane proteins (Deretic and 

Papermaster, 1993; Moritz et al., 2001; Yoshimura et al., 2007).  We also included 

IFT20, which is not a Rab protein, but is an IFT subunit that we have implicated in 

trafficking proteins to the ciliary membrane (Follit et al., 2008; Follit et al., 2006).  None 

of these proteins were completely co-localized with the GFP-CTS in non-ciliated cells.  
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Figure 3.5: Effect of Rab8 on the trafficking of the fibrocystin CTS.   
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Figure 3.5: Effect of Rab8 on the trafficking of the fibrocystin CTS.  A.  FLAG-
tagged Rab8 and Rab8Q67L are localized to cilia of IMCD3 cells while Rab8T22N is 
not. Insets show the red (FLAG) channels of the cilia.  Scale bar is 10 mm and relevant 
for all images in panel.  Insets show the FLAG-Rab8 channels alone.  B. The fibrocystin 
CTS targets GFP to cilia in control cells and cells expressing wild type FLAG-Rab8 and 
FLAG-Rab8Q67L but not in cells expressing FLAG-Rab8T22N.  Scale bar is 2 mm and 
relevant for all images in panel.  C. Quantification of ciliary GFP-CTS fluorescence.  
Quantification was done as described in Fig 1.  Error bars are SEM.  Significance as 
compared to control: * <0.02; ** <0.001.
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However, Rab8 showed some colocalization while Rab11 and Rab17 showed the most 

colocalization (Fig 3.6).  The colocalization with Rab11 and Rab17 is consistent with the 

results of the compartmental analysis (Fig 3.4) as these two G-proteins localize to the 

recycling endosome (Zerial and McBride, 2001).  Rab8 was the only one of these Rabs to 

localize to cilia (Fig 3.5B, and not shown).  The ability of these proteins to interact with 

the GFP-CTS was tested by a co-immunoprecipitation assay.  In this assay, the GFP-CTS 

was co expressed with each of the FLAG-tagged Rabs in mouse kidney cells.  The Rabs 

were precipitated via the FLAG tag and the precipitates probed for the GFP-CTS.  No 

interaction was seen between the GFP-CTS and Rab6, Rab11, Rab17, Rab23 or IFT20 

but a significant amount of the GFP-CTS was precipitated by Rab8 (Fig 3.7A).  This 

analysis was carried out with the entire cytoplasmic tail and so we asked if the Rab8 

binding site overlapped the essential 18 residue CTS motif within the tail.  To do this, we 

tested selected deletion constructs described in Fig 3.2B.  The Rab8 binding site is 

located within the 18 residues minimal CTS as fragments that contain this sequence are 

co-precipitated (Fig 3.7B 1-193, 1-68, 3-20) whereas the C-terminal 130 residues (Fig 

3.7B 63-193), which does not target to cilia (Fig 3.2A,B), is not precipitated.  The CTS is 

not simply an Rab8 binding site as deletions of single residues from either end of the 

minimal CTS blocked the ability of the peptide to direct GFP to the cilium (Fig 3.2A, B) 

but did not block the binding to Rab8 (Fig 3.7B 1-19, 4-20). 

We next examined the effect of the alanine scanning mutations on the ability of 

the CTS to be co-precipitated by Rab8.  Interestingly, there is a good correlation between 

the function of the CTS to traffic to the cilium (Fig 3.2D) and its ability to bind to Rab8 
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Figure 3.6:  Fluorescence images of cells expressing the FLAG-tagged Rab proteins 
used in Figure 3.7 with the GFP-CTS.  
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Figure 3.6:  Fluorescence images of cells expressing the FLAG-tagged Rab proteins 
used in Figure 3.7 with the GFP-CTS.  Note that most do not show significant 
colocalization with the GFP-CTS.  The most significant overlap with the GFP-CTS is 
seen with Rab11and Rab17.  Scale bar is 10 mm and relevant for all images in panel. 
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(Fig 3.7C).  For example, the LV mutation does little to block function of the CTS and 

this mutated protein binds Rab8.  On the other hand, The CCC and KTRK mutations are 

most disruptive to the CTS and most significantly decrease binding to Rab8.  Other 

mutations had intermediate effects on the targeting ability and have intermediate effects 

on the ability to bind Rab8.  The KKS mutation is an exception as this is fairly 

detrimental to CTS function but still binds to Rab8.  This suggests that additional proteins 

may bind the CTS and require these residues for activity. 

To begin to understand if the interactions between the CTS and Rab8 may be 

regulated by the GTP/GDP state of Rab8, we compared the ability of the constitutively 

active and dominant negative mutations of Rab8 to bind to the CTS.  Interestingly, the 

dominant negative form bound more CTS than either the wild type protein or the 

constitutively active form.  This suggests that exchange of a GDP with a GTP would 

release Rab8 from the CTS.  This behavior is different from classic Rab effectors, which 

bind more strongly when bound to GTP (Zerial and McBride, 2001) but is similar to what 

was previously observed in the interaction between Rab5 and the angiotensin receptor 

(Seachrist et al., 2002).  In the case of the angiotensin receptor, it was proposed that the 

receptor anchors Rab5-GDP on the surface of the carrier vesicle so that once GTP is 

exchanged for GDP, efficient vesicle fusion could occur.  Similarly, the fibrocystin CTS 

may bind Rab8-GDP to increase its local concentration in order to allow for efficient 

execution of the next step in transport when GTP exchange occurs.  Based on work in 

frog photoreceptors, it is likely that the regulated step is the fusion of carrier vesicles at 

the base of the cilium as expression of dominant negative Rab8 mutant caused small 
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Figure 3.7: Rab8 interacts with the fibrocystin CTS. 
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Figure 3.7: Rab8 interacts with the fibrocystin CTS.  A. FLAG-tagged Rab proteins 
were co-expressed with the GFP-CTS (1-193) and precipitated.  The precipitates were 
analyzed by western blot with FLAG and GFP antibodies.  * marks a non-specific band 
precipitated by the FLAG antibody.  Positive interactions have a band in the GFP western 
blot.  B.  The deletion constructs (Fig 1B) were tested for the ability to interact with 
Rab8. Arrows mark the predicted size of the full length proteins.  C.  The alanine scan 
mutations (Fig 1D) were examined for their ability to interact with Rab8.  Arrows mark 
the predicted size of the full length proteins; * marks a non-specific band precipitated by 
the FLAG antibody.  D.  The ability of Rab8T22N and Rab8Q67L mutants to bind the 
GFP-CTS were compared to wild type Rab8 in an analogous assay. 
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vesicles to accumulate around the base of photoreceptors (Moritz et al., 2001).  This 

process may be regulated by the BBSome as the guanine exchange factor Rabin8 is 

associated with the BBSome and this protein would be expected to exchange GDP with a 

GTP on Rab8 (Nachury et al., 2007). 

Comparison of ciliary targeting to apical and basolateral targeting 

Compared to trafficking to the ciliary membrane, much more is known about trafficking 

to apical and basal-lateral membranes (Rodriguez-Boulan et al., 2005). Basolateral 

targeting sequences consist of short motifs that interact with the adaptor protein 

complexes that bind to clathrin coats as part of the sorting mechanism. Apical targeting 

motifs are much more diverse and do not share significant sequence homology with each 

other but have been proposed to function by directing proteins to lipid rafts that are 

preferentially sorted to the apical membrane (van Meer and Simons, 1988).  Ciliary 

targeting is similar to apical targeting in that no sequence similarity is seen between the 

known CTSs (Pazour and Bloodgood, 2008) and at least for fibrocystin and the 

Trypanosome calcium binding protein (Tyler et al., 2009), association with a lipid raft 

appears to be required for proper targeting.  Thus, it appears that ciliary targeting is 

related to apical targeting but has additional components to direct the proteins into the 

ciliary membrane.  It is interesting to note that on vertebrate epithelial cells the ciliary 

membrane is a sub domain of the apical membrane and so perhaps it is logical that 

trafficking to these two domains share similar features. 
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Materials and Methods 

Plasmids 

The cytoplasmic tail of mouse fibrocystin (accession # NM_153179.2) was amplified 

from mouse kidney cDNA using 

GGGAATTCGCTTTGACTGTGACATTTTCAGTCCTAG and 

GGGAATTCTTACTGGATGGTTTCTGGTGG and fused to the CD8 open reading 

frame to create JAF16.  The CD8 open reading frame was amplified from pCMS-CD8-

NR1C (gift of H. Xia, Stanford Univ.) (Xia et al., 2001).  JAF16 contains the last 503 

residues of fibrocystin fused in frame to the CD8 extracellular domain.  The fusion 

junction reads LDFACDefALTVTF with the first 6 residues being derived from CD8, the 

last 6 from MmPKHD1 and the two in the middle are from the restriction enzyme site.  

Likewise mouse kidney cDNA was amplified with 

GGGAATTCCTGAGCTGTCTCGTTTGCTG and 

GGGAATTCTTACTGGATGGTTTCTGGTGG and cloned into the EcoRI site of 

pEGFP-C2 (BD Biosciences Clontech, Mountain View, CA) to create pJAF99.  This 

plasmid contains the last 193 amino acids of fibrocystin fused in frame to the C-terminal 

end of GFP. Deletion constructs were generated by similarly amplifying smaller 

fragments and cloning them into this vector. Point mutations were generated by inverse 

PCR. All plasmids were confirmed by DNA sequencing.  Rab8, Rab8T22N and 

Rab8Q67L were cloned into p3XFLAG-myc-CMV26 (Sigma, St. Louis MO) for 

expression in mammalian cells. 
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Miscellaneous Methods 

All cell culture work used mouse kidney IMCD3 (Rauchman et al., 1993) cells 

cultured in 47.5% DME, 47.5% F12 supplemented with 5% Fetal Bovine Serum (FBS) 

and penicillin/streptomycin (Cellgro, Herndon, VA) at 37˚ C in 5% CO2. For transfection, 

cells were electroporated using a GenePulser Xcell (Bio-Rad, Hercules, CA) (200 volts, 

50 ms pulse, 4 mm cuvette). Stable cell lines were selected with 400 µg/ml of G418 

(Sigma).  Clonal lines were isolated by dilution cloning after drug selection. 

Percent ciliation was determined by counting cilia on cells stained with an IFT27 

antibody after being grown for 48 hours in low serum (0.25%).  Results reported are 

percent cilia +/- standard deviation from three independent experiments where >500 cells 

were counted. 

Endocytosis assays were performed on IMCD3 cells electroporated with JAF99 48 hours 

after electroporation.  Cells were washed with KRH (125 mM NaCl, 5 mM KCl, 1.3 mM 

CaCl2, 1.2 mM MgSO4, 25 mM HEPES pH 7.4, 2 mM sodium pyruvate and 0.5% bovine 

serum albumin) incubated with Alexa568-labeled EGF or Transferrin for 5 min at 37° C, 

washed with KRH and then incubated at 37 C in KRH (Leonard et al., 2008).  Coverslips 

were periodically removed and fixed during the chase period. 

For visualization of lipid domains, live cells grown in glass-bottom dishes (MatTec, 

Ashland, MA) were incubated for 10 min at 37° C with Alexa-594 conjugated cholera 

toxin B (Molecular Probes/Invitrogen, Carlsbad CA).  Excess toxin was washed out and 

the cells were imaged at 37° C in medium lacking Phenol Red.  Alternatively, cells were 

incubated for 10 min at 4° C with the cholera toxin, followed by 15 additional min at 4° 
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C with cholera toxin antibody before fixing and staining following manufacturer’s 

specifications (Vybrant Lipid Raft Labeling Kit, Molecular Probes). 

Lipids were floated using the protocol of Macdonald and Pike (Macdonald and Pike, 

2005).  Briefly, cells were lysed by passing them through a needle, the post nuclear 

supernatant was mixed with OptiPrep (Sigma) to a final concentration of 25%, placed at 

the bottom of a centrifuge tube, and a gradient of 0-20% OptiPrep was layered on top.  

The gradient was centrifuged at 52,000 x g for 90 min and fractions were collected and 

analyzed by western blotting. 

To determine if the CTS was palmitoylated, IMCD3 cells were electroporated with the 

wild type (1-22) and equivalent cysteine-mutated GFP-CTS (1-22CCC) constructs.  After 

24hr, the medium was changed to one containing dialyzed serum (GIBCO/Invitrogen) 

supplemented with 0.25 mCi of tritiated palmitate (PerkinElmer, Waltham MA).  After 

16 hr, cells were lysed and the GFP-CTS was precipitated with the JL8 GFP antibody 

(BD Biosciences Clontech) and the eluates were separated by SDS-PAGE.  The gel was 

then fixed in 2:9:9 acetic acid:methanol:water for 1hr, followed by 1M sodium salicylate 

for 30 min, dried and exposed to film. 

Immunoprecipitations were performed using anti-FLAG resin.  To do this, cells 

expressing the tagged constructs were rinsed with cold PBS, lysed in Cell Lytic M + 0.1 

% NP40 (Sigma), 0.1% CHAPSO (BioRad), with Complete Protease Inhibitor (Roche, 

Basel Switzerland) at 4° C and clarified by centrifugation (18,000 g for 10 min).  

Clarified lysates were incubated with Agarose beads coupled with FLAG M2 antibody 

(Sigma) for one hour. FLAG beads were washed 3 times with Wash Buffer (50 mM Tris, 
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150 mM NaCl, pH 7.4) plus 1% NP40.  Bound FLAG proteins were eluted with 200 

µg/ml 3X FLAG peptide (Sigma).  Purified proteins were separated by SDS-PAGE and 

electrophoretically transferred to Immobilon-P (Millipore, Billerica MA).  After transfer, 

the membranes were incubated with antibodies to GFP (JL8, BD Biosciences Clontech) 

and FLAG (F1804, Sigma) followed by an HRP-conjugated anti-mouse IgG antibody 

(Pierce, Rockford, IL).  The HRP-conjugates were detected on film (BioMax XAR, 

Kodak, Rochester NY) after LumiGLO (KPL, Gaithersburg MD) treatment. 

Immunofluorescence Microscopy 

Cells were transfected by electroporation and seeded on coverslips. After 24 hr, 

serum was reduced to 0.25% to promote ciliation and the cells grown for an additional 

24-96 hr before being fixed with paraformaldehyde and stained with primary antibodies 

as described (Follit et al., 2006).  Primary antibodies were detected by Alexa-350, Alexa-

488, and Alexa-594 (Molecular Probes, Eugene OR) labeled secondary antibodies. 

Primary antibodies included anti-acetylated tubulin (611β1, Sigma), anti-FLAG (Sigma), 

anti-CD8(Zymed, San Francisco CA), EEA1 (gift of S. Corvera, Univ. Massachusetts 

Medical School), Giantin (gift of M. Fritzler, Univ. of Calgary), Golgin97 (CDF4, 

Molecular Probes), Flotillin-2 (BD Biosciences, San Jose CA) and mouse IFT20 and 

IFT27 (Follit et al., 2006). 

Wide-field images were acquired by an Orca ER camera (Hamamatsu) on a 

microscope (Axiovert 200M; Carl Zeiss, Inc.) equipped with a 100 × Plan-Apochromat 

1.4 NA objective (Carl Zeiss, Inc.).  If comparisons are to be made between images, the 

photos were taken with identical conditions and manipulated equally. For the 

95



 

 

quantification of GFP in the cilia, the length, area, and mean fluorescence intensity of the 

cilia was measured using the measurement tools of Openlab (Improvision).  Numbers 

reported are fluorescence intensity per micron of length. 
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Abstract 

 

The primary cilium is a sensory organelle, defects in which cause a wide range of human 

diseases including retinal degeneration, polycystic kidney disease and birth defects.  The 

sensory functions of cilia require specific receptors to be targeted to the ciliary 

subdomain of the plasma membrane.  Arf4 has been proposed to sort cargo destined for 

the cilium at the Golgi complex and deemed a key regulator of ciliary protein trafficking. 

In this work, we show that Arf4 binds to the ciliary targeting sequence (CTS) of 

fibrocystin.  Knockdown of Arf4 indicates that it is not absolutely required for trafficking 

of the fibrocystin CTS to cilia as steady-state CTS levels are unaffected.  However we did 

observe a delay in delivery of newly synthesized CTS from the Golgi complex to the 

cilium when Arf4 was reduced. Arf4 mutant mice are embryonic lethal and die at mid-

gestation shortly after node formation.  Nodal cilia appeared normal and functioned 

properly to break left-right symmetry in Arf4 mutant embryos.  At this stage of 

development Arf4 expression is highest in the visceral endoderm but we did not detect 

cilia on these cells.  In the visceral endoderm, the lack of Arf4 caused defects in cell 

structure and apical protein localization.  This work suggests that while Arf4 is not 

required for ciliary assembly, it is important for the efficient transport of fibrocystin to 

cilia, and also plays critical roles in non-ciliary processes. 
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Author Summary 

 

Primary cilia are ubiquitous sensory organelles that play vital roles in an ever-growing 

class of human diseases termed ciliopathies including obesity, retinal degeneration and 

polycystic kidney disease. The proper function of the primary cilium relies on a cell’s 

ability to target and concentrate specific receptors to the ciliary membrane – a unique 

subdomain of the plasma membrane yet little is known about how receptors are trafficked 

to the primary cilium.  Mutations affecting the ciliary localized receptor fibrocystin 

(PKHD1) cause autosomal recessive polycystic kidney disease, which affects 

approximately 1:20,000 individuals.  Previously we identified a motif located in the 

cytoplasmic domain of fibrocystin that is required for its ciliary localization.  In this work 

we demonstrate that the ciliary targeting sequence (CTS) of fibrocystin interacts with the 

small G protein Arf4 and this interaction is important for the efficient delivery of the CTS 

to cilia in cultured cells.  Disruption of Arf4 in mice results in defects in the non-ciliated 

visceral endoderm and death at mid-gestation indicating Arf4 has vital functions in 

addition to ciliary protein trafficking. 
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Introduction 

 

Cilia play diverse motility and sensory functions throughout the eukaryotic kingdom, but 

play especially critical roles in vertebrates where severe defects lead to embryonic 

lethality while mild defects cause a wide range of syndromes affecting every organ 

system.  Both the motility and sensory functions of cilia are important for health and 

development, but it is now recognized that sensory defects underlie the most severe 

maladies affecting humans.  The sensory functions of cilia rely on a cell’s ability to target 

and concentrate a specific set of receptors to the ciliary membrane.  While contiguous 

with the plasma membrane of the cell, the ciliary membrane is a distinct compartment to 

which the cell targets and concentrates a unique complement of proteins (Pazour and 

Bloodgood, 2008; Rohatgi and Snell, 2010). The list of membrane proteins found in the 

ciliary compartment is constantly growing; among the most studied ciliary proteins are 

the polycystins and fibrocystin that are defective in human polycystic kidney disease, 

rhodopsins and opsins that are critical for vision and the patched and smoothened 

receptors of the hedgehog pathway. 

The mechanism that targets membrane proteins specifically to the ciliary 

compartment is an active area of study but very little is definitively known (Nachury et 

al., 2010).  It appears that ciliary membrane proteins contain cis-acting motifs that cause 

them to be localized to cilia.  We identified one of these ciliary targeting sequences 

(CTS) in fibrocystin, the gene product of the human autosomal recessive polycystic 

kidney disease gene (PKHD1) (Follit et al., 2010; Onuchic et al., 2002; Ward et al., 2002; 
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Ward et al., 2003).  Like many other CTSs, the fibrocystin CTS contains lipid-modified 

residues that target the protein to lipid rafts, which appears to be part of the ciliary 

trafficking pathway.  We proposed that this sequence might interact with proteins that are 

important for sorting or transport to the ciliary membrane compartment.  In support of 

this idea, we found that the fibrocystin CTS interacted with Rab8, a protein widely 

recognized as important to ciliary membrane protein trafficking (Follit et al., 2010; 

Nachury et al., 2007; Yoshimura et al., 2007).  In the present work we asked if the 

fibrocystin CTS could interact with Arf4 as work of Deretic and colleagues has shown 

that this protein interacts with the CTS of opsin and is important for the formation of 

rhodopsin carrier vesicles at the Golgi complex (Deretic et al., 2005; Mazelova et al., 

2009). 

Arf4 is a small G protein in the Arf subfamily of Ras-related small G proteins.  

Mice have six members of this family while humans have lost Arf2 and have five 

members. Arf1 and Arf6 have been best studied and are thought to organize membrane 

protein cargos into coated vesicles for transport to specific lipid domains in the cell 

(D'Souza-Schorey and Chavrier, 2006; Donaldson and Jackson, 2011; Gillingham and 

Munro, 2007; Nie and Randazzo, 2006). Arf1 forms coated vesicles at the Golgi complex 

crucial for trafficking between the ER and Golgi and throughout the cell while Arf6 is 

thought to operate at the plasma membrane and regulate endosomal-membrane traffic.  

Arf4, which is thought to have evolved from an Arf1-like precursor when metazoans 

arose, is a relatively unstudied member of the family (D'Souza-Schorey and Chavrier, 

2006; Gillingham and Munro, 2007; Nie and Randazzo, 2006).  Arf4 was first proposed 
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to be important for ciliary trafficking when it was found to interact with the C-terminal 

tail of rhodopsin where the CTS is localized (Deretic et al., 2005).  Depletion of Arf4 

from an in vitro budding assay showed that it was important for the formation of 

rhodopsin carrier vesicles (Mazelova et al., 2009).  The CTSs of rhodopsins are contained 

in the last five amino acids (QV[S/A]PA) at the C-terminal end of the protein.  The V and 

P residues are mutated in human patients with autosomal dominant retinitis pigmentosa.  

These residues were found to be important in an in vitro assay for the formation of 

rhodopsin carrier vesicles, thus the sequence has become known as a VXPX motif.  A 

similar RVXP motif is present in the CNGB1b subunit of the CNG channel, another 

ciliary-localized protein (Jenkins et al., 2006).  The VXPX sequence is part of the CTS in 

polycystin-1 and polycystin-2 and it is hypothesized that VXPX motifs function as Arf4 

binding sites for transport to the cilium (Donaldson and Jackson, 2011; Geng et al., 2006; 

Ward et al., 2011). 

In this work we ask if Arf4 plays a role in trafficking the fibrocystin CTS to the 

cilium and probe the function of Arf4 in vivo by analyzing a mutant mouse.  Although the 

fibrocystin CTS does not contain a VXPX motif, it does bind to Arf4.  Arf4 is not 

required for the trafficking of the fibrocystin CTS to cilia, but knockdown of Arf4 

increases the time needed for the protein to travel from the Golgi complex to the cilium.  

Deletion of Arf4 in the mouse does not affect the formation or function of nodal cilia, but 

causes embryonic lethality at mid-gestation, probably due to trafficking defects in the 

visceral endoderm. 
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Results 

Arf4 interacts with the ciliary targeting sequence of fibrocystin 

Fibrocystin (polyductin), the human autosomal recessive polycystic kidney disease gene 

product, is targeted to cilia by an 18-residue ciliary targeting sequence (CTS) located in 

the cytoplasmic C-terminal tail of the protein.  Previously we showed that this sequence 

interacted with Rab8 and proposed that it may function by interacting with proteins 

involved in the sorting and transport of ciliary membrane proteins (Follit et al., 2010).  

Recent work indicates that Arf4 is required for trafficking of other ciliary proteins 

including rhodopsin and the polycystins (Deretic et al., 2005; Mazelova et al., 2009; 

Ward et al., 2011).  Arf4 is one of six members of the Arf subfamily of small G proteins.  

Our previous analysis showed that in non-ciliated cells, the GFP-CTS localized to small 

puncta that appeared to be lipid microdomains rich in GM1 gangliosides.  Interestingly, 

Arf4 exhibited significant co-localization with the CTS-GFP in these puncta while the 

rest of the Arf family did not (Fig 4.1A).  To determine if this colocalization represented 

a physical interaction, we immunoprecipitated each of the Arfs and asked if the CTS-GFP 

was co-precipitated.  Arf4 strongly precipitated the CTS, while the other Arfs either 

precipitated no CTS (Arf1, 3, 5, 6) or only a small amount (Arf2) (Fig 4.1B).  Because 

ARF2 is a pseudogene in humans we did not pursue the Arf2 interaction any further.  The 

failure of the CTS to interact with Arf5 suggests that the Arf4 interaction is likely to be 

specific as Arf4 and Arf5 share over 90% identity at the amino acid level. 

 To further characterize the interaction between Arf4 and the CTS we tested the 

ability of a series of CTS deletion constructs to interact with Arf4 in the co-expression 
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Figure 4.1: Arf4 interacts with the ciliary targeting sequence of fibrocystin. 
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Figure 4.1: Arf4 interacts with the ciliary targeting sequence of fibrocystin. 
A.  Mouse IMCD3 cells co-transfected with FLAG-tagged Arf proteins and GFP-tagged 
CTS; DAPI (blue) anti-FLAG (red) and GFP (green). Scale bar is 10 µm.  Note extensive 
colocalization of Arf4 and CTS-GFP.  B. FLAG IPs from cells shown in A were analyzed 
by western blot after SDS-PAGE. The top panel shows GFP-CTS expressed in the 
starting material.  The bottom panel indicates that each of the 6 Arf proteins was 
precipitated.  Only Arf4 brought down significant amounts of GFP-CTS (middle panel).  
C. Selected CTS deletion constructs were co-expressed with Arf4-FLAG.  Following 
FLAG IP, Arf4 (bottom panel) precipitated the full-length intracellular tail of fibrocystin 
(1-193) and also precipitated truncations including the CTS but not the 63-193 construct, 
which lacks the CTS.  Deletions to the CTS that prevent ciliary trafficking (1-19) and (4-
20) also bound Arf4.  Ciliary Level is a relative measure of the ability of the fusion 
protein to traffic to cilia with the control construct set to 100%.  Data are from [7].  D.  
Alanine scanning mutant CTSs were co-expressed with Arf4-FLAG.  After Arf4 
precipitation (bottom panel), WT, LV and IKP mutant CTSs were brought down (middle 
panel).  Mutations that completely prevented ciliary targeting of the CTS (CCC and 
KTRK) failed to interact with Arf4.  Ciliary Level is as described in C. 
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immunoprecipitation assay (Fig 4.1C).  In this assay, the CTS is sufficient for binding as 

the 3-20 construct was precipitated by Arf4 while the 63-193 construct, which lacks the 

CTS, was not bound.  The 1-19 and 4-20 constructs also interact with Arf4 but do not 

target to cilia, indicating the CTS has functions in addition to Arf4 binding. 

 Next we examined the ability of Arf4 to interact with a series of alanine-scanning 

mutations within the CTS (Fig 4.1D).  In general, the ability of Arf4 to bind the CTS 

correlated with the ability of the CTS to traffic to cilia.  For example, mutations affecting 

the palmitoylated cysteines (CCC>AAA) or conserved basic residues (KTRK>AAAA) 

prevent ciliary targeting and likewise inhibit Arf4 binding.  Mutations that exhibit little 

effect on the ciliary targeting of the CTS (LV>AA) similarly do not affect Arf4 binding.  

However the concordance was not perfect as the (IKP>AAA) mutation blocked ciliary 

targeting but had little effect on Arf4 binding, again supporting the idea that while the 

CTS is an Arf4 binding site, this is not its entire function. 

 Arf4 cycles between GTP and GDP bound states.  To explore the role of this 

cycling on the ciliary trafficking of the CTS we measured the affects of constitutively 

active and dominant negative Arf4 on ciliary targeting and interaction with the CTS (Fig 

4.2).  Constitutively active Arf4 (Q67L) co-localized with IFT20 at the Golgi Complex 

while wild type or dominant negative (T13N, T48N) Arf4 displayed a punctate 

distribution in the cytoplasm (Fig 4.2A).  The mutant forms of Arf4 retained the ability to 

bind the CTS (Fig 4.2E). Expression of dominant negative Arf4 reduced the percent of 

ciliated cells (Fig 4.2B) and ciliary length (Fig 4.2C).  Surprisingly, over-expression of 

any Arf4 constructs completely inhibited CTS trafficking to the cilium (Fig 4.2D).  These 
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Figure 4.2:  Arf4 expression inhibits CTS trafficking.  
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Figure 4.2:  Arf4 expression inhibits CTS trafficking. 
A.  Mouse kidney cells stably expressing wild type (top row), dominant negative (T13N, 
T48N) and constitutively active (Q67L) Arf4-FLAG (red) stained with IFT20 (green) and 
DAPI (blue).  Constitutively active (Q67L) localizes to the Golgi complex while wild 
type and dominant negative Arf4 are dispersed in the cytoplasm.  B. Expression of 
dominant negative (T13N, T48N) Arf4 reduced the percent of ciliated cells.  * p<0.05, ** 
p<0.01 as compared to IMCD cells not transfected with an Arf4-FLAG construct C.  
Dominant negative Arf4 (T13N, T48N) causes a reduction in ciliary length. * p<0.05, ** 
p<0.01 as compared to IMCD cells not transfected with an Arf4-FLAG construct D.  
Expression of any Arf4 constructs prevents ciliary trafficking of GFP-CTS.  *** p<0.001 
as compared to IMCD cells not transfected with an Arf4-FLAG construct.  B-D, error 
bars are standard error of the mean. E.  Co-immunoprecipitation experiments 
demonstrate that GFP-CTS interacts with FLAG-tagged Arf4 wild type and mutant 
proteins. 
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data indicate that increases in Arf4 levels prevent ciliary trafficking of the CTS possibly 

by sequestering it in the cytoplasm. 

Arf4 is required for efficient delivery of the fibrocystin c-terminal tail to the cilium 

Prior studies in frog photoreceptors (Deretic et al., 2005; Mazelova et al., 2009) and 

cultured mammalian cells (Ward et al., 2011) suggest that Arf4 functions at the Golgi 

complex to direct rhodopsin and polycystin-1 to the cilium.  Our initial 

immunofluorescence and biochemical results suggested that Arf4 may also be required 

for the ciliary targeting of fibrocystin.  To test the role of Arf4 in the trafficking of 

fibrocystin, we developed a pulse chase assay to measure its movement through the 

endomembrane system and delivery to the cilium.  To do this, we created a chimeric 

molecule containing the extracellular domain of CD8 fused to the C-terminal tail of 

fibrocystin (including the transmembrane domain) with a SNAP tag (Keppler et al., 2003) 

on the C-Terminal end (Fig 4.3A).  The extracellular domain of CD8 contains a signal 

sequence that when combined with the transmembrane domain of fibrocystin produces a 

type 1 membrane protein with membrane topology the same as native fibrocystin except 

that the large (3,851 residue) extracellular domain is replaced with the CD8 epitope.  The 

SNAP tag is a fragment of the DNA repair protein O6-alkylguanine-DNA 

alkyltransferase that can be covalently modified with benzyl guanine derivatives and 

allows for pulse chase experiments (Farr et al., 2009; Milenkovic et al., 2009).  We 

developed a protocol to follow the movement of this chimeric protein through the endo-

membrane system.  At the beginning of the experiment all existing SNAP sites are 

blocked with a non-fluorescent benzyl-guanine so that only newly synthesized protein 
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will be labeled by the fluorescent benzyl-guanine.  The newly synthesized SNAP-CTS is 

first detected in the endoplasmic reticulum as expected for a trans-membrane receptor.  

The protein then moves to the Golgi complex where it can be trapped using a 19°C 

temperature block (Saraste et al., 1986).  Shifting the cells back to 37°C allows the 

accumulated protein to exit the Golgi and traffic to the cilium where it can be detected 

within 30 min of release. 

 To determine if Arf4 is involved in trafficking of the CTS, cells expressing the 

CD8-CTS-SNAP construct were treated with siRNA to reduce the level of Arf4.  Arf4 

mRNA level was reduced greater than 90% as compared to cells treated with a control 

scrambled siRNA (Fig 4.3B).  The Arf4 knockdown did not affect the percent of ciliated 

cells nor did it affect ciliary length (data not shown).  Arf4 knockdown did not affect the 

total amount of CD8-CTS-SNAP in the cilium as measured by CD8 fluorescence (Fig 

4.3D).  To determine if the reduction of Arf4 affected the rate of delivery to the cilium, 

we measured the time that it takes for the CD8-CTS-SNAP construct to move from the 

Golgi complex to the cilium by using the pulse chase protocol described above.  Newly 

synthesized protein was accumulated in the Golgi complex by a 19°C block and then 

released by shifting cells to 37°C (Fig 4.3C, D).  In control cells, after release from the 

Golgi block the CD8-SNAP-CTS moves quickly to the cilium and is detectable at the 1 

hr time point with the ciliary level peaking at about 2 hrs post block (Fig 4.3C, insets).  In 

contrast, when Arf4 is depleted, little CD8-CTS-SNAP is detectable in the cilium within 

the first two hrs after release from Golgi block but protein is detectable at 4hrs.  These 
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Figure 4.3: Arf4 knockdown delays CTS trafficking to the primary cilium. 
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Figure 4.3: Arf4 knockdown delays CTS trafficking to the primary cilium. 
A. Diagram of the CD8-CTS-SNAP construct used in the trafficking assays.  The 
extracellular domain of CD8 (green) is fused to fibrocystin (blue) just N-terminal to its 
transmembrane domain and the SNAP-tag (red) is fused to the C-terminus of fibrocystin.  
B. siRNA mediated knockdown of Arf4 results in a >90% reduction in Arf4 mRNA 
abundance as indicated by qRT-PCR.  C.  Immunofluorescence images showing CTS-
SNAP trafficking in control (left two columns) and Arf4 knockdown (right two columns) 
cells.  Mouse kidney cells stably expressing CD8-CTS-SNAP were blocked with non-
fluorescent SNAP substrate, allowed 1.5 hr to synthesize new CD8-CTS-SNAP (1.5 Hour 
Post Block, top row), treated with cycloheximide and incubated at 19° C for 2hr to 
accumulate CD8-CTS-SNAP at the Golgi complex (Golgi Block t=0, second row).  At 
t=0 cells were returned to 37° C for the indicated amount of time (bottom 3 rows).  At 
indicated times, cells were fixed and stained with DAPI (blue) anti-CD8 (green) and 
TMR-SNAP (red).  Scale bar is 5 µm.  Insets are 2X enlargements of the cilium.  D. 
Quantification of the delivery of CD8-CTS-SNAP to cilia.  Starting at the time of 
temperature shift from 19° C to 37° C (t=0), the ciliary levels of CD8 and SNAP were 
measured by fluorescence microscopy.  CD8 staining (green) is present at similar levels 
in the control and knockdown cells at all time points.  Newly synthesized CD8-CTS-
SNAP (red) is seen in control cilia within 1 hr of release.  An increase is observed at 2 hr 
and the amount of SNAP label plateaus at 4 hr.  Knockdown of Arf4 delays delivery such 
that little label is detected in the cilia until the 4hr time point.  Differences were 
significant at t=1, 2 (t=0 NS; t=1 * p<0.05; t=2 **p<0.005; t=4 NS).  The mean CD8 
fluorescence (solid line) and SNAP fluorescence (dotted line) were plotted from three 
independent experiments in which 50 cilia were quantitated for each condition (Arf4 
knockdown and control) at each time point.  Error bars represent standard error of the 
mean. 
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data indicate Arf4 is not absolutely required for the delivery of the CTS to the cilium but 

does play a kinetic role in the steps between the Golgi complex and the cilium. 

Arf4 mutant mice are embryonic lethal 

Our initial data indicate that Arf4 interacts with the CTS of fibrocystin and this 

interaction is required for the efficient delivery of newly synthesized CTS to the cilium.  

Data in the literature suggest that Arf4 is important for the trafficking of rhodopsin and 

the polycystins to cilium and it has been suggested that it is a global regulator of ciliary 

cargo (Deretic et al., 2005; Mazelova et al., 2009; Ward et al., 2011).  To test the idea of 

whether Arf4 was a global regulator of ciliary protein trafficking we created an Arf4 

knockout mouse with the prediction that if it plays this role, the mouse should have 

ciliopathy phenotypes.  Embryonic stem cells harboring a LacZ insertion in the Arf4 

locus just downstream of exon 3 were obtained from the Sanger Institute and used to 

create an Arf4 knockout mouse (Fig 4.4).  The allele we generated expresses less than 1% 

of control Arf4 mRNA and is, at minimum, a strong hypomorph (Fig 4.4C). 

 Mice lacking cilia typically die mid-gestation around day e10 with a failure to 

undergo embryonic turning and have severe disruptions in left-right patterning (Nonaka 

et al., 1998).  Similar to this, the Arf4 mutant mice are embryonic lethal at mid-gestation 

with no live embryos detected after day e9.5 (Fig 4.4D).  At e9.5 the mutant embryos 

were smaller than either wild type or heterozygous embryos and never completed 

embryonic turning to assume the characteristic fetal body position that is observed in 

almost all wild type and heterozygote embryos by this time (Fig 4.4A,B). 
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Figure 4.4: Arf4 mutant mice are embryonic lethal.  
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Figure 4.4: Arf4 mutant mice are embryonic lethal. 
A, B.  By e9.5, wild type and most heterozygous mice complete embryonic turning and 
adopt the normal fetal orientation.  At this time point, Arf4 mutants are smaller and have 
not completed embryonic turning.  C. qRT-PCR analysis indicates that mean Arf4 
mRNA abundance in the mutant embryos is <1% of controls; error bars depict standard 
error of the mean.  D.  Genotype distribution as a function of age (+/+ green; +/- red; -/- 
blue).  Arf4 mutant embryos are present until e12.5, however all mutant embryos 
dissected after e9.5 were dead and being resorbed. 
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 To investigate if Arf4 affects ciliary assembly we performed scanning electron 

microscopy (SEM) of the node, which is thought to be the first ciliated structure in the 

embryo.  To preclude differences caused by a developmental delay in the mutant 

embryos, embryos from multiple litters were dissected and those at the 3-4 somite stages 

were examined by SEM (Fig 4.5A).  No differences were observed in either length or 

number of cilia present on the mutant nodes as compared to wild type or heterozygous 

embryos (Fig 4.5B, C) indicating that Arf4 is not required for ciliary assembly.  Nodal 

cilia beat to create a leftward flow required to break the left/right symmetry of the 

developing embryo (Nonaka et al., 1998).  This leads to asymmetric gene expression 

patterns on the left versus right side of the embryos and eventually leads to the right-right 

pattern of the abdominal and visceral organs.  One of the earliest physical manifestations 

is the looping of the heart tube, which under normal conditions adopts a characteristic C-

loop by day 9.5.  The developing heart in Arf4 mutant embryos always adopts a C-loop 

indicating the nodal cilia present in the Arf4 mutant embryos are functional in breaking 

left/right symmetry (Fig 4.5D, E). 

Arf4 expression is highest in the visceral endoderm 

Arf4 mutant mice die at approximately embryonic day 9.5.  This embryonic lethality is 

not associated with left-right defects suggesting that ciliary dysfunction is not the cause, a 

finding corroborated by our failure to detect structural or functional defects in the nodal 

cilia.  To identify the site of pathology, we took advantage of the β-galactosidase 

insertion that was used to generate this allele and performed X-Gal staining to identify 

the sites of high Arf4 expression (Fig 4.6).  As expected, no staining was observed in the 
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Figure 4.5: Arf4 mutant mice have functional nodal cilia. 
A.  SEM of 3-4 somite developmentally matched embryos at 2,500X (top), 10,000X 
(middle) and 20,000X (bottom) magnification showing nodal cilia in wild type (left 
column) and Arf4 mutant (right column) embryos.  B. Nodal cilia length is not 
significantly affected by the Arf4 mutation.  Mean cilia length from 3-4 somite stage 
embryos is plotted (N=3 each genotype); error bars are standard error of the mean.  C.  
Total number of nodal cilia is not significantly affected in the Arf4 mutants.  Mean 
number of cilia per node (N=3 for each genotype) is plotted; error bars are standard error 
of the mean.  D.  SEM of developing heart tube at e9.5 showing normal heart looping in 
wild type (left) and Arf4 mutant (right) embryos.  E.  Heart looping analysis of e9.5 
embryos shows that all had normally looped hearts (n=22, 38, 18 for +/+, +/-, -/-). 
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wild type embryos.  Both the heterozygous and homozygous mutants showed staining at 

all three time points examined, with the staining concentrated in the extra-embryonic 

tissues (Figure 4.6).  To better understand what cells were labeled, e9.5 embryos were 

stained and then sectioned (Figure 4.6D).  In the heterozygote and mutant, the majority of 

the stain was seen in the outer cell layer of the yolk sac, which is the visceral endoderm 

(Figure 2.6D). The mutant embryos also showed some staining within the epiblast, which 

is probably the definitive endoderm.  The yolk sac consists of two layers; the outer 

visceral endoderm is composed of highly polarized cells covered with microvilli on their 

apical surface, while the inner mesoderm gives rise to the developing blood islands in 

early development of the circulatory system (Zohn and Sarkar, 2010). 

Arf4 is required for visceral endoderm function 

As Arf4 is most highly expressed within the visceral endoderm during development, we 

examined this tissue further by immunofluorescence and electron microscopy (Fig 4.7).  

To determine if these tissues were ciliated, we stained yolk sacs and sectioned embryos 

for cilia, and imaged by confocal microscopy.  We did not detect cilia on the visceral 

endoderm at embryonic day 8.5 or 9.5.  However cilia are present on the adjacent inner 

layer of mesoderm cells in both wild type and mutant embryos at these stages in 

development (Fig 4.7A, B). 

The visceral endoderm serves as the major secretory and absorptive tissue of the 

developing embryo prior to placental formation (Bielinska et al., 1999).  As expected for 

a highly absorptive tissue, the visceral endoderm has a well-developed brush border on 

the apical surface and large lysosomes that facilitate uptake and breakdown of 
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endoderm during development.  
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Figure 4.6: Arf4 expression is concentrated in the visceral endoderm during 
development. 
A-C.  β-Gal staining indicates Arf4 expression at e7.5 (A) e8.5 (B) and e9.5 (C) is 
highest in the extra-embryonic tissues (yolk sac) of the developing embryo (blue in 
heterozygote and mutant).  This is most clearly seen in C, where e9.5 embryos have been 
photographed before (top row) and after dissection of the epiblast (middle row) from the 
yolk sac (bottom row).  Mutant animals show β-gal staining in the epiblast but little 
staining of the epiblast is seen in the heterozygote.  D.  Sections through e9.5 embryos 
show that β-Gal activity is concentrated in the visceral endoderm (outermost cell layer of 
the yolk sac, arrowheads) in both heterozygous and mutant embryos.  Some staining is 
observed in the epiblast of the mutant embryo, which is likely in the definitive endoderm 
(arrow). 
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macronutrients from the maternal blood supply (Fig 4.7C).  In Arf4 mutants the 

apical/basolateral polarity appears intact and the brush border remains, but the microvilli 

are less organized.  In addition, bulbous misshapen microvilli are often observed along 

with small vesicles that are surrounded by a fuzzy coat, which is not seen on the 

microvilli (Fig 4.7C, middle row).  The cell-cell contacts also appear to be compromised 

as more space is seen between the mutant cells by TEM; moreover microprojections that 

form the interdigitations between the lateral surfaces of adjacent cells can be observed by 

SEM on the apical surface of the mutants but not the controls (Fig 4.7C, bottom row).  

Arf4 mutant embryos lack the large lysosomes suggesting that visceral endoderm 

function may be compromised. 

The visceral endoderm carries out its absorptive function by localizing megalin 

(Lrp2) and other scavenger receptors on its apical surface.  These receptors bind to 

substrates such as vitamins, lipoproteins and signaling molecules [reviewed in (May et 

al., 2007)], which are then internalized and transcytosed or broken down in the lysosome.  

Trafficking defects within the visceral endoderm result in embryonic lethality and are 

often associated with mislocalization of megalin (Lighthouse et al., 2011; Nada et al., 

2009).  At e8.5, megalin is normally concentrated along the apical surface of the visceral 

endoderm (Fig 4.7D).  Arf4 mutants have significantly reduced megalin staining at the 

apical surface and some of the protein appears in the cytoplasm.  This suggests megalin 

trafficking is disrupted in Arf4 mutants and supports the ultrastructural studies of the 

visceral endoderm that indicate nutrient uptake is compromised within this cell layer. 
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Figure 4.7:  Arf4 mutant embryos have defects in the visceral endoderm. 
A.  Confocal images of the visceral endoderm (arrowhead, outermost cell layer) and 
adjacent mesoderm (inner cell layers) of e8.5 embryo sections.  Cilia (arrows) stained 
with acetylated tubulin (red) and IFT88 (green) are present on mesodermal cells in both 
mutant and wild type embryos.  No cilia were observed on the visceral endoderm.  Scale 
bar is 5 µM.  B.  Confocal images of flat mounted yolk sacs from e9.5 embryos stained 
with acetylated tubulin (red) and IFT27 (green).  Numerous cilia (arrows) are present on 
the mesoderm in both wild type and mutant embryos.  Scale bar is 5 µM. C.  Thin section 
TEM images of the visceral endoderm at e8.5 of wild type (left) and Arf4 mutant (right) 
embryos.  Healthy visceral endoderm is filled with large lysosomes (arrows, top panel), 
which in the mutants are reduced in number and size.  The microvilli on the apical 
surface of the visceral endoderm (middle panel) are abnormally organized and shaped in 
the mutant, and are associated with small coated vesicles (arrow) not seen in the controls.  
Scale bar is 2 µM for all TEM images.  The abnormally shaped microvilli are better 
observed by SEM (bottom panels).  In controls, the microvilli have a uniform diameter 
while the tips are bulbous in the mutants.  In addition, cell/cell contacts appear to be 
compromised in the mutants, as the microprojections that normally form the 
interdigitations between the lateral surfaces of the cells are visible on the apical surface 
(regions of cell/cell contact are marked with arrows).  D.  Megalin staining (green) is 
normally concentrated at the apical surface of the visceral endoderm of e8.5 embryos.  
Mutants have significantly reduced megalin staining.  Golgi organization (giantin, red) 
does not appear to be affected.  E.  Co-IP experiments showing GFP tagged fibrocystin 
(left two columns) and megalin (right two columns) expressed in cell lysates (GFP blot, 
top panel) along with FLAG tagged Arf4 (lanes 1 & 3) or Arf5 (lanes 2 & 4).   Following 
immunoprecipitation of Arf4 and Arf5 (FLAG blot, bottom panel), Arf4 brought down 
fibrocystin and megalin (GFP blot, middle panel, lane 1 and 3) while Arf5 did not 
precipitate either fibrocystin or megalin (GFP blot, lanes 2 & 4, middle panel). 
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Megalin is a type 1 membrane protein with a large extra cellular domain, single 

transmembrane span and a short cytoplasmic C-terminal tail similar to the structure of 

fibrocystin.  Because of the similarity in structure and the observation that Arf4 mutant 

embryos have reduced megalin on the apical surface of the visceral endoderm, we asked 

if Arf4 interacts with megalin.  To test if Arf4 interacts with megalin we replaced the 

large extracellular domain of megalin with CD8a and fused a SNAP and GFP to the c-

terminal end of megalin creating a construct similar to the fibrocystin construct (Figure 

4.23).  Co-immunoprecipitation indicates Arf4 interacts with the intracellular domain of 

megalin (Fig 4.7E).  Similar to what we observed with fibrocystin, the highly similar 

protein Arf5 did not interact with megalin.  These data suggest Arf4 is involved in not 

just trafficking of ciliary cargo but also a larger class of trans-membrane receptors – 

including megalin. 

 

Discussion 

The primary cilium is a sensory organelle and its proper function relies on the correct 

complement of receptors localized specifically in the ciliary membrane.  Little is known 

about how proteins are sorted to the ciliary compartment but understanding this process is 

critical as defects in the signaling functions of primary cilia underlie a diverse group of 

human pathologies known collectively as ciliopathies.  These diseases range from 

developmental defects of the brain, heart and other organs to chronic ailments including 

retinal degeneration, obesity and polycystic kidney disease.  To study ciliary protein 
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sorting, we focused on analysis of the trafficking of the transmembrane protein 

fibrocystin to the primary cilium.  Mutations in the fibrocystin gene (PKHD1) are 

responsible for autosomal recessive polycystic kidney disease, a disorder afflicting 

approximately 1 in 20,000 individuals and a cause of significant mortality during the first 

year of life (Harris and Torres, 2009; Pazour, 2004).  The ciliary targeting sequence of 

fibrocystin is an 18 amino acid sequence contained in the cytoplasmic tail (Follit et al., 

2010).  We had previously shown that the CTS interacts with the small G protein Rab8.  

In this work we studied the interaction of the CTS with another small G protein, Arf4.  

Arf proteins group vesicular cargo and through interactions with coat proteins form 

transport vesicles (D'Souza-Schorey and Chavrier, 2006; Donaldson and Jackson, 2011; 

Nie and Randazzo, 2006).  The proposed sorting ability of Arf proteins make them 

attractive candidates as specificity factors and recent work suggests Arf4 is involved in 

targeting rhodopsin and polycystin-1 to the cilium (Deretic et al., 2005; Mazelova et al., 

2009; Ward et al., 2011).  We found that Arf4 was capable of interacting with the 

fibrocystin CTS in a co-immunoprecipitation assay.  The interaction is specific as Arf4 is 

the only member of this highly conserved family that precipitated significant amounts of 

the CTS.  The analysis of deletion and alanine scanning mutants within the cytoplasmic 

tail of fibrocystin showed that the Arf4 interaction site was localized within the CTS.  

The ability of Arf4 to bind to the mutated CTSs roughly correlated to the ability of the 

CTS to enter the cilium suggesting that the Arf4/CTS interaction was functionally 

important. 
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Using SNAP-tagging technology we found that Arf4 is not absolutely required for 

the delivery of the fibrocystin targeting construct to cilia as the steady state level of the 

protein was not affected by knockdown of Arf4.  This is in contrast to the reported effect 

of knockdown on the trafficking of polycystin-1 where Arf4 knockdown significantly 

reduced ciliary levels of polycystin-1 (Ward et al., 2011).  However, in our hands, the 

delivery of newly synthesized fibrocystin fusion protein was slower in the knockdown 

cells indicating that Arf4 is needed for the efficient delivery to primary cilia.  The 

delayed, but eventual delivery of the CTS to the cilium may be a result of residual Arf4 

protein (~10% of the mRNA remains in the knockdown cells) or it may indicate an 

alternative pathway to the cilium that does not utilize Arf4.  Smoothened appears to enter 

the ciliary compartment by first traveling to the plasma membrane before moving into the 

cilium (Milenkovic et al., 2009) and so it is possible that this route can also be utilized by 

fibrocystin. 

 Our work, and work from others, indicates that Arf4 may play a key role in 

sorting transmembrane receptors to the cilium.  This suggests that Arf4 may be an 

important player in human diseases such as retinal degeneration and polycystic kidney 

disease.  To better understand the function of Arf4 and its possible role in ciliopathies, we 

created an Arf4 knockout mouse.  If the primary function of Arf4 is specific to cilia, we 

would expect the mutant mice to exhibit phenotypes in common with established 

mutations that affect cilia.  Mice with strong defects in ciliary assembly die at mid-

gestation with severe left-right abnormalities while those with more mild ciliary defects 

survive longer and display phenotypes indicative of hedgehog signaling dysfunction.  
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Arf4 mutant mice die at embryonic day 9.5, which is similar to the time when mice with 

severe ciliary assembly defects die.  However, ciliary assembly is normal in the 

embryonic node and the nodal cilia are functional as all embryos broke left-right 

symmetry properly and formed a C-looped heart.  We did not examine polycystin-2 

levels on the nodal cilia, but the fact that the embryos broke symmetry properly suggests 

that it would not have been severely affected (Pennekamp et al., 2002).  The embryonic 

lethality but lack of ciliary defects suggested that Arf4 might have functions in addition 

to the ciliary targeting of transmembrane proteins.  Expression analysis between 

embryonic day 7 and 10, around the time that the Arf4 mutant embryos were dying, 

indicated that the major site of Arf4 expression was in the visceral endoderm.  

Examination of the visceral endoderm indicates that this tissue is not ciliated at this time 

in development although cilia are present on the adjacent mesoderm.  The visceral 

endoderm is the major secretory and absorptive tissue of the developing embryo prior to 

chorioallantoic placenta formation (Zohn and Sarkar, 2010) and defects within this cell 

layer often result in embryonic lethality (Lighthouse et al., 2011; Nada et al., 2009).  Arf4 

mutant embryos have multiple defects within the visceral endoderm.  Ultrastructural 

analysis of the visceral endoderm indicates Arf4 mutant embryos have defects in cell-cell 

contacts and organization of the brush border, but most strikingly, they lack the large 

lysosomes normally present in healthy tissue.  The absence of lysosomes could be a 

direct effect of the Arf4 mutation, but is more likely an indirect consequence of a failure 

to absorb nutrients from the adjacent maternal blood supply.  A failure to uptake nutrients 

is consistent with the observed growth restriction evident by embryonic day 7 and likely 
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accounts for the lethality around day 9.  The apical surface of the visceral endoderm is 

covered with microvilli that contain a number of scavenger receptors that bind ligands 

including vitamins and lipoproteins required by the developing embryo.  We examined 

the distribution of one of these receptors, megalin, within the visceral endoderm.  

Megalin is normally localized to the apical surface of the developing visceral endoderm 

however in Arf4 mutants, megalin fails to localize to the apical surface.  Megalin is a 

large single span transmembrane receptor with membrane topology similar to fibrocystin.  

Co-immunoprecipitation assays indicate that Arf4 can interact with megalin similar to 

what we observed between Arf4 and fibrocystin.  This interaction and the observed 

defects in megalin trafficking in the Arf4 mutant suggest that Arf4 is required to target 

megalin to the apical surface. 

 RNAi studies suggested that the Arf family of proteins was highly redundant and 

it was not predicted that the genetic loss of any one would have a strong phenotype 

(Kudelko et al., 2012).  The observation that Arf4 null mice die mid gestation indicates 

that this is not correct.  To date, Arf6 is the only other Arf family member that has been 

mutated in the mouse.  Like Arf4, Arf6 null mice die during development, although they 

survive longer than the Arf4 mice.  The major defect in Arf6 null mice was in the liver, 

where the lack of Arf6 caused increased rates of apoptosis resulting in a significantly 

smaller liver with lethality around embryonic day 15 (Suzuki et al., 2006).  The fact that 

both Arf4 and Arf6 mice survive through early gestation suggests that neither of these 

genes are essential genes at the cellular level, but do play critical functions in particular 

cells at particular times in development.  In the case of the Arf4 mouse, the major defect 
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was in the visceral endoderm, a tissue with a very high rate of internalization and 

trafficking of lipid and protein molecules.  It is possible that this is the first point in 

development that requires this level of internalization and trafficking.  The analysis of a 

floxed allele will be of interest to determine if Arf4 is required in adult cells with a high 

rate of flux such as the intestine or kidney proximal tubule, or even the rod and cone 

photoreceptor cells where a high flux is needed to maintain the outer segment. 

The literature on Arf4 has mostly focused on proposed roles in trafficking 

proteins to the ciliary membrane compartment.  However, our finding that the highest 

level of expression is in the visceral endoderm, which is not ciliated at the time of high 

expression, suggests that Arf4 has functions outside the targeting of ciliary cargo.  This is 

consistent with two recent studies finding that class II Arfs (Arf4, Arf5) play roles in the 

trafficking of dense core vesicles (Sadakata et al., 2012; Sadakata et al., 2010) and 

secretion of Dengue virus particles (Kudelko et al., 2012).  In the case of the dense core 

vesicle transport, Arf4 and Arf5 interacted with two calcium dependent activator proteins 

for secretion (CAPS1 and CAPS2).  This interaction was required for the efficient 

trafficking of dense core vesicles as knockdown of either Arf4/5 or CAPS1/2 

significantly reduced chromogranin secretion (Sadakata et al., 2012; Sadakata et al., 

2010).  In the case of Dengue virus production, Arf4 and Arf5 were required for the 

secretion of subviral particles and the Arfs were thought to act though an interaction with 

prM glycoprotein of the virus.  Interestingly, the prM glycoprotein contains a VXPX 

motif in the C-terminus similar to the Arf4 binding site in rhodopsin (Deretic et al., 

2005).  However mutation of the VXPX motif did not disrupt interaction with Arf4 
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indicating that it is not the binding site (Kudelko et al., 2012).  This is consistent with our 

finding that Arf4 binds to the CTS of fibrocystin, which does not contain a VXPX motif 

and studies of nephrocystin-3, which contains a VXPX motif that is not necessary for 

ciliary targeting (Nakata et al., 2012). 

In conclusion, we have shown that Arf4 plays a role in the efficient transport of 

the fibrocystin CTS to the cilium, but it is not required for ciliary assembly and in the 

mouse has critical functions in non-ciliated cells.  Thus, our work, and other published 

work, suggests that Arf4 function is not restricted to ciliary assembly but rather plays a 

broader role in cellular trafficking. 
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Materials and Methods 

Ethics Statement 

Mouse work was approved by the University of Massachusetts Medical School IACUC. 

Mouse Breeding 

An Arf4-mutant ES cell line was obtained from the Sanger Center and used to generate 

Arf4Gt(AY0614)Wtsi mutant mice. The animals used in this study were a mix of 129 and 

C57Bl6 backgrounds. Embryonic ages were determined by timed mating with the day of 

the plug being embryonic day 0.5. Genotyping was carried out with the following primer 

pairs: Arf4-1 AGCAGCCTCATTGTCCTAGC + Arf4-2 

CCTCCCCACAATTCAACAAT (product size = 189 bp in wildtype) and Geo-3 

GATCGGCCATTGAACAAGAT + Geo-4 CAATAGCAGCCAGTCCCTTC (product 

size = 280 bp in mutant). 

Mammalian Cell Culture 

IMCD3 (ATCC) were grown in 47.5% DMEM 47.5% F12, 5% fetal bovine serum, with 

penicillin and streptomycin at 37° C in 5% CO2. Cells were transfected by 

electroporation (Bio-Rad, Hercules CA). Stable cell lines were selected by supplementing 

the medium with 400 µg/ml of G418 (Sigma, St. Louis, MO). Clonal lines were selected 

by dilution cloning after drug selection. 
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Electron Microscopy 

For scanning electron microscopy (SEM), timed pregnant females were euthanized by 

approved IACUC protocols, embryos dissected in DMEM/F12 supplemented with 5% 

fetal bovine serum, fixed overnight in 2.5% glutaraldehyde in 0.1M sodium cacodylate.  

Fixed embryos were rinsed twice with 0.1M sodium cacodylate, osmicated in 1% 

osmium tetroxide, dehydrated in a graded ethanol series and critical point dried 

(Autosamdri-815, Series A, Tousimis Research Corp.).  Dried embryos were sputter 

coated with iridium to a thickness of 3 nm (Cressington 208 HR Sputter Coater, Ted 

Pella, Redding, CA, USA) and examined in a scanning electron microscope (FEI Quanta 

200 FEG SEM) (SanAgustin et al., 2009).  For comparison of nodal cilia, embryos were 

developmentally matched by counting somite number. 

For transmission electron microscopy (TEM), samples were fixed, osmicated and 

dehydrated as described above.  Dehydrated samples were then infiltrated first with two 

changes of 100% propylene oxide and then with a 50%/50% propylene oxide / SPI-Pon 

812 resin mixture.  The following day, three changes of fresh 100% SPI-Pon 812 resin 

were done before the samples were polymerized at 68oC in plastic capsules.  The samples 

were then reoriented and thin sections were placed on copper support grids and 

contrasted with Lead citrate and Uranyl acetate.  Sections were examined using a Phillips 

CM10 TEM with 80Kv accelerating voltage, and images were captured using a Gatan 

TEM CCD camera. 
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Immunofluorescence Microscopy 

Cells for immunofluorescence microscopy were grown, fixed, and stained as described 

(Follit et al., 2008).  For visceral endoderm immunofluorescence, e8.5 embryos were 

fixed for 15 minutes at room temperature with 4% paraformaldehyde in PBS rinsed twice 

in PBS, equilibrated in 30% sucrose overnight and embedded in Tissue Freezing Media 

(Triangle Biomedical Sciences).  Cryosections (10 µm) were blocked for 1 hour in 1% 

bovine serum albumin, incubated with primary antibodies overnight at 4°C. 

Primary antibodies included anti acetylated-tubulin (611B1, Sigma, St. Louis 

MO), anti-FLAG (Sigma), anti-MmIFT20, anti-MmIFT88 (Pazour et al., 2002a), 

MmIFT27 (Keady et al., 2012), anti-golgin97 (CDF4, Molecular Probes) anti-BIP (clone 

40, BD Transduction Laboratories), anti-Rab11 (clone 47, BD Transduction 

Laboratories), anti-TfR (clone H68.4, Invitrogen), anti-giantin (Nozawa et al., 2002) and 

anti-megalin (P-20, Santa Cruz Biotechnology). 

Widefield images were acquired by an Orca ER camera (Hamamatsu, 

Bridgewater, NJ) on a Zeiss Axiovert 200 M microscope equipped with a Zeiss 100× 

plan-Apochromat 1.4 NA objective. Images were captured by Openlab (Improvision, 

Waltham, MA) and adjusted for contrast in Adobe Photoshop. If comparisons are to be 

made between images, the photos were taken with identical conditions and manipulated 

equally. For the quantification of SNAP and CD8 in the cilia, the length, area, and 

average fluorescence intensity of the cilia was measured using the measurement tools of 

Openlab. To determine significance of differences, data from three independent 

experiments were subjected to an unpaired Student’s T test.  Confocal images were 
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acquired by a Nikon TE-2000E2 inverted microscope equipped with a Solamere 

Technology modified Yokogawa CSU10 spinning disk confocal scan head. Z-stacks were 

acquired at 0.2 µm or 0.5 µm intervals and converted to single planes by maximum 

projection with MetaMorph software. Bright field images were acquired using a Zeiss 

Axioskop 2 Plus equipped with an Axiocam HRC color digital camera and Axiovision 

4.0 acquisition software. 

SNAP Trafficking Assays 

The construct (pJAF270) used for SNAP trafficking assays was constructed by fusing the 

extracellular domain of mouse CD8a (Xia et al., 2001) to the last 17 extracellular residues 

of mouse fibrocystin through the first 27 intracellular residues, the SNAP tag was cloned 

onto the c-terminal end of the CTS creating CD8-CTS-SNAP.  Mouse kidney cells stably 

expressing CD8-CTS-SNAP were incubated with 0.04 µM cell permeable non-

fluorescent BG-Block (New England Biolabs) for 30 minutes to block all SNAP epitopes.  

Following 3 washes with complete growth media cells were allowed to synthesize new 

CD8-CTS-SNAP for 1.5 hrs before the addition of HEPES pH 7.4 to 20 mM and 

cycloheximide to 150 µg/ml, then shifted to 19°C for two hrs to accumulate CD8-CTS-

SNAP at the Golgi complex.  Cells were returned to 37° and allowed to traffic CD8-CTS-

SNAP for the indicated periods of time before being fixed and stained. 

 For siRNA knockdown, cells were transfected by RNAiMAXX (Invitrogen) with 

SMARTpool siRNA (Dharmacon) targeting Arf4 (L-060271) or a non-targeting control 

(D-001810) and assayed for knockdown 48 hours post transfection. 
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Protein Analysis 

FLAG-tagged Arf1-6 (pJAF215, pJAF213, pJAF214, pJAF216, pJAF210, pJAF211), 

were constructed by PCR amplifying the open reading frames and inserting them into 

p3XFLAG-CMV-14 (Sigma, St. Louis, MO).  Point mutations in Arf4 (Arf4T31N = 

pJAF221, Arf4T48N = pJAF222, Arf4Q71L = pJAF223) were generated by inverse PCR 

using the Quick Change II site directed mutagenesis kit (Stratagene) starting from 

pJAF216.  Cells were transfected with FLAG-tagged Arf and GFP-tagged CTS deletion 

and alanine scanning mutants used in (Follit et al., 2010), CD8-PKHD1 (pJAF268), or 

CD8-Megalin (pJAF281) and 48 hours later, FLAG immunoprecipitation was carried out 

as described in (Follit et al., 2008). 

Beta-galactosidase Staining of Mouse Embryos 

Embryos were fixed in 0.2% glutaraldehyde, 2% formalin, 5mM EGTA and 2mM MgCl2 

in 0.1M phosphate buffer pH 7.3 for 10 minutes at room temperature then rinsed three 

times in wash buffer containing 0.1% sodium deoxycholate, 0.2% IGEPAL, 2mM MgCl2 

in 0.1M phosphate buffer for 30 minutes each wash.  Fixed embryos were stained 

overnight at 37° C in 1mg/ml X-gal, 5mM potassium ferrocyanide, 5mM potassium 

ferricyanide diluted in wash buffer. 

mRNA Analysis 

RNA was isolated from individual e9.5 embryos or from IMCD3 cells using RNeasy kits 

(Qiagen), including on-column DNA digestion. First strand cDNA was synthesized from 

100-500 ng of total RNA using a SuperScript II First-Strand Synthesis System 
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(Invitrogen, Carlsbad, CA) and random hexameric primers. Quantitative real-time PCR 

primers were designed to produce amplicons between 100–150 nucleotides in length, 

using the online primer3 web PCR primer tool 

(http://fokker.wi.mit.edu/primer3/input.htm) and the IDT Primer Express software tool 

(http://www.idtdna.com/Scitools/Applications/Primerquest/).  Primers were synthesized 

by Integrated DNA Technologies Inc (Coralville, IA) and are listed in Table 1.  qRT-PCR 

analysis was performed using an ABI Prism 7500 sequence detection system (Applied 

Biosystems, Foster City, CA). Each reaction contained 5-12.5 ng first strand cDNA, 0.1 

µM each specific forward and reverse primers and 1× Power SYBR Green (Applied 

Biosystems, Foster City, CA) in a 15 µl volume. Arf4 mRNA expression was normalized 

to GAPDH mRNA abundance and compared between mutant and control animals with an 

unpaired Student t-test. 

Table 4.1: qPCR Primers 
 

Primer Name Sequence Tm Amplicon 

MmARF4exon3FOR TTCACAGTATGGGATGTTGGTGGTCA 59.9 133 

MmARF4exon4REV GCACAGCTGCTCCTTCCTGGATT 61.7  

MmGAPDHExon3FOR GCAATGCATCCTGCACCACCA 61.1 138 

MmGAPDHExon4rREV TTCCAGAGGGGCCATCCACA 61.1  
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CHAPTER 5 

 

Discussion 

The body of work presented in this thesis explores how membrane proteins are targeted 

to the cilium.  The sensory functions of primary cilia rely on the unique complement of 

receptors localized to this distinct subdomain of the plasma membrane.  Ciliary 

dysfunction is known to cause a number of pleiotropic human diseases including 

polycystic kidney disease, retinal degeneration, obesity and congenital birth defects.  A 

better understanding of the mechanisms controlling ciliary protein targeting may lead to 

the development of potential therapeutics to treat these ciliopathies.  Here, we summarize 

the pertinent research findings discussed in this thesis and hypothesize the next steps in 

understanding protein targeting to the cilium. 

 

GMAP210 and IFT20 as a ciliary sorting module 

Intraflagellar transport (IFT) proteins are known to transport soluble axonemal precursors 

required to build a cilium.  It is unknown if IFT proteins are also required for the 

transport of transmembrane cargo.  IFT20 is the only IFT subunit known to localize to the 

Golgi apparatus in addition to the canonical ciliary localization of IFT subunits.  The 

unique localization of IFT20 suggested it might be involved in the sorting of cargo 

destined for the cilium and initial knockdown of IFT20 caused a reduction in the ciliary 

levels of polycystin-2. 
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 Chapter II of this thesis builds on these findings by identifying the binding partner 

of IFT20 at the Golgi apparatus, GMAP210.  The novel GMAP210/IFT20 complex 

represents a pool of IFT20 that is independent from established IFT Complex B in and 

around the cilium.  Previous findings indicated IFT20 was required for the delivery of the 

ciliary membrane protein polycystin-2 to the cilium.  To investigate if GMAP210 was 

likewise required for ciliary protein trafficking we created a knockout mouse.  GMAP210 

knockout mice die just after birth due to defects in lung and heat development.  The 

structure of the Golgi apparatus was not affected by the lack of GMAP210 as previous 

cell culture studies suggested, however the absence of GMAP210 prevented IFT20 from 

localizing to the Golgi apparatus.  Mouse embryonic kidney cells isolated from the 

GMAP210 null mice exhibited reduced ciliary polycystin-2 levels suggesting GMAP210 

and IFT20 are required for the targeting of this protein to the cilium.  Re-introduction of 

full-length GMAP210 restores IFT20 localization to the Golgi apparatus and also rescues 

polycystin-2 levels at the cilium. 

 

Implications and future directions of GMAP210/IFT20 research 

The findings discussed in Chapter II support the hypothesis that IFT20 binds GMAP210 

at the Golgi apparatus and these proteins are involved in targeting proteins to the cilium.  

Interestingly, the GMAP210 knockout mouse phenotype differs greatly from IFT20 null 

mice that die embryonically at approximately day 9.5 due to a number of ciliary related 

defects in heart development and laterality.  Further research is needed to explore the 

common or disparate functions of IFT20 and GMAP210.  The use of a Cre/Lox system to 
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create tissue specific knockouts of each protein would aid in discerning the specific roles 

of each of these proteins during development.  Specifically, knockouts in the heart and 

lung, the two organs greatly affected by the loss of GMAP210, would provide critical 

information regarding the lethality of these mice.  Targeted deletion of IFT20 in mouse 

kidney epithelia results in massive cystogenesis by postnatal day 21.  A similar deletion 

of GMAP210 is needed to investigate if the loss of polycystin-2 observed in mouse 

embryonic kidney cells lacking GMAP210 would cause a similar cystic phenotype in 

adult kidneys. 

 Another implication of the data presented in Chapter II is that IFT20 marks 

vesicles containing ciliary cargo destined for the cilium.  GMAP210 is present at the 

Golgi apparatus where it binds IFT20.  GMAP210 is not seen in or around the primary 

cilium suggesting it remains at the Golgi apparatus while IFT20 has been shown to 

dynamically traffic between the Golgi apparatus and the cilium.  This suggests that IFT20 

may decorate vesicles leaving the Golgi apparatus and help direct them to the cilium.  

Once at the cilium, IFT20 could then interact with known IFT Complex B subunits and 

incorporate the transmembrane cargo into the ciliary membrane.  This provocative model 

is interesting but needs to be rigorously tested.  Crucial experiments are needed to isolate 

the hypothesized IFT20 vesicles.  These vesicles are predicted to be devoid of GMAP210 

(a resident Golgi apparatus protein) and also lack the canonical IFT complex B proteins 

present in and around the cilium.  The identification of IFT20 binding partners at both the 

Golgi apparatus and the cilium provide key tools required to identify a possibly ciliary-

targeted vesicle fraction decorated with IFT20 and en route to the cilium. 
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Identification of a fibrocystin ciliary targeting sequence 

To better understand the mechanism of ciliary protein trafficking we chose to study a 

known ciliary membrane protein fibrocystin.  Mutations within fibrocystin are known to 

cause autosomal recessive polycystic kidney disease, which affects 1:20,000 live births 

and is a significant source of neonate lethality.  Chapter III identifies an 18 amino acid 

sequence present in the cytoplasmic tail of fibrocystin that is necessary and sufficient to 

direct a heterologous protein (GFP) to the cilium in cultured kidney cells.  Alanine 

scanning mutagenesis identified three palmitoylated cysteine residues that target the CTS 

to lipid microdomains and are required for the ciliary trafficking of the CTS.  We suggest 

lipid modification, in this case palmitoylation, is likely an important first step in sorting 

membrane proteins to the primary cilium – a possibility we will discuss in more detail 

below. 

 

The fibrocystin CTS interacts with Rab8 and Arf4 

We hypothesized that the CTS of fibrocystin functions to bind the intracellular sorting 

machinery required to direct fibrocystin to the cilium.  To identify proteins that interact 

with the CTS we performed a series of co-immuoprecipitation assays with proteins 

implicated in ciliary protein trafficking.  We identified an interaction between the small G 

protein Rab8 (Chapter III) and Arf4 (Chapter IV) and the CTS of fibrocystin.  Rab8 and 

Arf4 binding roughly correlated with the ability of CTS constructs to enter the cilium 

suggesting these interactions were important for the trafficking of the CTS to the cilium.  
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However, binding of Rab8 or Arf4 did not always correlate with CTS trafficking to cilia 

and these exceptions are discussed below.   

We used dominant negative and constitutively active forms of Rab8 (Chapter III) 

and Arf4 (Chapter IV) to explore the function of these proteins in the trafficking of the 

CTS.  Wildtype or constitutively active Rab8 localized to the cilium and allowed the CTS 

to enter cilia while the dominant negative form of Rab8 was concentrated in the 

cytoplasm and prevented the CTS from entering the cilium. The function of Arf4 

mutations is less clear as any overexpression of Arf4 wildtype or mutant proteins 

prevented the CTS from entering cilia (Figure 4.2).  Knockdown of Arf4 did not block 

CTS trafficking to the cilium but did result in a delay in CTS delivery and suggested Arf4 

is required for the efficient delivery of fibrocystin to the cilium. These data support the 

model presented in Figure 5.1.   

 

Palmitoylation, lipid microdomains and CTS trafficking 

The work presented in Chapter III identified a ciliary targeting sequence contained in the 

cytoplasmic tail of fibrocystin.  These experiments identified a palmitoylated 18 amino 

acid motif that is necessary and sufficient to target GFP to cilia in cultured kidney cells.  

One limitation to this sequence is that it lacks at transmembrane domain and not 

subjected to the normal trafficking pathway through the cell.  An improved fibrocystin 

construct was designed and used in trafficking assays described in Chapter IV that 

showed Arf4 is required for the efficient delivery of this construct to cilia.   
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Figure 5.1:  Model of Rab8 and Arf4 trafficking.
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Figure 5.1:  Model of Rab8 and Arf4 trafficking.  Rab8 interacts with and controls the 
ciliary levels of the fibrocystin CTS.  Arf4 also interacts with the CTS of fibrocystin 
likely at the Golgi apparatus and is required for the efficient delivery of the CTS to the 
cilium.  Arf4 also interacts with the cytoplasmic domain of megalin and is required for 
megalin localization to the apical  plasma membrane in the visceral endoderm of mice. 
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Initial alanine scanning mutagenesis suggested that a group of cysteines were 

absolutely required for the trafficking of the soluble CTS to the cilium.  However, as this 

sequence lacked a transmembrane domain these results are difficult to interpret.  It is 

likely the palmitoylated cysteines provide the only membrane association with this CTS.  

We speculated that mutating the cysteine residues to alanines prevented the CTS from 

associating to membranes, which prevented the sequence from interacting with Rab8 

(Chapter III) and Arf4 (Chapter IV) and prevented the CTS from being targeted to the 

cilium. 

To test the requirement of the palmitoylated cysteines in the context of a 

transmembrane containing construct I mutated the cysteines residues to alanines in the 

construct described in Figure 4.3A.  Surprisingly, the cysteine residues are not required 

for the interaction with Arf4 (Figure 5.2E).  However, the palmitoylated cysteines are 

required for the targeting of this construct to cilia (Figure 5.2 A-D).  This suggests the 

palmitoylated cysteine residues did not simply provide membrane association to the 

original CTS construct but serve a crucial function in targeting the CTS to the cilium.  

The palmitoylation of these cysteines is required to concentrate the CTS in lipid 

microdomains discussed in Chapter III.  Further experiments are needed to investigate the 

function of the CTS in the context of a transmembrane containing construct to test 

whether lipid microdomain targeting is an initial step in trafficking the CTS of 

fibrocystin. 
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Figure 5.2:  Palmitoylated cysteines required for proper CTS localization but 

dispensable for Arf4 binding.
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Figure 5.2:  Palmitoylated cysteines required for proper CTS localization but 
dispensable for Arf4 binding.  A.  IMCD3 cells expressing the CD8-CTS-SNAP-GFP 
wildtype (JAF270) or  triple cysteine mutant (JAF280) and Arf4-FLAG (JAF216) were 
fixed and stained with antibodies to CD8 (green) and FLAG (red). B.  Cilia length is not 
effected by expression of JAF270 or JAF280. C. Quantification of the ciliary intensity 
per micron of wildtype CD8-CTS-SNAP-GFP (JAF270) and triple cysteine mutant CD8-
CTS-SNAP-GFP (JAF280).  D.  Total ciliary fluorescence of JAF270 and JAF280.  E.  
FLAG-tagged Arf4 brings down both wildtype CTS (JAF270) and triple cysteine mutant 
CTS (JAF280). 
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Protein interactions and CTS trafficking 

Chapter III and IV described specific protein interactions between the CTS and two small 

G proteins, Rab8 and Arf4.  We speculated that these interactions play critical roles in the 

trafficking of the CTS to the cilium.  Mutations affecting the GTP-binding state of Rab8 

and Arf4 had different effects on the trafficking of the CTS to the cilium (Chapter III, 

IV).   

It is important to point out that simply binding to Rab8 or Arf4 alone is not 

sufficient to target the CTS to the cilium as mutations that prevented the ciliary 

localization of the CTS still bound Rab8 and Arf4 (Figure 3.2, 3.7, 4.1).  This suggests 

there are additional steps required for the ciliary targeting of the CTS that are not 

explained by the interactions with Rab8 or Arf4.   The initial characterization of the CTS 

and alanine scanning mutagenesis was performed in a construct that lacked a 

transmembrane domain.  It may be useful to repeat these experiments with the new 

fibrocystin construct to elucidate residues that are required for palmitoylation and those 

which may be playing a direct role in Rab8 or Arf4 binding.   

Furthermore, it is not known if the interaction between Rab8 and Arf4 is direct or 

mediated through an adaptor protein or what coat or coats may be involved in ciliary 

protein trafficking.  Future experiments should focus on identifying additional proteins 

that interact with the CTS including potential coat or adaptor proteins as this may help 

explain the observed differences between the ciliary targeting of the CTS and binding to 

the small G proteins Rab8 and Arf4. 
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The role of Arf4 in ciliary vs. general trafficking 

Chapter IV described a unique interaction between Arf4 and the CTS of fibrocystin.  

Extensive biochemical and immunofluorescence data indicated Arf4 was required for the 

efficient delivery of the CTS to the cilium.  Additional work in the field of ciliary protein 

trafficking suggested Arf4 functioned as a global regulator of ciliary protein trafficking.  

Based on our work and the work of others we chose to study the function of Arf4 further 

and created and Arf4 knockout mouse (Chapter IV). 

 Arf4 null mice are embryonic lethal.  This indicates Arf4 is essential for 

mammalian development its unique function cannot be provided by the other 5 members 

of the Arf family as suggested by tissue culture based studies.  We predicted the Arf4 

mutant mice would have defects similar mice with known mutations affecting ciliary 

function.  Examination of nodal cilia indicated that Arf4 mutant mice had no defects in 

ciliary assembly or nodal cilia function as left/right symmetry was properly broken.  

Instead, Arf4 is most highly expressed in the developing visceral endoderm – a non-

ciliated tissue.   

Careful examination of the visceral endoderm revealed multiple defects including 

a failure to localize the scavenger protein megalin to the apical surface of these cells.  

Arf4 is likely affecting the trafficking of a large number of proteins within the visceral 

endoderm, which led to the observed embryonic lethality at day 9.5.  The studies 

performed in the Arf4 knockout mice provide clear evidence that Arf4 has functions 

outside of ciliary protein trafficking.   
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Additional studies are required to more completely understand the role of Arf4 in 

ciliary protein targeting. It remains to be seen if Arf4 plays a role in the trafficking of 

ciliary proteins like rhodopsin and fibrocystin in the mouse.  Targeted deletion of Arf4 in 

the eye and kidney would be required to circumvent the embryonic lethality of the Arf4 

null mice.  It will be exciting to see if tissue specific disruption of Arf4 will result in 

phenotypes consistent with ciliary dysfunction like blindness or cystic kidney disease. 
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Closing remarks 

 An interesting thing happens when biochemistry and experiments performed in 

tissue culture dishes meet the field of developmental biology.  Although initial 

experiments pointed to Arf4 playing a specific role in the trafficking of ciliary membrane 

proteins, the Arf4 knockout mouse proves this hypothesis naïve at best and at worst just 

plain wrong. 

 I believe my graduate experience to be unique, but in all likelihood it was 

probably more similar to the countless students that came before me then I can appreciate 

at this time.  Working in Greg’s lab provided me fertile ground to explore new realms of 

science and taught me valuable lessons regarding the scientific process. Science is not 

static, the best hypotheses are fluid and proteins care not for what you believe they’re 

function to be – that is merely transference of your own limitations.  Objectivity is easy 

in theory but requires work to practice.  In the end, trust the data – it’s telling you 

something – you just have to listen… 
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