May 16th, 1:45 PM

Assessment of a Novel Pediatric Resident Simulation Curriculum

Kyle Schoppel
University of Massachusetts Medical School

Christopher Lops
University of Massachusetts Medical School

Nicholas Cormier
University of Massachusetts Medical School

See next page for additional authors

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat
Part of the [Medical Education Commons](https://escholarship.umassmed.edu/medical-education-commons), [Pediatrics Commons](https://escholarship.umassmed.edu/pediatrics-commons), and the [Translational Medical Research Commons](https://escholarship.umassmed.edu/translational-medical-research-commons)

Schoppel, Kyle; Lops, Christopher; Cormier, Nicholas; Hickey, Alanna; Sprague, Suzanne; Sell, Peter J.; Wynne, Kathryn; Weaver, Anne; and Valentine, Stacey L., "Assessment of a Novel Pediatric Resident Simulation Curriculum" (2017). *UMass Center for Clinical and Translational Science Research Retreat*. 70.
https://escholarship.umassmed.edu/cts_retreat/2017/posters/70

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Presenter Information
Kyle Schoppel, Christopher Lops, Nicholas Cormier, Alanna Hickey, Suzanne Sprague, Peter J. Sell, Kathryn Wynne, Anne Weaver, and Stacey L. Valentine

Keywords
pediatrics, pediatric residents, simulation curriculum, Pediatric Advanced Life-Support, residency program

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2017/posters/70
ASSESSMENT OF A NOVEL PEDIATRIC RESIDENT SIMULATION CURRICULUM

Kyle Schoppel MD¹, Christopher Lops MD², Nicholas Cormier³, Alanna Hickey³, Suzanne Sprague MD¹, Peter Sell DO⁴, Kathryn Wynne MD⁵, Anne Weaver, BSN RN CCRN⁶, Stacey Valentine MD, MPH⁴

¹Department of Pediatrics (Chief-Resident), ²Departments of Medicine and Pediatrics (Chief-Resident), ³University of Massachusetts Medical School, ⁴Division of Pediatric Critical Care, ⁵Division of Pediatric Hospital Medicine, ⁶Department of Nursing, University of Massachusetts Medical School and UMass Memorial Medical Center

Aim: To assess the efficacy of a newly implemented resident simulation curriculum at a medium sized pediatric residency program.

Background: Many pediatric residency programs incorporate high-fidelity simulation into their curriculum, but there is limited data discussing the utility/educational impacts of a longitudinal/standardized/multimodal simulation curriculum. Several studies of simulation-based training have employed “self-efficacy” as a barometer for trainee education and performance¹,². The level of a person’s self-efficacy can influence their behavior and may be a pivotal factor in performance. We have implemented a newly devised standardized, multimodal resident simulation curriculum and used resident self-efficacy to assess its effectiveness.

Methods: Participants were UMass Pediatric and Med/Peds residents. Implementation of our curriculum occurred at the start of the 2016-2017 academic year. Surveys were administered to all residents prior to curriculum implementation and at 6 months post-implementation. They assessed resident self-efficacy with regards to specific technical/procedural skills (i.e. running a code, performing intubation, etc.) and resident confidence in their ability to identify/manage specific pediatric disease presentations (i.e. respiratory failure, tachyarrhythmia, etc.). Data was pooled and averaged for each resident class separately. We predetermined a 10% change in self-efficacy to be a clinically significant difference.

Results: 36 of 40 residents completed the initial survey and 31 completed the 6-month follow-up. PGY1 residents reported improved self-efficacy for 4 PALS-related skills and 8 pediatric case presentations. Similarly, PGY2 residents reported improved self-efficacy for 3 PALS-related skills and 6 pediatric case presentations. Conversely, PGY3/4 residents reported no significant change in self-efficacy for any survey question.

Conclusions: These results suggest that our newly implemented longitudinal, standardized, multidisciplinary, multi-modal simulation curriculum has significantly improved resident self-efficacy related to core Pediatric Advanced Life-Support (PALS) skills/topics, with the greatest impact affecting our PGY1 class. Further study and curriculum development will attempt to address this issue.

Contact:
Kyle Schoppel
UMass Memorial Medical Center
Kyle.Schoppel@umassmemorial.org