May 16th, 1:45 PM

Companion Diagnostics for Breast Cancer Chemotherapeutics

Monica Tawadros
University of Massachusetts Medical School

Michael Morin
University of Massachusetts Lowell

Peter Gaines
University of Massachusetts Lowell

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Medicinal and Pharmaceutical Chemistry Commons, Medicinal Chemistry and Pharmaceutics Commons, Neoplasms Commons, Pharmaceutics and Drug Design Commons, and the Translational Medical Research Commons

Tawadros, Monica; Morin, Michael; Gaines, Peter; and Dewilde, Abiche H., "Companion Diagnostics for Breast Cancer Chemotherapeutics" (2017). UMass Center for Clinical and Translational Science Research Retreat. 79.
https://escholarship.umassmed.edu/cts_retreat/2017/posters/79

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Monica Tawadros, Michael Morin, Peter Gaines, and Abiche H. Dewilde

Keywords
breast cancer, chemotherapeutics

Creative Commons License
Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2017/posters/79
Chemotherapy plays a major role in breast cancer treatment. However, not every chemotherapeutics is appropriate for each cancer due to the person’s individual cancer characteristics and whether the patient has developed chemoresistance to a particular drug. In this research, the InVitro-Q is used to detect subtle differences in tumor cell proliferation post-treatment with four-breast cancer chemotherapeutics used: paclitaxel, docetaxel, nocodazole, and cytochalasin B. Our multi-well cell-based sensor that can monitor real-time biological changes in living cells, such as mass redistribution, and viscoelasticity. This system provides unique kinetic information regarding the phenotypic change in the cells post treatment. Each drug induces apoptosis by targeting a different mechanism of action. Each drug was assayed for 48h with MCF-7 or SK-Br-3 breast cancer cells, and data collected. Post analysis we created quantitative projection regarding the efficacy of each drug on the specific cancer type.

Contact:
Abiche H. Dewilde, PhD
President
Invitrometrix, Lowell, MA
AbicheD@Invitrometrix.com
www.Invitrometrix.com