Collaborative Research in Medical Sensing: Wearable Wireless Sensor for Pressure Ulcer Prevention

John McNeill
Worcester Polytechnic Institute

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Biomedical Devices and Instrumentation Commons, and the Translational Medical Research Commons

Repository Citation

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License. This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Collaborative Research in Medical Sensing: Wearable Wireless Sensor for Pressure Ulcer Prevention

John McNeill, Ph.D.
WPI ECE Department

May 16, 2017
Disclosures

• Grant/Research Support:
 – In-kind support, Boston Scientific

• Graphic content warning: Images of
 – Pressure ulcer wound
 – Porcine model animal experiment
• General direction: NAE Grand Challenges
 – Health; Sustainability; Security

Collaboration History

2011-12
• MQPs: Wired / Wireless pressure ulcer prevention device
 Morianos, Jones, Gutierrez; Williams, Truhanovitch, Hause
 Advisors: Mendelson (BME), Bitar (WPI ECE), Dunn (UMMS)

2015
• McNeill, Dunn meet at UMMS/WPI Research Collaboration event
• $20K + $5K WPI/UMMS Seed Grant funding
 Partial support for MS student Matthew Crivello

2016-17
• McNeill ½ sabbatical at UMMS
• TA support for PhD student Devdip Sen
• 2 MQPs (ECE, BME)
 Agdeppa, Hussain, Kim, Loehle; Ooyama-Searls, Pachucki, Parent
 Advisors: McNeill, Mazumder, Mendelson

2017-18
• $25K UMass Technology Commercialization (OTCV) funding
• $10K Massachusetts Technology Transfer Center (MTTC)
Motivation: Pressure Ulcer Prevention

- Painful
- Increases risk for secondary infection
- Wound healing takes up to several months
 - May not heal at all in compromised patients
- Adds $11B annually to US health care costs
- Demographics: Increasing cost, incidence, prevalence

→ Need compact, low-cost prevention for patients:
 - In hospital setting
 - Confined to bed at home
 - With limited mobility in wheelchairs

Healing of pressure ulcer over several months

• External pressure over ~30mmHg restricts blood flow
• Ischemia; tissue deprived of oxygen
• Can lead to tissue necrosis
Opportunity for Prevention

• Well-known locations on body at risk for pressure ulcer formation
• Location depends on patient environment:
 • Hospital setting
 • Confined to bed at home
 • With limited mobility in wheelchair

System Approach: Pressure Ulcer Prevention

- Device: Low-cost, disposable, wearable sensor patch
- System: Wireless data collection from multiple at-risk sites
- Algorithm: Assess risk from pressure vs. time profile
- Low-cost, disposable, wearable sensor patch
- Measure local pressure, temperature
- Small size, comfortable to wear for long duration
Benefits of Our Approach

• Low cost: $10 / sensor
• 7-day wearable; disposable
• Meet needs for multiple populations:
 – Caregiver: Reduces workload
 – Doctor: Detailed pressure-time information
 – Patient: Improved independence

Drawbacks of Existing Techniques:
• 2-hour turn protocol
 – Workload, injury risk for caregivers
 – Not supported by controlled trials
• Offloading beds
 – Expensive (> $10K), fixed location
• Pressure mapping pad
 – Expensive (> $1K), caregiver interpretation
Commercial Impact

$11B annual cost in US for pressure ulcer treatment

• Potential annual market population:
 – Hospitals 35.1 million
 (2014: No Medicare reimbursement)
 – Nursing homes 1.4
 – Long term / residential care 1.0
 – In-home care 5.3

Potential Population (5% at risk) 2.1 million
Estimated Gross Annual Market > $120 million

• Demographic demand accelerating
 – Aging, longer lived population

Flexible Wired Prototype

- Implement sensors, measurement circuitry on flexible substrate
Animal Experiment Data Acquisition

- Surgical protocol: Anesthetized pig immobile on back for ~ 7 hours
- Identified at-risk sites for placement of wired sensors
- Acquire data from multiple sites
Experimental Results

- Pressure, temperature vs. time over 7 hour duration
- Surgical protocol: Animal repositioned every 90 minutes
Experimental Results

- Pressure, temperature vs. time over 7 hour duration
- Verified ability to resolve threshold, pressure relief events
- Importance of multiple sensors for each at-risk point
Current Status

- Wireless prototype verified
 MS: Matt Crivello
 PhD student: Devdip Sen
 WPI Undergraduate project:
 ECE MQP: Amanda Agdeppa
 Ali Hussain
 David Kim
 Victoria Loehle
Development Plan Status

<table>
<thead>
<tr>
<th>Activity / Milestone</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure contact pressure, temperature, moisture</td>
<td>Verified</td>
</tr>
<tr>
<td>Wireless self-powered measurement</td>
<td></td>
</tr>
<tr>
<td>Human wearable, biocompatible sensor</td>
<td>IN PROGRESS (OTCV, MTTC, M2D2)</td>
</tr>
<tr>
<td>Animal model trials</td>
<td></td>
</tr>
<tr>
<td>Evidence based algorithm</td>
<td>FUTURE FUNDING (NIH, NSF, SBIR, STTR, PARTNERS)</td>
</tr>
<tr>
<td>Human trials (Class 2)</td>
<td></td>
</tr>
<tr>
<td>Clinical use</td>
<td></td>
</tr>
</tbody>
</table>

- Licensing most likely path to commercialization
- IP Status: Provisional patent application filed June 2016

Potential Partners
- Boston Scientific: Wearable sensors
- Johnson & Johnson: Managing diabetes, surgery recovery
- Convatec, Acelity, Smith & Nephew, Medtronic, GE, ...

➤ M2D2 support: Preliminary results for future funding

Technology: Disruptive shift in pressure ulcer prevention
Interdisciplinary Development Team

UMMS Division of Plastic Surgery

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raymond Dunn, M.D.</td>
<td>Chief; P.I.</td>
<td>Head, Wound Care</td>
</tr>
<tr>
<td>Kelli Hickle, M.D.</td>
<td>Resident</td>
<td>Surgical resource</td>
</tr>
<tr>
<td>Heather Tessier</td>
<td>Lab Director</td>
<td>Animal model resource</td>
</tr>
</tbody>
</table>

WPI Electrical & Computer Engineering

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>John McNeill, Ph.D</td>
<td>Professor</td>
<td>Sensor electronics</td>
</tr>
<tr>
<td>Xinming Huang, Ph.D</td>
<td>Professor</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>Devdip Sen</td>
<td>Student</td>
<td>Prototype fab / test</td>
</tr>
</tbody>
</table>

WPI Biomedical Engineering

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yitzhak Mendelson, Ph.D.</td>
<td>Professor</td>
<td>Skin-friendly materials</td>
</tr>
</tbody>
</table>
Acknowledgments

• Supported by a grant from the UMMS/WPI Collaborative Seed Funding Initiative.

• William Appleyard [WPI]
 – Assistance with sensor fabrication

• Heather Tessier [UMMS]
 – Access to experimental resources
 – Compliance with the IACUC-approved protocol
Summary: Lessons Learned

• Find an important problem: Listen to practitioners
 – Reduce cost, improve quality of care
 – Meets needs for majority of patient populations
 – Reduce workload on caregivers
• Clinical partner a must
• Engineers:
 – Interdisciplinary team
 – Different experimental constraints
 – Rapid prototyping
• Need credible plan for entire development cycle
 – Bring in partner resources (business, IP, …)
• Multiple funding sources
 – Get out of your comfort zone