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Chapter IV

UV induced polyadenylation switching in yeast
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During completion of this manuscript, additional experiments to measure mMRNA
stability were conducted. These experiments are preliminary and suggest that a UV-
induced RNA polymerase switching is the underlying cause of alternative
polyadenylation of the RPB2 gene. Because the preliminary nature of these results, they

are presented in the appendices and discussed in chapter V.



Summary

Most human genes are transcribed into messenger RNAs that contain a 3’-
polyadenosine tail, and the majority are alternatively polyadenylated. Alternative
polyadenylation appears to play important roles in embryonic development and cancer
suppression. In this report, we demonstrate that UV irradiation induces alternative
polyadenylation in yeast. In UV-irradiated yeast cells the transcription machinery
proceeds through the first polyadenylation site of the RPB2 gene which encodes the
second largest subunit of RNA polymerase Il and stops at the second site, generating a
longer form of MRNA. Replacing the RPB2 3’-UTR with the 3’-UTR of the CYC1 or
GCN4 gene disrupts the polyadenylation switch and sensitizes yeast cells to UV Kkilling,
suggesting alternative polyadenylation plays an important role in cell survival after UV

damage.
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Introduction

Transcription termination in eukaryotic cells involves cleavage of the newly
transcribed messenger RNA (mRNA) at specific sites and addition of adenosine (A)
residues to the 3’-end of the newly synthesized mRNA, a process called polyadenylation
(Lutz, 2008). Surprisingly, more than half of human genes have multiple polyadenylation
signals and are subject to alternative polyadenylation (Lutz, 2008; Ozsolak et al, 2010),
suggesting that alternative polyadenylation plays an important role in increasing
transcript diversity. The selective use of different polyadenylation signals may influence
efficiencies of transcription and translation, mRNA stability, and nuclear export of the
mature mMRNA (Millevoi & Vagner, 2010; Proudfoot & O’Sullivan, 2002; Moore, 2005).
Notably, alternative polyadenylation has been reported to be a highly regulated process
during embryonic development (Ji et al, 2009), cancerous transformation (Mayr & Bartel,

2009), and neuronal synapse development (Flavell et al, 2008).

DNA damage induced by environmental stimuli or endogenous insults is a major
threat to cell survival and perturbs cellular transcription in many ways. For example,
DNA damage can promote the transcription of specific genes (Fu et al, 2008), block the
progression of the transcription machinery on DNA lesions and trigger transcription-
coupled repair that is dedicated to remove DNA lesions preferentially from the template
strand (Hanawalt & Spivak, 2008), inhibit transcription (Reagan & Friedberg, 1997), and

regulate alternative splicing (Mufoz et al, 2009; Marengo & Wassarman, 2008). Recently,
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Kleiman et al. showed that MRNA 3’-end cleavage can be inhibited by UV damage in
vitro (Cevher et al, 2010; Mirkin et al, 2008; Kleiman & Manley, 2001) and this
inhibition might be critical for cancer suppression (Kleiman & Manley, 2001). UV
induced alternative polyadenylation has previously been reported in mammalian cells.
However, no functional significance was demonstrated to result from the switch, nor was

the process itself studied further (Schwartz et al, 1998).

Alternative polyadenylation in yeast is probably as pervasive as in human because it
has been estimated that 72.1% yeast genes contain multiple polyadenylation sites
(Ozsolak et al, 2010). However, only a few genes have been studied to determine the
effects of alternative polyadenylation. Examples are CBP1, APE2, and RNA14 where
transcription terminates within the coding sequences when yeast cells are shifted from
anaerobic growth to aerobic growth (Mayer & Dieckmann, 1991; Sparks & Dieckmann,
1998), and SUA7 where two non-truncated transcripts are produced with different length
and the longer form is reduced by heat shock or starvation (Hoopes et al, 2000). Various
factors involved in mMRNA cleavage and polyadenylation have been reported to affect
poly(A) site selection (Seoane et al, 2009; Kim Guisbert et al, 2007). However, whether

UV irradiation induces alternative polyadenylation in yeast has not been studied.

Transcription of most genes in yeast is catalyzed by RNA polymerase Il which is a
hetero-12-mer complex consisting of two large subunits, RPBland RPB2, and 10 small
subunits (Woychik & Young, 1990; Ishihama et al, 1998). During the course of studying

transcription recovery after UV-induced DNA damage, we found two mRNA species
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which are encoded by the RPB2 gene. UV damage inhibits transcription of the short
species and increases transcription of the long species. In this study we demonstrate that
the two mRNA species are the products of alternative polyadenylation and production of

the long RPB2 mRNA increases cellular survival of UV damage.

Results

UV damage induces alternative polyadenylation of the RPB2 mRNA. The RPB2 gene
in yeast has been used as a target to study transcription-coupled DNA repair (TCR) due
to its high constitutive transcription rate and large size (van Gool et al, 1994; Sweder &
Hanawalt, 1994; Verhage et al, 1996). It has been demonstrated that UV damage on the
transcribed strand of RPB2 gene is removed more rapidly than damage on the non-
transcribed strand ((van Gool et al, 1994; Sweder & Hanawalt, 1994; Verhage et al, 1996)
and Chapter 11). However, transcription recovery of the RPB2 mRNA following repair of
the UV damage has not been investigated. To test this, we irradiated wild-type yeast cells
with UV and monitored the RPB2 mRNA levels in the cells by Northern blot. We found
that the RPB2 mRNA level declines within 15 minutes after UV damage, suggesting
transcription inhibition by DNA damage or decreased mRNA stability (Figure 4.1A). At
30 minutes, however, the RPB2 mRNA level increases and two different RPB2 mRNA
species are produced. The long form is at a low level prior to UV treatment and increases

after UV irradiation (Figure 4.1A).
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Alternative splicing is rare in S. cerevisiae and the RPB2 gene appears not to contain
introns ((Davis et al, 2000; Pleiss et al, 2007) and www.yeastgenome.org). Therefore, the
different RPB2 mRNA species might be the result of alternative transcription initiation or
alternative polyadenylation. To test transcription initiation of the RPB2 gene, we
performed Rapid Amplification of cDNA Ends (RACE) (Scotto-Lavino et al, 2006a) to
determine the 5’-end of the RPB2 mRNA. We found RPB2 has only one transcription
initiation site located 270 base pairs (bp) upstream of the translation initiation codon
ATG (Figure 4.1B). Subsequently, we used 3’-RACE (Scotto-Lavino et al, 2006b) to
examine the 3’-end of the RPB2 mRNA and found two transcription termination sites that
are 287bp apart in the 3’- untranslated region (3’UTR) of the RPB2 gene (Figure 4.1B).

Thus, RPB2 appears to be alternatively polyadenylated.

To confirm that UV treatment induces the polyadenylation switching, we inserted the
1.5kb KanMX gene between the two polyadenylation sites of RPB2 and treated the
mutants with UV. If UV induces the transcription machinery to bypass the first
polyadenlyation site and cleave at the second site, post-UV transcription in the mutants is
expected to bypass the first polyadenylation site and produce a long polycistronic mRNA.
Figure 4.1C shows that two independent clones of the mutants with the KanMX insertion
transcribed the polycistronic mMRNA much higher levels after UV treatment. This clearly
indicates the two RPB2 mRNA species in wild type are produced by alternative
polyadenylation and that UV triggers the preferential use of the second polyadenylation

site.
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Yeast polyadenylation signals do not contain highly conserved sequences and are
poorly defined (Zhao et al, 1999). We tested if the sequence elements for the UV-
inducible polyadenylation switch reside in the 3’- UTR of the RPB2 gene. We inserted
the 3’-UTR of the RPB2 gene after the URA3 gene coding sequence, replacing its 3’-
UTR. URAS does not use alternative polyadenylation and is normally transcribed as a
single MmRNA (Buckholz & Cooper, 1983). Figure 4.1D shows that when the RPB2 3’-
UTR is attached to the URA3 coding sequence, two mRNA transcripts differing by about
300 bp are produced, indicating that both RPB2 polyadenylation sites are used. This
suggests that the RPB2 3’-UTR contains sequence elements sufficient to direct alternative
polyadenylation of other genes. However, UV irradiation does not result in a switch to
preferential production of the longer form of the URA3 mRNAs (Figure 4.1D). This
suggests that additional sequence elements upstream of the RPB2 3’-UTR are required
for the UV-induced polyadenylation switch from the first to the second site even though

both sites are functional.

UV induced alternative polyadenylation is independent of transcription-coupled
DNA repair. Transcription-coupled DNA repair (TCR) is triggered by blocked RNA
polymerases and rapidly removes DNA lesions from the template strand of transcribing
genes. It has been shown that TCR is required for transcription recovery after DNA
damage (Reagan & Friedberg, 1997).Therefore we tested if the preferential production of
the longer form of RPB2 mRNA after UV damage is dependent on TCR. We treated
yeast cells with UV and compared RPB2 mRNA recovery in wild type and in the TCR

deficient rad264 mutant (van Gool et al, 1994). Figure 4.2 shows that wild type cells



101

recover mRNA transcription within 30 minutes and that the long RPB2 mRNA is
preferentially transcribed. In comparison, the rad264 mutant recovers transcription of
both forms of RPB2 mRNA at a reduced rate, indicating that TCR is required for general
transcription recovery after UV damage. However, the long RPB2 mRNA s still
preferentially produced in the rad264 mutant, suggesting the process of alternative
polyadenylation is not affected by the defect in TCR once the DNA damage is repaired

by other DNA repair pathways, e.g. global genome repair (Svejstrup, 2002).

Alternative polyadenylation of RPB2 mRNA increases cellular UV resistance. To test
if UV-induced alternative polyadenylation of RPB2 is physiologically important or just a
passive alteration in the transcription process, we replaced the 3’-UTR of the RPB2 gene
with 3’-UTRs of two other genes that do not exhibit alternative polyadenylation, CYC1
(Muhlrad & Parker, 1999) and GCN4 (Irniger et al, 1991). Figure 4.3A shows that
transcription of the RPB2 gene carrying either the CYC1 or GCN4 terminators yields only
one species both in unirradiated and UV-irradiated cells. When the 3’-UTR of the GCN4
gene replaces the RPB2 terminator, levels of the RPB2 transcripts increase after UV
treatment. Nonetheless, both the RPB2-CYC1 and RPB2-GCN4 mutants exhibit UV
sensitivity at low UV doses compared to the parental strain (Figure 4.3B), suggesting that
alternative polyadenylation of the RPB2 gene is an adaptive response to UV damage that

increases cell survival.
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Discussion

Alternative polyadenylation has been found to be a ubiquitous process occurring on
the majority of human genes, contributing to embryonic development, cancer prevention,
and neural circuitry formation (Lutz, 2008; Ji et al, 2009; Mayr & Bartel, 2009; Flavell et
al, 2008). UV induced polyadenylation switching has previously been observed in human
cells (Schwartz et al, 1998). We demonstrate that alternative polyadenylation is induced
by UV damage in yeast, suggesting that this process is a conserved response to UV
damage in eukaryotes. Moreover, we also demonstrate that alternative polyadenylation of
the RPB2 gene of yeast contributes modestly to cellular resistance to UV damage,
especially at low doses, demonstrating that the process is physiologically important and

contributes to cellular survival.

UV irradiation is known to cause DNA damage that blocks transcription elongation
and reduces the level of available transcription complexes in the cell (Svejstrup, 2003).
Our results show that alternative polyadenylation increases the abundance of the RPB2
MRNA. The increased the mRNA level may allow increased production of Rpb2 protein
and higher levels of functional RNA polymerase 1l complexes. Alternatively, the longer
RPB2 mRNA may have additional beneficial properties that may help cells recover from

DNA damage, e.g. increased mRNA stability and/or higher translation efficiency.

In addition to its novel physiological role, the UV-induced switch from preferential
polyadenylation at site 1 to site 2 appears to be regulated by a mechanism that is yet to be

determined. Kleiman et al. previously showed that UV irradiation suppresses 3’-cleavage
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of a pre-mRNA in vitro (Cevher et al, 2010; Mirkin et al, 2008; Kleiman & Manley,
2001). The UV induced alternative polyadenylation observed in this study may include
molecular events that weaken the effect of the first polyadenylation signal of RPB2 and
increase the use of the second polyadenylation signal. However, the hypothesis that UV
irradiation induces suppression of mMRNA cleavage at specific polyadenylation sites does
not explain why the RPB2 3’-UTR attached to the URA3 gene does not also respond to
UV irradiation. Therefore signals upstream in RPB2 appear to be required for UV-
induced polyadenylation switching. Our results suggest that the upstream signals in RPB2
and the UV-induced modifications of the transcription machinery cooperatively
determine the use of the downstream polyadenylation sites. Although our data suggest
that the DNA repair process that is triggered by the blocked transcription machinery is
not required for the UV-induced polyadenylation switching, it remains to be determined
if transcription arrest induced by UV damage indeed plays a role in this process. Thus,
UV-induced polyadenylation switching involves a complicated crosstalk between
environmental stimuli, the transcription machinery, and the transcribed genes.
Elucidation of this mechanism may facilitate our understanding of the alternative
polyadenylation events involved in embryonic development and cancer suppression (Ji et

al, 2009; Mayr & Bartel, 2009).
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Materials and Methods

Yeast strains and plasmids.

Yeast strains used in this study are listed in Table 4.1 and the construction details of
key strains are described below. All primers used in this study are listed in Table 4.2.
Yeast transformation methods are as described (Knop et al, 1999). All plasmids were

sequenced to confirm that they contain no mutations.

To construct plasmid pMV1352, which contains the URA3 gene followed by the
RPB2 3’-UTR, we first amplified the URAS3 gene from plasmid pRS416 (Sikorski &
Hieter, 1989) using primers SacUra and BamUTra, then inserted the URA3 DNA into
plasmid pMV1351 between the Sacll and BamHI restriction sites. Plasmid pMV1351
was derived from pRS315 (Sikorski & Hieter, 1989) by inserting the RPB2 3’-UTR DNA
which was amplified by PCR from the yeast genome using primers BamRPB2-4653 and

SalRPB2-5148, then inserting the PCR fragment into the BamHI and Sall sites of the
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vector. Plasmid pMV1352 was used to transform yeast strain MVVY 150 to construct strain

MVY838.

To construct yeast strains MVY818 and MV'Y819, which have the KanMX gene
inserted into the chromosomal RPB2 3’-UTR between poly A site 1 and poly A site 2
(Figure 4.1), we assembled three DNA fragments; the KanMX6 gene, which was obtained
as a Xmal Sacll fragment from plasmid pFA6a-KanMX6 (Wach et al., 1997), and two
PCR products produced from the downstream region of the RPB2 gene and its 3” UTR
using primer pairs. One PCR product was produced using primers Kpnl-up500-f and
up500-Xma-r, and the second, using primers Sacll-down500-f and down500-Sacl-r.
These three fragments were then assembled together with Kpnl and Sacl digested
pBluescript 11 SK plasmid to produce plasmid pMV1343, which carries the KanMX6
gene flanked by the two 500 bp RPB2 targeting sequences. This fragment was then
released as a single linear DNA fragment of 2630 bp using SnaBl and Kpnl. After gel
purification, yeast cells were transformed with this fragment and KanMX6 carrying
clones were selected by G418 resistance. Such clones carry the KanMX6 gene between

the two Poly A sites shown in Figure 4.1.

To replace the RPB2 3’UTR with the CYC1 3” UTR sequences, we first amplified
by PCR 500 bp of RPB2 DNA using primers Kpn-RPB2-4131 and Xma-Xho-RPB2 and
used this fragment to replace the Kpnl-Xmal fragment of pMV1343 to produce plasmid
pMV1346. We then amplified the CYC1 terminator sequence from the yeast genome

using primers Xho-CYC1 and Bgl-CYC1-1586 and inserted this PCR product into
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pMV 1346 to insert the CYC1 terminator to produce pMV1347. Digestion with SnaB1
and Kpnl releases a 2739 bp fragment containing the C-terminal region of RPB2,
followed by the CYCL1 terminator, the KanMXG6 to allow selection of recombinants and
the downstream 500 bp RBP2 targeting sequence contain RPB2 poly A site 2. This
fragment was then used to transform yeast strain MV'Y 150 to replace the chromosomal

RPB2 termination regions to produce strain MV'Y836.

pMV 1348 was constructed in a manner identical to that of pMV1347 except that
the GCN4 terminator region was amplified using primers Xho-GCN4 and Bgl-GCN4-
2081 and inserted into pMV1346 instead of the CYC1 sequences. After release of the
SnaBI Kpnl fragment carrying the 2-500bp targeting regions that flank the GCN4
terminator and the KanMX6 gene, it was used to transform yeast strain MVY 150 to

produce MVY837.

UV irradiation and Northern analysis

Yeast cells in mid log phase are suspended in PBS at an ODgq reading of 0.8,
irradiated with UV at 1.71J/m?/s for 42 seconds or mock treated, resuspended in YPD
medium (Adams et al, 1997) and cultured for 30 minutes or indicated times, and collected
and frozen on dry ice. Total yeast RNA is extracted using the hot phenol method and
analyzed using the Northern analysis as described elsewhere (He & Jacobson, 1995). The
Random Primed DNA labeling kit (Roche Applied Science, Indianapolis, IN) is used to

synthesize the **P-labeled RPB2 probe (the template DNA is a purified RPB2 fragment
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from 1075 bp to 2133 bp in the ORF) and the URA3 probe (the template DNA is a

purified URA3 fragment from 206 bp to 824 bp in the ORF).

5’-RACE assay

The 5’-RACE assay is performed as described (Scotto-Lavino et al, 2006a).
Briefly, 400ng of DNase-treated total yeast RNA is reverse transcribed by the
Superscriptlll reverse transcriptase (Invitrogen, Carlsbad, CA) using primer RPB2-13r,
digested by RNase H, purified using the QIAQuick PCR purification kit (QIAGEN,
Valencia, CA), polyadenylated by terminal transferase (NEB, Ipswich, MA). The
resulting polyadenylated cDNA is subjected to two rounds of PCR amplification with the
first round using primers RPB2-14R and RACEL1 and the second round using primers
anchorP and RPB2-17R. The final PCR product is gel purified and sequenced using

primer RPB2-17R to determine the 5’ transcription start sites.

3’-RACE assay

The 3’-RACE assay is performed as described (Scotto-Lavino et al, 2006b).
Briefly, cDNA is prepared as in the 5’-RACE assay except that primer RACEL is used in
reverse transcription and no polyadenylation step is included. Primers RPB2-12 and

anchorP are used to PCR amplify the 3’-UTR of the RPB2 gene from the cDNA. The
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PCR product contains two DNA fragments that are gel purified and sequenced using

primer RPB2-13 to determine the polyadenylation sites.

UV sensitivity assay

Yeast cells are cultured in YPD medium to mid log phase (ODg0=0.8),
resuspended in PBS, and irradiated with UV at 1.713/m%/s for different times. After
irradiation, cells are diluted in water, plated onto YPD, and colonies are counted after 2

days.
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Table 4.1. Yeast strains used in this study.

Strain Original name, genotype (annotation) Reference

W303-1B, MATa ade2-1 trp1-1 can1-100 leu2-3, (van Gool
MVY150

112 his3-11,15 ura3-1 et al, 1994)

MGSC102, MVY150 with rad26 A :HIS3 (van Gool
MVY151

et al, 1994)

MVY150 with the KanMX insertion in RPB2 3’- .
MVY818 this stuy

UTR, #1

MVY150 with te KanMX insertion in RPB2 3’-UTR, .
MVY819 I this study

MVY150 with 3’-UTR of CYC1 inserted after RPB2

MVY836 this study
ORF
MVY150 with 3’-UTR of GCN4 inserted after RPB2 .
MVY837 ORF this study

MVY150 with pMV1352 (URA3 ORF + RPB2 3’- .
MVY838 UTR) this study




Table 4.2. Primers used in this study.

SacUra

GCGCCCGCGGTGCACCATACCACAGCTTTT

BamUra

CGGCGGATCCTTAGTTTTGCTGGCCGCA

BamRPB2-4653

GCGCGGATCCGATCGTTCGAGAGATTTT

SalRPB2-5148

CGGCGTCGACCTTTTTGCAGTCTTCAATCC

Kpnl-up500-f

CGGCGGTACCGACACATGGTGGATGACAAGA

up500-Xma-r

GCGCCCCGGGTTGGTAAAATGCGAAACAAGG

Sacll-down500-f

GCCACCGCGGCGGTGTTCATTTTGGAACAA

down500-Sacl-r

GACGGAGCTCCATTGGGTAGATTGGCTTCAG

Xho-CYC1

CGGCCTCGAGACAGGCCCCTTTTCCTTTG

Bgl-CYC1-1586

GCGCAGATCTCGTCCCAAAACCTTCTCAAG

Kpn-RPB2-4131

CGGCGGTACCCCTCTCCTTTCACGGACATT

Xma-Xho-RPB2

GCGCCCCGGGCTCGAGTTAAAAATCTCTCGAACGATCGGTA
TATAAACG

Xho-GCN4

CGGCCTCGAGTTTCATTTACCTTTTATTTTATATTTTTTATTTC
ATTCTCG

Bgl-GCN4-2081

GCGCAGATCTGCAACGCGTCTGACTTCTAA

RPB2-13r GGTGGAATCCTCGCAAATAA

RPB2-14r AAAGCGGATATAACAGCCCA

RACE1 GCTCGATGTGCACTGCTTTTTTTTTTTTTTTT
anchorP GCTCGATGTGCACTGC

RPB2-17r GCACTTTCATCCTCGAATCC

RPB2-12 GCTGATGACAGTTATCGCG

RPB2-13 GCCGCGAAGTTATTATTCCAAG

110
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Figures and legends
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Figure 4.1 UV damage induces alternative polyadenylation of RPB2 mRNA. A. Northern
blot analysis showing RPB2 mRNA recovery after UV-irradiation. After UV treatment,
yeast cells (MVY150) are incubated in growth media for the indicated times. Letters L
and S indicate positions of the long and short species of RPB2 mMRNAs. pre: RNA from
cells before UV treatment. The 30 min lane is duplicated on the right at a lighter exposure
to reduce noise. Ribosomal RNA is shown as a loading control. B. Genomic DNA
sequence of the 3’ and 5” UTRs of the RPB2 locus. The start and stop codons of RPB2
gene are in the bold font and the coding sequence (ATG---TGA) is omitted and marked

in bold by its start and stop codons. The polyA site 1 and polyA site 2 were determined
by 3’-RACE. C. UV irradiation induces yeast cells to transcribe the long polycistronic
MRNA when the 1.5kb KanMX6 gene is inserted between the polyA sitel and polyA
site2 as shown in panel B. The insertion site is marked by the filled triangle in panel B
and 106 bp DNA following the insertion site is replaced by the KanMX6 gene. MVVY 818
and MVY819 are two individual clones with the KanMX®6 insertion. L: Long form of the
RPB2 mRNA, S: Short form of the RPB2 mMRNA, P: position of the RPB2-KanMX
polycistronic mMRNA. D. The 3’-UTR of RPB2 gene contains sequence elements for
alternative polyadenylation. The 3’-UTR of the RPB2 gene is inserted after the URA3
ORF in plasmid pMV1352. Yeast cells with pMV1352 (MVY838) are treated or mock-
treated with UV. Northern blots are used to analyze the URA3 mRNA. Ribosomal RNA

is shown as loading control.
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Figure 4.2 Deficiency in transcription-coupled DNA repair (TCR) delays recovery of
RPB2 mRNA transcription after UV damage, but does not prevent preferential
transcription of the long RPB2 mRNA. Wild type (MVY150) and the TCR deficient
mutant (rad264, MVY151) are treated or mock-treated (pre) with UV and incubated in
culture medium for indicated times. Northern blot analysis is used to detect the RPB2

MRNA. Ribosomal RNA is shown as a loading control.
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¥cyclr  YGCN4

Figure 4.3 Replacing the RPB2 3’-UTR causes low-dose UV sensitivity. The RPB2 3’-
UTR is replaced with either 3’-UTR of the CYC1 gene (MVY836) or that of the GCN4
gene (MVY837). Strain MVY836 is indicated as ¥*CYC1 and MVY837 as > GCN4. A.
Northern blot analysis of the RPB2 mRNA in MVY836 and MVY837 after UV treatment
(1.71J/m?/s for 42 seconds) or mock treatment. Ribosomal RNA is shown as loading
control. B. UV sensitivity of MVY150 (wild type), MVY836 (¥*CYC1), and MV'Y837

(*GCN4).
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Chapter V

General discussion and future directions



117

Reactive oxygen species (ROS) are constantly produced during aerobic metabolism.
Cell survival and faithful reproduction depend on the intricate oxidative defense system
and the DNA repair system. A breach in these systems may lead to various human
diseases from cancer to aging. Therefore it is important to understand how these systems
combat the effects of ROS in humans. For this purpose our laboratory has previously
established a useful assay to identify human genes that can prevent oxidative mutagenesis.
PC4 was one of the genes that was found to effectively suppress oxidative mutagenesis.
Initial experiments by Wang et al. showed that the yeast homolog SUBL1 is important for
the cell to survive oxidative stress and human PC4 and yeast SUB1 appear to be
interchangeable in oxidation protection in yeast. It was possible that PC4 and SUB1
repairs oxidative DNA damage by participating in the transcription-coupled DNA repair
pathway. The purpose of this thesis was to elucidate how cells use PC4 or Subl to protect

themselves from ROS attacks.

Because of its interaction with the transcription machinery and NER proteins, the role
of PC4 in transcription-coupled repair (TCR) was studied by testing the requirement of
SUBL for preferential removal of UV damage on the transcribed strand of the RPB2 DNA.
The result was clear, SUBL1 is not required for TCR of UV damage. Although we cannot
completely rule out the possibility that PC4 repairs oxidative DNA damage by using TCR,
our result suggests that this role is less likely. Furthermore, we present evidence that PC4
possesses an intrinsic antioxidant activity and prevents DNA oxidation. This evidence

may explain the oxidation protection function of PC4 in various conditions. We predict
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that PC4 is an important component of the human ROS defense system, and we will be

seeking its molecular basis in future experiments.

We also characterized the role of SUBL1 in double strand break (DSB) repair. The
puzzle that different DSB repair assays reveal different requirements for SUB1 was
reconciled by the discovery that the sub14 mutant resects DNA ends rapidly which
results in destruction of plasmids but not chromosomes. DNA break resection is an
important phenomenon in DSB repair. The identification of SUBL1 as a new player in
DNA break resection is clearly going to change our current view of DNA resection and
DSB repair. An example is the conclusion we presented in chapter Il that resection does
not inhibit nonhomologous end-joining as we previously thought.

While studying the requirement of SUB1 in transcription recovery, | found UV
induces alternative polyadenylation of the yeast RPB2 gene. While the evidence
presented in chapter IV is observational, in the following sections | present more
preliminary data and propose a mechanistic model to illustrate the cellular events that

occur during transcription recovery.

1. PC4’s antioxidant activity

In chapter 111 of this thesis, | presented evidence that PC4 possesses antioxidant
activity. The antioxidant activity of PC4 provides an explanation for the antimutagensis
activity of PC4 in E. coli. That is, it could reduce spontaneous ROS in E. coli and prevent

the genomic DNA from oxidation. The high abundance of PC4 suggests that PC4 might
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be important to maintain the redox homeostasis in the nucleus. Additionally, because PC4
nonspecifically binds to ssSDNA and dsDNA, it might be recruited to the nucleosome-
depeleted genomic regions during various nuclear processes, providing localized
protection for genomic DNA. As we have observed that the yeast subl4 mutant is highly
sensitive to oxidative stress and exhibits increased mutagenesis (Wang et al, 2004), it is
expected that PC4 protects the human genome from oxidative damage as well. Therefore
it will be interesting to knock down PC4 in human cell lines and determine if the cells
become sensitive to oxidative stress. Because oxidative stress induces genomic instability
and contributes to cancer formation, it might be interesting to analyze cancer genomics
databases (Chin et al, 2011; Stratton, 2011) to determine if mutations in PC4 are
associated with cancer.

Another immediate and important question is the molecular mechanism of PC4’s
antioxidant property. From the in vitro assay, PC4 appears to protect DNA without
assistance from other antioxidant molecules. Therefore there are two possible
mechanisms. The first is that PC4 chelates iron ions to suppress ROS production. To test
this possibility, we can determine the metal ion affinity of PC4 in future experiments.
The second possilibity is that PC4 donates electrons from its amino acid residues to
reduce ROS. If this hypothesis is true, then the DNA binding property of PC4 may
increase the effectiveness of the antioxidant activity of PC4 by recruiting more PC4 to the
vicinity of DNA. To identify the critical amino acids involved in oxidation protection,

comparative mass spectrometry can be used to determine the residue changes in PC4
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after protein oxidation. Special attention should be paid to the conserved residues
between PC4 and its yeast homolog Sub1.

PC4 appears to be toxic when over-expressed in bacteria. In the papillation assay,
bacteria of high titer are required to be plated in order to obtain a few colonies (See
Figure 1.1). However, re-testing of individual clones that were still capable of
suppressing oxidative mutagenesis in the mutM mutY E. coli strain showed that these
clones grow normally, indicating that mutations in PC4 have been selected that inactivate
its toxicity but not its antioxidant activity. In the preliminary experiments | have
sequenced 3 single clones and found that they all contain large deletions in the PC4
coding sequence. In the clone named “WC2”, DNA sequences encoding amino acids
beyond 71 are missing and a short random sequence is attached, which terminates the
coding sequence (Appendix A). Because it has already been shown that the amino
terminus a.a. 1-39 are not required for the oxidation protection function of PC4 (Chapter
111 and (Wang et al, 2004)), this essentially narrows down the functional domain for
PC4’s antioxidant activity to be within a.a. 40-70. Furthermore, only 6 amino acids are
conserved between PC4 and Subl within that short range: two serines, an aspartic acid, a
phenylalanine, a glycine, and a lysine (Appendix A). Further mutational analysis of this
domain is expected to shed light on the molecular mechanism of PC4’s antioxidant

activity.

2. Subl’s role in DNA break resection
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End resection of double strand DNA breaks (DSBs) is an important step in DNA
repair. It generates the sSDNA that is required for homologous recombination and DNA
damage response. In Chapter Il | showed that the sub14 mutant is deficient in repair of
DSBs in plasmid DNA but proficient in repair of chromosomal DSBs. This apparent
discrepancy appears to be caused by rapid resection of the DNA ends in the sub14 mutant.
The ykua mutant is the only other known yeast mutant that resects DNA ends more
rapidly than normal. However, unlike the sub14 mutant, the yku704 mutant is deficient in
both plasmid and chromosomal DSB repair. Clearly, rapid resection in the sub1A mutant
is not caused by transcriptional repression of the Ku proteins, because lack of YKU70
expression should affect all DSB repair, not just that of plasmid, and NHEJ is mutagenic
in the yku704 mutant but not in the sub14 mutant. Although the molecular events that
cause rapid resection in the sub14 mutant need to be determined, the subl4 mutant
exhibits three features described in Chapter II: rapid resection, potent NHEJ, and error
free ligation. Two important aspects of NHEJ can be drawn from these features of the
subl4 mutant. The first is that rapid resection does not inhibit NHEJ in the sub14 mutant.
This conclusion inevitably challenges the generally accepted concept that DNA resection
channels DSB repair into homologous recombination repair (HR). Nonetheless, other
recent discoveries support my conclusion. For example, resection of topoisomerase-
induced DSB is not only non-inhibitory for NHEJ, but also is required for NHEJ
(Quennet et al, 2011). The second aspect of NHEJ in the subl4 mutant is that DSB
resection does not cause mutagenic ligation. Previously rapid resection was only seen in

the yku4 mutants and NHEJ in these mutants are highly mutagenic. My results indicate



122

that the Ku complex is critical for fidelity of NHEJ and ssDNA ends produced by
resection does not necessarily lead to mutagenic ligation or microhnomology mediated end
joining (MMEJ).

The next question to ask would be if rapid resection in the sub14 mutant increases
the efficiency of homologous recombination? The efficiency of HR has not been directly
determined in the sub1l4 mutant, but the efficiency of single strand annealing (SSA) has
been analyzed (Appendix B). The subl4 mutation does not appear to increase the SSA
efficiency between two 90bp repeats located on both sides of the induced DSB. SSA is
different from normal recombinational repair in that it does not have the homology search
step. So other assays that directly test the HR efficiency in the sub14 mutant are
warranted in future experiments. The other caveat of the SSA assay depicted in Figure
6.2 (Appendix B) could be the asymmetric distribution of the two 90bp repeats. While
one of the repeats is located directly adjacent to the 1-Scel site, the other is located
several kilo-bases away. It is unknown if this would affect the SSA efficiency. So other
SSA assays are needed to confirm the current results.

The molecular mechanism that leads to rapid resection in the subl4 mutant is
very important for our understanding of the resection process. Formally we cannot rule
out the possibility that Subl acts as a transcription cofactor to regulate the resection
pathways. However, it seems that a direct involvement of Sub1l in the resection process is
more likely. The first reason is that PC4 is recruited to the DNA damage sites and forms
visible foci. Based on the similarity between Subl and PC4, Subl is expected to be

recruited to DSBs. Both PC4 and Sub1 are high-affinity DNA binding proteins (Wang et
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al, 2004). The tight-binding of PC4/Sub1 to DNA may become a physical obstruction for
the DNA resection enzymes, therefore preventing the DNA ends from being resected.
The other evidence supporting a direct role of PC4 in resection is that expression of
truncated PC4 complements the sub14 mutant and restores NHEJ in the plasmid ligation
assay (Appendix C). Because the truncated PC4 lacks the amino-terminal domain that is
required for transcription regulation, it is unlikely that PC4 inhibits resection by
transcription regulation. It is more likely that PC4 prevents DNA resection and therefore
avoids plasmid loss. However, the rate of DSB resection needs to be determined directly
in the PC4-complemented subl4 mutant in future experiments. Another possible
approach is to use the in vitro resection system to test if the presence of purified PC4
suppresses DNA resection. To this end it would be best to collaborate with the Stephen
Kowalczykowski lab or the Grzegorz Ira lab because they have already established the in
vitro resection systems (Cejka et al, 2010) (Niu et al, 2010).

Because DSB resection is tightly regulated within cell cycles, another future
experiment is to determine how the state of the cell cycle affects DSB resection in the
subl4 mutant. A single DSB is not resected in G1 phase in the haploid yeast cell. If Subl
protects DNA ends from resection, a SUB1 deletion might allow the ends to be resected
during G1 phase. Thus | propose to determine if the subl4 mutant resects DSBs in G1
phase. Synchronization of the sub14 cells in G1 phase can be achieved by adding a factor
to the MATa cell culture. Alternatively, the subl4 mutant might resect DSB ends more
rapidly in the G2/M phase. Nocodazole can be used to arrest yeast cells in the G2/M

phase.
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3. UV induced polyadenylation switching

Work presented in Chapter IV demonstrates that UV induces polyadenylation
switching on the yeast RPB2 gene. This is the first report that alternative polyadenylation
can be induced by UV irradiation in yeast. Increasing evidence suggests that alternative
polyadenylation is a crucial cellular process that contributes to embryonic development,
neural plasticity, and carcinogenesis (Ji et al, 2009; Mayr & Bartel, 2009; Flavell et al,
2008). My work suggests that alternative polyadenylation may be an important cellular
response to UV irradiation because disruption of the polyadenylation switching of the
RPB2 gene causes UV sensitivity to the cells.

RPB2 is an essential gene that encodes the second largest subunit of the RNA
polymerase 11 in yeast (Appendix D). A potential beneficial feature of the long form
RPB2 mRNA could be that it is more stable. Therefore, | tested the decay rate of the
RPB2 mRNAs by using the temperature sensitive rpb1-1 strain (Nonet et al, 1987; Scafe
et al, 1990). Rpb1l is the largest subunit of mMRNA polymerase Il in yeast. After shifting
to non-permissive temperature at 37°C, transcription in rpb1-1 immediately shuts down
and levels of all mRNA start to diminish according to their respective decay rates. This is
a well established system and has been used by many laboratories to determine mRNA
half lives (He et al, 2008; Coller, 2008; Marin-Navarro et al, 2011; Parker et al, 1991).
The control mMRNAs of the SUB1 gene and the YRAL gene were shown to be degraded
almost immediately after inactivating RNA polymerase 11 at 37°C (Appendix E). Quite
surprisingly, the long form of the RPB2 mRNA increases in abundance over time after

shifting the ts strain to non-permissive temperature, while the short form decreases
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quickly and synthesis never resumes. This suggests that the transcription of the long
RPB2 mRNA is independent of RNA polymerase 11, or alternatively that POL 11
transcription is leaky in the rpb1-1 mutant at non-permissive temperature and the increase
of abundance in the longer RPB2 mRNA may be caused by increased stability of the
longer RPB2 mRNA.

If the RPB2 gene is indeed transcribed independently of POL Il in the rpbl-1
mutant, the relevant effect of UV irradiation may be to induce POL Il inhibition as well.
In fact it is known that RNA polymerase Il is blocked by UV-induced DNA damage and
the stalled POL Il complexes are subjected to proteasomal degradation (Ratner et al, 1998;
Ribar et al, 2006, 2007). POL Il independent transcription prompts the model that POLII
MRNAs are synthesized by another RNA polymerase when POL Il is inactivated as
illustrated in Appendix F. Following UV irradiation or temperature shift of the rpb1-1
mutant, transcription is inhibited and cells enter state “B” where POL 11 is inactivated and
all mMRNASs start to decay (Figure 6.5 in Appendix F). Cells can not easily move back to
state “A” because they not only need enough POL 11 to recover mRNA synthesis but
they also need more POLII mRNA to make enough POL II. If the POL Il mRNA is in
fact damaged by UV, the production of POL Il proteins would be even more severe. As
my current working model suggests (Appendix F), another RNA polymerase may
replace POL Il and transcribe the mRNAs for POL |1 subunits after transcription
inhibition, potentially producing sufficient amounts of POL 1l mRNA to be translated
into new POL Il complexes, moving the cell into state “C”. Then new POL Il subunits

are translated from the POL Il mRNAs and assembled into new POL Il complexes,
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moving the cell into state “D”. Once enough POL Il complexes are available in state “D”,
MRNA transcription by POL 11 can resume and all other mRNA can again be transcribed.
Eventually the cell can recover from transcription inhibition and enter the normal cellular
state “A”.

An important prediction about this model is that MRNA of other subunits of POL
I1 should also be transcribed independently of POL Il. Yeast POL Il includes 12 subunits,
and most of them are essential (Appendix D). Rpb1l is the largest and Rpb2 the second.
Therefore | tested if RPB1 can be transcribed after shifting the rpb1-1 strain to non-
permissive temperature. As expected, the mRNA level of RPB1 increases after heat
inactivating POL Il (Appendix E).

The critical question to be addressed in the feed-back synthesis model is to
determine what polymerase transcribes the POL 1l mRNA during POL Il inhibition.
There are only 3 known RNA polymerases in yeast and all other eukaryotes: RNA
polymerase I, 11, and 111 (Ishihama et al, 1998). They are often designated POL I, POL II,
and POL I1l. POL I transcribes ribosomal RNA (rRNA), POL Il transcribes mRNA, and
POL I11 transcribes transfer RNA (tRNA) and 5S rRNA. In order to dissect the roles of
these RNA polymerases, | propose to use transcription inhibitors a-amanitin and thiolutin
to confirm that the RPB2 mRNA can be synthesized in the absence of a functional POL 11
and test if RPB2 mRNA synthesis is dependent on the other two polymerases. a-amanitin
only inhibits POL I transcription at low concentrations and thiolutin inhibits
transcription by all three polymerases, I, 11, and 11 (Bushnell et al, 2002; Brueckner &

Cramer, 2008; Coller, 2008; Raha et al, 2010; Tipper, 1973). In these experiments we
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expect that the RPB2 mRNA will be transcribed in the presence of a-amanitin but will
most likely be inhibited by thiolutin unless the fourth unknown RNA polymerase exists.

Interestingly, more than a decade ago Ishihama et al. discovered multiple
Reb1/Reb2 binding sites in the promoters of most of the genes that encode the POL 11
subunits (Jansma et al, 1996). Rebl is a POL | enhancer binding protein (Morrow et al,
1989)(Wang et al, 1990). Deletion of these Reb1 binding site in RPB1 and RPB2 greatly
reduces transcription of the genes for the POL 11 subunits. Therefore I predict that POL |
is most likely the RNA polymerase that transcribes the mRNA for POL Il subunits. A
null mutation in POL | has been made viable by expressing the rRNA gene from a POL 11
promoter (Gadal et al, 1997; Buck et al, 2002; Cioci et al, 2003; Nogi et al, 1991). |
propose to use these POL I null mutants to test if the UV induced polyadenylation
switching and the feed-back synthesis of POL Il mRNA is driven by POL I transcription.
Additionally, the lack of Rebl and Reb2 sites should reduce production of the large form
of RPB2 mRNA after UV treatment.

The cellular signals that drive the polyadenylation switching and the POL 11 -
independent POL I mMRNA transcription are a question to be answered in the future. A
possible source of signal could be the UV-induced DNA damage response. POL 11 is
known to be blocked by UV induced DNA damage such as CPD (Mei Kwei et al, 2004).
In the case of rpbl-1, elongating RNA polymerases in the rpbl-1 strain could be
inactivated in situ on the DNA template after shifting to the non-permissive temperature,
mimicking the situation where polymerases are blocked by UV-induced DNA damage.

Preliminary data suggested that RAD53, the gene required for the DNA damage response,
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is not required for triggering polyadenylation switching (Appendix G). Moreover,
peroxide and MMS treatments are known to induce the DNA damage response [(Leroy et
al, 2001; Conde et al, 2010; Haghnazari & Heyer, 2004b) and Chapter I11] but do not
effectively trigger polyadenylation switching on the RPB2 gene (Appendix H). Taken
together, our results suggest that the DNA damage response is not the trigger for
polyadenylation switching and POL 1l independent mRNA synthesis. Rather, it appears
more likely that blocked transcription or the reduced number of POL Il complexes are
likely events that trigger the feed-back synthesis of POL 11 mRNA. Both stalled POL 11

on DNA and heat-denatured POL Il might be targeted to ubiquitin-dependent degradation.
Therefore it would be of interest to test if the ubiquitin-dependent degradation pathway is

involved in signaling the POL Il independent mRNA synthesis.
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Chapter VI

Appendices
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Appendix A. Important residues for PC4’s antioxidant activity.

PC4 appears to be toxic to bacteria because few cells survive when PC4 is
induced in the papillation assay (Wang et al, 2004). The few bacteria that do survive in
the papillation assay seem to contain mutations because they grow normally when PC4 is
induced. I sequenced 3 single clones from bacterial colonies that remained suppressed,
based on the white colony phenotype. They are named WC1, WC2, WC3. WC2
suppressed mutagenesis in the mutM mutY strain upon retransformation. It has a large 3’
deletion in the coding sequence of PC4 and suppressed mutagenesis. Its protein sequence
is shown in Figure 6.1. When aligned with PC4, we found residue 1-70 are identical
while the rest is missing in WC2, suggesting a.a. 1-70 is sufficient for PC4’s antioxidant
activity. As Subl appears to conserve the antioxidant activity of PC4 (Chapter I11), Subl
is also included in the alignment for comparison. The “CON” lines show conserved
residues between Subl and PC4. Residues conserved in all of the three proteins are
highlighted in the bold font. These residues may be critical amino acids for the
antioxidant activity of PC4 and Subl. Subl sequence after the conserved region is not

shown.
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Figure 6.1 Protein sequence alignment of PC4, WC2, and Subl. See previous page
for details.
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Appendix B. Analysis of single strand annealing (SSA) in the subl4

mutant.

Rationale: SSA is the process where homologous regions located on both sides of the
double strand break anneal and any intervening sequences are deleted. It is a special form

of homologous recombination repair and it depends on RAD52 but not RAD51.

Because the yeast sub14 mutant produces single strand DNA (ssDNA) ends
rapidly by DNA end resection, these sSDNA ends might stimulate SSA. Therefore |
tested if the sub1l4 mutant has an increased frequency of SSA. | used the yeast strain
FRO-830 to test the SSA efficiency. FRO-830 is a gift from Francesca Storici (Storici et
al, 2006; Storici & Resnick, 2006). As shown in Figure 6.2, the GSHU CORE cassette is
inserted into the LYS2 gene between two 90bp repeats. When the I-Scel endonuclease is
induced by galactose it cuts the chromosome at the 1-Scel recognition site as depicted.
DSB resection can expose the two 90bp repeats. When the repeats anneal, they will cause

deletion of the GSHU CORE cassette, leading to a functional LYS2 gene.

Methods: wild type (MVY802, i.e. FRO-830) and the sub14 derivative (MV'Y804) were
grown in YEP-raffinose at 30°C overnight to mid log phase. The culture was incubated
with 2% galactose at 30°C for 90 minutes to induce DSBs. Cells were plated onto lysine
dropout medium to quantify SSA events and onto Uracil dropout medium to quantify
direct ligation events. Uninduced cells were plated onto YPD to measure total cell

numbers.
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Results:

The percentage of cells that performed SSA or direct ligation are shown in Table 6.1. The
sub14 mutant does not appear to have an increased SSA activity.Note: The percent of
SSA and ligation does not add up to 100%. This is presumably caused by different

plating efficiencies on YPD medium versus galactose containing minimum medium.
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Table 6.1 Efficiencies of SSA and direct ligation in wild type and the sub14 mutant.

SSA ligation

wild type 7.8% 98%

subl4 5.4% 106%
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Figure 6.2 Schematic drawing of the SSA system. The GSHU CORE consists of the I-
Scel gene under the Gal promoter, the hygromycin resistance gene, and the URA3 gene
from Kluyveromyces lactis (KIURA3). Drawing is used by permission from Dr. Francesca

Storici (Georgia Institute of Technology).
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Appendix C. PC4-CTD (a.a. 40-127) complements the subl4 mutant in

the plasmid ligation assay

Rationale: To test if PC4 complements the subl4 mutant in the plasmid ligation assay, |
compared the plasmid ligation efficiencies of wild type (MVY101), the sub14 mutant
(MVY105), and the sub1l4 mutant with PC4-CTD (a.a. 40-127) expressed under a GPD
promoter (MVY115). PC4-CTD (a.a. 40-127) lacks the amino terminal domains that are
required for its transcription regulation function. It has been shown that it complements

the sub14 mutant in peroxide sensitivity (Chapter 111 and (Wang et al, 2004)).

Methods: Competent yeast cells are transformed with plasmid pRS315 or the plasmid
linearized by BamHI, and plated on the leucine drop out medium to select transformants.
Cells that ligate the linear plasmid by NHEJ will retain the LEU2 gene and survive on the
selection media. Ligation efficiency is calculated as the transformation efficiency
obtained using the linear plasmid divided by the transformation efficiency using the
circular plasmid. Ligation efficiencies of wild type are normalized to 100% in each

experiment.

Results: The ligation efficiency of the PC4-expressing sub1A mutant (MVY115) is
almost twice of that of wild type, whereas that of the sub14 mutant is greatly reduced.

(See Figure 6.3).
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Figure 6.3 PC4-CTD (40-127) complements the subl4 mutant in plasmid ligation.

(For details see: methods in Appendix C).



Appendix D. Subunits of RNA polymerase Il in yeast.

Table 6.2 Yeast POL Il subunits.

Gene
RPB1
RPB2
RPB3
RPB4
RPB5
RPB6
RPB7
RPB38
RPB9
RPB10
RPB11

RPB12

References: (Woychik & Young, 1990; Ishihama et al, 1998)

Size (kDa)
220

150

45

32

27

23

17

14

13

deletion viability

inviable
inviable
inviable
conditional
inviable
inviable
viable
inviable
conditional
inviable
inviable

conditional

138
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Appendix E. mRNA transcription in the rpbl-1mutant at non-
permissive temperature.

Figure 6.4. mRNA transcription in the rpb1-1 mutant after shifting to the non-
permissive temperature 37°C. Ribosomal RNA is shown as the loading control. rpb1-1
cells were cultured to mid-log phase at 23°C, then shifted to 37°C to inactivate POL 1.
Levels of SUB1 and YRAL mRNA decreased immediately after the temperature shift,
confirming that POL 1l dependent transcription had been inhibited. The RPB2 gene
exhibits two forms of mMRNA, the shorter form is present at a higher level at time 0. After
the temperature shift, the shorter form disappeared quickly but the longer form increased
robustly over time. Thus transcription of the long RPB2 mRNA is independent of RNA
polymerase 11.RPB1 mRNA, which encodes another POL 11 subunit, also continued to
increase in levels after the temperature shift. However, unlike RPB2, no differences in

polyadenylation were evident in the RPB1 message.
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Figure 6.4
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Appendix F. The feed-back synthesis model

Figure 6.5. The feed-back synthesis model to describe transcription recovery
following transcription inhibition. After UV irradiation, or shifting the rpb1-1 strain to
non-permissive temperature, 37°C, the number of POL Il complexes in the cell
dramatically drops due to transcription-blocking DNA damage or heat inactivation of the
largest POL 11 subunit Rpbl. Subsequently, the levels of all mMRNAs including the
mRNAs for the POL Il subunits start to decrease, a situation described in state B. In order
to move back to state A, the cell needs to regenerate its POL Il pool, which depends on
the translation of the mRNAs of POL Il subunits. However, because the mRNA levels are
low, the cell will demand more POL Il mRNAs, which depends on efficient transcription
by POL II. In order to exit this negative cycle of requesting POLII or POL 11 mRNA,
cells use another as yet unidentified RNA polymerase to synthesize the mRNAs of POL
I1, leading to state C. Once in state C, cells translate the POL Il mRNA and assemble the
subunits into functional POL I1 holoenzymes, leading to state D. Finally, cells in state D
use the newly synthesized POL Il to transcribe all other mMRNA and the cells return to
the normal state A. Overall, this model hypothesize that cells use the reduced number of
POL Il as a feed-back signal to synthesize more POL I1, for the cells to recover from

transcription inhibition.



142

Figure 6.5
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Appendix G. Rad53 is not required for polyadenylation switching.

Rationale: RAD53 is required for inducing the DNA damage response in yeast cells. |
used the rad534 mutant (MVY496, isogenic to MVY150 or the W303 strain) to test if the
DNA damage response is required for UV induced polyadenylation switching of the
RPB2 gene. If the DNA damage response is required to signal the polyadenylation
switching, we would not expect to see polyadenlyation switching of the RPB2 gene in the

UV-irradiated rad534 mutant cells.

Methods: MVY496 was grown to mid log phase, resuspended in PBS to an ODgqo
reading of 0.8, then irradiated with UV at 1.7J/m?/s for 42 seconds. Cells were then
collected and cultured in YPD liquid medium at 30°C. After 0, 15, and 30 minutes, cells

were collected and yeast total RNA was extracted and analyzed by Northern analysis.

Results: The long form of RPB2 mRNA was preferentially synthesized 30 minutes after
UV treatment in the rad534 mutant, suggesting that the DNA damage response is not

required for polyadenylation switching of the RPB2 gene.
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Figure 6.6. Polyadenylation switching occurs in the rad534 mutant after UV
treatment. The rad534 mutant cells (MV'Y496) were treated with UV at 1.71J/m?/s for
42 seconds and immediately cultured in YPD liquid medium for indicated times. Yeast
total RNA was then extracted and subjected to Northern analysis. The RPB2 gene
exhibited two distinct bands due to alternative polyadenylation as described in Chapter
IV. Transcription was initially inhibited by UV (see the lane of 15 minutes), then
recovers after 30 minutes. The long form of RPB2 mRNA was preferentially synthesized,

suggesting alternative polyadenylation is induced in the rad534 mutant by UV.
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Appendix H. H,O, and MMS do not effectively induce polyadenylation

switching.

Rationale: Peroxide and MMS can damage DNA and are known to induce the DNA
damage response (Leroy et al, 2001; Conde et al, 2010; Haghnazari & Heyer, 2004b).
Here | tested if peroxide and MMS can induce polyadenylation switching. | treated yeast
cells with different concentrations of MMS or peroxide and analyzed the RPB2 mRNA

by Northern blot.

Methods: Yeast strain MVY 150 was grown in 50ml YPD to mid-log phase and 5 ml of
cells (ODggo=2.4) was saved as the pretreatment sample. For H,O, treatment, H,O, was
added to 5 ml of cells (ODgop=2.4) to final concentrations of 1, 5, 10mM. The cells were
then incubated at 30°C for 30 minutes. For MMS treatment, MMS was added to 5ml of
cells (ODgpp=2.4) to final MMS concentrations of 0.05%, 0.1%, and 0.2%. Then after
incubation at 30°C for 30 minutes, the yeast total RNA was extracted by using the hot
phenol method and subsequently subjected to the Northern analysis (He & Jacobson,

1995).

Results: As shown in Figure 6.7, transcription of the long form of RPB2 mRNA does not
increase in MMS and peroxide treated cells at various concentrations. These results
suggest that the DNA damage response does not trigger polyadenylation switching in the

RPB2 gene.
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Figure 6.7 Peroxide and MMS do not induce polyadenylation switching of the RPB2 gene
effectively. A. The level of the long form of RPB2 mRNA is not induced to exceed that of the
short form by 1mM, 5mM, and 10mM H,0,. 5mM H,0, has been shown to induce a robust DNA
damage response (Figure 3.4b). B. Similarly, MMS does not induce polyadenylation switching

effectively.



Appendix I. The protocol of the transcription-coupled repair assay.

[Prepare cells]

147

1. Equilibrate 1 liter of sterile PBS in 4°C refrigerator.

2. Inoculate yeast cells overnight to ODgoo<=1.6 (1x10° cells/ml). Measure OD.
(Note: Do not use saturated culture. They don’t form spheroplasts during zymolyase

digestion)

3. Rinse the Pyrex dish with 70% EtOH and irradiate with UV for over 5 minutes.
Leave the UV light ON till all irradiations are finished. Record the intensity of the
UV light. (Note: Stabilizing the UV light is important to maintain a consistent

irradiation condition)

4. Collect the cells and resuspend in sterile and cold PBS to OD=0.7 (total volume
80~200ml) in the Pyrex dish. (Note: the cell density is an important parameter and
should be kept constant. Cell density greatly affects how much UV each individual

cell receives.)
5. Turn off the light and work in dark till step 16.

6. Irradiate the cells in PBS for 42 second (75J/m?). Turn on the rotary platform (set

at 2.5) during irradiation. (Note: 40~45 seconds of UV irradiation is the appropriate
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dosage range. In this dosage range, the transcribed strand can be repaired completely
in an hour, while the non-transcribed strand will repair ~70% of the damage so we
can see repair kinetics in both strands. Lower dosage produces smaller amount of
CPD and the repair in both strands could be too quick to be characterized. If very
high UV dosage is used (say 135J/m?), only TCR will be seen (because TCR is very

efficient) and GGR will be overwhelmed.

7. Take 15ml of culture for each repair time point (say: 0, 15min, 30min, 45min,

60min, 90min) in 15ml centrifuge tubes.

8. collect the cells and resuspend in 10ml culture media (say: YPD). Wrap the tubes

with aluminum foil.

9. Store the tube for time point 0 on ice. Roll other tubes at 30°C for different repair

times and store them on ice afterwards.
10. Collect the cells by centrifugation.
[Prepare DNA]

11. Resuspend the cells in 2ml of 0.9M sorbitol, 0.1M Na;EDTA (PH7.5).

(Note: store the buffer at 4°C)

12. Add 50uL of a 15mg/ml solution of Zymolyase 20T (0.1ml at 2mg/ml also works).
Incubate for 30 minutes at 37°C (on a rotary roller).
13. Collect the cells by centrifugation briefly. Discard the supernatant.

14. Resuspend the cell pellet in 3ml of 50mM Tris-Cl (pH7.4), 20mM Na,EDTA.
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15. Add 300ul of 10% SDS and mix.

16. Incubate for 30 minutes at 65°C. Shake occasionally to dissolve clumps.

17. Add 900uL of 5M potassium acetate and store on ice for 1 hour or over night
(overnight preferred).

18. Centrifuge in JA12 rotor at 5000 rpm for 20 minutes at 4°C. If large clumps are
seen, re-centrifuge at 7000rmp for 10minutes to clear debris.

19. Transfer the supernatant to a fresh plastic centrifuge tube and add 7/3 volumes of
ethanol at room temperature. Mix and centrifuge in a JA12 rotor at 5000 rpm for
15 minutes at room temperature. Discard the supernatant.

20. Discard the supernatant, drain the liquid, resuspend the pellet in 400 pl of TE.

21. Transfer to a 1.5ml centrifuge tube.

22. Add 30pL of NaOAc and 950uL of 100% EtOH. Mix by inversion. Centrifuge at
12000g in a tabletop centrifuge for 10 minutes. Discard the supernatants. Wash
with 500uL of 70% ethanol and centrifuge at 12000g for 5 minutes. Discard the
supernatant. Wash with 70% ethanol. Vacuum dry for 7 minutes.

23. Resuspend the precipitate in 200ul of TE (PH=8) (This may take a long time,
don’t use 50°C to facilitate the dissolving). Store at 4°C.

24. Measure the relative DNA concentrations by spectrometer at the 260nm
absorbance . The DNA concentration should be about 50ng/uL. (Note: for any
strain, we can assume the concentration of the DNA with medium A260 reading
is 50ng/uL, and other concentrations can be derived from their A260 readings)

[Digest DNA]
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25. Restriction digest the DNA with Nrul (for RPB2 gene). E.g.:

3ug genome DNA in 60uL + 0.6 Nrul + 74 H,O+ 15 NEB3

Shake occasionally, 37°C for 2 hours.

26. Ethanol precipitate the DNA. Vacuum dry for 7 minutes.

27. Resuspend the DNA in TE74 to concentrations of 150-200ng/uL.

28. Add 1-1.5uL of T4 endo V (NEB) or 0.25uL of T4 endo V (Epicentre) to 0.5ug
(3uL) restriction-digestion product, e.g.:
3uL DNA + 1uL T4-buffer + 1pL BSA + 4uL H,O + 1puL T4EV (NEB) Mix
thoroughly. Incubate at 37°C for 30minutes. Freeze at -20°C or run gel directly.

[Alkaline gel electrophoresis]

29. Make fresh 0.8% agarose with correct amount of agarose and water and let it cool
down in 50°C water bath (Do this step the day before running the gel is more

convenient).



30. Add NaOH and EDTA to the gel according to the table below:

(The B1 gel cast needs 50ml gel to hold 17uL samples with B1-14 (1.5mm) comb)

Final VVolume of Stock
Stock
Conc 100ml (2 B1) 25ml (B1A) 50ml (B1)
0.03N 10 N NaOH 300uL 75uL 150uL
0.5M EDTA
1mM 200uL 50uL 100pL
pH8.0

Let solidify for about 30 minutes.
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31. Each lane use 0.5ug DNA (10uL). Mix thoroughly the samples with 6X alkaline

loading buffer (extra NaOH added) (Rule of thumb: 10uL sample+ 4uL loading

buffer). Load all the samples into the wells. Run gel at 60V for 3 hours (if B1 gel).

32. Rinse the gel, treat the gel in 0.25N HCI for 20 minutes (depurinate).

33. Rinse the gel, treat the gel in 0.5N NaOH for 30 minutes (denature).

34. Rinse the gel, neutralize the gel by soaking the gel in neutralizing solution for 30

minutes. (1 M Tris.Cl [pH7.6], 1.5 M NaCl).

35. (optional) Dilute Vistra Green 1:10000 in TE buffer or TAE buffer (pH7-8.5),

soak the gel for 10-20 minutes. Take pictures under UV. (Staining won’t affect

subsequent steps)
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[Transfer DNA to Membrane]

36. The procedures should be performed according to the manufacture’s instructions.

37. Use 10X SSC as transfer buffer, transfer the DNA onto nylon membrane (Zeta-
Probe blotting membranes from BioRad is the tested working membrane.
Membrane from Amersham is no good: it cannot be stripped).

38. After the transfer, mark the membrane with pencil for information.

39. Stain the gel with Ethidium Bromide and check transfer efficiency.

40. Cross-link the DNA to the membrane (better to be damp) by placing the (damp)
DNA-side up on the filter paper in the UV crosslinker and UV irradiate.

41. The membrane is now ready to hybridize, or it can be stored dry at 2-8°C.

[Hybridize the membrane]

Prepare the probes according to the attached protocol.

42. Boil the 100ug/ml Salmon Sperm DNA for 10 minutes before use.
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43. Prepare the prehybridization buffer (tRNA can be omitted if DNA probe is used):

15ml 20ml 30ml 40ml 60ml

preBufferl 15ml  20ml 30ml 40ml 60ml
10mg/ml salmon sperm DNA 300uL 400uL 600ul 800uL 1.2mL
10mg/ml tRNA 37.5uL50pL  75uL  100pL 150pL

44. Prepare the hybridization buffer (tRNA can be omitted if DNA probe is used):

15mi20ml 30ml 40ml 60ml

PreBuffer2 15ml 20ml 30ml 40ml 60ml
10mg/ml salmon sperm DNA 150uL 200pL 300ml 400uL 600uL
10mg/ml tRNA (final 25ug/ml) 37.5uL50pL  75uL  100puL 150uL

45. Wet the membrane using 6XSSC if it is dry.

46. Slide the membrane into the roller bottle, add 15ml hybridization buffer,
prehybidize at 42°C for 2 hours or over night. (Don’t overlap membranes. Don’t
use the nylon mesh.)

47. Add RNA probe (0.5-2x10° incorporated counts per ml of hybridization buffer) to
15ml hybridization buffer. Replace the prehybridization buffer with the probe
containing buffer.

48. Hybridize at 42°C overnight.



[Wash and detect]
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49. [2XSSC +0.1%SDS], 100ml in plastic boxes, RT, 2X5min (room temperature).

50. Prewarm [0.1%SSC+0.1%SDS] to 58°C, 50ml in roller bottles, 58°C, 2 x 15min.

(60°C can be used if the probe is new)

51. Use phosphoimager to image the membrane.

[Deprobe the membrane if necessary]

51. Incubate membrane at 45°C for 30 min in 0.4M NaOH (2ml 10M NaOH + 48ml

ddwater)
52. Transfer to a solution of:

ddH,0O

0.1x SSPE

0.1% SDS

0.2M Tris-HCI

53. Incubate for 15min at 45°C.
54. Wrap in Saran Wrap.
55. check deprobe overnight.

56. Store at 4°C.

39.25ml ddH,0

0.25ml 20X SSPE

0.5ml 10% SDS

10ml of 1M TrispH 7.5

total 50ml
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Random primed DNA labeling

1. Mix 2uL template DNA and 7uL water.
2. Boil for 10 min, chill on ice.

3. add in order:

1). JAGTTP 3uL
2). reaction mix (vial 6) 2uL
3). 50uCi dCTP (10uCi/uL) SuL
4). Klenow enzyme (vial 7) 1-2puL

4. Mix, bump, 37°C for 1 hour.
5. Use G-50 column (for DNA) to remove single nucleotides.
a) Resuspend the columns gently.
b) Remove the caps of the columns, and the pinings of the columns to drain the
columns for 2 minutes.
c) Spin in SwingBucket centrifuge at 1100g for 2 min, place the columns in a new
collection tube.
d) Apply the reaction mixture (60uL) to the center of the columns.
e) Spinat 11009 for 5 min, the flow through is the purified sample.

6. Boil or 95°C for 10min before transferring to the hybridization bottle.
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Note to make template DNA: Gel extract the preferred fragment. Use 50-100ng of the

DNA template (the Roche protocol recommends 25ng template though).

In vitro transcription RNA labeling

1. Addin order:

T7 probe:
1). Transcription 5X buffer 4uL
2). DTT, 100mM 2uL
3). RNasin inhibitor 1L
4). rAGUTP, 2.5mM each 4ul
5). 100uM rCTP 2.4uL
6). T7 probe template luL
7). [a-32P] rCTP (10pCi/pL) 5ul

8). T7 RNA polymerase lulL



T3 probe:
1). Transcription 5X buffer 4ulL
2). DTT, 100mM 2ul
3). RNasin inhibitor lulL
4). rAGUTP, 2.5mM each 4ul
5). 100uM rCTP 2.4uL
6). T3 probe template lulL
7). [a-**P] rCTP (10pCi/uL) SuL
8). T3 RNA polymerase luL

2. Mix, bump, 37°C for lhour.
3. Remove the DNA template:
a) Add 1uL RQ1 DNase to each reaction
b) Incubate at 37°C for 15min.
c) Add 1luL 0.5M EDTA to stop the reaction, add 40uL water.
4. Remove unincorporated nucleotides:
1. resuspend the column, open the caps and snap the pinings to drain.
2. 1100g fro 2min in SwingBucket centrifuge.

3. Use a new collection tube, apply the sample to the center of the column.
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4. 1100g for 5 min.

Note: No need to heat denature the RNA probe.

Note: to make the template:

Linearize the vector.

Extract with phenol:chloroform:isoamyl alcohol.

Ethanol precipitate.

Resuspend in TE. (0.2-1.0mg/ml)

Formula to make 6X alkaline loading buffer (1ml final volume)

Final Concentration Stock Concentration Volume of Stock
300mM NaOH 10N NaOH 30pL

6mM EDTA, pH8.0 0.5M EDTA 12pL

18% Ficoll Powder 0.18gm
0.15%Brom cresol Green | Powder 0.0015gm
0.25% Xylene cyanol FF | Powder 0.0025gm

Water Fill tube to 1ml

Add 26puL of 10N NaOH to 1000uL 6X alkaline loading buffer before use. This will

denature the sample completely.
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Formula to make alkaline running buffer:

Final Stock VVolume of stock
concentration 1L final volume | 2L final volume
30mM 10 N NaOH 3mL 6ml
1mM 0.5M EDTA, 2ml 4ml
pH8.0

Formula to make 20X SSC:
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Dissolve 175.3g of NaCl and 88.2g of sodium citrate in 800ml of H,O. Adjust the pH

to 7.0 with HCI. Adjust the volume to 1 liter with H,O. Sterilize by autoclaving.

Salmon Sperm DNA:

Prepare the 10mg/ml salmon sperm DNA by pressing through 16~21 gauge needle 5

times. Aliquot and freeze.



100X Denhardt’s Reagent:

10g Ficoll 400

10g BSA,

10g Polyvinylpyrrolidone

add ddH,0 to 500ml,

mix (don’t filter), store at -20°C.

preBuffer 1 500ml:
250ml of formamide 50% formamide
125ml of 20X SSPE 5x SSPE
25ml of 20%SDS 1% SDS
50ml of 100X Denhardt’s 10x

50ml of Water
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preBuffer 2

250ml of formamide

125ml of 20X SSPE

25ml of 20%SDS

10ml of 100X Denhardt’s

90ml of water

500ml:

50% formamide

5x SSPE

1% SDS

2X
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