May 16th, 9:45 AM

Keynote Address: New Poverty-Related Neglected Diseases (‘The NTDs’)

Peter Hotez
Baylor College of Medicine

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the International Public Health Commons, Translational Medical Research Commons, and the Tropical Medicine Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

https://escholarship.umassmed.edu/cts_retreat/2017/program/4

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
New Poverty-Related Neglected Diseases (‘The NTDs’)

Peter Hotez, M.D., Ph.D.
Texas Children’s Hospital Endowed Chair in Tropical Pediatrics
Dean, National School of Tropical Medicine at Baylor College of Medicine
Former U.S. Science Envoy
@PeterHotez
From the MDGs to the SDGs

2000-15 MDGs
The Millennium Development Goals

1. Eradicate extreme poverty and hunger.
2. Achieve universal primary education.
3. Promote gender equality and empower women.
4. Reduce child mortality.
5. Improve maternal health.
7. Ensure environmental sustainability.
8. Develop a global partnership for development.
The Global Burden of Disease Study

Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010

The Global Burden of Disease 2013

Expanded use of vaccines
• 83% reduction in measles deaths
• 82% reduction in tetanus deaths
• 57% reduction in diphtheria/pertussis deaths
• 45% reduction in Hib deaths

Development new vaccines
• Pneumococcal disease (36% reduction in deaths)
• Rotavirus (63% reduction in deaths)

2.5 million childhood lives saved through these initiatives
2015 Measles Cases in the U.S.
January 1 to June 26, 2015

Cases*:
- 0
- 1-4
- 5-9
- 10-19
- 20+

*Provisional data reported to CDC’s National Center for Immunization and Respiratory Diseases
The spread of anti-vax sentiment in California

Share of public school kindergartners with personal belief exemptions to vaccination requirements

Source: California Department of Public Health
- Texas ranks at the bottom of fully immunized children
- 45,000 Personal Belief Exemptions in Texas
Original Article

Patches of Disorganization in the Neocortex of Children with Autism

Rich Stoner, Ph.D., Maggie L. Chow, Ph.D., Maureen P. Boyle, Ph.D., Susan M. Sunkin, Ph.D., Peter R. Mouton, Ph.D., Subhojit Roy, M.D., Ph.D., Anthony Wynshaw-Boris, M.D., Ph.D., Sophia A. Colamarino, Ph.D., Ed S. Lein, Ph.D., and Eric Courchesne, Ph.D.

Abstract

Background

Autism involves early brain overgrowth and dysfunction, which is most strongly evident in the prefrontal cortex. As assessed on pathological analysis, an excess of neurons in the prefrontal cortex among children with autism signals a disturbance in prenatal development and may be concomitant with abnormal cell type and
The Millennium Development Goals

1. Eradicate extreme poverty and hunger.
2. Achieve universal primary education.
3. Promote gender equality and empower women.
4. Reduce child mortality.
5. Improve maternal health.
6. **Combat HIV/AIDS, malaria and other diseases.**
7. Ensure environmental sustainability.
8. Develop a global partnership for development.
Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013
“Other Diseases”
The Neglected Tropical Diseases

- 13-14 tropical infections:
 - Highly prevalent among the poor
 - Endemic in rural areas of low-income countries
 - Ancient afflictions
 - Chronic
 - Disabling (growth delays, blindness or disfigurement)
 - Stigmatizing
 - Poverty promoting
NEGLECTED TROPICAL DISEASES:

NTDs infect more than 1 BILLION of the world’s poorest people

<table>
<thead>
<tr>
<th>Disease</th>
<th>Prevalence</th>
<th>Disease</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascariasis</td>
<td>761.9 million</td>
<td>Trachoma</td>
<td>3.6 million</td>
</tr>
<tr>
<td>Trichuriasis</td>
<td>463.7 million</td>
<td>Cysticercosis</td>
<td>1.9 million</td>
</tr>
<tr>
<td>Hookworm Disease</td>
<td>428.8 million</td>
<td>Echinococcosis</td>
<td>1.4 million</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>252.2 million</td>
<td>Hansen’s Disease</td>
<td>514,200</td>
</tr>
<tr>
<td>Dengue and other arboviruses</td>
<td>79.6 million</td>
<td>Rabies</td>
<td>17,400</td>
</tr>
<tr>
<td>Food-borne trematodiases</td>
<td>71.1 million</td>
<td>African Trypanosomiasis</td>
<td>10,700</td>
</tr>
<tr>
<td>Lymphatic Filariasis</td>
<td>38.5 million</td>
<td>Guinea worm</td>
<td><1,000</td>
</tr>
<tr>
<td>Onchocerciasis</td>
<td>15.5 million</td>
<td>Yaws</td>
<td>Not determined</td>
</tr>
<tr>
<td>Chagas disease</td>
<td>6.7 million</td>
<td>Buruli ulcer</td>
<td>Not determined</td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td>3.9 million</td>
<td>Mycetoma</td>
<td>Not determined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zika</td>
<td>4 million</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ebola</td>
<td>2,800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“It’s quite a problem for me when I have to stand at work for long periods.”

Lymphatic Filariasis ("Elephantiasis")
NTDs and Girls & Women
Female Genital Schistosomiasis

Zimbabwe
OR = 3 increase in HIV/AIDS
Kjetland et al. AIDS 2006

Tanzania
OR = 4 increase in HIV/AIDS
Downs et al. AJTMH 2011

100 million girls & women
Africa’s most common gynecologic condition?

Current Commentary
Helminth Infections
A New Global Women’s Health Agenda
Peter Hotez, MD, PhD, and Megan Whitem

Emerging evidence over the past decade has implicated helminth infections as important yet largely unaddressed causes of adverse pregnancy outcomes and impacted women’s reproductive health. The two most important helminth infections affecting women living in poverty in Africa and elsewhere in the developing world are hookworm infections and schistosomiasis. In Africa alone, almost 40 million women of childbearing age are infected with hookworms, including almost 7 million pregnant women who are at greater risk of severe anemia, higher mortality, and experiencing poor maternal outcomes (reduced birth weight and increased infant mortality). Possible tens of millions of women in Africa also suffer from female genital schistosomiasis associated with genital itching and pain, gross inconveniences, and mental to better link global health programs for HIV and AIDS and works with helminth control and to simultaneously launch initiatives for research and development.

Most obstetricians and gynecologists do not routinely think about parasite worm (helminth) infections nor see them as central or perhaps even relevant to their clinical practices. However, new information published within the last decade has revealed that helminth infections are responsible for a huge but mostly hidden or unreported burden of morbidity among young women living in Africa and other developing regions.
The Bottom Billion Suffers from Multiple NTDs!

Ascariasis, Trichuriasis, Hookworm, Schistosomiasis, LF, Onchocerciasis, Trachoma

NTD Scale up with the U.S. Government + Drug Donations from

43.
George W. Bush 2001-2009
USAID NTD Program

>450 million People Rx: Elimination of some NTDs

Africa:
- Benin
- Burkina Faso
- Cameroon
- DRC
- Ghana
- Guinea
- Mali
- Mozambique

Asia:
- Bangladesh
- Cambodia
- Indonesia
- Philippines
- Lao PDR
- Nepal
- Vietnam

Americas:
- Haiti
10 SIGNIFICANT GAINS

Mass Drug Administration (MDA)
- **Lymphatic filariasis**: -52% (2005-15)
- **Onchocerciasis**: -52% (1990-2013)
- **Trachoma**: -65% (1990-2013)
- **Ascariasis**: -20% (2005-2015)
- **Yaws**: Not determined

Case detection + Rx + Vector control
- **African trypanosomiasis**: -78% (2005-2015)
- **Dracunculiasis**: -99% (1990-2013)

WASH

Other approaches
- **Cysticercosis**: -21% (2005-2015)
- **Leprosy**:

Elimination targets:
- LF
- Trachoma
- Yaws
- African trypanosomiasis
- Dracunculiasis
- Leprosy (Hansen’s Disease)

Source: GBD 2015 and GBD 2013
9 MAJOR SETBACKS

Mass Drug Administration (MDA)

Schistosomiasis +30% (1990-2013)

Hookworm -5% (1990-2013)

Trichuriasis -12% (1990-2013)

Case detection + Rx + Vector control

Leishmaniasis +174% (1990-2013)

Chagas disease +22% (1990-2013)

Dengue & Other Arbovirus Infections +610% (1990-2013)

WASH

Ebola +28,000% (2005-2015)

Coronaviruses

Other approaches

Food-borne Trematodiases +51% (1990-2013)

Losing the Battle: Vector-borne Neglected Diseases Arthropods Snails Zoonotic Neglected Diseases Viral Diseases

Source: GBD 2015 and GBD 2013
Are we playing “global health whack-a-mole”?

MDGs
AIDS
Malaria
Some NTDs
Childhood dz

SDGs
NTDs V.2.0
Vector-borne NTDs
Zoonotic NTDs
Explosive Outbreaks in the Americas

Emergence of Dengue in the New World in 1980s, 1990s

Emergence of Chikungunya in New World in 2013 (Saint Martin)
EMERGING VECTOR BORNE NEGLECTED DISEASE IN SOUTHERN EUROPE
The Anthropocene is a proposed epoch that begins when human activities started to have a significant global impact on Earth's geology and ecosystems.
Anthropocene forces promoting NTDs

- Deforestation
- Poverty
- Conflict and Political Destabilization
- Urbanization and Human Migrations
- Climate Change
POVERTY: “Blue Marble Health”

- Neglected diseases of the poor living amidst wealth
- A new framework for global science policy and the poverty-related diseases
Blue Marble Health: The poor living among the wealthy (G20 + Nigeria)

WHO + GBD 2013
- 73-78% Leprosy
- 61-78% Chagas
- 60-61% Dengue
- 57-60% TB
- 45-67% VL
- 50-52% Helminths

G20 + Nigeria = 54% Population and 86% Global Economy

http://www.plosntd.org/article/info:doi/10.1371/journal.pntd.0002570
Chagas disease in Argentina, Brazil, Mexico

• Ranking By GDP
 - 1. Brazil
 - 2. Mexico
 - 3. Argentina

• Ranking By Chagas
 - 1. Argentina 1.5 million
 - 2. Brazil 1.2 million
 - 3. Mexico 0.9 million
Brazil and Blue Marble Health

Introduction to Brazil

LARGEST Economy in Latin America

5th Largest country by land mass + population

7th Largest economy by nominal GDP

Member MERCOSUL BRICS Member

Poverty & Disease NE Brazil: Schistosomiasis, Leishmaniasis, Chagas, Dengue
Zika Microcephaly cases in NE Brazil
Poverty in Northeastern Brazil

Recife

Salvador de Bahia
Spread of Zika in the Americas
POVERTY IN TEXAS

Fifth Ward, Houston Texas
Anna Grove

South Texas “Colonias” Shaghayegh Tajvidi.
The Most Vulnerable
Predicted locations of the yellow fever mosquito, which transmits the Zika virus and other diseases.

Source: Moritz U. G. Kraemer et al., eLife Sciences; Simon Hay, University of Oxford
By The New York Times
WAR & POLITICAL DESTABILIZATION: Ebola

Data are based on reported cases up to the end of 13 September 2014 for Guinea and Sierra Leone. Data for Liberia are based on reported cases up to the end of 9 September 2014. The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.
ISIS-Occupied Syria, Iraq, Libya, Yemen

- Measles/Polio
- Leishmaniasis
- Schistosomiasis
- Brucellosis
- MERS CoV
- Dengue
- Malaria/TB
- Rift Valley Fever
Vaccinating Against The Anthropocene’s NTDs
Why Don't We Have an Ebola Vaccine?

Pepsi has a new Doritos-flavored Mountain Dew. No, we don't have an Ebola vaccine, but we do have the Doritos-flavored Mountain Dew.

David Letterman
Coalition for Epidemic Preparedness Innovations (CEPI)

Presentation to the WHO
21 July, 2017
Professor John-Arne Røttingen, Interim CEO, CEPI

- Building on the WHO R&D blueprint
- Need for improved R&D preparedness for diseases of epidemic potential
- Prioritization of pathogens
- Identification of R&D priorities
- Exploration of funding models for R&D preparedness and response
 - Nipah
 - Lassa
 - MERS CoV

The Economist

Vaccines
Putting shots in the locker

How to anticipate epidemics
Sep 3rd 2016 | From the print edition

FOREWARNED, the proverb has it, is forearmed. But what happens when there is no warning? That was the case in December 2013, when an outbreak of Ebola haemorrhagic fever began in Guinea. It spread rapidly to Liberia and Sierra Leone and raged on for over a year. Around 29,000 people were infected. More than 11,000 of them died.

The world responded to this crisis, shipping in doctors, nurses and medical equipment. But what it could not ship in, for none existed, was the thing that would most quickly have stopped the epidemic: a vaccine. Such a vaccine was created eventually, but by the time it was ready, the outbreak was all but over. Had it been available from the beginning, things could have been different.

Next time, though, they might be, for on August 31st a new organisation came into being. CEPI, the Coalition for Epidemic Preparedness Innovations, was founded this week in London, at the headquarters of the Wellcome Trust, a medical charity. It is the joint brainchild of the Wellcome, the Bill and Melinda Gates Foundation, the World Economic Forum and the government of Norway, and its purpose is precisely to forewarn the world against future outbreaks of disease, without foreknowledge of what those outbreaks will be.

Paradoxically, part of the inspiration for CEPI’s creation was not the failure to deliver an Ebola vaccine in time for it to be useful, but how close that project came to success. Creating a new vaccine from scratch is a long-winded undertaking, but in the case of Ebola several candidate vaccines were already on the shelf thanks to earlier, but stalled, work by America’s army and that country’s National Institutes of Health. There were also three pharma companies, GlaxoSmithKline, Johnson & Johnson and Merck, willing, pro bono publico, to take these candidates and try to turn them into the real thing as quickly as possible. That they succeeded in doing so by the summer of 2015 was, by most standards, extraordinary
Sabin PDP Pipeline and Disease Portfolio

2000 to 2004
- Built structure
- Launched Hookworm Program

2004 to 2011
- Expanded Hookworm Program
- Schisto Program
- Relocated to TMC

2011 to 2015
- Added 7 additional programs
- Expansion of capabilities

PROGRAM	R&D	PRE-CLINICAL	PHASE 1	PHASE 2 AND 3
Hookworm | | | | |
Schistosomiasis | | | | |
Leishmaniasis | | | | |
Chagas Disease | | | | |
Trichuriasis | | | | |
Ascariasis | | | | |
West Nile | | | | |
SARS | | | | |
Onchocerciasis | | | | |

A Handful Of ‘Antipoverty’ Vaccines Exist For Neglected Diseases, But The World’s Poorest Billion People Need More

Abstract: Severe neglected tropical diseases are the most common killers of the world’s poor, accounting for 1.4 billion people who live below the poverty level defined by the World Bank—nearly three out of every four people in the world. These diseases, such as hookworm, schistosomiasis, and leishmaniasis, are a cause of poverty because of their adverse effects on child growth and development and vector-borne diseases. Vaccines to combat such diseases have come to be known as “antipoverty vaccines.” Unfortunately, the recent surge in the development and delivery of vaccines to combat the major childhood killers—such as pneumococcal pneumonia and measles—has bypassed neglected diseases. In this paper, we describe how some antipoverty vaccine development is progressing, and other recommendations for accelerating further development such as through pooled funding for innovation, developing-country manufacture, and public-private partnerships for product development.
Rino Rappuoli: Reverse Vaccinology

- In silico prediction of vaccine candidate antigens
- Genome sequence of Neisseria meningitidis serogroup B

600 potential vaccine candidates identified

- 350 proteins successfully expressed in E. coli
 - Protein purification
 - Mouse immunization
 - Testing mouse sera

- 91 novel surface-exposed proteins identified

- 28 novel proteins have bactericidal activity

Vaccine candidates selected for development

Nature Reviews | Immunology
Reverse vaccinology as a ‘holy grail’ for complex eukaryotic organisms

- Large genomes of similar complexity to human genome
- Inadequacy of bacterial expression systems for eukaryotic antigens
- Low throughput not high throughput
- Deficiencies in animal models
Vaccine Targeting
Hookworm and Schistosomiasis Co-Infections

A MULTIVALENT VACCINE TARGETING HOOKWORM + SCHISTO
Goals of Anti-schistosome Vaccine

- Worm burden reduction
- Egg reduction
- Reduced end-organ pathology
- Reduction in inflammation
- Reduction in anemia and malnutrition
Immunomics Approach: Schistosome protein microarrays

<table>
<thead>
<tr>
<th>AY815838 (170PD239)</th>
<th>M63706 (16SPD255)</th>
<th>LO8198 (162PD228)</th>
<th>Smp_000100 (60CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl</td>
<td>Skin</td>
<td>Lung</td>
<td>Lang</td>
</tr>
<tr>
<td>Neg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AY810792 (194PD268)</th>
<th>AY813467 (184PD254)</th>
<th>AY811986 (28PD60)</th>
<th>AY815690 (10PD15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AY222868 (190PD260)</th>
<th>AY222951 (195PD269)</th>
<th>AY813602 (111PD172)</th>
<th>AY812976 (97PD154)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AY810700 (173PD242)</th>
<th>AY915721 (37PD84)</th>
<th>AY811797 (83PD139)</th>
<th>Smp_96760 (51CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AY915793 (112PD173)</th>
<th>AY810537 (103PD163)</th>
<th>AY813973 (4PD7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SjDiag, hypothetical prot.</th>
<th>Sj23, 23 kDa integral membrane prot.</th>
<th>Sj22.6 tegumental antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filamin</td>
<td>sim. acetylcholinesterase precursor</td>
<td>Calponin homolog</td>
</tr>
<tr>
<td>sim. XP 217452 prot.</td>
<td>sim. myosin heavy chain</td>
<td>Hypothetical protein</td>
</tr>
<tr>
<td>SjCutA</td>
<td>sim. SnAK1</td>
<td></td>
</tr>
<tr>
<td>sim. tetraspanin T636</td>
<td>sim. Sm29</td>
<td></td>
</tr>
<tr>
<td>Hypothetical protein</td>
<td>Putative uncharacterised prot.</td>
<td></td>
</tr>
<tr>
<td>Hypo. prot. /DNA-binding SAP domain</td>
<td>Phosphoglycerate mutase</td>
<td></td>
</tr>
<tr>
<td>Sm ACTIN 2</td>
<td>sim. alkaline phosphatase</td>
<td></td>
</tr>
<tr>
<td>sim. facilitated glucose transporter 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positive Control d1</th>
<th>E.coli d1</th>
<th>Pichia d1</th>
<th>Positive Control d2</th>
<th>E.coli d2</th>
<th>E.coli d1</th>
<th>E.coli d1</th>
<th>Pichia d2</th>
<th>E.coli d1</th>
<th>E.coli d2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DNA</td>
<td></td>
<td></td>
<td>No DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative Control 1</th>
<th>Negative Control 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No DNA</td>
<td>No DNA</td>
</tr>
</tbody>
</table>
Immune localization of Sm-TSP-2
Suppression of tsp-2 mRNA expression results in impaired tegument turnover in vitro

Tran et al. *PLoS Path* 2010
Intestinal Schistosomiasis Vaccine

Expression at a 20L scale and purification of the extracellular domain of the *Schistosoma mansoni* TSP-2 recombinant protein

A vaccine candidate for human intestinal schistosomiasis

Elena Curti, Clifford Kersey, Bin Zhan, Portia Gilleppe, Jill Kiviat, Yael Deumic, Jordan Plaskett, Wanderson Rebeiro, Eric Tsao, Rose Kalamjan, Peter J Hotez, and Maria Elena Bottazzi

Departments of Pediatrics and Microbiology and Immunology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; School of Tropical Medicine, the George Washington University, Washington, DC, USA; Texas Children’s Hospital, Houston, TX, USA; Department of Microbiology, Immunology and Tropical Medicine, the George Washington University, Washington, DC, USA; Texas Children’s Hospital, Houston, TX, USA

Keywords: Schistosomiasis, Schistosoma mansoni, neglected tropical diseases, vaccine, S. mansoni, TSP-2, Plasmodium, recombinant proteins

Introduction

Schistosomiasis is a parasitic infection caused by blood flukes of the genus *Schistosoma*. Today, human schistosomiasis is considered one of the most important human helminthic infections in terms of morbidity and mortality, especially in Africa, where more than 90% of the cases occur. Recent studies indicate that approximately 200 million people are infected worldwide, with 800 million people at risk. However, additional analyses indicate that this number may be an underestimate and as many as 400-600 million people may be infected with schistosomes.

Although schistosomiasis is a treatable infection, the current treatment of choice does not provide an optimal strategy for controlling the disease. Since 1996, praziquantel (PZQ) based mass chemotherapy has been the main approach to controlling schistosomiasis, primarily targeting school-aged children with casual exposure. However, the sustainability of PZQ treatment for the long-term control and elimination of schistosomiasis remains a concern and has limitations. For instance, PZQ does not cure infection and does not induce immunological resistance in PZQ-resistant strains. Although there is no clear evidence for the existence of PZQ-resistant schistosomiasis strains, decreased susceptibility to the drug has been observed in several countries. To overcome these challenges, a prophylactic vaccine or a vaccine-based chemotherapy would be ideal to complement the existing treatment strategies. Evidence for the feasibility of developing a schistosome vaccine includes studies showing that immunization with irradiated schistosome cercarial extract induce high levels of protection in experimental animal models. Further increasing the level of protection, in addition, a subset of human populations living in endemic areas has been shown to develop various degrees of natural immunity, while veterinary vaccines against other parasites that have been developed successfully and applied in practice.

Expanded information on the mechanisms of immunity in schistosomiasis and the recent availability of the schistosome genome for both *S. mansoni* and *S. haematobium* have resulted in the discovery of several schistosome antigens, while additional candidates are now being found through genomic approaches. Within the last year results of a Phase I trial for a plasmid DNA vaccine targeting the conserved tetraspanin domain of the Schistosome Tetraspanins

Entering phase 1 trials – Baylor VTEU
The Rise of Emerging + Neglected Diseases in the “New Texas”

- Leading TX NTDs
 - Toxocariasis 700,000
 - Trichomoniasis 450,000
 - Chagas disease 37,000
 - WNV 183-1,900
 - Intestinal protozoan 1,000
 - Cysticercosis 195-754
 - Murine Typhus >100
 - Dengue, Zika, Chik
The role of trypanocidal therapy in patients with established Chagas’ cardiomyopathy is unproven.

Trypanocidal therapy with benznidazole in patients with established Chagas’ cardiomyopathy significantly reduced serum parasite detection but did not significantly reduce cardiac clinical deterioration through 5 years of follow-up.
Tc24 protein combined with E6020 in a Stable Squalene Emulsion as a lead candidate vaccine

Candidate Antigen

Tc24- 24kDa *Trypanosoma Cruzi* Flagellar Calcium Binding Protein

Candidate Adjuvant

TLR4 agonist: E6020

Additional antigens also under evaluation and development
ADVANCES IN A THERAPEUTIC CHAGAS VACCINE INITIATIVE

• **Preclinical Efficacy:**

 - Pilot studies were performed to evaluate efficacy of recombinant Tc24 combined with imiquimod or MPLA when used as a preventative vaccine

• **Preliminary Results**

 • Reduce parasitemia
 • Increase survival during acute phase
 • Antigen specific IgG2a
 • Antigen specific IFNγ
 • Reduced cardiac parasite burden
Western Blot comparison of Tc24-WT (A), Tc24-C2 (B), and Tc24-C4 (C) purified proteins. Lanes 1-3: Non-Reduced. Lane 4: SeeBlue Plus Molecular Weight Marker. Lanes 5-7 Reduced. Lanes 1,5: Sample before size-exclusion chromatography (SEC) 8 µg load. Lanes 2,6: Post SEC low load (3 µg). Lanes 3,7: Post SEC high load (8 µg). Detection was performed using mouse polyclonal antibody against Tc24 expressed in *Pichia pastoris* as primary antibody diluted 1:2,500 in PBST and an alkaline phosphatase conjugated goat anti-mouse secondary antibody diluted 1:7,500 in PBST.
Maintaining secondary/tertiary structures

Structural comparison of Tc24 constructs. a) Circular Dichroism (CD). Far UV CD spectrum of different constructs of Tc24 were taken on a Jasco J-1500. All tested Tc24 protein have a virtual identical CD profile with overlapping spectra. Negative peaks at 222 nm and 208 nm and a positive peak at 193 nm indicate that Tc24 is an α-helical protein. b) Thermal melting profile of Tc24-WT and Tc24-C4 measured using Protein Thermal Shift™ kit (Life Technologies).
Therapeutic Chagas Disease Vaccine

Experimental Chagas disease vaccine improves Cardiac Echocardiography function