Pericardial Fat Thickness Increases with Greater Burden of Adverse Metabolic Factors Among Adults with Normal-Range Body Mass Index: The Framingham Heart Study

Philimon N. Gona
University of Massachusetts Boston

Jane J. Lee
Boston Children’s Hospital

Noriko Oyama-Manabe
University of Hokkaido

See next page for additional authors
Presenter Information

Keywords
pericardial fat thickness, Framingham heart study, body mass index, cardiac magnetic resonance

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

This poster abstract is available at eScholarship@UMMS: https://escholarship.umassmed.edu/cts_retreat/2017/posters/29
PERICARDIAL FAT THICKNESS INCREASES WITH GREATER BURDEN OF ADVERSE METABOLIC FACTORS AMONG ADULTS WITH NORMAL-RANGE BODY MASS INDEX: THE FRAMINGHAM HEART STUDY

Philimon N. Gona, PhD¹, Jane J. Lee, MD², Noriko Oyama-Manabe, MD, PhD³, Carol J. Salton, BA⁴, Warren J. Manning, MD⁴, Michael L. Chuang, MD⁴, Christopher J. O'Donnell, MD, MPH⁵
¹University of Massachusetts Boston; ²Boston Children's Hospital, Boston, MA; ³University of Hokkaido, Sapporo, Japan; ⁴Beth Israel Deaconess Medical Center, Boston, MA; ⁵VA Boston Healthcare System, Boston, MA

Introduction: Greater burden of pericardial fat is associated with increased body mass index (BMI). Obesity is associated with unfavorable metabolic characteristics such as hypertension, dyslipidemia, and glucose intolerance. We sought to determine whether unfavorable metabolic profile alone, in the absence of excess BMI, was itself associated with increased pericardial fat thickness (PFT).

Methods: From the 1,794 Framingham Offspring cohort adults who underwent cardiac magnetic resonance (CMR), we identified 446 free of non-skin cancer and prevalent clinical cardiovascular disease (CVD) who had 18.5≤BMI<25.0 kg/m² and complete covariates. We calculated a metabolic score (MS) based on ATPIII criteria where 1 point was assigned for each of: a) fasting glucose≥100 mg/dL or diabetes; b) SBP≥130 or DBP≥85 mmHg or antihypertensive treatment; c) triglycerides≥150 mg/dL; d) HDL cholesterol <40(M)/<50(W) mg/dL or lipid-lowering treatment; e) HOMA-IR≥2.5; f) waist circumference ≥102(M)/ ≥88(W) cm. Participants were stratified as MS0 (no points), MS1 (1 point), MS2 (2 points) or MS3+ (≥3 points). PFT over the right ventricle (RV) was measured at the RV apex, at mid-ventricle and at maximal PFT. The RV was selected because pericardial fat is commonly and well visualized over the RV. Analysis of covariance adjusted for sex, age, and BMI, was used to compare MS1, MS2 and MS3+ groups to the MS0 group. We further tested for linear trend across MS groups.

Results: PFT increased with worsening metabolic score at the fixed locations of the apical and mid-level RV, as well as at maximal PFT. On pairwise comparisons, only the MS3+ group had PFT that was consistently significantly greater than that of MS0.

Conclusions: In a community-dwelling cohort, among participants who were free of cancer and clinical CVD and had normal-range or BMI, worsening metabolic profile was associated with increased pericardial fat thickness.

Contact:
Philimon N. Gona, PhD
University of Massachusetts Boston
phil.gona@umb.edu