May 16th, 11:35 AM

Collaborative Research in Medical Sensing: Wearable Wireless Sensor for Pressure Ulcer Prevention

John McNeill
Worcester Polytechnic Institute

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Biomedical Devices and Instrumentation Commons, and the Translational Medical Research Commons

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

https://escholarship.umassmed.edu/cts_retreat/2017/program/15

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
Collaborative Research in Medical Sensing: Wearable Wireless Sensor for Pressure Ulcer Prevention

John McNeill, Ph.D.
WPI ECE Department

May 16, 2017
Disclosures

• Grant/Research Support:
 – In-kind support, Boston Scientific

• Graphic content warning: Images of
 – Pressure ulcer wound
 – Porcine model animal experiment
Development of Biomedical Collaboration

<table>
<thead>
<tr>
<th>Greatest Engineering Achievements of the 20th Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Electrification</td>
</tr>
<tr>
<td>2. Automobile</td>
</tr>
<tr>
<td>3. Airplane</td>
</tr>
<tr>
<td>4. Water supply & distribution</td>
</tr>
<tr>
<td>5. Electronics</td>
</tr>
<tr>
<td>6. Radio & television</td>
</tr>
<tr>
<td>7. Agricultural mechanization</td>
</tr>
<tr>
<td>8. Computers</td>
</tr>
<tr>
<td>9. Telephone</td>
</tr>
<tr>
<td>10. Air-conditioning & refrigeration</td>
</tr>
<tr>
<td>11. Highways</td>
</tr>
<tr>
<td>12. Spacecraft</td>
</tr>
<tr>
<td>13. Internet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering's Grand Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make solar energy economical.</td>
</tr>
<tr>
<td>Provide energy from fusion.</td>
</tr>
<tr>
<td>Develop carbon sequestration methods.</td>
</tr>
<tr>
<td>Manage the nitrogen cycle.</td>
</tr>
<tr>
<td>Provide access to clean water.</td>
</tr>
<tr>
<td>Restore & improve urban infrastructure.</td>
</tr>
<tr>
<td>Advance health informatics.</td>
</tr>
<tr>
<td>Engineer better medicines.</td>
</tr>
<tr>
<td>Reverse engineer the brain.</td>
</tr>
<tr>
<td>Prevent nuclear terror.</td>
</tr>
<tr>
<td>Secure cyberspace.</td>
</tr>
<tr>
<td>Enhance virtual reality.</td>
</tr>
</tbody>
</table>

- General direction: NAE Grand Challenges
 - Health; Sustainability; Security

Collaboration History

2011-12
- MQPs: Wired / Wireless pressure ulcer prevention device
 Morianos, Jones, Gutierrez; Williams, Truhanovitch, Hause
 Advisors: Mendelson (BME), Bitar (WPI ECE), Dunn (UMMS)

2015
- McNeill, Dunn meet at UMMS/WPI Research Collaboration event
- $20K + $5K WPI/UMMS Seed Grant funding
 Partial support for MS student Matthew Crivello

2016-17
- McNeill ½ sabbatical at UMMS
- TA support for PhD student Devdip Sen
- 2 MQPs (ECE, BME)
 Agdeppa, Hussain, Kim, Loehle; Ooyama-Searls, Pachucki, Parent
 Advisors: McNeill, Mazumder, Mendelson

2017-18
- $25K UMass Technology Commercialization (OTCV) funding
- $10K Massachusetts Technology Transfer Center (MTTC)
Motivation: Pressure Ulcer Prevention

• Painful
• Increases risk for secondary infection
• Wound healing takes up to several months
 – May not heal at all in compromised patients
• Adds $11B annually to US health care costs
• Demographics: Increasing cost, incidence, prevalence

→ Need compact, low-cost prevention for patients:
 • In hospital setting
 • Confined to bed at home
 • With limited mobility in wheelchairs

Healing of pressure ulcer over several months

Cause: Localized Pressure

- External pressure over ~30mmHg restricts blood flow
- Ischemia; tissue deprived of oxygen
- Can lead to tissue necrosis
Opportunity for Prevention

- Well-known locations on body at risk for pressure ulcer formation
- Location depends on patient environment:
 - Hospital setting
 - Confined to bed at home
 - With limited mobility in wheelchair

System Approach: Pressure Ulcer Prevention

- **Device**: Low-cost, disposable, wearable sensor patch
- **System**: Wireless data collection from multiple at-risk sites
- **Algorithm**: Assess risk from pressure vs. time profile
- Low-cost, disposable, wearable sensor patch
- Measure local pressure, temperature
- Small size, comfortable to wear for long duration
Benefits of Our Approach

- Low cost: $10 / sensor
- 7-day wearable; disposable
- Meet needs for multiple populations:
 - Caregiver: Reduces workload
 - Doctor: Detailed pressure-time information
 - Patient: Improved independence

Drawbacks of Existing Techniques:
- 2-hour turn protocol
 - Workload, injury risk for caregivers
 - Not supported by controlled trials
- Offloading beds
 - Expensive (> $10K), fixed location
- Pressure mapping pad
 - Expensive (> $1K), caregiver interpretation
$11B annual cost in US for pressure ulcer treatment

- Potential annual market population:
 - Hospitals 35.1 million
 - (2014: No Medicare reimbursement)
 - Nursing homes 1.4
 - Long term / residential care 1.0
 - In-home care 5.3

Potential Population (5% at risk) 2.1 million
Estimated Gross Annual Market > $120 million

- Demographic demand accelerating
 - Aging, longer lived population

Flexible Wired Prototype

- Implement sensors, measurement circuitry on flexible substrate
Animal Experiment Data Acquisition

- **Surgical protocol**: Anesthetized pig immobile on back for ~ 7 hours
- **Identified at-risk sites** for placement of wired sensors
- **Acquire data** from multiple sites
Experimental Results

- Pressure, temperature vs. time over 7 hour duration
- Surgical protocol: Animal repositioned every 90 minutes
Experimental Results

- Pressure, temperature vs. time over 7 hour duration
- Verified ability to resolve threshold, pressure relief events
- Importance of multiple sensors for each at-risk point
Current Status

• Wireless prototype verified
 MS: Matt Crivello
 PhD student: Devdip Sen
 WPI Undergraduate project:
 ECE MQP: Amanda Agdeppa
 Ali Hussain
 David Kim
 Victoria Loehle
Development Plan Status

<table>
<thead>
<tr>
<th>Activity / Milestone</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure contact pressure, temperature, moisture</td>
<td>Verified</td>
</tr>
<tr>
<td>Wireless self-powered measurement</td>
<td></td>
</tr>
<tr>
<td>Human wearable, biocompatible sensor</td>
<td>IN PROGRESS (OTCV, MTTC, M2D2)</td>
</tr>
<tr>
<td>Animal model trials</td>
<td></td>
</tr>
<tr>
<td>Evidence based algorithm</td>
<td></td>
</tr>
<tr>
<td>Human trials (Class 2)</td>
<td>FUTURE FUNDING (NIH, NSF, SBIR, STTR, PARTNERS)</td>
</tr>
<tr>
<td>Clinical use</td>
<td></td>
</tr>
</tbody>
</table>

- Licensing most likely path to commercialization
- IP Status: Provisional patent application filed June 2016

Potential Partners
- Boston Scientific: Wearable sensors
- Johnson & Johnson: Managing diabetes, surgery recovery
- Convatec, Acelity, Smith & Nephew, Medtronic, GE, …

➡️ **M2D2 support**: Preliminary results for future funding

Technology: Disruptive shift in pressure ulcer prevention
Interdisciplinary Development Team

UMMS Division of Plastic Surgery

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raymond Dunn, M.D.</td>
<td>Chief; P.I.</td>
<td>Head, Wound Care</td>
</tr>
<tr>
<td>Kelli Hickle, M.D.</td>
<td>Resident</td>
<td>Surgical resource</td>
</tr>
<tr>
<td>Heather Tessier</td>
<td>Lab Director</td>
<td>Animal model resource</td>
</tr>
</tbody>
</table>

WPI Electrical & Computer Engineering

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>John McNeill, Ph.D</td>
<td>Professor</td>
<td>Sensor electronics</td>
</tr>
<tr>
<td>Xinming Huang, Ph.D</td>
<td>Professor</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>Devdip Sen</td>
<td>Student</td>
<td>Prototype fab / test</td>
</tr>
</tbody>
</table>

WPI Biomedical Engineering

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yitzhak Mendelson, Ph.D.</td>
<td>Professor</td>
<td>Skin-friendly materials</td>
</tr>
</tbody>
</table>
Acknowledgments

• Supported by a grant from the UMMS/WPI Collaborative Seed Funding Initiative.

• William Appleyard [WPI]
 – Assistance with sensor fabrication

• Heather Tessier [UMMS]
 – Access to experimental resources
 – Compliance with the IACUC-approved protocol
Summary: Lessons Learned

- Find an important problem: Listen to practitioners
 - Reduce cost, improve quality of care
 - Meets needs for majority of patient populations
 - Reduce workload on caregivers
- Clinical partner a must
- Engineers:
 - Interdisciplinary team
 - Different experimental constraints
 - Rapid prototyping
- Need credible plan for entire development cycle
 - Bring in partner resources (business, IP, …)
- Multiple funding sources
 - Get out of your comfort zone