May 16th, 1:45 PM

Transcriptional Regulation of Cardiac Remodeling in a Porcine Model with Validation in Human Subjects

Aditya Vaze
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Cardiology Commons, Cardiovascular Diseases Commons, and the Translational Medical Research Commons

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
TRANSCRIPTIONAL REGULATION OF CARDIAC REMODELING IN A PORCINE MODEL WITH VALIDATION IN HUMAN SUBJECTS

Aditya Vaze MD1, David McManus MD*2, Kevin Donahue MD*2
1Department of Medicine, 2Division of Cardiology, Department of Medicine, University of Massachusetts Medical School (*contributed equally as senior authors)

Introduction: The majority of new atrial fibrillation (AF) cases occur in elderly patients with cardiac remodeling (CR) in the setting of structural heart disease and heart failure (HF). We leveraged a unique animal model to identify cardiac microRNAs (miRNAs) and gene regulatory mechanisms that drive this process.

Methods: We prospectively quantified atrial expression of 48 miRNAs by high-throughput qRT-PCR in 15 pigs with right-atrial pacing-induced heart disease (5 pigs with AF/severe HF, 5 pigs with AF/mild HF, and 5 control pigs) as well as in 21 patients (11 with AF and CR and 10 controls) undergoing cardiac surgery. CR and HF were defined through a metric of left atrial volume index, BNP and ejection fraction. MiRNA levels were normalized to global mean and expression compared across pig subtypes and between the two human groups.

Results: In the porcine model, miR-208b was upregulated at week 1 ($\Delta C_T = -3.9$, $p<0.01$) and week 3 ($\Delta C_T = -5.5$, $p<0.05$) after induction of AF compared to sinus rhythm animals. The increase persisted at week 3 compared to week 1 ($\Delta C_T = -1.5$, $p<0.05$). Similarly, humans with AF and HF had higher tissue expression of miR-208b compared to controls ($\Delta C_T = -1.5$, $p<0.05$).

Conclusions: Dysregulation of miR-208b is confirmed in our porcine model and is validated in humans. Prior studies have identified miR-208b in both myosin isoform switching and conduction disease. We theorize that dysregulation of miR-208b may play a critical role in atrial structural remodeling and vulnerability to AF.

Contact:
Aditya Vaze
UMass Memorial Medical Center
Aditya.Vaze@umassmemorial.org