A Novel Bromodomain and Extra-terminal Domain Inhibitors (BETi) that Reverses HIV-1 Latency

Shuai Liu

University of Massachusetts Boston

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/cts_retreat

Part of the Medicinal-Pharmaceutical Chemistry Commons, Translational Medical Research Commons, and the Virus Diseases Commons


Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in UMass Center for Clinical and Translational Science Research Retreat by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.
A NOVEL BROMODomain AND EXTRA-TerMINAL DOMAIN INHIBITORS (BETI) THAT REVERSES HIV-1 LATENCY

Shuai Liu¹, Huachao Huang², Maxime Jean², Wei Zhang¹, Jian Zhu²
¹Department of Chemistry, University of Massachusetts Boston; ²Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY

Although combinatory antiretroviral therapy (cART) is effective to reduce HIV-1 viremia, it does not eliminate HIV-1 infection. HIV-1 remains latent with the presence of cART, impeding the cure of AIDS. Recently, latency-reversing agents (LRAs) have been developed to purge latent HIV-1, providing an intriguing strategy for eradication of residual, latent viral reservoirs. Our earlier studies show that antagonism of HIV-1 competitive factor bromodomain containing 4 (BRD4) using bromodomain and extra-terminal domain inhibitor (BETi) JQ1 may facilitate the reversal of HIV-1 latency. BETis have recently emerged as a class of compounds that are promising for both the anticancer and HIV-1 latency-reversing uses. However, the current BETis, including JQ1, are modest to reverse HIV-1 latency as a single drug, which complicates the study of the underlining mechanisms. BETis, which are more potent and easier for synthesis, are currently under active development. UMB-32 is a novel BETi based on an imidazo[1,2-a]pyrazine scaffold. We screened 61 UMB-32 derivatives and identified that one BETi, UMB-136, reactivates HIV-1 in multiple cell models of HIV-1 latency with better efficiency than JQ1 and UMB-32. Furthermore, UMB-136 enhances the latency-reversing effect of PKC activators (Prostratin, Bryostatin) in CD8-depleted PBMCs containing HIV-1 latent reservoirs. Thus, our results illustrate that structurally improved BETis, such as UMB-136, could be use as promising LRAs for HIV-1 eradication.

Contact:
Shuai Liu
University of Massachusetts Boston
Shuai.Liu001@umb.edu